Revolutionary Coalition Strength and Collective Failure

as Determinants of Status Reallocation

H. Andrew Michener

The University of Wisconsin

Edward J. Lawler

The University of Wisconsin

Journal of Experimental Social Psychology, (1971), 7, 448-460

1 This study was supported by a grant from the Research Committee of The University of Wisconsin. Data analysis at the University of Wisconsin Computing Center was made possible through support, in part, from the National Science Foundation and the Wisconsin Alumni Research Foundation. The authors express their appreciation to Mark Tausig for helpful comments on the study design and I-0 Richard Tessler for valuable criticisms of an earlier draft of this report.
Abstract

This experiment investigated the effects of collective performance and coalition strength on the redistribution of status prerogatives in triads. A status hierarchy was established within triads, such that one person held higher control status and the two others held lower status. Each group performed an ambiguous, decision-making task over two trials. Collective performance (i.e., success vs failure) was manipulated via bogus feedback regarding the group’s performance, while coalition strength was manipulated by varying the extent to which the two low-status members, acting together as a revolutionary coalition, could damage the outcomes received by the high-status member. Results indicate a collective-performance main effect, with the control prerogatives of the high-status person being reduced more under failure than under success. This effect is mediated by member dissatisfaction with the group’s activities. As predicted, the results also indicate a significant Collective Performance X Coalition Strength interaction effect. Strong coalitions achieved more extensive reallocation of status prerogatives than weak ones, but this occurred only on the second trial for groups experiencing recurring failure. This effect elucidates some of the difficulties involved in mobilizing joint efforts to exercise coalition-based influence.
Several recent studies (Thibaut & Faucheux, 1965; Murdoch, 1967; Murdoch & Rosen, 1970) have investigated how variations in power capabilities lead to emergent contractual norms that regulate potential disruption in situations involving conflictive interests. These studies demonstrate that participants in dyadic interaction establish normative agreements most frequently and sanction them most stringently when each party to the negotiations can threaten to severely damage the interests of the other. When both members possess a high level of power, they become sensitive to the internecine consequences of using power and strive for a detente by establishing norms that regulate the use of power. In a related study with triads, Michener and Zeller (1970) found that intimidating activity by a two-man coalition against a powerful third person also stimulates normative agreements. Under minacious circumstances, bargainers assign severe penalties to agreements outlawing disruptive behavior by the coalition’s target and by the coalition itself.

While these studies have confined their focus to norms regulating the use of power in conflict situations, the same paradigm can also apply to norms that fulfill other functions. That is, the underlying distribution of power will also affect normative emergence in situations where other types of norms, such as status expectations governing the distribution of prerogatives and responsibilities in a group, regulate social interaction. Burnstein and Wolosin (1968), utilizing a cooperative two-person situation, demonstrated that differences in power based on performance capabilities—i.e., French and Raven’s (1959) “expert power”—lead to status differences such that one member achieves greater responsibility and control over group outcomes. Just as a power disparity can cause the emergence of new status norms, it may also provoke normative change in
established, hierarchical structures. While numerous factors may impel changes in status prerogatives, power looms as an important determinant because it affects not only the capability of high-status persons to defend their prerogatives and perquisites, but also the capacity of low-status persons to bargain for change.

The present study investigates the efficacy of a specific power tactic—coalition formation—in altering status arrangements within hierarchical groups. A coalition is said to form when two or more persons act jointly to affect the outcomes of another (Thibaut & Kelley, 1959, p. 205). As indicated by Emerson (1962), a coalition obstructs or diminishes the rewards attained by the person(s) or group(s) who are its targets. The present study investigates only those changes in status initiated by lower-status participants. That is, it considers what Caplow (1968) has termed revolutionary coalitions, which are alliances between lower-status members that contravene the prevailing status arrangements within a larger group or organization.

Under what conditions will revolutionary coalitions bring about changes in existing status arrangements? One variable likely to determine the efficacy of a coalition is its strength—that is, the magnitude of the damage it can inflict upon its target. In the study by Michener and Zeller (1970), coalition strength affected the emergence of contractual norms; stronger coalitions achieved more advantageous normative arrangements than weaker ones. The present study, which employs the same variable, hypothesizes that coalition strength will exert a similar influence on norms governing such stratified prerogatives as responsibility for collective action and control over group decisions. Specifically, the strength of a revolutionary coalition may determine its capacity to force a status reallocation favorable to the coalition’s members. The stronger the revolutionary coalition, the more the coalition will diminish the status of high-status persons and enhance that of its own members.
But unlike other power tactics which can be utilized by lone individuals, coalitions necessitate joint action by two or more persons. To be effective, a coalition must not only have strength (i.e., have the capacity to damage the interests of its target), but it must also be mobilizable. The mere fact that a coalition could potentially exert considerable force does not assure it will form. Mobilization of coalitions—and especially of revolutionary coalitions—is problematic. A number of preconditions activate coalitions. As demonstrated by Chertkoff (1966), the probability of success ascribed to a potential alliance determines whether members will coalesce. Additionally, Michener and Lyons (1970) have shown that the perception by low-status group members that other low-status members do not support the higher-status leader provokes dissatisfaction and exacerbates the proclivity to form revolutionary coalitions.

Another factor likely to affect coalitional mobilization—the one investigated in the present research—is a group’s success or failure in attaining collective goals. Earlier studies in other contexts adumbrate the importance of this variable for revolutionary coalitional activity. Hamblin (1958), for instance, has shown that collective failure can make a leader’s position increasingly tenuous. In that study, groups characteristically replaced leaders unable to resolve the crisis precipitated by collective failure. Similarly, Crockett (1955) demonstrated that formal leaders who caused their group to founder because they neglected to adequately fulfill their leadership functions (e.g., goal-setting, information-seeking, problem-solving, etc.) were confronted by emergent leaders seeking to replace them. The present study, then, hypothesizes that failure in collective performance will invigorate quiescent coalitions, while success in collective performance will not. Although high coalition strength i.e., a coalition’s damage capability—may produce substantial change in status prerogatives, it will do so only when something (such as collective failure) provokes lower-status participants to mobilize.
Consequently, an interaction effect is predicted: a high level of revolutionary coalition strength will impel a reallocation of status prerogatives under collective failure but not under collective success. Status prerogatives, such as the responsibility for group decisions and control over group outcomes (as well as greater claims on individual rewards), will undergo reallocation by coalitional action only when the coalition is both potentially strong and disposed to organize.

Method

Overview

Using three-person groups, the experimental procedure established a status hierarchy in which one member occupied a high-status position and the other members occupied identical, lower-status positions. Working on a group decision-making task, the three members could reallocate status prerogatives among themselves. Simultaneously, the two lower-status members could form a revolutionary coalition to confiscate the rewards received by the higher-status member. The experiment utilized a 2 X 2 factorial design (Coalition Strength X Success-Failure) over two trials. Coalition strength was manipulated by varying the extent to which the coalition’s action could diminish the high-status member’s rewards. Bogus feedback regarding the group’s performance on the decision-making task varied perceptions of collective success or failure. In this context, measurements were made of the extent to which the coalition compelled reallocation of decisional and control prerogatives originally vested in the higher-status member.

Procedure

Eighty-four male undergraduates at the University of Wisconsin, each understanding he would he paid $1.50 for participating, served as Ss in the experiment. These Ss comprised 28 triads, which are the units of analysis in this study. These triads were randomly assigned to the four experimental treatments.
Upon arriving for the session, the members of each triad were greeted by the E, introduced to one another, and seated face-to-face around a table. Standard tape-recorded instructions provided a cover story for the experiment. Subjects were informed that they were participating in a study of group decision-making processes in which they would render judgments about geometric figures. The taped instructions further indicated that, to enhance the group’s performance, the most skilled member of the triad would be assigned to a higher-status position where his individual judgments would weigh more heavily.

To determine which group member merited the high-status position, the Ss completed a “test” consisting of 10 cards portraying colored geometric patterns against a white field. Subjects estimated (to the nearest 5%) what portion of each card’s surface was colored. They understood this test resembled the regular judgment task that would confront the group after status had been allocated. Due to the complexity of the geometric patterns and the resulting ambiguity of judgment, Ss could credibly be given bogus feedback regarding the performance on this test.

After the Ss completed the test, the E left the room to “grade” the test and subsequently returned with the “results,” which were counterfeit. Subjects were informed that one performed better than the others, and he was assigned higher status (hereafter he is designated HS). The others, who reportedly received nearly equal scores, were assigned identical lower status (LS1 and LS2). Unknown to the Ss (who identified themselves as Red, Blue, and Green, respectively), the assignment of status was done on a random basis. To accentuate the status differences, HS changed location and assumed the seat at the head of the table. To further concretize the status ordering, HS received 60 poker chips, while LS1 and LS2 received 20 chips each. Emulating the procedure used by Burnstein and Wolosin (1968), these chips symbolized the relative status of each member of the group.
Next, the Ss read a set of written instructions explicating the group’s task. This task consisted of two regular judgment trials, preceded by a set of practice judgments to familiarize Ss with the procedures. The instructions told the Ss that, during each trial, their individual judgments of the geometric figures would be combined to yield a group decision, which would be assessed for accuracy by E. Members would contribute differentially to this collective decision, for the judgments of each member would be weighted proportionately to the number of status chips he held. Therefore, HS would exercise more influence over group decisions. Members understood that the group could win up to $1.00 on each trial, depending on the accuracy of its collective judgments. These winnings would be disbursed to the members in proportion to their status chips, with HS obviously receiving more money. Thus, if HS held 60 status chips (of 100 total chips) on a given trial, his judgments would be weighted 60% in the collective decision and he would receive 60% of the group’s winnings on that trial.

Having read these instructions, the Ss completed the set of practice judgments. After the E collected these from the Ss and left the room to combine them in accordance with the prevailing 60-20-20 distribution of status, the Ss read another set of written instructions. These discussed the procedures by which LS1 and LS2 could form a coalition; more importantly, they also incorporated the manipulation of coalition strength. The coalition was portrayed as a means of augmenting LS1’s and LS2’s influence in the group. By forming a coalition, LS1 and LS2 had the capacity to reduce HS’s winnings on each trial by a given percentage. Depending on the experimental treatment, members understood that a coalition, upon forming, could reduce HS’s winnings by any amount up to 5% (low coalition-strength condition) or 50% (high coalition-strength condition).
To guard against experimenter bias, the E did not discover the treatment to which any
given group had been assigned until the moment when he handed the written coalition
instructions to the Ss. Immediately thereafter, he left the room to combine and grade the practice
judgments. To minimize inadvertent cues, the results of the practice were reported to Ss over a
one-way intercom system, and the E engaged in no further conversion with the Ss until the end
of the experiment. The feedback regarding the practice judgments was designed to manipulate
the Ss’ perceptions of their group’s performance. The E had earlier informed the Ss that an
“average” group could expect to achieve a score of approximately 70$ (of a possible $1.00) on
each trial. Depending on the experimental treatment, the feedback indicated either that the group
had attained a score of 90¢ (success condition) or a score of 50$ (failure condition). Having
received this spurious information, the Ss started the first regular trial.

Description of a Trial

Each regular trial began with a 5-min bargaining period during which Ss could discuss
the allocation of status. Subjects understood they could reallocate status chips among the three
group members by establishing a written contractual agreement that specified the new status
distribution. Although Ss could reallocate as they wished (subject only to the constraint that LS1
and LS2 always receive an equal number of chips), any new distribution required the
endorsement of all three members before it was considered legitimate. The two low-status
members had cause to favor reallocation, for it would enable them not only to attain a larger
share of the group’s emoluments but also to reapportion responsibility, which was an obvious
strategy for coping with collective failure whenever it occurred. In contrast, HS had reason to
oppose any change in status. Only by retaining his status chips could he continue to receive
greater rewards and to exercise greater influence. Moreover, HS was subject to a “jeopardy”
simulating the risk that often attends leadership. All Ss understood that HS might win a bonus of up to $1.50 or suffer a penalty of up to $1.50, depending on the quality of his individual performance on the judgmental task and, especially, on his success in maintaining (or augmenting) his status within the group. In other words, HS was explicitly rewarded for retaining his status.

During the 5 min bargaining session, LS1 and LS2 could also discuss forming a coalition. If formed, the coalition reduced HS’s monetary winnings on that trial, and the threat of formation, therefore, could be used to intimidate HS, making him more amenable to change in status. After the 5-min bargaining session, Ss made their individual judgments regarding the geometric figures. Subsequently the E, avoiding verbal contact with the Ss, entered the room, collected the Ss’ judgments, and then left to combine the individual judgments and to assess the group’s collective performance. After a suitable time interval, factitious ‘results” were announced over the intercom system. These resembled the earlier results of the practice trial: groups in the success condition learned of their triumph (score of approximately 90$), while those in the failure condition learned of their recurring fiasco (score of approximately 50$). Concurrently, the Ss received some generalized feedback on individual performances. They heard that HS was performing slightly below his attainment on the test, while LS1 and LS2 were performing at the same level as on the test. Feedback completed, Ss were instructed over the intercom to begin the next trial (after the final trial, they were directed to fill out a postexperimental questionnaire).

Upon finishing the trials and completing the questionnaire, Ss were debriefed regarding the fallacious feedback and the random assignment of status at the outset of the experiment. For
their participation and their performance on Trials I and 2, all Ss were paid at least as much as they expected HS to receive (an average of $2.25).

Manipulation of the Independent Variable

Coalition strength was manipulated by varying the extent to which LS1 and LS2 could block the rewards received by HS. Depending on the experimental treatment, LSI and LSZ could reduce HS’s winnings on a given trial by any amount up to 5% (low coalition strength) or by any amount up to 50% (high coalition strength). Because coalition strength is conceptualized theoretically as the capacity to block another’s outcomes, all monies taken from HS reverted to the E and did not go to LS1 and LS2. Thus, by forming a coalition, LSI and LS2 could damage HS, but they could not directly enrich themselves.

To form a coalition, LS1 and LS2 simply used a prepared form to establish a written agreement that stated;

```
On this trial, (LS1) and (LS2) agree to reduce the money (HS) wins by________ percent.
```

Both had to sign the agreement and specify the percentage reduction in HS’s winnings. A coalition was valid for only one trial, but it could be formed anew on each trial.

The other independent variable, collective performance, was manipulated by means of the bogus feedback given the group over the intercom. This feedback, administered after the practice and during each trial, followed a standard format. Subjects understood that the “average” group won about 70~ on each trial; this constituted the normative lease line. Perceived success or failure was manipulated by portraying the Ss’ own group as substantially above or below this criterion.
In the success condition, groups received feedback of 90₡ after the practice and either 91₡ or 89₡ after Trial 1. The Trial 1 feedback was designed to approximate 90₡ without arousing the undue suspicion that might have resulted if Trial 1 feedback exactly duplicated the practice results. Feedback on Trial 1 was counterbalanced, with one-half of the success groups receiving 91₡ and the other half receiving 89₡; this precluded any systematic perception regarding improvement or deterioration of group performance. The nearly identical feedback from the practice and Trial 1 constituted the fundamental manipulation of the success treatment, for all measures of the major dependent variable (i.e., the number of status chips retained by HS) were collected before the group received Trial 2 feedback. Trial 2 feedback, then, served primarily to strengthen the Ss’ basic impression of group performance before they answered the items on the postexperimental questionnaire. To obviate suspicion, Trial 2 feedback departed more sharply from 90₡ than did Trial 1 feedback. In the success condition, Trial 2 feedback was either 86₡ or 94₡; once again, this feedback was counterbalanced.

Feedback in the failure condition followed a similar pattern and was based on the same rationale. On the practice, groups received feedback of 50₡; on Trial 1, the results were either 49₡ or 51₡; and on Trial 2, they were either 54₡ or 46₡.

Measurement of the Dependent Variables

The major dependent variable was the number of status chips retained by HS during the two trials. This variable directly indexes any reallocation of status prerogatives, because the total number of status chips always equalled 100, and LS1 and LS2 were required to have an equal number. The distribution of status changed when all three members of the group agreed to sign a contract stating:

On this trial, group members agree to
distribute the 100 status chips as follows:

(HS) _________

(LS1)__________ (LS2)________

Group members could change the distribution on either or both trials. If, on a given trial, they could reach no agreement to change, the existing status distribution prevailed. Contracts were signed during the 5-min bargaining period at the start of each trial. Consequently, data for Trial 1 were collected after feedback on the group’s performance during the practice, but before feedback on the Trial 1 judgments; data for Trial 2 were collected after feedback on the group’s performance during Trial 1, but before feedback on its performance during Trial 2.

Data on other dependent measures were obtained from the postexperimental questionnaire administered in the wake of Trial 2 feedback. This instrument included checks on the experimental manipulations and reports of member satisfaction, as well as questions probing the perceptions of power capabilities.

Results

Checks on Manipulations

Coalition Strength. To check the effectiveness of the coalition-strength manipulation, an item on the questionnaire asked: “Whether or not a coalition formed, what was the maximum percentage of (HS’s) money that a (LS1-LS2) coalition could take?” Responses indicate that Ss clearly perceived the 5-50% manipulation (for HS, F(1, 24) = 163.49, p < .001; for LS1, F(1, 24) = 14.96, p < .001; and for LS2, F(1, 244) = 553.86, p < .001)

Collective Performance (success-failure). The manipulation of collective performance also proved effective. An item on the questionnaire inquired: “On the average, how much money did your group win per trial?” The 90₡-50₡ manipulation affected responses in the expected
direction (for HS, F(1,24) = 72.47, p < .001; for LS1 F(1,24) = 5281.27, p < .001; and for LS2, F(1,24) = 596.20, p < .001). An ancillary item asked: “In your opinion, how successful was your group in winning money?” Again, responses evince the expected success-failure effect (for HS, F(1,24) = 60.47, p < .001; for LS1, F(1,24) = 93.91, p < .001; and for LS2 F(1,24) = 111.10, p < .001).

Results: Status Reallocation

Table 1 reports the mean number of status chips retained by HS, as a function of coalition strength, collective performance, and trial. Table 2 summarizes the analysis of variance for HS’s status level. The data in Table 1 indicate that the Ss did, in fact, reallocate status, since the cell means are all below 60 (the number of status chips originally assigned to HS). Despite substantial reallocation, however, HS was generally successful in retaining some prerogatives. Even on Trial 2, his mean level of status was greater than that of LS1 or LS2.

As indicated by Table 2, the independent variables affected reallocative behavior. The analysis of variance shows a significant collective performance main effect: failing groups reallocated status (i.e., reduced HS’s status chips) to a greater degree than did successful groups. The analysis of variance also evinces a significant Trials X Performance interaction effect, indicating that failing groups were particularly prone to reallocate status on Trial 2 (i.e., after the Ss had witnessed recurring failure). The data also indicate a significant trials main effect, which results because HS held significantly fewer status chips on Trial 2 than on Trial 1. Apparently, when a group begins with a severe disparity in status (such as the 60-20-20 distribution
prevailing at the outset), it will strip the higher-status member of his prerogatives merely as a function of the sheer number of opportunities that arise for reallocation.

Although the data do show a significant Trials x Coalition-Strength interaction effect (indicating that strong coalitions took more status from HS on Trial 2 than did weak coalitions), the coalition-strength main effect is not significant. The strength of a coalition does not, by itself, affect status reallocation. As adumbrated by the earlier theoretical discussion, however, coalition strength does affect status reallocation when it operates in conjunction with collective performance (success-failure). The data substantiate the predicted interaction effect, although this support assumes an unanticipated form. The two-way interaction (Coalition Strength X Collective Performance) is not significant, but the three-way interaction (Coalition Strength x Collective Performance X Trials) is significant beyond the .005 level. A posteriori comparisons using Tukey’s test indicate that the (failure-high coalition strength-Trial 2) cell has a significantly lower mean (p < .05) than the other cells in the design. As expected, more status is taken from HS when the group is failing and when the potential coalition can severely damage HS’s interests. But this occurred only on Trial 2, after the group members had ample evidence to convince themselves that the group would continue to flummox under HS’s hegemony.

Discussion

In sum, the data on status reallocation provide two especially interesting, and problematic, findings: a significant collective-performance (success-failure) main effect and a strong three-way interaction (Coalition Strength × Collective Performance × Trials). Additional data from the postexperimental questionnaires elucidate the processes mediating these effects.

Collective failure apparently led to status reallocation because it induced dissatisfaction. When asked: “Overall, how satisfied were you with the total amount of money won by the
group?“, all three members reported greater dissatisfaction with the group’s performance under failure than under success (for HS, F(1,24) = 56.44, p < .001; for LS1, F(1,24) = 31.25, p < .001; and for LS2, F(1,24) = 38.52, p < .001). While all members became dissatisfied under failure, it was HS who proved especially instrumental in reallocating status. Perception of the group’s abortive efforts influenced HS’s beliefs about the desirability of reallocation, but it had no impact on the opinions of LS1 and LS2. The postexperimental questionnaire asked: “Overall, to what extent do you think a change in the distribution of status chips would help the entire group win money?” While HS’s response indicated that he favored reallocation significantly more under failure than under success (F(1,244) = 7.02, p < .05), there were no significant effects for LS1 (F(1,24) < 1, n.s.) or for LS2 (F(1,24) < 1, n.s.). The higher-status member apparently saw himself as culpable and therefore viewed reallocation as a means of coping with collective failure. When dissatisfied by failure, HS was more amenable to reallocation, even though this diminished his stature. The data show a substantial correlation between HS’s level of reported satisfaction with the group’s winnings and the number of status chips he actually retained in his possession after Trial 2 (r = .531, p < .01). In contrast, no discernible pattern emerges between the number of status chips retained by HS after Trial 2 and the satisfaction of LS1 and LS2. In sum, these findings indicate that the collective-performance (success-failure) main effect on status allocation was mediated primarily by HS’s dissatisfaction and willingness to change under failure.

While the collective-performance main effect reflects HS’s behavior, the significant three-way interaction (Coalition Strength x Collective Performance x Trials) mirrors the activity of LS1 and LS2. This interaction epitomizes the difficulties in activating and mobilizing coalition based influence. The absence of a coalition-strength main effect in the data indicates
that the potential power of a coalition does not, by itself, affect status reallocation: even potentially strong coalitions encounter difficulties in mobilizing. As indicated by the three-way interaction, however, coalition strength did affect reallocation in conjunction with collective performance. Under failure, the threat posed by a strong coalition impelled more reallocation than did the threat from a weak one. This effect appeared only on Trial 2, which suggests LS1 and LS2 hesitated to coalesce until the group’s failure was clearly substantiated and unequivocal. Apparently, any mobilization of low-status members against the prevailing status order necessitated consensus regarding the group’s collective performance.

The importance of mobilization for coalition-based power is also reflected in the low-status members’ perceptions of their influence. The low-status members perceived themselves as jointly able to force status reallocation more under collective failure, when mobilization was less difficult to achieve. Each was asked: “Whether or not a coalition was formed, to what extent were (LS1) and (LS2), acting together, able to influence the distribution of status chips?” Responses indicate a collective performance (success-failure) main effect, with greater joint influence imputedly exercised under failure than under success (for LS1, F(1,24) = 6.97, p < .05; and for LS2, F(1,24) = 6.18, p < .05). These findings further indicate that a coalition’s efficacy as a vehicle of influence rests not just with the magnitude of the damage it can inflict on its target, but also with its mobilizability.

Mobilization by the low-status members in the present study apparently assumed the form of threatening to depredate HS’s winnings, rather than actually doing so. Only once in the entire study did LS1 and LS2 go as far as signing a coalitional agreement to diminish HS’s winnings, which suggests that threats to coalesce, once made, were sufficient to secure status reallocation. Certainly the low-status members were cognizant of this threat potential, as
indicated by the significant negative correlations between their perceptions of their joint influence and the quantity of status chips retained by HS after Trial 2 (for LS1, $r = -0.390$, $p < 0.05$; for LS2, $r = -0.539$, $p < 0.01$). The coalition clearly exercised influence over HS’s monetary rewards with the intent of reducing HS’s stature. Moreover, HS recognized this threat and responded accordingly. The postexperimental questionnaire asked: “Overall, to what extent did you think a change in the distribution of status chips would help you, individually, win money?” The response by HS to this question shows a significant interaction effect ($F(1,24) = 4.82$, $p < 0.05$), with HS reporting that reallocation advanced his self-interest more when the group was failing and the coalition was strong than under the other conditions. In this case, HS realized that not only could the revolutionary coalition severely damage his pecuniary interests, but that LS1 and LS2’s threat to actually sign a coalitional agreement was not idle bluster. Thus, HS complied with the low-status members’ demands for status reallocation, thereby forestalling factious rancor and defusing the threat posed by the nascent coalition. This explains why the low-status members actually signed only one coalitional agreement throughout the experiment, even though they threatened many more.

In conclusion, this study has demonstrated that the action of a revolutionary coalition can reallocate prerogatives in a stratified group. Such reallocation depends on the joint effect of collective performance and coalition strength. The threat posed by a potentially strong coalition is inadequate, by itself, to assure mobilization or to force status reallocation. Some basis for actuating a coalition, such as recurring collective failure, is requisite to the exercise of coalition-based influence.
References

(Received November 12, 1970)
Table 1. Mean Number of Status Chips Retained by High-Status Member.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>High coalition strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Success</td>
<td>52.86</td>
<td>52.86</td>
</tr>
<tr>
<td>Failure</td>
<td>51.43</td>
<td>40.57</td>
</tr>
<tr>
<td>Low coalition strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Success</td>
<td>54.29</td>
<td>51.72</td>
</tr>
<tr>
<td>Failure</td>
<td>48.57</td>
<td>48.57</td>
</tr>
</tbody>
</table>

Note—Units of analysis are groups (N = 7 in each treatment).

Table 2. Analysis of Variance Showing the Effects of Coalition Strength, Success-Failure, and Trials on Status Retained by High Status Member.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>df</th>
<th>Mean squares</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coalition strength (C)</td>
<td>1</td>
<td>25.786</td>
<td><1</td>
</tr>
<tr>
<td>Success-Failure (S)</td>
<td>1</td>
<td>445.786</td>
<td>5.231*</td>
</tr>
<tr>
<td>C × S</td>
<td>1</td>
<td>20.643</td>
<td><1</td>
</tr>
<tr>
<td>Error between</td>
<td>24</td>
<td>85.214</td>
<td></td>
</tr>
<tr>
<td>Within groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trials (T)</td>
<td>1</td>
<td>157.786</td>
<td>12.528**</td>
</tr>
<tr>
<td>T × C</td>
<td>1</td>
<td>60.071</td>
<td>4.769*</td>
</tr>
<tr>
<td>T × S</td>
<td>1</td>
<td>60.071</td>
<td>4.769*</td>
</tr>
<tr>
<td>T × C × S</td>
<td>1</td>
<td>157.786</td>
<td>12.528**</td>
</tr>
<tr>
<td>Error within</td>
<td>24</td>
<td>12.595</td>
<td></td>
</tr>
</tbody>
</table>

* p < .05.
** p < .005.