
REGRET MINIMIZATION AND RELATED
DECISION RULES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

YinYee Leung

August 2015



c© 2015 YinYee Leung

ALL RIGHTS RESERVED



REGRET MINIMIZATION AND RELATED DECISION RULES

YinYee Leung, Ph.D.

Cornell University 2015

Our starting point is a setting where a decision maker’s uncertainty is repre-

sented by a set of probability measures, rather than a single measure. Measure-

by-measure (a.k.a. prior-by-prior) updating of such a set of measures upon ac-

quiring new information is well-known to suffer from problems. To deal with

these problems, we propose using weighted sets of probabilities: a representa-

tion where each measure is associated with a weight, which denotes its signif-

icance. We describe a natural approach to updating in such a situation. We

then show how this representation can be used in decision-making, by modify-

ing a standard approach to decision making—minimizing expected regret—to

obtain minimax weighted expected regret (MWER). We provide an axiomatization

that characterizes preferences induced by MWER both in the static and dynamic

case.

This same concept of weighted probability distributions can also be applied

to the widely-studied maxmin expected utility decision rule. Chateauneuf and

Faro [2009] axiomatize a weighted version of maxmin expected utility over acts

with nonnegative utilities, where weights are represented by a confidence func-

tion. We argue that their representation is only one of many possible, and we

axiomatize a more natural form of maxmin weighted expected utility. We also

provide stronger uniqueness results.

Next, we apply regret-minimization to dynamic decision problems. The

menu-dependent nature of regret-minimization creates subtleties when it is ap-



plied to dynamic decision problems. If forgone opportunities are included, we

can characterize when a form of dynamic consistency is guaranteed.

Finally, we look at a “dual” of minimax regret, called maximin safety. Much

as regret is a form of distance to the best possible outcome, safety is a form of

distance to be worst possible outcome. The idea behind maximin safety is that

one would want to maximize the distance between one’s choice and the worst

possible outcome. This decision rule might be appropriate in cases where it is

important not to be “the last person”, for instance when a group of hikers is

being chased by a bear. We examine its behavioral motivations and provide an

axiomatization for the decision rule.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Decision-making is an important aspect of intelligent behavior. Decision theo-

rists are interested in two ways of studying decisions: normative and descriptive.

Descriptive decision theory attempts to explain behavior that are observed in

real humans. This thesis lies within the scope of normative decision theory –

we are interested in how intelligent agents “ought to” make decisions. In deci-

sion theory, this is usually accomplished through the axiomatization of decision

rules – giving a set of axioms and show that they characterize the behavior of

the decision rule. Intuitively, if a decision rule is characterized by a set of rea-

sonable or desirable axioms, then the decision rule itself should be considered

reasonable or desirable.

Savage [1951] and Anscombe and Aumann [1963] showed that a decision

maker maximizing expected utility with respect to a probability measure over

the possible states of the world is characterized by a set of arguably desirable

principles. However, as Allais [1953b] and Ellsberg [1961] point out using com-

pelling examples, sometimes intuitive choices are incompatible with maximiz-

ing expected utility.

In the Ellsberg paradox [1961], there is an urn with 90 marbles, 30 of which

are red, and 60 of which are either yellow or blue. The decision maker (hence-

forth DM) does not know how many blue or yellow balls there are. The DM

is given a choice between two gambles: gamble A, under which the DM wins
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$100 if the next marble drawn is red; and gamble B, under which the DM wins

$100 if the next marble drawn is blue. Most humans choose gamble A. The DM

is further asked to compare two different gambles: gamble C, under which the

DM wins $100 if the next marble drawn is red or yellow; and gamble D, under

which the DM wins $100 if the next marble drawn is blue or yellow. Most hu-

mans choose gamble D. Assuming that the DM is an expected-utility maximizer,

there is no subjective belief on the proportions of yellow and blue balls that re-

sult in the observed preferences (that is, gamble A is preferred over gamble B

and gamble D is preferred over gamble C).

One reason for this incompatibility is that there is often ambiguity in the prob-

lems we face; we often lack sufficient information to capture all uncertainty us-

ing a single probability measure over the possible states.

To this end, there is a rich literature offering alternative means of making

decisions (see, e.g., [Al-Najjar and Weinstein 2009] for a survey). For example,

we might choose to represent uncertainty using a set of possible states of the

world, but using no probabilistic information at all to represent how likely each

state is. With this type of representation, two well-studied rules for decision-

making are maximin utility and minimax regret. Maximin says that you should

choose the option that maximizes the worst-case payoff, while minimax regret

says that you should choose the option that minimizes the regret you’ll feel at the

end, where, roughly speaking, regret is the difference between the payoff you

achieved, and the payoff that you could have achieved had you known what the

true state of the world was. Both maximin and minimax regret can be extended

naturally to deal with other representations of uncertainty. For example, with

a set of probability measures over the possible states, minimax regret becomes
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minimax expected regret (MER) [Hayashi 2011; Stoye 2011a]. Other works that

use a set of probability measures include, for example, [Campos and Moral 1995;

Cousa, Moral, and Walley 1999; Gilboa and Schmeidler 1993; Levi 1985; Walley

1991].

We now briefly explain our minimax weighted expected regret decision rule

(MWER), the topic of Chapter 2, by first discussing MER. MER is a probabilis-

tic variant of the minimax regret decision rule proposed by Niehans [1948] and

Savage [1951].1 Most likely, at some point, we’ve second-guessed ourselves and

thought “had I known this, I would have done that instead”. That is, in hind-

sight, we regret not choosing the act that turned out to be optimal for the re-

alized state, called the ex post optimal act. The regret of an act a in a state s is

the difference (in utility) between the ex post optimal act in s and a. Of course,

typically one does not know the true state at the time of decision. Therefore the

regret of an act is the worst-case regret, taken over all states. The minimax regret

rule orders acts by their regret.

The definition of regret can be used if there is no probability on states. If a

DM’s uncertainty is represented by a single probability measure, then we can

compute the expected regret of an act a: just multiply the regret of an act a at a

state s by the probability of s, and then sum. It is well known that the order

on acts induced by minimizing expected regret is identical to that induced by

maximizing expected utility (see [Hayashi 2008a] for a proof). If an DM’s un-

certainty is represented by a set P of probabilities, then we can compute the

expected regret of an act a with respect to each probability measure Pr ∈ P , and

then take the worst-case expected regret. The MER (Minimax Expected Regret)

1Note that our definition of regret minimization, while standard, differs from that used by
Loomes and Sugden [?], where probabilities are given, and where the DM not only feels regret
but also “rejoice” if the chosen alternative is better than the unchosen ones.
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rule orders acts according to their worst-case expected regret, preferring the act

that minimizes the worst-case regret. If the set of measures is the set of all proba-

bility measures on states, then it is not hard to show that MER induces the same

order on acts as (probability-free) minimax regret. Thus, MER generalizes both

minimax regret (if P consists of all measures) and expected utility maximization

(if P consists of a single measure).

MWER further generalizes MER. If we start with a weighted set of measures,

then we can compute the weighted expected regret for each one (just multiply

the expected regret with respect to Pr by the weight of Pr) and compare acts by

their worst-case weighted expected regret.

We also consider the updating of beliefs. We propose a method of updating

a set of weighted probability measures, called likelihood updating. In Chapter 2,

we provide an axiomatization for MWER, as well as for MWER with likelihood

updating.

We have thus far neglected the other popular decision rule, maximin ex-

pected utility. Just as minimax regret generalizes to minimax expected regret

(MER) when uncertainty is represented by a set of probability distributions, the

maximin decision rule also has a counterpart when uncertainty is represented

by a set of probability distributions. This “multiple priors” version of maximin

is called maxmin expected utility (MEU or MMEU). Gilboa and Schmeider [?]

axiomatize the MMEU decision rule in their seminal paper.

In Chapter 3, we change the focus to MMEU. In particular, we apply the con-

cept of weighted probability measures, which we used for regret-minimization

in Chapter 2 to obtain MWER, to MMEU, resulting in a decision rule which we
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call maxmin weighted expected utility (MWEU). It turns out that Chateauneuf

and Faro [2009] had also axiomatized a weighted version of maxmin expected

utility over acts with nonnegative utilities. We argue that their representation is

only one of many possible, and we axiomatize a more natural form of maxmin

weighted expected utility, dropping one of Chateauneuf and Faro’s axioms. We

also provide stronger uniqueness results for the set of weights in the represen-

tation theorem.

In Chapter 4, we return to the study of regret-minimization, this time with

special attention on the dynamic aspects of regret-minimization. We look at

both measure-by-measure updating, as well as likelihood updating, and char-

acterize when a form of dynamic consistency is guaranteed when each of these

updating rules are used. Additional examples of minimizing regret in dynamic

decision problems, such as the secretary problem, can be found in the appendix.

Finally, in Chapter 5 we look at a notion very much related to regret, which

we call safety. The maximin safety decision rule seeks to maintain a large margin

from the worst outcome, in much the same way minimax regret seeks to mini-

mize distance from the best. In a sense, safety is the “dual” of regret because it

measures the distance to the worst outcome, while regret measures the distance

to the best outcome. The maximization of safety therefore have similar qualities

to minimizing regret. It turns out that Stoye [2011a] had already considered an

equivalence notion to maximizing safety. However, he only briefly mentioned

its possibility, which he calls the maximization of “joy”, within a proof in the

paper.
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CHAPTER 2

MINIMAX WEIGHTED EXPECTED REGRET

2.1 Overview

We consider a setting where a DM’s uncertainty is represented by a set of prob-

ability measures, rather than a single measure. Measure-by-measure updating

of such a set of measures upon acquiring new information is well-known to

suffer from problems. To deal with these problems, we propose using weighted

sets of probabilities: a representation where each measure is associated with a

weight, which denotes its significance. We describe a natural approach to updat-

ing in such a situation and a natural approach to determining the weights. We

then show how this representation can be used in decision-making, by modify-

ing a standard approach to decision making—minimizing expected regret—to

obtain minimax weighted expected regret (MWER). We provide an axiomatization

that characterizes preferences induced by MWER both in the static and dynamic

case.

2.2 Introduction

From deciding between crispy fries and a bland salad, to forming an investment

portfolio, to military planning, our decisions can significantly impact our lives

and those of others. These problems can often be abstracted as decision prob-

lems with uncertainty. For decisions based on the outcome of the toss of a fair

coin, the uncertainty can be well characterized by probability. However, what
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1 defect 10 defect
deliver 10,000 -10,000
cancel 0 0
check 5,001 -4,999

Table 2.1: Payoffs for the quality-control problem. Acts are in the leftmost
column. The remaining two columns describe the outcome for
the two sets of states that matter.

is the probability of you gaining weight if you eat fries at every meal? What if

you have salads instead? Even experts would not agree on a single probability.

Representing uncertainty by a single probability measure and making deci-

sions by maximizing expected utility leads to further problems. Consider the

following stylized quality control-problem, which serves as a running example

in this chapter. A business owner (the DM) is contracted to produce 1, 000 items,

and will be rewarded when she delivers the items, but punished if she delivers

a batch with too many defective items. She has recently switched a raw mate-

rial supplier, and does not know whether the supplier is reliable, and provides

good quality materials, or unreliable, and provides bad quality materials. For

simplicity, assume that using good quality raw materials results in one defective

item in the batch of 1, 000, while using bad quality raw materials results in ten

defective items.1

The owner’s choices and their consequences are summarized in Table 2.1.

Decision theorists typically model decision problems with states, acts, and out-

comes: the world is in one of many possible states, and the DM chooses an act,

a function mapping states to outcomes. For now, we use the simplest possible

state space for this problem: {one defect, ten defects}. These two possible states

1It is more natural to assume that the quality of the raw materials affects the distribution
of the number of defects, rather than directly affecting the final number; we make the latter
assumption here for simplicity.
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are sufficient to capture the owner’s uncertainty in the quality-control problem.

(However, we later consider a more refined state space.)

The owner can choose among three acts: deliver : deliver the products; cancel :

cancel the contract; or check : inspect enough items to determine the number of

defects, then decide to deliver or cancel the contract. The client will tolerate at

most one defect in the lot of 1, 000. Therefore, if the owner chooses deliver , and if

there is only one defect, then the client is happy, and the owner obtains a utility

of 10, 000; if there are ten defects, then the outcome then the client will penalize

the owner, resulting in a utility of −10, 000. If the owner chooses to cancel , then

the contract is canceled, and the owner gets a utility of 0. Finally, checking the

items costs 4, 999 units of utility but is reliable, so if the owner chooses check ,

and if there is one defect, then the products will be delivered after the check,

and the client will be happy; the owner nets a utility of 5, 001. On the other

hand, if there are ten defects, then after the check, the contract will be canceled,

and the owner nets a utility of −4, 999.

To maximize expected utility, we must assume some probability over states.

What measure should be used? There are two hypotheses that the owner enter-

tains: (1) the raw material is of high quality and (2) the raw material is of low

quality. Each of these hypotheses places a different probability on states.

If the raw material is of high quality, then with probability 1 there will only

be one defect; if the raw material is of low quality, then with probability 1 there

will be ten defects. One way to model the owner’s uncertainty about the qual-

ity of the material is to take each hypothesis to be equally likely. However, not

having any idea about which hypothesis holds is very different from believing

that all hypotheses are equally likely. It is easy to check that taking each hypoth-
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esis to be equally likely makes check the act that maximizes utility, but taking

the probability that the raw material has low quality .51 makes cancel the act

that maximizes expected utility, and taking the probability that the raw mate-

rial has high quality to be .51 makes deliver the act that maximizes expected

utility. What makes any of these choices the “right” choice?

It is easy to construct many other examples where a single probability mea-

sure does not capture uncertainty, and does not result in what seem to be reason-

able decisions, when combined with expected utility maximization. A natural

alternative, which has often been considered in the literature, is to represent the

DM’s uncertainty by a set of probability measures. For example, in the quality-

control problem, the owner’s beliefs could be represented by two probability

measures, Pr1 and Pr10, one for each hypothesis. Thus, Pr1 assigns uniform

probability to all states with exactly one defective items, and Pr10 assigns uni-

form probability to all states with exactly ten defective items.

But this representation also has problems. Consider the quality-control prob-

lem again. Why should the owner be sure that there is exactly either one or ten

defective items? Of course, we can replace these two hypotheses by hypotheses

that say that the probability of an item being defective is either .001 or .01, but

this doesn’t solve the problem. Why should the DM be sure that the probability

is either exactly .001 or exactly .01? Couldn’t it also be .0999? Representing un-

certainty by a set of measures still places a sharp boundary on what measures

are considered possible and impossible.

A second problem involves updating beliefs. How should beliefs be up-

dated if they are represented by a set of probability measures? The standard ap-

proach for updating a single measure is by conditioning. The natural extension
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of conditioning to sets of measure is measure-by-measure updating: condition-

ing each measure on the information (and also removing measures that give the

information probability 0).

However, measure-by-measure (or prior-by-prior) updating can produce

some rather counter-intuitive outcomes. In the quality-control problem, sup-

pose that the owner knows that the first 100 items that came off the assembly

line are good. We denote this piece of information by E. Intuition tells us that

there is now more reason to believe that there is only one defective item. The

simple two-state state space we used is not sufficient to capture this new in-

formation, so we now expand the state space from {one defect, ten defects} to

{good,defective}1000. That is, each item that gets produced is numbered from 1

to 1, 000, and each one can be either defective, or good. We can adapt the two

hypotheses in the obvious way to this new state space, and the hypotheses can

be conditioned on the new information.

However, Pr1 | E places uniform probability on all states where the first 100

items are good, and there is exactly one defective item among the last 900 items.

Similarly, Pr10 | E places uniform probability on all states where the first 100

items are good, and there are exactly ten defective items among the last 900.

Pr1 | E still places probability 1 on there being one defective product, just like

Pr1, and Pr10 | E still places probability 1 on there being ten defective products.

There is no way to capture the fact that the owner now views the hypothesis

Pr10 as less likely, even if the owner was told that the first 990 items are all good!

Of course, both of these problems would be alleviated if we placed a prob-

ability on hypotheses, but, as we have already observed, simply maximizing

expected utility with respect to this second-order probability distribution has
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its problems. In this thesis, we propose an intermediate approach: representing

uncertainty using weighted sets of probabilities. That is, each probability measure

is associated with a weight. These weights can be viewed as probabilities; in-

deed, if the set of probabilities is finite, we can normalize them so that they are

effectively probabilities. Moreover, in one important setting, we update them

in the same way that we would update probabilities, using likelihood (see be-

low). On the other hand, these weights do not act like probabilities if the set

of probabilities is infinite. For example, if we had a countable set of hypothe-

ses, we could assign them all weight 1 (so that, intuitively, they are all viewed

as equally likely), but there is no uniform measure on a countable set. To avoid

complications about measurability, we think of our representation as a weighted

set of probabilities. However, one can equally well think of the representation

as a probability on probabilities.

More importantly, when it comes to decision making, we use the weights

quite differently from how we would use second-order probabilities on proba-

bilities. Second-order probabilities would let us define a probability on events

(by taking expectation) and maximize expected utility, in the usual way. Using

the weights, we instead define a novel decision rule, minimax weighted expected

regret (MWER), that has some rather nice properties. If all the weights are 1, then

MWER is just the standard minimax expected regret (MER) rule (described below).

If the set of probabilities is a singleton, then MWER agrees with (subjective) ex-

pected utility maximization (SEU). More interestingly perhaps, if, through up-

dating, the weights converge to a single hypothesis/probability measure (which

happens in one important special case, discussed below), MWER converges to

SEU. Thus, the weights give us a smooth, natural way of interpolating between

MER and SEU.
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In summary, weighted sets of probabilities allow us to represent ambiguity

(uncertainty about the correct probability distribution). Real individuals are

sensitive to this ambiguity when making decisions, and the MWER decision

rule takes this into account. Updating the weighted sets of probabilities using

likelihood allows the initial ambiguity to be resolved as more information about

the true distribution is obtained.

MWER further generalizes MER. If we start with a weighted set of measures,

then we can compute the weighted expected regret for each one (just multiply

the expected regret with respect to Pr by the weight of Pr) and compare acts by

their worst-case weighted expected regret.

Sarver [2008] also proves a representation theorem that involves putting a

multiplicative weight on a regret quantity. However, his representation is fun-

damentally different from MWER. In his representation, regret is a factor only

when comparing two sets of acts; the ranking of individual acts is given by ex-

pected utility maximization. By way of contrast, we do not compare sets of acts.

It is standard in decision theory to axiomatize a decision rule by means of

a representation theorem. For example, Savage [1954] showed that if an DM’s

preferences � satisfied several axioms, such as completeness and transitivity,

then the DM is behaving as if she is maximizing expected utility with respect to

some utility function and probabilistic belief.

If uncertainty is represented by a set of probability measures, then we can

generalize expected utility maximization to maxmin expected utility (MMEU).

MMEU compares acts by their worst-case expected utility, taken over all mea-

sures. MMEU has been axiomatized by Gilboa and Schmeidler [1989b]. MER
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was axiomatized by Hayashi [2008a] and Stoye [2011a]. We provide an axiom-

atization of MWER. We make use of ideas introduced by Stoye [2011a] in his

axiomatization of MER, but the extension seems quite nontrivial.

We also consider a dynamic setting, where beliefs are updated by new infor-

mation. If observations are generated according to a probability measure that

is stable over time, then, as we suggested above, there is a natural way of up-

dating the weights given observations, using ideas of likelihood. The idea is

straightforward. After receiving some information E, we update each proba-

bility Pr ∈ P to Pr | E, and take its weight to be αPr = Pr(E)/ supPr′∈P Pr′(E).

If more than one Pr ∈ P gets updated to the same Pr | E, the sup of all such

weights is used. Thus, the weight of Pr after observing E is modified by taking

into account the likelihood of observing E assuming that Pr is the true proba-

bility. We refer to this method of updating weights as likelihood updating.

If observations are generated by a stable measure (e.g., we observe the out-

comes of repeated flips of a biased coin) then, as the DM makes more and more

observations, the weighted set of probabilities of the DM will, almost surely,

look more and more like a single measure. The weight of the measures inP clos-

est to the measure generating the observations converges to 1, and the weight of

all other measures converges to 0. This would not be the case if uncertainty were

represented by a set of probability measures and we did measure-by-measure

updating, as is standard. As we mentioned above, this means that MWER con-

verges to SEU.

We provide an axiomatization for dynamic MWER with likelihood updating.

We remark that a dynamic version of MMEU with measure-by-measure updat-

ing has been axiomatized by Jaffray [1994], Pires [2002], and Siniscalchi [2011].
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Likelihood updating is somewhat similar in spirit to an updating method im-

plicitly proposed by Epstein and Schneider [2007]. They also represented un-

certainty by using (unweighted) sets of probability measures. They choose a

threshold α with 0 < α < 1, update by conditioning, and eliminate all mea-

sures whose relative likelihood does not exceed the threshold. This approach

also has the property that, over time, all that is left in P are the measures closest

to the measure generating the observations; all other measures are eliminated.

However, it has the drawback that it introduces a new, somewhat arbitrary, pa-

rameter α.

Chateauneuf and Faro [2009] also consider weighted sets of probabilities

(they model the weights using what they call confidence functions). They then de-

fine and provide a representation of a generalization of MMEU using weighted

sets of probabilities that parallels our generalization of MER. Chateauneuf and

Faro do not discuss the dynamic situation; specifically, they do not consider how

weights should be updated in light of new information. We discuss the relation-

ship of our work that of Chateauneuf and Faro in more detail in Section A.2.

Ideas related to putting weights on a set of probability measures can be dated

back to at least Gärdenfors and Sahlin [1982, 1983]; see also [Good 1980] for

discussion and further references. Walley [1997] suggested putting a possibility

measure [Dubois and Prade 1998; Zadeh 1978] on probability measures; this

was also essentially done by Cattaneo [2007], Chateauneuf and Faro [2009], and

de Cooman [2005]. All of these authors and others (e.g., Klibanoff et al. [2005];

Maccheroni et al. [2006]; Nau [1992]) proposed approaches to decision making

using their representations of uncertainty.

Klibanoff et al. [2005] propose a model of decision making that associates
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weights with probability measures, but makes decisions based on a “weighted”

expected utility function. Maccheroni et al. [2006] study a model of decision

making where additive, instead of multiplicative, weights are associated with

probability measures. Hayashi [2008a] considers a model of expected-regret-

minimization where regrets computed with respect to each state are taken to a

positive power before expectations are taken. Others have also proposed and

studied approaches of representing uncertainty that are similar to weighted

probabilities (see, e.g. [Abdellaoui, Baillon, Placido, and Wakker 2011; Cooman

2005; Moral 1992; Walley 1997]).

The rest of this chapter is organized as follows. Section 2.3 introduces the

weighted sets of probabilities representation, and Section 2.4 introduces the

MWER decision rule. Axiomatic characterizations of static and dynamic MWER

are provided in Sections 2.5 and 2.6, respectively.

2.3 Weighted Sets of Probabilities

A set P+ of weighted probability measures on a set S consists of pairs (Pr, αPr),

where αPr ∈ [0, 1] and Pr is a probability measure on S.2 Let P = {Pr :

∃α((Pr, α) ∈ P+)}. We assume that, for each Pr ∈ P , there is exactly one α

such that (Pr, α) ∈ P+. We denote this number by αPr, and view it as the weight

of Pr. We further assume for convenience that weights have been normalized so

that there is at least one measure Pr ∈ P such that αPr = 1.3

2In this chapter, for ease of exposition, we take the state space S to be finite, and assume that
all sets are measurable. We can easily generalize to arbitrary measure spaces.

3While we could take weights to be probabilities, and normalize them so that they sum to
1, if P is finite, this runs into difficulties if we have an infinite number of measures in P . For
example, if we are tossing a coin, and P includes all probabilities on heads from 1/3 to 2/3,
using a uniform probability, we would be forced to assign each individual probability measure
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As we observed in the introduction, one way of updating weighted sets of

probabilities is by using likelihood updating. We use P+ | E to denote the

result of applying likelihood updating to P+. Define P+
(E) = sup{αPr Pr(E) :

Pr ∈ P}; if P+
(E) > 0, set αPr,E = sup{Pr′∈P:Pr′|E=Pr|E}

αPr′ Pr′(E)

P+
(E)

. Note that given

a measure Pr ∈ P , there may be several distinct measures Pr′ in P such that

Pr′ | E = Pr | E. Thus, we take the weight of Pr | E to be the sup of the

possible candidate values of αPr,E . By dividing by P+
(E), we guarantee that

αPr,E ∈ [0, 1], and that there is some measure Pr such that αPr,E = 1, as long as

there is some pair (αPr,Pr) ∈ P such that αPr Pr(E) = P+
(E). If P+

(E) > 0, we

take P+ | E to be

{(Pr | E,αPr,E) : Pr ∈ P}.

If P+
(E) = 0, then P+ | E is undefined.

In computing P+ | E, we update not just the probability measures in P , but

also their weights. The new weight combines the old weight with the likeli-

hood. Clearly, if all measures in P assign the same probability to the event E,

then likelihood updating and measure-by-measure updating coincide. This is

not surprising, since such an observation E does not give us information about

the relative likelihood of measures. We stress that using likelihood updating is

appropriate only if the measure generating the observations is assumed to be

stable. For example, if observations of heads and tails are generated by coin

tosses, and a coin of possibly different bias is tossed in each round, then likeli-

hood updating would not be appropriate.

It is well known that, when conditioning on a single probability measure,

the order that information is acquired is irrelevant; the same observation easily

a weight of 0, which would not work well in the definition of MWER.
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extends to sets of probability measures. As we now show, it can be further

extended to weighted sets of probability measures.

Proposition 2.3.1. Likelihood updating is consistent in the sense that for all E1, E2 ⊆

S, (P+ | E1) | E2 = (P+ | E2) | E1 = P+ | (E1 ∩ E2), provided that P+ | (E1 ∩ E2)

is defined.

Proof. By standard results, (Pr | E1) | E2 = (Pr | E2) | E1 = Pr | (E1 ∩ E2).

Since the weight of the measure Pr | E1 is proportional to αPr Pr(E1), the weight

of (Pr | E1) | E2 is proportional to αPr Pr(E1) Pr(E2 | E1) = αPr Pr(E1 ∩ E2).

Likewise, the weight of (Pr | E2) | E1 is proportional to αPr Pr(E2) Pr(E1 | E2) =

αPr Pr(E1 ∩ E2). Since, in all these cases, the sup of the weights is normalized to

1, the weights of corresonding measures in P+ | (E1 ∩ E2), (P+ | E1) | E2 and

(P+ | E2) | E1 must be equal.

2.4 Formal Definitions and MWER

In this section, we introduce the decision setting that will be used in all the

chapters in this thesis.

Given a set S of states and a set X of outcomes, an act f (over S and X) is a

function mapping S to X . We use F to denote the set of all acts. For simplicity

in this thesis, we take S to be finite. Associated with each outcome x ∈ X

is a utility: u(x) is the utility of outcome x. We call a tuple (S,X, u) a (non-

probabilistic) decision problem. To define regret, we need to assume that we are

also given a set M ⊆ F of acts, called the menu. The reason for the menu is

that, as is well known (and we will demonstrate by example shortly), regret can
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depend on the menu. Moreover, we assume that every menu M has utilities

bounded from above. That is, we assume that for all menus M , supg∈M u(g(s))

is finite. This ensures that the regret of each act is well defined.4

For a menu M and act f ∈M , the regret of f with respect to M and decision

problem (S,X, u) in state s is

regM(f, s) =

(
sup
g∈M

u(g(s))

)
− u(f(s)).

That is, the regret of f in state s (relative to menu M ) is the difference between

u(f(s)) and the highest utility possible in state s among all the acts inM . The re-

gret of f with respect to M and decision problem (S,X, u), denoted reg
(S,X,u)
M (f),

is the worst-case regret over all states:

reg
(S,X,u)
M (f) = max

s∈S
regM(f, s).

We typically omit superscript (S,X, u) in reg
(S,X,u)
M (f) if it is clear from context.

The minimax regret decision rule chooses an act that minimizes

maxs∈S regM(f, s). In other words, the minimax regret choice function is

Creg,u
M (M ′) = argmin

f∈M ′
max
s∈S

regM(f, s).

The choice function returns the set of all acts in M ′ that minimize regret with

respect to M . Note that we allow the menu M ′, the set of acts over which we are

minimizing regret, to be different from the menuM of acts with respect to which

regret is computed. For example, if the DM considers forgone opportunities,

they would be included in M , although not in M ′.

4Stoye [2011b] assumes that, for each menu M , there is a finite set AM of acts such that M
consists of all the convex combinations of the acts in AM . We clearly allow a larger set of menus
than Stoye. We return to the issue of what menus to consider after we discuss the representation
theorem in Section A.2, and again when we discuss choice functions in Section 2.5.
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If there is a probability measure Pr over the σ-algebra Σ on the set S of states,

then we can consider the probabilistic decision problem (S,Σ, X, u,Pr). In that con-

text, we omit mentioning Σ, and instead consider the probabilistic decision problem

(S,X, u,Pr).

The expected regret of f with respect to M is

regPr
M (f) =

∑
s∈S

Pr(s)regM(f, s).

If there is a set P of probability measures over the σ-algebra Σ on the set S of

states, states, then we consider the P-decision problem D = (S,Σ, X, u,P). The

maximum expected regret of f ∈M with respect to M and D is

regPM(f) = sup
Pr∈P

(∑
s∈S

Pr(s)regM(f, s)

)
.

The minimax expected regret (MER) decision rule minimizes regPM(f).

Of course, we can define the choice functions Creg,Pr
M and Creg,P

M using regPr
M

and regPM , by analogy with Creg
M .

For example, the MER choice function is defined as

Creg,u
P (M) = argmin

f∈M
sup

Pr∈P+

regM,P(f).

In addition to choice functions, another standard way to represent prefer-

ences is to use preference relations. For example, the maximin expected utility

decision rule can be expressed as

f �maximin g ⇔ E [u(f)] ≥ E [u(g)].

Similarly, MMEU can be expressed as the following preference relation:

f �MMEU,P g ⇔ inf
Pr∈P

EPr[u(f)] ≥ inf
Pr∈P

EPr[u(g)].
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To represent MER, whose ranking of acts depend on the menu with respect

to which the regrets are computed, we need more than just a single preference

relation. We need a family of preference relations, one for each menu. For ex-

ample, given a menu M , the comparison of acts f, g ∈M can be expressed as

f �reg,P
M g ⇔ regPM(f) ≤ regPM(g).

We now define MWER formally. For simplicity in this chapter, we take S to

be finite, and take the σ-algebra Σ to be the powerset of S. Moreover, we assume

that every menu M has utilities bounded from above. That is, we assume that

for all menus M , supg∈M u(g(s)) is finite. This ensures that the regret of each act

is well defined.5

If beliefs are modeled by weighted probabilities P+, then we consider the

P+-decision problem (S,X, u,P+). The maximum weighted expected regret of

f ∈M with respect to M and (S,X, u,P+) is

regM,P+(f) = sup
Pr∈P

(
αPr

∑
s∈S

Pr(s)regM(f, s)

)
.

If P+ is empty, then regP
+

M is identically zero.

The MWER choice function is thus defined as

Creg,u
P+ (M) = argmin

f∈M
sup

(Pr,α)∈P+

regM,P+(f).

As a family of preference relations, the MWER decision rule is defined for

all f, g ∈ XS as

f �S,X,uM,P+ g iff reg (S,X,u)

M,P+ (f) ≤ reg
(S,X,u)

M,P+ (g).

5Stoye [2011b] assumes that, for each menu M , there is a finite set AM of acts such that M
consists of all the convex combinations of the acts in AM . We clearly allow a larger set of menus
than Stoye. We return to the issue of what menus to consider after we discuss the representation
theorem in Section A.2, and again when we discuss choice functions in Section 2.5.
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1 defect 10 defects
Payoff Regret Payoff Regret

deliver 10,000 0 -10,000 10,000
cancel 0 10,000 0 0
check 5,001 4,999 -4,999 4,999

Table 2.2: Payoffs and regrets for quality-control problem.

That is, f is preferred to g if the maximum expected regret of f is less than that

of g. We can similarly define �M,reg , �S,X,uM,Pr , and �S,X,uM,P by replacing reg
(S,X,u)

M,P+

by reg
(S,X,u)
M , reg (S,X,u)

M,Pr , and reg
(S,X,u)
M,P , respectively. Again, we usually omit the

superscript (S,X, u) and subscript Pr or P+, and just write�M , if it is clear from

context.

To see how these definitions work, consider the quality-control problem

from the introduction, there are 1, 000 states with one defective item, and

C(1000, 10) states with ten defective items, where C(m,n) is the number of com-

binations of n items from a collection of 1000 unique items. The regret of each

action in a state depends only on the number of defective items, and is given

in Table 2.2. It is easy to see that the action that minimizes regret is check , with

deliver and cancel having equal regret. If we represent uncertainty using the two

probability measures Pr1 and Pr10, the expected regret of each of the acts with

respect to Pr1 (resp., Pr10) is just its regret with respect to states with one (resp.

ten) defective items. Thus, the action that minimizes maximum expected regret

is again check .

As we said above, the ranking of acts based on MER or MWER can change if

the menu of possible choices changes. For example, suppose that we introduce

a new choice in the quality-control problem, whose gains and losses are twice

those of deliver , resulting in the payoffs and regrets described in Table 2.3. In
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1 defect 10 defects
Payoff Regret Payoff Regret

deliver 10,000 10,000 -10,000 10,000
cancel 0 20,000 0 0
check 5,001 14,999 -4,999 4,999
new 20,000 0 -20,000 20,000

Table 2.3: Payoffs and regrets for the quality-control problem with a new
choice added.

this new setting, deliver has a lower maximum expected regret (10, 000) than

check (14, 999), so MER prefers deliver over check . Thus, the introduction of a

new choice can affect the relative order of acts according to MER (and MWER),

even though other acts are preferred to the new choice. By way of contrast, the

decision rules MMEU and SEU are menu-independent; the relative order of acts

according to MMEU and SEU is not affected by the addition of new acts.

We next consider a dynamic situation, where the DM acquires informa-

tion about a stable randomizing mechanism (i.e., a stationary probability dis-

tribution). Specifically, in the context of the quality-control problem, suppose

that the owner learns E—the first 100 items are good. Initially, suppose that

The owner has no reason to believe that one hypothesis is more likely than

the other, so assigns both hypotheses weight 1. Note that P1(E) = 0.9 and

Pr10(E) = C(900, 10)/C(1000, 10) ≈ 0.35. Thus,

P+ | E = {(Pr1 | E, 1), (Pr10 | E,C(900, 10)/(.9C(1000, 10))}.

We can also see from this example that MWER interpolates between MER

and expected utility maximization. Suppose that a passer-by tells The owner

that the first N cupcakes are good. If N = 0, MWER with initial weights 1 is the

same as MER. On the other hand, if N ≥ 991, then the likelihood of Pr10 is 0,

and the only measure that has effect is Pr1, which means minimizing maximum
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weighted expected regret is just maximizing expected utility with respect to Pr1.

If 0 < N < 991, then the likelihoods (hence weights) of Pr1 and Pr10 are 1 and
C(1000−N,10)
C(1000,10)

× 1000
1000−N < ((999−N)/999)9. Thus, as N increases, the weight of Pr10

goes to 0, while the weight of Pr1 stays at 1.

2.5 A Characterization of MWER

We now provide a representation theorem for MWER. That is, we provide a

collection of properties (i.e., axioms) that hold of MWER such that a prefer-

ence order on acts that satisfies these properties can be viewed as arising from

MWER. To get such an axiomatic characterization, we restrict to what is known

in the literature as the Anscombe-Aumann (AA) framework [1963], where out-

comes are lotteries on prizes. This framework is standard in the decision theory

literature; axiomatic characterizations of SEU [1963], MMEU [1989b], and MER

[2008a, 2011a] have already been obtained in the AA framework. We draw on

these results to obtain our axiomatization.

In this section, we provide a characterization of MWER using choice func-

tions as the primitives. In Appendix A.2, we provide a characterization of

MWER with menu-indexed preference orders as the primitives, which allows

us to compare our axioms to axioms that have been used to characterize other

decision rules.

A choice function maps every finite set M of acts to a subset M ′ of M . In-

tuitively, the set M ′ consists of the “best” acts in M . Thus, a choice function

gives less information than a preference order; it gives only the top elements of

the preference order. Stoye [2011b] provides a representation theorem for MER
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where the axioms are described in terms of choice functions.

As usual, a choice function C is a function from menus to menus, where

C(M) ⊆ M .6 We start by taking the domain of a choice to be the set MB of

all bounded menus. As we now show, we can get a representation theorem for

MWER by using all the axioms given by Stoye [2011a], except for the “between-

ness” axiom that restricts the representation to consist of probability distribu-

tions (of weight one). For completeness, we reproduce the axioms below.

Given a set Y (which we view as consisting of prizes), a lottery over Y is just

a probability with finite support on Y . Let ∆(Y ) consist of all finite probabil-

ities over Y . In the AA framework, the set of outcomes has the form ∆(Y ).

So now acts are functions from S to ∆(Y ). (Such acts are sometimes called

Anscombe-Aumann acts.) We can think of a lottery as modeling objective uncer-

tainty, while a probability on states models subjective uncertainty; thus, in the

AA framework we have both objective and subjective uncertainty. The technical

advantage of considering such a set of outcomes is that we can consider convex

combinations of acts. If f and g are acts, define the act αf + (1 − α)g to be the

act that maps a state s to the lottery αf(s) + (1− α)g(s).

In this setting, we assume that there is a utility function U on prizes in Y .

The utility of a lottery l is just the expected utility of the prizes obtained, that is,

u(l) =
∑

{y∈Y : l(y)>0}

l(y)U(y).

This makes sense since l(y) is the probability of getting prize y if lottery l is

played. The expected utility of an act f with respect to a probability Pr is then

just u(f) =
∑

s∈S Pr(s)u(f(s)), as usual. We also assume that there are at least

two prizes y1 and y2 in Y , with different utilities U(y1) and U(y2).
6We use ⊆ to denote subset, and ⊂ to denote strict subset.
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Given a set Y of prizes, a utility U on prizes, a state space S, and a set P+ of

weighted probabilities on S, we can define a family �S,∆(Y ),u

M,P+ of preference or-

ders on Anscombe-Aumann acts determined by weighted regret, one per menu

M , as discussed above, where u is the utility function on lotteries determined

by U . For ease of exposition, we usually write �S,Y,UM,P+ rather than �S,∆(Y ),u

M,P+ .

Axiom 2.1 (Nontriviality). C(M) ⊂M for some menu M.

Let g(s)∗ denote the constant act that maps all states to the outcome g(s).

Given a state s, define the choice function Cs by taking f ∈ Cs(M) if and only if

f(s)∗ ∈ C({g(s)∗ : g ∈ M}). Thus, Cs is a choice function that is concerned only

with state s.

Axiom 2.2 (Monotonicity). If f ∈M and f ∈ Cs(M) for all s, then f ∈ C(M).

Intuitively, this axioms says that if, for each state s, f is a best choice in M

when restricted to s, then f is a best choice in M overall.

Given a menu M and an act f , let λM + (1−λ)f be the menu {λh+ (1−λ)f :

h ∈M}.

Axiom 2.3 (Independence). C(λM + (1− λ)f) = λC(M) + (1− λ)f.

Axiom 2.4 (Independence of Irrelevant Alternatives (IIA) for Constant Acts). If

M and N consist of constant acts, then

C(M ∪N) ∩M ∈ {C(M), ∅}.

Axiom 2.5 (Independence of Never Strictly Optimal Alternatives (INA)). If

Cs(M ∪N) ∩M 6= ∅ for all s, then

C(M ∪N) ∩M ∈ {C(M), ∅}.
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Axiom 2.6 (Mixture Continuity). If f /∈M and C(M∪{f}) = {f}, g ∈M , and h is

an act, then there exists λ ∈ (0, 1) such thatC(M∪{λf+(1−λ)h}) = {λf+(1−λ)h},

and λg + (1− λ)h /∈ C(M ∪ {f, λg + (1− λ)h}).

Axiom 2.7 (Ambiguity Aversion). If λ ∈ [0, 1], and M ⊇ {f, g, λf + (1−λ)g}, and

{f, g} ⊆ C(M), then λf + (1− λ)g ∈ C(M).

The MWER choice function is defined as

CS,Y,U
P+ (M) = argmin

f∈M
reg

(S,X,u)

M,P+ (f).

We now state and prove a representation theorem for MWER. Roughly, the

representation theorem states that a choice function satisfies Axioms 2.1–2.5 if

and only if it has a MWER representation with respect to some utility function

and weighted probabilities. In the representation theorem for SEU [1963], not

only is the utility function unique (up to affine transformations, so that we can

replace U by aU + b, where a > 0 and b are constants), but the probability is

unique as well. Similarly, in the MMEU representation theorem of Gilboa and

Schmeidler [1989b], the utility function is unique, and the set of probabilities is

also unique, as long as one assume that the set is convex and closed.

To get uniqueness in the representation theorem for MWER, we need to

consider a different representation of weighted probabilities. Define a sub-

probability measure p on S to be like a probability measure (i.e., a function map-

ping measurable subsets of S to [0, 1] such that p(T ∪ T ′) = p(T ) + p(T ′) for

disjoint sets T and T ′), without the requirement that p = 1. We can identify a

weighted probability distribution (Pr, α) with the sub-probability measure αPr.

(Note that given a sub-probability measure p, there is a unique pair (α,Pr) such
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that P = αPr: we simply take α = p(S) and Pr = p/α.) A set B of sub-

probability measures is downward-closed if, whenever p ∈ B and q ≤ p, then

q ∈ B. We get a unique set of sub-probability measures in our representation

theorem if we restrict to sets that are convex, downward-closed, closed, and

contain at least one (proper) probability measure. (The latter requirement cor-

responds to having αPr = 1 for some Pr ∈ P+.) For convenience, we will call a

set regular if it is convex, downward-closed, and closed.

We identify each set of weighted probabilities P+ with the set of sub-

probability measures

C(P+) = {α Pr : (Pr, αPr) ∈ P+, 0 ≤ α ≤ αPr}.

Note that if (α,Pr) ∈ P+, then C(P+) includes all the sub-probability measures

between the all-zero measure and αPr Pr.

We need to restrict to closed and convex sets of sub-probability measures

to get uniqueness in the representation of MWER for much the same reason

that we need to restrict to closed and convex sets to get uniqueness in the rep-

resentation of MMEU. Convexity is needed because a set B of sub-probability

measures always induce the same MWER preferences as its convex hull. For

example, consider the quality-control problem and the expected regrets in Ta-

ble 2.2, and the distribution aPr1 +(1−a) Pr10, for some a ∈ (0, 1). The weighted

expected regret of any act with respect to aPr1 +(1 − a) Pr10 is bounded above

by the maximum weighted expected regret of that act with respect to Pr1 and

Pr10. Therefore, adding aPr1 +(1− a) Pr10 to P+ for some weight a ∈ (0, 1) does

not change the resulting family of preferences. Similarly, we need to restrict to

closed sets for uniqueness, since if we start with a set B of sub-probability mea-

sures that is not closed, taking the closure of B would result in the same family
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of preferences.

While convexity is easy to define for a set of sub-probability measures, there

seems to be no natural notion of convexity for a setP+ of weighted probabilities.

Moreover, the requirement that P+ is closed is different from the requirement

that C(P+) is closed. The latter requirement seems more reasonable. For exam-

ple, fix a probability measure Pr, and let P+ = {(1,Pr)} ∪ {(0,Pr′) : Pr′ 6= Pr}.

Thus, P+ essentially consists of a single probability measure, namely Pr, with

weight 1; all the weighted probability measures (0,Pr′) have no impact. This

represents the uncertainty of an DM who is sure that that Pr is true proba-

bility. Clearly P+ is not closed, since we can find a sequence Prn such that

(0,Prn)→ (0,Pr), although (0,Pr) /∈ P+. But C(Pr+) is closed.

Restricting to closed, convex sets of sub-probability measures does not suf-

fice to get uniqueness; we also need to require downward-closedness. This is

so because if p is in B, then adding any q ≤ p to the set leaves all regrets un-

changed. Finally, the presence of a proper probability measure is also required,

since for all a ∈ (0, 1], scaling each element in the set B by a leaves the family of

preferences unchanged.

In summary, if we consider arbitrary sets of sub-probability measures, then

the set of sub-probability measures that represent a given family of MWER pref-

erences is unique if we require it to be regular and contain a probability measure.

Although we have assumed that the set of menus is MB, other sets have

been considered in the literature. In particular, Stoye considers the set MC of

menus that are convex hulls of a finite number of acts, and the setMF of finite

menus [2011a, 2011b]. As we now show, the representation theorem holds for
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both MF and MB. In Appendix A.2, we show that if we consider preference

orders as opposed to choice functions, then the corresponding representation

theorem holds forMC as well asMF andMB.

Theorem 2.5.1. For all Y , U , S, and P+, the choice function CS,Y,U
P+ satisfies Axioms

2.1–5.9 for all M ∈ MB (resp., MF ). Conversely, if a choice function C satisfies

Axioms 2.1–5.9 for all M ∈ MB (resp.,MF ), then there exists a utility U on Y and

a weighted set P+ of probabilities on S such that C(P+) is regular and C = CS,Y,U
P+ .

Moreover, U is unique up to affine transformations, and C(P+) is unique in the sense

that if Q+ represents C, and C(Q+) is regular, then C(Q+) = C(P+).

Proof. Showing that�S,Y,UM,P+ satisfies Axioms 2.1–5.9 is fairly straightforward; we

leave details to the reader. Essentially the same proof works forMB andMF .

For the proof of the converse, we rely heavily on parts of the proof by Stoye

[2011a]. Although Stoye considersMF , the arguments also work if we consider

MB.

Stoye [2011a] shows that Axioms 2.1–5.9 imply that a menu-independent,

revealed preference order �C can be constructed based on the behavior of the

choice function C on the set M0 of menus with nonpositive acts and utility

frontier 0 (i.e., for every state, some act has a utility of 0). The preference order

�C can be thought of as the revealed preference order corresponding to the

choice function C. Its definition is as follows:

f �C g ⇔ ∃M ∈M0 : f ∈ C(M), g ∈M\C(M),

f ∼C g ⇔ ∃M ∈M0 : f ∈ C(M), g ∈ C(M).

The arguments given by Stoye [2011a] to establish that�C satisfies complete-

ness, transitivity, nontriviality, monotonicity, mixture continuity, independence,
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INA, and ambiguity aversion apply verbatim to our setting here. We do not

repeat Stoye’s arguments here, but from here on we assume without further

comment that �C satisfies all these properties.

Theorem 2.5.1 can be completed by finding a MWER representation for �C .

This follows from the following lemma. Let M0 denote the set of all acts with

nonpositive utilities.

Lemma 2.5.2. If a preference order � on acts with nonpositive utilities satisfies com-

pleteness, transitivity, nontriviality, monotonicity, mixture continuity, independence,

INA, and ambiguity aversion, then there exists a utility U on Y and a weighted set P+

of probabilities on S such thatC(P+) is regular and�=�S,Y,UM0,P+ . Moreover, U is unique

up to affine transformations, and C(P+) is unique in the sense that if Q+ represents�,

and C(Q+) is regular, then C(Q+) = C(P+).

The proof of Lemma 2.5.2 is given in Appendix A.1. We use techniques in

the spirit of those used by by Gilboa and Schmeidler [1989a] to represent (un-

weighted) MMEU. However, there are technical difficulties that arise from the

fact that we do not have a key axiom that is satisfied by MMEU: C-independence

(discussed below). The heart of the proof involves dealing with the lack of C-

independence. With Lemma 2.5.2, the proof of Theorem 2.5.1 is complete.

The axioms used in Theorem 2.5.1 can be adapted to describe choice func-

tions overMC , the set of finitely generated convex menus. However, we do not

know whether the equivalent of Theorem 2.5.1 holds if we restrict the domain

of the choice function to beMC . However, in Appendix A.2 we show that if we

consider preference orders instead of a choice function, then there is a collection

of axioms that provide a representation theorem for MF , MB, and MC . The
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result extends to MC because the set of preference orders �M with respect to

the setMC of all convex menus also determines the preference orders with re-

spect to the setMF of all finite menus. This is not the case when we take choice

functions as the primitives. As Stoye [2011a, 2013] points out, the main subtlety

lies in the fact that the choice functions over convex menus can always return

an interior point of the convex set, thus not providing observations of choice be-

tween the vertices of the set. Stoye believes that this is a technicality that can be

overcome, so that Theorem 2.5.1 should hold even if we restrict the domain of

the choice function to beMC . However, this conjecture has yet to be verified. In

the case of preference orders, the preference orders with respect to the setMB

also determine the preference orders�M with respect to the setMC , so once we

have a proof forMB, it readily extends toMF andMC .

As we observed, in general, we have ambiguity aversion (Axiom 5.9) for

regret. Betweenness [1983] is a stronger notion than ambiguity aversion, which

states that if an DM is indifferent between two acts, then he must also be in-

different among all convex combinations of these acts. While betweenness does

not hold for regret, Stoye [2011a] gives a weaker version that does hold. A menu

M has state-independent outcome distributions if the set L(s) = {y ∈ ∆(Y ) : ∃f ∈

M(f(s) = y)} is the same for all states s.

Axiom 2.8 ([2011a]). For all acts f , constant acts p, scalars λ ∈ (0, 1), and menus

M ⊇ {p, f, λf + (1−λ)p} with state independent outcome distributions, if p /∈ C(M)

and f /∈ C(M), then λf + (1− λ)p /∈ C(M).

The assumption that the menu has state-independent outcome distributions

is critical in Axiom 2.8. Stoye [2011a] shows that Axioms 2.1–2.5 together

with Axiom 2.8 characterize MER. Non-probabilistic regret (which we denote

33



1 defect 10 defects
Payoff Regret Payoff Regret

deliver 10,000 0 -10,000 10,000
1
2
deliver + 1

2
cancel 5,000 5,000 -5,000 5,000

cancel 0 10,000 0 0
check 5,001 4,999 -4,999 4,999

Table 2.4: Payoffs and regrets for the quality-control problem, with deliver
mixed with the constant act cancel .

1 defect 10 defects
Payoff Regret Payoff Regret

deliver 10,000 0 -10,000 20,000
1
2
deliver + 1

2
cancel 5,000 5,000 -5,000 15,000

cancel 0 10,000 0 10,000
check1 -5,000 15,000 5,000 5,000
check2 -10,000 20,000 10,000 0

Table 2.5: Payoffs and regrets for the quality-control problem, with state-
independent outcome distributions.

REG) can be viewed as a special case of MER, where P consists of all distribu-

tions. This means that it satisfies all the axioms that MER satisfies. As Stoye

[2011b] shows, REG is characterized by Axioms 2.1–2.5 and one additional ax-

iom, which he calls Symmetry. We omit the details here.

To see why Axiom 2.8 is needed, suppose that we change the payoffs in the

quality-control problem so that deliver has the same maximum expected regret

as cancel (10, 000). However, as seen in Table 2.4, 1
2
deliver + 1

2
cancel has lower

maximum expected regret (5, 000) than deliver (10, 000), showing that the variant

of Axiom 2.8 without the state-independent outcome distribution requirement

does not hold.

Although Axiom 2.8 is sound for unweighted minimax expected regret, it

is no longer sound once we add weights. For example, suppose that we mod-
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ified the quality-control problem so that all states we care about have the same

outcome distributions, as required by Axiom 2.8. Then the payoffs and regrets

will be those shown in Table 2.5. Suppose that the weights on Pr1 and Pr10

are 1 and 0.5, respectively. Then deliver has the same maximum weighted ex-

pected regret as cancel (10, 000). However, 1
2
deliver + 1

2
cancel has lower max-

imum weighted expected regret (7, 500) than deliver , showing that Axiom 2.8

with weighted probabilities does not hold.

As mentioned in the introduction, Chateauneuf and Faro [2009] axiomatize

a weighted version of maxmin expected utility, when utilities are restricted to

be nonnegative. The expected utilities are multiplied by the reciprocal of the

weights, instead of the weights themselves. Preferences are then defined by us-

ing the maxmin expected utility rule with the weighted expected utilities. To

obtain uniqueness of the representation, while we require (1) a measure with

weight 1, (2) downward-closedness, (3) closedness, and (4) convexity of the

sub-probability measures to get uniqueness, Chateauneuf and Faro [2009] re-

quire slightly different properties. In particular, weights are represented by a

function φ : ∆(S)→ [0, 1], and Chateauneuf and Faro require that there be (1) a

measure with weight 1, (2) upper semicontinuity of the function φ (i.e., the set

{p ∈ ∆ : φ(p) ≥ α} is closed in the weak∗ topology, for all α ∈ [0, 1]), and (3)

quasi-concavity of φ (i.e., φ(βp1 +(1−β)p2) ≥ min{φ(p1), φ(p2)} for all β ∈ [0, 1]).

It is not hard to show that convexity of the sub-probability measures imply

quasi-concavity of the weights, and closedness of the sub-probability measures

implies weak∗ upper semicontinuity of the weights. However, the converse

does not hold: weak∗ upper semicontinuity and quasi-concavity of the weights

do not imply convexity of the sub-probability measures. Therefore, our condi-

tions to obtain uniqueness of the representation are more stringent than those
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of Chateauneuf and Faro.

2.6 Characterizing likelihood updating for MWER

We next consider a more dynamic setting, where DMs learn information. For

simplicity, we assume that the information is always a subset E of the state

space. If the DM is representing her uncertainty using a set P+ of weighted

probability measures, then we would expect her to update P+ to some new set

Q+ of weighted probability measures, and then apply MWER with uncertainty

represented byQ+. In this section, we characterize what happens in the special

case that the DM uses likelihood updating, so that Q+ = (P+ | E).

For this characterization, we assume that the DM has a family of choice

functions CE indexed by the information E. Each choice function CE satisfies

Axioms 2.1–5.9, since the DM makes decisions after learning E using MWER.

Somewhat surprisingly, all we need is one extra axiom for the characterization;

we call this axiom MDC, for “menu-dependent dynamic consistency”.

To explain the axiom, we need some notation. As usual, we take fEh to be

the act that agrees with f on E and with h off of E; that is

fEh(s) =

 f(s) if s ∈ E

h(s) if s /∈ E.

In the quality-control problem, the act check can be thought of as

(deliver)E(cancel), where E is the set of states where there is only one defec-

tive item.

Roughly speaking, MDC says that you prefer f to g once you learn E if
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and only if, for all acts h, you also prefer fEh to gEh before you learn anything.

This seems reasonable, since learning that the true state was inE is conceptually

similar to knowing that none of your choices matter off of E.

To state MDC formally, we need to be careful about the menus involved. Let

MEh = {fEh : f ∈ M}. We can identify unconditional preferences with pref-

erences conditional on S; that is, we identify C with CS . We also need to restrict

the sets E to which MDC applies. Recall that conditioning using likelihood up-

dating is undefined for an event such that P+
(E) = 0. That is, αPr Pr(E) = 0 for

all Pr ∈ P . As is commonly done, we capture the idea that conditioning on E is

possible using the notion of a non-null event.

Definition 2.6.1 (Null event). An event E is null if, for all f, g ∈ ∆(Y )S and menus

M with fEg, g ∈M , we have fEg ∈ C(M)⇔ g ∈ C(M).

Axiom 2.9 (MDC). Let MEg denote the menu {hEg : h ∈ M}. For all M ⊆ L, f ∈

M ,

f ∈ CE(M)⇔ ∃g(fEg ∈ C(MEg)).

Theorem 2.6.2. For all Y , U , S, and P+, the choice function CS,Y,U
P+|E for events E

such that P+
(E) > 0 satisfies Axioms 2.1–5.9 and Axiom 2.9. Conversely, if a choice

function CE on the acts in ∆(Y )S satisfies Axioms 2.1–5.9 and Axiom 2.9, then there

exists a utility U on Y and a weighted set P+ of probabilities on S such that C(P+) is

regular, and for all non-null E, CE = CS,Y,U
P+|E . Moreover, U is unique up to affine trans-

formations, and C(P+) is unique in the sense that if Q+ represents CE , and C(Q+) is

regular, then C(Q+) = C(P+).

Proof. Since C = CS satisfies Axioms 2.1–5.9, there must exist a weighted set

P+ of probabilities on S and a utility function U such that f ∈ C(M) iff f ∈
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CS,Y,U(M). We now show that if E is non-null, then P+
(E) > 0, and f ∈ CE(M)

iff f ∈ CS,Y,u
P+|E(M).

For the first part, it clearly is equivalent to show that if P+
(E) = 0, then E is

null. So suppose that P+
(E) = 0. Then αPr Pr(E) = 0 for all Pr ∈ P . This means

that αPr Pr(s) = 0 for all Pr ∈ P and s ∈ E. Thus, for all acts f and g,

regM,P+(fEg)

= supPr∈P
(
αPr

∑
s∈S Pr(s)regM(fEg, s)

)
= supPr∈P

(
αPr

(∑
s∈E Pr(s)regM(f, s)

)
+
∑

s∈Ec Pr(s)regM(g, s)
)

= supPr∈P
(
αPr

∑
s∈S Pr(s)regM(g, s)

)
= regM,P+(g).

Thus, fEg ∈ C(M) ⇔ g ∈ C(M) for all acts f, g and menus M containing fEg

and g, which means that E is null.

For the second part, we first show that if P+
(E) > 0, then for all f, h ∈ M ,

we have that

regMEh,P+(fEh) = P+
(E)regM,P+|E(f).

We proceed as follows:

regMEh,P+(fEh)

= supPr∈P
(
αPr

∑
s∈S Pr(s)regMEh(fEH, s)

)
= supPr∈P

(
αPr Pr(E)

∑
s∈E Pr(s | E)regM(f, s) +αPr

∑
s∈Ec Pr(s)reg{h}(h, s)

)
= supPr∈P

(
αPr Pr(E)

∑
s∈E Pr(s|E)regM(s, f)

)
= supPr∈P

(
P+

(E)αPr,E

∑
s∈E Pr(s|E)regM(f, s)

)
[since αPr,E = sup{Pr′∈P:Pr′|E=Pr|E}

αPr′ Pr′(E)

P+
(E)

]

= P+
(E) · regM,P+|E(f).
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Thus, for all h ∈M ,

regMEh,P+(fEh) ≤ regMEh,P+(gEh)

iff P+
(E) · regM,P+|E(f) ≤ P+

(E) · regM,P+|E(g)

iff regM,P+|E(f) ≤ regM,P+|E(g).

It follows that the choice function induced by P+ satisfies MDC. Moreover, if

Axioms 2.1–5.9 and MDC hold, then for a weighted set P+ that represents C,

we have
f ∈ CE(M)

iff for some h, fEh ∈ C(MEh)

iff regM,P+|E(f) ≤ regM,P+|E(g) for all g,

as desired.

Finally, the uniqueness of C(P+) follows from Theorem 2.5.1, which says

that C is already sufficient to guarantee the uniqueness of C(P+).

2.7 Chapter Conclusion

We proposed an alternative belief representation using weighted sets of probabili-

ties, and described a natural approach to updating in such a situation and a nat-

ural approach to determining the weights. We also showed how weighted sets

of probabilities can be combined with regret to obtain a decision rule, MWER,

and provided an axiomatization that characterizes static and dynamic prefer-

ences induced by MWER.

One issue that must be dealt with when MWER is combined with likelihood

updating is dynamic inconsistency. It is not hard to construct examples where a
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DM decides on a plan that says that if he learns E, he should perform act f , but

then when he actually learns E, he performs f ′ instead. Such dynamic incon-

sistency arises with MMEU when using measure-by-measure updating as well.

Siniscalchi [2011] proposes an approach to dealing with dynamic consistency in

the context of MMEU combined with measure-by-measure updating by using

backward induction to decide which action to take. We believe that these ideas

can be applied to MWER combined with likelihood updating as well. We hope

to return to these issues in future work.
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CHAPTER 3

MAXMIN WEIGHTED EXPECTED UTILITY

3.1 Overview

Chateauneuf and Faro [Chateauneuf and Faro 2009] axiomatize a weighted ver-

sion of maxmin expected utility over acts with nonnegative utilities, where

weights are represented by a confidence function. We argue that their repre-

sentation is only one of many possible, and we axiomatize a more natural form

of maxmin weighted expected utility. We also provide stronger uniqueness re-

sults.

3.2 Introduction

Maxmin expected utility (MMEU), axiomatized by Gilboa and Schmeidler

[Gilboa and Schmeidler 1989b], is one of the best-studied alternatives to subjec-

tive expected utility (SEU) maximization [Savage 1954]. Its compatibility with

ambiguity-averse preferences makes it an attractive descriptive decision model,

in light of experimental evidence (e.g., the Allais Paradox [Allais 1953a] and

the Ellsberg Paradox [Ellsberg 1961]) showing that intuitive decisions may vio-

late the ambiguity neutrality, or “independence”, property implied by the SEU

model. In the (multiple priors) MMEU decision model, there is a set of possible

probability distributions over the statespace, each giving rise to a (potentially

different) expected utility value for each object of choice. A MMEU DM chooses

an option that maximizes the minimum of such expected utility values.
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However, even MMEU may be too restrictive a model for representing rea-

sonable decision-making. For example, Chateauneuf and Faro [2009] (hence-

forth CF) point out that MMEU does not allow for “attraction for smoothing an

uncertain act with the help of a positive constant act”, a property that is intu-

itively reasonable and is demonstrated in Example 3.6.2.

To deal with this, CF consider a “weighted” version of maxmin expected

utility [Gilboa and Schmeidler 1989b]. Recall that in the MMEU model, beliefs

are represented by a set of probability measures over the state space. The distri-

butions that are in the set are viewed as the possible distributions over the states.

However, sometimes it makes sense to treat some distributions as “more likely”

than other distributions, rather than just separating the distributions into two

groups (“possible” and “impossible”). CF provide a method of treating distri-

butions differently, by assigning a confidence value to each distribution. As men-

tioned in earlier chapters, others have independently studied similar models.

In Chapter 2 we considered associating multiplicative weights with probability

measures in expected-regret-minimization.

In the CF model, a high confidence value on a probability measure can be

interpreted as the probability measure being “significant” or “likely to be the

correct distribution,” while a low confidence value on a probability measure

is interpreted as the probability measure being insignificant or unlikely to be

the correct distribution. These confidence values are used to scale the expected

utilities of the acts in a way that reflects the relative significance of each prob-

ability measure. Since larger weights should always magnify the influence of

a distribution, one must restrict to either nonnegative or nonpositive utilities.

CF choose to restrict to nonnegative utilities, and they multiply the expected
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utilities by the multiplicative inverse of the associated confidence value. The

maxmin expected utility criterion is then used to compare utility acts based on

these “weighted” expected utilities. In this thesis, we use the term weight to

refer to the final real number that we multiply the expected utilities by. In the

CF model, the weight is obtained by taking the multiplicative inverse of the

confidence value. Multiplying by the inverse ensures that probability measures

with low confidence have a smaller effect, since they are less likely to give the

minimum expected utility. This generalization of the maxmin expected utility

decision rule allows for a “smoothing” effect. Instead of simply being in or

out of the set of probability measures considered possible, probability measures

now have finer weights associated with them.

However, CF also introduce a numerical confidence threshold α0 > 0; a

probability measure is “discarded” (i.e., ignored) if its confidence value is below

this threshold α0. This threshold affects the resulting behavior of the decision

model, as captured by the axioms characterizing the decision model. Having

this threshold seems to us incompatible with the intuition behind weights. If

a probability measure has low weight, we should perhaps take it less seriously

than one with high weight, but there seems to be no good reason to ignore it al-

together. Therefore, we define a simpler version of the decision rule where there

is no threshold α0. This simplified decision rule is characterized by removing

one of the CF axioms.

Another problem with the CF approach is that of using the multiplicative in-

verse of the confidence value as the weight on the expected utilities. This choice

seems rather arbitrary. Why not use the square of the inverse? We show that

any monotonically decreasing transformation that maps (0, 1] onto R+ (the non-
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negative reals) satisfies the same axioms. Although all these transformations are

characterized by the same axioms, different transformations may lead to quite

different decisions.

It is not clear which transformation function is the “right” one. There is no

compelling argument for using 1
x

rather than, say, 1
x2

. Our axiomatization leads

to some important observations:

1. What is important is the composition t ◦ φ of the transformation function

t and the confidence function φ, not the confidence function itself nor the

transformation function itself; it is the composition that determines the

preferences.

2. Confidence values have no cardinal meaning: a confidence value of 1
2

can

have the same meaning as a confidence value of 1
3

if the transformation t

changes.

Moreover, as our results show, the confidence value and the transformation

interact. In Chapter 2, we were able to get a strong uniqueness result in the

context of regret by multiplying the probability measure by the weight. That

is, instead of considering the set of probability measures and the associated

weights separately, we consider what we called subprobability measures, which

are probability measures “scaled” by a weight in [0, 1]. By looking at these sub-

probability measures, we were able to find natural properties to ensure unique-

ness of the representation. Here, we show that by multiplying the probability

measure by the weight, we can get a uniqueness result analogous to that for

regret.

With weighted regret, there is no need to apply a transformation to the con-
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fidence values. The weights are simply the confidence values. Equivalently, the

identify function is a valid transformation for weighted regret. We show that for

maxmin weighted expected utility, if we restrict to nonpositive utilities instead

of nonnegative utilities, we can also take the transformation to be the identity

function. That is, we can just multiply the expected utilities by a confidence

value without applying any transformations. We then replace the axiom saying

that there is a worst outcome with one saying that there is a best outcome. This

results in essentially the same representation theorem.

The rest of this chapter is organized as follows. Section 3.3 presents the de-

cision setting, which differs slightly from that from the previous chapters. Sec-

tion 3.4 presents the CF model and some of their results. Section 3.5 considers a

generalization of the CF model. Section 3.6 presents a simpler model and pro-

vides a representation theorem.

3.3 Formal Definitions

In this section we provide definitions that will be used to present the CF results,

as well as to develop our new results. We restrict to what is known in the lit-

erature as the Anscombe-Aumann (AA) framework [1963], where outcomes are

restricted to lotteries. This framework is standard in the decision theory liter-

ature; axiomatic characterizations of SEU [Anscombe and Aumann 1963] and

MMEU [Gilboa and Schmeidler 1989b] have been obtained in the AA frame-

work.

We assume that the state space S is associated with a σ algebra, and we let

∆(S) denote the set of all probability distributions on S. Unlike in the previous
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chapters, we do not assume that the state space S is finite. Given a set X (which

we view as consisting of prizes or outcomes), a lottery over X is just a probability

distribution on X with finite support. Let ∆(X) be the set of all lotteries. In the

AA framework, the set of outcomes is ∆(X). So now acts are functions from the

state space S to ∆(X). (Such acts are sometimes called Anscombe-Aumann acts.)

We denote the set of all acts by F . The technical advantage of considering such

a set of outcomes is that we can consider convex combinations of acts. If f and

g are acts, define the act αf + (1 − α)g to be the act that maps a state s to the

lottery αf(s) + (1− α)g(s).

Given a utility function U on prizes in X , the utility of a lottery l ∈ ∆(X) is

just the expected utility of the prizes obtained, that is,

u(l) =
∑

{x∈X : l(x)>0}

l(x)U(x).

This makes sense since l(x) is the probability of getting prize x if lottery l is

played. The expected utility of an act f with respect to a probability p on states

is then just u(f) =
∫
S
u(f(s))dp, as usual.

3.4 CF Maxmin Expected Utility with Confidence Functions

The CF approach is formalized as follows. Let φ : ∆(S)→ [0, 1] be a confidence

function on the probability measures, and let u be a utility function on lotteries

over X with values in R+ (all instances of R+ in this thesis include 0). Let Lα0φ

denote the set {p ∈ ∆(S) : φ(p) ≥ α0} for α0 ∈ (0, 1].

Definition 3.4.1. Define �+,α0

φ so that

f �+,α0

φ g ⇔ min
p∈Lα0φ

1

φ(p)

∫
S

u(f)dp ≥ min
p∈Lα0φ

1

φ(p)

∫
S

u(f)dp.

46



The superscript + on �+,α0

φ indicates that the preference is defined for nonneg-

ative utilities. Note that, according to Definition 3.4.1, a probability measure

that has a confidence value (according to φ) lower than α0 is simply discarded.

The analogy to maxmin expected utility of Gilboa and Schmeidler [Gilboa and

Schmeidler 1989b] is that the probability measure is not in the belief set. Indeed,

if α0 = 1, then the CF approach essentially reduces to maxmin expected utility.

CF call confidence functions satisfying the following properties regular* fuzzy

sets.

Definition 3.4.2. The set of regular* fuzzy sets consists of all mappings φ : ∆(S) →

[0, 1] satisfying the following properties:

(a) φ is normal: {p ∈ ∆(S) : φ(p) = 1} 6= ∅.

(b) φ is weakly* upper semicontinuous: {p ∈ ∆(S) : φ(p) ≥ α} is weakly* closed

for all α ∈ [0, 1].

(c) φ is quasi-concave:

∀β ∈ [0, 1](φ(βp1 + (1− β)p2) ≥ min{φ(p1), φ(p2)}).

One role of regular* fuzzy sets in the CF representation is that the condition

provides a canonical representation. That is, every preference order satisfying

appropriate axioms can be represented by some utility function, some α0 > 0,

and some regular* fuzzy φ. Moreover, there is a φ∗ within the set of regular*

fuzzy sets generating these preferences such that φ∗ is maximal in the sense that

for every probability measure p, φ∗ assigns weakly larger confidence to p than

every other regular* fuzzy set generating these preferences.
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CF consider the following axioms. In the axioms, the acts f and g are viewed

as being universally quantified; given an outcome x ∈ X , we write x∗ to denote

the constant act that maps all states to the outcome x.

Axiom 3.1.

a. (Transitivity): f � g � h⇒ f � h.

b. (Completeness): f � g or g � f.

c. (Nontriviality): f � g for some acts f and g.

Axiom 3.2 (Monotonicity). If (f(s))∗ � (g(s))∗ for all s ∈ S, then f � g.

Axiom 3.3 (Continuity). For all f, g, h ∈ F , the sets {α ∈ [0, 1] : αf + (1 − α)g �

h}, {α ∈ [0, 1] : h � αf + (1− α)g} are closed.

Axiom 3.4 (Worst Independence). There exists a worst outcome x ∈ X such that

f � x∗ for every f ∈ F . Moreover,

f ∼ g ⇒ αf + (1− α)x∗ ∼ αg + (1− α)x∗.

Axiom 3.4 is reminiscent of Gilboa and Schmeidler’s [Gilboa and Schmei-

dler 1989b] C-independence axiom of MMEU; C-independence is stronger in

the sense that the independence property needs to hold not only for x∗, but all

other constant acts as well.

Axiom 3.5 (Independence on Constant Acts).

∀x, y, z ∈ X(x∗ ∼ y∗ ⇔ 1

2
x∗ +

1

2
z∗ ∼ 1

2
y∗ +

1

2
z∗).

Axiom 3.5 is a weaker version of the more common independence axiom for

constant acts, where instead of 1
2

mixtures, all convex mixtures of the constant

acts are allowed. CF chose to present this weaker axiom, since it was shown by
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Herstein and Milnor [1953] that Axioms 3.1, 3.3 and 3.5 are sufficient to satisfy

the premises of the von-Neumann-Morgenstern theorem, which says that there

is an expected-utility representation for preferences over constant acts. While

we could have used the more standard/stronger versions of the continuity and

independence axioms, to make comparisons easier, we use the versions used by

CF.

Axiom 3.6 (Ambiguity Aversion).

f ∼ g ⇒ pf + (1− p)g � g.

Ambiguity aversion says that when there are two equally good alternatives,

the DM prefers to hedge between these two alternatives. Ambiguity aversion is

also sound for MMEU [Gilboa and Schmeidler 1989b].

Axiom 3.7 (Bounded Attraction for Certainty). There exists δ ≥ 1 such that for all

f ∈ F and x, y ∈ X :

x∗ ∼ f ⇒ 1

2
x∗ +

1

2
y∗ � 1

2
f +

1

2

(
1

δ
y∗ +

(
1− 1

δ

)
x∗
)
.

As CF point out, Axiom 5.9 implies that if an agent is indifferent between

an act f and a constant act x∗, then she could strictly the convex combination

of f with a constant act y∗ to the combination of x∗ and y∗. In particular, if we

let y∗ = x∗, then Axiom 5.9 implies that pf + (1 − p)y∗ � x∗ = px∗ + (1 − p)y∗

for all p ∈ [0, 1]. CF explain that Axiom 3.7 imposes a bound on the affinity

for smoothing out an uncertain act with a constant act. Continuing with our

example and letting x∗ = 0∗ (assuming that outcomes are numbers), Axiom 3.7

implies that 1
2
x∗ + 1

2
y∗ � 1

2
f + 1

2δ
y∗ for some fixed δ specified by Axiom 3.7.

The fact that there exists a δ > 1 such that 1
2
x∗ + 1

2
y∗ � 1

2
f + 1

2δ
y∗ follows from
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monotonicity. The power of Axiom 3.7 comes from the fact that there is a single

δ ≥ 1 such that this preference holds for all x, y ∈ X , and f ∈ F .

The Bounded Attraction for Certainty axiom in the CF representation cap-

tures the lower bound α0 in the model. Recall that if the confidence value of a

probability measure is less than α0, then that measure is considered “impossi-

ble”, or ignored. CF show that the δ in the Bounded Attraction for Certainty

axiom can be taken to be 1
α0

in the representation. δ is roughly interpreted as

an upper bound on how much the mixing of a constant act to an act can make

the act more preferable. We essentially take α0 = 0; all probability measures

into account, regardless of their weight, as long as the weight is positive. Since

weighted regret already says that regret due to probability measures with low

confidence is not taken seriously, there seems to be no reason to ignore proba-

bility measures of low confidence altgether. In any case, since we take α0 = 0,

we would expect decision rule to satisfy an unbounded version of attraction for

certainty. Our representation theorem shows that such an axiom is not needed

to characterize maxmin weighted expected utility.

CF prove the following representation theorem:

Theorem 3.4.3 (CF representation theorem [2009]). A binary relation � on F

satisfies Axioms 3.1–3.7 if and only if there exists a unique non-constant function

u : X → R+ such that ux∗ = 0, unique up to positive linear transformations, a

minimal confidence level α0 ∈ (0, 1], and a regular* fuzzy set φ : ∆(S) → [0, 1] such

that �=�+,α0

φ .

Note that although CF guarantee the existence of a representation with a

regular* fuzzy set, the confidence function does not necessarily need to be reg-

ular* fuzzy in order to satisfy Axioms 3.1–3.7. For example, if there are two
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states, s1 and s2, pi is the point-mass on state si for i ∈ {1, 2}, φ(p1) = φ(p2) = 1,

and φ(p) = 0 for all other probability measures p, then φ is not a regular* fuzzy

set, since it is not quasi-concave. Nevertheless, �+, 1
2

φ is determined by maxmin

expected utility and thus must satisfy Axioms 3.1–3.7, because Axioms 3.1–3.7

are strictly weaker than the axioms for maxmin expected utility [Gilboa and

Schmeidler 1989b].

3.5 t-Maxmin Weighted Expected Utility

In this section we consider a generalization of the CF approach, which we call

the t-maxmin weighted decision rule. The t-maxmin weighted rule applies a mono-

tonically decreasing transformation function t to the confidence values, and

then uses the maxmin criterion on expected utilities multiplied by the trans-

formed confidence values. The CF decision rule is the special case of the t-

weighted maxmin decision rule, where t(x) = 1
x
.

Let φ : ∆(S) → [0, 1] be a confidence function, let t : (0, 1] → R+ be a trans-

formation function, and let u be a nonnegative utility function.

Definition 3.5.1 (t-maxmin weighted expected utility). Define �+,α0

t,φ so that

f �+,α0

t,φ g ⇔ min
p∈Lα0φ

t(φ(p))

∫
S

u(g)dp ≥ min
p∈Lα0φ

t(φ(p))

∫
S

u(f)dp.

The threshold value α0 affects the preferences �+,α0

φ only if it is larger than

the smallest confidence value. That is, let α∗0(φ) = max{α0, infp∈∆(S) φ(p)}. It is

easy to see that, for all 0 < α ≤ α∗0(φ), we have �+,α
φ =�+,α∗0(φ)

φ .

Theorem 3.5.2 shows that it is not necessary to use the transformation

t(x) = 1
x

to map confidence values into weights with which expected utilities
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are multiplied. Other functions, such as t(x) = 1
x2

, represent the same class of

preference orders. However, there are some constraints on the allowed transfor-

mation functions t, since we need to “simulate” 1
φ(p)

with t(φ′(p)). In addition to

being strictly decreasing (a property of t(x) = 1
x
), the condition that there exists

some β > 0 such that [β, β/α∗0(φ)] ⊆ range(t) guarantees that we can “simulate”

1
φ(p)

with t(φ′(p)) for some φ′ and α′0. Continuity guarantees that we can find a

preimage φ′(p) for every value in the range of t.

Theorem 3.5.2. For all measurable spaces (S,Σ), consequences X , nonnegative utility

functions u, confidence functions φ : ∆(S) → [0, 1], thresholds α0 > 0, and strictly

decreasing, continuous transformation functions t : (0, 1] → R+ such that there exists

some β > 0 such that [β, β/α∗0(φ)] ⊆ range(t), there exists α′0 > 0 and φ′ such that

�+,α0

φ =�+,α′0
t,φ′ ;

moreover, if φ is regular* and t(1) = β, then φ′ is regular*.

Theorem 3.5.2 highlights another perspective of the t-weighted maxmin ex-

pected utility representation. In addition to viewing φ : [0, 1] as a confidence

function which is transformed and then applied to probability measures, we

can also view t(φ(p)) as a weight applied to the probability measure p. In this

thesis, we use the term weight to refer to a value in R+ with which the expected

probability is multiplied, while the term confidence refers to a value in [0, 1] in

the sense used by Chateaneuf and Faro. In the theorem statement (and later in

the chapter), we take U+ to denote a nonnegative utility function.

A corollary of Theorem 3.5.2 is a representation theorem for the CF axioms,

that is, Axioms 3.1–3.7. Theorem 3.5.3 requires that t(1) > 0, since if t(1) ≤ 0

and the confidence function is normal then the preferences will be trivial. The-

orem 3.5.3 provides a stronger uniqueness result than Theorem 3.4.3.
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Theorem 3.5.3. Let t : (0, 1]→ R+ be a continuous, strictly decreasing function with

t(1) > 0 and limx→0+ t(x) > c for c ∈ R+. For all X , U+, S, α0 > 0, and φ, if

U+ is nonconstant and α∗0(φ) ≥ c, then the preference order �+,α0

t,φ satisfies Axioms

3.1–3.7, with δ = c
t(1)

in Axiom 3.7. Conversely, if the preference order � on the

acts in F satisfies Axioms 3.1–3.7 with t(1)δ ≤ c in Axiom 3.7, then there exists a

nonnegative utility function U+ on X , a threshold α0 > 0, and a confidence function

φ : ∆(S) → [0, 1] such that φ is regular* fuzzy, t ◦ φ has convex upper support, and

�=�+,α0

t,φ . Moreover, U+ is unique up to positive linear transformations, and if S is

finite, there is a sense in which φ is unique (see Theorem 4.5.3).

Proof. That�+,α0

t,φ satisfies Axioms 3.1–3.7 follows from Theorem 3.4.3 and Theo-

rem 3.5.2, since �+,α0

t,φ =�+,α′0
φ′ for some α′0 and φ′, and �+,α′0

φ′ satisfies Axioms 3.1–

3.7.

Proving the converse also involves Theorems 3.4.3 and 3.5.2. If a preference

order satisfies Axioms 3.1–3.7, then by Theorem 3.4.3 there exists a CF repre-

sentation. Moreover, the α0 in the construction of the representation in CF’s

proof of Theorem 3.4.3 is equal to 1
δ
, where δ is the number in Axiom 3.7. Also

recall that α0 ≤ α∗0. Therefore, if limx→0+ t(x) > t(1)δ and t(1) > 0, then for

β = t(1), we have [β, β/α∗0(φ)] ⊆ [β, βδ] ∈ range(t) over the domain (0, 1]. By

Theorem 3.5.2, we can conclude that there exists a t-weighted maxmin expected

utility representation.

The uniqueness claim follows from Theorem 4.5.3 below, which requires

only Axioms 3.1–5.9.

It is well known that for MMEU and regret, the preference order determined

by a set P of probability measures is the same as that determined by the convex
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hull of P . Thus, to get uniqueness, Gilboa and Schmeidler [1989b] consider only

convex sets of probability measures. In Chapter 2, we show that a set of sub-

probability measures determine the same minimax weighted expected regret

(MWER) preferences as its convex hull. Proposition 3.5.5 shows that the gen-

eralized probability measures behave in much the same way as the probability

measures in MMEU and the sub-probability measures in MWER.

Given a set V of generalized probabilities, define the relation �V by taking

f �V g ⇔ inf
p∈V

∫
S

u(f)dp ≥ inf
p∈V

∫
S

u(g)dp.

It is not difficult to see that we can convert back and forth between the upper

support of a weighting function and the weighting function itself. Therefore, we

lose no information by looking at the upper support of a weighting function.

Proposition 3.5.4. �V α0t◦φ=�+,α0

t,φ .

Proof.

f �V α0t◦φ g iff inf
p′∈V α0t◦φ

∫
S

u(f)dp′ ≥ inf
p′∈V α0t◦φ

∫
S

u(g)dp′

iff inf
{q:q=t(φ(p))p,φ(p)>α0}

∫
S

u(f)dq ≥ inf
{q:q=t(φ(p))p,φ(p)>α0}

∫
S

u(g)dq

iff inf
{p:φ(p)>α0}

t(φ(p))

∫
S

u(f)dp ≥ inf
{p:φ(p)>α0}

t(φ(p))

∫
S

u(f)dp

iff f �+,α0

t,φ g,

if φ(p) is lower semi-continuous.

Recall that, given a set V in a mixture space, Conv(V ) = {αx + (1 − α)y :

x, y ∈ V, α ∈ [0, 1]} is the convex hull of V .
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Proposition 3.5.5. If V, V ′ are sets of generalized probability measures and

Conv(V ) = Conv(V ′), then �V =�V ′ .

Proof. It suffices to show that V represents the same preferences as Conv(V ).

Let V be a set of generalized probability measures. Given β ∈ [0, 1], p1, p2 ∈ V ,

and an act f ∈ F , we have

β

∫
u(f)dp1 + (1− β)

∫
u(f)dp2 ≥ min{

∫
u(f)dp1,

∫
u(f)dp2}.

This means that βp1 + (1− β)p2 can be added to V without changing the prefer-

ences, as required.

3.5.1 Impact of the threshold

In the following example, we examine how Axiom 7 qualitatively affects the

weighted maxmin expected utility preferences.

Example 3.5.6. Suppose there are two states: S = {s0, s1}. Consider the confi-

dence function φ defined by φ(p) =
√
p(s1). Like CF, we let t(x) = 1

x
, and let

α0 > 0 be a fixed threshold value. Let �+,α0

φ be resulting preference relation. Let

f be an act such that u(f(s0)) = 0 and u(f(s1)) = 1. Let c∗ be a constant act with

utility c > 0. Then we have that

f �+,α0

φ c∗ ⇔ inf
{p:
√
p(s1)≥α0}

√
p(s1) ≥ c.

This means that f is strictly preferred to all constant acts c∗ with c < α0, but is

considered strictly worse than all constant acts c∗ with c > α0.

Now compare this to the preference order obtained by considering the same

confidence function c and weight function t, but with no threshold on the confi-
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dence. Then we have that

f �+
φ c
∗ ⇔ inf

p∈∆(S)

√
p(s1) ≥ c.

Since minp∈∆(S)

√
p(s1) = 0, this means that f is strictly worse than all constant

acts c with c > 0. Clearly, imposing a threshold has a nontrivial impact on the

preference order.

We can also show how CF’s Axiom 7 is violated by �+
φ . Suppose that the

worst outcome in this example (i.e., x) is 0. If there is no threshold (or, equiva-

lently, if α0 = 0), then f ∼ 0∗. Thus, Axiom 7 implies that, for some fixed ε > 0,

for all outcomes y, we have that 1
2
y∗ � 1

2
f + εy∗. However,

1
2
y∗ �+,0

φ
1
2
f + εy∗

iff y
2
≥ infp∈∆(S)

(
1√
p(s1)

(p(s1)(1
2

+ εy) + (1− p(s1))εy)

)
= infp∈∆(S)

(
εy√
p(s1)

+ 1
2

√
p(s1)

)
It is easy to see that

inf
p∈∆(S)

(
εy√
p(s1)

+
1

2

√
p(s1)

)
=
√

2εy,

which means that for all y < 8ε, we have that 1
2
y ≺ 1

2
f + εy, contradicting

Axiom 7.

3.6 Maxmin Weighted Expected Utility

3.6.1 Removing the threshold

As discussed in the previous section, it does not seem natural to discard prob-

ability measures if their confidence values do not meet some fixed threshold
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α0 > 0. We can naturally extend the definition of t-weighted maxmin expected

utility to remove the threshold α0.

Definition 3.6.1 (t-maxmin weighted expected utility without α0). Define�+
t,φ so

that

f �+
t,φ g ⇔ inf

{p:φ(p)>0}
t(φ(p))

∫
S

u(g)dp ≥ inf
{p:φ(p)>0}

t(φ(p))

∫
S

u(f)dp.

Clearly �+,α0

t,φ =�+
t,φ′ where φ′(p) = φ(p) if φ(p) ≥ α0 and φ′(p) = 0 if φ(p) < α0.

Thus, �+
t,φ is at least as expressive as �+,α0

t,φ .

If we consider CF’s preference order �+
φ without a threshold α0, then as Ex-

ample 3.6.2 below shows, Axiom 3.7 no longer holds.

Example 3.6.2. Let S = {s1, s2}. Let the constant act 1̃ have constant utility 1, so

that the minimum weighted expected utility of 1̃ is 1 as long as φ is normal. Let

pc ∈ ∆(S) be the measure such that pc(s1) = c for c ∈ [0, 1]. Let φ be a confidence

function on ∆(S) such that the confidence value for pc ∈ ∆(S) is

φ(pc) =



1, if c ≥ 1
2

1
21

, if c ∈ [1
8
, 1

2
)

1
22

, if c ∈ [ 1
32
, 1

8
)

. . .

1
2n

, if c ∈ [ 1
22n+1 ,

1
22n−1 ), for n ∈ N.

Clearly, φ is normal, since φ(p 1
2
) = 1. It is also easy to see from the definition

that φ is weakly* upper semicontinuous. Lastly, to check quasi-concavity, note

that a function which is nondecreasing up to a point and is nonincreasing from

that point on is quasiconcave. Therefore φ is quasi-concave.
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We describe the utility of an act f on a state space S = {s1, . . . , sn} using a

utility profile with the format (u(f(s1)), . . . , u(f(sn))). Consider the sequence of

acts {fn}n≥1 with utility profiles as follows

f1 =

(
2,

2

7

)
f2 =

(
4,

4

31

)
f3 =

(
8,

8

127

)
. . .

fn =

(
2n,

2n

22n+1 − 1

)
.

Suppose, by way of contradiction, that there is a fixed δ ∈ R such that �+
φ

satisfies Axiom 3.7. In Appendix B.2, we show that for all n ≥ 1, fn ∼+
φ 1̃.

Now let m̃ be a constant act with constant utility m. The act 1
2
fn + 1

2δ
δ̃ has

utility 2n−1 + 1
2

in state s1 and utility 2n−1

22n+1−1
+ 1

2
in state s2. If c ∈ [ 1

22m+1 ,
1

22m−1 )

for m ≥ 1, then the weighted expected utility of 1
2
fn + 1

2δ
δ̃ with respect to pc is

at least 2n−m−2 + 2m−2. This means that if n ≥ 4 + 2 log2 δ, then the minimum

weighted expected utility of 1
2
fn + 1

2δ
δ̃ is strictly greater than δ. The details are

worked out in Appendix B.2.

On the other hand, the minimum weighted expected utility of 1
2
1̃ + 1

2
δ̃ is

1
2
(1 + δ) < δ for δ ≥ 1. Thus, 1

2
fn + 1

2
1
δ
δ̃ �+

t,φ
1
2
1̃ + 1

2
δ̃ for sufficiently large n,

violating Axiom 3.7 with x∗ = 0̃. Although Axiom 3.7 is violated, it is easy to

see that Axioms 3.1–5.9 hold. Indeed, as we show, we can get a representation

theorem for Axioms 3.1–5.9.
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3.6.2 Maxmin weighted expected utility

It is useful to think of the CF model not as probability measures accompanied

by confidence values, but rather as a set of “super-probability measures.” By

super-probability measure we mean that by multiplying a probability measure by

a positive scalar in [1,∞), we get a scaled positive vector whose components

may sum up to more than 1. A super-probability measure is therefore a non-

negative vector whose components sum to at least 1. This notion is analogous

to the sub-probability measures used in Chapter 2, where a sub-probability mea-

sure is a nonnegative vector whose components sum to at most 1. Intuitively,

a sub-probability measure is obtained by multiplying a probability measure by

a scalar weight that is at most 1. We are also interested in sets containing both

super and sub-probability measures. We will call these sets of generalized proba-

bility measures.

It is often helpful to consider the set of generalized probability measures

supporting the weighting function. For generalized probability measures p and

p′, let p′ ≥ p if for all s ∈ S, p′(s) ≥ p(s).

Definition 3.6.3 (Upper Support). The upper support of a nonnegative weighting

function t ◦ φ is the set V t◦φ = {p′ : ∃p(φ(p) > 0 and p′ ≥ t(φ(p)))}.

The upper support of t ◦ φ contains the set of generalized probabilities t(φ(p))p,

as well as all generalized probabilities that are larger. Including these larger gen-

eralized probabilities does not change the underlying preferences of the upper

support, since these larger generalized probabilities will never provide mini-

mum expected utilities. While adding larger generalized probabilities does not

affect the minimum expected utility, working with the upper support turns out
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to be technically convenient, as we shall see.

Define a relation �V t◦φ by taking

f �V t◦φ g ⇔ inf
p∈V t◦φ

∫
S

u(f)dp ≥ inf
p∈V t◦φ

∫
S

u(g)dp.

Just as before, we can convert back and forth between the upper support of a

weighting function and the weighting function itself. The proof is analogous to

that for Proposition 3.5.4 and is left to the reader.

Proposition 3.6.4. �V t◦φ=�+
t,φ .

For the results beyond this point, we assume that the state space S is finite,

since we make use of results due to Halpern and Leung [Halpern and Leung

2012], which are proved under the assumption of a finite state space.

Theorem 3.6.5. Let t : (0, 1] → R+ be a strictly decreasing function with t(1) > 0.

For all X , nonconstant U+, S, and normal φ, the preference order �+
t,φ satisfies Axioms

3.1–5.9. Furthermore, if t is continuous, limx→0+ t(x) = ∞, and the preference order

� on the acts in F satisfies Axioms 3.1–5.9, then there exists a a nonnegative utility

function U+ onX and a regular* fuzzy confidence function φ : ∆(S)→ [0, 1] such that

t ◦ φ has convex upper support, and �=�+
t,φ. Moreover, U+ is unique up to positive

linear transformations, and φ is unique in the sense that if φ′ is such that �+
t,φ′=� and

φ′ ◦ t has convex upper support, then φ = φ′.

Theorem 4.5.3 characterizes t-maxmin weighted expected utility without the

threshold α0 of CF. By doing so, we show that the lower bound α0 on the con-

fidence or weight of probabilities is not a crucial part of the characterization of

a weighted version of MMEU. Moreover, we provide a uniqueness result that
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is in some sense stronger than that by CF [Chateauneuf and Faro 2009], in that

our uniqueness result directly identifies a “representative” set of beliefs, while

the CF construction [2009] needs to be maximal in order to be unique. For ex-

ample, consider a state space S with two states, and the regular* fuzzy set φ

such that φ(p) = 1 for all p ∈ ∆(S). Consider a second regular* fuzzy set φ′

where φ′(p) = 1
1+mins∈S p(s)

. It is not difficult to check that both sets induce the

same maxmin preferences in the Chateaneuf and Faro representation, since the

supports of the two regular* fuzzy sets have the same convex hull.

The requirement that limx→0+ t(x) = ∞ is necessary to model probability

measures that are arbitrarily close to being “ignored”. This requirement was not

necessary in the representation that made use of a lower bound α0. However,

there is another natural way to relax the constraints on t without introducing

a lower bound α0. As we show in the next section, if instead of restricting to

nonnegative utilities, we restrict to nonpositive utilities, then we can drop the

requirement that limx→0+ t(x) =∞, thus allowing a larger set of transformation

functions.

3.6.3 Nonpositive utilities

Although the preceding results provide a relatively simple characterization of

t-weighted maxmin expected utility, we have not yet presented the full picture.

In the preceding results, just as in the CF model [Chateauneuf and Faro 2009],

we have restricted utilities of acts to be nonnegative. It is easy to see why the re-

striction to nonnegative utilities was necessary. A larger weight makes positive

utilities better but negative utilities worse. If we were to allow utilities to range
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over positive and negative values, the resulting decision rule would have very

different, rather unintuitive behavior.

It turns out we can get a simpler decision rule, characterized almost exactly1

by Axioms 3.1–5.9, if we look at nonpositive utilities instead of nonnegative utili-

ties; in this section, we consider a representation that is restricted to nonpositive

utilities, rather than nonnegative utilities. We use the notation U− to indicate a

nonpositive utility function.

Definition 3.6.6 (Weighted maxmin representation). Given a confidence function

φ : ∆(S) → [0, 1] and strictly increasing transformation function t : [0, 1] → R+,

define �−t,φ as follows:

f �−t,φ g ⇔ min
p∈∆(S)

t(φ(p))
∑
s∈S

p(s)u(f, s) ≥ min
p∈∆(s)

t(φ(p))
∑
s∈S

p(s)u(g, s).

The − superscript on �−t,φ denotes that the relation is defined on acts with

nonpositive utilities. One benefit of using nonpositive utilities instead of non-

negative utilities is that we no longer need to transform confidence values φ(p)

in (0, 1] into multiplicative weights t(φ(p)) ∈ [0,∞). Instead, because a larger

multiplicative confidence value results in utilities that are more negative, we

can simply use the confidence function as the weights. Equivalently, we can

take t to be the identity. Arguably this is the most natural choice for t, and

minimizes concerns regarding which transformation function to use.

We show that preferences generated by the weighted maxmin representation

is characterized by Axioms 3.1–5.9, with Axiom 3.4 replaced by the following

axiom:
1Because we restrict to nonpositive utilities instead of nonnegative utilities, instead of a worst

outcome/act we now have a best outcome/act instead. Thus Axiom 3.4 no longer holds and is
replaced by Axiom 3.8.
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Axiom 3.8 (Best Act Independence). There exists a best outcome x ∈ X such that

x∗ � f for every f ∈ F . Moreover,

f ∼ g ⇒ αf + (1− α)x∗ ∼ αg + (1− α)x∗.

In the case of nonpositive utilities, as is in the case of minimax weighted

expected regret (MWER), it is useful to look at the lower support V t◦φ formed by

the set of sub-probabilities, defined by

V t◦φ = {p′ : ∃p(p′ ≤ t(φ(p))p)}.

Theorem 3.6.7. Let t : [0, 1]→ R+ be a strictly increasing, continuous transformation

such that t(1) > 0 ≥ t(0). For all X , nonconstant U−, S, and regular* fuzzy φ,

the preference order �−t,φ satisfies Axioms 3.1–3.3, 3.5–5.9, and 3.8. Conversely, if a

preference order� on the acts inF satisfies Axioms 3.1–3.3, 3.5–5.9, and 3.8, then there

exists a nonpositive utility function U− on X and a confidence function φ : ∆(S) →

[0, 1] such that φ is regular* fuzzy, has convex lower support, and �=�−t,φ. Moreover,

U− is unique up to positive linear transformations, and φ is unique in the sense that if

φ′ is such that �−t,φ′=� and φ ◦ t has convex lower support, then φ = φ′.

Note that the transformation t in Theorem 3.6.7 has domain [0, 1] instead of

(0, 1). This is because in a setting with nonpositive utilities, a confidence value

of 0 can be mapped to a weight of 0, contributing nothing to the definition of

the preferences. This is analogous to a measure being ignored in the case of

nonnegative utilities. Furthermore, t is required to be strictly increasing, instead

of decreasing, since a larger multiplier amplifies the significance of a negative

utility value. We need that t(1) > 0, since if t(1) = 0 then the preferences will

be trivial. In the second part of the theorem, we need t(0) ≤ 0 in order to find a

representation for all possible preferences that satisfy the axioms. For example,
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suppose the preference� is such that (c, 0) ∼ (c′, 0) for all c, c′ ∈ R−. Intuitively,

this means that the first state is ignored. More precisely, any probability measure

giving positive probability to the first state should be ignored. If t(0) > 0, then

we do not have the representation power to ignore these probability measures.

Therefore, we are unable to find a representation for �.

3.6.4 The case of general acts

We have considered two different settings, one restricted to nonnegative utili-

ties, and one restricted to nonpositive utilities. One might wonder whether a

maxmin weighted expected utility representation could apply to a setting that

include both positive and negative utilities. Recall that in the case of nonneg-

ative utilities, a large positive multiplier on the utility decreases the impact of

the constraint or weighted probability measure, while in the case of nonposi-

tive utilities, a large positive multiplier on the utility increases the impact of the

constraint or weighted probability measure. As a result, to have reasonable be-

havior when dealing with both positive and negative utilities, the multiplier on

a utility value must depend not only on the probability measure, but also on the

utility value itself (whether it is positive or negative).
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CHAPTER 4

MINIMIZING REGRET IN DYNAMIC DECISION PROBLEMS

4.1 Outline

The menu-dependent nature of regret-minimization creates subtleties when it

is applied to dynamic decision problems. It is not clear whether forgone oppor-

tunities should be included in the menu. We explain commonly observed be-

havioral patterns as minimizing regret when forgone opportunities are present.

If forgone opportunities are included, we can characterize when a form of dy-

namic consistency is guaranteed.

4.2 Introduction

In this chapter, we reconsider the minimax weighted expected regret (MWER)

decision rule introduced in Chapter 2. Recall that, for MWER, uncertainty is

represented by a set of weighted probability measures. Intuitively, the weight

represents how likely the probability measure is to be the true distribution over

the states, according to the DM. The weights work much like a “second-order”

probability on the set of probability measures.

Real-life problems are often dynamic, with many stages where actions can

be taken; information can be learned over time. Before applying regret min-

imization to dynamic decision problems, there is a subtle issue that we must

consider. In static decision problems, the regret for each act is computed with

respect to a menu. That is, each act is judged against the other acts in the menu.
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Typically, we think of the menu as consisting of the feasible acts, that is, the ones

that the DM can perform. The analogue in a dynamic setting would be the fea-

sible plans, where a plan is just a sequence of actions leading to a final outcome.

In a dynamic decision problem, as more actions are taken, some plans become

forgone opportunities. These are plans that were initially available to the DM, but

are no longer available due to earlier actions of the DM. Since regret intuitively

captures comparison of a choice against its alternatives, it seems reasonable for

the menu to include all the feasible plans at the point of decision-making. But

should the menu include forgone opportunities?

Consequentialists would argue that it is irrational to care about forgone op-

portunities [Hammond 1976; Machina 1989]; we should simply focus on the

opportunities that are still available to us, and thus not include forgone oppor-

tunities in the menu. And, indeed, when regret has been considered in dynamic

settings thus far (e.g., by Hayashi [2011]), the menu has not included forgone

opportunities. However, introspection tells us that we sometimes do take for-

gone opportunities into account when we feel regret. For example, when con-

sidering a new job, one might compare the available options to what might have

been available if one had chosen a different career path years ago. As we show,

including forgone opportunities in the menu can make a big difference in be-

havior. Consider procrastination: we tell ourselves that we will start studying

for an exam (or start exercising, or quit smoking) tomorrow; and then tomor-

row comes, and we again tell ourselves that we will do it, starting tomorrow.

This behavior is hard to explain with standard decision-theoretic approaches,

especially when we assume that no new information about the world is gained

over time. However, we give an example where, if forgone opportunities are

not included in the menu, then we get procrastination; if they are, then we do
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not get procrastination.

This example can be generalized. Procrastination is an example of preference

reversal: the DM’s preference at time t for what he should do at time t+1 reverses

when she actually gets to time t + 1. We prove in Section 4.4 that if the menu

includes forgone opportunities and the DM acquires no new information over

time (as is the case in the procrastination problem), then a DM who uses regret

to make her decisions will not suffer preference reversals. Thus, we arguably get

more rational behavior when we include forgone opportunities in the menu.

What happens if the DM does get information over time? It is well known

that, in this setting, expected utility maximizers are guaranteed to have no pref-

erence reversals. Epstein and Le Breton [1993] have shown that, under minimal

assumptions, to avoid preference reversals, the DM must be an expected util-

ity maximizer. On the other hand, Epstein and Schneider [2003] show that a

DM using MMEU never has preference reversals if her beliefs satisfy a condi-

tion they call rectangularity. Hayashi [2011] shows that rectangularity also pre-

vents preference reversals for MER under certain assumptions. Unfortunately,

the rectangularity condition is often not satisfied in practice. Other conditions

have been provided that guarantee dynamic consistency for ambiguity-averse

decision rules (see, e.g., [Al-Najjar and Weinstein 2009] for an overview).

We consider the question of preference reversal in the context of regret.

Hayashi [2011] has observed that, in dynamic decision problems, both changes

in menu over time and updates to the DM’s beliefs can result in preference re-

versals. In Section 4.5, we show that keeping forgone opportunities in the menu

is necessary in order to prevent preference reversals. But, as we show by exam-

ple, it is not sufficient if the DM acquires new information over time. We then
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provide a condition on the beliefs that is necessary and sufficient to guarantee

that a DM making decisions using MWER whose beliefs satisfy the condition

will not have preference reversals. However, because this necessary and suffi-

cient condition may not be easy to check, we also give simpler sufficient condi-

tion, similar in spirit to Epstein and Schneider’s [2003] rectangularity condition.

Since MER can be understood as a special case of MWER where all weights are

either 1 or 0, our condition for dynamic consistency is also applicable to MER.

The remainder of the chapter is organized as follows. Section 4.3 discuss

preliminaries. Section 4.4 introduces forgone opportunities. Section 4.5 gives

conditions under which consistent planning is not required.

4.3 Preliminaries

4.3.1 Static decision setting and regret

In Chapter 2, we introduced another representation of uncertainty, weighted set

of probability measures. A weighted set of probability measures generalizes a set

of probability measures by associating each measure in the set with a weight,

intuitively corresponding to the reliability or significance of the measure in cap-

turing the true uncertainty of the world. Minimizing weighted expected regret

with respect to a weighted set of probability measures gives a variant of min-

imax regret, called Minimax Weighted Expected Regret (MWER). A set P+ of

weighted probability measures on (S,Σ) consists of pairs (Pr, αPr), where αPr ∈

[0, 1] and Pr is a probability measure on (S,Σ). Let P = {Pr : ∃α(Pr, α) ∈ P+}.

We assume that, for each Pr ∈ P , there is exactly one α such that (Pr, α) ∈ P+.
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We denote this number by αPr, and view it as the weight of Pr. We further as-

sume for convenience that weights have been normalized so that there is at least

one measure Pr ∈ P such that αPr = 1.

4.3.2 Dynamic decision problems

A dynamic decision problem is a single-player extensive-form game where there

is some set S of states, nature chooses s ∈ S at the first step, and does not

make any more moves. The DM then performs a finite sequence of actions until

some outcome is reached. Utility is assigned to these outcomes. A history is a

sequence recording the actions taken by nature and the DM. At every history

h, the DM considers possible some other histories. The DM’s information set at

h, denoted I(h), is the set of histories that the DM considers possible at h. Let

s(h) denote the initial state of h (i.e., nature’s first move); let R(h) denote all the

moves the DM made in h after nature’s first move; finally, letE(h) denote the set

of states that the DM considers possible at h; that is, E(h) = {s(h′) : h′ ∈ I(h)}.

We assume that the DM has perfect recall: this means that R(h′) = R(h) for all

h′ ∈ I(h), and that if h′ is a prefix of h, then E(h′) ⊇ E(h).

A plan is a (pure) strategy: a mapping from histories to histories that result

from taking the action specified by the plan. We require that a plan specify the

same action for all histories in an information set; that is, if f is a plan, then

for all histories h and h′ ∈ I(h), we must have the last action in f(h) and f(h′)

must be the same (so that R(f(h)) = R(f(h′))). Given an initial state s, a plan

determines a complete path to an outcome. Hence, we can also view plans

as acts: functions mapping states to outcomes. We take the acts in a dynamic
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decision problem to be the set of possible plans, and evaluate them using the

decision rules discussed above.

A major difference between our model and that used Epstein and Schnei-

der [2003] and Hayashi [2009] is that the latter assume a filtration information

structure. With a filtration information structure, the DM’s knowledge is repre-

sented by a fixed, finite sequence of partitions. More specifically, at time t, the

DM uses a partition F (t) of the state space, and if the true state is s, then all

that the DM knows is that the true state is in the cell of F (t) containing s. Since

the sequence of partitions is fixed, the DM’s knowledge is independent of the

choices that she makes, and her options and preferences cannot depend on past

choices. This assumption significantly restricts the types of problems that can be

naturally modeled. For example, if the DM prefers to have one apple over two

oranges at time t, then this must be her time t preference, regardless of whether

she has already consumed five apples at time t − 1. Moreover, consuming an

apple at time t cannot preclude consuming an apple at time t + 1. Since we ef-

fectively represent a decision problem as a single-player extensive-form game,

we can capture all of these situations in a straightforward way. The models of

Epstein, Schneider, and Hayashi can be viewed as a special case of our model.

In a dynamic decision problem, as we shall see, two different menus are rele-

vant for making a decision using regret-minimization: the menu with respect to

which regrets are computed, and the menu of feasible choices. We formalize this

dependence by considering choice functions of the form CM,E , where E,M 6= ∅.

CM,E is a function mapping a nonempty menu M ′ to a nonempty subset of M ′.

Intuitively,CM,E(M ′) consists of the DM’s most preferred choices from the menu

M ′ when she considers the states in E possible and her decision are made rela-
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tive to menu M . (So, for example, if the DM is making her choices choices using

regret minimization, the regret is taken with respect to M .) Note that there may

be more than one plan in CM,E(M ′); intuitively, this means that the DM does not

view any of the plans in CM,E(M ′) as strictly worse than some other plan.

What should M and E be when the DM makes a decision at a history h? We

always take E = E(h). Intuitively, this says that all that matters about a history

as far as making a decision is the set of states that the DM considers possible; the

previous moves made to get to that history are irrelevant. As we shall see, this

seems reasonable in many examples. Moreover, it is consistent with our choice

of taking probability distributions only on the state space.

The choice of M is somewhat more subtle. The most obvious choice (and

the one that has typically been made in the literature, without comment) is that

M consists of the plans that are still feasible at h, where a plan f is feasible at a

history h if, for all strict prefixes h′ of h, f(h′) is also a prefix of h. So f is feasible

at h if h is compatible with all of f ’s moves. Let Mh be the set of plans feasible at

h. While taking M = Mh is certainly a reasonable choice, as we shall see, there

are other reasonable alternatives.

Before addressing the choice of menu in more detail, we consider how to

apply regret in a dynamic setting. If we want to apply MER or MWER, we must

update the probability distributions. Epstein and Schneider [2003] and Hayashi

[2009] consider prior-by-prior updating, the most common way to update a set of

probability measures, defined as follows:

P|pE = {Pr |E : Pr ∈ P ,Pr(E) > 0}.
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We can also apply prior-by-prior updating to a weighted set of probabilities:

P+|pE = {(Pr |E,α) : (Pr, α) ∈ P+,Pr(E) > 0}.

Prior-by-prior updating can produce some rather counter-intuitive out-

comes. For example, suppose we have a coin of unknown bias in [0.25, 0.75],

and flip it 100 times. We can represent our prior beliefs using a set of probability

measures. However, if we use prior-by-prior updating, then after each flip of

the coin the set P+ representing the DM’s beliefs does not change, because the

beliefs are independent. Thus, in this example, prior-by-prior updating is not

capturing the information provided by the flips.

We consider likelihood updating, introduced in Chapter 2:

P+|lE = {(Pr |E,αlE) : (Pr, α) ∈ P+,Pr(E) > 0}.

In computing P+|lE, we update not just the probability measures in Pr ∈ P ,

but also their weights, which are updated to αlE . Although prior-by-prior updat-

ing does not change the weights, for purposes of exposition, given a weighted

probability measure (Pr, α), we use αpE to denote the “updated weight” of

Pr |E ∈ P+|pE; of course, αpE = α.

Intuitively, probability measures that are supported by the new information

will get larger weights using likelihood updating than those not supported by

the new information. Clearly, if all measures in P start off with the same weight

and assign the same probability to the event E, then likelihood updating will

give the same weight to each probability measure, resulting in measure-by-

measure updating. This is not surprising, since such an observation E does

not give us information about the relative likelihood of measures.
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Let reg
P+|lE
M (f) denote the regret of act f computed with respect to menu

M and beliefs P+|lE. If P+|lE is empty (which will be the case if P+
(E) =

0) then reg
P+|lE
M (f) = 0 for all acts f . We can similarly define reg

P+|pE
M (f) for

beliefs updated using prior-by-prior updating. Also, let Creg,P+|lE
M (M ′) be the

set of acts in M ′ that minimize the weighted expected regret regP
+|lE

M . If P+|lE

is empty, then C
reg,P+|lE
M (M ′) = M ′. We can similarly define Creg,P+|pE

M , Creg,P|E
M

and C
reg,Pr |E
M .

4.4 Forgone opportunities

As we have seen, when making a decision at a history h in a dynamic decision

problem, the DM must decide what menu to use. In this section we focus on

one choice. Take a forgone opportunity to be a plan that was initially available

to the DM, but is no longer available due to earlier actions. As we observed in

the introduction, while it may seem irrational to consider forgone opportunities,

people often do. Moreover, when combined with regret, behavior that results by

considering forgone opportunities may be arguably more rational than if forgone

opportunities are not considered. Consider the following example.

Example 4.4.1. Suppose that a student has an exam in two days. She can either

start studying today, play today and then study tomorrow, or just play on both

days and never study. There are two states of nature: one where the exam is

difficult, and one where the exam is easy. The utilities reflect a combination

of the amount of pleasure that the student derives in the next two days, and

her score on the exam relative to her classmates. Suppose that the first day

of play gives the student p1 > 0 utils, and the second day of play gives her
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p2 > 0 utils. Her exam score affects her utility only in the case where the exam

is hard and she studies both days, in which case she gets an additional g1 utils

for doing much better than everyone else, and in the case where the exam is

hard and she never studies, in which case she loses g2 > 0 utils for doing much

worse than everyone else. Figure 4.1 provides a graphical representation of the

decision problem. Since, in this example, the available actions for the DM are

independent of nature’s move, for compactness, we omit nature’s initial move

(whether the exam is easy or hard). Instead, we describe the payoffs of the DM

as a pair [a1, a2], where a1 is the payoff if the exam is hard, and a2 is the payoff

if the exam is easy.

play study

play study both days

[p1, p1]

[g1, 0]

[p1 + p2 − g2,
p1 + p2]

Figure 4.1: An explanation for procrastination.

Assume that 2p1 +p2 > g1 > p1 +p2 and 2p2 > g2 > p2. That is, if the test were

hard, the student would be happier studying and doing well on the test than she

would be if she played for two days, but not too much happier; similarly, the

penalty for doing badly in the exam if the exam is hard and she does not study

is greater than the utility of playing the second day, but not too much greater.

Suppose that the student uses minimax regret to make her decision. On the first

day, she observes that playing one day and then studying the next day has a

worst-case regret of g1−p1, while studying on both days has a worst-case regret

of p1+p2. Therefore, she plays on the first day. On the next day, suppose that she
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does not consider forgone opportunities and just compares her two available

options, studying and playing. Studying has a worst-case regret of p2, while

playing has a worst-case regret of g2 − p2, so, since g2 < 2p2, she plays again

on the second day. On the other hand, if the student had included the forgone

opportunity in the menu on the second day, then studying would have regret

g1−p1, while playing would have regret g1 +g2−p1−p2. Since g2 > p2, studying

minimizes regret. ut

Example 4.4.1 emphasizes the roles of the menus M and M ′ in CM,E(M ′).

Here we took M , the menu relative to which choices were evaluated, to consist

of all plans, even the ones that were no longer feasible, while M ′ consisted of

only feasible plans. In general, to determine the menu component M of the

choice function CM,E(h) used at a history h, we use a menu-selection function µ.

The menu µ(h) is the menu relative to which choice are computed at h. We

sometimes write Cµ,h rather than Cµ(h),E(h).

We can now formalize the notion of no preference reversal. Roughly speak-

ing, this says that if a plan f is considered one of the best at history h and is

still feasible at an extension h′ of h, then f will still be considered one of the best

plans at h′.

Definition 4.4.2 (No preference reversal). A family of choice functions Cµ,h has

no preference reversals if, for all histories h and all histories h′ extending h, if f ∈

Cµ,h(Mh) and f ∈Mh′ , then f ∈ Cµ,h′(Mh′).

The fact that we do not get a preference reversal in Example 4.4.1 if we take

forgone opportunities into account here is not just an artifact of this example. As

we now show, as long as we do not get new information and also use a constant
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Hard Easy
Short Long Short Long

Pr1 1 0 0 0
Pr2 0 0.2 0.2 0.2

play-study 1 0 5 0
play-play 0 3 0 3

Table 4.1: αPr1 = 1, αPr2 = 0.6.

menu (i.e., by keeping all forgone opportunities in the menu), then there will be

no preference reversals if we minimize (weighted) expected regret in a dynamic

setting.

Proposition 4.4.3. If, for all histories h, h′, we have E(h) = S and µ(h) = µ(h′),

and decisions are made according to MWER (i.e., the agent has a set P+ of weighted

probability distributions and a utility function u, and f ∈ Cµ,h(Mh) if f minimizes

weighted expected regret with respect to P+|lE(h) or P+|pE(h)), then no preference

reversals occur.

Proof. Suppose that f ∈ Cµ,〈s〉, h is a history extending 〈s〉, and f ∈ Mh. Since

E(h) = S and µ(h) = µ(〈s〉) by assumption, we have Cµ(h),E(h) = Cµ(〈s〉),E(〈s〉).

By assumption, f ∈ Cµ(〈s〉,M〈s〉(M〈s〉) = Cµ(h),E(h)(M〈s〉). It is easy to check that

MWER satisfies what is known in decision theory as Sen’s α axiom [1988]: if

f ∈ M ′ ⊆ M ′′ and f ∈ CM,E(M ′′), then f ∈ CM,E(M ′). That is, if f is among

the most preferred acts in menu M ′′, if f is in the smaller menu M ′, then it must

also be among the most preferred acts in menu M ′. Because f ∈Mh ⊆M〈s〉 and

f ∈ Cµ,〈s〉(M〈s〉), we have f ∈ Cµ(h),E(h)(Mh), as required.

Proposition 4.4.3 shows that we cannot have preference reversals if the DM

does not learn about the world. However, if the DM learns about the world,

then we can have preference reversals. Suppose, as is depicted in Table 4.1, that
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in addition to being hard and easy, the exam can also be short or long. The

student’s beliefs are described by the set of weighted probabilities Pr1 and Pr2,

with weights 1 and 0.6, respectively.

We take the option of studying on both days out of the picture by assuming

that its utility is low enough for it to never be preferred, and for it to never

affect the regret computations. After the first day, the student learns whether

the exam will be hard or easy. One can verify that the ex ante regret of playing

then studying is lower than that of playing on both days, while after the first

day, the student prefers to play on the second day, regardless of whether she

learns that the exam is hard or easy.

4.5 Characterizing no preference reversal

We now consider conditions under which there is no preference reversal in a

more general setting, where the DM can acquire new information. While in-

cluding all forgone opportunities is no longer a sufficient condition to prevent

preference reversals, it is necessary, as the following example shows: Consider

the two similar decision problems depicted in Figure 4.2. Note that at the node

[1, 2]

L R

L R

[2.1, 1]

[3, 0]

[1, 2]

L R

L R

[2.1, 1]

[0, 3]

Figure 4.2: Two decision trees.
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after first playing L, the utilities and available choices are identical in the two

problems. If we ignore forgone opportunities, the DM necessarily makes the

same decision in both cases if his beliefs are the same. However, in the tree to

the left, the ex ante optimal plan is LR, while in the tree to the right, the ex ante

optimal plan is LL. If the DM ignores forgone opportunities, then after the first

step, she cannot tell whether she is in the decision tree on the left side, or the

one on the right side. Therefore, if she follows the ex ante optimal plan in one of

the trees, she necessarily is not following the ex ante optimal plan in the other

tree.

In light of this example, we now consider what happens if the DM learns

information over time. Our no preference reversal condition is implied by a

well-studied notion called dynamic consistency. One way of describing dynamic

consistency is that a plan considered optimal at a given point in the decision

process is also optimal at any preceding point in the process, as well as any

future point that is reached with positive probability [Siniscalchi 2011]. For

menu-independent preferences, dynamic consistency is usually captured ax-

iomatically by variations of an axiom called Dynamic Consistency (DC) or the

Sure Thing Principle [Savage 1954]. We define a menu-dependent version of DC

relative to events E and F using the following axiom. The second part of the

axiom implies that if f is strictly preferred conditional on E ∩ F and at least

weakly preferred on Ec ∩F , then f is also strictly preferred on F . An event E is

relevant to a dynamic decision problem D if it is one of the events that the DM can

potentially learn in D, that is, if there exists a history h such that E(h) = E. A

dynamic decision problem D = (S,Σ, X, u,P) is “proper” if Σ is generated by

the subsets of S relevant to D. Given a decision problem D, we take the measur-

able sets to be the σ-algebra generated by the events relevant toD. The following

78



axioms hold for all measurable sets E and F , menus M and M ′, and acts f and

g.

Axiom 4.1 (DC-M). If f ∈ CM,E∩F (M ′) ∩ CM,Ec∩F (M ′), then f ∈ CM,F (M ′). If,

furthermore, g /∈ CM,E∩F (M ′), then g /∈ CM,F (M ′).

Axiom 4.2 (Conditional Preference). If f and g, when viewed as acts, give the same

outcome on all states in E, then f ∈ CM,E(M ′) iff g ∈ CM,E(M ′).

The next two axioms put some weak restrictions on choice functions.

Axiom 4.3. CM,E(M ′) ⊆M ′ and CM,E(M ′) 6= ∅ if M ′ 6= ∅.

Axiom 4.4 (Sen’s α). If f ∈ CM,E(M ′) and M ′′ ⊆M ′, then f ∈ CM,E(M ′′).

Theorem 4.5.1. For a dynamic decision problem D, if Axiom 4.1–4.4 hold and µ(h) =

M for some fixed menu M , then there will be no preference reversals in D.

We next provide a representation theorem that characterizes when Ax-

ioms 4.1–4.4 hold for a MWER DM. The following condition says that the uncon-

ditional regret can be computed by separately computing the regrets conditional

on measurable events E ∩ F and on Ec ∩ F .

Definition 4.5.2 (SEP). The weighted regret of f with respect to M and P+ is sep-

arable with respect to |χ (χ ∈ {p, l}) if for all measurable sets E and F such that

P+
(E ∩ F ) > 0 and P+

(Ec ∩ F ) > 0,

reg
P+|χF
M (f) = sup

(Pr,α)∈P+

α
(

Pr(E ∩ F )reg
P+|χ(E∩F )
M (f) + Pr(Ec ∩ F )reg

P+|χ(Ec∩F )
M (f)

)
,

and if regP
+|χ(E∩F )

M (f) 6= 0, then

reg
P+|χF
M (f) > sup

(Pr,α)∈P+

αPr(Ec ∩ F )reg
P+|χ(Ec∩F )
M (f).
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We now show that Axioms 4.1–4.4 characterize SEP. Say that a decision prob-

lemD is based on (S,Σ) ifD = (S,Σ, X, u,P) for some X, u, and P . In the follow-

ing results, we will also make use of an alternative interpretation of weighted

probability measures. Define a subprobability measure p on (S,Σ) to be like a

probability measure, in that it is a function mapping measurable subsets of S to

[0, 1] such that p(T ∪ T ′) = p(T ) + p(T ′) for disjoint sets T and T ′, except that

it may not satisfy the requirement that p(S) = 1. We can identify a weighted

probability distribution (Pr, α) with the subprobability measure αPr. (Note that

given a subprobability measure p, there is a unique pair (α,Pr) such that p =

αPr: we simply take α = p(S) and Pr = p/α.) Given a set P+ of weighted prob-

ability measures, we let C(P+) = {p ≥ ~0 : ∃c,∃Pr, (c,Pr) ∈ P+ and p ≤ cPr}.

Theorem 4.5.3. If P+ is a set of weighted distributions on (S,Σ) such that C(P+) is

closed, then the following are equivalent for χ ∈ {p, l}:

(a) For all decision problems D based on (S,Σ) and all menus M in D, Axioms 4.1–

4.4 hold for the family Creg,P+|χE
M of choice functions.

(b) For all decision problems D based on (S,Σ), states s ∈ S, and acts f ∈ M〈s〉, the

weighted regret of f with respect to M〈s〉 and P+ is separable with respect to |χ.

Note that Theorem 4.5.3 says that to check that Axioms 1–4 hold, we need to

check only that separability holds for initial menus M〈s〉.

It is not hard to show that SEP holds if the set P is a singleton. But, in gen-

eral, it is not obvious when a set of probability measures is separable. We thus

provide a characterization of separability, in the spirit of Epstein and LeBreton’s

[1993] rectangularity condition. We actually provide two conditions, one for

the case of prior-by-prior updating, and another for the case of likelihood up-
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dating. These definitions use the notion of maximum weighted expected value of

θ, defined as EP+(θ) = sup(Pr,α)∈P+

∑
s∈S αPr(s)θ(s). We use X to denote the

closure of a set X .

Definition 4.5.4 (χ-Rectangularity). A set P+ of weighted probability measures is

χ-rectangular (χ ∈ {p, l}) if for all measurable sets E and F ,

(a) if (Pr1, α1), (Pr2, α2), (Pr3, α3) ∈ P+, Pr1(E ∩ F ) > 0, and Pr2(Ec ∩ F ) > 0,

then

α3Pr3(E∩F )αχ1,E∩FPr1|(E∩F )+α3Pr3(Ec∩F )αχ2,Ec∩FPr2|(Ec∩F ) ∈ C(P+ |χ F ),

(b) for all δ > 0, if P+
(F ) > 0, then there exists (Pr, α) ∈ P+|χF such that

α(δ Pr(E ∩ F ) + Pr(Ec ∩ F )) > sup(Pr′,α′)∈P+ α′ Pr′(Ec ∩ F ), and

(c) for all nonnegative real vectors θ ∈ R|S|,

sup(Pr,α)∈P+|χF α
(
Pr(E ∩ F )EP+|χ(E∩F )(θ) + Pr(Ec ∩ F )EP+|χ(Ec∩F )(θ)

)
≥ EP+|χF (θ).

Recall that Epstein and Schneider proved that rectangularity is a condi-

tion that guarantees no preference reversal in the case of MMEU [Epstein and

Schneider 2003], and Hayashi proved a similar result for MER [Hayashi 2009].

With MMEU and MER, only unweighted probabilities are considered. Defini-

tion 4.5.4 essentially gives the generalization of Epstein and Schneider’s condi-

tion to weighted probabilities. Part (a) of χ-rectangularity is analogous to the

rectangularity condition of Epstein and Schneider. Part (b) of χ-rectangularity

corresponds to the assumption that (E ∩ F ) is non-null, which is analogous

to Axiom 5 in Epstein and Schneider’s axiomatization. Finally, part (c) of χ-

rectangularity holds for MMEU when weights are in {0, 1}, and thus is not nec-

essary for Epstein and Schneider. It is not hard to show that we can replace
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condition (a) above by the requirement that P+ is closed under conditioning, in

the sense that if (Pr, α) ∈ P+, then so are (Pr |(E ∩ F ), α) and (Pr |(Ec ∩ F ), α).

As the following result shows, χ-rectangularity is indeed sufficient to give

us Axioms 4.1–4.4 under prior-by-prior updating and likelihood updating.

Theorem 4.5.5. If C(P+) is closed and convex, then Axiom 4.1 holds for the family of

choices Creg,P+|χE
M if and only if P+ is χ-rectangular.

The proof that χ-rectangularity implies Axiom 4.1 requires only that C(P+)

be closed (i.e., convexity is not required). Hayashi [2011] proves an analogue

of Theorem 4.5.5 for MER using prior-by-prior updating. He also essentially

assumes that the menu includes forgone opportunities, but his interpretation of

forgone opportunities is quite different from ours. He also shows that if for-

gone opportunities are not included in the menu, then the set of probabilities

representing the DM’s uncertainty at all but the initial time must be a single-

ton. This implies that the DM must behave like a Bayesian at all but the initial

time, since MER acts like expected utility maximization if the DM’s uncertainty

is described by a single probability measure.

Epstein and Le Breton [1993] took this direction even further and prove that,

if a few axioms hold, then only Bayesian beliefs can be dynamically consistent.

While Epstein and Le Breton’s result was stated in a menu-free setting, if we use

a constant menu throughout the decision problem, then our model fits into their

framework. At first glance, their impossibility result may seem to contradict

our sufficient conditions for no preference reversal. However, Epstein and Le

Breton’s impossibility result does not apply because one of their axioms, P4c,

does not hold for MER (or MWER). For ease of exposition, we give P4c for

static decision problems. Given acts f and g and a set T of states, let fTg be the
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act that agrees with f on T and agrees with g on T c. Given an outcome x, let x∗

be the constant act that gives outcome x at all states.

Axiom 4.5 (Conditional weak comparative probability). For all events T,A,B,

with A ∪ B ⊆ T , outcomes w, x, y, and z, and acts g, if w∗Tg � x∗Tg, z∗Tg � y∗Tg,

and (w∗Ax∗)Tg � (w∗Bx∗)Tg, then (z∗Ay∗)Tg � (z∗By∗)Tg.

P4c implies Savage’s P4, and does not hold for MER and MWER in general.

For a simple counterexample, let S = {s1, s2, s3}, X = {o1, o5, o7, o10, o20, o23},

A = {s1}, B = {s2}, T = A ∪ B, u(ok) = k, g is the act such that g(s1) = o20,

g(s2) = o23, and g(s3) = o5. Let P = {p1, p2, p3}, where

• p1(s1) = 0.25 and p1(s2) = 0.75;

• p2(s3) = 1;

• p3(s1) = 0.25 and p3(s3) = 0.75.

Let the menu M = {o∗1, o∗7, o∗10, o
∗
20, g}. Let � be the preference relation deter-

mined by MER. The regret of o∗10Tg is 15 (this is the regret with respect to

p2), and the regret of o∗7Tg is 15.25 (the regret with respect to p1), therefore

o∗10Tg � o∗7Tg. It is also easy to see that the regret of o∗20Tg is 15 (the regret

with respect to p2), and the regret of o∗1Tg is 21.25 (the regret with respect to p1),

so o∗20Tg � o∗1Tg. Moreover, the regret of (o∗10Ao
∗
7)Tg is 15 (the regret with re-

spect to p2), and the regret of (o∗10Bo
∗
1)Tg is 15 (the regret with respect to p2), so

(o∗10Ao
∗
7)Tg � (o∗10Bo

∗
1)Tg. However, the regret of (o∗20Ao

∗
1)Tg is 16.5 (the regret

with respect to p1), and the regret of (o∗20Bo
∗
1)Tg is 16 (the regret with with re-

spect to p3), therefore (o∗20Ao
∗
1)Tg 6� (o∗20Bo

∗
1)Tg. Thus, Axiom 4.5 does not hold

(taking y = o1, x = o7, w = o10, z = o20).

83



Siniscalchi [2011, Proposition 1] proves that his notion of dynamically con-

sistent conditional preference systems must essentially have beliefs that are up-

dated by Baysian updating. However, his result does not apply in our case ei-

ther, because it assumes consequentialism: that the conditional preference sys-

tem treats identical subtrees equally, independent of the greater decision tree

within which the subtrees belong. This does not happen if, for example, we

take forgone opportunities into account.

There may be reasons to exclude forgone opportunities from the menu. Con-

sequentialism, according to Machina [1989], is ‘snipping’ the decision tree at the

current choice node, throwing the rest of the tree away, and calculating prefer-

ences at the current choice node by applying the original preference ordering

to alternative possible continuations of the tree. With this interpretation, con-

sequentialism implies that forgone opportunities should be removed from the

menu.

Similarly, there many be reasons to exclude unachievable plans from the

menu. Preferences computed with unachievable plans removed from the menu

would be independent of these unachievable plans. This quality might make

the preferences suitable for iterated elimination of suboptimal plans as a way

of finding the optimal plan. In certain settings, it may be difficult to rank plans

or find the most preferred plan among a large menu. For instance, consider the

problem of deciding on a career path. In these settings, it may be relatively

easy to identify bad plans, the elimination of which simplifies the problem.

Conversely, computational benefits may motivate a DM to ignore unachievable

plans. That is, a DM may choose to ignore unachievable plans because doing so

simplifies the search for the preferred solution.
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4.6 Chapter Conclusion

In dynamic decision problems, it is not clear which menu should be used to

compute regret. However, if we use MWER with likelihood updating, then in

order to avoid preference reversals, we need to include all initially feasible plans

in the menu, as well as richness conditions on the beliefs. Another, well-studied

approach to circumvent preference reversals is sophistication. A sophisticated

agent is aware of the potential for preference reversals, and thus uses backward

induction to determine the achievable plans, which are the plans that can actu-

ally be carried out. In the procrastination example, a sophisticated agent would

know that she would not study the second day. Therefore, she knows that play-

ing on the first day and then studying on the second day is an unachievable

plan.

Siniscalchi [2011] considers a specific type of sophistication, called consistent

planning, based on earlier definitions of Strotz [1955] and Gul and Pesendor-

fer [2005]. Assuming a filtration information structure, Siniscalchi axiomatizes

behavior resulting from consistent planning using any menu-independent deci-

sion rule.1 With a menu-dependent decision rule, we need to consider the choice

of menu when using consistent planning. Hayashi [2009] axiomatizes sophisti-

cation using regret-based choices, including MER and the smooth model of an-

ticipated regret, under the fixed filtration information setting. However, in his

models of regret, Hayashi assumes that the menu that the DM uses to compute

regret includes only the achievable plans. In other words, forgone opportunities

and those plans that are not achievable are excluded from the menu. It would be

1Siniscalchi considers a more general information structure where the information that the
DM receives can depend on her actions in an unpublished version of his paper [Siniscalchi
2006].
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interesting to investigate the effect of including such in the menus of a sophis-

ticated DM. A sophisticated DM who takes unachievable plans into account

when computing regret can be understood as being “sophisticated enough” to

understand that her preferences may change in the future, but not sophisticated

enough to completely ignore the plans that she cannot force herself to commit

to when computing regret. On the other hand, a sophisticated DM who ignores

unachievable plans does not feel regret for not being able to commit to certain

plans.

Finally, we have only considered “binary” menus in the sense that an act

is either in the menu and affects regret computation, or it is not. A possible

generalization is to give different weights to the acts in the menu, and multiply

the regrets computed with respect to each act by the weight of the act. For ex-

ample, with respect to forgone opportunities, “recently forgone” opportunities

may warrant a higher weight than opportunities that have been forgone many

timesteps ago. Such treatment of forgone opportunities will definitely affect the

behavior of the DM.
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CHAPTER 5

MAXIMIN SAFETY

5.1 Overview

We present a new decision rule, maximin safety, that seeks to maintain a large

margin from the worst outcome, in much the same way minimax regret seeks to

minimize distance from the best. We argue that maximin safety is valuable both

descriptively and normatively. Descriptively, maximin safety explains the well-

known decoy effect, in which the introduction of a dominated option changes

preferences among the other options. Normatively, we provide an axiomatiza-

tion that characterizes preferences induced by maximin safety, and show that

maximin safety shares much of the same behavioral basis with minimax regret.

5.2 Introduction

Representing uncertainty using a probability distribution, and making deci-

sions by maximizing expected utility, is widely accepted, founded on formal

mathematical principles, and satisfies intuitive notions of rationality such as in-

dependence of irrelevant alternatives and the sure thing principle [?]. However,

enforcing seemingly appealing concepts of rationality can ultimately lead to de-

cisions inconsistent with what real humans consider reasonable. For example,

observed behavior under unquantified (Knightian [Knight 1921]/ strict [Larbi,

Konieczny, and Marquis 2010]) uncertainty, such as that in the Ellsberg paradox

[Ellsberg 1961], demonstrates how appealing concepts of rationality can lead
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to inconsistency with human choices. Alternative decision rules, such as max-

imin utility [Wald 1950] and minimax regret [Savage 1954; Luce and Raiffa 1957]

provide rationally plausible decisions in ambiguous situations and can be used

to resolve such paradoxes, but still fail to explain some human behavioral pat-

terns. A particularly illustrative example of such behavior is called the decoy

effect [Huber, Payne, and Puto 1982], in which the introduction of a dominated

option changes the preference among the undominated ones. While the decoy

effect has been investigated in the psychology [Doyle, O’Connor, Reynolds, and

Bottomley 1999; Wedell 1991] and economics literature [Bateman, Munro, and

Poe 2008; Simonson and Tversky 1992], we are unaware of any axiomatic treat-

ment of it. To address this, we introduce a criterion called safety as the basis for

a maximin safety decision rule.1 Safety serves as a dual to regret that quantifies

distance from a worst outcome, much as regret quantifies proximity to a best

outcome. Maximin safety also satisfies familiar properties common to maximin

utility and minimax regret, and hence also resolves the Ellsberg paradox. More-

over, maximin safety accommodates observed preferences that are incompatible

with minimax regret and maximin utility. We demonstrate how safety-seeking

behavior can produce the decoy effect, and show how maximin safety can ex-

plain it. We also extend Stoye’s [2011b] axiomatizations of standard decision

rules to include maximin safety, thus allowing a comparison between maximin

safety and state-of-the-art decision rules.

1This decision rule has been mentioned in passing, inside a proof by Hayashi [Hayashi
2008b], where it was referred to as ‘maximin joy’. We use the term ‘safety’ rather than ‘joy’
to avoid confusion with the concept called ‘joy of winning’ in [Hayashi 2008b].
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5.2.1 Relative Preferences and Regret

It is not hard to imagine situations in which performance relative to other possi-

ble outcomes is more important than absolute performance. Consider, for ex-

ample, a group of duck hunters surprised by a hungry bear [Crawley 1993;

Chao, Hanley, Burch, Dahlberg, and Turner 2000]. The hunters all attempt to

escape by running in the same direction while the slowest one despairs: “this

is hopeless, we can never outrun the bear.” The hunter in front of him snick-

ers, “I don’t need to outrun the bear, I just need to outrun you.” Whether the

prospect is being picked from a group of peers for a date [Ariely 2008], winning

a gold medal, or obtaining an ‘A’ in a class, success is often measured by relative

performance, rather than by an absolute standard. One such preference for rel-

ative performance is embodied in the well-known decision theoretical concept

of regret [Savage 1954; Luce and Raiffa 1957]. While psychological literature on

regret focuses on the bad feelings that occur after a choice leads to an inferior

outcome, some also considers that anticipation of such negative emotions may

influence the choice itself [Simonson and Tversky 1992; Larrick and Boles 1995;

Ritov 1996].

As before, we assume that uncertainty is captured by a set of possible

worlds, one of which is the true state of the world. Regret is a measure of

distance between the value of a considered outcome and the value of the best

possible outcome, under a given state. This leads to an important property

that is always true for regret – the introduction of a dominated option does not

change the regrets of the existing options. We will refer to this property as in-

dependence of dominated alternatives (IDA). Those who believe in regret avoid-

ance may think that this property is perfectly reasonable. For example, sup-
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pose you have a $10 bill and you can either buy a $10 lottery ticket, or two

$5 lottery tickets. Most would agree that your choice should not be affected

by a dominated third option, “burning the $10 bill”. Other standard decision

rules, such as expected utility maximization, have even stronger independence

guarantees. The ranking of two choices under expected utility maximization is

menu-independent, i.e., completely independent of the set of feasible choices (the

menu). Menu-independence implies IDA. In contrast, regret-based preferences

are menu-dependent, but since they conform to IDA, they are not compatible

with observed biases sensitive to dominated options [Ariely 2008]. While IDA

seems intuitively appealing, there is a great deal of empirical evidence that hu-

man preferences are indeed affected by dominated options in measurable and

sometimes profound ways.

5.2.2 The Decoy Effect in Decision Theory

Suppose you are offered $6 in cash, and the option of trading it for a Cross pen.

The pen is nice, but you have plenty of pens, so decide to keep the cash. Right

before you walk away, you are offered an alternative pen in exchange for the $6.

You see the new pen and find it hideous. A smile comes to your face as you turn

around and say, “you know, I’ll take that original Cross pen after all.”

This story dramatizes an actual experiment [Huber, Payne, and Puto 1982].

When the first choice was offered to 106 people, 64% took the cash, 36% took the

pen. When the second pen was added to the offer to 115 other subjects, 52% took

the cash, 46% took the Cross pen, and 2% took the decoy. Generally, a decoy is an

option that is designed to be inferior to another option in every way (i.e., it is a
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dominated option). Despite the intuitive appeal of IDA, the presence of a dom-

inated option drove selection of the Cross pen from 36% to 46%. In this chapter,

we focus on a particular class of decoy effect, called asymmetric dominance, which

occurs when the decoy is dominated by one existing alternative, but not by an-

other. Empirical studies show that the decoy is rarely chosen, but its addition to

a set of choices consistently drives DMs toward the dominating choice.

Numerous empirical studies have also shown decoy effects in class ac-

tion settlements [Zimmerman 2010], recreational land management [Bateman,

Munro, and Poe 2008], choice of healthcare plans and political candidates

[Hedgcock, Rao, and Chen 1999], purchase of consumer goods such as cam-

eras and personal computers [Simonson and Tversky 1992], restaurant choices

[Huber, Payne, and Puto 1982], and even romantic attraction [Ariely 2008]. Sur-

prisingly, a decoy effect can occur even if the decoy is not actually an option, but

merely a recent memory of an option (a phantom decoy [Farquhar and Pratka-

nis 1993; Doyle, O’Connor, Reynolds, and Bottomley 1999]). Furthermore, the

decoy effect is not limited to humans, but is also observed in honeybees and

grey jays [Shafir, Waite, and Smith 2002].

In an attempt to explain the decoy effect, experts in the behavioral sciences

have offered a variety of domain-specific analyses, including “perceptual fram-

ing” [Huber, Payne, and Puto 1982], “value-shift” [Wedell 1991], “extremeness

aversion” [Simonson and Tversky 1992], and “contrast bias” [Simonson and

Tversky 1992; Zimmerman 2010]. All of these explanations focus on valuing

the discrepancy between the decoy and the dominating alternative. Intuitively,

this provides a compelling example of preferring the margin of safety from the

worst outcome. As we are not aware of any formalization in decision theory
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Wet
Road

Dry
Road

Sprint 1 9
Hustle 3 6

Jog 2 2

Table 5.1: Hunters running from a bear.

that is consistent with the intuitive preference for “margin of safety”, we offer

one here.

To illustrate our new decision rule, recall the example of the unfortunate

duck hunters. As they run from the bear, they approach a blind curve and have

no idea what is around it: it could be wet or dry. If it is dry they will cover

the most ground if they try to run faster, however if it is wet (thus slippery)

they will be better off if they slow down and maintain balance. The options

and the distance traveled under each circumstance are summarized in Table 5.1.

In general, exerting excessive effort on a wet road leads to slipping and less

distance covered; exerting effort on a dry road leads to more distance covered.

If the probability of the road conditions is unknown, and only the first two

options are available (sprint and hustle), there is no intuitively preferred choice

and we may assume there are enough hunters such that at least one will pick

each option. However, if we add a new option, jog, something interesting hap-

pens. As jog is dominated by hustle, IDA requires that its availability should

not change the preferences among the other options. However, regardless of

whether the road is wet or dry, hustle is never the worst alternative: if the road

is wet, hustle (3) is faster than sprint (1), and if the road is dry, hustle (6) is faster

than jog (2). In either case, selecting hustle prevents the hunter from being the

slowest and getting caught by the bear.
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s1 Safari s2 World Cup
a1: Travel 4 4
a2: Sports 2 6
a3: Decoy 3 3

Table 5.2: Utilities in the camera purchase example.

While it may be callous, it seems perfectly reasonable for a hunter to decide

to run just fast enough to make sure there is someone behind him. In other

words, the most sensible decision might be to run just fast enough to guarantee

the maximum possible margin between himself and the slowest runner, in the

worst scenario. This margin between the hunter and his slowest compatriot can

be considered a measure of safety , which is at the heart of this chapter.

The rest of the chapter proceeds as follows. Section 5.3 provides a formaliza-

tion of the decoy paradox along with basic decision-theoretical notation. Sec-

tion 5.4 describes the relationship between minimax regret and maximin safety

and shows how maximin safety resolves the decoy paradox. Section 5.5 provide

an axiomatic characterization of maximin safety. Section 5.6 suggests a unifica-

tion of utility, regret, and safety using anchoring functions, and also considers a

generalization to qualitative relative preferences.

5.3 The Formal Framework

Just like regret, safety can depend on the menu. We will only consider finite

menus, from which randomized strategies can be chosen.

Consider the problem of a DM contemplating a camera purchase, summa-

rized in Table 5.2. The DM has a choice between buying a rugged travel camera
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(a1) that takes decent pictures in a wide variety of circumstances, and buying

a delicate sports camera with higher speed and image quality (a2). Each state

characterizes the possible situations that a purchaser may experience during

the useful life of the camera (Will the DM experience harsh conditions? Or win

tickets to the World Cup?) The utility U(a, s) of act a under state s represents an

abstract net value to the DM if the true world is state s.

If the DM ends up going on a safari (s1), then act a1 results in moderate

quality pictures of exciting wildlife (U(a1, s1) = 4), but act a2 results in a few

exquisite shots and many missed opportunities (U(a2, s1) = 2). On the other

hand, if the DM goes to the World Cup (s2), then act a2 results in many great

pictures in a safe environment (U(a2, s2) = 6), while act a1 provides only mod-

erate quality pictures (U(a1, s2) = 4).

If the DM can assign probabilities P (s1) and P (s2) to the states, she can cal-

culate an expected utility E[U(ai)] =
∑

s∈S P (s)U(ai, s), and simply select the

act that maximizes expected utility. However, if the state probabilities are un-

available, we have unquantified uncertainty. In such cases, the DM must find

another method for aggregating the utility of each act across states in order to

assign a value to each camera. Here we will focus on the methods of maximax

utility, minimax utility, and minimax regret. To understand minimax regret, we

need to define the notion of regret. For a menu M and act a ∈M , the regret of a

with respect to M and decision problem (S,X,U) is

max
s∈S

(max
a′∈M

U(a′, s)− U(a, s)).

We denote this as reg (S,X,U)
M (a), and usually omit the superscript (S,X,U).

When comparing decision rules, it is often convenient to define a value func-

tion that assigns a numeric value to each act, for the purpose of ranking the acts.
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Decision Rule Value of an act a Decision rule description Best
maximax utility V (a) = maxs∈S U(a, s) Optimize the best-case out-

come.
a2

maximin utility V (a) = mins∈S U(a, s) Optimize the worst-case out-
come.

a1

minimax regret V (a,M) = −regM(a) Pick an act to minimize the
worst-case distance from the
best outcome.

a1, a2

Table 5.3: Standard decision rules and most valued acts in the camera ex-
ample.

Formally, for a decision problem (S,X,U), a value function is a function

V (S,X,U)(a,M) : XS × 2A → R.

We will usually omit the superscript (S,X,U) and just write V (a,M), or V (a) if

the value function is menu-independent.

We say that the value function V represents the family of preference relations

�V,M , if for all menus M and all a, a′ ∈M ,

a �V,M a′ ⇔ V (a,M) > V (a′,M).

In other words, act a is (strictly) preferred to act a′ with respect to menu M if

and only if V (a,M) > V (a′,M). The value functions and preferences of several

standard decision rules are given in Table 5.3.

Now, perhaps the camera vendor would like to sell more travel cameras, so

the vender puts an obsolete travel camera a3 next to a1 as a decoy. Camera a3

has the same price as a1, but fewer features and lower picture quality. The ven-

dor hopes to make a1 more appealing by contrast with a3. Table 5.2 illustrates

the decision problem when a3 is added to the menu. The ranking between a1

and a2 according to each of the decision rules in Table 5.3 is unaffected by the
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introduction of a3 to the menu. The addition of a3 also illustrates the concept of

dominance. We say that an act a dominates a′, if for all s ∈ S, U(a, s) > U(a′, s).

5.4 Maximin Safety

While minimax regret seeks to minimize separation from best outcomes, max-

imin safety is a conceptual dual that seeks to maximize separation from the worst

outcomes. For a menu M and act a ∈M , the safety of a in state s is defined as:

safety
(S,X,U)
M (a, s) = U(a, s)− min

a′∈M
(U(a′, s)),

and in keeping with the convention for regret, the safety of an act is defined as:

safety
(S,X,U)
M (a) = min

s∈S
(safety

(S,X,U)
M (a, s)).

We will often omit the superscript (S,X,U).

The family of maximin safety preferences �saf ,M represented by the safety

value function satisfies, for all M and a, a′ ∈M ,

a �saf ,M a′ ⇔ safetyM(a) > safetyM(a′).

Utility Safety (no decoy) Safety (w. decoy)
s1 s2 s1 s2 s1 s2

a1: travel 4 4 2 0 2 1
a2: sports 2 6 0 2 0 3
a3: decoy 3 3 1 0

Table 5.4: Camera purchase with and without decoy.

Now we reconsider the camera example using safety (Table 5.4). Without the

decoy, both acts have the same safety of 0, since each act has the lowest utility
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Utility Regret Safety Optimal for
s1 s2 s1 s2 s1 s2

a1 1 9 3 0 0 5 maximax utility
a2 3 6 1 3 2 2 maximin safety
a3 2 7 2 2 1 3 minimax regret
a4 4 4 0 5 3 0 maximin utility

Table 5.5: Different decision rules select different acts for the same prob-
lem.

in some state; so there is no clear safety preference. However, when the decoy

is present, the act a1 never has the lowest utility at any state, and thus it has a

strictly positive safety. In this case, safety{a1,a2,a3}(a1) is the unique maximum

among the acts {a1, a2, a3}, and therefore a1 is the preferred choice. The relative

increase in the safety of an act due to the addition of the dominated act is an

essential element in solving the decoy paradox. Intuitively, this may correspond

to a sense that even if a particular act gets low utility in the realized state, the

DM may think that “I’m better off than the fools who bought the worse camera”,

or in a more positive light, “I must be getting a steal with this better camera

for the same price”. In competitive survival games (such as the reality game

show Survivor), the notion of maximizing safety may also embody a preference

to maintain a maximal distance from the lowest performer, which reduces the

chance of elimination. Table 5.5 compactly demonstrates how choices based on

maximin safety differs from the other standard decision rules.

In the camera example, the addition of a decoy created a strict preference

between two acts that were initially tied. The introduction of a dominated act

can actually reverse preferences between acts. Table 5.6 shows a menu of three

acts: M = {a1, a2, a3}. Act a2 has a minimum safety of 1, while both a1 and a3

have the lowest utility for some state, so each has minimum safety of 0. Con-

sequently, a2 is the most preferred choice under the safety preference. When a
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Utility Safety(no decoy) Safety (w. decoy a4)
s1 s2 s3 s1 s2 s3 s1 s2 s3

a1 9 2 6 5 0 0 8 0 0
a2 5 3 7 1 1 1 4 1 1
a3 4 8 8 0 6 2 3 6 2
a4 1 5 6 0 3 0

Table 5.6: Without a4, M = {a1, a2, a3}, and a2 �saf ,M a3. Adding a4 (dom-
inated by a3) reverses the maximin safety preference between a2

and a3.

new choice a4 is added, act a4 is dominated by a3, but it has higher utility than

the other acts in some states. This situation is known as asymmetric dominance,

which is typically associated with decoy effects. In this example, asymmetric

dominance guarantees that a3 is never one of the worst choices, and thus has

a strictly positive safety value. In other words, the addition of a4 to the menu

M does not affect the safety of a1 or a2, but increases the safety of a3 to make

a3 �saf ,M∪{a4} a2.

5.5 Axiomatic Analysis

To provide an axiomatic characterization of maximin safety, we employ the stan-

dard Anscombe-Aumann (AA) framework [Anscombe and Aumann 1963], where

outcomes are restricted to lotteries. Maximin safety is characterized by modify-

ing one of the axioms in an existing characterization of minimax regret provided

by Stoye [2011b].

Given a set Y of prizes, a lottery over Y is just a probability with finite support

on Y . As in the AA framework, we let the set of outcomes be ∆(Y ), the set of

all lotteries over Y . Thus, acts are functions from S to ∆(Y ). We can think of
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a lottery as modeling objective, quantified uncertainty, while the states model

unquantified uncertainty. The technical advantage of considering such a set of

outcomes is that we can consider convex combinations of acts. If f and g are

acts, define the act αf + (1 − α)g to be the act that maps a state s to the lottery

αf(s) + (1−α)g(s). For simplicity, we follow Stoye [Stoye 2011b] and restrict to

menus that are the convex hull of a finite number of acts, so that if f and g are

acts in M , then so is pf + (1− p)g for all p ∈ [0, 1].

In this setting, we assume that there is a utility function U on prizes in Y ,

and that there are at least two prizes y1 and y2 in Y , with different utilities. Note

that l(y) is the probability of getting prize y if lottery l is played. We will use l∗ to

denote a constant act that maps all states to l. The utility of a lottery l is just the

expected utility of the prizes obtained, that is, u(l) =
∑
{y∈Y : l(y)>0} l(y)U(y). The

expected utility of an act f with respect to a probability Pr is then just u(f) =∑
s∈S Pr(s)u(f(s)), as usual. Given a set Y of prizes, a utility U on the prizes,

and a state space S, we have a family �S,∆(Y ),u
saf ,M of preference orders on acts

determined by maximin safety, where u is the utility function on lotteries as

determined by U .2 For convenience, from here on we will write �S,Y,UM rather

than�S,∆(Y ),u
saf ,M . We will state the axioms in a way such that they can be compared

to standard axioms and those for minimax regret in [Stoye 2011b]. The axioms

are universally quantified over acts f , g, and h, menus M and M ′, and p ∈ (0, 1).

Whenever we write f �M g we assume that f, g ∈M .

Axiom 5.1. (Monotonicity) f �M g if (f(s))∗ �{(f(s))∗,(g(s))∗} (g(s))∗,∀s ∈ S .

Axiom 5.2. (Completeness) f �M g or g �M f .

Axiom 5.3. (Nontriviality) f �M g for some acts f and g and menu M .

2We let f �S,∆(Y ),u
saf ,M g iff g 6�S,∆(Y ),u

saf ,M f , and f ∼M g iff f �M g and g �M f .
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Axiom 5.4. (Mixture Continuity) If f �M g �M h, then there exists q, r ∈ (0, 1) such

that qf + (1− q)h �M g �M rf + (1− r)h.

Axiom 5.5. (Transitivity) f �M g �M h⇒ f �M h.

Menu-independent versions of Axioms 5.1 to 5.5 are standard in other ax-

iomatizations, and in particular hold for maximin utility. Axiom 5.3 is used in

the standard axiomatizations to get a nonconstant utility function in the repre-

sentation. While maximin safety does not satisfy menu-independence, it does

satisfy menu-independence when restricted to menus consisting of only con-

stant acts. This property is captured by the following axiom.

Axiom 5.6. (Menu independence for constant acts) If l∗ and (l′)∗ are constant acts,

then l∗ �M (l′)∗ iff l∗ �M ′ (l′)∗.

We also have a menu-dependent version of the von Neumann-Morgenstern

(VNM) Independence axiom. Like the VNM Independence axiom, Axiom 5.7

says that ranking between two acts does not change when both acts are mixed

with a third act; but unlike VNM Independence, the menu used to compare the

original acts in Axiom 5.7 is different from that used to compare the mixtures.

Axiom 5.7 holds for minimax regret and maximin safety, but not for maximin

utility.

Axiom 5.7. (Independence) f �M g ⇔ pf + (1− p)h �pM+(1−p)h pg + (1− p)h.

Axiom 5.8. (Symmetry) For a menu M , suppose that E,F ∈ 2S\{∅} are disjoint

events such that for all f ∈M , f is constant on E and on F . Define f ′ by

f ′(s) =


f(s′) for some s′ ∈ E, if s ∈ F

f(s′) for some s′ ∈ F , if s ∈ E

f(s) otherwise
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Let M ′ be the menu generated by replacing every act f ∈M with f ′. Then

f �M g ⇔ f ′ �M ′ g′

Symmetry, which is one of the characterizing axioms for minimax regret in

[Stoye 2011b], captures the intuition that no state can be considered more or less

likely than another. Therefore Symmetry helps distinguish the probability-free

decision rules maximin utility, minimax regret, and maximin safety, from their

probabilistic counterparts [Gilboa and Schmeidler 1989b; Stoye 2011a].

Axiom 5.9. (Ambiguity Aversion) f ∼M g ⇒ pf + (1− p)g �M g.

Axiom 5.9 says that the DM weakly prefers to hedge her bets. Axioms 1-5.9

are all part of the characterization in [Stoye 2011b] of minimax regret (which

consists of Axioms 1-5.9 and Symmetry). Axioms 1-5 and 5.9 are also sound for

the maximin decision rule [Stoye 2011b].

In [Stoye 2011b], one of the axioms characterizing minimax regret is Inde-

pendence of Never Strictly Optimal alternatives (INA), which states that adding

or removing acts that are not strictly potentially optimal in the menu does not

affect the ordering of acts. 3 By varying this INA axiom, we obtain a characteri-

zation for maximin safety. We say that an act a is never strictly worst relative to M

if, for all states s ∈ S, there is some a′ ∈M such that a(s) � a′(s).

Axiom 5.10. (Independence of Never Strictly Worst Alternatives (INWA)) If an act a

is never strictly worst relative to M , then f �M g iff f �M∪{a} g.

Although adding acts to the menu, in general, can affect minimax regret

preferences, INA implies the Independence of Dominated Alternatives property
3An act h is never strictly optimal relative to M if, for all states s ∈ S, there is some f ∈M such

that (f(s))∗ � (h(s))∗.
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that we used earlier when discussing the decoy effect. Thus, INA guarantees

that minimax regret can never be compatible with the decoy effect.

Theorem 5.5.1. For all Y, U, S, the family of maximin safety preference orders �S,Y,Usaf ,M

induced by a decision problem (S,∆(Y ), u) satisfies Axioms 5.1–5.10. Conversely, if

the family of preference orders �M on the acts in ∆(Y )S satisfies Axioms 5.1–5.10,

then there exists a utility function U on Y that determines a utility u on ∆(Y ) such

that �M=�S,Y,usaf ,M . Moreover, U is unique up to affine transformations.

Proof. The soundness of the axioms are straightforwardly verified, so we show

only the completeness of the axioms. We will use the same general sequence of

arguments that Stoye uses in [Stoye 2011b]. First, we establish a nonconstant

utility function U , where constant acts are ranked by their expected utilities.

Since we have the standard axioms (1− 5), we get U from standard arguments,

and it is unique up to affine transformations. Next, we observe the following

lemma:

Lemma 5.5.2. Suppose the family�M satisfies Axioms 1-10, and�M+ is representable

by maximin safety, where M+ is the menu of all acts with nonnegative utilities. Then

the family �M is representable by maximin safety.

Lemma 5.5.2 follows from an argument analogous to that for regret in [Stoye

2011b]. The next step is to establish that the axioms on �M restrict �M+ to

satisfy the axioms of ambiguity aversion, monotonicity, completeness, transi-

tivity, non-triviality, and symmetry. It is a straightforward verification that

will not be reproduced here. Theorem 1 (iii) of [Stoye 2011b] then implies

that �M+ is the maximin utility ordering. Next, let gM be an act such that

u ◦ gM(s) = −minh∈M u(h, s), so that we have
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f �M g ⇔ 1
2
f + 1

2
gM �M+

1
2
g + 1

2
gM

⇔ mins∈S u(1
2
f + 1

2
gM , s) ≥ mins∈S u(1

2
g + 1

2
gM , s)

⇔ min
s∈S

(
1

2
(u(f, s)−min

h∈M
u(h, s))) ≥ min

s∈S
(
1

2
(u(g, s)−min

h∈M
u(h, s))).

The characterizing axioms serve as a justification for maximin safety in the

sense that behaving as a safety maximizer is equivalent to accepting the axioms.

Axioms 1-7 are standard and broadly accepted to be reasonable, while symme-

try and ambiguity aversion are implied by both maximin utility and minimax

regret. Whether the INA axiom (for regret) or the INWA axiom (for safety) is

more reasonable would depend on the individual and the nature of the deci-

sion problem. Thus, we believe that the reasonableness of the maximin safety

decision rule is comparable to that of minimax regret.

Individual necessity of the axioms can be established, as is commonly done

[Hayashi 2008b; Stoye 2011b], by giving examples of preferences that satisfy all

the axioms except for the one whose necessity is being shown. For the axioms

shared with minimax regret, the same examples found in [Stoye 2011b] shows

their individual necessity. For the INWA axiom, the required example is mini-

max regret. Indeed, a decision rule equivalent to maximin safety was used by

Hayashi [Hayashi 2008b] as an example to justify minimax regret’s entailment

of INA.

Clearly, just as minimax regret is readily generalized to minimax expected re-

gret when uncertainty is represented by a set of probability distributions over

the state space, maximin safety can be readily extended to maximin expected

safety in the same manner. As one would expect, given an axiomatization of
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minimax expected regret [Stoye 2011a], the modification of the INA axiom to

INWA results in an axiomatization for maximin expected safety.

5.6 Discussion, Generalizations, and Future Work

Both minimax regret and maximin safety embody preferences based on relative,

rather than absolute utility. In Table 5.5, the act preferred by safety has a lower

minimum utility than the act preferred by maximin utility, just as the act picked

by minimax regret neglects a higher maximum utility in order to minimize the

margin to each state’s maximum utility. The shared preference for relative over

absolute performance is reflected in a striking similarity in the structure of the

value functions for regret and safety. In comparison, minimax regret can be

expressed for all acts a, b as:

a �reg,M b iff min
s∈S

(U(a, s)−max
a′∈M

U(a′, s)) > min
s∈S

(U(b, s)−max
a′∈M

U(a′, s)).

Similarly, maximin safety is represented for all acts a, b as

a �saf ,M b iff min
s∈S

(U(a, s)− min
a′∈M

U(a′, s)) > min
s∈S

(U(b, s)− min
a′∈M

U(a′, s)).

The structural resemblance suggests a common form for the value function. By

defining a menu-dependent anchoring function t : S × 2A → R, we can represent

several previously discussed value functions as:

Vt(a,M) = mins∈S U
′(a, s,M, t),

where U ′(a, s,M, t) = U(a, s)− t(s,M) can be viewed as an anchored effective util-

ity. One can see that Vt represents maximin utility if t(s,M) = 0; minimax regret

if t(s,M) = maxa′∈M U(a′, s); and maximin safety if t(s,M) = mina′∈M U(a′, s).

104



Note that by varying just the anchoring function t, we can obtain all the men-

tioned decision rules, and more. While we focus only on maximin safety in

this chapter, other forms for t(s,M) maximize the positive margin from a state-

dependent average, median, or some other characteristic of interest to a DM. For

example, college students might seek to conservatively maximize their margin

above a desired quantile, in order to achieve a particular grade.

The present work is motivated by behavioral observations of the decoy ef-

fect that are typically described in empirical quantities such as distance, price

and volume, and thus is most intuitive in a quantitative framework. However,

the key observation is that safety, like regret, is a notion of relative performance

with respect to a set of outcomes, rather than absolute performance. As absolute

quantitative utility U : X → R can be generalized to a qualitative framework by

replacing the U with a mapping X → L for some ordered set L, relative utility

may be made qualitative by considering the mapping with 2X ×X → L. In the

case of safety and regret, the particular element of 2X is the set of all possible

outcomes in a state, given a menu of acts. Aggregation ofN state-specific order-

ings into an ordering over acts can be accomplished by an aggregation function

M : LN → L [Marichal 2001]. This generalization can be readily applied to

various characterizations of uncertainty, including probability, plausibility, and

the strict uncertainty used in this chapter [Larbi, Konieczny, and Marquis 2010].

While the authors expect that the present quantitative axiomatization can be

adapted to a qualitative framework (see, e.g. [Dubois, Fargier, and Perny 2003]),

it is beyond the scope of the current chapter.

105



CHAPTER 6

CONCLUSION

We studied regret-minimization and maxmin expected utility when beliefs are

represented by a set of weighted probability distributions. We find that us-

ing weighted probability distributions with these decision rules result in well-

behaved generalizations of their multiple-prior counterparts. In both cases, al-

lowing for weights on the probability distributions result in the weakening of

the axioms characterizing the decisions (i.e., an axiom is dropped). For regret,

we also consider the extension of MWER and likelihood updating to dynamic

decision problems, and find that both measure-by-measure updating, as well

as likelihood updating, can be made dynamically consistent by imposing re-

strictions on what sets of distributions or weighted distributions are allowed

as beliefs. Finally, we study and axiomatize safety-maximization, the “duo” of

regret-minimization.
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APPENDIX A

PROOFS FOR CHAPTER 2

A.1 Proof of Lemma 2.5.2

A.1.1 Defining a functional on utility acts

Stoye [2011a] also started his proof of a representation theorem for MER by re-

ducing to a single preference order�M∗ . He then noted that, the expected regret

of an act f with respect to a probability Pr and menu M∗ is just the negative of

the expected utility of f . Thus, the worst-case expected regret of f with respect

to a set P of probability measures is the negative of the worst-case expected util-

ity of f with respect to P . Thus, it sufficed for Stoye to show that �M∗ had an

MMEU representation, which he did by showing that �M∗ satisfied Gilboa and

Schmeidler’s [1989a] axioms for MMEU, and then appealing to their represen-

tation theorem.

This argument does not quite work for us, because now � does not satisfy

the C-independence axiom. (This is because our preference order is based on

weighted regret, not regret.) However, we can get a representation theorem for

weighted regret by using some of the techniques used by Gilboa and Schmei-

dler to get a representation theorem for MMEU, appropriately modified to deal

with lack of C-independence. Specifically, like Gilboa and Schmeidler, we de-

fine a functional I on utility acts such that the preference order on utility acts is

determined by their value according to I (see Lemma B.3.4). Using I , we can

then determine the weight of each probability in ∆(S), and prove the desired
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representation theorem.

By standard results, u represents � on constant acts, and � depends only

on the utility achieved in each state (as opposed to the actual outcomes) of the

acts. The space of all utility acts is the Banach space B of real-valued functions

on S. Let B− be the set of nonpositive functions in B, where the function b is

nonpositive if b(s) ≤ 0 for all s ∈ S.

We now define a functional I on utility acts in B− such that for all f, g with

bf , bg ∈ B−, we have I(bf ) ≥ I(bg) iff f � g. Let

Rf = {α′ : l∗α′ � f}.

If 0∗ ≥ b ≥ (−1)∗, then fb exists, and we define

I(b) = inf(Rfb).

For the remaining b ∈ B−, we extend I by homogeneity. Let ||b|| = |mins∈S b(s)|.

Note that if b ∈ B−, then 0∗ ≥ b/||b|| ≥ (−1)∗, so we define

I(b) = ||b||I(b/||b||).

Lemma A.1.1. If bf ∈ B−, then f ∼ l∗I(bf ).

Proof. Suppose that bf ∈ B− and, by way of contradiction, that l∗I(bf ) ≺ f . If

f ∼ l∗0, then it must be the case that I(bf ) = 0, since I(bf ) ≤ 0 by definition of

inf, and f ∼ l∗0 � l∗ε for all ε < 0 by Lemma A.2.3, so I(bf ) > ε for all ε < 0.

Therefore, f ∼ l∗I(bf ). Otherwise, since bf ∈ B−, by monotonicity, we must have

l∗0 � f , and thus l∗0 � f � l∗I(bf ). By mixture continuity, there is some q ∈ (0, 1)

such that q · l∗0 + (1− q) · l∗I(bf ) ∼ l(1−q)I(bf ) ≺ f , contradicting the fact that I(b) is

the greatest lower bound of Rf .
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If, on the other hand, l∗I(bf ) � f , then l∗I(bf ) � f � l∗c for some c ∈ R. If f ∼ l∗c

then it must be the case that I(bf ) = c. I(bf ) ≤ c since l∗c � l∗c , and I(bf ) ≥ c since

for all c′ < c, l∗c′ ≺ f ∼ l∗c .

Otherwise, l∗I(bf ) � f � l∗c , and by mixture continuity, there is some q ∈ (0, 1)

such that q · l∗I(bf ) + (1− q)l∗c � f . Since qI(bf ) + (1− q)c < I(bf ), this contradicts

the fact that I(bf ) is a lower bound of Rf . Therefore, it must be the case that

l∗I(bf ) ∼ f .

We can now show that I has the required property.

Lemma A.1.2. For all acts f, g such that bf , bg ∈ B−, f � g iff I(bf ) ≥ I(bg).

Proof. Suppose that bf , bg ∈ B−. By Lemma B.3.3, l∗I(bf ) ∼ f and g ∼ l∗I(bg). Thus,

f � g iff l∗I(bf ) � l∗I(bg), and by Lemma A.2.3, l∗I(bf ) � l∗I(bg) iff I(bf ) ≥ I(bg).

In order to invoke a standard separation result for Banach spaces, we extend

the definition of I to the Banach space B. We extend I to B by taking I(b) = I(b−)

for b ∈ B − B−, where for all b ∈ B, b− is defined as

b−(s) =


b(s), if b(s) ≤ 0,

0, if b(s) > 0.

Clearly b− ∈ B− and b = b− if b ∈ B−.

We show that the axioms guarantee that I has a number of standard prop-

erties. Since we have artificially extended I to B, our arguments require more

cases than those in [1989a]. (We remark that such an “artificial” extension seem

unavoidable in our setting.) Moreover, we must work harder to get the result

that we want. We need different arguments from that for MMEU [1989a], since
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the preference order induced by MMEU satisfies C-independence, while our

preference order does not.

Lemma A.1.3. (a) If c ≤ 0, then I(c∗) = c.

(b) I satisfies positive homogeneity: if b ∈ B and c > 0, then I(cb) = cI(b).

(c) I is monotonic: if b, b′ ∈ B and b ≥ b′, then I(b) ≥ I(b′).

(d) I is continuous: if b, b1, b2, . . . ∈ B, and bn → b, then I(bn)→ I(b).

(e) I is superadditive: if b, b′ ∈ B, then I(b+ b′) ≥ I(b) + I(b′).

Proof. For part (a), If c is in the range of u, then it is immediate from the defini-

tion of I and Lemma A.2.3 that I(c∗) = c. If c is not in the range of u, then since

[−1, 0] is a subset of the range of u, we must have c < −1, and by definition of I ,

we have I(c∗) = |c|I(c∗/|c|) = c.

For part (b), first suppose that ||b|| ≤ 1 and b ∈ B− (i.e., 0∗ ≥ b ≥ (−1)∗). Then

there exists an act f such that bf = b. By Lemma B.3.3, f ∼ l∗I(b). We now need

to consider the case that c ≤ 1 and c > 1 separately. If c ≤ 1, by Independence,

cfb+(1− c)l∗0 ∼ cl∗I(b) +(1− c)l∗0. By Lemma B.3.4, I(bcfb+(1−c)l∗0) = I(bcl∗
I(b)

+(1−c)l∗0).

It is easy to check that bcfb+(1−c)l∗0 = cb, and bcl∗
I(b)

+ (1 − c)l∗0 = cI(b)∗. Thus,

I(cb) = I(cI(b)∗). By part (a), I(cI(b)∗) = cI(b). Thus, I(cb) = cI(b), as desired.

If c > 1, there are two subcases. If ||cb|| ≤ 1, since 1/c < 1, by what we have

just shown I(b) = I(1
c
(cb)) = 1

c
I(cb). Crossmultiplying, we have that I(cb) =

cI(b), as desired. And if ||cb|| > 1, by definition, I(cb) = ||cb||I(bc/||cb||) =

c||b||I(b/||b||) (since bc/||cb|| = b/||b||). Since ||b|| ≤ 1, by what we have shows

I(b) = I(||b||(b/||b||) = ||b||I(b/||b||), so I(b/||b||) = 1
||b||I(b). Again, it follows that

I(cb) = cI(b).
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Now suppose that ||b|| > 1. Then I(b) = ||b||I(b/||b||). Again, we have two

subcases. If ||cb|| > 1, then

I(cb) = ||cb||I(cb/||cb||) = c||b||I(b/||b||) = cI(b).

And if ||cb|| ≤ 1, by what we have shown for the case ||b|| ≤ 1,

I(b) = I(
1

c
(cb)) =

1

c
I(cb),

so again I(cb) = cI(b).

For part (c), first note that if b, b′ ∈ B−. If ||b|| ≤ 1 and ||b′|| ≤ 1, then the acts

fb and fb′ exist. Moreover, since b ≥ b′, we must have (fb(s))
∗ � (fb′)

∗(s) for all

states s ∈ S. Thus, by Monotonicity, fb � fb′ . If either ||b|| > 1 or ||b′|| > 1, let

n = max(||b||, ||b′||). Then ||b/n|| ≤ 1 and ||b′/n|| ≤ 1. Thus, I(b/n) ≥ I(b′/n), by

what we have just shown. By part (b), I(b) ≥ I(b′). Finally, if either b ∈ B − B−

or b′ ∈ B − B−, note that if b ≥ b′, then b− ≥ (b′)−. By definition, I(b) = I(b−)

and I(b′) = I(b′)−; moreover, b−, (b′)− ∈ B−. Thus, by the argument above,

I(b) ≥ I(b−).

For part (d), note that if bn → b, then for all k, there exists nk such that

bn − (1/k)∗ ≤ bn ≤ bn + (1/k)∗ for all n ≥ nk. Moreover, by the monotonicity of

I (part (c)), we have that I(b − (1/k)∗) ≤ I(bn) ≤ I(b + (1/k)∗). Thus, it suffices

to show that I(b− (1/k)∗)→ I(b) and that I(b+ (1/k)∗)→ I(b).

To show that I(b − (1/k)∗) → I(b), we must show that for all ε > 0, there

exists k such that I(b − (1/k)∗) ≥ I(b) − ε. By positive homogeneity (part (b)),

we can assume without loss of generality that ||b− (1/2)∗|| ≤ 1 and that ||b|| ≤ 1.

Fix ε > 0. If I(b − (1/2)∗) ≥ I(b) − ε, then we are done. If not, then I(b) >

I(b)− ε > I(b− (1/2)∗). Since ||b|| ≤ 1 and ||b− (1/2)∗|| ≤ 1, fb and fb−(1/2)∗ exist.

Moreover, by Lemma B.3.4, fb � f(I(b)−ε)∗ � fb−(1/2)∗ . By mixture continuity, for
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some p ∈ (0, 1), we have pfb + (1 − p)f(b−(1/2)∗ � f(I(b)−ε)∗ . It is easy to check

that bpfb+(1−p)fb−(1/2)∗ = b − (1 − p)(1/2)∗. Thus, by Lemma B.3.4, fb−(1−p)(1/2)∗ �

f(I(b)−ε)∗ , and I(b−(1−p)1/2)∗) > I(b)−ε. Choose k such that 1/k < (1−p)(1/2).

Then

I(b− (1/k)∗) ≥ I(b− (1− p)1/2)∗) > I(b)− ε,

as desired.

The argument that I(b+ (1/k)∗)→ I(b) is similar and left to the reader.

For part (e), first suppose that b, b′ ∈ B−. If ||b||, ||b−|| ≤ 1, and I(b), I(b′) 6= 0,

consider b
−I(b) and b′

−I(b′) . Since I( b
−I(b)) = I( b′

−I(b′)) = −1, it follows from

Lemma B.3.3 that f b
−I(b)

∼ f b′
−I(b′)

. By ambiguity aversion, for all p ∈ (0, 1],

pf b
−I(b)

+ (1 − p)f b′
−I(b′)

� f b
−I(b)

. Taking p = I(b)/(I(b) + I(b′)), we have that

(I(b)/(I(b) + I(b′))fb/I(b) + (I(b′)/(I(b) + I(b′))fb′/I(b′) � fb/I(b). Therefore, we

have

I

( −I(b)

−I(b)− I(b′)

b

−I(b)
+

−I(b′)

−I(b)− I(b′)

b′

−I(b′)

)
≥ I(

b

−I(b)
) = −1.

Simplifying, we have

I

( −1

I(b) + I(b′)
b+

−1

I(b) + I(b′)
b′
)
≥ −1,

which, together with positive homogeneity of I (part (b)), implies I(b + b′) ≥

I(b) + I(b′), as required.

If b, b− ∈ B− and either ||b|| > 1 or ||b′|| > 1, and both I(b) 6= 0 and I(b′) 6= 0,

then the result easily follows by positive homogeneity (property (b)).

If b, b− ∈ B− and either I(b) = 0 or I(b′) = 0, let bn = b− 1
n

∗ and b′n = b′ − 1
n

∗.

Clearly ||bn|| > 0, ||b′n|| > 0, bn → b, and b′n → b′n. By our argument above,

I(bn + b′n) ≥ I(bn) + I(b′n) for all n ≥ 1. The result now follows from continuity.
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Finally, if either b ∈ B − B− or b′ ∈ B − B−, observe that

(b+ b′)−(s)



= b−(s) + b′−(s), if b(s) ≤ 0, b′(s) ≤ 0

= b−(s) + b′−(s), if b(s) ≥ 0, b′(s) ≥ 0

≥ b−(s) + b′−(s), if b(s) > 0, b′(s) ≤ 0

≥ b−(s) + b′−(s), if b(s) ≤ 0, b′(s) > 0.

Therefore, (b+ b′)− ≥ b− + b′−. Thus, I(b+ b′) = I((b+ b′)−) ≥ I(b− + b′−) by the

monotonicity of I , and I(b− + b′−) ≥ I(b−) + I(b′−) by superadditivity of I on

B−. Therefore, I(b+ b′) ≥ I(b) + I(b′).

A.1.2 Defining the weights

In this section, we use I to define a weight αPr for each probability Pr ∈ ∆(S).

The heart of the proof involves showing that the resulting set P+ so determined

gives us the desired representation.

Given a set P+ of weighted probability measures, for b ∈ B−, define

NWREG(b) = inf
Pr∈P

αPr(
∑
s∈S

b(s) Pr(s)).

Note that NWREG is the negative of the weighted regret when the menu is B−.

Define

NREG(b) = inf
Pr∈P

∑
s∈S

b(s) Pr(s).

and

NREGPr(b) =
∑
s∈S

b(s) Pr(s) = EPrb.

For each probability Pr ∈ ∆(S), define

αPr = sup{α ∈ R : αNREGPr(b) ≥ I(b) for all b ∈ B−}. (A.1)
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Note that αPr ≥ 0 for all distributions Pr ∈ ∆(S), since 0 ≥ I(b) for b ∈ B−

(by monotonicity); and αPr ≤ 1, since NREGPr((−1)∗) = I((−1)∗) = −1 for all

distributions Pr. Thus, αPr ∈ [0, 1]. Moreover, it is immediate from the definition

of αPr that αPrNREGPr(b) ≥ I(b) for all b ∈ B−. The next lemma shows that there

exists a probability Pr where we have equality.

Lemma A.1.4. (a) For some distribution Pr, we have αPr = 1.

(b) For all b ∈ B−, there exists Pr such that αPrNREGPr(b) = I(b).

Proof. The proofs of both part (a) and (b) use a standard separation result: If U

is an open convex subset of B, and b /∈ U , then there is a linear functional λ that

separates U from b, that is, λ(b′) > λ(b) for all b′ ∈ U . We proceed as follows

For part (a), we must show that for some Pr, for all b ∈ B−, NREGPr(b) ≥

I(b). Since NREGPr(b) = EPrb, it suffices to show that EPr(b) ≥ I(b) for all

b ∈ B−.

Let U = {b′ ∈ B : I(b′) > −1}. U is open (by continuity of I), and convex

(by positive homogeneity and superadditivity of I), and (−1)∗ /∈ U . Thus, there

exists a linear functional λ such that λ(b′) > λ((−1)∗) for b′ ∈ U . We want to

show that λ is a positive linear functional, that is, that λ(b) ≥ 0 if b ≥ 0∗. Since

0∗ ∈ U , and λ(0∗) = 0, it follows that λ((−1)∗) < 0. Since λ is linear, we can

assume without loss of generality that λ((−1)∗) = −1. Thus, for all b′ ∈ B−,

I(b′) > −1 implies λ(b′) > −1. Suppose that c > 0 and b′ ≥ 0∗. From the

definition of I , it follows that I(cb′) = I(0∗) = 0 > −1. So cλ(b′) = λ(cb′) > −1,

so λ(b′) > −1/c. (The fact that I(cb′) = I(0∗) follows from the definition of I

on elements in B − B−.) Since this is true for all c > 0, it must be the case that

λ(b′) ≥ 0. Thus, λ is a positive functional.
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Define the probability distribution Pr on S by taking Pr(s) = λ(1s). To see

that Pr is indeed a probability distribution, note that since 1s ≥ 0 and λ is pos-

itive, we must have λ(1s) ≥ 0. Moreover,
∑

s∈S Pr(s) = λ(1∗) = 1. In addition,

for all b′ ∈ B, we have

λ(b′) =
∑
s∈S

λ(1s)b
′(s) =

∑
s∈S

Pr(s)b′(s) = EPr(b
′).

Next note that, for b ∈ B−,

for all c < 0, if I(b) > c, then λ(b) > c. (A.2)

For if I(b) > c, then I(b/|c|) > −1 by positive homogeneity, so λ(b/|c|) > −1

and λ(b) > c. The result now follows. For if b ∈ B−, then I(b) ≤ I(0∗) = 0 by

monotonicity. Thus, if c < I(b), then c < 0, so, by (A.2), λ(b) > c. Since λ(b) > c

whenever I(b) > c, it follows that EPr(b) = λ(b) ≥ I(b), as desired.

The proof of part (b) is similar to that of part (a). We want to show that,

given b ∈ B−, there exists Pr such that αPrNREGPr(b) = I(b). First suppose

that ||b|| ≤ 1. If I(b) = 0, then there must exist some s such that b(s) = 0, for

otherwise there exists c < 0 such that b ≤ c∗, so I(b) ≤ c. If b(s) = 0, let Prs be

such that Prs(s) = 1. Then NREGPrs(b) = 0, so (b) holds in this case.

If ||b|| ≤ 1 and I(b) < 0, let U = {b′ : I(b′) > I(b)}. Again, U is open and

convex, and b /∈ U , so there exists a linear functional λ such that λ(b′) > λ(b) for

b′ ∈ U . Since 0∗ ∈ U and λ(0∗) = 0, we must have λ(b) < 0. Since (−1)∗ ≤ b,

(−1)∗ is not in U , and therefore we also have λ((−1)∗) < 0. Thus, we can assume

without loss of generality that λ((−1)∗) = −1, and hence λ((1)∗) = 1. The

same argument as above shows that λ is positive: for all c > 0 and b′ ≥ 0∗,

I(cb′) = 0 as before. Since I(b) < 0, it follows that I(cb′) > I(b), so cb′ ∈ U and
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λ(cb′) > λ(b) ≥ λ((−1)∗) = −1. Thus, as before, for all c > 0, b′ ≥ 0∗, λ(b′) > −1
c

,

so λ is a positive functional.

Therefore, λ determines a probability distribution Pr such that, for all b′ ∈

B−, we have λ(b′) = EPr(b
′). This, of course, will turn out to be the desired

distribution. To show this, we need to show that αPr = I(b)/NREGPr(b). Clearly

αPr ≤ I(b)/NREGPr(b), since if α > I(b)/NREGPr(b), then αNREGPr(b) < I(b)

(since NREGPr(b) = λ(b) < 0). To show that αPr ≥ I(b)/NREGPrb, we must

show that (I(b)/NREGPr(b))NREGPr(b
′) ≥ I(b′) for all b′ ∈ B−. Equivalently, we

must show that I(b)λ(b′)/λ(b) ≥ I(b′) for all b′ ∈ B−.

Essentially the same argument used to prove (A.2) also shows

for all c > 0, if I(b′) > cI(b), then λ(b′) > cλ(b).

In particular, if I(b′) > cI(b), then by positive homogeneity, I(b′)
c

> I(b), so

b′

c
∈ U , and λ( b

′

c
) > λ(b) and hence λ(b′) > cλ(b).

Thus, if I(b′)/(−I(b)) > c and c < 0, then I(b′) > −cI(b), and hence

λ(b′)/(−λ(b)) > c. It follows that λ(b′)/(−λ(b)) ≥ I(b′)/(−I(b)) for all b′ ∈ B−.

Thus, I(b)λ(b′)/λ(b) ≥ I(b′) for all b′ ∈ B−, as required.

Finally, if ||b|| > 1, let b′ = b/||b||. By the argument above, there ex-

ists a probability measure Pr such that αPrNREGPr(b/||b||) = I(b/||b||). Since

NREGPr(b/||b||) = NREGPr(b)/||b||, and I(b/||b||) = I(b)/||b||, we must have that

αPrNREGPr(b) = I(b).

We can now complete the proof of Lemma 2.5.2. By Lemma B.3.6 and the
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definition of αPr, for all b ∈ B−,

I(b) = inf
Pr∈∆(S)

αPrNREG(b) (A.3)

= inf
Pr∈∆(S)

(
αPr

∑
s∈S

b(s) Pr(s)

)

= sup
Pr∈∆(S)

(
−αPr

∑
s∈S

b(s) Pr(s)

)
.

Recall that, by Lemma B.3.4, for all acts f, g such that bf , bg ∈ B−, f � g iff

I(bf ) ≥ I(bg). Thus, f � g iff

sup
Pr∈∆(S)

(
−αPr

∑
s∈S

u(f(s)) Pr(s)

)
≤ sup

Pr∈∆(S)

(
−αPr

∑
s∈S

u(g(s)) Pr(s)

)
.

Note that, for f ∈ M∗ = B−, we have regM∗,Pr(f) = sup(−u(f(s)) Pr(s), since 0∗

dominates all acts in M∗. Thus, �=�S,Y,UM∗,P+ , where P+ = {(Pr, αPr : Pr ∈ ∆(S)}.

We have already observed that U is unique up to affine transformations,

so it remains to show that P+ is maximal. This follows from the definition of

αPr. If �M=�S,Y,UM,(P ′)+ , and (α′,Pr) ∈ (P ′)+, then we claim that α′ ∈ {α ∈ R :

αNREGPr(b) ≥ I(b) for all b ∈ B−}. If not, there would be some b ∈ B− with

||b|| ≤ 1
2
, such that α′NREGPr(b) < I(b), which, by the definition of ≺S,Y,UM∗,(P ′)∗ ,

means that l∗−1 ≺S,Y,UM∗,(P ′)+ fb ≺S,Y,UM∗,(P ′)+ l∗I(b). Recall that I(bf ) = inf{γ : l∗γ �M∗

f}. Moreover, since ≺S,Y,UM∗,(P ′)+ satisfies mixture continuity, there exists some

p ∈ (0, 1) such that fb ≺S,Y,UM∗,(P ′)+ pl∗−1 + (1 − p)l∗I(b) ≺S,Y,UM∗,(P ′)+≺
S,Y,U
M∗,(P ′)+ l∗I(b). This

contradicts the definition of I(b). Therefore, α′ ∈ {α ∈ R : αNREGPr(b) ≥

I(b) for all b ∈ B−}, and hence α′ ≤ αPr.
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A.1.3 Uniqueness of Representation

In this section, we show that the canonical set of weighted probabilities we con-

structed, when viewed as a set of subnormal probability measures, is regular

and includes at least one proper probability measure. Moreover, this set of sub-

probability measures is the only regular set that induces the preference order

� on nonpositive acts. Our uniqueness result is analogous to the uniqueness

results of Gilboa and Schmeidler [1989b], who show that the convex, closed,

and non-empty set of probability measures in their representation theorem for

MMEU is unique. The argument is based on two lemmas: Lemma A.1.5 says

that the canonical set of sub-probability measures is regular; and Lemma A.1.6

says that a set of sub-probability measures representing� over nonpositive acts

that is regular and contains at least one proper probability measure is unique.

The proof of this second lemma, like the proof of uniqueness in Gilboa and

Schmeidler [1989b], uses a separating hyperplane theorem to show the exis-

tence of acts on which two different representations must ‘disagree’. However,

a slightly different argument is required in our case, since our acts must have

utilities corresponding to nonpositive vectors in R|S|.

Lemma A.1.5. Let P+ be the canonical set of weighted probability measures represent-

ing �. The set C(P+) of sub-probability measures is regular.

Proof. It is useful to note that, by definition, p ∈ C(P+) if and only if

Ep(b) ≥ I(b) for all b ∈ B−

(where expectation with respect to a subnormal probability measure is defined

in the obvious way).
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Recall that a set is regular if it is convex, closed, and downward-closed. We

first show that C(P+) is downward-closed. Suppose that p ∈ C(P+) and q ≤ p

(i.e., q(s) ≤ αPr(s) for all s ∈ S. Since p ∈ C(P+), Ep(b) ≥ I(b) for all b ∈ B−.

Since q ≤ p and, if b ∈ B−, we have b ≤ 0∗, it follows that Eq(b) ≥ Ep(b) ≥ I(b)

for all b ∈ B−, and thus q ∈ C(P+).

To see that C(P+) is closed, let p = limn→∞ pn, where each pn ∈ C(P+).

Since pn ∈ C(P+) it must be the case that Epn(b) ≥ I(b) for all b ∈ B−. By

the continuity of expectation, it follows that Ep(b) ≥ I(b) for all b ∈ B−. Thus,

p ∈ C(P+).

To show that C(P+) is convex, suppose that p,q ∈ C(P+). Then Ep(b) ≥

I(b) and Eq(b) ≥ I(b) for all b ∈ B−. It easily follows that for all a ∈ (0, 1),

Eap+(1−a)q(b) ≥ I(b) for all b ∈ B−. Thus, ap + (1− a)q ∈ C(P+).

Lemma A.1.6. A set of sub-probability measures representing � over nonpositive acts

that is regular, and has at least one proper probability measure is unique.

Proof. Suppose for contradiction that there exists two regular sets of subnor-

mal probability distributions, C1 and C2, that represent � and have at least one

proper probability measure.

First, without loss of generality, let q ∈ C2\C1. We actually look at an exten-

sion of C1 that is downward-closed in each component to −∞. Let C1 = {p ∈

R|S| : p ≤ p′}. Note an element p of C1 may not be subnormal probability mea-

sures; we do not require that p(s) ≥ 0 for all s ∈ S. Since C1 and {q} are closed,

convex, and disjoint, and {q} is compact, the separating hyperplane theorem

[1970] says that there exists θ ∈ R|S| and c ∈ R such that

θ · p > c for all p ∈ C1, and θ · q < c. (A.4)

119



By scaling c appropriately, we can assume that |θ(s)| ≤ 1 for all s ∈ S. Now we

argue that it must be the case that θ(s) ≤ 0 for all s ∈ S (so that θ corresponds to

the utility profile of some act with nonpositive utilities). Suppose that θ(s′) > 0

for some s′ ∈ S. By (C.4), θ · p > c for all p ∈ C1. However, consider p∗ ∈ C1

defined by

p∗(s) =


0, if s 6= s′

−|c|
θ(s)

, if s = s′.

Clearly, θ · p∗ ≤ c, contradicting (C.4). Thus it must be the case that θ(s) ≤ 0 for

all s ∈ S.

Consider the θ given by the separating hyperplane theorem, and let f be an

act such that u ◦ f = θ. By continuity, f ∼ l∗d for some constant act l∗d. Since

C1 and C2 both represent �, and C1 and C2 both contain a proper probability

measure,

min
p∈C1

p · (u ◦ f) = min
p∈C1

p · (u ◦ l∗d) = d = min
p∈C2

p · (u ◦ f).

However, by (C.4),

min
p∈C1

p · (u ◦ f) > c > min
p∈C2

p · (u ◦ f),

which is a contradiction.

A.2 An Axiomatic characterization of MWER with Preference

Relations

We consider an axiomatization based on primitive preference orders �M in-

dexed by menus. (Because regret is menu-dependent, we cannot consider a
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single preference order �.) As Stoye [2011b] points out, one disadvantage of

considering such preference orders is that they are not observable. For exam-

ple, suppose that f1 �M f2 �M f3. By presenting the menu M = {f1, f2, f3}

to the DM, we can observe that he prefers f1. But there is no way to observe

that f2 �M f3. The traditional approach (seeing which of f2 and f3 the DM

prefers when presented with the menu M ′ = {f2, f3}) will not work, because

the DM’s preferences with menu M ′ may be different from those with menu M .

(Bleichrodt [?] studies a similar problem.)

In Section 2.5, we provided a characterization of MWER with choice func-

tions as the primitives. Despite the fact that a regret-based preference order is

not observable, an axiomatization using menu-dependent preference orders al-

lows us to compare the axioms for weighted regret to those for other decision

rules.

We state the axioms in a way that lets us clearly distinguish the axioms for

SEU, MMEU, MER, and MWER. The axioms are universally quantified over acts

f , g, and h, menus M and M ′, and p ∈ (0, 1). We assume that f, g ∈M when we

write f �M g.1 We use l∗ to denote a constant act that maps all states to l.

Axiom A.1. (Transitivity) f �M g �M h⇒ f �M h.

Axiom A.2. (Completeness) f �M g or g �M f .

LetMB denote the set of all menus that are bounded above; that is,MB =

{M : supg∈M u(g(s))is finite}.
1Stoye [2011b] assumed that menus were convex, so that if f, g ∈M , then so is pf + (1− p)g.

We do not make this assumption, although our results would still hold if we did (with the
axioms slightly modified to ensure that menus are convex). While it may seem reasonable to
think that, if f and g are feasible for an DM, then so is pf + (1 − p)g, this not always the case.
For example, it may be difficult for the DM to randomize, or it may be infeasible for the DM to
randomize with probability p for some choices of p (e.g., for p irrational).
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Axiom A.3. (Nontriviality) f �M g for some acts f and g and menu M ∈MB.

Up to now, we have taken the set of menus to be MB. This assumption is

necessary (and sufficient) for regret to be well defined. Later, we use Axiom A.3

in the context of different classes of menus. In particular, we are interested in

the set of finite menus and the set of finitely generated convex menus, that is, the

menus M such such that there is a finite set AM of acts such that M consists of

all the convex combinations of acts in AM . We denote these setsMF andMC ,

respectively. When we use Axiom A.3 in such contexts, MB in Axiom A.3 is

understood to be replaced by MC and MF , respectively. Observe that MC ⊆

MB andMF ⊆MB.

Axiom A.4. (Monotonicity) If (f(s))∗ �{(f(s))∗,(g(s))∗} (g(s))∗ for all s ∈ S, then

f �M g.

Axiom A.5. (Mixture Continuity) If f �M g �M h, then there exist q, r ∈ (0, 1) such

that

qf + (1− q)h �M∪{qf+(1−q)h} g �M∪{rf+(1−r)h} rf + (1− r)h.

Menu-independent versions of Axioms A.1–A.5 are standard (for example,

(menu-independent versions of) these axioms are in [1989b]). Clearly (menu-

independent versions of) Axioms A.1, A.2, A.4, and A.5 hold for MMEU, and

SEU; Axiom A.3 is assumed in all the standard axiomatizations, and is used to

get a unique representation.

Axiom A.6. (Ambiguity Aversion)

f ∼M g ⇒ pf + (1− p)g �M∪{pf+(1−p)g} g.

Ambiguity aversion says that the DM weakly prefers to hedge her bets. It

also holds for MMEU, MER, and SEU, and is assumed in the axiomatizations
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for MMEU and MER. It is not assumed for the axiomatization of SEU, since it

follows from the Independence axiom, discussed next. Independence also holds

for MWER, provided that we are careful about the menus involved. Given a

menu M and an act h, let pM + (1− p)h be the menu {pf + (1− p)h : p ∈M}.

Axiom A.7. (Independence)

f �M g iff pf + (1− p)h �pM+(1−p)h pg + (1− p)h.

Independence holds in a strong sense for SEU, since we can ignore the

menus. The menu-independent version of Independence is easily seen to im-

ply ambiguity aversion. Independence does not hold for MMEU.

Although we have menu independence for SEU and MMEU, we do not have

it for MER or MWER. The following two axioms are weakened versions of menu

independence that do hold for MER and MWER.

Axiom A.8. (Menu independence for constant acts) If l∗ and (l′)∗ are constant acts,

then l∗ �M (l′)∗ iff l∗ �M ′ (l′)∗.

In light of this axiom, when comparing constant acts, we omit the menu.

An act h is never strictly optimal relative to M if, for all states s ∈ S, there is

some f ∈M such that (f(s))∗ � (h(s))∗.

Axiom A.9. (Independence of Never Strictly Optimal Alternatives (INA)) If every act

in M ′ is never strictly optimal relative to M , then f �M g iff f �M∪M ′ g.

Theorem A.2.1. For all Y , U , S, and P+, the family of preference orders �S,Y,UM,P+ for

M ∈ MB (resp., MF , MC) satisfies Axioms A.1–A.9. Conversely, if a family of

preference orders �M on the acts in ∆(Y )S for M ∈ MB (resp., MF , MC) satisfies

123



Axioms A.1–A.9, then there exist a utility U on Y and a weighted setP+ of probabilities

on S such that C(P+) is regular and �M=�S,Y,UM,P+ for all M ∈ MB (resp.,MC ,MF ).

Moreover, U is unique up to affine transformations, and C(P+) is unique in the sense

that if Q+ represents �M , and C(Q+) is regular, then C(Q+) = C(P+).

Proof. Showing that �S,Y,UM,P+ satisfies Axioms A.1–A.9 is fairly straightforward;

we leave details to the reader. Essentially the same proof works forMB, MC ,

andMF . The proof of the converse is quite nontrivial, although it follows the

lines of the proof of other representation theorems. We start by consideringMB.

Using standard techniques, we can show that the axioms guarantee the ex-

istence of a utility function U on prizes that can be extended to lotteries in the

obvious way, so that l∗ � (l′)∗ iff U(l) ≥ U(l′). We then use techniques of Stoye

[2011b] to show that it suffices to get a representation theorem for a single menu,

rather than all menus: the menu consisting of all acts f such that U(f(s)) ≤ 0

for all states s ∈ S. This allows us to use techniques in the spirit of those used

by by Gilboa and Schmeidler [1989a] to represent (unweighted) MMEU.

We show here that if a family of menu-dependent preferences �M satisfies

Axioms A.1–A.9, then �M can be represented as minimizing expected regret

with respect to a set of weighted probabilities and a utility function. Since the

proof is somewhat lengthy and complicated, we split it into several steps, each

in a separate subsection.

Simplifying the Problem. Our proof starts in much the same way as the

proof by Stoye [2011b] of a representation theorem for regret. Lemma B.3.1

guarantees the existence of a utility function U on prizes that can be extended

to lotteries in the obvious way, so that l∗ � (l′)∗ iff U(l) ≥ U(l′). In other words,
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preferences over all constant acts are represented by the maximization of U on

the corresponding lotteries that the constant acts map to. Lemma B.3.1 is a con-

sequence of standard results. Our menus are arbitrary sets of acts, as opposed

to convex hulls of a finite number of acts in [2011b]; Lemma A.2.4 shows that

Stoye’s technique can be adapted to work when menus are arbitrary sets of acts.

Finally, following Stoye [2011b], we reduce the proof of existence of a minimax

weighted regret representation for the family �M to the proof of existence of a

minimax weighted regret representation for a single menu-independent prefer-

ence order � (Lemma A.2.5).

Lemma A.2.2. If Axioms 1-3, 5, 7, and 8 hold, then there exists a nonconstant function

U : X → R, unique up to positive affine transformations, such that for all constant acts

l∗ and (l′)∗ and menus M ,

l∗ �M (l′)∗ ⇔
∑

{y: l∗(y)>0}

l(y)U(y) ≥
∑

{y: l′(y)>0}

l′(y)U(y).

Proof. By menu independence for constant acts, the family of preferences�M all

agree when restricted to constant acts. The lemma then follows from standard

results (see, e.g., [1988]), since menu-independence for constant acts, combined

with independence, gives the standard independence (substitution) axiom from

expected utility theory.

As is commonly done, given U , we define u(l) =
∑
{y: l(y)>0} l(y)U(y). Thus,

u(l) is the expected utility of lottery l. We extend u to constant acts by taking

u(l∗) = u(l). Thus, Lemma B.3.1 says that, for all menus M , l∗ � (l′)∗ iff u(l∗) ≥

u((l′)∗). If c is the utility of some lottery, let l∗c be a constant lottery that u(l∗c) = c.

The following is now immediate. We state it as a lemma so that we can refer to

it later.
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Lemma A.2.3. u(l∗c) ≥ u(l∗c′) iff l∗c � l∗c′ ; similarly, u(l∗c) = u(l∗c′) iff l∗c ∼ l∗c′ , and

u(l∗c) > u(l∗c′) iff l∗c � l∗c′ .

The key step in showing that we can reduce to a single menu is to show that,

roughly speaking, for each menu, there exists a menu-dependent function gM

such that u(gM(s)) = − supf∈M u(f(s)). Stoye [2011b] proved a similar result,

but he assumed that all menus were obtained by taking the convex hull of a

finite set of acts. Because we allow arbitrary bounded menus, this result is not

quite true for us. For example, suppose that the range of u is (−1,∞]. Then there

may be a menu M such that supf∈M u(f(s)) = 5, so − supf∈M u(f(s)) = −5. But

there is no act g such that u(g(s)) = −5, since u is bounded below by −1. The

following weakening of this result suffices for our purpose.

Lemma A.2.4. There exists a utility function U such that for every menu M , there

exists ε ∈ (0, 1] and constant act l∗ such that for all f, g ∈ M , f �M g ⇔ t(f) �t(M)

t(g), where t has the form t(f) = εf+(1−ε)l∗ and t(M) = {t(f) : f ∈M}. Moreover,

there exists an act gt(M) such that u(gt(M)(s)) = − supf∈t(M) u(f(s)) for all s ∈ S.

Proof. The nontriviality and monotonicity axioms imply there must exist prizes

x and y such that U(x) > U(y). We consider four cases.

Case 1: The range of U is bounded above and below. Then we can rescale

so that the range of U is [−1, 1]. Thus, there must be prizes x and y such that

U(x) = 1 and U(y) = −1. For all c ∈ [−1, 1], there must be a prize x′ that is

a convex combination of x and y such that u(x′) = c, so we can clearly define

a function gM such that, for all s ∈ S, we have u(gM(s)) = − supf∈M u(f(s)).

Furthermore, we know that such a gM exists because it can be formed as an act

which maps each state to an appropriate lottery over the prizes x and y. More
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generally, we know that an act with a certain utility profile exists if its utility for

each state is within the range of U . This fact will be used in the other cases as

well. Thus, in this case we can take t to be the identity (i.e., ε = 1).

Case 2: The range of U is (−∞,∞). Again, for all c ∈ (∞,∞), there must

exist a prize x such that u(x) = c. Since menus are assumed to be bounded

above, we can again define the required function g and take ε = 1.

Case 3: The range of U is bounded above and unbounded below. Then we

can assume without loss of generality that the range is (−∞, 1], and for all c in

the range, there is a prize x such that u(x) = c. For all menus M , ε > 0, and acts

f, g ∈M , by Independence, we have that

f �M g ⇔ εf + (1− ε)l∗1 �εM+(1−ε)l∗1 εg + (1− ε)l∗1.

There exists an ε > 0 such that for all s ∈ S,

1 ≥ sup
f∈M

εu(f(s)) + (1− ε) ≥ −1.

Let t(f) = εf + (1− ε)l∗1. Clearly there exists an act gt(M) such that u(gt(M)(s)) =

− supf∈t(M) u(f(s)) for all s ∈ S.

Case 4: The range of U is bounded below and unbounded above. By the

upper-boundedness axiom, every menu has an upper bound on its utility range.

Therefore, for every menuM , ε > 0, and all acts f and g inM , by Independence,

f �M g ⇔ εf + (1− ε)l∗−1 �εM+(1−ε)l∗−1
εg + (1− ε)l∗−1.

There exists ε > 0 such that for all s ∈ S,

sup
f∈M

εu(f(s)) + (1− ε)u(l∗−1(s)) ≤ 1.

Let t(f) = εf + (1− ε)l∗−1. Again, it is easy to see that gt(M) exists.
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In light of Lemma A.2.4, we henceforth assume that the utility function u

derived from U is such that its range is either (−∞,∞), [−, 1, 1], (−∞, 1], or

[−1,∞). In any case, its range always includes [−1, 1].

Before proving the key lemma, we establish some useful notation for acts

and utility acts (real-valued functions on S). Given a utility act b, let fb, the

act corresponding to b, be the act such that fb(s) = lb(s), if such an act exists.

Conversely, let bf , the utility act corresponding to the act f , be defined by taking

bf (s) = u(f(s)). Note that monotonicity implies that if fb = gb, then f ∼M g for

all menus M . That is, only utility acts matter. If c is a real, we take c∗ to be the

constant utility act such that c∗(s) = c for all s ∈ S.

Lemma A.2.5. Let M∗ be the menu consisting of all acts f such that (−1)∗ ≤ bf ≤ 0∗.

Then (U,P+) represents �M∗ (i.e., �M∗=�S,X,UM∗,P+) iff (U,P+) represents �M for all

menus M .

Proof. Our arguments are similar in spirit to those of Stoye [2011b].

By Lemma A.2.4, there exists t such that t(f) = εf + (1 − ε)h for a constant

function h such that

f �M g iff t(f) �t(M) t(g);

moreover, for this choice of t, the act gt(M) defined in Lemma A.2.4 exists.

By Independence,

t(f) �t(M) t(g) iff
1

2
t(f) +

1

2
gt(M) � 1

2
t(M)+ 1

2
gt(M)

1

2
t(g) +

1

2
gt(M).

Let M∗ be the menu that contains all acts with utilities in [−1, 0]. By INA, we
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know that for all acts f and g, and menus M for which gM is defined, we have

f �M g iff
1

2
f +

1

2
gM �M∗

1

2
g +

1

2
gM .

This is because acts of the form 1
2
f + 1

2
gM are never strictly optimal with respect

to the menu 1
2
M+ 1

2
gM . At every state s there must be some act in 1

2
M+ 1

2
gM that

has utility 0 at s (namely, the mixture that involves an act f ∈ M whose utility

at s is maximal; that is, u(f(s)) ≥ maxf ′∈M u(f ′(s)). Thus,

f �M g iff
1

2
t(f) +

1

2
gt(M) �M∗

1

2
t(g) +

1

2
gt(M).

Since the MWER representation also satisfies Independence and INA, we

know that for all menus M , and acts f and g in M ,

f �S,X,UM,P+ g ⇔ t(f) �S,X,Ut(M),P+ t(g)⇔ 1

2
t(f) +

1

2
gt(M) �S,X,UM∗,P+

1

2
t(g) +

1

2
gt(M).

Therefore, to show that�M has a MWER representation with respect to (U,P+),

it suffices to show that�M∗ has a MWER representation with respect to (U,P+).

In the sequel, we drop the menu subscript when we refer to the family of

preferences, and just write � (to denote �M∗); by Lemma A.2.5, it suffices to

consider �M∗ .

It is straightforward to check that �M∗ satisfies completeness, transitivity,

nontriviality, monotonicity, mixture continuity, independence, INA, and ambi-

guity aversion. Therefore, by Lemma 2.5.2, there exists some (U,P+) represent-

ing �M∗ . By Lemma A.2.5, (U,P+) represents �M for all menus M , as required.

Since the axioms hold for all menus inMB, they clearly continue to hold if

we restrict to MF and MC . To prove the converse in the case of MF we first
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argue that if the preference orders�M forM ∈MF satisfy the axioms, then they

uniquely determine preference orders �M for menus M ∈ MB that also satisfy

the axioms. Clearly, it also then follows that the set of preference orders �M for

M ∈ MC determines �M for M ∈ MB. The proof immediately follows from

this observation and the proof in the case ofMB.

Consider a bounded menu M . The utility frontier of menu M is a function

mapping each state to the maximum utility achieved in that state by any act in

M . Since S is assumed to be finite, there exists a finite subset M ′ ⊆M such that

the utility frontier of M ′ is the same as the utility frontier of M . Therefore, for

all acts f, g ∈M ,

f �M g ⇔ f �M ′∪{f,g} g,

by Axiom 2.5. Since M ′ is finite, we have shown what we need.

Finally, forMC , suppose thatM is a convex set of acts generated by the finite

set AM . Then, for all f, g ∈ AM ,

f �AM g ⇔ f �M g,

by Axiom 2.5, since no interior points in M can be strictly optimal; hence, in-

terior points can be removed from M without changing preferences. Thus, the

result forMC follows from the result forMF .

It is instructive to compare Theorem A.2.1 to other representation results

in the literature. Anscombe and Aumann [1963] showed that the menu-

independent versions of axioms A.1–A.5 and A.7 characterize SEU. The pres-

ence of Axiom A.7 (menu-independent Independence) greatly simplifies things.

Gilboa and Schmeidler [1989b] showed that axioms A.1–A.6 together with one
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SEU REG MER MWER MMEU
Ax. 1-6,8-10 X X X X X
Ind X X X X
C-Ind X X
Ax. 12 X X X
Symmetry X X

Table A.1: Characterizing axioms for several decision rules.

more axiom that they call certainty-independence characterizes MMEU. Certainty-

independence, or C-independence for short, is a weakening of independence

(which, as we observed, does not hold for MMEU), where the act h is required

to be a constant act. Since MMEU is menu-independent, we state it in a menu-

independent way.

Axiom A.10. (C-Independence) If h is a constant act, then f � g iff pf + (1− p)h �

pg + (1− p)h.

Table A.1 describes the relationship between the axioms characterizing the

decision rules.

A.3 Characterizing MWER with Likelihood Updating

We can in fact directly translate the MDC axiom into a setting with preference

relations instead of choice functions.

Definition A.3.1 (Null event). An event E is null if, for all f, g ∈ ∆(Y )S and menus

M with fEg, g ∈M , we have fEg ∼M g.

MDC. For all non-null events E, f �E,M g iff fEh �MEh gEh for some h ∈M .2

2Although we do not need this fact, it is worth noting that the MWER decision rule has the
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The key feature of MDC is that it allows us to reduce all the conditional prefer-

ence orders �E,M to the unconditional order �M , to which we can apply Theo-

rem A.2.1.

Theorem A.3.2. For all Y , U , S, P+, and M ∈ MB, the family of preference orders

�S,Y,UP+|E,M for events E such that P+
(E) > 0 satisfies Axioms A.1–A.9 and MDC.

Conversely, if a family of preference orders �E,M on the acts in ∆(Y )S satisfies Axioms

A.1–A.9 and MDC for M ∈ MB (resp., MF , MC), then there exists a utility U on

Y and a weighted set P+ of probabilities on S such that C(P+) is regular, and for all

non-null E, �E,M=�S,Y,UP+|E,M . Moreover, U is unique up to affine transformations, and

C(P+) is unique in the sense that if Q+ represents �E,M , and C(Q+) is regular, then

C(Q+) = C(P+).

Proof. Since�M=�S,M satisfies Axioms A.1–A.9, there must exist a weighted set

P+ of probabilities on S and a utility function U such that f �M g iff f �S,Y,UM,P+ g.

The rest of the proof is identical to that of Theorem 2.6.2; we do not repeat it

here.

Analogues of MDC have appeared in the literature before in the context of

updating preference orders. In particular, Epstein and Schneider [1993] discuss

a menu-independent version of MDC, although they do not characterize up-

dating in their framework. Ghirardato [2002] characterizes update for a menu-

independent version of DC. Sinischalchi [2011] also uses an analogue of MDC

in his axiomatization of measure-by-measure updating of MMEU. Like us, he

starts with an axiomatization for unconditional preferences, and adds an axiom

called constant-act dynamic consistency (CDC), somewhat analogous to MDC, to

property that fEh �MEh gEh for some act h iff fEh �MEh gEh for all acts h. Thus, this
property follows from Axioms A.1–A.9.
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extend the axiomatization of MMEU to deal with conditional preferences. CDC

in the form in [2011] was first proposed by Pires [2002], based on an observation

of Jaffray [1992].
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APPENDIX B

PROOFS FOR CHAPTER 3

B.1 Proof of Theorem 3.5.2

Proof of Theorem 3.5.2 . We assume that t is continuous and strictly decreasing,

and that there exists some β > 0 such that [β, β/α∗0(φ)] ∈ range(t). Recall that

α∗0(φ) = max{α0,minp∈∆(S) φ(p)}.

Let α′0 = t−1( β
α∗0

) and for all p ∈ ∆(S), let φ′(p) = t−1( β
φ(p)

). It is easy to see

that, for all acts f, g,

min
p∈Lα0φ

1

φ(p)

∫
S

u(f)dp ≥ min
p∈Lα0φ

1

φ(p)

∫
S

u(g)dp

iff min
{p:φ(p)≥α′0}

β

φ(p)

∫
S

u(f)dp ≥ min
{p:φ(p)≥α′0}

β

φ(p)

∫
S

u(g)dp

iff min
p∈Lα′0

φ′
t(φ′(p))

∫
S

u(f)dp ≥ min
p∈Lα′0

φ′
t(φ′(p))

∫
S

u(g)dp,

since for all p ∈ Lα0φ,

β

φ(p)
= t(t−1(

β

φ(p)
)) = t(φ′(p)).

Now we show that if t(1) = β, then φ′ must be a regular* fuzzy set. Since

φ is normal, there exists p∗ such that φ(p∗) = 1. By definition of φ′, φ′(p∗) =

t−1( β
φ(p∗)

) = t−1(β) = 1, so φ′ is normal.

To show that φ′ is weakly* upper semicontinuous, we must show that the set

Lαφ
′ = {p ∈ ∆(S) : φ′(p) ≥ α} is weakly* closed for α ∈ [0, 1]. In other words,

we have to show that the set Lαφ′ contains all of its limit points, for all α ∈ [0, 1].

Now, for α = 0, Lαφ′ = ∆(S) and is closed. So consider the case α > 0.
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Recall from our definition of φ′ that φ′(p) = t−1( β
φ(p)

) for all p. Suppose

pn → p. Observe that β
φ(pn)

is in the domain of t−1 for all n, since [β, β/α∗0(φ)] ∈

range(t). Note that for all p, φ′(p) ≥ α if and only if

t−1(
β

φ(p)
) ≥ α

iff
β

φ(p)
≤ t(α)

iff φ(p) ≥ β

t(α)
,

where t(α) ≥ β since 0 < α ≤ 1, t is monotonically decreasing, and t(1) = β.

Since φ is assumed to be weakly* upper semicontinuous, and φ(pn) ≥ β
t(α)

for all

n, we have φ(p) ≥ β
t(α)

. Therefore, φ′(p) ≥ α, as required.

Finally, to show that φ′ is quasi-concave, let γ ∈ [0, 1]. Using the fact that t is

strictly monotonically decreasing, we have that

φ(γp1 + (1− γ)p2) ≥ min(φ(p1), φ(p2))

⇒ β

φ(γp1 + (1− γ)p2)
≤ max(

β

φ(p1)
,

β

φ(p2)
)

⇒ t−1(
β

φ(γp1 + (1− γ)p2)
) ≥ min(t−1(

β

φ(p1)
), t−(

β

φ(p2)
))

⇒ φ′(γp1 + (1− γ)p2) ≥ min(φ′(p1), φ′(p2)).

For the other direction, suppose that t(1) = β and that φ′ is a regular* fuzzy

confidence function. We want to show that φ defined by φ(p∗) = 1
t(φ′(p∗))

is also

regular* fuzzy. The arguments for this direction are analogous to those used to

show the first direction.
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B.2 Details of Example 3.6.2

We now show that for all n ≥ 1, fn ∼+
φ 1̃.

Suppose c ∈ [ 1
22m+1 ,

1
22m−1 ). The weighted expected utility of fn with respect

to pc is

2m
[
c2n + (1− c) 2n

22n+1 − 1

]
, for m ∈ {0, 1, 2, . . .}.

If m = n, note that

2n
[

1

22n+1
2n +

22n+1 − 1

22n+1

2n

22n+1 − 1

]
= 1.

If m < n, then

2m
[
c2n + (1− c) 2n

22n+1 − 1

]
≥ 2m

[
1

22m+1
2n +

22m−1 − 1

22m−1

2n

22n+1 − 1

]
=

2n

2m+1
+

22m−1 − 1

2m−1

2n

22n+1 − 1

≥ 2n

2m+1
≥ 1.

If m > n, then

2m
[
c2n + (1− c) 2n

22n+1 − 1

]
≥ 2m

[
1

22m+1
2n +

22m−1 − 1

22m−1

2n

22n+1 − 1

]
=

2n

2m+1
+

22m−1 − 1

2m−1

2n

22n+1 − 1

≥ 2n

2m+1
+

22m−1 − 1

2m−1

1

2n+1

≥ 2n

2m+1
+

22m−1

2m+n
− 1

2m+n

≥ 2m−n−1 ≥ 1.

If c ∈ [1
2
, 1], then the weighted expected utility of fn is

c2n + (1− c) 2n

22n+1 − 1
≥ c2n ≥ 2n−1.
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Therefore, for all n, the minimum weighted expected utility of fn is 1, so fn ∼+
φ 1̃.

Now let m̃ be a constant act with constant utility m. The act 1
2
fn + 1

2δ
δ̃ has

utility 2n−1 + 1
2

in state s1 and utility 2n−1

22n+1−1
+ 1

2
in state s2. If c ∈ [ 1

22m+1 ,
1

22m−1 )

for m ≥ 1, then the weighted expected utility of 1
2
fn + 1

2δ
δ̃ with respect to pc is

2m
[
c

(
2n−1 +

1

2

)
+ (1− c)

(
2n−1

22n+1 − 1
+

1

2

)]
≥ 1

2m+1

(
2n−1

)
+

22m−1 − 1

2m−1

(
1

2

)
≥2n−m−2 + 2m−2.

Suppose that n ≥ 4 + 2 log2 δ and δ ≥ 1. If n ≥ m+ 2 + log2 δ,

2n−m−2 + 2m−2 > 2log2 δ = δ.

Otherwise, if n < m + 2 + log2 δ, since n ≥ 4 + 2 log2 δ, it follows that m ≥

log2 δ + 2, and

2n−m−2 + 2m−2 > 2log2 δ = δ.

If c ≥ 1
2
, then the weighted expected utility of 1

2
fn + 1

2δ
δ̃ with respect to pc is

c

(
2n−1 +

1

2

)
+ (1− c)

(
2n−1

22n+1 − 1
+

1

2

)
>

1

2
2n−1 ≥ 1

2
23+2 log2 δ ≥ 22δ2 > δ,

since δ ≥ 1. This means that if n ≥ 4 + 2 log2 δ, then the minimum weighted

expected utility of 1
2
fn + 1

2δ
δ̃ is strictly greater than δ.
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B.3 Proof of Theorem 4.5.3

We show here that if a family of preferences � satisfies Axioms 3.1–5.9, then

� can be represented as maximizing weighted expected utility with respect to

a regular confidence function and a utility function. We make use of many of

the same techniques as used in [Halpern and Leung 2012]. Key differences are

highlighted.

First, we establish a von-Neumann-Morgenstern expected utility function

over constant acts. This part follows the CF proof, rather than the proof in

[Halpern and Leung 2012].

Lemma B.3.1. If Axioms 3.1, 3.3 and 3.5 hold, then there exists a nonconstant function

U : X → R, unique up to positive affine transformations, such that for all constant acts

l∗ and (l′)∗,

l∗ � (l′)∗ ⇔
∑

{y: l∗(y)>0}

l(y)U(y) ≥
∑

{y: l′(y)>0}

l′(y)U(y).

Proof. As noted by CF, it was shown by Herstein and Milnor [Herstein and Mil-

nor 1953] that Axioms 3.1, 3.3 and 3.5 are sufficient to satisfy the premises of the

von-Neumann-Morgenstern theorem.

Since U is nonconstant, we can choose a U such that the minimum value

that it takes on is 0 (for some constant act), and the maximum value it takes

on is at least 1. If c is the utility of some lottery lc, let l∗c be a constant act such

that l∗(s) = lc, so that u(l∗c) = c. The following lemma, whose proof is given in

[Halpern and Leung 2012] (Lemma 2), follows from Lemma B.3.1.

Lemma B.3.2. u(l∗c) ≥ u(l∗c′) iff l∗c � l∗c′ ; similarly, u(l∗c) = u(l∗c′) iff l∗c ∼ l∗c′ , and

u(l∗c) > u(l∗c′) iff l∗c � l∗c′ .
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In [Halpern and Leung 2012] a slightly different continuity axiom (Ax-

iom B.1) is used.

Axiom B.1 (Mixture Continuity). If f � g � h, then there exist q, r ∈ (0, 1) such

that

qf + (1− q)h � g � rf + (1− r)h.

It is not difficult to derive Mixture Continuity from completeness (Axiom 3.1)

and Axiom 3.3. Therefore, from here on, we assume that the preference order

satisfies Mixture Continuity.

We establish some useful notation for acts and utility acts (real-valued func-

tions on S). Given a utility act b, let fb, the act corresponding to b, be the act

such that fb(s) = lb(s), if such an act exists. Conversely, let bf , the utility act

corresponding to the act f , be defined by taking bf (s) = u(f(s)). Note that

monotonicity implies that if fb = gb, then f ∼ g. That is, only utility acts matter.

If c is a real, we take c∗ to be the constant utility act such that c∗(s) = c for all

s ∈ S.

B.3.1 Defining a functional on utility acts

Our proof uses the same technique as that used in [Halpern and Leung 2012].

Specifically, like Gilboa and Schmeidler [Gilboa and Schmeidler 1989b], we de-

fine a functional I on utility acts such that the preference order on utility acts is

determined by their value according to I (see Lemma B.3.4). Using I , we can

then determine the weight of each probability in ∆(S), and prove the desired

representation theorem.
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Recall that u represents� on constant acts, and that only utility acts matter to

�. The space of all nonnegative utility acts is the set B+ of real-valued functions

b on S where b(s) ≥ 0 for all s ∈ S. We now define a functional I on utility acts

in B+ such that for all f, g with bf , bg ∈ B+, we have I(bf ) ≥ I(bg) iff f � g. Let

Rf = {α′ : l∗α′ � f}.

If 0∗ ≤ b ≤ 1∗, then fb exists, and we define

I(b) = sup(Rfb).

For the remaining utility acts b ∈ B+, we extend I by homogeneity. Let ||b|| =

|maxs∈S b(s)|. Note that if b ∈ B+, then 0∗ ≤ b/||b|| ≤ 1∗, so we define

I(b) = ||b||I(b/||b||).

It is worth noting that while in [Halpern and Leung 2012] I was extended

from the nonpostive utility acts to the entire set of real-valued acts in order to

invoke a separating theorem for Banach spaces, the extension is not performed

here. Consequently, we will be using a different separating hyperplane theorem

than in [Halpern and Leung 2012].

Lemma B.3.3. If bf ∈ B+, then f ∼ l∗I(bf ).

Proof. Suppose that bf ∈ B+ and, by way of contradiction, that l∗I(bf ) ≺ f . If

f ∼ l∗0, then it must be the case that I(bf ) = 0, since I(bf ) ≥ 0 by definition of

sup, and f ∼ l∗0 ≺ l∗ε for all ε > 0 by Lemma B.3.2, so I(bf ) < ε for all ε < 0.

Therefore, f ∼ l∗I(bf ). Otherwise, since bf ∈ B+, by monotonicity, we must have

l∗0 ≺ f , and thus l∗0 ≺ f ≺ l∗I(bf ). By mixture continuity, there is some q ∈ (0, 1)

such that q · l∗0 + (1− q) · l∗I(bf ) ∼ l(1−q)I(bf ) � f , contradicting the fact that I(b) is

the least upper bound of Rf .
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If, on the other hand, l∗I(bf ) � f , then l∗I(bf ) � f � l∗c , where the existence of l∗c

is guaranteed by Axiom 3.4. If f ∼ l∗c then it must be the case that I(bf ) = c. This

is because I(bf ) ≥ c since l∗c � l∗c , and I(bf ) ≤ c since for all c′ > c, l∗c′ � f ∼ l∗c .

Otherwise, l∗I(bf ) � f � l∗c , and by Axiom 3.3, there is some q ∈ (0, 1) such

that q · l∗I(bf ) + (1 − q)l∗c ≺ f . Since qI(bf ) + (1 − q)c > I(bf ), this contradicts

the fact that I(bf ) is an upper bound of Rf . Therefore, it must be the case that

l∗I(bf ) ∼ f .

We can now show that I has the required property.

Lemma B.3.4. For all acts f, g such that bf , bg ∈ B+, f � g iff I(bf ) ≥ I(bg).

Proof. Suppose that bf , bg ∈ B+. By Lemma B.3.3, l∗I(bf ) ∼ f and g ∼ l∗I(bg). Thus,

f � g iff l∗I(bf ) � l∗I(bg), and by Lemma B.3.2, l∗I(bf ) � l∗I(bg) iff I(bf ) ≥ I(bg).

We show that the axioms guarantee that I has a number of standard prop-

erties. The proof of each property is analogous to its counterpart in [Halpern

and Leung 2012], but here we deal with nonnegative utility acts, as opposed to

nonpositive utility acts.

Lemma B.3.5. (a) If c ≥ 0, then I(c∗) = c.

(b) I satisfies positive homogeneity: if b ∈ B+ and c > 0, then I(cb) = cI(b).

(c) I is monotonic: if b, b′ ∈ B+ and b ≥ b′, then I(b) ≥ I(b′).

(d) I is continuous: if b, b1, b2, . . . ∈ B+, and bn → b, then I(bn)→ I(b).

(e) I is superadditive: if b, b′ ∈ B+, then I(b+ b′) ≥ I(b) + I(b′).

Proof. For part (a), if c is in the range of u, then it is immediate from the defini-

tion of I and Lemma B.3.2 that I(c∗) = c. If c is not in the range of u, then since
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[0, 1] is a subset of the range of u, we must have c > 1, and by definition of I , we

have I(c∗) = |c|I(c∗/|c|) = c.

For part (b), first suppose that ||b|| ≤ 1 and b ∈ B+ (i.e., 0∗ ≤ b ≤ 1∗). Then

there exists an act f such that bf = b. By Lemma B.3.3, f ∼ l∗I(b). We now consider

the case that c ≤ 1 and c > 1 separately. If c ≤ 1, by Worst Independence,

cfb+(1− c)l∗0 ∼ cl∗I(b) +(1− c)l∗0. By Lemma B.3.4, I(bcfb+(1−c)l∗0) = I(bcl∗
I(b)

+(1−c)l∗0).

It is easy to check that bcfb+(1−c)l∗0 = cb, and bcl∗
I(b)

+ (1 − c)l∗0 = cI(b)∗. Thus,

I(cb) = I(cI(b)∗). By part (a), I(cI(b)∗) = cI(b). Thus, I(cb) = cI(b), as desired.

If c > 1, there are two subcases. If ||cb|| ≤ 1, since 1/c < 1, by what we have

just shown I(b) = I(1
c
(cb)) = 1

c
I(cb). Crossmultiplying, we have that I(cb) =

cI(b), as desired. And if ||cb|| > 1, by definition, I(cb) = ||cb||I(bc/||cb||) =

c||b||I(b/||b||) (since bc/||cb|| = b/||b||). Since ||b|| ≤ 1, by the earlier argument,

I(b) = I(||b||(b/||b||) = ||b||I(b/||b||), so I(b/||b||) = 1
||b||I(b). Again, it follows that

I(cb) = cI(b).

Now suppose that ||b|| > 1. Then I(b) = ||b||I(b/||b||). Again, we have two

subcases. If ||cb|| > 1, then

I(cb) = ||cb||I(cb/||cb||) = c||b||I(b/||b||) = cI(b).

And if ||cb|| ≤ 1, by what we have shown for the case ||b|| ≤ 1,

I(b) = I(
1

c
(cb)) =

1

c
I(cb),

so again I(cb) = cI(b).

For part (c), first note that for b, b′ ∈ B+, if ||b|| ≤ 1 and ||b′|| ≤ 1, then the acts

fb and fb′ exist. Moreover, since b ≥ b′, we must have (fb(s))
∗ � (fb′(s))

∗ for all

states s ∈ S. Thus, by Monotonicity, fb � fb′ . If either ||b|| > 1 or ||b′|| > 1, let
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n = max(||b||, ||b′||). Then ||b/n|| ≤ 1 and ||b′/n|| ≤ 1. Thus, I(b/n) ≥ I(b′/n), by

what we have just shown. By part (b), I(b) ≥ I(b′).

For part (d), note that if bn → b, then for all k, there exists nk such that

bn − (1/k)∗ ≤ bn ≤ bn + (1/k)∗ for all n ≥ nk. Moreover, by the monotonicity of

I (part (c)), we have that I(b − (1/k)∗) ≤ I(bn) ≤ I(b + (1/k)∗). Thus, it suffices

to show that I(b− (1/k)∗)→ I(b) and that I(b+ (1/k)∗)→ I(b).

To show that I(b − (1/k)∗) → I(b), we must show that for all ε > 0, there

exists k such that I(b − (1/k)∗) ≥ I(b) − ε. By positive homogeneity (part (b)),

we can assume without loss of generality that ||b− (1/2)∗|| ≤ 1 and that ||b|| ≤ 1.

Fix ε > 0. If I(b − (1/2)∗) ≥ I(b) − ε, then we are done. If not, then I(b) >

I(b)− ε > I(b− (1/2)∗). Since ||b|| ≤ 1 and ||b− (1/2)∗|| ≤ 1, fb and fb−(1/2)∗ exist.

Moreover, by Lemma B.3.4, fb � f(I(b)−ε)∗ � fb−(1/2)∗ . By mixture continuity, for

some p ∈ (0, 1), we have pfb + (1− p)f(b−(1/2)∗ � f(I(b)−ε)∗ . It is easy to check that

bpfb+(1−p)fb−(1/2)∗ = b−((1−p)/2)∗. Thus, by Lemma B.3.4, fb−((1−p)/2)∗ � f(I(b)−ε)∗ ,

and I(b− ((1− p)/2)∗) > I(b)− ε. Choose k such that 1/k < (1− p)/2. Then, by

monotonicity (part (c)), I(b− (1/k)∗) ≥ I(b− ((1− p)/2)∗) > I(b)− ε, as desired.

The argument that I(b+ (1/k)∗)→ I(b) is similar and left to the reader.

For part (e), if ||b||, ||b′|| ≤ 1, and I(b), I(b′) 6= 0, consider b
I(b)

and b′

I(b′)
. Since

I( b
I(b)

) = I( b′

I(b′)
) = 1, it follows from Lemma B.3.3 that f b

I(b)
∼ f b′

I(b′)
. By Am-

biguity Aversion, for all p ∈ (0, 1], pf b
I(b)

+ (1 − p)f b′
I(b′)
� f b

I(b)
. Thus, taking

p = I(b)
I(b)+I(b′)

, I( b+b′

I(b)+I(b′)
) = 1

I(b)+I(b′)
I(b + b′) = I( I(b)

I(b)+I(b′)
b
I(b)

+ I(b′)
I(b)+I(b′)

b′

I(b′)
) ≥

I( b
I(b)

) = I( b′

I(b′)
) = 1. Hence, I(b+ b′) ≥ I(b) + I(b′).

If either ||b|| > 1 or ||b′|| > 1, and both I(b) 6= 0 and I(b′) 6= 0, then the result

easily follows by positive homogeneity (property (b)).
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If either I(b) = 0 or I(b′) = 0, let bn = b+ 1
n

∗ and b′n = b′+ 1
n

∗. Clearly ||bn|| > 0,

||b′n|| > 0, bn → b, and b′n → b′n. By our argument above, I(bn+b′n) ≥ I(bn)+I(b′n)

for all n ≥ 1. The result now follows from continuity.

B.3.2 Defining the confidence function

In this section, we use I to define a confidence function φ that maps each p ∈

∆(S) to a confidence value in [0, 1]. The heart of the proof involves showing that

the resulting function φ so determined gives us the desired representation.

Given a confidence function φ, for b ∈ B+, define

WE (b) = inf
p∈P

φ(p)(
∑
s∈S

b(s)p(s)).

Define

E (b) = inf
p∈P

∑
s∈S

b(s)p(s).

and

Ep(b) =
∑
s∈S

b(s)p(s).

For each probability p ∈ ∆(S), define

φt(p) = inf{α ∈ R : I(b) ≤ αEp(b) for all b ∈ B+}, (B.1)

and let φt(p) = ∞ if the inf does not exist. Note that φt(p) ≥ 1, since Ep((c)
∗) =

I((c)∗) = c for all distributions p and c ∈ R. Moreover, it is immediate from the

definition of φt(p) that φt(p)Ep(b) ≥ I(b) for all b ∈ B+. The next lemma shows

that there exists a probability p where we have equality.
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Lemma B.3.6. (a) For some distribution p, we have φt(p) = 1.

(b) For all b ∈ B+, there exists p such that φt(p)Ep(b) = I(b).

Proof. The proofs of both part (a) and (b) use a separating hyperplane theorem.

If U is a convex subset of B+, and b /∈ U , then there is a linear functional λ that

separates U from b, that is, λ(b′) < λ(b) for all b′ ∈ U . We proceed as follows.

For part (a), we must show that there exists a probability measure p such that

for all b ∈ B+, we have Ep(b) ≥ I(b). This would show that φt(p) = 1.

Let U = {b′ ∈ B+ : I(b′) ≥ 1}. U is closed (by continuity of I) and convex (by

positive homogeneity and superadditivity of I), and (0)∗ /∈ U . Thus, there exists

a linear functional λ such that λ(b′) > λ((0)∗) = 0 for b′ ∈ U . We can assume

without lost of generality that λ(1∗) = 1.

We want to show that λ is a positive linear functional, that is, that λ(b) ≥ 0

if b ≥ 0∗. Clearly this holds for b′ such that I(b′) ≥ 1. If b′ ≥ 0∗, I(b′) < 1, and

I(b′) > 0, note that cI(b′) = I(cb′) ≥ 1 for some c ≥ 0. Therefore, I(b′) ≥ 1
c
≥ 0. If

b′ ≥ 0∗ and I(b′) = 0, note that for all c > 0, λ(b′ + c∗) ≥ 0 by the previous case.

Thus, λ(b′) ≥ 0. It follows that λ is a positive functional.

Define the probability distribution p on S by taking p(s) = λ(1s). To see that

p is indeed a probability distribution, note that since 1s ≥ 0 and λ is positive,

we must have λ(1s) ≥ 0. Moreover,
∑

s∈S p(s) = λ(1∗) = 1. In addition, for all

b′ ∈ B, we have

λ(b′) =
∑
s∈S

λ(1s)b
′(s) =

∑
s∈S

p(s)b′(s) = Ep(b
′).
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Next, we claim that, for b ∈ B+,

for all c > 0, if I(b) > c, then λ(b) > c. (B.2)

To see why the claim is true, note that if I(b) ≥ c, then I(b/c) ≥ 1 by positive

homogeneity, so λ(b/c) ≥ 1 and λ(b) ≥ c. Therefore, λ(b) ≥ I(b), as desired.

The proof of part (b) is similar to that of part (a). We want to show that,

given b ∈ B+, there exists p such that φt(p)Ep(b) = I(b). First consider the case

where ||b|| ≤ 1. If I(b) = 0, then there must exist some s such that b(s) = 0, for

otherwise there exists c > 0 such that b ≥ c∗, so I(b) ≥ c. If b(s) = 0, let ps be

such that ps(s) = 1. Then Eps(b) = 0, so part (b) of the Lemma holds in this case.

If ||b|| ≤ 1 and I(b) > 0, let U = {b′ : I(b′) ≥ I(b)}. Again, U is closed and

convex, and b /∈ U , so there exists a linear functional λ such that λ(b′) > λ(b) for

b′ ∈ U . Since 1∗ ∈ U and we can assume without loss of generality λ(1∗) = 1, we

must have λ(b) < 1.

The same argument as that used in the proof of (a) shows that λ is a positive

functional.

Therefore, λ determines a probability distribution p such that, for all b′ ∈ B+,

we have λ(b′) = Ep(b
′). p, of course, will turn out to be the desired distribution.

To show this, we need to show that φt(p) = I(b)/Ep(b). By definition, φt(p) ≥

I(b)/Ep(b). To show that φt(p) ≤ I(b)/Epb, we must show that I(b)
Ep(b)

≥ I(b′)
Epb′

for all

b′ ∈ B+. Equivalently, we must show that I(b)λ(b′)/λ(b) ≥ I(b′) for all b′ ∈ B+.

Essentially the same argument used to prove (B.2) also shows that

for all c > 0, if I(b′)
I(b)
≥ c, then λ(b′)

λ(b)
≥ c.

In particular, if I(b′)
I(b)
≥ c, then by positive homogeneity, I(b′)

c
≥ I(b), so b′

c
∈ U ,
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and λ( b
′

c
) > λ(b) and hence λ(b′)

λ(b)
≥ c.

It follows that λ(b′)/(λ(b)) ≥ I(b′)/(I(b)) for all b′ ∈ B+. Thus,

I(b)λ(b′)/λ(b) ≥ I(b′) for all b′ ∈ B+, as required.

Finally, if ||b|| > 1, let b′ = b/||b||. By the argument above, there exists a

probability measure p such that φt(p)Ep(b/||b||) = I(b/||b||). Since Ep(b/||b||) =

Ep(b)/||b||, and I(b/||b||) = I(b)/||b||, we must have that φt(p)Ep(b) = I(b).

We can now complete the proof of Theorem 4.5.3. By Lemma B.3.6 and the

definition of φt(p), for all b ∈ B+,

I(b) = inf
p∈∆(S)

φt(p)Ep(b). (B.3)

Recall that, by Lemma B.3.4, for all acts f, g such that bf , bg ∈ B+, f � g iff

I(bf ) ≥ I(bg). Thus, f � g iff

inf
p∈∆(S)

(
φt(p)

∑
s∈S

u(f(s))p(s)

)
≥ inf

p∈∆(S)

(
φt(p)

∑
s∈S

u(g(s))p(s)

)
.

To get the confidence function φ from φt, note that limx→0+ t(x) = ∞ and

t(1) > 0. We let φ(p) = t−1(t(1)φt(p)), with the special case φ(p) = 0 if φt(p) =∞.

(Note that t(1)φt(p) is in the range of t−1, since φt(p) ≥ 1, t is nonincreasing, and

limx→0+ t(x) =∞.)

B.3.3 Properties of the confidence function

In this section, we show that the confidence function φ that we constructed sat-

isfies the properties claimed in Theorem 4.5.3.
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We first show that t◦φ = φt has convex upper support. To that end, we show

that if c1 ≥ φt(p1) and c2 ≥ φt(p2), then for all α ∈ (0, 1),

(αc1p1 + (1− α)c2p2) (S) ≥ φt

(
αc1p1 + (1− α)c2p2

(αc1p1 + (1− α)c2p2) (S)

)
.

By the definition of φt, it suffices to show that for all b ∈ B+,

I(b) ≤ (αc1p1 + (1− α)c2p2) (S)E αc1p1+(1−α)c2p2
(αc1p1+(1−α)c2p2)(S)

(b). (B.4)

It is easy to see that the inequality holds. Let b ∈ B+. The right-hand side of

(B.4) is equal to

∑
s∈S

((αc1p1(s) + (1− α)c2p2(s))b(s)) = αc1Ep1(b) + (1− α)c2Ep2(b)

≥ αφt(p1)Ep1(b) + (1− α)φt(p2)Ep2(b)

≥ αI(b) + (1− α)I(b) (by (B.3))

≥ I(b).

We now show that φ is regular*. Since we’ve shown that, for some p∗,

φt(p
∗) = 1, we have φ(p∗) = t−1(t(1)1) = 1. Therefore φ is normal.

Secondly, we show that φ is weakly* upper semicontinuous. We show that

if {pn} → p and φ(pn) ≥ α for all n, then φ(p) ≥ α. Suppose for the purpose

of contradiction that φ(p) < α. Then φt(p) = t(φ(p)) > t(α). By continuity of

t, φt(pn) = t(φ(pn)) > t(α) for all sufficiently large n, implying that φ(pn) < α,

contradicting the assumption that φ(pn) ≥ α. Therefore φ(p) ≥ α, as required.

We now show that φ is quasiconcave; that is, φ(βp1 + (1 − β)p2) ≥

min{φ(p1), φ(p2)} for any β ∈ [0, 1]. Since t is strictly decreasing, so is t−1.

Thus, −t−1 is strictly increasing. Moreover, if φt is quasiconvex then −t−1 ◦ φt is

also quasiconvex. Since the negative of a quasiconvex function is quasiconcave,
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t−1◦φt is quasiconcave. Therefore, if we show that φt is quasiconvex, this would

show that φ = t−1 ◦ φt is quasiconcave.

Recall from (B.1) that

φt(p) = inf{α ∈ R : I(b) ≤ αEp(b) for all b ∈ B+}.

If max{φt(p1), φt(p2)} ≤ c for c ∈ R, then for all b ∈ B+, we have

I(b) ≤ cEp1(b),

and

I(b) ≤ cEp2(b).

Therefore, for all b ∈ B+ and all β ∈ [0, 1], by the linearity of Ep(b) with respect

to the parameter p,

I(b) ≤ cEβp1+(1−β)p2(b).

This means that φt(βp1 + (1 − β)p2) ≤ c. Thus, φt(βp1 + (1 − β)p2) ≤

max{φt(p1), φt(p2)}. Therefore, φt is quasiconvex.

B.3.4 Uniqueness of the representation

In this section, we show that our constructed φ is the only regular* fuzzy confi-

dence function such that t ◦ φ has convex upper support, and such that �+
t,φ=�.

Our uniqueness result is similar in spirit to the uniqueness results of Gilboa and

Schmeidler [Gilboa and Schmeidler 1989b], who show that the convex, closed,

and non-empty set of probability measures in their representation theorem for

MMEU is unique.

The proof of this result, like the proof of uniqueness in Gilboa and Schmei-

dler [Gilboa and Schmeidler 1989b], uses a separating hyperplane theorem to
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show the existence of acts on which two different representations must ‘dis-

agree’. The proof presented here is essentially the same as that used in [Halpern

and Leung 2012], with only superficial changes to accommodate our definitions

and notation.

Lemma B.3.7. For all confidence functions φ′, if �+
t,φ′=� and t ◦ φ′ has convex upper

support, then φ = φ′.

Proof. Suppose for contradiction that there exists a regular* fuzzy confidence

function φ′ 6= φ such that t ◦ φ′ has convex upper support, and that �+
t,φ′=�+

t,φ.

Consider the two upper supports V t◦φ and V t◦φ′ . V t◦φ and V t◦φ′ are both closed.

To see why, consider a sequence {pn}n∈N contained in pn ∈ V t◦φ such that pn → p.

We show that p ∈ V t◦φ, by showing that for some q ∈ ∆(S), φ(q) > 0 and

p ≥ t(φ(q))q.

We first show that p ≥ t(φ(q))q for some q ∈ ∆(S). Recall that for all n, there

exists qn ∈ ∆(S) such that pn ≥ t(φ(qn))qn. Since qn ∈ ∆(S), qkm → q for some

subsequence {qkm} and q ∈ ∆(S). Therefore, we have

p = lim
n→∞

pn

≥ lim sup
n→∞

t(φ(qn))qn, since pn ≥ t(φ(qn))qn

= lim
n→∞

sup
m≥n

t(φ(qkm))qkm

= lim
n→∞

sup
m≥n

t(φ(qkm)) lim
m→∞

qkm

= lim
n→∞

t( inf
m≥n

φ(qkm)) lim
m→∞

qkm , since t is nonincreasing and continuous

= t(lim inf
m→∞

φ(qkm)) lim
m→∞

qkm , by continuity of t

≥ t(φ(q))q,
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since φ(q) ≥ lim supm→∞ φ(qkm) ≥ lim infm→∞ φ(qkm) by upper semicontinuity of

φ, and t is nonincreasing.

It remains to show that φ(q) > 0. To that end, suppose for the purpose of

contradiction that φ(q) = 0. Then it must be the case that limm→∞ φ(qkm) =

0, since if there exists an ε > 0 such that limm→∞ φ(qkm) ≥ ε, then by upper

semicontinuity of φ it must be the case that φ(q) ≥ ε. Since limx→0+ t(x) =∞, we

have that limm→∞ t(φ(qkm)) = ∞. However, recall that pn ≥ t(φ(qn))qn for all n.

Since qn ∈ ∆(S) and hence does not vanish, pn cannot be a convergent sequence.

Hence it must be the case that φ(q) > 0.

Therefore, p ∈ V t◦φ, as required, and that V t◦φ is closed. The same argument

shows that V t◦φ′ is closed.

Without loss of generality, let q ∈ V t◦φ′\V t◦φ. Since V t◦φ and {q} are closed,

convex, and disjoint, and {q} is compact, the separating hyperplane theorem

[Rockafellar 1970] says that there exists θ ∈ R|S| and c ∈ R such that

θ · p > c for all p ∈ V t◦φ, and θ · q < c. (B.5)

By scaling c appropriately, we can assume that |θ(s)| ≤ 1 for all s ∈ S. Now we

argue that it must be the case that θ(s) ≥ 0 for all s ∈ S (so that θ corresponds to

the utility profile of some act with nonnegative utilities). Suppose that θ(s′) < 0

for some s′ ∈ S. By (C.4), θ · p > c for all p ∈ V t◦φ. Let p∗ ∈ V t◦φ be any measure

with φ(p∗) = 1, and let p∗∗ ∈ V t◦φ be defined by

p∗∗(s) =


p∗(s), if s 6= s′

|S|max{|c|,maxs′′∈S |p∗(s′′)|}
|θ(s′)| , if s = s′.

We have defined p∗∗ such that p∗∗ ≥ p∗, since for all s ∈ S, p∗∗(s) ≥ p∗(s). To see

how, note that p∗∗(s) = p∗(s) for s 6= s′, and p∗∗(s) ≥ maxs′′∈S |p∗(s′′)| ≥ p∗(s) for
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s = s′. Therefore, p∗∗ is in V t◦φ.

Our definition of p∗∗ also ensures that θ · p∗∗ =
∑

s∈S p
∗∗(s)θ(s) ≤ c, since∑

s∈S

p∗∗(s)θ(s) =p∗∗(s′)θ(s′) +
∑
s 6=s′

p∗∗(s)θ(s)

≤p∗∗(s′)θ(s′) +
∑
s 6=s′
|p∗∗(s)|, since |θ(s)| ≤ 1

=− |S|max{|c|,max
s′′∈S
|p∗(s′′)|}+

∑
s 6=s′
|p∗∗(s)|

≤−|c| ≤ c.

This contradicts (C.4), which says that θ · p > c for all p ∈ V t◦φ. Thus it must be

the case that θ(s) ≥ 0 for all s ∈ S.

Consider the θ given by the separating hyperplane theorem, and let f be an

act such that u◦f = θ. f ∼ l∗d for some constant act l∗d. Since V t◦φ and V t◦φ′ as sets

of generalized probabilities both represent �, and V t◦φ and V t◦φ′ both contain a

normal probability measure,

min
p∈V t◦φ

p · (u ◦ f) = min
p∈V t◦φ

p · (u ◦ l∗d) = d = min
p∈V t◦φ′

p · (u ◦ f).

However, by (C.4),

min
p∈V t◦φ

p · (u ◦ f) > c > min
p∈V t◦φ′

p · (u ◦ f),

which is a contradiction.

B.4 Proof of Theorem 3.6.7

Proof. The proof is almost the same as the proof of Theorem 4.5.3. We point

out the differences, which are mostly straightforward adaptations from B+ to
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B−. Lemma B.3.1 and Lemma B.3.2 hold without change. By Axiom 3.8, we can

assume that the maximum value that u takes on is 0, and by Axiom 3.1 we can

assume that the minimum is no greater than −1.

We now define a functional I on utility acts, as before. All occurrences of

B+ in the proof of Theorem 4.5.3 needs to be replaced by B−, defined by the

real-valued functions b on S where b(s) ≤ 0 for all s ∈ S.

More specifically, let

Rf = {α′ : l∗α′ � f}.

If 0∗ ≥ b ≥ (−1)∗, then fb exists, and we define

I(b) = sup(Rfb).

For the remaining utility acts b ∈ B+, we extend I by homogeneity, as before.

The analog of Lemma B.3.3 for bf ∈ B− follows from analogous arguments

used in the original proof. The case of l∗I(bf ) ≺ f , however, is a bit simpler than

for the positive case.

Lemma B.4.1. If bf ∈ B−, then f ∼ l∗I(bf ).

Proof. Suppose, by way of contradiction, that l∗I(bf ) ≺ f . If f ∼ l∗0, then I(bf ) ≥ 0

by the definition of I . However, we also have I(bf ) ≤ 0 by Lemma B.3.4, so

I(bf ) = 0, and therefore f ∼ l∗I(bf ), as required. Otherwise, f ≺ l∗0 by mono-

tonicity, so l∗I(bf ) ≺ f ≺ l∗0, which, when taken together with mixture continuity,

contradicts the definition of I .

The proof of Lemma B.3.4 still holds. The analog of Lemma B.3.5 also follows

from simular arguments; we discuss some key differences below.
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Lemma B.4.2. (a) If c ≤ 0, then I(c∗) = c.

(b) I satisfies positive homogeneity: if b ∈ B− and c > 0, then I(cb) = cI(b).

(c) I is monotonic: if b, b′ ∈ B− and b ≥ b′, then I(b) ≥ I(b′).

(d) I is continuous: if b, b1, b2, . . . ∈ B−, and bn → b, then I(bn)→ I(b).

(e) I is superadditive: if b, b′ ∈ B−, then I(b+ b′) ≥ I(b) + I(b′).

Proof. For part (b), instead of making use of Axiom 3.4 (worst independence),

we use Axiom 3.8 (best independence).

For part (e), note that since I(b) is nonpositive for b ∈ B−, I( b
I(b)

) is not de-

fined, unlike in the case of nonnegative utilities. We use the same proof as in

[Halpern and Leung 2012]: Clearly, I( b
−I(b)) = −1. Therefore, f b

−I(b)
∼ f b′

−I(b′)
∼

l∗−1. From Axiom 5.9 (ambiguity aversion), taking p = −I(b)
−I(b)−I(b′) , we have

I

( −I(b)

−I(b)− I(b′)

b

−I(b)
+

−I(b′)

−I(b)− I(b′)

b′

−I(b′)

)
≥ I(

b

−I(b)
) = −1,

which implies that I(b+ b′) ≥ I(b) + I(b′), as required.

We now use I to define a confidence function φ. WE ,E , and E are defined

as before. For each probability p ∈ ∆(S), define

φt(p) = sup{α ∈ R : I(b) ≤ αEp(b) for all b ∈ B−}.

Note that φt(p) ≤ 1, since Ep((c)
∗) = I((c)∗) = c for all distributions p and c ∈ R.

Moreover, φt(p) ≥ 0 for all b ∈ B−. The next lemma shows that there exists a

probability p where we have equality. The proof of the lemma is similar to that

of Lemma B.3.6, and is left to the reader.

Lemma B.4.3. (a) For some distribution p, we have φt(p) = 1.
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(b) For all b ∈ B−, there exists p such that φt(p)Ep(b) = I(b).

By Lemma B.4.3 and the definition of φt(p), for all b ∈ B−,

I(b) = inf
p∈∆(S)

φt(p)Ep(b).

We have f � g

iff inf
p∈∆(S)

(
φt(p)

∑
s∈S

u(f(s))p(s)

)
≥ inf

p∈∆(S)

(
φt(p)

∑
s∈S

u(g(s))p(s)

)

iff t(1) inf
p∈∆(S)

(
φt(p)

∑
s∈S

u(f(s))p(s)

)
≥ t(1) inf

p∈∆(S)

(
φt(p)

∑
s∈S

u(g(s))p(s)

)
.

Since t is strictly increasing, t(1) > t(0). Therefore, since φt(p) ∈ [0, 1] and t(0) ≤

0, t(1)φt(p) is in the range of t, and we can define

φ(p) = t−1(t(1)φt(p)).

We now have f � g

iff inf
p∈∆(S)

(
t(φ(p))

∑
s∈S

u(f(s))p(s)

)
≥ inf

p∈∆(S)

(
t(φ(p))

∑
s∈S

u(g(s))p(s)

)
.

Finally, uniqueness of the representation follows from arguments analogous

to those for nonnegative utilities.
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APPENDIX C

PROOFS FOR CHAPTER 4

C.1 Proof of Theorem 4.5.1

We restate the theorem (and elsewhere in the appendix) for the reader’s conve-

nience.

THEOREM 4.5.1. For a dynamic decision problem D, if and µ(h) = M for some

fixed menu M , then there will be no preference reversals in D.

Proof. Before proving the result, we need some definitions. Say that an infor-

mation set I refines an information set I ′ if, for all h ∈ I , some prefix h′ of h is

in I ′. Suppose that there is a history h such that f, g ∈ Mh and I(h) = I . Let

fIg denote the plan that agrees with f at all histories h′ such that I(h′) refines I

and agrees with g otherwise. As we now show, fIg gives the same outcome as

f on states in E = E(h) and the same outcome as g on states in Ec; moreover,

fIg ∈Mh.

Suppose that s(h) = s and that s ∈ E. Since E(h) = E, there exists a history

h′ ∈ I(h) such that s(h′) = s′ and R(h′) = R(h). Since f, g ∈Mh, there must exist

some k such that fk(〈s〉) = gk(〈s〉) = h (where, as usual, f 0(〈s〉) = 〈s〉 and for

k′ ≥ 1, fk′(〈s〉) = f(fk
′−1(〈s〉))). We claim that for all k′ ≤ k, fk′(〈s′〉) = gk

′
(〈s′〉),

and fk′(〈s′〉) is in the same information set as fk′(〈s〉). The proof is by induction

on k′. If k′ = 0, the result follows from the observation that since 〈s〉 is a prefix

of h, there must be some prefix of h′ in I(〈s〉). For the inductive step, suppose

that k′ ≥ 1. We must have fk′(〈s〉) = gk
′
(〈s〉) (otherwise g would not be in
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Mh). Since gk′−1(〈s〉) = fk
′−1(〈s〉) and fk

′−1(〈s′〉) = gk
′−1(〈s′〉) are in the same

information set, by the inductive hypothesis, g must perform the same action

at gk′−1(〈s〉) and gk
′−1(〈s′〉), and must perform the same action at fk′−1(〈s〉) and

fk
′−1(〈s′〉). Since gk′(〈s〉) and fk

′
(〈s〉) are both prefixes of h, g and f perform the

same action at fk′−1(〈s〉) = gk
′−1(〈s〉). It follows that f and g perform the same

action at fk′−1(〈s′〉) = gk
′−1(〈s′〉), and so fk′(〈s′〉) = gk

′
(〈s′〉). Thus, gk′(〈s′〉) must

be a prefix of h′, and so must be in the same information set as fk′(〈s〉). This

completes the inductive proof.

Since fk(〈s′〉) = gk(〈s′〉) = h′, it follows that fk(〈s′〉) = (fIg)k(〈s′〉). Below

I , all the information sets are refinements of I , so by definition, for k′ ≤ k, we

must fk′(〈s′〉) = (fIg)k
′
(〈s′〉). Thus, f and fIg give the same outcome for s′, and

hence all states in E. Note it follows that (fIg)k(〈s〉) = h, so fIg ∈Mh.

For s′ /∈ E and all k′, it cannot be the case that I((fIg)k
′
(〈s′〉)) is a refinement

of I , since the first state in (fIg)k
′
(〈s′〉)) is s′, and no history in a refinement of I

has a first state of s′. Thus, fIgk′(〈s′〉) = gk
′
(〈s′〉) for all k′, so f and fIg give the

same outcome for s′, and hence all states in Ec.

Returning to the proof of the proposition, suppose that f ∈ Cµ,h(Mh), h′ is a

history extending h, and f ∈Mh′ . We want to show that f ∈ Cµ,h′(Mh′). By per-

fect recall, E(h′) ⊆ E(h). Suppose, by way of contradiction, that f /∈ Cµ,h′(Mh′).

Since f ∈ Cµ,h′(Mh′), we cannot have E(h′) = E(h), so E(h′) ⊂ E(h). Choose

f ′ ∈ Cµ,E(h′)(Mh′) and g ∈ Cµ,E(h′)c∩E(h)(Mh′) (note that Cµ,E(h′)(Mh′) 6= ∅ and

Cµ,E(h′)c∩E(h)(Mh′) 6= ∅ by Axiom 3). Since f ′, g ∈ Mh′ (by Axiom 3), f ′I(h′)g

is in Mh′ . Since f ′I(h′)g and f ′, when viewed as acts, agree on states in E(h′),

we must have f ′I(h′)g ∈ Cµ,E(h′)(Mh′) by Axiom 4.2. Similarly, since f ′I(h′)g

and g, when viewed as acts, agree on states in E(h′)c ∩ E(h), we must have
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f ′I(h′)g ∈ Cµ,E(h′)c∩E(h)(Mh′). Therefore, by Axiom 4.1, f ′I(h′)g ∈ Cµ,h(Mh′).

Also by Axiom 4.1, since f /∈ Cµ,h′(Mh′), we must have f /∈ Cµ,h(Mh′). By Ax-

iom 4.4, this implies that f /∈ Cµ,h(Mh) (since Mh′ ⊆ Mh), giving us the desired

contradiction.

C.2 Proof of Theorem 4.5.3

THEOREM 4.5.3. If P+ is a set of weighted distributions on (S,Σ) such thatC(P+)

is closed, then the following are equivalent:

(a) For all decision problems D based on (S,Σ) and all menus M in D, Axioms 4.1–

4.4 hold for choice functions represented by P+|lE (resp., P+|pE).

(b) For all decision problems D based on (S,Σ), states s ∈ S, and acts f ∈ M〈s〉, the

weighted regret of f with respect to M〈s〉 and P+ is separable.

We actually prove the following stronger result.

Theorem C.2.1. If P+ is a set of weighted distributions on (S,Σ) such that C(P+) is

closed, then the following are equivalent:

(a) For all decision problems D based on (S,Σ), Axioms 4.1–4.4 hold for menus of

the form M〈s〉 for choice functions represented by P+|lE (resp., P+|pE).

(b) For all decision problems D based on (S,Σ) and all menus M in D, Axioms 4.1–

4.4 hold for choice functions represented by P+|lE (resp., P+|pE).

(c) For all decision problems D based on (S,Σ), states s ∈ S, and acts f ∈ M〈s〉, the

weighted regret of f with respect to M〈s〉 and P+ is separable.
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(d) For all decision problems D based on (S,Σ), menus M in D, and acts f ∈M, the

weighted regret of f with respect to M and P+ is separable.

Proof. Fix an arbitrary state space S, measurable events E,F ⊆ S, and a set P+

of weighted distributions on (S,Σ). The fact that (b) implies (a) and (d) implies

(c) follows immediately. Therefore, it remains to show that (a) implies (d) and

that (c) implies (b).

Since the proof is identical for prior-by-prior updating (|p) and for likelihood

updating (|l), we use | to denote the updating operator. That is, the proof can be

read with | denoting |p, or with | denoting |l.

To show that (a) implies (d), we first show that Axiom 4.1 implies that for

all decision problems D based on (S,Σ), menu M in D, sets P+ of weighted

probabilities, and acts f ∈M,

reg
P+|F
M (f) ≥ sup

(Pr,α)∈P+

α
(

Pr(E ∩ F )reg
P+|(E∩F )
M (f) + Pr(Ec ∩ F )reg

P+|(Ec∩F )
M (f)

)
.

(C.1)

Suppose, by way of contradiction, that (C.1) does not hold. Then for some de-

cision problem D based on (S,Σ), measurable events E,F ⊆ S, menu M in D,

and act f ∈M , we have that

reg
P+|F
M (f) < sup

(Pr,α)∈P+

α
(

Pr(E ∩ F )reg
P+|(E∩F )
M (f) + Pr(Ec ∩ F )reg

P+|(Ec∩F )
M,F (f)

)
.

We define a new decision problem D′ based on (S,Σ). The idea is that in D′,

we will have a plan af ′ such that af ′ ∈ Creg,P+

M ′,E∩F (M ′′) and af ′ ∈ Creg,P+

M ′,Ec∩F (M ′′)

and af ′ /∈ Creg,P+

M ′,F (M ′′) for some M ′′ ⊆ M ′, where M ′ is the menu at the initial

decision node for the DM.

We construct D′ as follows. D′ is a depth-two tree; that is, nature makes a
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single move, and then the DM makes a single move. At the first step, nature

choose a state s ∈ F . At the second step, the DM chooses from the set {ag :

g ∈ M} ∪ {af ′} of actions. With a slight abuse of notation, we let ag also denote

the plan in T ′ that chooses the action ag at the initial history 〈s〉. Therefore, the

initial menu in decision problem D′ is M ′ = {ag : g ∈M} ∪ {af ′}.

The utilities for the actions/plans in D′ are defined as follows. For actions

{ag : g ∈M}, the utility of ag in state s is just the utility of the outcome resulting

from applying plan g in state s in decision problemD. The action af ′ has utilities

u(af ′(s)) =


supg∈M u(g(s))− reg

P+|(E∩F )
M (f) if s ∈ E ∩ F

supg∈M u(g(s))− reg
P+|(Ec∩F )
M (f) if s ∈ Ec ∩ F.

For all states s ∈ F , we have that u(af ′(s)) ≤ supg∈M u(g(s)). As a result, for

all states s ∈ F , we have that

sup
g∈M

u(g(s)) = sup
ag∈M ′

u(ag(s)).

Since the regret of a plan in state s depends only on its payoff in s and the best

payoff in s, it is not hard to see that the regrets of ag with respect to M ′ is the

same as the regret of g with respect to M . More precisely, for all g ∈M ,

reg
P+|(E∩F )
M ′ (ag) = reg

P+|(E∩F )
M (g),

reg
P+|(Ec∩F )
M ′ (ag) = reg

P+|(Ec∩F )
M (g), and

reg
P+|F
M ′ (ag) = reg

P+|F
M (g).

By definition of af ′ , for each state s ∈ E ∩ F , we have regM ′(af ′ , s) =

reg
P+|(E∩F )
M (f), and for each state s ∈ Ec ∩ F , we have regM ′(af ′ , s) =

reg
P+|(Ec∩F )
M (f). Thus, for all Pr ∈ P , if Pr(E ∩ F ) 6= 0, then reg

Pr |(E∩F )
M (f) =

reg
P+|(E∩F )
M (f), and if Pr(Ec ∩ F ) 6= 0, then reg

Pr |(Ec∩F )
M (f) = reg

P+|(Ec∩F )
M (f).
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If for all (Pr, α) ∈ P+|(E ∩ F ), αPr(E ∩ F ) = 0, then reg
P+|(E∩F )
M ′ (af ′) =

reg
P+|(E∩F )
M ′ (af ) = 0. Otherwise, since there is some measure in P+|(E ∩ F )

that has weight 1, we must have reg
P+|(E∩F )
M ′ (af ′) = reg

P+|(E∩F )
M ′ (af ). Similarly,

reg
P+|(Ec∩F )
M ′ (af ′) = reg

P+|(Ec∩F )
M ′ (af ). Thus,

reg
P+|F
M ′ (af ′) = sup(Pr,α)∈P+ α

(
Pr(E ∩ F )reg

P+|(E∩F )
M (f) + Pr(Ec ∩ F )reg

P+|(Ec∩F )
M (f)

)
> reg

P+|F
M (f) [by assumption]

= reg
P+|F
M ′ (af ) [by construction].

Therefore, we have af ′ ∈ Creg,P+

M ′,E∩F ({af ′ , af}), af ′ ∈ Creg,P+

M ′,Ec∩F ({af ′ , af}), and af ′ /∈

Creg,P+

M ′,F ({af ′ , af}), violating Axiom 4.1.

By an analogous argument, we show that the opposite weak inequality,

reg
P+|F
M (f) ≤ sup

(Pr,α)∈P+

α
(

Pr(E ∩ F )reg
P+|(E∩F )
M (f) + Pr(Ec ∩ F )reg

P+|(Ec∩F )
M (f)

)
,

(C.2)

is also implied by Axiom 4.1. Suppose, by way of contradiction, that (C.2) does

not hold. Then for some decision problemD based on (S,Σ), measurable events

E,F ⊆ S, menu M in D, and act f ∈M , we have that

reg
P+|F
M (f) > sup

(Pr,α)∈P+

α
(

Pr(E ∩ F )reg
P+|(E∩F )
M (f) + Pr(Ec ∩ F )reg

P+|(Ec∩F )
M,F (f)

)
.

We define a decision problem D′ based on (S,Σ) just as in the previous

case. Specifically, we have that reg
P+|(E∩F )
M ′ (af ′) = reg

P+|(E∩F )
M ′ (af ), and that

reg
P+|(Ec∩F )
M ′ (af ′) = reg

P+|(Ec∩F )
M ′ (af ). The one difference from the previous case is

that we now have

reg
P+|F
M ′ (af ′) = sup(Pr,α)∈P+ α

(
Pr(E ∩ F )reg

P+|(E∩F )
M (f) + Pr(Ec ∩ F )reg

P+|(Ec∩F )
M (f)

)
< reg

P+|F
M (f) [by assumption]

= reg
P+|F
M ′ (af ) [by construction].
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Therefore, we have af ∈ Creg,P+

M ′,E∩F ({af ′ , af}), af ∈ Creg,P+

M ′,Ec∩F ({af ′ , af}), and af /∈

Creg,P+

M ′,F ({af ′ , af}), violating Axiom 4.1.

To complete the proof that (a) implies (d), we show that Axiom 4.1 also im-

plies that for all decision problems D based on (S,Σ), menus M in D, sets P+ of

weighted probabilities, and acts f ∈M , if regP
+|(E∩F )

M (f) > 0, then

reg
P+|F
M (f) > sup

(Pr,α)∈P+

αPr(Ec ∩ F )reg
P+|(Ec∩F )
M (f). (C.3)

Suppose, by way of contradiction, that (C.3) does not hold. Then for some deci-

sion problem D based on (S,Σ), events E,F ⊆ S, menu M in D, and act f ∈ M

such that regP
+|(E∩F )

M (f) > 0 and

reg
P+|F
M (f) ≤ sup

(Pr,α)∈P+

αPr(Ec ∩ F )reg
P+|(Ec∩F )
M (f).

We now define a new decision problem D′ based on (S,Σ). The idea is that in

D′, we have a plan af such that af /∈ Creg,P+

M,E∩F (M ′) but af ∈ Creg,P+

M,F (M ′) for some

M ′ ⊆M .

ConstructD′ exactly as before. That is, in the first step, nature chooses a state

s ∈ S, and in the second step, the DM chooses from the set of actions/plans

M ′ = {ag : g ∈ M} ∪ {ag′}. For each g ∈ M , define the actions ag as before. We

define a new action ag′ with utilities

u(ag′(s)) =


supg∈M u(g(s)), if s ∈ E ∩ F

supg∈M u(g(s))− reg
P+|(Ec∩F )
M (f), if s ∈ Ec ∩ F.

It is almost immediate from the definition of ag′ that we have

reg
P+|F
M ′ (ag′) = sup

(Pr,α)∈P+

α
(

Pr(Ec ∩ F )reg
P+|(Ec∩F )
M (f)

)
≥ reg

P+|F
M ′ (af ).
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However, we also have

reg
P+|(E∩F )
M ′ (ag) = 0 < reg

P+|(E∩F )
M ′ (af ).

Therefore, we have af /∈ Creg,P+

M ′,E∩F ({ag′ , af}) but af ∈ Creg,P+

M ′,F ({ag′ , af}), violating

Axiom 4.1.

We next show that (c) implies (b). Specifically, we show that SEP for the ini-

tial menus of all decision problems D is sufficient to guarantee that Axioms 4.1–

4.4 hold for menu M and all choice sets M ′ ⊆ M . It is easy to check that Ax-

ioms 4.2–4.4 hold for MWER, so we need to check only Axiom 4.1.

Consider an arbitrary decision problem D, menu M in D, M ′ ⊆ M , and

a plan f in M ′. We construct a new decision problem D′ such that the initial

menu of D′ is “equivalent” to M . Just as before, let D′ be a two-stage decision

problem where in the first stage, nature chooses s ∈ S, and in the second stage,

the DM chooses from the set M0 = {ag : g ∈ M}, where ag is defined as before.

Again, we associate each action ag with the plan that chooses ag in D′. M0 is

then “equivalent” to M in the sense that

reg
P+|(E∩F )
M0

(ag) = reg
P+|(E∩F )
M (g),

reg
P+|(Ec∩F )
M0

(ag) = reg
P+|(Ec∩F )
M (g), and

reg
P+|F
M0

(ag) = reg
P+|F
M (g).

Suppose that f ∈ Creg,P+

M,E∩F (M ′) and f ∈ Creg,P+

M,Ec∩F (M ′). This means that for

all g ∈ M ′, we have reg
P+|(E∩F )
M0

(af ) ≤ reg
P+|(E∩F )
M0

(ag) and reg
P+|(Ec∩F )
M0

(af ) ≤
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reg
P+|(Ec∩F )
M0

(ag). Therefore, we have

reg
P+|F
M (f) = reg

P+|F
M0

(af )

= sup
(Pr,α)∈P+

α
(

Pr(E ∩ F )reg
P+|(E∩F )
M0

(af ) + Pr(Ec ∩ F )reg
P+|(Ec∩F )
M0

(af )
)

≤ sup
(Pr,α)∈P+

α
(

Pr(E ∩ F )reg
P+|(E∩F )
M0

(ag) + Pr(Ec ∩ F )reg
P+|(Ec∩F )
M0

(ag)
)

= reg
P+|F
M (g),

which means that f ∈ Creg,P+

M,F (M ′), as required.

Next, consider an act g ∈ M ′ such that g /∈ Creg,P+

M,E∩F (M ′). This means that

reg
P+|(E∩F )
M0

(af ) < reg
P+|(E∩F )
M0

(ag) and reg
P+|(Ec∩F )
M0

(af ) ≤ reg
P+|(Ec∩F )
M0

(ag). Let

(αPr∗ ,Pr∗) ∈ C(P+) be such that

αPr∗(Pr∗(E ∩ F )reg
P+|(E∩F )
M0

(ag) + Pr∗(Ec ∩ F )reg
P+|(Ec∩F )
M0

(ag)

= sup(Pr,α)∈P+ α
(

Pr(E ∩ F )reg
P+|(E∩F )
M0

(ag) + Pr(Ec ∩ F )reg
P+|(Ec∩F )
M0

(ag)
)
.

Such a pair (αPr∗ ,Pr∗) exists, since we have assumed that C(P+) is closed. If

αPr∗Pr∗(E∩F ) = 0, then reg
P+|F
M0

(ag) = sup(Pr,α)∈P+ α
(

Pr(Ec ∩ F )reg
P+|(Ec∩F )
M0

(ag)
)

.

By separability, it must be the case that regP
+|(E∩F )

M0
(ag) = 0, contradicting our as-

sumption that 0 ≤ reg
P+|(E∩F )
M0

(af ) < reg
P+|(E∩F )
M0

(ag). Therefore, it must be that

αPr∗ Pr∗(E ∩ F ) > 0, and

reg
P+|F
M (f) = reg

P+|F
M0

(af )

= sup
(Pr,α)∈P+

α
(

Pr(E ∩ F )reg
P+|(E∩F )
M0

(af ) + Pr(Ec ∩ F )reg
P+|(Ec∩F )
M0

(af )
)

< sup
(Pr,α)∈P+

α
(

Pr(E ∩ F )reg
P+|(E∩F )
M0

(ag) + Pr(Ec ∩ F )reg
P+|(Ec∩F )
M0

(ag)
)

= reg
P+|F
M (g),

which means that g /∈ Creg,P+

M,F (M ′).
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C.3 Proof of Theorem 4.5.5

To prove Theorem 4.5.5, we need the following lemma.

Lemma C.3.1. For all utility functions u, sets P+ of weighted probabilities, acts f , and

menus M containing f , regP+

M (f) = reg
C(P+)
M (f).

Proof. Simply observe that

regP
+

M (f) = sup
(Pr,α)∈P+

(
α
∑
s∈S

Pr(s)regM(f, s)

)

= sup
(Pr,α)∈P+

(∑
s∈S

αPr(s)regM(f, s)

)

= sup
{p: p≤αPr,(Pr,α)∈P+}

(∑
s∈S

p(s)regM(f, s)

)

= reg
C(P+)
M (f),

by definition.

The next lemma uses an argument almost identical to one used in Lemma 7

of [Halpern and Leung 2012].

Lemma C.3.2. IfC(P+|χF ) is convex and q is a subprobability on F not inC(P+|χF ),

then there exists a non-negative vector θ such that for all (Pr, α) ∈ P+|χF , we have

∑
s∈F

αPr(s)θ(s) <
∑
s∈F

q(s)θ(s).

Proof. Given a set P+ of weighted probabilities, let C ′(P+) = {p : p ∈

R|S| and p ≤ αPr for some (Pr, α) ∈ P+}. Note that an element q ∈ C ′(P+) may

not be a subprobability measure, since we do not require that q(s) ≥ 0. Since
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C ′(P+|χF ) and {q} are closed, convex, and disjoint, and {q} is compact, the sep-

arating hyperplane theorem [Rockafellar 1970] says that there exist θ ∈ R|S| and

c ∈ R such that

θ · p < c for all p ∈ C ′(P+|χF ), and θ · q > c. (C.4)

Since {αPr : (Pr, α) ∈ P+|χF} ⊆ C ′(P+|χF ), we have that for all (Pr, α) ∈

P+|χF , ∑
s∈F

αPr(s)θ(s) <
∑
s∈F

q(s)θ(s).

Now we argue that it must be the case that θ(s) ≥ 0 for all s ∈ F . Suppose that

θ(s′) < 0 for some s′ ∈ F . Define p∗ by setting

p∗(s) =


0, if s 6= s′

−|c|
|θ(s′)| , if s = s′.

Note that p∗ ≤ ~0, since for all s ∈ S, p∗(s) ≤ 0. Therefore, p∗ ∈ C ′(P+|χF ).

Our definition of p∗ also ensures that θ · p∗ =
∑

s∈S p
∗(s)θ(s) = p∗(s′)θ(s′) =

|c| ≥ c. This contradicts (C.4), which says that θ · p < c for all p ∈ C ′(P+|χF ).

Thus it must be the case that θ(s) ≥ 0 for all s ∈ S.

We are now ready to prove Theorem 4.5.5, which we restate here.

THEOREM 4.5.5. If C(P+) is closed and convex, then Axiom 4.1 holds for the fam-

ily of choices Creg,P+|χE
M if and only if P+ is χ-rectangular.

We prove the two directions of implication in the theorem separately. Note

that the proof that χ-rectangularity implies Axiom 4.1 does not require C(P+)

to be convex.
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Claim C.3.3. If P+ is χ-rectangular, then Axiom 4.1 holds for the family of choices

C
reg,P+|χE
M .

Proof. By Theorem 4.5.3, it suffices to show that SEP holds. For the first part of

SEP, we must show that

reg
P+|χF
M (f) = sup

(Pr,α)∈P+|χF
α
(

Pr(E ∩ F )reg
P+|χ(E∩F )
M (f) + Pr(Ec ∩ F )reg

P+|χ(Ec∩F )
M (f)

)
.

(C.5)

Unwinding the definitions, (C.5) is equivalent to

reg
P+|χF
M (f)

= sup(Pr3,α3)∈P+|χF αPr3

(
Pr3(E ∩ F ) sup(Pr1,α1)∈P+|χF α

χ
1,E∩F

∑
s∈E∩F Pr1(s|(E ∩ F ))regM(f, s))

+ Pr3(Ec ∩ F ) sup(Pr2,α2)∈P+|χF α
χ
2,Ec∩F

∑
s∈Ec∩F Pr2(s|(Ec ∩ F ))regM(f, s))

)
.

The sups in this expression are taken on by some (Pr∗1, α
∗
1), (Pr∗2, α

∗
2), (Pr∗3, α

∗
3) ∈

P+|χF . By χ-rectangularity, we have that for all (Pr1, α1), (Pr2, α2), (Pr3, α3) ∈

P+|χF ,

αPr3Pr3(E ∩ F )αχ1,E∩FPr1|(E ∩ F ) + αPr3Pr3(Ec ∩ F )αχ2,Ec∩FPr2|(Ec ∩ F ) ∈ C(P+|χF ).

(C.6)

Thus, for all ε > 0,

reg
P+|χF
M (f)

= reg
C(P+|χF )
M (f) [by Lemma C.3.1]

≥ α∗3
(
Pr∗3(E ∩ F )(α∗1,E∩F )χ

∑
s∈E∩F Pr∗1(s|(E ∩ F ))regM(f, s))

+ Pr∗3(Ec ∩ F )(α∗2,Ec∩F )χ
∑

s∈Ec∩F Pr∗2(s|(Ec ∩ F ))regM(f, s))
)
− ε [by (C.6)].
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Therefore,

reg
P+|χF
M (f)

≥ α∗3
(
Pr∗3(E ∩ F )(α∗1,E∩F )χ

∑
s∈E∩F Pr∗1(s|(E ∩ F ))regM(f, s))

+ Pr∗3(Ec ∩ F )(α∗2,Ec∩F )χ
∑

s∈Ec∩F Pr∗2(s|(Ec ∩ F ))regM(f, s))
)

= sup(Pr3,α3)∈P+|χF α3

(
Pr3(E ∩ F ) sup(Pr1,α1)∈P+|χF α

χ
1,E∩F

∑
s∈E∩F Pr1(s|(E ∩ F ))regM(f, s))

+ Pr3(Ec ∩ F ) sup(Pr2,α2)∈P+|χF α
χ
2,Ec∩F

∑
s∈Ec∩F Pr2(s|(Ec ∩ F ))regM(f, s))

)
[by the choice of (Pr∗i , α

∗
i ), i = 1, 2, 3]

= sup(Pr,α)∈P+|χF α
(

Pr(E ∩ F )reg
P+|χ(E∩F )
M (f) + Pr(Ec ∩ F )reg

P+|χ(Ec∩F )
M (f)

)
,

as required.

It remains to show the opposite inequality in (C.5), namely, that

reg
P+|χF
M (f) ≤ sup

(Pr,α)∈P+|χF
α
(

Pr(E ∩ F )reg
P+|χ(E∩F )
M (f) + Pr(Ec ∩ F )reg

P+|χ(Ec∩F )
M (f)

)
.

It suffices to note that the right-hand side is equal to

sup(Pr,α)∈P+|χF
(
αPr(E ∩ F ) sup(Pr1,α1)∈P+|χF α

χ
1,E∩F

∑
s∈E∩F Pr1(s|E ∩ F )regM(f, s))

+αPr(Ec ∩ F ) sup(Pr2,α2)∈P+|χF α
χ
2,Ec∩F

∑
s∈Ec∩F Pr2(s|Ec ∩ F )regM(f, s))

)
≥ EP+|χF (regM(f)) [by rectangularity]

= reg
P+|χF
M (f).

This completes the proof that (C.5) holds.

For the second part of SEP, suppose thatP+
(E∩F ) > 0 and reg

P+|χ(E∩F )
M (f) 6=

0. If regP
+|χ(Ec∩F )

M (f) = 0 then, since P+
(E ∩ F ) > 0, we have that regP

+|χF
M (f) >

0 = sup(Pr,α)∈P+|χF αPr(E
c ∩ F )reg

P+|χ(Ec∩F )
M (f), as desired. Otherwise, by part

(b) of χ-rectangularity, for all δ > 0, there exists (Pr, α) ∈ P+|χF such that

α(δ Pr(E ∩ F ) + Pr(Ec ∩ F )) > sup(Pr′,α′)∈P+ α′ Pr′(Ec ∩ F ). Therefore, using the
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first part of SEP, we have

reg
P+|χ(E∩F )
M (f)

= sup(Pr,α)∈P+|χF α
(

Pr(E ∩ F )reg
P+|χ(E∩F )
M (f) + Pr(Ec ∩ F )reg

P+|χ(Ec∩F )
M (f)

)
= reg

P+|χ(Ec∩F )
M (f) sup(Pr,α)∈P+|χF α

(
Pr(E ∩ F )

reg
P+|χ(E∩F )
M (f)

reg
P+|χ(Ec∩F )
M (f)

+ Pr(Ec ∩ F )

)
> reg

P+|χ(Ec∩F )
M (f) sup(Pr,α)∈P+|χF αPr(E

c ∩ F ) [by part (b) of χ-rectangularity]

= sup(Pr,α)∈P+|χF αPr(E
c ∩ F )reg

P+|χ(Ec∩F )
M (f),

as required.

Claim C.3.4. If C(P+) is convex and Axiom 4.1 holds for the family of choices

C
reg,P+|χE
M , then P+ is χ-rectangular.

Proof. Suppose that χ-rectangularity does not hold. Then one of the three con-

ditions of rectangularity must fail.

First suppose that it is (a); that is, for some (Pr1, α1), (Pr2, α2), (Pr3, α3) ∈ P+,

we have Pr1(E ∩ F ) > 0 and Pr2(Ec ∩ F ) > 0 and

α3Pr3(E∩F )αχ1,E∩FPr1|(E∩F )+α3Pr3(Ec∩F )αχ2,Ec∩FPr2|(Ec∩F ) /∈ C(P+)|χF .

Let p∗ = α3Pr3(E ∩ F )αχ1,E∩FPr1|(E ∩ F ) + α3Pr3(Ec ∩ F )αχ2,Ec∩FPr2|(Ec ∩ F ).

Since we have assumed that C(P+) is convex, we have that C(P+|χF ) is also

convex. By Lemma C.3.2, there exists a non-negative vector θ such that for all

αPr ∈ C(P+|χF ), we have

∑
s∈F

αPr(s)θ(s) <
∑
s∈F

p∗(s)θ(s).

We construct a decision problem D based on (S,Σ). D has two stages: in

the first stage, nature chooses a state s ∈ S, but only states in F ⊆ S are chosen

with positive probability, so when the DM plays, his beliefs are characterized by
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P+|χF . In the second stage, the DM chooses an action from the set M = {f, g},

with utilities defined as follows:

u(f, s) = −θ(s), and

u(g, s) = 0 for all s.

The act f will have regret precisely θ(s) in state s ∈ S. By Lemma C.3.2,

sup(Pr,α)∈P+ α
(

Pr(E ∩ F )reg
P+|χ(E∩F )
M (f) + Pr(Ec ∩ F )reg

P+|χ(Ec∩F )
M (f)

)
≥ αPr3

(
Pr3(E ∩ F )reg

αχ1,E∩F Pr1 |(E∩F )

M (f) + Pr(Ec ∩ F )reg
αχ2,Ec∩F Pr2 |(Ec∩F )

M (f)
)

=
∑

s∈F p
∗(s)θ(s)

> sup(Pr,α)∈P+|χF reg
P+|χF
M (f),

violating SEP. By Theorem 4.5.3, Axiom 4.1 cannot hold.

Now suppose that condition (b) in rectangularity does not hold. That

is, for some δ > 0, for all (α,Pr) ∈ P+, α(δ Pr(E ∩ F ) + Pr(Ec ∩ F )) ≤

sup(Pr′,α′)∈P+ α′ Pr′(Ec ∩ F ). We construct a decision problem D based on (S,Σ).

D has two stages: in the first stage, nature chooses a state s ∈ S. In the second

stage, the DM chooses an action from the set M = {f, g}, with utilities defined

as follows:
u(f, s) = 0 for all s ∈ S,

u(g, s) = −δ if s ∈ E ∩ F

u(g, s) = −1 if s /∈ E ∩ F .

Then we have that regP
+|χ(E∩F )

M (g) = δ and reg
P+|χ(Ec∩F )
M (g) = 1. Using SEP and

the choice of δ, we must have

reg
P+|χF
M (g) = sup(Pr,α)∈P+|χF α(Pr(E ∩ F )δ + Pr(Ec ∩ F ))

≤ supPr∈P+|χF αPr(Ec ∩ F )reg
P+|χ(Ec∩F )
M (g).

Clearly,

reg
P+|χF
M (g) ≥ sup

(Pr,α)∈P+|χF
αPr(Ec ∩ F )reg

P+|χ(Ec∩F )
M (g).
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Thus,

reg
P+|χF
M (g) = sup

(Pr,α)∈P+|χF
αPr(Ec ∩ F )reg

P+|χ(Ec∩F )
M (g),

violating the second condition of SEP. Therefore, by Theorem 4.5.3, Axiom 4.1

does not hold.

Finally, suppose that condition (c) in rectangularity does not hold. Then for

some nonnegative real vector θ ∈ R|S|,

sup(Pr,α)∈P+|χF
(
αPr(E) sup(Pr1,α1)∈P+|χ(E∩F )

∑
s∈E∩F α1 Pr1(s|E)θ(s))

+αPr(Ec) sup(Pr2,α2)∈P+|χ(Ec∩F )

∑
s∈Ec∩F α2 Pr2(s|Ec)θ(s))

)
< sup(Pr,α)∈P+|χF α

∑
s∈F Pr(s)θ(s).

(C.7)

We construct a decision problem D based on (S,Σ). D has two stages: in the

first stage, nature chooses a state s ∈ S. In the second stage, the DM chooses an

action from the set M = {f, g}, with utilities defined as follows:

u(g, s) = −θ(s) for all s ∈ S.

u(f, s) = 0 for all s ∈ S.

So we have

sup(Pr,α)∈P+|pF α
(

Pr(E ∩ F )reg
P+|p(E∩F )
M (g) + Pr(Ec ∩ F )reg

P+|p(Ec∩F )
M (g)

)
= sup(Pr,α)∈P+|χF α

(
Pr(E ∩ F )EP+|χ(E∩F )(θ) + Pr(Ec ∩ F )EP+|χ(Ec∩F )(θ)

)
< EP+|χF (θ) [by (C.7)]

= reg
P+|pF
M (g).

This means that SEP, and hence Axiom 1, is violated, a contradiction.
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