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The branching fraction for D+ → K0
Lπ
+ is measured for the first time, us-

ing 281 pb−1 of e+-e−collisions recorded by the CLEO-c detector at the Cor-

nell Electron Storage Ring. The analysis employs a missing mass technique

which does not require reconstruction of the K0
L. The resulting branching frac-

tion is (1.460 ± 0.040 ± 0.035 ± 0.005)%, where the first uncertainty is sta-

tistical, the second is systematic, and the last is due to the input value of

B(D+ → K0
Sπ
+). Using an independent measurement of B(D+ → K0

Sπ
+), we

calculate that the asymmetry between B(D+ → K0
Sπ
+) and B(D+ → K0

Lπ
+) is

R(D+) ≡ [B(K0
Sπ
+) − B(K0

Lπ
+)]/[B(K0

Sπ
+) + B(K0

Lπ
+)] = 0.022 ± 0.016 ± 0.018.

This result rules out scenarios of maximal interference between amplitudes for

D+ → K0π+ and D+ → K̄0π+, and it is consistent with theoretical predictions.

Measurement of track and K0
S reconstruction efficiencies is also discussed.

This analysis provides systematic uncertainties used in the measurement of

B(D+ → K0
Lπ
+) and in other CLEO-c analyses.
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CHAPTER 1

INTRODUCTION
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The physics of D mesons is the physics both of charm quark decay and of

strong interactions. Composed of a charm quark and a light anti-quark – anti-

up for D0 and anti-down for D+ – D mesons decay through the weak decay of

the charm quark. However, the light quark is also an active participant in these

decays; it allows for forming some final states via multiple tree-level Feynman

diagram topologies, and its interactions via the strong force make significant

contributions to the decay amplitudes. Thus the physics of D decays is richer

than just the decay of the charm quark.

The effect of the light quark may be illustrated by comparing the semilep-

tonic and hadronic decay rates of D0 and D+. The total D0 decay rate is

about 2.5 times the D+ rate, with lifetimes τD0 = (410.1 ± 1.5) × 10−15 sec and

τD+ = (1040± 7)× 10−15 sec [1]. This difference is due entirely to the hadronic de-

cays; the semileptonic decay rates of D0 and D+ are equal.1 Semileptonic decays

are dominated by a single Feynman diagram topology, in which the W from the

charm quark decay forms a lepton-neutrino pair. Thus the rates are similar for

D0 and D+. In contrast, the hadronic decay rates are very different for D0 and

D+. In hadronic decays there are more tree-level Feynman diagram topologies,

and these often generate interference which differs for D0 and D+. (We will see

an example of this shortly.) Hence in hadronic decays the light quark plays a

major role.

One particularly useful laboratory for studying the subtleties of D decays is

the family of D→ Kπ decays, where D, K, and π may be any of the ground-state

charged or neutral particles bearing that label. These decays represent just a few

1The inclusive branching fraction for D0 → e+X is 6.71± 0.29 %, with a similar fraction for
µ+X. For D+ → e+X, the branching fraction is 17.2 ± 1.9 % [1]. Combining these branching
fractions with the D0 and D+ lifetimes, we see that the decay rates to e+X are equal for D0 and
D+.
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percent of the overall D0 and D+ decay rates, but they do offer several advan-

tages. As two-body decays, they are among the easier decays to measure ex-

perimentally. They are also free of complications from intermediate resonances,

which obscure the interpretation of decays to three or more particles. Further-

more, a rich pattern of theoretical relationships connect these decays, enabling

prediction of branching ratios and the search for second-order effects such as

strong phases and interference.

Measurements of different D → Kπ branching fractions may be combined

to relate the various decay amplitudes. For example, consider the four “right-

sign” (Cabibbo-favored) diagrams in Figure 1.1. The two diagrams on the left

are for D0, and the two on the right are for D+; they differ only by the identity of

the spectator quark. The top diagrams are called “external spectator” diagrams,

and the bottom ones are “internal spectator” diagrams. Note that the two D0 di-

agrams give different final states, but the two D+ diagrams give the same final

state. If we assume isospin symmetry, in which the strong interaction does not

distinguish between u and d quarks, then equivalent topologies have equal am-

plitudes. We can then use the branching fractions for the decays D0 → K−π+,

D0 → K̄0π0, and D+ → K̄0π+ to determine the magnitude and relative phase of

the amplitudes for external and internal topologies. We learn from this analysis

that the magnitudes are close to equal and the phase is close to 180 degrees, so

the amplitudes contributing to D+ → K̄0π+ interfere destructively. This type of

interference is one hypothesis for why the D+ lifetime is longer than the D0 life-

time; D+ decay amplitudes interfere destructively while corresponding D0 am-

plitudes produce different final states and therefore do not interfere [2]. More

sophisticated theoretical treatments may use a greater number of D branching

fractions to determine relationships between a greater number of topological
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Figure 1.1: Diagrams for “right-sign” (Cabibbo-favored) D → Kπ decays.
D0 decays are on the left, and D+ decays are on the right. The
two D0 decays produce different final states, while the D+ de-
cays produce the same final state. The diagrams on the left dif-
fer from those on the right only by the identity of the spectator
quark ū or d̄.

amplitudes [3, 4].

An alternative to the topological approach is an isospin decomposition of

the amplitudes. Amplitudes for the three Cabibbo-favored D decays may be

written as linear combinations of two isospin amplitudes A1/2 and A3/2e−iδI :

A(D0→ K−π+) =

√
2
3

A1/2 +

√
1
3

A3/2e
−iδI (1.1)

A(D0→ K̄0π0) = −

√
1
3

A1/2 +

√
2
3

A3/2e
−iδI (1.2)

A(D+ → K̄0π+) =
√

3A3/2e
−iδI (1.3)

Here A1/2 and A3/2 are taken to be positive real numbers. As with the topological
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amplitudes, using the three measured branching fractions we may solve for the

constituent amplitudes. This analysis may be extended by also decomposing

the doubly-Cabibbo-suppressed D → Kπ decays into isospin amplitudes and

using measured branching fractions to relate them [5].

To observe the subtleties of D decays requires precision measurements, and

for the past 5 years the CLEO-c experiment has been performing these mea-

surements. CLEO-c is ideally suited for D physics; it has accumulated a large

sample of DD̄ pairs in a clean event environment, observed by a precise and

well-characterized detector. The detector hardware is described in Chapter 2,

and Chapter 3 describes the process of reconstructing final-state and short-lived

particles in the collected data.

Precision studies require a careful and precise evaluation of the uncertain-

ties. Most CLEO-c results depend on reconstruction efficiencies determined

from a Monte Carlo simulation of the chain of particle decays, the propagation

of final-state particles through the detector, and the response of active detec-

tor elements and electronics. It is essential to test and quantify the accuracy of

this simulation. Chapter 4 describes the evaluation of systematic uncertainties

for the simulation of track and K0
S reconstruction efficiencies. These systematics

serve as inputs to many CLEO-c analyses.

Among the D decay branching fractions measured by CLEO-c are all of the

D → Kπ decays. In particular, the modes with a K0
L in the final state were mea-

sured for the first time [6]. Previously, the difficulty of reconstructing the long-

lived K0
L meson proved insurmountable, but at CLEO-c the K0

L can be inferred by

reconstructing all other particles in the event and examining the missing energy

and momentum. Chapter 5 describes the measurement of the decay D+ → K0
Lπ
+.
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CHAPTER 2

THE CLEO-C DETECTOR
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The CLEO-c detector is located at the Cornell Electron Storage Ring (CESR),

in which electrons and positrons circulate in opposite directions. During data-

taking, the electrons and positrons are made to collide at the center of the de-

tector. CLEO-c is composed of several systems which surround this interaction

point and measure the products of each collision. These systems are designed to

reconstruct charged particles and photons, measure their momentum or energy,

and identify the type of each reconstructed particle.

Figures 2.1 and 2.2 show the CLEO-c detector in cutaway and quarter views.

The component closest to the interaction point is the tracking system, which re-

constructs the paths of charged particles. The particles’ paths are curved by a 1T

magnetic field, and the curvature of each track allows measurement of its mo-

mentum and charge. The tracking system is surrounded by the Ring Imaging

Cherenkov Detector (RICH), which uses cones of Cherenkov light to help iden-

tify the particle type (pion, kaon, electon, muon, etc.) of each track. The next

subsystem, just outside the RICH, is the crystal calorimeter. This device mea-

sures the position and energy of electromagnetic showers, permitting the re-

construction of photons and aiding the identification of electrons and positrons.

Surrounding all of these systems is a superconducting solenoid used to produce

the magnetic field. Outside the solenoid is the muon detector. It is not useful for

CLEO-c analysis as the muons produced by D decays are not energetic enough

to pass through the material in front of it.
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Figure 2.1: Cutaway view of the CLEO-c detector.

2.1 Tracking System

The tracking system consists of two cylindrical drift chambers: an inner 6-layer

chamber (ZD) and an outer 47-layer chamber (DR) [7]. The ZD’s six layers ex-

tend from a radius of 5.3 cm to 10.5 cm, and DR extends to an outer radius of 82

cm. The tracking system is nearly hermetic, covering 93% of the solid angle.

The drift chambers are filled with a helium-propane gas mixture, and tens of

thousands of wires cross between the endplates. Approximately 10000 of these

wires, called sense wires, are maintained at a high electric potential relative

to the others, called field wires. When a charged particle passes through the

chamber, it ionizes the gas, and the liberated electrons are drawn to the high

potential of the sense wires. As these electrons approach a sense wire, they
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Figure 2.2: Quarter view of the CLEO-c detector.

induce further ionization in the gas nearby, which produces more electrons. All

of these electrons are collected by the sense wire, and this signal is amplified and

digitized. For each wire receiving a signal (a “hit”), two pieces of information

are recorded – the precise time at which the electrons reached the wire, and the

amount of charge received.

The timing information is used to determine the particle’s distance of closest

approach to each wire. The time between the electron-positron collision and

the arrival of charge at the wire is the time required for the ionized electrons

to drift through the gas from the track to the wire. The drift speed is known

from calibration, so the drift time may be converted to a drift distance. A track
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is reconstructed by combining hits from many wires and fitting them with a

physical model of the particle’s path in the magnetic field.

The charge received in each hit is converted to a measurement of the parti-

cle’s energy loss (dE/dx). Because dE/dxvaries as a function of momentum and

particle mass according to the Bethe-Bloch equation, the energy loss information

helps to distinguish different particle types.

If the drift chamber wires were all parallel to each other, then only two di-

mensions (perpendicular to the chamber axis) could be reconstructed. To enable

reconstruction of the third dimension, a majority of the wires are oriented at a

small “stereo” angle with respect to the chamber axis. Position in the third di-

mension is determined from the timing pattern of hits on layers with different

stereo angles. Information about a track’s position at the DR outer wall is also

provided by cathode strips located on the wall.

The tracking system reconstructs charged particles at high efficiency and

with excellent precision. For a particle that does not decay before exiting the

drift chamber, reconstruction efficiency is nearly 100%. Hits are measured with

spatial resolution better than 150 µm, leading to excellent momentum resolution

for reconstructed tracks. The precision of the reconstructed momentum is 0.6%

for a 1 GeV particle.

2.2 Ring Imaging Cherenkov Detector (RICH)

The RICH sub-detector [8] aids in particle identification (combined with dE/dx

information from the tracking system). It sits just outside the drift chamber.
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However, it lacks endcaps, and therefore its angular coverage extends to only

80% of the solid angle.

Particle identification in the RICH uses cones of Cherenkov light, which is

generated by motion of a charged particle through a medium at a speed greater

than the speed of light in that medium. The opening angle of the Cherenkov

cone is a function of the particle’s speed. This speed, combined with a momen-

tum measurement from the tracking system, gives the mass of the particle and

hence its identity. In practice the RICH does not measure the opening angle

and speed at high precision, but the precision is sufficient to distinguish known

particle types (i.e., mass hypotheses) from each other.

Figure 2.3 shows a section of the RICH detector. Particles entering the RICH

pass through a 1 cm LiF radiator located at the inner radius (82 cm); this gener-

ates the Cherenkov light. The Cherenkov photons travel through a 20-cm “ex-

pansion volume” (in which the Cherenkov cone expands) to the outer radius

(102 cm), where the active detector elements are located. Here the Cherenkov

photons are detected with multi-wire chambers. Hits in the multi-wire cham-

bers form an ellipse segment for each Cherenkov cone, as shown in Figure 2.4.

The passage of the charged particle through the multi-wire chamber is also

detected, and this measurement is used along with the track parameters mea-

sured in the drift chamber to determine each particle’s path through the RICH.

Then, for each photon (cluster of hits) in the cone, the Cherenkov angle can be

measured, and the average of these measurments is the opening angle of the

Cherenkov cone. In practice, however, when performing particle identification,

we do not measure the Cherenkov angle. Instead we compute a likelihood –

based on the track path, photon positions, and their uncertainties – for each

11
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Figure 2.3: Section of the RICH detector.

mass hypothesis (pion mass, kaon mass, etc.). The likelihoods for different par-

ticles are compared to determine the most likely identity of a given track.
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Figure 2.4: Example of hits produced by a Cherenkov cone in the RICH
detector. The charged particle also produces a cluster at the
center of the cone.

2.3 Crystal Calorimeter

Outside the tracking system and the RICH is the crystal calorimeter [9], used to

reconstruct electromagnetic showers. The calorimeter consists of 7800 CsI crys-

tals arrayed around the barrel of the detector and on the endcaps. The calorime-

ter covers 95% of the solid angle, though the barrel-endcap transition region

suffers from poor performance.

The dimensions of each crystal are 5 cm × 5 cm × 30 cm, where the long

dimension points along a line passing close to the interaction point. This length

is 16 CsI radiation lengths, meaning that the calorimeter absorbs effectively all

of the energy of an electron or photon. It also absorbs a smaller fraction of the

energy of a hadron passing through. Four photodiodes are mounted to the back

end of each crystal to measure the scintillation light.

The crystal size of 5 cm × 5 cm is small enough that a typical shower will
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be spread over many adjacent crystals. This allows for interpolation between

crystals, based on the amount of energy deposited in each one, to determine

the center of the shower. Hence the position resolution is much better than

the 5-cm size of each crystal. The pattern of energy deposition is also used to

distinguish electromagnetic showers from hadronic showers; electromagnetic

showers are narrower than hadronic showers and therefore deposit energy on a

smaller cluster of crystals.

The calorimeter reconstructs photon energies with a precision of 2.2% at Eγ =

1 GeV and 5% at 100 MeV.

In D decays, the calorimeter serves two main functions. First, pairs of pho-

tons are combined to form neutral particle candidates (π0 and η). Second, elec-

trons are identified by comparing the track momentum with the energy de-

posited in the calorimeter where the track entered; for electrons these should

be nearly equal.

2.4 CLEO-c Run Strategy

For D physics, the ideal e+-e−collision energy is at the ψ(3770)resonance. This

point has a relatively high cross section, and the energy is just high enough to

produce a D0D̄0 or D+D− pair. However, there is not enough energy to produce

any other massive particles along with the DD̄ pair. This event environment has

several advantages. First, events are clean, containing nothing but the D and

D̄ decay products. Second, since D mesons are always produced in pairs, an

event is “tagged” as DD̄ when just one of them is reconstructed. Thus, when a

D̄ is found in an event, there must also be a D. This is useful in branching frac-
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tion measurements because it provides a good measurement of the number of D

mesons produced. Finally, the kinematics of DD̄ events are very simple. In the

center-of-mass frame the D and D̄ are back-to-back with the same momentum

magnitude; this momentum can be calculated from the beam collision energy.

In CLEO-c analyses, reconstruction of D mesons takes advantage of these kine-

matic features.

Approximately half of CLEO-c data are collected at the ψ(3770)resonance.

The remainder is taken at higher energy to produce D∗±s D∓s pairs or at lower en-

ergy to produce the ψ(2S). The analyses in this dissertation use only the ψ(3770)

data.
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CHAPTER 3

PARTICLE RECONSTRUCTION
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The objects directly measured by the CLEO-c detector are charged tracks and

electromagnetic showers. The underlying physics, though, is a series of decays

of short-lived particles that ends with the final-state particles observed in the

detector. To understand the underlying physics, we must analyze the final-state

particles to determine the chain of decays that produced them.

The particles produced in an e+-e−collision are of three basic types:

• long-lived particles that are directly observed by the detector (π+, K+, γ)

• short-lived particles that decay inside the detector to other particles (D0,

D+, π0, K0
S)

• long-lived particles that are invisible or nearly invisible to the detector (ν,

K0
L)

First, the detector objects must be identified as particular particles or rejected

as fakes. Then, short-lived particles are reconstructed by forming combinations

of these directly-observed particles. Finally, a single invisible particle may be

inferred if every other particle in the event has been reconstructed.

3.1 Track and Shower Identification

This section describes the requirements that identify tracks and showers as par-

ticular particle types and that reject fakes.
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3.1.1 Track Quality Requirements

We impose requirements on track quality to exclude poorly-measured tracks,

fake tracks, and secondary tracks (those due to particles not produced in the

primary e+-e−interaction). To reject poorly-measured and fake tracks, we re-

quire that each track produced hits in at least half of the drift chamber layers it

passed through. Also, the reconstructed direction must lie within the fiducial

volume of the drift chamber; its polar angle θ (the angle relative to the beam

line) must satisfy | cosθ| < 0.93. To eliminate secondary tracks, we require that

each track is consistent with coming from the e+-e−interaction point. In the di-

mension parallel to the beam line, the track must pass within 5 cm of this point,

and in the transverse direction it must pass within 0.5 cm. These position re-

quirements correspond to approximately 5 standard deviations, so almost all

primary tracks satisfy them.

Tracks used for reconstructing K0
S → π+π− are not subject to these require-

ments. A K0
S typically travels several centimeters before decaying, so a require-

ment that tracks originate at the interaction point would eliminate most of these

pion tracks.

3.1.2 Charged Particle Identification

Identification of charged tracks as particular particle types makes use of two

pieces of information: energy loss (dE/dx) measured in the drift chamber and

Cherenkov photons from the RICH subdetector. Energy loss depends on both

momentum and particle type, as shown in Figure 3.1. Using the measured track

momentum, the measured energy loss identifies the particle. In some momen-
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tum ranges, the dE/dx curves of different particles nearly overlap, and so the

particle type is ambiguous. In particular, at high momentum the curves for

pions and kaons overlap, and so dE/dx does not cleanly distinguish between

them. For the analyses described in this dissertation, a pion (kaon) candidate

must have a measured energy loss within three standard deviations of the ex-

pected value for pions (kaons). If the measured dE/dx is consistent with both

the pion and kaon hypotheses, the more likely hypothesis is identified by the χ2

difference ∆χ2
E ≡ χ

2
E(π) − χ2

E(K), where each χ2 is calculated from the measured

dE/dx, the expected value for a pion or kaon, and the standard deviation.

To determine the particle type for high-momentum tracks, we also use in-

formation from the RICH subdetector if the track passes through it.1 The RICH

information is used only if the track momentum is greater than 700 MeV. This

value is far enough above the Cherenkov threshold to provide good separa-

tion between pions and kaons, and below 700 MeV dE/dx information provides

excellent separation by itself. For tracks above 700 MeV, the track parameters

and the measured Cherenkov photons are used to form a likelihood for pion

and kaon hypotheses [8]. From these likelihoods we calculate a χ2 difference

between the pion and kaon hypotheses: ∆χ2
R ≡ χ2

R(π) − χ2
R(K). A value of ∆χ2

R

greater than (less than) zero indicates that the particle is more likely to be a

kaon (pion).

To combine dE/dx and RICH information, we sum the two χ2 differences:

∆χ2 = ∆χ2
E + ∆χ

2
R. A particle is considered a kaon candidate if ∆χ2 ≥ 0 and is

considered a pion candidate if ∆χ2 ≤ 0. If either dE/dx or RICH information is

not available or not used, then the χ2 difference from the other system is used to

distinguish pions from kaons.

1This corresponds to a requirement that the polar angle θ satisfies | cosθ| < 0.8.
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Figure 3.1: Energy loss (dE/dx) in the CLEO-c detector as a function of
momentum for different particle types. The horizontal, pur-
ple band is for electrons. The three bands spiking at low mo-
mentum are, from left to right, pions (red), kaons (blue), and
protons (black). The horizontal, green band in the bottom right
is for muons. Note that the pion and kaon bands overlap at
high momentum.

The combined particle identification system (dE/dx and RICH) identifies pi-

ons and kaons with efficiency greater than 95%, and mis-identification rates are

on the order of 1%.
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3.1.3 Electromagnetic Shower Reconstruction

Electromagnetic showers are formed from energy clusters spread over multiple

crystals in the calorimeter. The shower position is determined by interpolating

between crystals, and the total energy is determined by summing the crystals.

A small fraction of the crystals in the calorimeter are known to be noisy or

to have poor performance; those crystals are ignored.

The shape of a cluster and its relation to any nearby tracks provides infor-

mation about the source of the shower. The most obvious case is where the path

of a track intersects the location of the shower. In this case the shower is almost

certainly produced by the charged particle, and so it is not considered a photon

candidate. A more subtle piece of information is the shower shape. Electromag-

netic showers tend to be narrower than hadronic showers in the calorimeter, and

so photon candidates are required to have relatively narrower showers. “Nar-

rowness” is measured by a quantity called E9/E25; this is the ratio of the energy

in a 3×3 block of crystals around the cluster center to the energy in a 5×5 block.

For photons E9/E25 should be close to one.

Still more subtle is the relationship of a cluster to a nearby track that is

not close enough to be considered “matched”. Hadronic interactions in the

calorimeter may produce secondary particles (“split-offs”) that travel some dis-

tance before depositing energy in more distant crystals. These energy deposits

produce false photon candidates, and requirements have been developed to

identify and remove many of these split-off showers. However, these require-

ments are less commonly used than the track-matching and cluster shape re-

quirements, and in this dissertation they are not used unless mentioned other-
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wise.

3.2 Reconstruction of Decayed Particles

The general strategy for finding a short-lived particle undergoing a particular

decay is to, in each event, simply try all possible combinations of decay daugh-

ters. False combinations are then reduced by kinematic requirements. The most

common kinematic requirement is based on the relativistic equation

m2 = E2 − p2 (3.1)

where m is a particle’s mass, E is its energy, and p is its momentum.2 For any

combination of daughter candidates, the invariant mass is formed by summing

their energy and vector momentum and using these sums in Eq. 3.1:

m=

√√√∑
i

Ei

2

−

∑
i

pi

2

(3.2)

where Ei and pi are the energy and momentum of the ith daughter candi-

date. For a correct combination of daughter candidates, this invariant mass will

be consistent with the parent particle’s mass. For incorrect combinations (the

“combinatoric background”), the invariant mass will typically be far from the

correct mass. Therefore, the number of false combinations may be reduced by

requiring an invariant mass near the decaying particle’s mass.

For example, to reconstruct π0 → γγ, we test all pairs of photons (i.e., show-

ers passing photon selection requirements). Pairs whose invariant mass is not

consistent with the π0 mass are rejected. To reconstruct D0→ K−π+π0, we test all

2Here, factors of the speed of light c are suppressed, so m refers to mc2 and p refers to pc; c
will be suppressed throughout this dissertation.
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combinations of a K− candidate (negatively-charged track identified as a kaon),

a π+ candidate (positively-charged track identified as a pion), and a π0 candidate

(pair of photons whose invariant mass is consistent with the π0 mass).

3.2.1 π0 Reconstruction

Almost 99% of π0s decay into two photons [1]. Therefore π0 candidates are

formed from pairs of photons. These photons must pass the requirements de-

scribed in Section 3.1.3 and must also have an energy greater than 30 MeV. The

invariant mass of the photons is calculated under the assumption that they orig-

inated at the center of the detector. An uncertainty σ is also calculated for this

mass; the uncertainty varies with the location, energy, and shape of the two

showers, and it is typically 5-7 MeV. The π0 candidate is rejected if its invariant

mass is more than 3σ from the true π0 mass.

Each valid π0 candidate is then passed through a kinematic fit. This fit ad-

justs the photon directions and momenta within their uncertainties to place their

invariant mass at the true π0 mass. The π0 is then assigned the momentum and

energy determined from the fit. These parameters are used for all later analysis.

3.2.2 K0
S Reconstruction

The K0
S meson is unusual in that, while it does decay inside the detector, the

decay does not occur at the e+-e−interaction point. Instead, the K0
S, with cτ ≈

2.7 cm [1], typically decays with a flight distance on the order of centimeters.

The most common decay of the K0
S, with a branching fraction of about 69%, is
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to two charged pions [1]. This is the decay channel used to reconstruct the K0
S.

Therefore, the signature of a K0
S is a pair of oppositely-charged tracks sharing a

common vertex typically located some distance from the interaction point.

The tracks used to form a K0
S candidate are not subject to the track quality or

particle identification requirements described above. Each pair of oppositely-

charged tracks is subjected to a vertex fit, and if a vertex is found the track pa-

rameters from the fit are used to calculate the invariant mass. Candidates whose

mass is within 12 MeV of the true K0
S mass are accepted. For most analyses, in-

cluding those described in this dissertation, the vertex and mass requirements

are sufficient for reducing combinatoric background. The parameters from the

vertex fit are used in all later analysis; no mass constraint is imposed.

3.2.3 D Reconstruction

Candidates for D0 and D+ mesons are formed by combining charged particles,

π0 candidates, and K0
S candidates according to the D decay mode being recon-

structed. In forming these candidates, we must be sure not to use any track or

shower more than once (for instance, by using a track in a K0
S candidate and as

a kaon candidate). The energies and momenta of these particles are summed to

form the candidate’s energy and momentum.

The kinematic constraints used to identify valid D candidates take advan-

tage of the unique kinematics of e+-e−collisions just above DD̄ threshold. In the

center-of-mass frame,3 the produced D and D̄ are produced back-to-back with

3At CLEO-c, the laboratory reference frame is nearly equal to the center-of-mass frame. How-
ever, the e+-e−system does have a small non-zero momentum in the lab frame due to the crossing
angle between the e+ and e− beams. For the analysis described in this section, we ignore this
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equal energies and momenta; these can be calculated from the energy of the

e+-e−collision. Therefore, we impose separate requirements on the candidate’s

energy and momentum, instead of a single requirement on the invariant mass

(which is a variable depending on energy and momentum). The actual require-

ments are on two kinematic variables related to energy and momentum – ∆E

and beam constrained mass (MBC).

The first kinematic variable, related to energy, is

∆E ≡ E − Etot/2 (3.3)

where E is the candidate energy and Etot is the total energy of the initial e+ and

e−. Since the D and D̄ each carry half of the total energy, ∆E will be consistent

with zero for a true D candidate.

The second kinematic variable, related to momentum, is

MBC ≡
√

(Etot/2)2 − p2 (3.4)

where p is the candidate momentum. MBC is just the invariant mass with the

known D energy, Etot/2, substituted for the candidate energy. For a true D0 (D+)

candidate, MBC will be consistent with the D0 (D+) mass. Alternatively, MBC may

be thought of as a function of momentum which, unlike the raw momentum,

peaks at the same value regardless of beam energy.

Figure 3.2 shows a representative plot of ∆E vs. MBC. The true D candidates

are clustered near ∆E = 0, MBC = MD.

A clean sample of D candidates may be selected by applying requirements

on both ∆E and MBC. Typically these requirements vary according to the decay

small distinction. However, when analyzing data the energy and momentum values measured
in the lab are in fact corrected for this boost into the center-of-mass frame.
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Figure 3.2: Plot of ∆E vs. MBC for decay mode D+ → K−π+π+.

mode being reconstructed.

3.3 Inferring Invisible Particles

At first it would appear impossible to reconstruct a particle if it leaves no clear

signature in the CLEO detector. However, it is in fact possible if every other

particle in the event can be reconstructed. The initial four-momentum of the

e+-e−system is known, and because it is conserved it must equal the total four-

momentum of the final-state particles. When only one of these particles is miss-

ing, its four-momentum can be calculated:

pmiss= ptot −
∑

i

pi (3.5)

Here, ptot is the initial e+-e−four-momentum, pi are the four-momenta of the re-

constructed particles, and pmiss is the missing particle’s four-momentum.
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The existence of a given missing particle can be inferred from the missing

mass squared, which is the square of the missing four-momentum:

M2
miss≡ p2

miss= E2
miss− p2

miss (3.6)

If an event truly contained the reconstructed particles and an unfound particle

X, M2
miss will be consistent with M2

X, the square of the mass of X.

To find a missing particle X, we first identify a physical process in which we

will search for it. We then look for all particles in that process except for X. For

each combination of candidates, we calculate M2
miss. The distribution of M2

miss

over many events will contain a peak at M2
X for events in which X was indeed

the one missing particle; other events form a background that in general does

not peak at M2
X.
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CHAPTER 4

MEASUREMENT OF TRACKING AND K0
S EFFICIENCIES
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4.1 Introduction

To determine how many events of a certain signal type (say, a particular D decay

mode) were produced in a given run period at CLEO-c, we must determine

two types of quantities – yields and efficiencies. To determine a yield, in each

recorded event we attempt to reconstruct the final state according to selection

requirements, which we design to eliminate background events while retaining

signal events. We then count the number of events passing these requirements.

Second, we need to determine the efficiency for reconstructing a given final state

according to these requirements. To determine efficiencies, we use Monte Carlo

simulations.

A Monte Carlo simulation begins with the physics of the e+-e−collision – the

production of particles in the e+-e−collision (typically D and D̄) and the decay of

the intermediate particles into the final-state particles. Decays are simulated ac-

counting for branching fractions into different decay modes and for the angular

distributions of daughter particles in those decays. This step of the simulation

is performed by the EvtGen software package [10]. The output of EvtGen is a

set of final-state particles and their momenta. Final-state radiation from these

particles is simulated with PHOTOS [11].

The next simulation step is to propagate these particles through the detector

volume and to model the signatures they leave in the active detector elements

(drift chamber wires, calorimeter crystals, etc.). This simulation is performed

by GEANT [12]. It accounts for physical effects such as particle decays in flight,

interactions with detector material, and energy loss due to bremsstrahlung.

Finally, we simulate the response of the CLEO-c detector electronics and data
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acquisition, and produce data in the same format that is produced for real data.

The simulated data is then run through the same analysis code as the real data.

To determine the efficiency for reconstructing a given final state, we begin

by generating Monte Carlo in which EvtGen is constrained to produce only that

final state. (This is referred to as “signal Monte Carlo.”) We then subject the out-

put of the simulation to the same analysis requirements as data. The efficiency

is calculated as the number of events passing these requirements divided by the

number of events generated.

To accurately measure a branching fraction or any other quantity requiring

knowledge of efficiencies, it is critical that the Monte Carlo simulation is accu-

rate (or that any inaccuracy is well-understood and well-measured). While we

make every effort to include all known physical effects and to accurately de-

scribe the detector geometry, inevitably the simulation contains compromises

and uncertainties. Therefore it is important to check whether the output of the

simulation matches data, and to quantify any difference and its uncertainty.

In this chapter, we compare the efficiencies for reconstructing a single track

or K0
S in data and in the Monte Carlo simulation. We will find no measurable

difference between efficiencies in data and Monte Carlo, and we will evaluate

the uncertainty on the difference to generate systematic uncertainties for use in

other CLEO-c analyses.
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4.2 Theoretical Expectations for Efficiencies

4.2.1 Sources of Tracking Inefficiency

Before describing the measurements of tracking efficiency, we consider what

causes a track to not be reconstructed. A previous study of tracking efficiency

for high-momentum muons showed an efficiency of nearly 100% in both data

and Monte Carlo [13]. Pions and kaons, on the other hand, do show some in-

efficiency. The crucial difference is that muons almost never decay or interact

inside the detector, but pions and kaons sometimes do. The muon efficiency

measurements suggest that when a track passes through the entire drift cham-

ber, the efficiency for reconstructing it is nearly 100%. The only way a track can

be lost is if it decays or interacts inside the drift chamber.

In the Monte Carlo simulation, we can examine the dependence of track-

ing efficiency on decay location and other parameters by using Monte Carlo

truth matching. We look at all K+s and K−s in the simulated decay tree that are

produced near the interaction point and that are directed toward the barrel sec-

tion of the detector (| cosθ| < 0.7). Then we ask, for each kaon, whether it has

a truth-matched reconstructed track. To match the track quality requirements,

we require that the best-matched track have hits in at least half of the detector

layers traversed by its helix. The fraction of kaons which have such a match is

(approximately) the tracking efficiency.

We first plot, in Fig. 4.1, efficiency as a function of the transverse distance

(i.e. distance from the beampipe) at which the kaon died through decay or in-

teraction. The drift chamber extends to a radius of 0.8 m. For tracks that pass
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Figure 4.1: Kaon tracking efficiency in the Monte Carlo simulation as a
function of the transverse distance at which the kaon decayed
or interacted. The structure around 0.2m corresponds to the
boundary between the ZD and DR drift chambers. The outer
radius of the drift chamber is 0.8m.

through the entire chamber before decaying (i.e,, that decay at a radius greater

than 0.8 m), the tracking efficiency is 100%. Even for decays inside the chamber

at a radius of 0.6m or higher, the efficiency is very close to 100%. As suggested

by the muon studies, a track can be lost only if it dies inside the drift chamber.

For these tracks, the efficiency is most strongly affected by the requirement that

a track contain hits in at least half of the drift chamber layers traversed by its

helix. Efficiency drops sharply at a radius of approximately 0.4 m, half the drift

chamber radius. A charged particle may be found when it decays inside this

radius if its charged decay product produces hits in additional layers; in this

case a track can be found but its momentum resolution is poor.

The transverse momentum PT of a track affects the reconstruction efficiency,

32



but this dependence is primarily caused by the relationship of PT to the trans-

verse death distance of the track. Lower-momentum tracks are more likely to

decay inside the detector, so their efficiency is lower. For a given death distance,

the dependence on transverse momentum is weak. The left column Figure 4.2

shows efficiency as a function of PT in bins of death distance. Within each bin,

there is some dependence on PT , but it is much weaker than the dependence on

death distance.

We might also expect the number of tracks in an event to affect the recon-

struction efficiency of a particular track. With more tracks, the noisier environ-

ment would make it more difficult to reconstruct a particular track. The right

column of Figure 4.2 shows efficiency as a function of the number of recon-

structed tracks in bins of death distance. While there is some dependence on

track multiplicity, again the dominant effect is from the death distance.

These studies tells us that, according to the Monte Carlo simulation, the only

way a track can be lost is if the particle dies before reaching the edge of the drift

chamber. If this happens, it might still be found, and the probability depends

strongly on the decay distance and less strongly on momentum and multiplic-

ity. As a corollary, high-momentum tracks will have higher efficiency than low-

momentum tracks. Also, kaons will have lower efficiency than pions; they are

more likely to decay inside the drift chamber because their lifetime is shorter

and because their higher mass gives them a smaller relativistic boost at a given

momentum.

Another way that we may fail to find a track, not covered by this study of

efficiency as a function of death distance, is for the particle to emit final state

radiation. In this case, a track may very well be found, but it will not have the
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Figure 4.2: Dependence of kaon tracking efficiency in the Monte Carlo
simulation on transverse momentum (left column) and track
multiplicity (right column) in bins of the kaon’s transverse
death distance R. The drift chamber extends to a radius of
about 80 cm. The dependence of tracking efficiency on trans-
verse momentum and track multiplicity is much weaker than
the dependence on death distance.
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expected momentum because the radiated photon carried some of the momen-

tum away. We count this as an inefficiency when the radiated energy is large

enough that the track fails to form a suitable D candidate when combined with

the other D decay products. This is the correct procedure when measuring a

tracking systematic for use in D decays. Typically, less than 1% of tracks emit

enough final state radiation that they fail to form a good D candidate. Final state

radiation is included in the Monte Carlo simulation.

4.2.2 Sources of K0
S Inefficiency

Reconstruction of a K0
S → π+π− candidate requires finding a pair of oppositely-

charged tracks that intersect to form a vertex. The easiest way to miss a K0
S decay

to charged pions is for one of the pion tracks to not be found. If the tracks are

found, it is very likely that the K0
S candidate will be found. The main exception

is when one of the tracks is poorly measured, leading to a failure of the vertex

finder or a failure of the K0
S mass requirement.

To separate the effects of tracking efficiency from the rest of the K0
S recon-

struction process, we measure the K0
S efficiency for events in which the two

pion tracks were successfully reconstructed. Then the overall K0
S reconstruction

systematic is formed by combining the systematic on this K0
S efficiency with the

tracking systematic for the two pions.
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4.3 Overview of Procedure

Our method for measuring efficiencies takes advantage of the technique de-

scribed in Section 3.3 for inferring the presence of a particle without actually

reconstructing it. We fully reconstruct all particles in an event, except for one

particle whose efficiency we wish to measure. We identify correct reconstruc-

tions of these particles, with the correct missing particle, from a peak in the

missing mass squared at the missing particle’s mass squared. We then search

for the missing particle, and the efficiency is the fraction of events in the miss-

ing mass squared peak for which it is found.

Efficiencies in data are measured in DD̄ events, and efficiencies in Monte

Carlo are measured with a corresponding generic Monte Carlo sample; in this

sample DD̄ events are produced and the Ds are allowed to decay generically. To

measure the various efficiencies, we first reconstruct a tag D̄. Then, we choose

a D decay that includes the particle whose efficiency we wish to measure, and

we reconstruct all of the other particles in that decay. We form the missing mass

squared (M2
miss) from these particles and the tag D̄. Then we look for the missing

particle and separate the M2
miss distribution into events where that particle was

and was not found. Peaks in these distributions at the missing particle’s mass

squared give the number of times we did and did not find it. We perform fits

to determine the peak yield in both distributions, and from these numbers we

calculate the efficiency.

We measure tracking efficiencies for charged pions and kaons in the decays

D0 → K−π+, D0 → K−π+π0 (kaons only), and D+ → K−π+π+. For K0
S efficiency, we

use the decay D0 → K0
Sπ
+π−. In the three-body modes, efficiency measurements
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are performed separately in various bins of momentum and flight direction.

In each sample, we measure the efficiency in both data and Monte Carlo,

and compute the data-Monte Carlo discrepancy εMC/εdata− 1. This discrepancy

is the correction that should be applied for tracking or K0
S efficiency. For track-

ing efficiency, we will combine these measured discrepancies, using the proce-

dure described in Section 4.10, to determine efficiency systematics for pions and

kaons. For K0
S efficiency, we calculate a single discrepancy to determine the K0

S

efficiency systematic.

4.4 Calculation of Efficiency and Uncertainty Analysis

The efficiency ε is calculated from the number of events in which the missing

particle is found (“efficient”), denoted E, and the number in which it is not

found (“inefficient”), denoted I :

ε ≡
E

E + I
=

1
1+ I/E

(4.1)

Given uncertainties of δE and δI , the uncertainty on the efficiency is

δε =
1

(E + I )2

√
E2(δI )2 + I2(δE)2

= ε(1− ε)

√(
δE
E

)2

+

(
δI
I

)2

(4.2)

This is the expression used to calculate the efficiency uncertainties in the tables

throughout this chapter.

The relative uncertainty on the efficiency, which is the relevant quantity for

determining the size of an efficiency systematic εMC/εdata− 1, is

δε

ε
= (1− ε)

√(
δE
E

)2

+

(
δI
I

)2

(4.3)
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The efficiencies we will measure are relatively large: ∼97% for pions, ∼85% for

kaons, and ∼94% for K0
Ss. Thus, the factor (1 − ε) will be small, which reduces

our relative uncertainties.

We now consider some approximations to explore the sensitivity of our mea-

surement to various quantities and uncertainties. The relative error on the ineffi-

cient events I will be much larger than the relative error on the efficient events E

because there are fewer inefficient events and because (as shown below) there is

more background for these events. Therefore, to a good approximation (δE/E)2

is negligible, and
δε

ε
≈ (1− ε)

(
δI
I

)
(4.4)

The efficiency systematic correction is the deviation from one of the Monte

Carlo-data efficiency ratio: εMC/εdata− 1. We will find that this correction is con-

sistent with zero. Its uncertainty, which sets the size of the tracking systematic,

is approximately

δ(εMC/εdata− 1) ≈
εMC

εdata

√[
(1− εMC)

(
δIMC

IMC

)]2

+

[
(1− εdata)

(
δIdata

Idata

)]2

(4.5)

Assuming that the uncertainties in data are much larger than those in Monte

Carlo and that εMC = εdata≡ ε,

δ(εMC/εdata− 1) ≈ (1− ε)

(
δIdata

Idata

)
=

δIdata

Edata+ Idata
(4.6)

We see that the scale of the efficiency systematic is determined by the uncer-

tainty on the inefficient yield in data, as a fraction of the total number of missing

particles considered. The systematic is relatively insensitive to variations in the

efficient yield.
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4.5 Data and Monte Carlo Samples

An 818 pb−1 sample of e+-e−collisions at the ψ(3770)resonance, containing ap-

proximately 5 million DD̄ events, is used to measure the efficiencies. Efficiencies

in the simulation are measured in a generic Monte Carlo sample of simulated

DD̄ events, containing 20 times as many of these events as in data.

4.6 Event and Candidate Selection

In all of the selection criteria discussed below, charge conjugation is implicitly

assumed. For example, reconstruction of a D− and a π+ implies an analogous

treatment of D+ and π−.

The selection of π+, π0, K+, K0
S, D0, and D+ candidates uses standard selection

requirements common to many CLEO-c analyses. These requirements were de-

scribed in Chapter 3.

For the D̄0 reconstruction we use 3 decay modes: D̄0 → K+π−, D̄0 → K+π−π0,

and D̄0→ K+π−π+π−. We require the tag D̄0 to satisfy

|MBC − MD0| < 0.005 GeV,

|∆E| < 0.025 GeV,

where MD0 = 1.8645 GeV[1]. Next we combine the D̄0 tag candidate with one of

the following:

• K− (to measure efficiency for the π+ in K−π+)

• π+ (to measure efficiency for the K− in K−π+)
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• π+ and π0 (to measure efficiency for the K− in K−π+π0)

• π+ and π− (to measure efficiency for the K0
S in K0

Sπ
+π−)

For the D− reconstruction we use 6 decay modes: D− → K+π−π−, D− →

K+π−π−π0, D− → K0
Sπ
−, D− → K0

Sπ
−π0, D− → K0

Sπ
−π−π+, and D− → K+K−π−.

We require

|MBC − MD+ | < 0.005 GeV,

|∆E| < 0.025 GeV,

where MD+ = 1.8694 GeV[1]. We combine the D− candidate with one of the

following:

• a pair of π+s (to measure efficiency for the K− in K−π+π+)

• K− and π+ (to measure efficiency for the π+s in K−π+π+)

For each of these candidates the missing mass squared is calculated:

M2
miss= (ptot − pD̄ − pother)

2 (4.7)

Here, ptot is the four-momentum of the e+e− pair, pD̄ is the four-momentum of the

tag D̄, and pother is the four-momentum of the other particles that were combined

with the tag D̄. We expect a peak at m2
π if a pion was missing, m2

K if a charged

kaon was missing, or m2
K0

S
if a K0

S was missing. In the missing mass squared

calculation, we constrain the beam constrained mass of the tag D̄ to the known

D̄ mass. That is, we rescale its momentum magnitude to the expected value

based on the beam energy, but leave its direction unchanged. This constraint

improves the M2
miss resolution.

For K0
S efficiency only, we introduce additionaly requirements to factor out

tracking efficiency from the measurement. To remove events in which one or

40



both tracks from a K0
S were not found, we require that the remaining unused

tracks in the event contain at least one pair of oppositely charged tracks loosely

consistent with the hypothesis of a missing K0
S. The track parameters are eval-

uated at the e+-e−interaction point and not at the K0
S decay vertex, and so for

true K0
Ss the resolution on the momentum and invariant mass of the pair will be

poor. The requirements for the pair of tracks are that the invariant mass must

satisfy 0.3 < M(2 tracks)< 0.7 GeV, and that the vector difference between the

pair’s momentum and the predicted K0
S momentum (based on the other parti-

cles in the event) must be less than 60 MeV. This requirement is approximately

the resolution of the momentum for events in which the K0
S was found – see

Figure 4.3. Events which do not contain a suitable pair of tracks are removed.

In addition to removing D0 → (K0
S → π+π−)π+π− events in which one or both

K0
S daughter pions were not found, this requirement eliminates D0 → K0

Lπ
+π−

and D0 → (K0
S → π0π0)π+π− events, both of which would also peak at the K0

S

mass squared. It also removes many non-peaking backgrounds. With the re-

quirement that a pair of suitable tracks was found, it is expected that the K0
S

efficiency is near 100%. Essentially, all that is being measured is whether the

found tracks were sufficiently well-measured to form a good K0
S vertex with the

proper invariant mass.

We next consider, for tracking efficiency, all remaining tracks that pass the

track quality requirements, ignoring particle identification requirements. For

K0
S efficiency, we consider all K0

S candidates that do not overlap the particles

used in forming M2
miss and that pass the 12 MeV mass requirement. In each case

we loop over the track or K0
S candidates to search for the missing particle. If we

find this particle such that it forms a good D candidate when combined with

the other D decay products, we have found the missing particle. The criteria for
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Figure 4.3: Distributions of each missing mass candidate’s best ∆P ≡

|~P2 tracks− ~Ppredicted|. The top left pair of plots is for data and the
plots to the bottom right are for the Monte Carlo simulation.
The top plot in each pair shows the ∆P distribution when a K0

S
was found. The bottom plot in each pair shows the distributon
for the events where no K0

S was found. These bottom plots in-
clude background events in which no K0

S was present at all; in
fact they include more background than is shown in later plots
because they include a wider M2

miss range. In this analysis, we
require ∆P < 0.060 GeV.
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Figure 4.4: For each event, value of MBC − MD closest to zero. Data is on
the left, and the Monte Carlo simulation is on the right. In this
example, the missing particle is the π+ in D+ → K−π+π+; other
modes are similar. The requirement used to determine whether
the π+ was found is |MBC − MD| < 0.01GeV, wide enough to
include the entire peak.

good D candidate is that

|MBC − MD| < 0.01GeV,

|∆E| < 0.05GeV.

If no good D candidate is found, then we did not find the missing particle. These

requirements are chosen to be loose, so that a track is considered found even if

its momentum is poorly measured. Figure 4.4 shows an example of the distri-

bution of MBC − MD. The accepted range is wide enough to include the entire

peak, and no background is present, so our results are insensitive to this exact

value of this requirement.

To determine background for the K0
S efficiency study, we also consider K0

S

candidates in low and high sidebands of the K0
S mass. These sidebands are de-

fined to be 14-26 MeV from the K0
S mass on either side. The sidebands are used

to study how often fake K0
S candidates are produced from random combina-

tions of tracks. The mass distribution of fake K0
S candidates does not peak in
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the K0
S mass, so fakes that pass the 12 MeV mass requirement are well mod-

eled by fakes with masses in the sidebands. The only difference is that their

missing mass squared distributions will be shifted left or right, as discussed in

Section 4.11.1.

Additionally, we split the candidates into bins of | cosθ| and momentum ac-

cording to the missing momentum. For the kaon and pion in D0 → K−π+, we

consider only those candidates with | cosθ| < 0.9. Higher values of | cosθ| are

ignored because the | cosθ| spectrum is cut off near 1 since the kaon and pion are

nearly back-to-back. In the three-body tracking modes this spectrum is not cut

off in this way, so we do use a bin with | cosθ| ≥ 0.9 and p ≥ 0.2GeV; this bin has

low efficiency because the missing particle often goes down the beampipe. In

the three-body tracking modes the pion and kaon candidates with | cosθ| < 0.9

are split into 5 momentum bins. For K0
S efficiency, we do not divide into an-

gular bins. We study K0
S efficiency in four momentum bins, and with all bins

combined.

4.7 Fits for Yields and Efficiencies

The distributions of M2
missare divided into the case of finding the missing particle

(π+, K+, or K0
S) and not finding it. We perform unbinned maximum likelihood

fits to both of these distributions to extract the yields in the M2
miss peak for the

two cases. The efficiency is calculated from these yields.

Events where the missing particle was found have a clean M2
miss peak at the

particle mass squared. For pions and kaons this peak is free of background; for

K0
Ss there is a small peaking background from fake K0

S candidates. The signal
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peak, which represents the “efficient” events, is fit with a two-sided Crystal Ball

shape [14].1 This peak shape is a Gaussian core with longer power-law tails on

each side.

Events in which the particle was not found are of two types: “inefficient”

events in which the missing particle was present but not detected, and back-

ground events in which it was not present at all. The inefficient events form a

peak at the particle mass squared. This peak should have the same shape as the

peak in events where the particle was found. Therefore, the shape and position

of the inefficient peak are fixed to match the efficient peak. The fit also includes

one or more terms for the backgrounds. As will be clear below, the shapes of

the background distributions are very different in different modes. Below, we

discuss the backgrounds and how they are fit.

Fit parameters in data and Monte Carlo are always independent of each

other, except in background shapes that are determined from signal Monte

Carlo.

4.8 Pion Tracking Efficiency

4.8.1 Pion Efficiency from D0→ K−π+

In this section, we measure the pion tracking efficiency by looking for pions in

the decay D0 → K−π+. Events with this decay correspond to a peak in M2
miss at

the pion mass squared.

1The two-sided Crystal Ball is implemented as a sum of two one-sided Crystal Balls, each
with the same mean, width, and area but with tails on opposite sides.
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Fits

Figure 4.5 shows the missing mass distributions and fits. When the pion track is

not found, we observe a significant background. This background arises from

the decay modes D0 → K−e+νe, D0 → K−µ+νµ, and D0 → K−π+π0. (D0 → π−`+ν`

backgrounds are negligibly small; their efficiency is ∼2% of the D0 → K−`+ν`

efficiency.) All three of these backgrounds are modeled by error functions. The

parameters that determine the locations and widths of these error functions are

obtained by fitting Monte Carlo samples for these three modes, as shown in Fig-

ure 4.6. Also, we require that the backgrounds D0 → K−e+νe and D0 → K−µ+νµ

have a fixed ratio determined by the efficiencies and branching fractions of these

two decays. We also add a flat background term to absorb the small background

at low M2
miss.

Fitting the generic Monte Carlo sample and the data to these backgrounds

and the signal peak, we obtain the plots shown at the bottom of Figure 4.5. Note

that the inefficient events produce a peak right at the threshold for D0→ K−`+ν.

Yields and Efficiencies

The yields and efficiencies from the fits are shown in Table 4.1.

Unfortunately, this measurement suffers from a background that turns on

underneath the signal peak for inefficient events. Thus, we consider systematics

for the background shapes due to possible differences in the background shapes

between data and Monte Carlo. We evaluate this by redoing the fit to data (but

not Monte Carlo) with two different variations on the error function parameters

for D0 → K−e+νe, D0 → K−µ+νµ, and D0 → K−π+π0. We first increase the width
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Figure 4.5: Pion efficiency from D0 → K−π+. The left plots are for data
and the plots to the right are for the generic Monte Carlo sim-
ulation. The top row of plots shows a fit to the missing mass
squared distribution when the pion was found. The bottom
row of plots shows the distributon for the events where the
pion was not found.

Table 4.1: Pion yields and tracking efficiencies from D0 → K−π+. The sys-
tematic uncertainty accounts for the uncertainty in the back-
ground shapes.

Data Monte Carlo
Number found 17408 ± 132 331021 ± 575

Number not found 395 ± 61 ± 9.22 7483 ± 266
Efficiency (%) 97.78 ± 0.34 ± 0.05 97.79 ± 0.08
εMC/εdata− 1 +0.01 ± 0.35 ± 0.05 % ( +0.0 σ)
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Figure 4.6: Fits to Monte Carlo samples for the modes D0 → K−e+νe,
D0 → K−µ+νµ, and D0 → K−π+π0, as analyzed while looking
for events in which the pion in D0 → K−π+ was not found.
The background shapes from these fits were used in the fits
to data and generic Monte Carlo. The error function shapes
for D0 → K−e+νe and D0 → K−µ+νµ are shifted with respect to
each other due to the mass difference between the electron and
muon.

of each error function by 10% and see how the inefficient yield changes. For the

second variation, we shift the position of the error functions. The magnitude of

the shift is determined by the difference between the positions of the efficient

peaks in data and Monte Carlo (top of Figure 4.5); the difference and its uncer-

tainty are combined in quadrature to determine the shift. With this shift, we see

how the inefficient yield changes. The changes in the inefficient yield from these

two variations are combined in quadrature to obtain the systematic uncertainty

in Table 4.1.
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Some other systematic variations in the fitting procedure were tested but

turned out to be negligibly small. These variations were: widening the width

of the inefficient peak in data by 10%, allowing the flat background component

to have non-zero slope, and varying the background shape parameters within

their uncertainties from the fits to the signal Monte Carlo samples.

4.8.2 Pion Efficiency from D+ → K−π+π+

In this section, we measure the pion tracking efficiency by looking for pions in

the decay D+ → K−π+π+. Events with this decay correspond to a peak in M2
miss

at the pion mass squared. Since the momentum of the π+ varies, we study the

efficiency in the five momentum bins. We also study a bin of small polar angle.

Fits

The backgrounds in this mode are similar to those in D0 → K−π+, but with the

addition of one extra π+. D+ → K−π+π+π0 appears to the right of the signal peak,

and the semileptonic decays D+ → K−π+e+νe and D+ → K−π+µ+νµ turn on under

the signal peak. The fitting procedure is exactly the same as for D0 → K−π+,

using the analogous background modes (each with an extra π+).

Separate background shapes are determined in each momentum and angu-

lar bin.

Examples of plots for the background Monte Carlo samples are shown in

Figure 4.7. Figures 4.8, 4.9, 4.10, 4.11, 4.12, and 4.13 show the plots for data and

generic Monte Carlo in the 6 bins.
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Figure 4.7: Fits to Monte Carlo simulations for the modes D+ → K−π+e+νe,
D+ → K−π+µ+νµ, and D+ → K−π+π+π0, as analyzed while
looking for events in which a pion in D+ → K−π+π+ was not
found. These plots show the 4 highest momentum bins to-
gether (pπ+ ≥ 0.2 GeV); separate plots and fits for the individual
momentum bins are similar.

Yields and Efficiencies

The yields and efficiencies from the fits are shown in Table 4.2.

As in D0 → K−π+, the semileptonic backgrounds turn on under the signal

peak. We determine systematic uncertainties from these backgrounds in the

same way – by varying the widths and positions of the two error functions in

data.
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Table 4.2: Pion yields and tracking efficiencies from D+ → K−π+π+ in 6
bins. The systematic uncertainties in the efficiency differences
come from varying the shape of the D+ → K−π+l+νl background
in data.

Data Monte Carlo
pπ+ < 0.2 GeV

Number found 2606 ± 51 50174 ± 224
Number not found 371 ± 20 ± 1.41 7539 ± 94

Efficiency (%) 87.54 ± 0.63 ± 0.04 86.94 ± 0.15
εMC/εdata− 1 -0.69 ± 0.73 ± 0.05 % ( -0.9 σ)

0.2 ≤ pπ+ < 0.35 GeV
Number found 3857 ± 62 66701 ± 258

Number not found 171 ± 17 ± 1 2992 ± 85
Efficiency (%) 95.75 ± 0.41 ± 0.02 95.71 ± 0.12
εMC/εdata− 1 -0.05 ± 0.44 ± 0.02 % ( -0.1 σ)

0.35≤ pπ+ < 0.5 GeV
Number found 12123 ± 110 255898 ± 506

Number not found 346 ± 26 ± 5 9042 ± 129
Efficiency (%) 97.23 ± 0.20 ± 0.04 96.59 ± 0.05
εMC/εdata− 1 -0.66 ± 0.21 ± 0.04 % ( -3.1 σ)

0.5 ≤ pπ+ < 0.7 GeV
Number found 24325 ± 156 538011 ± 733

Number not found 687 ± 41 ± 23.09 15049 ± 185
Efficiency (%) 97.25 ± 0.16 ± 0.09 97.28 ± 0.03
εMC/εdata− 1 +0.03 ± 0.17 ± 0.09 % ( +0.2 σ)

pπ+ ≥ 0.7 GeV
Number found 10012 ± 100 202160 ± 450

Number not found 149 ± 41 ± 4.12 4315 ± 174
Efficiency (%) 98.53 ± 0.40 ± 0.04 97.91 ± 0.08
εMC/εdata− 1 -0.63 ± 0.41 ± 0.04 % ( -1.5 σ)

| cosθ| ≥ 0.9, pπ+ ≥ 0.2 GeV
Number found 1324 ± 36 28709 ± 169

Number not found 3593 ± 67 ± 1 78226 ± 315
Efficiency (%) 26.93 ± 0.65 ± 0.01 26.85 ± 0.14
εMC/εdata− 1 -0.30 ± 2.46 ± 0.02 % ( -0.1 σ)
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Figure 4.8: Pion efficiency from D+ → K−π+π+ for pπ+ < 0.2 GeV. The left
plots are for data and the plots to the right are for the generic
Monte Carlo simulation. The top row of plots shows a fit to the
missing mass squared distribution when the pion was found.
The bottom row shows the distributon for the events where the
pion was not found.

4.8.3 Pion Tracking Efficiency Summary

We have seven independent measurements of the difference in pion tracking

efficiency between data and Monte Carlo – one from D0 → K−π+ and six from

D+ → K−π+π+. The seven measurements are shown in Table 4.3. All are consis-

tent with zero discrepancy between data and Monte Carlo.

The dependence of the efficiencies and data-Monte Carlo discrepancies on

pion momentum is shown in Figure 4.14. The efficiency varies across momen-

tum bins, and this variation is modeled well in the Monte Carlo. We have added
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Figure 4.9: Pion efficiency from D+ → K−π+π+ for 0.2 ≤ pπ+ < 0.35 GeV.
The left plots are for data and the plots to the right are for the
generic Monte Carlo simulation. The top row of plots shows a
fit to the missing mass squared distribution when the pion was
found. The bottom row shows the distributon for the events
where the pion was not found.

one more data point to the discrepancy plot from a previous study of the low-

momentum pions in ψ(2S)→ J/ψπ+π− [13].
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Figure 4.10: Pion efficiency from D+ → K−π+π+ for 0.35 ≤ pπ+ < 0.5 GeV.
The left plots are for data and the plots to the right are for the
generic Monte Carlo simulation. The top row of plots shows
a fit to the missing mass squared distribution when the pion
was found. The bottom row shows the distributon for the
events where the pion was not found.

Table 4.3: Measurements of the pion tracking efficiency difference
εMC/εdata− 1. In this table, statistical and systematic uncertain-
ties are combined.

Mode & Bin εMC/εdata− 1
K−π+π+, | cosθ| ≥ 0.9, pπ+ ≥ 0.2 GeV -0.30 ± 2.46 %
K−π+π+, pπ+ < 0.2 GeV -0.69 ± 0.73 %
K−π+π+, 0.2 ≤ pπ+ < 0.35 GeV -0.05 ± 0.45 %
K−π+π+, 0.35≤ pπ+ < 0.5 GeV -0.66 ± 0.22 %
K−π+π+, 0.5 ≤ pπ+ < 0.7 GeV +0.03 ± 0.19 %
K−π+π+, pπ+ ≥ 0.7 GeV -0.63 ± 0.41 %
K−π+ (∼ 0.7 < pπ+ <∼ 1 GeV) +0.01 ± 0.36 %
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Figure 4.11: Pion efficiency from D+ → K−π+π+ for 0.5 ≤ pπ+ < 0.7 GeV.
The left plots are for data and the plots to the right are for the
generic Monte Carlo simulation. The top row of plots shows
a fit to the missing mass squared distribution when the pion
was found. The bottom row shows the distributon for the
events where the pion was not found.

4.9 Kaon Tracking Efficiency

4.9.1 Kaon Efficiency from D0→ K−π+

In this section, we measure the kaon tracking efficiency by looking for kaons in

the decay D0 → K−π+. Events with this decay correspond to a peak in M2
miss at

the kaon mass squared.
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Figure 4.12: Pion efficiency from D+ → K−π+π+ for pπ+ ≥ 0.7 GeV. The left
plots are for data and the plots to the right are for the generic
Monte Carlo simulation. The top row of plots shows a fit
to the missing mass squared distribution when the pion was
found. The bottom row shows the distributon for the events
where the pion was not found.

Fits

When the kaon track is not found, we observe significant background. This

background arises from the decay modes D0 → π+π−, D0 → K−π+π0, D0 →

π−µ+νµ, and D0 → K−µ+νµ, with small contributions from other modes. The first

background, D0 → π+π−, produces a peak at the pion mass squared, which is fit

with a two-sided Crystal Ball peak. D0 → K−π+π0 produces an error function.

D0→ K−µ+νµ also produces an error function, but its yield is much smaller. The

ratio of the D0 → K−π+π0 and D0 → K−µ+νµ yields is fixed based on the efficien-
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Figure 4.13: Pion efficiency from D+ → K−π+π+ for 0.2 GeV≤ pπ+ , | cosθ| ≥
0.9. The left plots are for data and the plots to the right are
for the generic Monte Carlo simulation. The top row of plots
shows a fit to the missing mass squared distribution when the
pion was found. The bottom row shows the distributon for
the events where the pion was not found.

cies and branching fractions of these modes. The last background is a straight

line rising from some cutoff in M2
miss, and zero to the left of the cutoff. This shape

works well empirically. The decay D0→ π−µ+νµ has this shape, but there are not

enough events of this type to account for this entire background. Therefore this

shape is also accounting for additional small backgrounds.

The parameters that determine the shapes of these backgrounds are obtained

by fitting Monte Carlo simulations for these modes, as shown in Figure 4.15. For

the rising straight line, we use simulated D0 → π−µ+νµ events to determine the
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Figure 4.15: Fits to Monte Carlo simulations for the modes D0 → π+π−,
K−π+π0, D0 → K−µ+νµ, and D0 → π−µ+νµ, as analyzed while
looking for events in which the kaon in D0 → K−π+ was not
found. These shapes were used in the fits of the data and
generic Monte Carlo.

cutoff. As a systematic uncertainty, we also try allowing the cutoff to float.

Fitting the generic Monte Carlo sample and the data to these backgrounds

and the signal peak, we obtain the plots shown in Figure 4.16.

Yields and Efficiencies

The yields and efficiencies from the fits are shown in Table 4.4. The efficiencies

in data and Monte Carlo are consistent.
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Figure 4.16: Kaon efficiency from D0 → K−π+. The left plots are for data
and the plots to the right are for the generic Monte Carlo sim-
ulation. The top row of plots shows a fit to the missing mass
squared distribution when the kaon was found. The bottom
row of plots shows the distributon for the events where the
kaon was not found.

As a systematic test, we tried allowing the cutoff of the rising linear back-

ground to float in both data and generic MC. We take the change in εMC/εdata− 1

as the systematic uncertainty.

4.9.2 Kaon Efficiency from D0→ K−π+π0

In this section, we measure the kaon tracking efficiency by looking for kaons in

the decay D0→ K−π+π0. Events with this decay correspond to a peak in M2
miss at
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Table 4.4: Kaon yields and tracking efficiencies from D0 → K−π+. The sys-
tematic uncertainty comes from allowing the cutoff of the rising
linear background to float.

Data Monte Carlo
Number found 18709 ± 137 353442 ± 595

Number not found 1981 ± 60 ± 6 36419 ± 248 ± 147
Efficiency (%) 90.43 ± 0.27 ± 0.03 90.66 ± 0.06 ± 0.03
εMC/εdata− 1 +0.26 ± 0.31 ± 0.01 % ( +0.8 σ)

the kaon mass squared. Since the momentum of the kaon varies, we study the

efficiency in the five momentum bins. We also study a bin of small polar angle.

Fits

We do one set of fits for each momentum bin. The background underneath the

signal peak for undetected kaons is fit with a linear background. The fits are

shown in Figures 4.17, 4.18, 4.19, 4.20, 4.21, and 4.22.

Yields and Efficiencies

The yields and efficiencies from the fits are shown in Table 4.5. The efficiencies

in Monte Carlo are consistent with the efficiencies in data.

We consider, as a systematic uncertainty, a change to the fit range. Unfor-

tunately, we have used a small M2
miss range because the background has other

structures outside this range that are difficult to fit. As a variation, we also redo

the analysis with the range tightened by 0.01 GeV2 on each end. This alters the

fitted shape of the background and hence the efficiencies. We take the change in
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Figure 4.17: Kaon efficiency from D0 → K−π+π0 for pK− < 0.2 GeV. The left
plots are for data and the plots to the right are for the generic
Monte Carlo simulation. The top row of plots shows a fit
to the missing mass squared distribution when the kaon was
found. The bottom row shows the distributon for the events
where the kaon was not found.

εMC/εdata− 1 as the systematic uncertainty.

4.9.3 Kaon Efficiency from D+ → K−π+π+

In this section, we measure the kaon tracking efficiency by looking for kaons in

the decay D+ → K−π+π+. Events with this decay correspond to a peak in M2
miss at

the kaon mass squared. Since the momentum of the kaon varies, we study the

efficiency in the five momentum bins. We also study a bin of small polar angle.

62



Table 4.5: Kaon yields and tracking efficiencies from D0 → K−π+π0 in six
bins. The systematics are determined by fitting over a slightly
smaller M2

miss range.

Data Monte Carlo
pK− < 0.2 GeV

Number found 675 ± 26 11706 ± 108
Number not found 845 ± 35 15869 ± 146

Efficiency (%) 44.41 ± 1.40 ± 0.13 42.45 ± 0.32 ± 1.68
εMC/εdata− 1 -4.41 ± 3.09 ± 3.52 % ( -0.9 σ)

0.2 ≤ pK− < 0.35 GeV
Number found 2135 ± 46 37642 ± 194

Number not found 704 ± 42 12426 ± 163
Efficiency (%) 75.20 ± 1.18 ± 0.08 75.18 ± 0.26 ± 0.28
εMC/εdata− 1 -0.03 ± 1.61 ± 0.48 % ( -0.0 σ)

0.35≤ pK− < 0.5 GeV
Number found 2389 ± 49 32763 ± 181

Number not found 603 ± 59 7348 ± 221
Efficiency (%) 79.85 ± 1.61 ± 0.03 81.68 ± 0.46 ± 0.48
εMC/εdata− 1 +2.30 ± 2.14 ± 0.57 % ( +1.0 σ)

0.5 ≤ pK− < 0.7 GeV
Number found 15944 ± 126 283016 ± 532

Number not found 2042 ± 128 40387 ± 532
Efficiency (%) 88.65 ± 0.64 ± 0.02 87.51 ± 0.15 ± 0.00
εMC/εdata− 1 -1.28 ± 0.73 ± 0.03 % ( -1.8 σ)

pK− ≥ 0.7 GeV
Number found 17201 ± 131 337248 ± 581

Number not found 2236 ± 157 39118 ± 620
Efficiency (%) 88.50 ± 0.72 ± 0.23 89.61 ± 0.15 ± 0.14
εMC/εdata− 1 +1.25 ± 0.84 ± 0.43 % ( +1.3 σ)

| cosθ| ≥ 0.9, pK− ≥ 0.2 GeV
Number found 691 ± 26 13444 ± 116

Number not found 2326 ± 90 40862 ± 378
Efficiency (%) 22.90 ± 0.95 ± 0.09 24.76 ± 0.24 ± 0.01
εMC/εdata− 1 +8.09 ± 4.61 ± 0.46 % ( +1.7 σ)
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Figure 4.18: Kaon efficiency from D0 → K−π+π0 for 0.2 ≤ pK− < 0.35 GeV.
The left plots are for data and the plots to the right are for the
generic Monte Carlo simulation. The top row of plots shows
a fit to the missing mass squared distribution when the kaon
was found. The bottom row shows the distributon for the
events where the kaon was not found.

Fits

We do one set of fits for each momentum bin. The background underneath the

signal peak for undetected kaons is fit with the sum of a flat background and

an error function. The error function mean and width are fixed to be the same

as the mean and width of the signal peak. The idea is to model a background

turning on under the signal peak. This seems to work empirically, though we

have not studied the background in detail.

The fits are shown in Figures 4.23, 4.24, 4.25, 4.26, 4.27, and 4.28.
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Figure 4.19: Kaon efficiency from D0 → K−π+π0 for 0.35 ≤ pK− < 0.5 GeV.
The left plots are for data and the plots to the right are for the
generic Monte Carlo simulation. The top row of plots shows
a fit to the missing mass squared distribution when the kaon
was found. The bottom row shows the distributon for the
events where the kaon was not found.

Yields and Efficiencies

The yields and efficiencies from the fits are shown in Table 4.6. The efficiencies

in Monte Carlo are consistent with the efficiencies in data in 5 of the 6 bins. In

one bin, 0.2 ≤ pK− < 0.35 GeV, they differ by 3.4 standard deviations. This bin

will be significant when calculating the tracking systematic in Section 4.10 since

it will be highly weighted.
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Table 4.6: Kaon yields and tracking efficiencies from D+ → K−π+π+ in six
bins.

Data Monte Carlo
pK− < 0.2 GeV

Number found 1095 ± 33 23817 ± 154
Number not found 1760 ± 44 37446 ± 204

Efficiency (%) 38.35 ± 0.93 38.88 ± 0.20
εMC/εdata− 1 +1.36 ± 2.50 % ( +0.5 σ)

0.2 ≤ pK− < 0.35 GeV
Number found 4776 ± 69 98468 ± 314

Number not found 1457 ± 44 33530 ± 205
Efficiency (%) 76.62 ± 0.60 74.60 ± 0.13
εMC/εdata− 1 -2.64 ± 0.78 % ( -3.4 σ)

0.35≤ pK− < 0.5 GeV
Number found 5721 ± 76 127050 ± 356

Number not found 1199 ± 45 26141 ± 195
Efficiency (%) 82.67 ± 0.57 82.94 ± 0.11
εMC/εdata− 1 +0.32 ± 0.71 % ( +0.5 σ)

0.5 ≤ pK− < 0.7 GeV
Number found 8477 ± 92 182290 ± 427

Number not found 1157 ± 54 26213 ± 225
Efficiency (%) 87.99 ± 0.51 87.43 ± 0.10
εMC/εdata− 1 -0.64 ± 0.58 % ( -1.1 σ)

pK− ≥ 0.7 GeV
Number found 8054 ± 90 149665 ± 387

Number not found 980 ± 53 17081 ± 205
Efficiency (%) 89.15 ± 0.53 89.76 ± 0.11
εMC/εdata− 1 +0.68 ± 0.62 % ( +1.1 σ)

| cosθ| ≥ 0.9, pK− ≥ 0.2 GeV
Number found 690 ± 26 14131 ± 119

Number not found 2574 ± 60 55345 ± 268
Efficiency (%) 21.14 ± 0.74 20.34 ± 0.16
εMC/εdata− 1 -3.79 ± 3.44 % ( -1.1 σ)
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Figure 4.20: Kaon efficiency from D0 → K−π+π0 for 0.5 ≤ pK− < 0.7 GeV.
The left plots are for data and the plots to the right are for the
generic Monte Carlo simulation. The top row of plots shows
a fit to the missing mass squared distribution when the kaon
was found. The bottom row shows the distributon for the
events where the kaon was not found.

4.9.4 Kaon Tracking Efficiency Summary

We have 13 independent measurements of the difference in kaon tracking effi-

ciency between data and Monte Carlo – one from D0→ K−π+ and six each from

D0→ K−π+π0 and D+ → K−π+π+. These include two measurements in each of the

momentum and angular bins. We average the D0 → K−π+π0 and D+ → K−π+π+

results within each bin. The measurements and averages are shown in Table 4.7.

One bin, 0.2 ≤ pK− < 0.35 GeV, shows a discrepancy at a significance of 3 stan-

dard deviations; the other bins are consistent with zero discrepancy between
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Figure 4.21: Kaon efficiency from D0 → K−π+π0 for pK− ≥ 0.7 GeV. The left
plots are for data and the plots to the right are for the generic
Monte Carlo simulation. The top row of plots shows a fit
to the missing mass squared distribution when the kaon was
found. The bottom row shows the distributon for the events
where the kaon was not found.

data and Monte Carlo.

The dependence of the efficiencies and data-Monte Carlo discrepancies on

kaon momentum is shown in Figure 4.29. The efficiency varies substantially

across momentum bins, but the variation is modeled well in the Monte Carlo.
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Figure 4.22: Kaon efficiency from D0 → K−π+π0 for 0.2 GeV≤ pK− , | cosθ| ≥
0.9. The left plots are for data and the plots to the right are
for the generic Monte Carlo simulation. The top row of plots
shows a fit to the missing mass squared distribution when the
kaon was found. The bottom row shows the distributon for
the events where the kaon was not found.

Table 4.7: Measurements of the kaon tracking efficiency difference
εMC/εdata− 1 and averages within bins. In this table, statistical
and systematic uncertainties are combined.

D0→ K−π+π0 D+ → K−π+π+ Average
| cosθ| ≥ 0.9, pK− ≥ 0.2 GeV +8.09 ± 4.64 % -3.79 ± 3.44 % +0.43 ± 2.76 %
pK− < 0.2 GeV -4.41 ± 4.68 % +1.36 ± 2.50 % +0.08 ± 2.21 %
0.2 ≤ pK− < 0.35 GeV -0.03 ± 1.68 % -2.64 ± 0.78 % -2.18 ± 0.71 %
0.35≤ pK− < 0.5 GeV +2.30 ± 2.21 % +0.32 ± 0.71 % +0.50 ± 0.67 %
0.5 ≤ pK− < 0.7 GeV -1.28 ± 0.73 % -0.64 ± 0.58 % -0.89 ± 0.45 %
pK− ≥ 0.7 GeV +1.25 ± 0.94 % +0.68 ± 0.62 % +0.85 ± 0.52 %

K−π+ (∼ 0.7 ≤ pK− ≤∼ 1 GeV) +0.26 ± 0.31 %
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Figure 4.23: Kaon efficiency from D+ → K−π+π+ for pK− < 0.2 GeV. The left
plots are for data and the plots to the right are for the generic
Monte Carlo simulation. The top row of plots shows a fit
to the missing mass squared distribution when the kaon was
found. The bottom row shows the distributon for the events
where the kaon was not found.

4.10 Calculation of Tracking Systematic Uncertainty

The procedure for calculating the tracking efficiency systematic is based on the

observation in Section 4.2.1 that tracks which pass through the entire drift cham-

ber2 before decaying3 are almost always found. This leads to a systematic that

varies depending on momentum and particle type.

2A particle has passed through the entire drift chamber if it either hits the outer radius of
the drift chamber or if it hits one of the endplates. Both the outer radius and the endplates are
considered in the implementation.

3In this section, we use “decay” as shorthand for “decay or interact” or “die.”
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Figure 4.24: Kaon efficiency from D+ → K−π+π+ for 0.2 ≤ pK− < 0.35 GeV.
The left plots are for data and the plots to the right are for the
generic Monte Carlo simulation. The top row of plots shows
a fit to the missing mass squared distribution when the kaon
was found. The bottom row shows the distributon for the
events where the kaon was not found.

Tracks are divided into two classes – those that decay inside the drift cham-

ber and those that do not. Tracks not decaying in the drift chamber have an

efficiency of nearly 100%, regardless of particle type or momentum. Tracks that

do decay have a lower efficiency. In the model we use to develop the tracking

systematic, this efficiency is the same, regardless of particle type or momen-

tum. Then the variation in tracking efficiency between different particle types

and momentum ranges is simply a function of how often particles of that type

and momentum decay within the drift chamber. The efficiency for a decaying
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Figure 4.25: Kaon efficiency from D+ → K−π+π+ for 0.35 ≤ pK− < 0.5 GeV.
The left plots are for data and the plots to the right are for the
generic Monte Carlo simulation. The top row of plots shows
a fit to the missing mass squared distribution when the kaon
was found. The bottom row shows the distributon for the
events where the kaon was not found.

particle is related to the total efficiency for a given mode by

εtot = (1− f )(100%)+ f εdec (4.8)

where f is the fraction of particles decaying inside the drift chamber, εdec is the

tracking efficiency for a particle decaying inside, and εtot is the total efficiency

for a mode in which a fraction f of the particles decay inside. In this model, εdec

is the same for all particles and momentum ranges, and tracking efficiency for a

given particle and momentum is a function of f .

Tracking efficiencies in different bins sample the two classes of tracks differ-
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Figure 4.26: Kaon efficiency from D+ → K−π+π+ for 0.5 ≤ pK− < 0.7 GeV.
The left plots are for data and the plots to the right are for the
generic Monte Carlo simulation. The top row of plots shows
a fit to the missing mass squared distribution when the kaon
was found. The bottom row shows the distributon for the
events where the kaon was not found.

ently. Therefore measurements in different bins and different particle types are

not directly comparable. For example, if decaying tracks were modeled poorly

but tracks not decaying were modeled well, then pions (which seldom decay in-

side) would show little discrepancy between data and Monte Carlo, but kaons

(which more often decay inside) would show a higher discrepancy. This af-

fects both the averaging of effiency measurements between momentum bins

and the calculation of the tracking systematics. Measurements in bins where f

is large carry much more information about εdec than bins with small f ; there-

fore low-momentum kaons are the most valuable measurement. At the end, the
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Figure 4.27: Kaon efficiency from D+ → K−π+π+ for pK− ≥ 0.7 GeV. The left
plots are for data and the plots to the right are for the generic
Monte Carlo simulation. The top row of plots shows a fit
to the missing mass squared distribution when the kaon was
found. The bottom row shows the distributon for the events
where the kaon was not found.

final tracking systematic is different for different particle types and momentum

ranges, according to how often those tracks decay inside the drift chamber.

The procedure for calculating the tracking systematic is as follows:

• For each decay mode, particle type, and momentum bin, determine the

value of f for that particle from Monte Carlo simulation.

• Using Eq. 4.8, convert each measured value of εtot – the overall tracking

efficiencies measured in Sections 4.8 and 4.9 – to a value of εdec. The un-

certainty on εdec is inversely proportional to f ; therefore low-momentum
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Figure 4.28: Kaon efficiency from D+ → K−π+π+ for 0.2 GeV≤ pK− , | cosθ| ≥
0.9. The left plots are for data and the plots to the right are
for the generic Monte Carlo simulation. The top row of plots
shows a fit to the missing mass squared distribution when the
kaon was found. The bottom row shows the distributon for
the events where the kaon was not found.

kaons produce the smallest uncertainties. Calculate the data-Monte Carlo

discrepancy εdec,MC/εdec,data− 1 in each bin.

• The values of εdec,MC/εdec,data− 1 calculated in each bin are measurements of

the same quantity, the discrepancy in the efficiency for finding tracks that

decay inside the drift chamber. Average these values across bins, weighted

according to uncertainty, to determine a single value for the discrepancy.

Because these uncertainties are lower for higher f , this gives greater sig-

nificance to modes with high f . In particular, the average is dominated by

measurements of low-momentum kaons.
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Figure 4.29: Measurements (in %) of the kaon tracking efficiency (top) and
the data-Monte Carlo discrepancy εMC/εdata−1 (bottom) in dif-
ferent momentum bins.
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• Calculate the discrepancy in the overall tracking efficiency using the fol-

lowing equation, which is derived from Eq. 4.8:

εtot,MC/εtot,data− 1 =
εdec,MC/εdec,data− 1

1+ 1− f
f

1
εdec,data

(4.9)

This equation depends on f , which is in turn a function of momentum and

particle type. Using values of f determined from Monte Carlo simulation,

determine the discrepancy in overall tracking efficiency, εtot,MC/εtot,data− 1,

as a function of momentum and particle type. In fact, the discrepancy

and its uncertainty are roughly proportional to f . Thus, the discrepancy

for a given particle is small for high-momentum pions and large for low-

momentum kaons.

• Take the uncertainty and central value of the discrepancy in quadrature

to determine the tracking efficiency systematic. Also add in quadrature

systematic uncertainties for tracks that do not decay in the drift chamber

and for tracks at small polar angles.

• To obtain a tracking systematic for a given particle, take an average of this

momentum-dependent systematic, weighted by the particle’s momentum

spectrum.

This procedure uses an approximate model, and it should be understood

not as a precise exercise, but rather a way to get a physically well-motivated

and momentum-dependent systematic uncertainty.

Very low-momentum tracks will have a small radius of curvature that does

not allow them to reach the outer wall of the drift chamber; instead their helical

path may have several loops inside the detector. These tracks, called curlers, are

a special case, and they are not included in this model. A curler at an angle close
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to perpendicular with the beamline will necessarily decay inside the drift cham-

ber, but as long as it completes its first half-loop it is likely to be reconstructed.

A higher-momentum track that decays in the drift chamber may fail the require-

ment that at least half the detector layers along its helix contain hits, and may

therefore be lost. But a curler that completes a half-loop will not fail this re-

quirement even though it decayed inside. The procedure described above will

be applied only to the momentum bins above 0.2 GeV. The lowest-momentum

tracks will be treated separately.

4.10.1 Estimates of f

To estimate f , we measure it using Monte Carlo truth as a function of momen-

tum for kaons and pions with | cosθ| < 0.9. This is plotted in Figure 4.30.

We will use these plots to estimate f for the various tracking efficiency mea-

surments and later to determine a systematic as a function of momentum.

4.10.2 Calculations of εdec

Table 4.8 shows the values of εtot, estimates of f , and calculated values of εdec for

each kaon tracking efficiency measurement. Given the crudity of the estimates

of f , the values of εdec agree reasonably well between modes. When we average

the data-Monte Carlo discrepancies for εdec, we find -5.99±2.18%. The average

is dominated by the low-momentum kaons in D+ → K−π+π+. Unfortunately, the

significant discrepancy in the bin 0.2 ≤ pK < 0.35 GeVis heavily weighted, and

so the discrepancy in εdec is also significant.
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Figure 4.30: Fraction of kaons (top) and pions (bottom) decaying inside the
drift chamber as a function of kaon momentum, for | cosθ| <
0.9. The numerical values in these plots are listed in Table 4.9.
(The vertical scales are not percent; the top of the vertical axis
is 0.6 = 60%.)

79



Table 4.8: Values (in %) of εtot, estimates of f , and calculated values of εdec

for each kaon tracking efficiency measurement. In this table, sta-
tistical and systematic uncertainties are combined.

Mode εtot,data εtot,MC f εdec,data εdec,MC

εtot,MC/εtot,data− 1 εdec,MC/εdec,data− 1
K in Kπ 90.43±0.27 90.66±0.07 14% 31.61±1.94 33.27±0.49
(pK ∼ 0.8 GeV) 0.26±0.31 5.27± 6.63
K in Kππ0 75.20±1.19 75.18±0.38 39% 36.42±3.04 36.36±0.98
0.2 ≤ pK < 0.35 GeV -0.03±1.66 -0.15± 8.76
K in Kππ0 79.85±1.61 81.68±0.66 28% 28.02±7.75 35.57±2.37
0.35≤ pK < 0.5 GeV 2.30±2.22 23.38±26.68
K in Kππ0 88.65±0.64 87.51±0.15 20% 43.23±3.18 37.56±0.73
0.5 ≤ pK < 0.7 GeV -1.28±0.73 -13.12± 6.61
K in Kππ0 88.50±0.76 89.61±0.20 15% 23.31±5.04 30.71±1.36
0.7 ≤ pK 1.25±0.89 31.76±29.07
K in Kππ 76.62±0.60 74.60±0.13 39% 40.06±1.54 34.87±0.34
0.2 ≤ pK < 0.35 GeV -2.64±0.78 -12.97± 3.44
K in Kππ 82.67±0.57 82.94±0.11 28% 38.12±2.04 39.06±0.40
0.35≤ pK < 0.5 GeV 0.32±0.71 2.46± 5.58
K in Kππ 87.99±0.51 87.43±0.10 20% 39.95±2.53 37.14±0.49
0.5 ≤ pK < 0.7 GeV -0.64±0.58 -7.04± 6.02
K in Kππ 89.15±0.53 89.76±0.11 15% 27.68±3.56 31.71±0.75
0.7 ≤ pK 0.68±0.62 14.55±14.98
Average 36.72±0.83 35.82±0.19

-0.06±0.21 -5.99± 2.18

Pion efficiency measurements would provide very little additional informa-

tion. Uncertainties in εdec are higher since f is much smaller (∼ 5%) for pions.

Therefore, we have not included pion measurements in the table or the average.
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4.10.3 Calculation of Momentum-Dependent Efficiency Sys-

tematic

Having determined an average for εdec,MC/εdec,data− 1, we calculate the discrep-

ancy in the total efficiencies by Eq. 4.9. This discrepancy, and hence the tracking

efficiency systematic, depends on the value of f for the track in question. It is

roughly proportional to f . Thus, pions will have a small systematic, and kaons

will have a large systematic, especially at high momentum. The discrepancy

is -0.11±0.04% for f = 5% (a typical value for pions in 2-body D decays) and

-0.65±0.24% for f = 25% (a typical value for kaons from 3- or 4-body D decays).

To calculate a systematic, we take the central value and uncertainty in quadra-

ture. This gives a systematic of 0.12% for a typical pion and 0.69% for a typical

kaon. The systematics will be smaller at higher momentum and larger at lower

momentum. Figure 4.31 plots the pion and kaon systematics as a function of

momentum, and Table 4.9 lists the numerical values of these systematics. The

values of f come from Figure 4.30. The systematics in Figure 4.31 / Table 4.9

should be treated as fully correlated between particles.

This calculation has assumed 100% efficiency for particles that escape the

drift chamber before decaying, but we must add a systematic uncertainty for

these tracks. To get a systematic, we use the muon efficiency study [13], which

found agreement between data and Monte Carlo to within 0.2%. Thus, in ad-

dition to the f -dependent systematic calculated above, we add in quadrature

0.2% per track. We have also neglected tracks with | cosθ| ≥ 0.9, and we must

add a systematic for them. We found that for both pions and kaons in this | cosθ|

bin, data and Monte Carlo agree to within 3%. Multiplying 3% by 0.03/0.93

(the fraction of the fiducial volume at polar angles with | cosθ| > 0.9), we get
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Figure 4.31: Tracking efficiency systematic uncertainties as a function of
momentum for kaons (top) and pions (bottom). The values
of f come from Figure 4.30. For values below 200 MeV, the
systematic is taken from the 200-300 MeV bin, as discussed in
the text. The numerical values in these plots are listed in Table
4.9.
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Table 4.9: Values of f and momentum-dependent systematic uncertain-
ties. These numbers come from the plots in Figures 4.30 and
4.31.

KAONS PIONS
Momentum Decaying Total Decaying Total

Range f K Syst. Syst. f π Syst. Syst.
0-200 MeV N/A 1.36% 1.38% N/A 0.21% 0.30%

200-300 MeV 42.4% 1.36% 1.38% 8.4% 0.21% 0.30%
300-400 MeV 32.0% 0.94% 0.97% 6.0% 0.15% 0.27%
400-500 MeV 25.7% 0.72% 0.75% 4.6% 0.11% 0.25%
500-600 MeV 21.5% 0.58% 0.62% 3.9% 0.09% 0.24%
600-700 MeV 18.3% 0.48% 0.53% 3.4% 0.08% 0.24%
700-800 MeV 16.3% 0.42% 0.48% 2.8% 0.07% 0.23%
800-900 MeV 14.3% 0.37% 0.43% 2.5% 0.06% 0.23%

900-1000 MeV 13.1% 0.33% 0.40% 2.5% 0.06% 0.23%
1000-1100 MeV 12.7% 0.32% 0.39% 1.8% 0.04% 0.23%

a systematic of 0.1%. This is added in quadrature for each track. Figure 4.31

shows these systematics along with their combination in quadrature with the

momentum-dependent systematic.

This scheme is not applicable to low-momentum tracks, which are often

curlers. For tracks below 200 MeV, we need additional input to determine a

systematic. For pions, we have evidence from the low-momentum pions in

ψ(2S) → J/ψπ+π− [13, 15] that the agreement between data and Monte Carlo is

excellent at low momentum. Therefore we use the systematic from the 200-300

MeV bin for pions below 200 MeV. For kaons, we consider the direct measure-

ments in the lowest-momentum bin to determine the systematic. Averaging the

pion and kaon results in this bin, we get a discrepancy of -0.61 ± 0.69 %, or a sys-

tematic of 0.92%. This value is well below the systematic from the 200-300 MeV

bin – 1.38% – and to be conservative we use 1.38% as the systematic at lower

momentum. To summarize, for both pions and kaons we use the systematic for
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the 200-300 MeV bin as the systematic below 200 MeV. This is reflected in Figure

4.31 and Table 4.9.

The pion or kaon tracking systematic depends on the particle’s momentum.

The systematics in Figure 4.31 / Table 4.9 should be combined in an average

weighted by the particle’s momentum spectrum. In a momentum-dependent

analysis, these results should be used for a momentum-dependent systematic.

In any analysis, these systematic uncertainties should be treated as correlated

between all particles.

We performed a number of cross-checks to see whether the Monte Carlo sim-

ulation correctly models the dependence of tracking efficiency on track charge,

track polar angle, and the number of particles in the tag D mode. We also

checked the sensitivity of the efficiency to the requirement that half of the drift

chamber layers traversed by a track contain a hit. All of these cross-checks

showed consistency between data and Monte Carlo [16]; therefore they have

not affected the tracking systematic.

4.11 K0
S Reconstruction Efficiency

Measurement of K0
S reconstruction efficiencies [17] follows a procedure similar

to tracking efficiencies, using the D0→ K0
Sπ
+π− decay mode. However, the treat-

ment of the background is more complicated due to the features produced by

fake K0
S candidates.
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4.11.1 Signal and Background Components

Fake K0
S candidates resulting from random combinations of charged pions make

the separation of M2
miss distributions into signal and background quite compli-

cated. The fitting procedure involves many steps. Figure 4.32 shows, schemat-

ically, the signal and background components present in the missing mass

squared distribution, and how they are separated into cases where a K0
S can-

didate is or is not found. Figure 4.33 shows the same distribution separated

according to whether a K0
S candidate is found with a mass in the low sideband

– a K0
S candidate mass 14-26 MeV below the nominal K0

S mass.

Features Produced by Fake K0
S Candidates

The overall M2
missdistribution, before separation into events in which a K0

S candi-

date was or was not found, includes a peak at the K0
S mass squared (∼ 0.25 GeV2)

for correct combinations of a tag D̄0 and the two pions from a D0 → K0
Sπ
+π− de-

cay. This peak is shown in red in the schematic at the top of Figure 4.32. There

are also a number of backgrounds which do not peak, shown in blue in the

schematic:

• D0 → (K0
S → π+π−)π+π− events in which we (erroneously) use one or both

pions from the K0
S in forming M2

miss,

• D0→ π+π−π+π− (see Figure 4.34),

• other D0 decays, and

• fake tag D̄0 candidates.
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Figure 4.32: Schematic of signal and background components of the miss-
ing mass squared distribution, and separation according to
whether a K0

S candidate is or is not found. Signal is shown
in red, and background in blue. Hatched areas are those for
which no K0

S candidate is found. The bottom plots show the
separation into cases where a K0

S candidate (whether real or
fake) is or is not found. These are the two plots we will fit,
with suitable background shapes to represent the dark blue
background and the corresponding hole, to determine the
number of true K0

Ss found and not found.

These backgrounds are flat in the region near the signal peak at the K0
S mass

squared. The last two backgrounds, from other D0 decays and fake tag D̄0 can-

didates, are greatly reduced by the requirement that there is an extra pair of

tracks loosely consistent with the missing momentum.

Thus, the background is mostly D0 → (K0
S → π+π−)π+π− and D0 → π+π−π+π−.

In these events, the mass of the two pion tracks NOT included in the miss-

ing mass squared must equal the missing mass, to within resolution: M2
miss ≈
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Figure 4.33: Schematic of signal and background components of the miss-
ing mass squared distribution, and separation according to
whether a K0

S candidate is or is not found with a mass in the
low sideband of K0

S mass. Signal is shown in red, and back-
ground in blue. Hatched areas are those for which no low-
sideband K0

S candidate is found. The bottom plots show the
separation into cases where a low-sideband K0

S candidate is
or is not found. We will fit the plot on the bottom left to
determine the blue peak yield – how often fake K0

S candi-
dates will be found. This shape will be shifted right and then
used, along with a corresponding peak from the high side-
band shifted left, to determine the missing mass distribution
for fake K0

S candidates that pass the K0
S mass requirement.

M(π+π−)2. If these two pions happen to have a mass near the K0
S mass, they

are likely to form a fake K0
S candidate. If their mass is far from the K0

S mass,

they will not form a fake K0
S candidate. Therefore, if we plot the missing mass

squared for background events in which a fake K0
S candidate was found, it will

peak at the K0
S mass squared. The remaining events, in which no K0

S candidate

was found, will form a flat distribution with a hole of the same size and shape
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Figure 4.34: M2
miss distributions in D0 → π+π−π+π− Monte Carlo. The top

plot shows the distribution when a (fake) K0
S was found, and

the lower plot shows the distributon for the events where no
K0

S was found. In this plot we do not require that a pair of
extra tracks was found.

at the K0
S mass squared. This is illustrated in Figure 4.34, which shows these

distributions for D0→ π+π−π+π− Monte Carlo.

Likewise, when we separate events into those for which a K0
S candidate is or

is not found, the signal peak is divided.

The bottom of Figure 4.32 shows the separation of signal and background

components into cases where a K0
S candidate is or is not found. The fake K0

S

candidates form a peaking background under the efficient peak and leave a hole

in the background under the inefficient peak. When we fit for the number of

true K0
Ss found and not found, we will have to include fit components for these

background features. We need a procedure to estimate their size and shape.
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Estimating the Fake K0
S Background

In determining the fake K0
S background, we make no assumptions about the

composition and resonant substructure of the background, and the procedure

allows for differences in these parameters between data and Monte Carlo. Our

method uses π+π− pairs whose mass lies in sidebands of the K0
S mass. We search

for K0
S candidates using the usual K0

S vertex finder, but look for a reconstructed

mass between 14 and 26 MeV from the K0
S mass on the low or high side. Figure

4.33 illustrates schematically the separation of signal and background events

into cases where a low-sideband K0
S candidate is or is not found. For a random

pair of pions, the sideband mass ranges are not qualitatively different from the

K0
S mass signal region (which extends 12 MeV above and below the K0

S mass).

Fake K0
S candidates will be found at the same rate in these two sidebands as in

the signal region. The only difference is that the missing mass squared distribu-

tion of these candidates will be shifted.

This shift occurs because M2
miss≈ M(π+π−)2. When we shift the M(π+π−) selec-

tion region away from MK0
S

by a distance ∆M, we shift M2
miss by

∆M2
miss= 2MK0

S
(∆M) + (∆M)2 ≈ (1 GeV)(∆M) (4.10)

where the approximation uses MK0
S
≈ 0.5GeVand ∆M � MK0

S
. To model the M2

miss

distribution for events with a fake K0
S found with −12 MeV < M(K 0

S candidate)−

MK0
S
< 0 MeV, we use the M2

miss distribution for those found with −26 MeV <

M(K 0
S candidate)− MK0

S
< −14 MeV, but shift it to the right by (1 GeV)(14 MeV).

To model 0 MeV < M(K 0
S candidate)− MK0

S
< +12 MeV, we use +12 MeV <

M(K 0
S candidate)− MK0

S
< +26 MeV shifted left by (1 GeV)(12 MeV). The means

of the shifted peaks are not equal; they should differ by (1 GeV)(12 MeV), since

12 MeV is the difference between the middle of the left and right halves of the
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signal region. In summary, we determine the background from fake K0
S candi-

dates with masses in the K0
S mass signal region by determining the backgrounds

for fake K0
Ss in the low and high sidebands, shifting those distributions left and

right respectively, and summing them.

There is one further complication. Sometimes a real K0
S is reconstructed with

a mass in the low or high K0
S mass sideband. (This can happen if, for example,

one of its tracks is poorly reconstructed.) In this case, the missing mass squared

is not shifted; M2
miss is calculated from all the other particles in the event, so

it still peaks at the K0
S mass squared. When we plot M2

miss for data or generic

Monte Carlo events in which a K0
S candidate was found in a K0

S mass sideband,

this plot will be the sum of a peak at the K0
S mass squared from real K0

Ss and a

shifted peak from fake K0
S candidates. This is illustrated for the low sideband

at the bottom left of Figure 4.33; the high sideband is similar, but with the blue

peak to the right of the red one. We want to determine the contribution from

fake K0
Ss (the blue component in the diagram), leaving out the real K0

Ss (the

red component), when determining the background. To do this, we first get

peak shapes from Monte Carlo simulations of D0→ K0
Sπ
+π− and D0→ π+π−π+π−

events, and then we use these shapes in data or generic Monte Carlo when de-

termining background.

4.11.2 Fits

Due to the complexity of determining the backgrounds, the fitting procedure

is fairly complicated. Below we list the steps and refer to corresponding plots.

In these plots, there is no requirement on the magnitude of the missing (K0
S)
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momentum; later we will perform the analysis separately in momentum bins.

The fitting steps are:

1. Fit M2
miss for simulated D0 → π+π−π+π− events in which a (fake) K0

S candi-

date was found in the low sideband of the K0
S mass. This is a peak to the

left of the K0
S mass squared. It is fit with a two-sided Crystal Ball shape.

The peak shape obtained from this plot will be used in fitting data and

generic Monte Carlo. See the top left plot of Figure 4.35.

2. Fit simulated D0 → K0
Sπ
+π− events in which a (real) K0

S candidate was

found in the low sideband of the K0
S mass. Events are included in the

plot only if, according to Monte Carlo truth, the two pions used to form

M2
miss come from the D0 and not from the K0

S. This eliminates background

events from this sample. The peak is fit with a two-sided Crystal Ball. The

peak shape obtained from this plot will be used in fitting data and generic

Monte Carlo. See the top right plot of Figure 4.35.

3. In both data and generic Monte Carlo, fit events in which a K0
S candidate

was found in the low sideband of the K0
S mass. Use the two peak shapes

obtained previously, but let the yields float. The shape and size of the peak

on the left, from fake K0
S candidates, will be used later in determining the

background from fake K0
S candidates with masses in the K0

S mass signal

region. See the top row of Figure 4.36.

4. Repeat the same procedure with K0
S candidates in the high sideband of

the K0
S mass. See the bottom rows of Figures 4.35 and 4.36. Note that, on

the left side of Figure 4.35, the difference between the means for the high

and low sidebands is 0.0401 ± 0.0004 GeV2, consistent with the expected

difference of 0.04 GeV2 based on the 40 MeV difference between the mid-
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dle of the two sidebands: 2MK0
S
(∆M) ≈ 2(0.5 GeV)(40 MeV)= 0.04 GeV2.

This confirms that the analysis of the shifts in the sideband distributions

is correct.

5. Separately for data and generic Monte Carlo, shift and then sum the two

peaks from fake K0
S candidates in the sideband regions of the K0

S mass.

Shift the low sideband right by 14 MeV and the high sideband left by

14 MeV. The sum of these shifted peaks is the M2
missdistribution for fake K0

S

candidates with masses in the signal region of the K0
S mass. This is the ap-

propriate background for use when fitting events in which a K0
S candidate

was found (with a mass in the signal region), and it is also the size and

shape of the hole in the background for events in which no K0
S candidate

was found.

6. Separately for data and generic Monte Carlo, fit events in which a K0
S can-

didate was found. Use the background shape obtained in the previous

step. For the signal peak, use a two-sided Crystal Ball shape. The yield of

this peak is the number of true K0
Ss found. See the top row of Figure 4.37.

7. Separately for data and generic Monte Carlo, fit events in which no K0
S

candidate was found with a mass in the signal region. The background is

a linear function with a hole removed. This hole is the same shape and size

as the background used in the previous step; it represents the background

events in which a fake K0
S candidate was found. For the signal peak, use

the peak shape obtained in the previous step. The yield of this peak is the

number of true K0
Ss not found. See the bottom row of Figure 4.37.
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Figure 4.35: Fits to D0 → π+π−π+π− (left column) and D0 → K0
Sπ
+π− (right

column) Monte Carlo for events in which a K0
S candidate was

found in the low (top row) or high (bottom row) sideband of
the K0

S mass. In D0 → K0
Sπ
+π−, events are included in the plot

only if, according to Monte Carlo truth, the two pions used to
form M2

miss come from the D0 and not from the K0
S. These plots

correspond to fitting steps 1, 2, and 4.

4.11.3 Calculation of K0
S Reconstruction Efficiency

Having determined the number of true K0
Ss found or not found, we can calculate

the K0
S-finding efficiency in data and generic Monte Carlo. The efficiency ε is

calculated from the number of events in which the missing K0
S is found, denoted

E (“efficient”), and the number in which it is not found, denoted I (“inefficient”).

Here we repeat Equations 4.1 and 4.2 for the efficiency and its uncertainty:

ε ≡
E

E + I
=

1
1+ I/E

(4.11)

93



)2Missing Mass Squared (GeV
0.15 0.2 0.25 0.3 0.35

 )2
Ev

en
ts

 / 
( 0

.0
04

2 
G

eV

0

10

20

30

40

50

m16/default_data

 19±Kspipi_twoCBalls_yield =  165 
 24±fakeKsInSideband_LSB_twoCBalls_yield =  360 

)2Missing Mass Squared (GeV
0.15 0.2 0.25 0.3 0.35

 )2
Ev

en
ts

 / 
( 0

.0
04

2 
G

eV

0

10

20

30

40

50

m16/default_data

)2Missing Mass Squared (GeV
0.15 0.2 0.25 0.3 0.35

 )2
Ev

en
ts

 / 
( 0

.0
04

2 
G

eV

0

100

200

300

400

500

600

700

800

m16/default_MCDD

 77±Kspipi_twoCBalls_yield =  2727 
 95±fakeKsInSideband_LSB_twoCBalls_yield =  5842 

)2Missing Mass Squared (GeV
0.15 0.2 0.25 0.3 0.35

 )2
Ev

en
ts

 / 
( 0

.0
04

2 
G

eV

0

100

200

300

400

500

600

700

800

m16/default_MCDD

)2Missing Mass Squared (GeV
0.15 0.2 0.25 0.3 0.35

 )2
Ev

en
ts

 / 
( 0

.0
04

2 
G

eV

0

10

20

30

40

50

m26/default_data

 16±Kspipi_twoCBalls_yield =  123 
 21±fakeKsInSideband_HSB_twoCBalls_yield =  289 

)2Missing Mass Squared (GeV
0.15 0.2 0.25 0.3 0.35

 )2
Ev

en
ts

 / 
( 0

.0
04

2 
G

eV

0

10

20

30

40

50

m26/default_data

)2Missing Mass Squared (GeV
0.15 0.2 0.25 0.3 0.35

 )2
Ev

en
ts

 / 
( 0

.0
04

2 
G

eV

0

100

200

300

400

500

600

700

m26/default_MCDD

 66±Kspipi_twoCBalls_yield =  1698 
 92±fakeKsInSideband_HSB_twoCBalls_yield =  5901 

)2Missing Mass Squared (GeV
0.15 0.2 0.25 0.3 0.35

 )2
Ev

en
ts

 / 
( 0

.0
04

2 
G

eV

0

100

200

300

400

500

600

700

m26/default_MCDD

Figure 4.36: Fits to data (left column) and generic Monte Carlo (right col-
umn) for events in which a K0

S candidate was found in the
low (top row) or high (bottom row) sideband of the K0

S mass.
These fits use the peak shapes from Figure 4.35. The green
curve is the contribution from fake K0

S candidates; the remain-
ing area is the contribution from true K0

Ss with a reconstructed
mass in the low or high sideband. These plots correspond to
fitting steps 3 and 4.

δε =
1

(E + I )2

√
E2(δI )2 + I2(δE)2

= ε(1− ε)

√(
δE
E

)2

+

(
δI
I

)2

(4.12)

Our fits take the size of the background peak and hole as given, with zero uncer-

tainty. Therfore, in addition to the uncertainties reported by the final fits, there

is an uncertainty due to the size of the background from fake K0
S candidates. As

this background becomes larger, it reduces E and increases I , and these changes

are nearly identical to the change in the background. (That is, the size of the
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Figure 4.37: Fits to data (left column) and generic Monte Carlo (right col-
umn) for events in which a K0

S candidate (in the K0
S mass sig-

nal region) was found (top row) or was not found (bottom
row). For the background peak and hole, these fits use shifted
peak shapes from the left column of Figure 4.35 and yields
from Figure 4.36. In the top plots, the blue curve is the con-
tribution from fake K0

S candidates. In the bottom plots, the
green line is the linear background shape, the purple line is
the background after removal of the events in which a fake K0

S
candidate was found, and the red line is the total fit function
after adding the signal peak. These plots correspond to fitting
steps 6 and 7.
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background is almost perfectly anti-correlated with E and correlated with I .)

Thus, E + I is insensitive to the size of this background, and the uncertainty in

E due to this background equals the uncertainty on the background yield. If

we call this uncertainty δB, then the uncertainty on ε due to the background is

δB/(E+ I ). We add this in quadrature to the uncertainty in Eq. 4.12 to determine

the uncertainty on the efficiency.

We also evaluate systematics due to uncertainties in the shape of the back-

ground. First, we consider the possibility that Monte Carlo does not accurately

predict the width of the background in data. In data only, we try widening by

10% the background peak shapes obtained from signal Monte Carlo (from Fig-

ure 4.35); 10% is a conservative upper bound on the difference in peak widths

between data and Monte Carlo. The rest of the analysis follows the usual proce-

dure, and we take the difference between the resulting efficiency and the default

as a systematic uncertainty.

We also considered the relative size of the contributions from the shifted low-

sideband and high-sideband peaks. We have taken the yields of these two peaks

from fits to the low and high sideband. We tried, as an alternate background

shape, a sum of these two peaks with equal areas in each. The sum of their

yields was left unchanged. We performed our fits for the efficient and inefficient

yields with these altered shapes, and we computed the efficiencies in data and

Monte Carlo. This systematic was found to be negligible.

Table 4.10 shows the yields and the calculated efficiencies. The efficiencies

are high, as expected. In fact, much of the inefficiency may be explained by cases

where the K0
S daughter pions were found, but reconstructed poorly. Then they

would pass the loose requirement on pairs of extra tracks, but not the tighter
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Table 4.10: K0
S yields and efficiencies. The statistical uncertainties on the

efficient and inefficient K0
S yields do not include uncertainty

due to the number of fake K0
Ss; this uncertainty is included

in evaluating the statistical uncertainty on the efficiency. The
systematic uncertainty in data comes from widening the back-
ground shapes by 10%.

Data Monte Carlo
Number of fake K0

Ss 649 ± 32 11743 ± 132
Number of real K0

Ss found 7968 ± 93 144053 ± 395
Number of real K0

Ss not found 551 ± 44 10171 ± 175
Efficiency (%) 93.53± 0.62 ± 0.32 93.41 ± 0.14
εMC/εdata− 1 -0.14 ± 0.67 ± 0.35 % (-0.2σ)

K0
S selection requirements. For example, if one of the pions decayed to µνµ, the

muon track may help produce a track with approximately correct momentum

that passes the loose requirement but fails the vertex finder. Regardless of the

source of inefficiency, data and Monte Carlo are consistent.

4.11.4 Results in Four Momentum Bins

To examine the possibility of momentum dependence in the K0
S reconstruction

systematic, we perform this analysis in four momentum bins. They are sep-

arated according to the predicted momentum of the missing K0
S – that is, the

magnitude of the missing momentum. The bins are pK0
S
< 300 MeV, 300≤ pK0

S
<

500 MeV, 500 ≤ pK0
S
< 700 MeV, and 700 MeV ≤ pK0

S
. The fitting procedure is

identical to the procedure described above for all momentum bins. The plots

are not shown; they are very similar to the plots for all momentum bins to-

gether. The yields and efficiencies for all bins are shown in Table 4.11. In all

momentum bins, data and Monte Carlo are consistent.
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Table 4.11: K0
S yields and efficiencies in four momentum bins. The statis-

tical uncertainties on the efficient and inefficient K0
S yields do

not include uncertainty due to the number of fake K0
Ss; this un-

certainty is included in evaluating the statistical uncertainty on
the efficiency.

Data Monte Carlo
pK0

S
< 300 MeV
Number of fake K0

Ss 76 ± 10 908 ± 34
Number of real K0

Ss found 1852 ± 44 34016 ± 187
Number of real K0

Ss not found 177 ± 16 2839 ± 61
Efficiency (%) 91.28± 0.88 ± 0.04 92.30 ± 0.18
εMC/εdata− 1 +1.12 ± 0.99 ± 0.04 % (+1.1σ)

300≤ pK0
S
< 500 MeV

Number of fake K0
Ss 98 ± 12 2072 ± 53

Number of real K0
Ss found 1801 ± 44 29121 ± 177

Number of real K0
Ss not found 119 ± 17 2005 ± 67

Efficiency (%) 93.80± 1.04 ± 0.09 93.56 ± 0.27
εMC/εdata− 1 -0.26 ± 1.14 ± 0.09 % (-0.2σ)

500≤ pK0
S
< 700 MeV

Number of fake K0
Ss 179 ± 17 4140 ± 79

Number of real K0
Ss found 1771 ± 44 39403 ± 209

Number of real K0
Ss not found 105 ± 25 2547 ± 109

Efficiency (%) 94.40± 1.56 ± 0.29 93.93 ± 0.31
εMC/εdata− 1 -0.50 ± 1.67 ± 0.30 % (-0.3σ)

700 MeV≤ pK0
S

Number of fake K0
Ss 299 ± 23 4603 ± 89

Number of real K0
Ss found 2544 ± 53 41584 ± 215

Number of real K0
Ss not found 121 ± 33 2514 ± 127

Efficiency (%) 95.46± 1.47 ± 0.19 94.30 ± 0.34
εMC/εdata− 1 -1.22 ± 1.57 ± 0.20 % (-0.8σ)

The efficiencies and data-Monte Carlo discrepancies are plotted in Figure

4.38. The effciency has a modest dependence on momentum.
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Figure 4.38: Measurements (in %) of the K0
S efficiency (top) and the data-

Monte Carlo discrepancy εMC/εdata−1 (bottom) in different mo-
mentum bins.
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4.11.5 K0
S → π+π− Reconstruction Systematic

We obtain the K0
S reconstruction systematic from the data-Monte Carlo discrep-

ancy determined with all momentum bins combined. This discrepancy is -0.14 ±

0.67 ± 0.35 %. We have no reason to expect a difference between data and Monte

Carlo, and the measured discrepancy is consistent with zero. Therefore, we ap-

ply no correction to the Monte Carlo for K0
S efficiency. We combine the central

value and uncertainty of the discrepancy in quadrature to obtain a systematic.

This gives a 0.8% systematic for K0
S reconstruction, in addition to track-finding

systematics for the two tracks.
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CHAPTER 5

MEASUREMENT OF BRANCHING FRACTION FOR D+ → K0
Lπ
+ AND

COMPARISON TO D+ → K0
Sπ
+
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5.1 Introduction

In the past, it has typically been assumed that the branching fractions for D+ →

K0
Lπ
+ and D+ → K0

Sπ
+ are equal. However, as Bigi and Yamamoto first pointed

out [18], in fact quantum interference produces a small difference between them.

This chapter describes the first measurement of the branching fraction B(D+ →

K0
Lπ
+) and compares the result to B(D+ → K0

Sπ
+).

We expect an asymmetry in these branching fractions due to interference be-

tween the amplitudes for D+ → K̄0π+ and D+ → K0π+, as shown in Figure 5.1.

The primary process contributing to D+ → K0
Lπ
+ and D+ → K0

Sπ
+ is D+ → K̄0π+.

Two tree-level diagrams contribute to this process: an external spectator dia-

gram and a (color-suppressed) internal spectator diagram. The second diagram

interferes destructively with the first; this is an example of the destructive inter-

ference believed to reduce the D+ decay rate relative to D0.

If only D+ → K̄0π+ contributed to the decays D+ → K0
Lπ
+ and D+ → K0

Sπ
+,

then their branching fractions would be equal. However, there is also a small

contribution from the doubly-Cabibbo-suppressed process D+ → K0π+. This

process has a color-suppressed internal spectator diagram which contains fac-

tors of ± sinθC at the two W vertices, where θC is the Cabibbo angle. The cor-

responding Cabibbo-favored diagram contains two factors of cosθC instead, so

the two diagrams differ by a factor of − tan2 θC in the SU(3) limit. A (helicity-

suppressed) annihilation diagram also contributes to this decay.

The combination of amplitudes for K̄0π+ and K0π+ produces interference in

the formation of the physical final states K0
Lπ
+ = 1/

√
2(K0 − K̄0)π+ and K0

Sπ
+ =

1/
√

2(K0 + K̄0)π+. The sign of this interference is opposite for K0
L and K0

S, so
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Figure 5.1: Diagrams contributing to D+ → K0
Lπ
+ and D+ → K0

Sπ
+.

B(D+ → K0
Lπ
+) and B(D+ → K0

Sπ
+) should not in general be equal. The scale of

the asymmetry is set by the double Cabibbo suppression factor tan2 θC ≈ 0.05.

However, the exact asymmetry is difficult to predict theoretically.

In contrast, a simple prediction can be made for asymmetry between the cor-

responding neutral decaysB(D0→ K0
Lπ

0) andB(D0→ K0
Sπ

0). The amplitudes for

D0 → K̄0π0 and D0 → K0π0 also have color-suppressed, internal spectator dia-

grams; they differ from the D+ decays only in the identity of the spectator quark.

Both decays also receive contributions from exchange diagrams. For both types

of diagram, the two decay amplitudes differ only by the double Cabibbo sup-
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pression factor − tan2 θC. This value for the amplitude ratio is also implied by

symmetry under the U-spin subgroup of SU(3), which is relatively insensitive

to SU(3) breaking [19]. This amplitude ratio predicts that the asymmetry be-

tween B(D0→ K0
Sπ

0) and B(D0→ K0
Lπ

0) is

R(D0) ≡
B(D0→ K0

Sπ
0) − B(D0→ K0

Lπ
0)

B(D0→ K0
Sπ

0) + B(D0→ K0
Lπ

0)
= 2 tan2 θC = 0.109± 0.001 (5.1)

where the value of θC is taken from the Particle Data Group [1]. The asymmetry

has been measured to be R(D0) = 0.108± 0.025± 0.024, consistent with this

prediction [6].

For the corresponding D+ asymmetry, no simple prediction can be made be-

cause the Cabibbo-favored and doubly-Cabibbo-suppressed decays have differ-

ent diagrams, as shown in Fig. 5.1. (Equivalently, U-spin makes no prediction

for the amplitude ratio.) D+ → K̄0π+ includes an external spectator diagram,

and D+ → K0π+ includes an annihilation diagram. These diagrams, combined

with the topological analysis of Cabibbo-favored D → Kπ decays described

in Chapter 1, suggest the potential that R(D+) may be larger than R(D0). For

both D0 and D+, the doubly-Cabibbo-suppressed amplitude D → K0π is domi-

nated by the internal spectator diagram, and that amplitude equals the Cabibbo-

favored internal diagram multiplied by − tan2 θC ≈ −0.05. But for D+ → K̄0π+,

the external spectator diagram interferes destructively with the internal dia-

gram, as discussed in Chapter 1. Therefore the magnitude of the amplitude

ratioA(D→ K0π)/A(D→ K̄0π) should be larger for D+ than for D0, leading to a

larger asymmetry R(D+). However, the asymmetry also depends on the relative

phase between D+ → K̄0π+ and D+ → K0π+; if this phase is close to 90 degrees,

the asymmetry will be close to zero.

While no simple prediction of R(D+) is possible, it is possible to make a
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prediction with more input data and a more sophisticated theoretical treat-

ment [20, 4].

This analysis aims to measure the asymmetry between B(D+ → K0
Lπ
+) and

B(D+ → K0
Sπ
+) by measuring B(D+ → K0

Lπ
+) and comparing to a separate mea-

surement of B(D+ → K0
Sπ
+).

We find D+ → K0
Lπ
+ events using the same missing mass technique used

for the efficiency studies in the previous chapter. We form the missing mass

squared of combinations of D− and π+ candidates:

M2
miss= (ptot − pD− − pπ+)

2 (5.2)

where ptot is the four-momentum of the initial state, pD− is the four-momentum

of the reconstructed D−, and pπ+ is the four-momentum of the pion candidate.

A peak at the K0
L mass squared corresponds to our signal events. The number

of D− tags is determined from the beam constrained mass distribution of D−

candidates.

D+ → K0
Lπ
+ and D+ → K0

Sπ
+ decays each produce a peak at the same location

– the K0 mass squared. To eliminate D+ → K0
Sπ
+ decays, we veto events contain-

ing extra tracks or π0s beyond those used to form the D− and π+. This removes

most D+ → K0
Sπ
+ events since the K0

S produces two extra charged or neutral

pions. The D+ → K0
Sπ
+ events that survive this veto are treated as a background.

The remainder of this chapter is organized as follows: First, we describe

the data and Monte Carlo samples used and the event selection criteria. Next,

we describe the calculation used to obtain the branching fraction. We then show

how yields and efficiencies are obtained from fitting beam constrained mass and

missing mass squared distributions. Finally, we consider the systematic uncer-
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tainties and give a final result for B(D+ → K0
Lπ
+). By combining these results

with a separate measurement of B(D+ → K0
Sπ
+), we determine the asymmetry

between D+ → K0
Lπ
+ and D+ → K0

Sπ
+.

5.2 Data and Monte Carlo Samples

The data sample represents an integrated luminosity of 281 pb−1, smaller than

the 818 pb−1 sample used for determining efficiency systematics. Statistical and

systematic uncertainties make approximately equal contributions to this mea-

surement, so tripling the dataset would not greatly improve the precision of the

result.

We generate signal Monte Carlo samples to calculate efficiencies. A generic

Monte Carlo sample representing 5.5 times the number of DD̄ events as in data

is used to test and validate the analysis procedure, but it has no impact on the

final result.

5.3 Event and Candidate Selection

As in the efficiency analysis, analogous treatment of charge conjugates is im-

plied in the selection criteria.

We use the standard requirements described in Chapter 3 to obtain tag D−

candidates in the following decay modes:

• K+π−π−
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Table 5.1: ∆E requirements used for each tag D− mode.

Tag mode Requirement
D− → K+π−π− -0.025 < ∆E < 0.025 GeV
D− → K+π−π−π0 -0.035 < ∆E < 0.035 GeV
D− → K0

Sπ
− -0.025 < ∆E < 0.025 GeV

D− → K0
Sπ
−π0 -0.040 < ∆E < 0.035 GeV

D− → K0
Sπ
−π−π+ -0.018 < ∆E < 0.018 GeV

D− → K+K−π− -0.018 < ∆E < 0.018 GeV

• K+π−π−π0

• K0
Sπ
−

• K0
Sπ
−π0

• K0
Sπ
−π−π+

• K+K−π−

We impose requirements on ∆E, as listed in Table 5.1. These ranges have been

chosen to include the entire ∆E peak in each mode. If there are multiple D−

candidates satisfying MBC > 1.83 GeV in an event with the same charge and

decay mode, only the one with the smallest |∆E| is kept for further analysis. We

calculate MBC for each candidate and use this variable to determine the number

of tag D−s.

Each D− candidate that passes the MBC requirements shown in Table 5.2 is

then combined with one π+ candidate, forming multiple candidates if there are

multiple π+s. The missing mass squared of this combination is then calculated,

with the D− momentum constrained to give MBC = MD− in the same way as in

the efficiency analysis. The peak in the M2
miss distribution at the K0 mass squared

corresponds to D+ → K0
Lπ
+ and D+ → K0

Sπ
+ events.
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Table 5.2: MBC requirements used for each D− tag mode.

Tag mode Requirement
D− → K+π−π− 1.864 < MBC < 1.879 GeV
D− → K+π−π−π0 1.864 < MBC < 1.877 GeV
D− → K0

Sπ
− 1.864 < MBC < 1.879 GeV

D− → K0
Sπ
−π0 1.863 < MBC < 1.877 GeV

D− → K0
Sπ
−π−π+ 1.865 < MBC < 1.876 GeV

D− → K+K−π− 1.864 < MBC < 1.877 GeV

The preceding requirements do not discriminate between D+ → K0
Lπ
+ and

D+ → K0
Sπ
+ events (though the tag D− reconstruction efficiency may be slightly

lower when the signal side has a K0
S rather than a K0

L). Therefore, additional

requirements are included to veto D+ → K0
Sπ
+ decays. These vetoes look for the

daughter pions of the K0
S.

Approximately 2/3 of K0
Ss decay to π+π−. To remove these decays, an event

is vetoed if it contains at least one extra track not already used in the tag D− or

the π+. This track must pass the following requirements:

• The distance from the interaction point must be less than 20 cm. This is

looser than the standard track selection requirements because the K0
S will

travel some distance before decaying. However, it is still tight enough to

ignore obvious garbage tracks far from the interaction point.

• The track must pass all other standard quality requirements, but no parti-

cle identification requirements.

• It must be approved by the Trkman software package, which rejects tracks

that appear likely to be fake.

This veto is very effective. It removes over 99% of D+ → (K0
S → π+π−)π+ events
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and only about 2% of D+ → K0
Lπ
+ events.

About 1/3 of K0
Ss decay to π0π0. To remove these decays, an event is vetoed

if it contains at least one extra π0 not already used in the tag D−. This π0 must

pass the following requirements:

• It must pass the standard π0 requirements.

• Both showers have energy greater than 80 MeV. (This is tightened from

the default value of 30 MeV.)

• It must be approved by the Splitoff software package, which rejects show-

ers that appear to come from splitoffs of hadronic interactions in the

calorimeter.

This veto removes approximately 60% of D+ → (K0
S → π0π0)π+ events and about

2% of D+ → K0
Lπ
+ events.

Overall the extra track and extra π0 vetoes remove about 90% of D+ → K0
Sπ
+

events and 4% of D+ → K0
Lπ
+ events. They also reduce many of the other back-

grounds present in the missing mass squared plot.

5.4 Calculation of Branching Fraction

If we ignore the possibility that the D− tag reconstruction efficiency may depend

on how the D+ decays, the branching fraction B(D+ → K0
Lπ
+) is

B(D+ → K0
Lπ
+) =

Y(D+ → K0
Lπ
+)

Y(D−) ε
(5.3)

where Y(D−) is the number of D− tags reconstructed, Y(D+ → K0
Lπ
+) is the num-

ber of K0
Lπ
+ decays found, and ε is the efficiency for reconstructing D+ → K0

Lπ
+
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given that the tag D− was found. This efficiency is approximately equal to the

π+ reconstruction efficiency. However, Eq. 5.3 is not quite correct. In fact, the

D− reconstuction efficiency is higher in events where D+ decays to K0
Lπ
+ because

this decay is relatively clean and does not interfere with D− reconstruction as

much as other D+ decays. Thus the sample of events with a reconstructed tag

has a higher proportion of D+ → K0
Lπ
+ decays than a truly random sample of

D+s.

To deal with the bias in Eq. 5.3, we derive an expression with no assumption

about the tag reconstruction efficiency:

B(D+ → K0
Lπ
+) =

D+ → K0
Lπ
+ produced

D+ produced
(5.4)

=
Y(D+ → K0

Lπ
+)/ε(D+ → K0

Lπ
+)

Y(D−)/ε(D−)
(5.5)

Here, ε(D−) is the efficiency for reconstructing a tag D− when the D+ decays

generically (that is, to any final state, not necessarily K0
Lπ
+), and ε(D+ → K0

Lπ
+)

is the efficiency for reconstructing a tag D− and then finding a K0
Lπ
+ decay in an

event where D+ truly does decay to K0
Lπ
+. We may divide the two efficiencies

into constituent efficiencies:

ε(D−) = ε(D−|D+ decays to K0
Lπ
+)B(D+ → K0

Lπ
+)

+ε(D−|D+ does not decay to K0
Lπ
+)[1 − B(K0

Lπ
+)] (5.6)

ε(D+ → K0
Lπ
+) = ε(K0

Lπ
+|D− found )ε(D−|D+ decays to K0

Lπ
+) (5.7)

where ε(A|B) is the efficiency for reconstructing A given that B is true. Then

ε(D−)

ε(D+ → K0
Lπ
+)
=

R
ε

(5.8)

where

ε ≡ ε(K0
Lπ
+|D− found ) (5.9)
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and

R ≡ B(D+ → K0
Lπ
+)

+(1− B(D+ → K0
Lπ
+))
ε(D−|D+ does not decay to K0

Lπ
+)

ε(D−|D+ decays to K0
Lπ
+)

. (5.10)

Note that the definition of ε in equation Eq. 5.9 is the same as the efficiency used

in Eq. 5.3. Using these expressions, we find

B(D+ → K0
Lπ
+) =

Y(D+ → K0
Lπ
+)

Y(D−) ε
× R (5.11)

Using the fact that B(D+ → K0
Lπ
+) � 1, we may approximate R as

R≈
ε(D−|D+ does not decay to K0

Lπ
+)

ε(D−|D+ decays to K0
Lπ
+)

(5.12)

We will calculate the branching fraction from Eq. 5.11 using the approximation

of R in Eq. 5.12. Note that the branching fraction calculated in Eq. 5.11 differs

from the naive calculation in Eq. 5.3 only by a factor of R, which accounts for

the bias in tag D− reconstruction efficiency between signal (D+ → K0
Lπ
+) and

non-signal D+ decays. R is the ratio of tag reconstruction efficiencies in the cases

where D+ does or does not decay to K0
Lπ
+. This ratio is close to one, but is up

to a few percent less since the relatively clean signal decay D+ → K0
Lπ
+ will not

interfere with the D− reconstruction as much as a generic D+ decay will.

The determination of a branching fraction requires the determination of two

yields (tag D− and signal K0
Lπ
+) and three efficiencies (signal and two tag effi-

ciencies). Yields and efficiencies are determined for each tag mode individually,

and a branching fraction is calculated from each mode. The values from each of

the modes are averaged for the final result.
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Table 5.3: D− yields in generic Monte Carlo.

Tag mode D− yield
D− → K+π−π− 425658 ± 769
D− → K+π−π−π0 159602 ± 700
D− → K0

Sπ
− 56329 ± 274

D− → K0
Sπ
−π0 113044 ± 599

D− → K0
Sπ
−π−π+ 105004 ± 570

D− → K+K−π− 59096 ± 333
Sum 918733 ± 1397

5.5 Tag D− Yield

The D− yield is obtained by fitting the beam constrained mass of D− candidates.

The signal peak at the D− mass is fit with the sum of a Gaussian and a Crystal

Ball peak with a high-side tail, and the background is fit with an ARGUS func-

tion [21]. The yield is taken as the number of events within the MBC range in

Table 5.2; the peak function is integrated over this region to determine the num-

ber of events inside. Figure 5.2 shows the fits in generic Monte Carlo for each

tag mode, and Figure 5.3 shows the fits in data. The yields are shown in Tables

5.3 (Monte Carlo) and 5.4 (data). In total, we find about 165000 tags in data, and

the generic Monte Carlo sample is about 5.5 times larger.

5.6 Signal Detection Efficiency

We need efficiencies for reconstructing D+ → K0
Lπ
+, given that the D− was found,

in each tag mode. We use signal Monte Carlo in which the D+ decays to K0
Lπ
+

and the D− decays to one of the tag modes. The procedure for determining the
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Figure 5.2: Fits for the D− yield in generic Monte Carlo. From top left, the
decay modes are: D− → K+π−π−, D− → K+π−π−π0, D− → K0

Sπ
−,

D− → K0
Sπ
−π0, D− → K0

Sπ
−π−π+, D− → K+K−π−.
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Figure 5.3: Fits for the D− yield in data. From top left, the decay modes
are: D− → K+π−π−, D− → K+π−π−π0, D− → K0

Sπ
−, D− → K0

Sπ
−π0,

D− → K0
Sπ
−π−π+, D− → K+K−π−.
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Table 5.4: D− yields in data.

Tag mode D+ yield
D− → K+π−π− 80108 ± 342
D− → K+π−π−π0 24391 ± 315
D− → K0

Sπ
− 11450 ± 144

D− → K0
Sπ
−π0 25494 ± 404

D− → K0
Sπ
−π−π+ 16739 ± 314

D− → K+K−π− 6892 ± 154
Sum 165074 ± 723

efficiency is as follows. We plot the beam constrained mass of the D− candidates

and fit for the yield in the peak using the procedure described in the previous

section. We then plot the missing mass squared distribution. This distribution

contains a signal peak at the K0 mass squared and a very small background from

fake tag D− candidates.

The shape of the small background is determined from a fit to events in

the MBC sideband (1.83 < MBC < 1.85 GeV); the fit function is a second-order

polynomial. (See Section 5.8 for more on the fake tag background.) The peak

shape is fit with a two-sided Crystal Ball shape. The efficiency is just the yield

in the signal peak divided by the D− yield.

Figure 5.4 shows these fits for the tag mode D− → K+π−π−. Table 5.5 lists

signal Monte Carlo yields and efficiencies in all tag modes. (See Appendix A.1

for the equation used to calculate the uncertainties in the efficiencies.) Also

shown in the table is the fraction of events removed by the veto on extra tracks

and π0s; it is calculated from the K0
Lπ
+ yields before and after application of the

veto. The veto rate varies slightly by tag mode. For instance, a charged kaon in

the tag may decay inside the detector, so the extra π0 veto removes more events
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Figure 5.4: Fits used to determine the efficiency for D+ → K0
Lπ
+, with tag

mode D− → K+π−π−. The left plot shows the MBC distribution,
and the right plot shows the M2

miss distribution. Plots for effi-
ciencies in other tag modes are similar.

Table 5.5: Yields and D+ → K0
Lπ
+ efficiencies from Monte Carlo simulations

in different tag modes. The last column shows the fraction of
events that were removed by applying a veto on extra tracks or
π0s.

Tag mode D− yield K0
Lπ
+ yield Efficiency (%) Veto %

D− → K+π−π− 41813 ± 205 34417 ± 186 82.31 ± 0.19 3.55 ± 0.10
D− → K+π−π−π0 21453 ± 148 17494 ± 132 81.55 ± 0.27 4.02 ± 0.15
D− → K0

Sπ
− 34315 ± 186 28266 ± 168 82.37 ± 0.21 3.44 ± 0.11

D− → K0
Sπ
−π0 18019 ± 143 14765 ± 122 81.94 ± 0.37 3.62 ± 0.15

D− → K0
Sπ
−π−π+ 24857 ± 157 20216 ± 142 81.33 ± 0.24 4.33 ± 0.14

D− → K+K−π− 35154 ± 187 28508 ± 169 81.09 ± 0.21 4.71 ± 0.13

from these tag modes, especially D− → K+K−π−.

We can also use this procedure, with a different fit shape, to measure the

efficiency for any other decay mode. These efficiencies are used to fix the yields

of backgrounds in the missing mass squared fit, as discussed in Section 5.8.

To determine whether the efficiency is different for oppositely charged Ds,

we also determine the efficiencies separately with all the charges conjugated in
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Table 5.6: D− reconstruction efficiencies (%) and ratios in signal Monte
Carlo. The first three columns of numbers show the tag re-
construction efficiencies, given that the signal side decayed to
K0

Sπ
+, K0

Lπ
+, or anything else. The last column is the branching-

fraction-weighted average of K0
Sπ
+ and non-K0

S,Lπ
+ divided by

K0
Lπ
+.

Tag mode D+ → K0
Sπ
+ D+ → K0

Lπ
+ D+ → other R

D− → K+π−π− 54.95 ± 0.18 55.75 ± 0.18 55.48 ± 0.18 0.9949 ± 0.0032
D− → K+π−π−π0 27.95 ± 0.16 28.60 ± 0.17 27.39 ± 0.16 0.9579 ± 0.0055
D− → K0

Sπ
− 45.28 ± 0.18 45.75 ± 0.18 45.33 ± 0.18 0.9908 ± 0.0039

D− → K0
Sπ
−π0 23.77 ± 0.16 24.03 ± 0.16 22.97 ± 0.15 0.9565 ± 0.0062

D− → K0
Sπ
−π−π+ 32.52 ± 0.17 33.14 ± 0.17 31.64 ± 0.17 0.9552 ± 0.0050

D− → K+K−π− 46.78 ± 0.18 46.87 ± 0.18 46.25 ± 0.18 0.9870 ± 0.0038

both the Monte Carlo and the analysis. The results are described in Appendix

A.2. The difference between D+ and D− is included as a systematic uncertainty,

as discussed in Section 5.10.

5.7 Tag Reconstruction Efficiency Ratio

To calculate the tag reconstruction efficiency ratio R (Eq. 5.12), we generate three

separate Monte Carlo samples for each tag mode. In all three, the D− decays to a

given tag mode. The samples differ in what the D+ decays to: either K0
Sπ
+, K0

Lπ
+,

or anything else. The tag reconstruction efficiency is found by fitting MBC for the

D− yield just as in any other sample. Dividing by the number of events gener-

ated gives the efficiency. Then the ratio R is the non-signal efficiency divided

by the signal efficiency. The non-signal efficiency is the branching-fraction-

weighted average of the efficiencies for the K0
Sπ
+ and non-K0

S,Lπ
+ samples. Table

5.6 shows the efficiencies and ratio for each tag mode.
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We find that the efficiencies are highest in K0
Lπ
+ events, somewhat lower in

K0
Sπ
+ events, and lowest in non-K0

S,Lπ
+ events. The reason for this is that the

signal decays are relatively clean compared to generic D+ decays. This makes it

easier to reconstruct the tag.

If we ignored the difference between signal and non-signal efficiencies (i.e.,

assumed R = 1), the measured branching fraction would be off by up to 5% for

some tag modes.

5.8 Signal Yields from M2
miss Fit

The signal yields are obtained by fitting the missing mass squared of combina-

tions of D− and π+ candidates. These fits are shown in Figures 5.12-5.15.

The fits consist of many components – there are a number of peaking and

non-peaking backgrounds. Each background shape is determined from a Monte

Carlo simulation of that background.

• The D+ → K0
Lπ
+ signal is a peak at the K0 mass squared. It is fit with

the same two-sided Crystal Ball function used in signal Monte Carlo. The

parameter values are fixed to those determined in signal Monte Carlo, but

the overall width is allowed to vary in the fit to reflect the possible change

in resolution between data and Monte Carlo.

• A background peak from D+ → ηπ+ sits on the right side of the signal peak,

centered at the η mass squared. This peak partly overlaps the signal peak.

Like the signal peak, it is fit with a two-sided Crystal Ball function, with

the shape determined from Monte Carlo. Its width floats with the width
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Figure 5.5: Fit to Monte Carlo simulation of the background D+ → ηπ+.
The tag mode is D− → K+π−π−.
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Figure 5.6: Fits to Monte Carlo simulations of the backgrounds D+ → π0π+

(left) and D+ → µ+νµ (right). The tag mode is D− → K+π−π−.

of the signal peak (that is, the ratio of the two peak widths is fixed), and

the yield is also allowed to float. Figure 5.5 shows the simulation of this

background.

• Background peaks from D+ → π0π+ and D+ → µ+νµ are located at and just

below the π0 mass squared. Each one is fit with a two-sided Crystal Ball

function. The shapes of these peaks, as well as their relative yields, are

determined from Monte Carlo simulations. The total yield of both peaks

is allowed to float. Figure 5.6 shows simulations of these backgrounds.
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• Many other non-peaking backgrounds are present: D+ → (τ+ → µ+νµν̄τ)ντ,

(τ+ → π+ν̄τ)ντ, K̄0K+, π+π0π0π0, π+π+π−π0, π+π+π−, π+π0π0, ρ0µ+νµ, K−π+π+,

π0µ+νµ, K̄0µ+νµ, K̄0e+νe, ρ0e+νe, K̄0π+π0, K+π0, and (τ+ → ρ+ν̄τ)ντ. The shapes

of these backgrounds are determined from fits to Monte Carlo simulations

in which the tag side is always D− → K+π−π−. (This tag mode was chosen

because it has a very small background.) These fits are shown in Figures

5.7-5.9.

The K0
S veto, which removes an event if it contains at least one extra track

or π0, reduces many of these backgrounds, and some are almost totally

removed. The veto does not alter the shape of the backgrounds – only

their efficiencies. In cases where the number of events remaining after the

veto is very small in signal Monte Carlo, the shape is fixed to the shape

obtained when no veto is applied.

Since the backgrounds lie mostly under the signal peak, in the fit for the

signal yield it is difficult to accurately determine the background yields.

Therefore, we fix their yields Yi in data and generic Monte Carlo by

Yi = YDBiεi (5.13)

where YD is the D yield in data or generic Monte Carlo, Bi is the branching

fraction for this background decay mode, and εi is the efficiency for this

decay to show up in the background. Branching fractions are taken from

the Particle Data Group [1]. εi is determined from a Monte Carlo simula-

tion of decay mode i:

εi =
# of events in missing mass squared background

D−yield in this Monte Carlo sample
(5.14)

Table 5.10 shows the branching fractions used for these backgrounds and

the number of events each contributes to the missing mass squared plots
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Figure 5.7: Fits to Monte Carlo simulations of the backgrounds (from top
left) D+ → (τ+ → µ+νµν̄τ)ντ, (τ+ → π+ν̄τ)ντ, K̄0K+, π+π0π0π0,
π+π+π−π0, and π+π+π−. The tag mode is D− → K+π−π−.
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Figure 5.8: Fits to Monte Carlo simulations of the backgrounds (from top
left) D+ → π+π0π0, ρ+π0, ρ0µ+νµ, K−π+π+, π0µ+νµ, and K̄0µ+νµ. The
tag mode is D− → K+π−π−. D+ → π+π0π0 is simulated with a
phase space distribution in generic Monte Carlo. However, we
use D+ → ρ+π0 for this background when fitting data.
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Figure 5.9: Fits to Monte Carlo simulations of the backgrounds D+ →
K̄0e+νe, ρ0e+νe, K̄0π+π0, K+π0 and (τ+ → ρ+ν̄τ)ντ. The tag mode is
D− → K+π−π−.
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in data.

There is one special case in these backgrounds. D+ → π+π0π0 is simulated

in generic Monte Carlo with a phase-space distribution. However, in re-

ality most π+π0π0 events come from D+ → ρ+π0. Therefore, in the fits to

data, we use the shape and efficiency of D+ → ρ+π0 for the D+ → π+π0π0

background. The D+ → ρ+π0 background has a higher efficiency and a

somewhat different shape (see Figure 5.8).

• D+ → K0
Sπ
+ is included as a background. Its shape is mostly the same as

D+ → K0
Lπ
+, but there is a small additional component. The K0

S decays

to π+π− about 2/3 of the time, and the π+ from the K0
S is combined with

the tag D− to form an entry in the missing mass squared plot. Most of

these entries are too large to enter the plot near the signal, but some of

them appear as a small background to the right of the signal peak. This

background is shown in Figure 5.10. It is, however, greatly reduced by

the veto on extra tracks. The total D+ → K0
Sπ
+ background is included in

the fit as a background, using the same procedure as for the non-peaking

backgrounds.

• Fake tag D− candidates, when combined with π+ candidates, produce a

background in the missing mass squared plot. Most of these fake D−s

produce large M2
missvalues; only a small tail extends to the low-M2

missregion

near the signal.

The shape and size of this background are estimated from tag D− candi-

dates in an MBC sideband, 1.83 GeV < MBC < 1.85 GeV. These are com-

bined with π+s to form a M2
miss distribution for the fake D−s in the side-

band. However, there is a complication in using the sideband as a model

for fake D−s in the MBC signal region. When calculating M2
miss, the MBC of
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Figure 5.10: Missing mass squared for π+s that come from the K0
S in D+ →

K0
Sπ
+. In this plot the veto on extra tracks and π0s is not ap-

plied because it greatly reduces this background, making it
impossible to see the background shape.

the D− candidate is constrained to the known D− mass. This constraint es-

sentially shifts the momentum magnitude of the D− to the expected value

without altering its flight direction. When the candidate is a real D−, this

is the correct procedure. However, when comparing fake D−s in the sig-

nal and sideband region of MBC, the mass constraint will have different

effects. Fake D−s in the sideband region will have a large shift in momen-

tum, while those in the signal region will see a relatively small shift. This

difference is important since the shift in D− momentum also shifts M2
miss,

and this shift has a large effect on the number of events near the signal

peak in M2
miss. As determined by studies of Monte Carlo simulations of

non-DD̄ and D0D̄0 events, the efficiency for fake D−s to show up in the

M2
miss plot (that is, below M2

miss = 0.4 GeV2) is lower for candidates in the

sideband region than for those in the signal region; the efficiencies differ

by a factor of approximately 1.4.

To correct this problem, we define an alternate M2
miss for use with D− can-

didates in the sideband region. In this alternate M2
miss, the D− mass is con-
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Figure 5.11: Fit for fake D− background shape and yield in the MBC side-
band in generic Monte Carlo (left) and data(right), using all
tag modes.

strained to the middle of the sideband, MBC = 1.84 GeV, rather than to the

D− mass. Thus, fake D−s in the sideband will see their momenta shifted

by an amount similar to those in the signal region. The distribution of

this alternate M2
miss for sideband D−s is a good model for the distribution

of the normal M2
miss for fake D−s in the signal region. Repeating the study

on simulated non-DD̄ and D0D̄0 events, we find that the sideband and sig-

nal efficiencies are the same; their ratio is C = 1.0 ± 0.1. Therefore, we

determine the shape and yield of the fake D− background in M2
miss by the

distribution of the alternate M2
miss for events in the MBC sideband.

This background shape is fit with a second-order polynomial. The shape

parameters are determined from a fit to sideband events in all tag modes

together. Figure 5.11 shows this fit in generic Monte Carlo and in data.

The yield used in the final missing mass squared fit is fixed based on the

yield of this sideband shape in the particular tag mode, the yield of the

MBC Argus function in the sideband, and the yield of the Argus function
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in the signal region:

Yfake Ds = C × (# of background events in the MBC signal region)

×
(# of MBC sideband events in alternate M2

miss plot)
(# of MBC sideband events)

(5.15)

Here, C = 1.0± 0.1 is the ratio, described above, between signal and side-

band efficiencies.

This fake D− background also appears in signal Monte Carlo, but it is very

small. (It is effectively zero for certain tag modes such as D− → K+π−π−.)

This background is included in signal Monte Carlo fits, using the same

procedure.

Figures 5.12 and 5.13 show the missing mass squared fits for generic Monte

Carlo. Figures 5.14 and 5.15 show the fits for data. The D+ → K0
Lπ
+ signal yields

from these fits are used to calculate the branching fraction.

5.9 Results Prior to Systematic Uncertainties and Corrections

Table 5.7 shows the yields and branching fractions in generic Monte Carlo for all

6 tag modes and for all tag modes together. The D+ → K0
Lπ
+ branching fraction

is calculated using Eq. 5.11. This Monte Carlo was generated with a branching

fraction of 1.445 %, so we can compare our results to this number. The last

column of the table shows how many standard deviations the calculated value

is from the input value. The branching fractions match the input well.

Having verified that the analysis works correctly on generic Monte Carlo,

we calculate the D+ → K0
Lπ
+ branching fraction in data. Table 5.8 shows the
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Figure 5.12: Fit for D+ → K0
Lπ
+ yield in generic Monte Carlo using all tag

modes. The green peak is the contribution of D+ → K0
Sπ
+

events that were not vetoed. The top plot has a linear scale,
and the bottom plot has a log scale.

128



Missing mass squared (GeV^2)
-0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ev
en

ts
 / 

( 0
.0

1 
G

eV
^2

 )

0

200

400

600

800

1000

Fit for K0 pi+ yield, withVeto

 0.00028±K0pi_CBallR_sigma =  0.01875 
 83±Klpi_yield =  5053 
 50±etapi_yield =  1328 

 15±pi0pi_yield =  365 

fake D bkgd = 18.6
mu3nu bkgd = 18.3
rho0enu bkgd = 0.2
K0enu bkgd = 1.5

K0K bkgd = 2.8
Kpi0 bkgd = 0.0

pipi0pi0pi0 bkgd = 8.6
rho0munu bkgd = 0.0

Kpipi bkgd = 1.7
rho2nu bkgd = 21.5
pipipipi0 bkgd = 0.4

pipipi bkgd = 1.1
pipi0pi0 bkgd = 49.8
pi0munu bkgd = 87.0
K0munu bkgd = 58.6

pi2nu bkgd = 93.5
K0pipi0 bkgd = 88.5

Kspi, piFromKs = 0.9
Kspi bkgd = 603.8

munu bkgd (*) = 294.6
sum of yields = 8097.1

# of events = 8102.0
chi-squared = 40.9/(50 - Np)

Missing mass squared (GeV^2)
-0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ev
en

ts
 / 

( 0
.0

1 
G

eV
^2

 )

0

200

400

600

800

1000

Fit for K0 pi+ yield, withVeto

Missing mass squared (GeV^2)
-0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ev
en

ts
 / 

( 0
.0

1 
G

eV
^2

 )

0

50

100

150

200

250

300

350

400

Fit for K0 pi+ yield, withVeto

 0.00054±K0pi_CBallR_sigma =  0.02116 
 54±Klpi_yield =  1990 
 34±etapi_yield =  507 

 9.3±pi0pi_yield =  141.3 

fake D bkgd = 49.5
mu3nu bkgd = 6.9
rho0enu bkgd = 0.1
K0enu bkgd = 0.6

K0K bkgd = 1.1
Kpi0 bkgd = 0.0

pipi0pi0pi0 bkgd = 3.2
rho0munu bkgd = 0.0

Kpipi bkgd = 0.6
rho2nu bkgd = 8.1

pipipipi0 bkgd = 0.1
pipipi bkgd = 0.4

pipi0pi0 bkgd = 18.7
pi0munu bkgd = 32.6
K0munu bkgd = 22.0

pi2nu bkgd = 35.1
K0pipi0 bkgd = 33.2

Kspi, piFromKs = 0.5
Kspi bkgd = 223.0

munu bkgd (*) = 114.8
sum of yields = 3188.4

# of events = 3191.0
chi-squared = 19.2/(50 - Np)

Missing mass squared (GeV^2)
-0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ev
en

ts
 / 

( 0
.0

1 
G

eV
^2

 )

0

50

100

150

200

250

300

350

400

Fit for K0 pi+ yield, withVeto

Missing mass squared (GeV^2)
-0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ev
en

ts
 / 

( 0
.0

1 
G

eV
^2

 )

0

20

40

60

80

100

120

140

Fit for K0 pi+ yield, withVeto

 0.00082±K0pi_CBallR_sigma =  0.01941 
 30±Klpi_yield =  647 
 18±etapi_yield =  170 
 5.5±pi0pi_yield =  48.9 

fake D bkgd = 4.9
mu3nu bkgd = 2.4

rho0enu bkgd = 0.0
K0enu bkgd = 0.2

K0K bkgd = 0.4
Kpi0 bkgd = 0.0

pipi0pi0pi0 bkgd = 1.1
rho0munu bkgd = 0.0

Kpipi bkgd = 0.2
rho2nu bkgd = 2.8

pipipipi0 bkgd = 0.0
pipipi bkgd = 0.1

pipi0pi0 bkgd = 6.6
pi0munu bkgd = 11.5
K0munu bkgd = 7.8
pi2nu bkgd = 12.4

K0pipi0 bkgd = 11.7
Kspi, piFromKs = 0.1

Kspi bkgd = 79.2
munu bkgd (*) = 39.3

sum of yields = 1046.9
# of events = 1040.0

chi-squared = 20.6/(50 - Np)

Missing mass squared (GeV^2)
-0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ev
en

ts
 / 

( 0
.0

1 
G

eV
^2

 )

0

20

40

60

80

100

120

140

Fit for K0 pi+ yield, withVeto

Missing mass squared (GeV^2)
-0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ev
en

ts
 / 

( 0
.0

1 
G

eV
^2

 )

0

50

100

150

200

250

Fit for K0 pi+ yield, withVeto

 0.00073±K0pi_CBallR_sigma =  0.02251 
 46±Klpi_yield =  1362 
 30±etapi_yield =  390 

 8.0±pi0pi_yield =  103.3 

fake D bkgd = 49.6
mu3nu bkgd = 4.9
rho0enu bkgd = 0.1
K0enu bkgd = 0.4

K0K bkgd = 0.7
Kpi0 bkgd = 0.0

pipi0pi0pi0 bkgd = 2.3
rho0munu bkgd = 0.0

Kpipi bkgd = 0.5
rho2nu bkgd = 5.7

pipipipi0 bkgd = 0.1
pipipi bkgd = 0.3

pipi0pi0 bkgd = 13.2
pi0munu bkgd = 23.1
K0munu bkgd = 15.6

pi2nu bkgd = 24.8
K0pipi0 bkgd = 23.5

Kspi, piFromKs = 0.3
Kspi bkgd = 158.0

munu bkgd (*) = 82.4
sum of yields = 2261.1

# of events = 2279.0
chi-squared = 40.6/(50 - Np)

Missing mass squared (GeV^2)
-0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ev
en

ts
 / 

( 0
.0

1 
G

eV
^2

 )

0

50

100

150

200

250

Fit for K0 pi+ yield, withVeto

Missing mass squared (GeV^2)
-0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ev
en

ts
 / 

( 0
.0

1 
G

eV
^2

 )

0

50

100

150

200

250

300

Fit for K0 pi+ yield, withVeto

 0.00058±K0pi_CBallR_sigma =  0.01935 
 43±Klpi_yield =  1354 
 26±etapi_yield =  341 
 7.2±pi0pi_yield =  82.8 

fake D bkgd = 6.5
mu3nu bkgd = 4.5
rho0enu bkgd = 0.1
K0enu bkgd = 0.4

K0K bkgd = 0.7
Kpi0 bkgd = 0.0

pipi0pi0pi0 bkgd = 2.1
rho0munu bkgd = 0.0

Kpipi bkgd = 0.4
rho2nu bkgd = 5.3

pipipipi0 bkgd = 0.1
pipipi bkgd = 0.3

pipi0pi0 bkgd = 12.3
pi0munu bkgd = 21.5
K0munu bkgd = 14.5

pi2nu bkgd = 23.1
K0pipi0 bkgd = 21.8

Kspi, piFromKs = 0.2
Kspi bkgd = 155.2

munu bkgd (*) = 65.6
sum of yields = 2112.4

# of events = 2114.0
chi-squared = 34.7/(50 - Np)

Missing mass squared (GeV^2)
-0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ev
en

ts
 / 

( 0
.0

1 
G

eV
^2

 )

0

50

100

150

200

250

300

Fit for K0 pi+ yield, withVeto

Missing mass squared (GeV^2)
-0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ev
en

ts
 / 

( 0
.0

1 
G

eV
^2

 )

0

20

40

60

80

100

120

140

160

Fit for K0 pi+ yield, withVeto

 0.00080±K0pi_CBallR_sigma =  0.01931 
 31±Klpi_yield =  682 
 18±etapi_yield =  176 
 5.7±pi0pi_yield =  53.4 

fake D bkgd = 30.7
mu3nu bkgd = 2.5

rho0enu bkgd = 0.0
K0enu bkgd = 0.2

K0K bkgd = 0.4
Kpi0 bkgd = 0.0

pipi0pi0pi0 bkgd = 1.2
rho0munu bkgd = 0.0

Kpipi bkgd = 0.2
rho2nu bkgd = 3.0

pipipipi0 bkgd = 0.1
pipipi bkgd = 0.2

pipi0pi0 bkgd = 6.9
pi0munu bkgd = 12.1
K0munu bkgd = 8.1
pi2nu bkgd = 13.0

K0pipi0 bkgd = 12.3
Kspi, piFromKs = 0.1

Kspi bkgd = 82.6
munu bkgd (*) = 43.9

sum of yields = 1129.1
# of events = 1129.0

chi-squared = 21.9/(50 - Np)

Missing mass squared (GeV^2)
-0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ev
en

ts
 / 

( 0
.0

1 
G

eV
^2

 )

0

20

40

60

80

100

120

140

160

Fit for K0 pi+ yield, withVeto

Figure 5.13: Fits for D+ → K0
Lπ
+ yield in generic Monte Carlo for each tag

mode. The green peak is the contribution of D+ → K0
Sπ
+ events

that were not vetoed. From top left, the tag modes are: D− →
K+π−π−, D− → K+π−π−π0, D− → K0

Sπ
−, D− → K0

Sπ
−π0, D− →

K0
Sπ
−π−π+, and D− → K+K−π−.
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Figure 5.14: Fit for D+ → K0
Lπ
+ yield in data using all tag modes. The green

peak is the contribution of D+ → K0
Sπ
+ events that were not

vetoed. The top plot has a linear scale, and the bottom plot
has a log scale.
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 0.00073±K0pi_CBallR_sigma =  0.02024 
 37±Klpi_yield =  967 
 19±etapi_yield =  136 
 4.8±pi0pi_yield =  35.9 

fake D bkgd = 6.9
mu3nu bkgd = 1.3

rho0enu bkgd = 0.0
K0enu bkgd = 0.3

K0K bkgd = 0.4
Kpi0 bkgd = 0.3

pipi0pi0pi0 bkgd = 1.6
rho0munu bkgd = 0.0

Kpipi bkgd = 0.3
rho2nu bkgd = 2.0

pipipipi0 bkgd = 0.0
pipipi bkgd = 0.3

pipi0pi0 bkgd = 22.9
pi0munu bkgd = 9.7
K0munu bkgd = 14.3

pi2nu bkgd = 6.7
K0pipi0 bkgd = 24.7

Kspi, piFromKs = 0.2
Kspi bkgd = 121.6

munu bkgd (*) = 28.9
sum of yields = 1381.0

# of events = 1398.0
chi-squared = 34.4/(50 - Np)
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 0.0014±K0pi_CBallR_sigma =  0.0205 
 22±Klpi_yield =  345 
 11±etapi_yield =  27 
 2.2±pi0pi_yield =  6.9 

fake D bkgd = 25.7
mu3nu bkgd = 0.4

rho0enu bkgd = 0.0
K0enu bkgd = 0.1
K0K bkgd = 0.1
Kpi0 bkgd = 0.1

pipi0pi0pi0 bkgd = 0.5
rho0munu bkgd = 0.0

Kpipi bkgd = 0.1
rho2nu bkgd = 0.6

pipipipi0 bkgd = 0.0
pipipi bkgd = 0.1

pipi0pi0 bkgd = 7.0
pi0munu bkgd = 3.0
K0munu bkgd = 4.4

pi2nu bkgd = 2.0
K0pipi0 bkgd = 7.5

Kspi, piFromKs = 0.1
Kspi bkgd = 36.5

munu bkgd (*) = 5.6
sum of yields = 472.5

# of events = 479.0
chi-squared = 23.7/(50 - Np)
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 0.0022±K0pi_CBallR_sigma =  0.0209 
 14±Klpi_yield =  132 

 7.3±etapi_yield =  16.0 
 1.4±pi0pi_yield =  2.9 

fake D bkgd = 5.0
mu3nu bkgd = 0.2

rho0enu bkgd = 0.0
K0enu bkgd = 0.0

K0K bkgd = 0.1
Kpi0 bkgd = 0.0

pipi0pi0pi0 bkgd = 0.2
rho0munu bkgd = 0.0

Kpipi bkgd = 0.0
rho2nu bkgd = 0.3

pipipipi0 bkgd = 0.0
pipipi bkgd = 0.0

pipi0pi0 bkgd = 3.3
pi0munu bkgd = 1.4
K0munu bkgd = 2.1

pi2nu bkgd = 1.0
K0pipi0 bkgd = 3.5

Kspi, piFromKs = 0.0
Kspi bkgd = 17.2

munu bkgd (*) = 2.3
sum of yields = 187.4

# of events = 193.0
chi-squared = 18.9/(50 - Np)
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 0.0019±K0pi_CBallR_sigma =  0.0263 
 23±Klpi_yield =  323 
 14±etapi_yield =  27 

 3.1±pi0pi_yield =  13.5 

fake D bkgd = 37.5
mu3nu bkgd = 0.4

rho0enu bkgd = 0.0
K0enu bkgd = 0.1
K0K bkgd = 0.1
Kpi0 bkgd = 0.1

pipi0pi0pi0 bkgd = 0.5
rho0munu bkgd = 0.0

Kpipi bkgd = 0.1
rho2nu bkgd = 0.6

pipipipi0 bkgd = 0.0
pipipi bkgd = 0.1

pipi0pi0 bkgd = 7.3
pi0munu bkgd = 3.1
K0munu bkgd = 4.6

pi2nu bkgd = 2.1
K0pipi0 bkgd = 7.9

Kspi, piFromKs = 0.1
Kspi bkgd = 38.1

munu bkgd (*) = 10.7
sum of yields = 476.9
# of events = 480.0

chi-squared = 23.5/(50 - Np)
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 0.0017±K0pi_CBallR_sigma =  0.0207 
 16±Klpi_yield =  184 

 9.4±etapi_yield =  37.1 
 2.8±pi0pi_yield =  12.0 

fake D bkgd = 18.2
mu3nu bkgd = 0.3

rho0enu bkgd = 0.0
K0enu bkgd = 0.1
K0K bkgd = 0.1
Kpi0 bkgd = 0.1

pipi0pi0pi0 bkgd = 0.3
rho0munu bkgd = 0.0

Kpipi bkgd = 0.1
rho2nu bkgd = 0.4

pipipipi0 bkgd = 0.0
pipipi bkgd = 0.1

pipi0pi0 bkgd = 4.8
pi0munu bkgd = 2.0
K0munu bkgd = 3.0

pi2nu bkgd = 1.4
K0pipi0 bkgd = 5.2

Kspi, piFromKs = 0.0
Kspi bkgd = 26.5

munu bkgd (*) = 9.5
sum of yields = 305.3
# of events = 306.0

chi-squared = 26.8/(50 - Np)
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 0.0027±K0pi_CBallR_sigma =  0.0210 
 11±Klpi_yield =  72 

 6.8±etapi_yield =  17.1 
 1.8±pi0pi_yield =  5.0 

fake D bkgd = 9.6
mu3nu bkgd = 0.1
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K0enu bkgd = 0.0

K0K bkgd = 0.0
Kpi0 bkgd = 0.0

pipi0pi0pi0 bkgd = 0.1
rho0munu bkgd = 0.0

Kpipi bkgd = 0.0
rho2nu bkgd = 0.2

pipipipi0 bkgd = 0.0
pipipi bkgd = 0.0

pipi0pi0 bkgd = 2.0
pi0munu bkgd = 0.8
K0munu bkgd = 1.2

pi2nu bkgd = 0.6
K0pipi0 bkgd = 2.1

Kspi, piFromKs = 0.0
Kspi bkgd = 10.3

munu bkgd (*) = 4.1
sum of yields = 125.9
# of events = 124.0

chi-squared = 12.2/(50 - Np)
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Figure 5.15: Fits for D+ → K0
Lπ
+ yield in data for each tag mode. The green

peak is the contribution of D+ → K0
Sπ
+ events that were not

vetoed. From top left, the tag modes are: D− → K+π−π−, D− →
K+π−π−π0, D− → K0

Sπ
−, D− → K0

Sπ
−π0, D− → K0

Sπ
−π−π+, and

D− → K+K−π−.
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Table 5.7: Measurements of B(D+ → K0
Lπ
+) from generic Monte Carlo. The

branching fraction for each tag mode is calculated from the cor-
responding yields, efficiency (from Table 5.5), and tag efficiency
factor R(from Table 5.6). The last column shows how many stan-
dard deviations the result is from the input branching fraction of
1.445 %.

D+ → K0
Lπ
+ Branching Std. dev.

Tag mode D yield yield fraction (%) off
D− → K+π−π− 425658 ± 769 5053 ± 83 1.435± 0.024 -0.4 σ
D− → K+π−π−π0 159602 ± 700 1990 ± 54 1.465± 0.041 +0.5 σ
D− → K0

Sπ
− 56329 ± 274 647 ± 30 1.382± 0.064 -1.0 σ

D− → K0
Sπ
−π0 113044 ± 599 1362 ± 46 1.406± 0.049 -0.8 σ

D− → K0
Sπ
−π−π+ 105004 ± 570 1354 ± 43 1.514± 0.049 +1.4 σ

D− → K+K−π− 59096 ± 333 682 ± 31 1.405± 0.064 -0.6 σ
Sum or average 918733 ±1397 11088 ± 125 1.440± 0.017 -0.3 σ

efficiencies, yields, and branching fractions (without systematic uncertainties

or corrections) for each mode. The best measurement comes from averaging

the results from each tag mode (weighted by the statistical uncertainty). The

D+ → K0
Lπ
+ branching fraction, before any systematic correction, is measured to

be (1.456± 0.040)%, a statistical precision of 2.7%.

5.10 Systematic Uncertainties and Corrections

The systematic uncertainties are listed below and summarized in Table 5.9.

• Pion tracking and particle identification: We must apply efficiency sys-

tematics for the π+ in D+ → K0
Lπ
+, but we do not need to correct for the

D− daughters since they appear in both the numerator and denominator

of the efficiency. To account for the uncertainty in tracking efficiency, we
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Table 5.8: Measurements of B(D+ → K0
Lπ
+) from data. The branching frac-

tion for each tag mode is calculated from the corresponding
yields, efficiency, and tag efficiency factor R (from Table 5.6).
This table does not include systematic uncertainties or correc-
tions.

D+ → K0
Lπ
+ Branching

Tag mode Efficiency (%) D yield yield fraction (%)
D− → K+π−π− 82.31 ± 0.19 80108 ± 342 967 ± 37 1.459± 0.056
D− → K+π−π−π0 81.55 ± 0.27 24391 ± 315 345 ± 22 1.662± 0.108
D− → K0

Sπ
− 82.37 ± 0.21 11450 ± 144 132 ± 14 1.387± 0.147

D− → K0
Sπ
−π0 81.94 ± 0.37 25494 ± 404 323 ± 23 1.479± 0.108

D− → K0
Sπ
−π−π+ 81.33 ± 0.24 16739 ± 314 184 ± 16 1.291± 0.114

D− → K+K−π− 81.09 ± 0.21 6892 ± 154 72 ± 11 1.271± 0.195
Sum or average 81.80 ± 0.09 165074 ± 723 2023 ± 54 1.456± 0.040

include a systematic uncertainty of 0.3% for the one π+ track. This uncer-

tainty is consistent with the results in Chapter 4, although it is actually

based on an earlier version of the efficiency analysis [22]. Also, we apply

a particle identification correction of 0.30 ± 0.25 % for the π+ track. (The

Monte Carlo is 0.3% too efficient, so we multiply the measured branching

fractions by 1.003.)

• Tag reconstruction in signal vs. non-signal events: This is the systematic

uncertainty in the tag reconstruction efficiency ratio R. We will take the re-

sult from an analysis of the same uncertainty in D0→ K0
Lπ

0 [6], ± 0.2%. The

approach used in that analysis is to study the variation in the tag recon-

struction efficiency as the particle multiplicity is reweighted in the Monte

Carlo simulation.

• D+ vs. D− tags: All of the Monte Carlo samples used to determine efficien-

cies use D− as the tag. To evaluate whether the efficiencies are different

when D+ is the tag, we generate Monte Carlo with a tag D+ and reevaluate
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Table 5.9: Systematic uncertainties in the measurement of B(D+ → K0
Lπ
+).

The “signal yields” systematics are estimated by altering the
M2

miss fit of all tag modes together. Only the larger of the two
“peak shape” systematics is included, as discussed in the text.
The D+ → K0

Sπ
+ background is not included in the “background

yields” systematic; it is separated into the portion due to effi-
ciency and statistical uncertainties and the portion due to the
input branching fraction uncertainty.

Efficiencies
Pion tracking ± 0.3%
Pion particle identification 0.30 ± 0.25%
Tag reconstruction: signal vs. non-signal ± 0.2%
D+ vs D− tags ± 0.5%
K0

S veto systematics ± 1.1%
Signal yields

D+ → K0
Lπ
+ peak shape ± 0.35%

D+ → ηπ+ peak shape ± 0.69%
Fake D− background shape ± 0.15%
Fake D− background yield ± 0.35%
Background yields ± 0.49%
D+ → K0

Sπ
+ efficiency & statistics ± 0.80%

Fixed vs. floating peak width ± 1.63%
Tail of signal peak ± 0.25%
Total ± 2.42%
D+ → K0

Sπ
+ branching fraction ± 0.33%

the efficiencies. The results are shown in Appendix A.2.

Averaged over all tag modes, the tag and charged pion reconstruction ef-

ficiencies agree to within 0.5% between D+ and D− tags. We take ±0.5% as

the (conservative) value of this systematic uncertainty.

• K0
S veto systematics: Appendix A.3 derives a formula (equation A.24) for

the systematic uncertainties on B(D+ → K0
Lπ
+) ≡ BL associated with the K0

S

veto:
δBL,v

BL
≈ δpf ake⊕

1
6
δεπ0

επ0
⊕

2
15
δεπ+

επ+
(5.16)
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where ⊕ denotes addition in quadrature and the variables are explained

below.

δpf ake is the systematic uncertainty on the fraction of events in which a

fake extra track or π0 will be found. We evaluate this uncertainty by look-

ing for extra tracks or π0s in events in which both D and D̄ were fully

reconstructed. We use both D0D̄0 and D+D− pairs. Suitable DD̄ candidates

are selected with requirements on the MBC of the two candidates, and MBC

sidebands are used to subtract the contribution of fake DD̄ candidates. For

each DD̄ candidate, we ask whether an extra track or π0 is present and tab-

ulate how often this occurs in both data and generic Monte Carlo. This

calculation includes the subtraction of MBC sidebands. Combining the re-

sults for all D and D̄ decay modes, we find an extra track 0.83 ± 0.07 % of

the time in data and 0.74 ± 0.03 % of the time in generic Monte Carlo, a

difference of 0.10 ± 0.08 %. We find an extra π0 1.50 ± 0.09 % of the time

in data and 1.18 ± 0.03 % of the time in generic MC, a difference of 0.31 ±

0.10 %. Combining these results and being slightly conservative, we use a

systematic of δpf ake = 0.5%.

The next term, (1/6)(δεπ0/επ0), accounts for the reconstruction efficiency of

the π0s from K0
S → π0π0. δεπ0/επ0 is the π0 reconstruction systematic uncer-

tainty. It has been measured to be 4 ± 2% for low-momentum π0s [22]. Our

requirements are tighter than the standard π0 selection since we require

both shower energies to be larger than 80 MeV. In principle, this means

that the study using standard requirements is not directly applicable; how-

ever, the tighter requirement is more likely to improve data-Monte Carlo

agreement than to worsen it. We use a π0 efficiency systematic of 0 ± 6%,

which leads to a 1% systematic on B(D+ → K0
Lπ
+).
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The final term, (2/15)(δεπ+/επ+), accounts for the reconstruction efficiency

of the π+ and π− from K0
S → π+π−. δεπ+/επ+ is the π+ tracking systematic

uncertainty, which we again take to be ±0.3%. It is multiplied by the small

factor of 2/15, so this uncertainty is negligible.

Combining these uncertainties in quadrature, we obtain a veto systematic

of ± 1.1%.

The following systematics are estimated by altering the M2
miss fit in some way

– for instance, by raising a background yield by one standard deviation. In

all of these cases, the M2
miss distribution in data for all tag modes together is fit

with and without the alteration, and the resulting change in the signal yield

determines the magnitude of the systematic. Because each tag mode responds

to a given alteration in the same way, we do not perform these variations on

indivdual tag modes.

• Peak shape: If the Monte Carlo does not accurately simulate the peak

shapes, the yields could be biased. In fact, the yields are very sensitive

to the peak shapes since the D+ → K0
Lπ
+ and D+ → ηπ+ peaks overlap.

To estimate this uncertainty, the fit was redone using the peak shape from

each of the different tag modes. The largest of the (six) deviations obtained

using the (six) different tag modes was taken as the value of this system-

atic. This was done for both the D+ → K0
Lπ
+ and the D+ → ηπ+ peaks.

The peak shape parameters are a width and two parameters for each of

the Crystal Ball tails. The tail parameters are similar in all tag modes. The

width is the main difference between tag modes – it is wider for modes

with a π0. Since the width floats in the final M2
miss fit, what we are varying
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here is essentially the ratio between the K0
Lπ
+ and ηπ+ peak widths. Thus,

the K0
Lπ
+ and ηπ+ peak shape systematics are, to a large extent, measuring

the same thing, and so we include only the larger of the two as a systematic

uncertainty.

• Fake tag D− background shape: The fake tag D− background shape is de-

termined by a M2
miss fit to events in the MBC sideband. Fixing the shape

parameters at different (but still reasonable) values produces a change in

the signal yield. Here, the alternate shape parameters that we used were

the values from the fit in generic Monte Carlo.

• Fake tag D− background yield: The number of fake D−s appearing in the

missing mass squared plot is uncertain due to statistical fluctuations in

this yield and due to the uncertainty in the “correction factor” C = 1.0 ±

0.1. We vary this yield by one standard deviation and take the resulting

change in the signal yield as the systematic uncertainty.

• Background yields: The many backgrounds from non-signal D+ decays

introduce a number of systematic uncertainties.

First, the background efficiencies are not precisely known. We use the

statistical uncertainty in the Monte Carlo samples as the uncertainty in the

efficiencies.

More importantly, we must know the branching fractions of these back-

ground modes in order to fix their yields. These values, and their un-

certainties, are taken from the Particle Data Group [1]. In one case,

D+ → π+π0π0π0, no branching fraction is available. For this mode, the

branching fraction is assumed to be 1 ± 1%.

The final source of uncertainty in the background yields is the possibility
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of statistical fluctuations from the value used in the fit. For each back-

ground, this uncertainty is the square root of the yield.

Each background yield, one by one, is varied by one standard deviation,

and the resulting change in the signal yield is taken as a systematic uncer-

tainty.

The D+ → K0
Sπ
+ background is treated like the other backgrounds, except

that the uncertainty onB(D+ → K0
Sπ
+) is kept separate from the other back-

ground uncertainties so that its contribution may be quoted separately.

Table 5.10 shows the backgrounds whose yields are fixed in the fit along

with their branching fractions, yields, and systematic uncertainties.

• Fixed vs. floating peak width: We find that the value of the signal peak

width from the Monte Carlo simulation differs from the fitted width in

data by more than one standard deviation. As a systematic variation, we

refit the M2
miss distribution with the peak width fixed to the Monte Carlo

value. The shift in the peak yield is taken as the value of this systematic,

with a small correction: The uncertainty in the signal yield reported by the

default fit includes some component due to the uncertainty in the floating

peak width. We do not want to double-count this component. Therefore,

the value of this systematic is given by

(systematic)2 = (shift in peak yield)2

−[(peak yield uncertainty with floating width)2

−(peak yield uncertainty with fixed width)2] (5.17)

• Tail of signal peak: The tails of the M2
miss peak shapes, which arise pri-

marily from poorly reconstructed π+s, may not be modeled correctly in
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Table 5.10: Fixed backgrounds. For each background, the table lists the
branching fraction, sum of background yields in all tag modes,
and the systematic uncertainty it produces in the K0

Lπ
+ yield.

Branching fraction uncertainties in the smallest one or two sig-
nificant figures are shown in parentheses. The total systematic
(9.9) is divided by the signal yield (2023) to obtain the “Back-
ground yields” systematic of 0.49% in Table 5.9.

Resulting
Background Branching Events K0

Lπ
+ yield

fraction (%) in data uncertainty
K̄0e+νe 7.20(80) 0.6 0
K̄0K+ 0.57(5) 0.8 0.5
K̄0µ+νµ 9.10(90) 29.6 1
K̄0π+π0 14.40(61) 50.9 2
K+π0 0.025(7) 0.7 1
K−π+π+ 9.11(20) 0.7 0.5
µ+νµν̄τντ 0.016(6) 2.7 1
π0µ+νµ 0.38(19) 20.0 6
π+ν̄τντ 0.010(4) 13.8 4
π+π0π0 0.477(46) 47.3 6
π+π0π0π0 1(1) 3.3 1
π+π+π− 0.335(22) 0.7 0.5
π+π+π−π0 1.16(8) 0.1 0
ρ0e+νe 0.25(10) 0.1 0
ρ0µ+νµ 0.33(8) 0.0 0
ρ+ν̄τντ 0.030(1) 4.1 1
Total 175.4 9.9
K0

Sπ
+ 1.526(44) 245.9 17

Monte Carlo. In fact, we have some evidence from plots in the tracking ef-

ficiency analysis that the tails are larger in data than the Monte Carlo pre-

dicts. First, we compare the M2
miss distributions in data and Monte Carlo

for events where the K− in D0 → K−π+ was found. That is, we form the

missing mass of a D̄0 and a π+, and take only the events where the miss-

ing K− was found. This distribution should be very similar to the missing

mass of the K0
L in D+ → K0

Lπ
+. We count the number of events in a region to
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the left of the peak, 0.08 < M2
miss < 0.17GeV2, and a region in the center of

the peak, 0.22 < M2
miss < 0.27GeV2. The ratio of the tail region to the peak

region is 1.38 ± 0.20 times larger in data than in Monte Carlo. We also form

similar ratios for the K− in D0 → K−π+π0 and the π+ in D0 → K−π+, finding

that the tail in data is 1.77 ± 0.09 and 1.76 ± 0.33 times larger, respectively.

Thus, it seems that the Monte Carlo underestimates the tail size by a factor

of ∼1.5.

Also, returning to the D+ → K0
Lπ
+ analysis, we see more events in data in

the region to the left of the signal peak than the fit shapes predict. Consider

the M2
miss fit for all tag modes (Figure 5.14). In the region 0.10 < M2

miss <

0.15 GeV2, there are 40 histogram entries. The area of the fit function in

this region is 30.3 events, of which 11.5 come from the tail of the signal

peak. If we allow the peak’s left-side-tail power parameter to vary in the

fit, the left-side tail increases so that the area of the fit function in this

region is 38.7 events, of which 20.0 come from the tail of the signal peak.

The signal yield increases by a small amount, and this increase is taken as

a systematic uncertainty.

5.11 Final Results and Conclusion

The final result for the branching fraction B(D+ → K0
Lπ
+), with systematics, is

B(D+ → K0
Lπ
+) = (1.460 ± 0.040 ± 0.035 ± 0.005)% [6]. The final uncertainty is the

systematic due to the input value of B(D+ → K0
Sπ
+).

B(D+ → K0
Lπ
+) can be compared to the value of B(D+ → K0

Sπ
+) = (1.526±
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0.022± 0.038)%1 from a separate CLEO-c analysis [22]. Using these two mea-

surements (and remembering to account for the correlation between them), the

asymmetry between B(D+ → K0
Sπ
+) and B(D+ → K0

Lπ
+) is

R(D+) ≡
B(D+ → K0

Sπ
+) − B(D+ → K0

Lπ
+)

B(D+ → K0
Sπ
+) + B(D+ → K0

Lπ
+)
= 0.022± 0.016± 0.018.

The statistical uncertainty on R(D+) due to the D+ → K0
Sπ
+ measurement is about

half that from D+ → K0
Lπ
+. The two measurements make approximately equal

contributions to the systematic uncertainty.

As a consistency check, we also performed the analysis without the veto on

extra tracks and π0s. This leaves D+ → K0
Sπ
+ events in the signal peak, and so

we measure B(D+ → K0
Sπ
+)+B(D+ → K0

Lπ
+); here the background term for D+ →

K0
Sπ
+ is omitted from the fit. We find B(D+ → K0

Sπ
+) + B(D+ → K0

Lπ
+) = (3.104

± 0.056 ± 0.071)%. We can also compute the asymmetry from the branching

fraction sum and the independent B(D+ → K0
Sπ
+) measurement:

R(D+) = −0.017± 0.023± 0.033

This calculation is consistent with the result above, but with poorer precision.

This analysis finds no measureable difference between B(D+ → K0
Lπ
+) and

B(D+ → K0
Sπ
+). This is consistent with theoretical expectations, which allow

for but do not require a large difference. The measurement R(D+) = 0.022±

0.016±0.018rules out scenarios of maximal interference between K0π+ and K̄0π+

amplitudes, which, as discussed in Section 5.1, would be expected to produce

an asymmetry with absolute value greater than 2 tan2 θC = 0.109± 0.001. In fact,

Bigi and Yamamoto [18] originally predicted, based far less data than is now

1This result includes a K0
S reconstruction systematic uncertainty of 1.8%. If that systematic is

reduced to the updated value of 0.8% from Sec. 4.11.5, the branching fraction becomes B(D+ →
K0

Sπ
+) = (1.526± 0.022± 0.029)%and the asymmetry becomes R(D+) = 0.022± 0.016± 0.016.
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available, an asymmetry of R(D+) ≈ 2 tan2 θC × −1.2; our measurement refutes

that value.

Theoretical predictions of R(D+) are possible under certain assumptions. One

analysis [20], based on moderate breaking of SU(3) symmetry, finds R(D+) ≈

0.04, consistent with our measurement. Another [4], based on analysis of topo-

logical amplitudes in many D decays, finds R(D+) = −0.006+0.033
−0.028, also consistent.

This analysis takes advantage of the clean DD̄ environment and well-known

initial state at the CLEO-c detector to perform the first measurement of the

branching fraction B(D+ → K0
Lπ
+). This measurement provides useful con-

straints on the amplitudes for D+ → K0π+ and D+ → K̄0π+, and together with the

result for B(D0→ K0
Lπ

0) it completes the picture of D→ Kπ decays.
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APPENDIX A

SUPPLEMENTARY INFORMATION FOR MEASUREMENT OF D+ → K0
Lπ
+
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A.1 Calculation of Efficiency and Branching Fraction Uncer-

tainties

The calculation of uncertainties for the efficiencies and branching fractions is

complicated by the fact that uncertainties arise from both statistics and fit un-

certainties.

Consider the calculation of an efficiency ε. We measure E, the number of effi-

cient events, and T, the total number of events (efficient plus inefficient events),

from fits to M2
miss and MBC distributions. For each of these numbers, the fit gives

an uncertainty which is a combination of two uncertainties:

• the statistical uncertainty (
√

E or
√

T).

• the uncertainty (δEfit or δTfit) from not knowing what fraction of the

events in each fit are part of the peak (which should be included in E or T)

and which are part of the background (which should not be included).

The total uncertainties δE and δT reported by the fit can be separated:

(δE)2 = E + (δEfit)
2

(δT)2 = T + (δTfit)
2 (A.1)

First, combine the statistical uncertainties in E and T to get the total statistical

uncertainty in the efficiency ε = E/T:

δεstat =
1
√

T

√
ε(1− ε) = ε

√
1
E
−

1
T

(A.2)

This is a binomial error.
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Second, combine the fit uncertainties, which are uncorrelated, to get the total

fit uncertainty:

δεfit = ε

√
(
δEfit

E
)2 + (

δTfit
T

)2

= ε

√
(δE)2 − E

E2
+

(δT)2 − T
T2

= ε

√(
δE
E

)2

+

(
δT
T

)2

−
1
E
−

1
T

(A.3)

Combining the statistical and fit uncertainties in quadrature, we find that the

total uncertainty in the efficiency is

δε =
√

(δεstat)2 + (δεfit)
2

= ε

√(
δE
E

)2

+

(
δT
T

)2

−
2
T

(A.4)

Equation A.4 is used to obtain the uncertainties in the efficiencies. Note that it

reduces to the statistical uncertainty when δE =
√

E and δT =
√

T. Also, ( δEE )2

and ( δTT )2 are both greater than 1/T, so the sum under the square root is positive.

Branching fraction calculations are similar. Using B = S/(Tε) where S is the

number of observed signal events, T is the total number of events, and ε is the

efficiency, we find

δB = B

√(
δS
S

)2

+

(
δT
T

)2

−
2
T
+

(
δε

ε

)2

(A.5)

The only difference in this calculation is the extra term for ε.

A.2 Comparison of D+ and D− Tags

In this analysis, we always measure tag and signal efficiencies in Monte Carlo

samples where the D− is the tag. This section presents efficiencies measured
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with a D+ tag. The differences are used to determine a systematic uncertainty.

Table A.1 lists tag efficiency ratios and D± → K0
Lπ
± reconstruction efficiencies

for both D+ and D− tags. Note that the numbers for D− tags are the same as those

in Section 5.7. The D+ numbers are determined in the same way.

Since we use the D− efficiencies in the analysis, we must include a system-

atic uncertainty to account for differences in the efficiencies. The appropriate

systematic is one half the relative difference between D+ and D− tags. Based on

the average D+/D− ratios in the tables, we apply a conservative systematic of

0.5%.

A.3 Systematic Uncertainty in B(D+ → K0
Lπ
+) Due to K0

S Veto

This section derives the systematic uncertainty in B(D+ → K0
Lπ
+) ≡ BL due to the

extra track and extra π0 vetoes. This systematic is denoted as δBL,v. It includes

systematics on how often a D+ → K0
Lπ
+ event is falsely vetoed and on how often

a real track or π0 is found in a D+ → K0
Sπ
+ event.

A.3.1 Notation

Throughout this appendix, we will use the following notation:

• BL ≡ B(D+ → K0
Lπ
+)

• BS ≡ B(D+ → K0
Sπ
+)
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Table A.1: Tag efficiency ratios R and D± → K0
Lπ
± reconstruction efficien-

cies for D+ and D− tags. The D− numbers are the same as those
in Section 5.7.

Tag mode R Efficiency (%)
D+ → K−π+π+ 0.9957 ± 0.0040 81.94 ± 0.23
D− → K+π−π− 0.9949 ± 0.0032 82.31 ± 0.19
Ratio (D+/D−) 1.0008 ± 0.0052 0.9955 ± 0.0036
D+ → K−π+π+π0 0.9538 ± 0.0068 81.55 ± 0.38
D− → K+π−π−π0 0.9579 ± 0.0055 81.55 ± 0.27
Ratio (D+/D−) 0.9957 ± 0.0091 1.0001 ± 0.0058
D+ → K0

Sπ
+ 0.9948 ± 0.0049 82.13 ± 0.25

D− → K0
Sπ
− 0.9908 ± 0.0039 82.37 ± 0.21

Ratio (D+/D−) 1.0040 ± 0.0063 0.9970 ± 0.0040
D+ → K0

Sπ
+π0 0.9689 ± 0.0077 81.74 ± 0.43

D− → K0
Sπ
−π0 0.9565 ± 0.0062 81.94 ± 0.37

Ratio (D+/D−) 1.0130 ± 0.0104 0.9975 ± 0.0069
D+ → K0

Sπ
+π+π− 0.9668 ± 0.0062 81.02 ± 0.31

D− → K0
Sπ
−π−π+ 0.9552 ± 0.0050 81.33 ± 0.24

Ratio (D+/D−) 1.0122 ± 0.0083 0.9962 ± 0.0048
D+ → K−K+π+ 0.9947 ± 0.0047 81.10 ± 0.25
D− → K+K−π− 0.9870 ± 0.0038 81.09 ± 0.21
Ratio (D+/D−) 1.0078 ± 0.0062 1.0001 ± 0.0040
Average for D+ 0.9787 ± 0.0022 81.62 ± 0.12
Average for D− 0.9728 ± 0.0018 81.80 ± 0.09
Average Ratio (D+/D−) 1.0046 ± 0.0028 0.9975 ± 0.0018

• P ≡ number of events in the M2
miss peak at the K0 mass squared (i.e. D+ →

K0
Lπ
+ yield plus D+ → K0

Sπ
+ yield)

• Ntag ≡ number of tag D−s

• εL = efficiency for finding D+ → K0
Lπ
+ in the missing mass squared peak,

given that the tag D− was found.

• εS = efficiency for finding D+ → K0
Sπ
+ in the missing mass squared peak,

given that the tag D− was found.
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A.3.2 Starting Formulas

The expected peak yield for a given mode is the number of tags times the

branching fraction times the efficiency. Thus

P = (εLBL + εSBS)Ntag (A.6)

Solving for BL,

BL = (
P

Ntag
− εSBS)

1
εL

(A.7)

We would like to separate the D+ → K0
Sπ
+ events into the cases where K0

S → π0π0

and K0
S → π+π−.

Therefore we introduce some additional notation:

• Bπ0π0 ≡ branching fraction for D+ → (K0
S → π0π0)π+ = B(D+ →

K0
Sπ
+)B(K0

S → π0π0)

• Bπ+π− ≡ branching fraction for D+ → (K0
S → π+π−)π+ = B(D+ →

K0
Sπ
+)B(K0

S → π+π−)

• επ0π0 ≡ efficiency for finding D+ → (K0
S → π0π0)π+ in the missing mass

squared peak, given that the tag D− was found.

• επ+π− ≡ efficiency for finding D+ → (K0
S → π+π−)π+ in the missing mass

squared peak, given that the tag D− was found.

• Define vi by εi = viεNV where i = L, π0π0, π+π−. εNV is the efficiency when no

veto is applied, which we assume is the same for all three cases, and vi is

the fraction of events of type i that survive the veto. Using the approximate

veto percentages in Section 5.3, vL ≈ 96%, vπ0π0 ≈ 40%, and vπ+π− < 1%.
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Generalizing Eq. A.6,

P = (εLBL + επ0π0Bπ0π0 + επ+π−Bπ+π−)Ntag (A.8)

Solving for BL,

BL = (
P

Ntag
− επ0π0Bπ0π0 − επ+π−Bπ+π−)

1
εL

(A.9)

This also follows from Eq. A.7 if we substitute

εS =
Bπ0π0

BS
επ0π0 +

Bπ+π−

BS
επ+π− (A.10)

Finally, substitute εi = viεNV:

BL = (
P

NtagεNV
− vπ0π0Bπ0π0 − vπ+π−Bπ+π−)

1
vL

(A.11)

A.3.3 Uncertainties Due to Veto Efficiencies

We are interested in the uncertainties in BL due to the efficiencies vL, vπ0π0, and

vπ+π− . Propagating uncertainties, we find:

δBL,vL = −
BL

vL
δvL (A.12)

δBL,vπ0π0 = −
Bπ0π0

vL
δvπ0π0 (A.13)

δBL,vπ+π− = −
Bπ+π−

vL
δvπ+π− (A.14)

Equivalently,

δBL,v

BL
=

δvL

vL
⊕

Bπ0π0

BL

δvπ0π0

vL
⊕

Bπ+π−

BL

δvπ+π−

vL
(A.15)

where ⊕ denotes addition in quadrature.

The analysis that follows is specific to the veto used in measuring B(D+ →

K0
Lπ
+). This veto removes any event in which at least one extra track or at least

one extra π0 is found, other than those used for the tag D− or the π+.
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Evaluation of δvL

In order to veto a D+ → K0
Lπ
+ event, we must find a fake extra track or π0. Let

pf ake be the probability that this happens. Then vL = 1− pf ake, and

δvL = −δpf ake (A.16)

Evaluation of δvπ0π0

In this section, we will express δvπ0π0 as a function of δεπ0, where επ0 is the effi-

ciency for finding a single π0.

There are three ways for a D+ → (K0
S → π0π0)π+ event to get vetoed:

1. The first π0 is found.

2. The second π0 is found.

3. Some bogus track or π0 is found. This happens with probability pf ake.

Assuming that these three possibilities are uncorrelated,

vπ0π0 = (1− επ0)(1− επ0)(1− pf ake) (A.17)

Propagating uncertainties in επ0 and pf ake,

δvπ0π0 = (1− pf ake)2επ0(1− επ0)
δεπ0

επ0
⊕ (1− επ0)2δpf ake (A.18)

If we make the approximations pf ake≈ 0% and επ0 ≈ 50%,

δvπ0π0 ≈
1
2
δεπ0

επ0
⊕

1
4
δpf ake (A.19)

The factor of 1
2 on δεπ0

επ0
is actually an upper bound. Any nonzero pf ake or any

επ0 , 50%will produce a factor less than 1
2.
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Evaluation of δvπ+π−

In this section, we will express δvπ+π− as a function of pbp, the probability that an

individual charged particle goes down the beampipe, and of επ+ , the efficiency

for finding a single π+ given that it did not go down the beampipe.

There are three ways for a D+ → (K0
S → π+π−)π+ event to be vetoed:

1. The π+ is found.

2. The π− is found.

3. Some bogus track or π0 is found. This happens with probability pf ake.

There are two ways that a π+ might not be found:

1. It goes down the beampipe (probability pbp).

2. It doesn’t go down the beampipe, but the track finding fails (probability

1− επ+).

Kinematically, it is unlikely that both the π+ and the π− go down the

beampipe. We will assume that the probability they both do is 0, and that the

probability that neither does is (1 − pbp)2. Thus, the probability that one does

and one does not is 1 − (1 − pbp)2 = 2pbp − p2
bp. (This is an approximation, but

it is sufficient for our purposes since δvπ+π− will turn out to be negligibly small.)

When one track is in the tracking volume, the probablity that it will not be found

is 1 − επ+ . When two are in the tracking volume, the probability that neither is

found is (1− επ+)2. Now, we can write an expression for vπ+π− :

vπ+π− = [(2pbp− p2
bp)(1− επ+) + (1− pbp)

2(1− επ+)
2](1 − pf ake) (A.20)
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Propagating errors (and assuming δpbp = 0),

δvπ+π− = [(2pbp− p2
bp) + 2(1− pbp)

2(1− επ+)](1 − pf ake)δεπ+

⊕[(2pbp− p2
bp)(1− επ+) + (1− pbp)

2(1− επ+)
2]δpf ake (A.21)

If we make the approximations pf ake≈ 0% and επ+ ≈ 96%, and use pbp = 0.07

(since the tracking system covers 93% of the solid angle),

δvπ+π− ≈
1
5
δεπ+ ⊕

1
150

δpf ake (A.22)

A.3.4 Combining Uncertainties

Starting from Eq. A.15, we substitute the uncertainties from Equations A.16,

A.19, and A.22. We also make the approximations Bπ0π0/BL = 1/3, Bπ+π−/BL = 2/3,

and vL = 1.

Combining all of these equations,

δBL,v

BL
= δpf ake⊕

1
3

(
1
2
δεπ0

επ0
⊕

1
4
δpf ake) ⊕

2
3

(
1
5
δεπ+ ⊕

1
150

δpf ake) (A.23)

Simplifying and rounding,

δBL,v

BL
≈ δpf ake⊕

1
6
δεπ0

επ0
⊕

2
15
δεπ+

επ+
(A.24)

This equation expresses the systematic uncertainty due to the extra track and π0

vetoes as a function of systematic uncertainties in the track and π0 fake rate, the

π0 reconstruction efficiency, and the π+ track reconstruction efficiency.
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APPENDIX B

CALIBRATION OF CMS PIXEL DETECTOR READOUT
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The CMS (Compact Muon Solenoid) detector [23] is one of the two large

general-purpose particle detectors at the Large Hadron Collider. The compo-

nent of CMS closest to the interaction region is the silicon pixel detector [24, 25].

As the innermost subdetector, it is highly segmented; this segmentation pro-

vides low occupancy and excellent position resolution. Precise position mea-

surements are essential to allow for detection of vertices displaced from the in-

teraction point. The pixel detector also provides seeding for track reconstruc-

tion.

The pixel detector collects charge from the passage of charged particles

through silicon wafers which have been doped and biased. Charge is drawn

to pads arrayed in a grid on the surface of the silicon; each pad corresponds to

a single pixel. The collected charge is amplified, stored, and read out as a pulse

height that is related to the charge (and is proportional for small charges). The

pixel size is 150 µm × 100 µm, but the position resolution is better because hits

on adjacent pixels may be interpolated to provide sub-pixel precision.

The pixel detector contains an immense number of channels – 66 million

pixels. Reading out this volume of data is a challenge. The first step is to reduce

the data volume through sparcification. The occupancy is very low – in a given

event only about 0.03% of pixels contain a hit. Therefore, the readout sends only

those pixels containing a hit. Pixels are grouped into units, each of which is read

out by a dedicated optical link. When the CMS trigger selects an event, for each

hit in that event the pixel ID and pulse height is sent over the optical link. The

data stream is a combination of digital and analog – pixel IDs are encoded in six

discrete address levels, and the pulse height is transmitted as an analog value.

Electronics on the receiving end of the optical link decode the address levels
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Figure B.1: Components of the CMS pixel control and readout system.

and digitize the pulse height. From this data, software determines which pixels

were hit and how much charge was collected on each one.

The digital-analog hybrid data stream allows the data to be read out quickly,

but it is a complicated system to set up. Many settings on many types of elec-

tronics must be calibrated to produce a data stream that can be reliably decoded.

This Appendix first describes the components of the readout system and then

describes the calibrations used to prepare the detector for operation.

B.1 Pixel Detector Electronics

A schematic of the components of the CMS pixel detector is shown in Fig. B.1.

These components are explained below.
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B.1.1 Readout Components

The most basic collection of pixels is the ROC (readout chip) [26]. A ROC con-

tains 4160 pixels arrayed in 80 rows and 52 columns. Despite the large number

of pixels, this chip is quite small – less than 1 cm square. It contains all the cir-

cuitry used to collect and store charge. It also stores hits from every LHC bunch

crossing long enough for the CMS trigger to make its decision and propagate it

back to the detector. When an affirmative trigger decision reaches the front end,

it informs each ROC to transmit its stored hits.

ROCs are grouped into “channels”, each of which is read out by a dedicated

optical link. A channel contains 8 to 24 ROCs. These ROCs are chained together

and controlled by a TBM (token bit manager). When the TBM receives a trigger

decision, it transmits a short header data stream on the output line and then

passes a readout token to the first ROC in the chain. This ROC transmits a

short header and then its hits as an electrical signal to the TBM, which amplifies

the signal and passes it as output. When the first ROC finishes transmitting, it

passes the token to the next ROC, which sends its signal and passes the token.

This chain continues until all the ROCs have transmitted and the token returns

to the TBM. Finally, the TBM transmits a short trailer to signify the end of the

data stream.

The data stream is transmitted with a 40 MHz clock cycle; this clock operates

at the CMS bunch crossing frequency.

Figure B.2 shows an example of the output data stream from a TBM. In this

example, only one ROC is connected to the TBM, and that ROC reports one

hit. The signal begins with a TBM header lasting for 8 clock cycles. The header
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first transmits 3 cycles at a very low level, called “ultrablack”, and 1 cycle at

a medium level, called “black”. It then transmits an event counter, encoded

in 4 discrete address levels, in the next 4 cycles. Then the first ROC transmits

its 3-cycle header, which consists of 1 clock cycle at ultrablack, 1 at black, and

the last cycle at a level related to the last configuration setting changed on the

ROC or to the temperature of the ROC. After the header, the ROC transmits its

hits. Each hit takes 6 cycles to transmit. The first 5 are the row and column of

the hit, trasmitted using 6 discrete address levels. The last is the pulse height,

where the analog value is correlated with the amount of charge collected. All

hits on the ROC are transmitted in this way. When this is finished, the next

ROC in the chain transmits its header and any hits. Finally, when all ROCs

have transmitted, the TBM adds an 8-cycle trailer that begins with 2 ultrablacks

and 2 blacks and finishes with 4 cycles coding for status information. In this

scheme, the ultrablack levels are used to uniquely identify the TBM header (3

consecutive), ROC header (1), and TBM trailer (2 consecutive).

The electrical signal produced by the TBM is converted to an optical signal

with an analog opto-hybrid (AOH) mounted on a circuit board called a sup-

ply board (in the barrel section of the detector) or a port card (in the forward

region). The optical signal is transmitted off the detector to a FED (Front End

Driver) board.1 The FED decodes the signal and passes the hits to the CMS

event builders for storage and later analysis. During data-taking and a few

calibrations, this data is passed over a high-speed S-link [27] connection. In

most calibrations, either the hits or raw data from the FED’s analog-to-digital

converter (ADC) are sent over a VME interface to the computer controlling the

FED. The process of decoding the data stream is described in Section B.2.

1Each FED receives and decodes the output of 36 optical links.
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Figure B.2: Output data stream from a TBM connected to one ROC which
reports one hit.

Many settings on the ROC, TBM, AOH, and FED must be adjusted to al-

low the data stream to be decoded. These settings must ensure that the signal

has a wide dynamic range with good separation between black and ultrablack

and between address levels, while keeping the signal within the FED’s dynamic

range. Also, the relationship between the charge received on a pixel and the

measured pulse height should be as linear as possible. The calibrations used to

perform these adjustments are described in Section B.3.
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B.1.2 Control Components

Settings on the ROC and TBM are adjusted via a signal that originates on a FEC

(Front End Controller) board. This signal is coded with the I2C protocol. The

FEC passes the signal via fiber optic cable to the front end. Here, the optical

signal is converted to an electrical signal by a digital opto-hybrid (DOH) on the

supply board or port card. The timing of the control signal with respect to the

clock is adjusted by a Delay25 chip. The electrical signal is passed to the TBM

and then to the ROCs.

The supply boards and port cards contain settings that affect the flow of data

to and from the detector; these settings must also be adjusted. The readout link

is adjusted by the AOH settings, which determine the intensity and range of

the optical output. For the control link, the Delay25 chip must be set correctly;

commands will not reach the TBM and ROCs if these settings are not properly

adjusted.

Settings on the supply boards and port cards are controlled by a separate

link that also uses the I2C protocol, though with slower timing. Signals are sent

by a “tracker FEC” (TKFEC) board. This board is the same hardware as the

FEC that controls ROCs and TBMs (called the “pixel FEC”), but it uses the same

firmware as the FECs used in the CMS strip tracker. Because each supply board

and port card contains multiple channels (i.e., optical links), there are far fewer

tracker FECs than pixel FECs.
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B.1.3 Timing and Trigger Components

The last class of hardware in the pixel system is the timing and trigger system.

During data-taking, this system distributes level one triggers from the CMS trig-

ger to the front end and to the readout electronics. This instructs the front end

to transmit the hits for a particular bunch crossing and instructs the FEDs to

decode the received data. The signal to the front end is sent via the FECs and

the control link.

When running calibrations, the software instructs the trigger system to issue

triggers to the hardware when the calibration algorithm calls for it. In some

calibrations the ROCs are configured to inject calibration charge into some of

the pixels when they receive a trigger. In all calibrations, the trigger generates a

stream of output that is recorded by the FEDs and then passed to the computer

for analysis.

B.2 Decoding the Analog Data Stream

Each FED contains receivers that convert the optical signal into an electrical

signal. The electrical signal then passes to an ADC, which for every clock cycle

converts the analog level to an integer in the range 0-1023. The FED may either

decode the signal from these digital values, or it may store them in a buffer to

be read out later.
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B.2.1 Using the FED State Machine

During normal data-taking and in some of the calibration algorithms, the ana-

log data stream is decoded in the FED by a state machine. The FED is configured

with ranges that define the ultrablack level, the black level, and the address lev-

els used to encode status information and the pixel row and column numbers.

The state machine looks for the TBM header, ROC headers, and the TBM trailer

(which contain 3, 1, or 2 clock cycles of ultrablack). It then records and stores the

pixel address and the digitized pulse height for each hit. These hits are read out

over an S-link interface during data-taking, and in some calibrations the hits are

read out to the computer over the VME interface to be used by the calibration

algorithm.

B.2.2 Using Transparent Mode

In “transparent mode” the raw ADC values are stored in a buffer and then read

out over VME by the computer running the calibration. The computer then at-

tempts to decode the signal. This process is a modified version of the FED state

machine. When running a calibration the number of hits generated is known,

so the decoder algorithm only needs to find the TBM header. It then knows

where the signal from each ROC begins, and it knows where the TBM trailer

begins. To verify successful decoding, the TBM trailer is checked; if it shows

two ultrablack levels in the expected location, the decoding is considered suc-

cessful. This decoding gives, for each trigger, a value for each ultrablack level,

black level, address level, or pulse height measurement.

Transparent mode and this manual decoding process are needed for any cal-
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ibration that adjusts or measures ultrablack, black, or address levels.

B.3 Calibrations

The software controlling the pixel hardware runs on Linux PCs connected by a

VME interface to crates of FECs, FEDs, and trigger electronics. These computers

run calibration algorithms that send commands to the electronics to configure

the detector, issue triggers, and collect data. The calibrations used to set up the

readout chain are described below in the order in which they are typically run.

At the end of this sequence of calibrations, the front end produces data streams

that can be reliably decoded by the FED.

B.3.1 Delay25 Settings

The Delay25 chip on the supply board / port card adjusts the timing of the con-

trol signal from the FEC to the TBM and ROCs. When the Delay25 settings are

not set properly, commands do not reach the TBM and ROCs. Other calibrations

are not possible without these commands.

The calibration algorithm scans over the Delay25 settings and, at each scan

point, tries to send four different types of commands to the TBM. When a com-

mand is sent, the return status is checked to see if the command was received.

A scan point is considered good if all four types of commands were successfully

received.

The scan finds a region of good Delay25 settings, and it chooses a set of

162



values in the middle of the good region.

B.3.2 AOH Bias Settings

Introduction and Discussion

The AOH bias is a setting on the supply board / port card which controls the

amount of light sent along the optical fiber to the FED. There is one AOH bias

setting per FED channel. As AOH bias increases, more light is sent, and the ana-

log level on the FED increases. At low values of AOH bias, the black and ultra-

black levels do not change with AOH bias, and there is no separation between

them. At some threshold, the black level begins to increase approximately lin-

early. At a higher threshold, the ultrablack level also starts to increase linearly

with approximately the same slope. This behavior is illustrated in Fig. B.3.

The maximum black-ultrablack separation depends on the TBM settings. At

low settings, the TBM outputs a signal with relatively low separation; as these

settings increase, the separation also increases. In the AOH bias scan, the black

level is independent of the TBM settings. However, the linear rise of the ul-

trablack level begins at a later point for higher TBM settings, and hence the

black-ultrablack difference saturates at a higher AOH bias value when the TBM

settings are higher.

The goal of the AOH bias calibration is to determine an AOH bias setting for

each channel that is high enough to saturate the black-ultrablack difference. The

calibration measures this difference, using black and ultrablack levels from the

TBM header and trailer, as a function of AOH bias. From this data it determines
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Figure B.3: Black and ultrablack levels as a function of AOH bias. The
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black-ultrablack difference saturates.

the saturation point. It is important, though, that during the scan the TBM set-

tings are at least as high as they will be set in later calibrations and physics runs.

Otherwise, the AOH bias value determined from the saturation point will be too

low. Further increases in the TBM settings will not increase the black-ultrablack

separation because the AOH cannot provide more separation.

Temperature variations alter the response of the AOH, essentially shifting

the curves in Figure B.3 to the left or right. In order to provide a margin of error

for temperature changes, the AOH bias should be set higher than the saturation

value. A temperature increase of 5 degrees Celcius will shift the curves by about

4 AOH bias counts. Therefore, the chosen AOH bias setting will be 4 counts
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higher than the saturation value.

The FED optical receivers, which convert the optical signal into an electrical

signal before it is digitized, contain offsets that adjust the level of the electrical

signal. There are two types of settings: optical receiver offsets that affect 12

channels together, and individual-channel offsets that allow finer adjustments

for each channel. If the intensity of the optical signal is too high, the offsets

cannot compensate enough to put the signal inside the FED ADC’s dynamic

range. It is therefore important that the AOH bias not be too high.

The last part of the AOH bias calibration is to do a coarse adjustment of the

FED baseline – the signal level recorded by the FED’s ADC when the TBM is

not transmitting data or is transmitting the black level. The FED individual-

channel offsets are set to the center of their range, and then the optical receiver

offsets and AOH bias settings are adjusted to bring all FED baselines into a wide

target range centered in the middle of the ADC’s range (512). AOH bias may

be lowered below the previously chosen value only if it is absolutely necessary.

The end result of this calibration is a configuration of AOH bias and FED offset

values that puts all FED baselines near the center of the dynamic range, with

AOH bias values that allow for a large black-ultrablack separation.

There is a separate calibration routine, described in Section B.3.3, to perform

finer adjustments of the FED baseline (using the freedom to move each channel

offset). It should be run after the AOH bias calibration.
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AOH Bias Calibration Algorithm

The calibration algorithm is described below. This procedure is performed for

each channel.

The first part of the calibration is to find the AOH bias setting at which the

black-ultrablack difference saturates. This requires measuring the black and ul-

trablack levels as a function of AOH bias. Two scans of AOH bias are performed:

• In the first scan, at each scan point several triggers are issued, and for each

trigger the stream of ADC values from the FED is read out. The software

attempts to decode the data stream by searching for the ultrablack and

black levels of the TBM header and trailer. (This process is described in

Section B.2.) This decoding is unsuccessful at low AOH bias values, where

there is no separation between ultrablack and black, and also fails at high

values, where the signal is above the ADC’s dynamic range. It succeeds for

intermediate AOH bias values. If decoding is successful, the calibration

records at what times in the data stream the black and ultrablack levels

occur. The times are the same on every trigger, and they are saved for

later use.

• In the second scan, again triggers are issued and the FED data stream is

read out. In this scan the black and ultrablack levels are recorded using

the times from the previous scan.2 This method of using previously de-

termined times allows levels to be measured even when the data stream
2On a small fraction of the channels, the times are not stable and will sometimes be offset by

one clock cycle. If a “jumping” phase of this sort is observed in the first scan, the second scan
exploits the fact that some black and ultrablack signals last multiple clock cycles. It takes data
only from those clock cycles which will be definitely black or definitely ultrablack, for either of
the two phases.
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cannot be decoded.

From the measured levels, the black-ultrablack difference is calculated as a func-

tion of AOH bias. The saturation point, plus an offset of 4 counts to allow for

temperature changes, is taken as the tentative value for AOH bias. Figure B.3

shows an example, for one channel, of the collected data and the saturation

point.

The final part of the calibration is the coarse baseline adjustment. The base-

line is measured from the black level in the TBM header and trailer. The FED

optical receiver input offsets and the AOH bias settings are adjusted to place

the black level in a wide target range centered at 512 ADC counts. Both settings

move the black level; the algorithm’s first priority is to not reduce any AOH

bias setting below the tentative value determined previously, unless absolutely

necessary. The individual channel offsets are not adjusted here; instead they are

set to the center of their range. They will be adjusted in the next calibration.

B.3.3 FED Baseline Calibration

The goal of the FED baseline calibration is to adjust the optical receiver offsets

so that the baseline value is at the center of the ADC’s dynamic range (512). If

the AOH bias calibration has already been run, the baseline will start near 512.

This calibration performs finer adjustments using the individual channel offsets

(and, if necessary, the coarser offsets affecting 12 channels at once).

The calibration algorithm is an iterative process. First the baseline is mea-

sured for each channel by reading out ADC values from the FED. Next the off-

167



sets are adjusted in a direction that moves each baseline closer to 512. Then

the baselines are measured again, and the offsets adjusted again. This process

continues until no further improvement is possible.

In normal running, the FED performs an “automatic baseline correction” to

compensate for small shifts in the baseline and automatically place it at exactly

512. This is implemented as a time-varying digital offset added to the value

from the ADC. During the FED baseline calibration, this correction is turned

off, as the goal is to adjust the raw output of the ADC.

B.3.4 FED Phase and Delay Scan

To decode the data stream from the front end, the FED first digitizes the analog

value from the optical link. This digitization occurs once per 25-ns clock cycle.

However, the analog signal does not move instantly to its new value on each

clock cycle; it takes some time for the value to change. To provide reliable and

consistent black, ultrablack, address, and pulse height levels, it is important

that the input is sampled at a time when the value is stable, and not when it is

transitioning to a new value.

Each FED channel contains two settings that determine at what point in the

clock cycle the sampling and digitization occur. A phase bit sets whether the

sampling occurs on the rising or falling edge of the 40-MHz clock. A delay

setting moves the sampling point in time; there are 16 possible settings spaced

evenly across the 25 ns cycle.

In this calibration the 32 values of the phase and delay are scanned. For each
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setting, a fixed number of triggers are issued, and after each trigger the digitized

data stream for each channel is read out from the FEDs. For each channel, the

calibration chooses phase and delay values that appear to sample the signal

when it is stable. For example, at a good setting the three ultrablack levels in

the TBM header will be nearly equal; at a bad setting the first will be higher

than the next two because it is read out while the signal is moving from black to

ultrablack.

B.3.5 AOH Gain Calibration

The AOH gain is a setting for each optical link (from detector to FED) that has

just 4 possible settings (0, 1, 2, 3). This setting does not change the black level.

Instead, it scales the size of deviations from the black level, expanding or shrink-

ing the signal. Larger settings correspond to larger deviations. In particular, the

separation between black and ultrablack levels will be larger at a larger gain.

Settings on the TBMs and ROCs will be the primary means of adjusting the ul-

trablack to the desired level, but the AOH gain must be set large enough in or-

der to make possible a low enough ultrablack. However, AOH gain should not

be set too high since larger settings will increase the power drawn, and larger

settings are intended to be used to compensate for radiation damage over time.

The aim of this calibration is to set the AOH gain at the lowest level that

will allow sufficient separation between black and ultrablack. The three TBM

gain settings are set to high values. Then, for each FED channel, the ultrablack

level in the TBM header and trailer is recorded as a function of AOH gain by

reading out and decoding the data stream for a number of triggers. To choose
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an AOH gain setting, the calibration selects the smallest value that produces an

ultrablack below a user-defined threshold.

B.3.6 TBM Ultrablack Calibration

With the black level set at 512 by the baseline calibration and automatic baseline

correction, the next step is to set the ultrablack levels appropriately. We first

adjust settings on the TBM to set the TBM header and trailer ultrablack to an

appropriate value. (Experience suggests that a value of 120 to 150 is good.)

There are three settings on the TBM, all of which affect the ultrablack level.

Higher values of these settings correspond to lower ultrablack (and greater

black-ultrablack separation). These settings also scale the rest of the TBM and

ROC output.

The TBM UB calibration routine can run in either of two modes, as selected

by the user:

1. Fix two settings and scan the third.

2. Scan all three settings simultaneously. During the scan, all three settings

are moved simultaneously and linearly through their scan ranges.

In either mode, the calibration searches for settings that put the TBM ultrablack

at the target level. The second mode, where all three settings are varied simul-

taneously, is usually best.

The calibration procedure is similar to the AOH gain calibration. Ultrablack

levels from the TBM header and trailer are recorded for each trigger by reading
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out and decoding the transparent data. This is performed for a number of trig-

gers at each scan point. At the end of the scan, the calibration selects the TBM

settings that place the ultrablack level closest to the target value, interpolating

between scan points if appropriate.

There is a special case for “dual” TBMs. In the barrel section of the detector,

some TBMs control two sets of ROCs and output data on two channels. These

two channels produce separate data streams on the FED, but they share the

same TBM settings. Therefore they cannot be adjusted independently to put

both channels’ ultrablack at the target level. For a dual TBM, we choose settings

so that one channel is at the target ultrablack level, and the other is below.

B.3.7 ROC Ultrablack Equalization Calibration

This calibration is the ROC analogue of the TBM ultrablack calibration. It ad-

justs a setting on each ROC, called VIbias_DAC , to place the ROC ultrablack at

the same level as the corresponding TBM’s ultrablack. (The black level cannot

be adjusted, but it is automatically close to the TBM’s black level.) This setting

also scales the rest of the ROC output – address levels and pulse heights.

The calibration algorithm is similar to the TBM ultrablack calibration. Trans-

parent data is collected and decoded for multiple triggers at each scan point.

From this data each TBM and ROC’s ultrablack level is recorded and stored.

During the scan the ROC ultrablack changes, but the TBM ultrablack is stable.

At the end of the scan, each ROC’s VIbias_DAC setting is chosen to place the

ROC ultrablack at the same level as the TBM ultrablack, interpolating between

scan points if appropriate. (Each ROC is recorded and adjusted individually.)
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B.3.8 Address Level Determination

The address level calibration determines the values used by the FED to decode

the incoming data. This includes pixel row and column address levels, TBM

header and trailer levels, and the black and ultrablack levels.

The calibration enables the generation of hits so that pixel address levels will

be produced. The specific pixels enabled are designed to probe combinations of

address levels that could potentially cause problems, such as transitions from

high to low levels and vice versa.

For each trigger, the transparent buffer is read out, and the ADC values for

pixel address levels are placed in a histogram for each ROC. Each TBM’s ad-

dress levels are placed in a separate histogram. In all histograms, the calibra-

tion searches for the peaks corresponding to the six (ROC) or four (TBM) ad-

dress levels. It selects bounds that enclose each peak and saves these bounds as

configuration settings for the FED state machine.

B.3.9 Linearity vs. Vsf

The ROC setting Vsf affects the linearity of the pixel response vs. received

charge; larger values improve linearity. Vsf also affects the digital current

drawn by the ROC, with higher values increasing the current. We have imple-

mented two algorithms to set Vsf at a value that gives good linearity without

drawing excessive power. The first is described in this section.
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Figure B.4: Scans of pulse height vs. Vcal at different values of Vsf. The
scan on the left has poor linearity, and the scan on the right has
good linearity.

Introduction and Discussion

This algorithm measures linearity from scans of pulse height vs. injected charge

– which is proportional to the ROC setting Vcal – at different values of Vsf .

Examples of these scans are shown in Fig. B.4.

To quantify the degree of nonlinearity, the scan data are fit with a function

PH = f (Vcal) = ymid + ysize× tanh

(
Vcal− xmid

xsize

)
(B.1)

where PH is the recorded pulse height, Vcal is ROC setting controlling the

amount of injected charge, (xmid, ymid) is the point at the center of the quasi-linear

rise region of the hyperbolic tangent, xsize is the horizontal scale of the quasi-

linear region, and ysize is the vertical scale of that region.

From this fit, the degree of nonlinearity can be quantified in different ways.

The simpler nonlinearity parameter, used by default in this calibration, is

xmid/xsize. When this parameter is small, it means that Vcal = 0 lies within the

quasi-linear rise region, and hence the response is linear for small amounts of
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injected charge. Previous studies have used xmid/xsize= 1.4 as the cutoff – values

below 1.4 indicate good linearity.

An alternate nonlinearity parameter is

1
2

∫ Vcalmax

Vcalmin

dVcal
∣∣∣∣∣ f ′′(Vcal)

f ′(Vcal)

∣∣∣∣∣ (B.2)

where f (Vcal) is the hyperbolic tangent function in Eq. B.1. This integral is a

measure of the vertical change due to curvature divided by the vertical change

due to slope over the range of the integral. The limits of the integral should be

chosen to include the range for which we want good linearity. This integral can

be evaluated analytically.

Figure B.5 shows scans of both measures of nonlinearity vs. Vsf . As seen in

the plots, they give similar shapes. This calibration allows the user to choose

either measure; the default is xmid/xsize.
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Linearity vs. Vsf Calibration Steps

This calibration consists of the following steps:

1. Enable the generation of one or more calibration hits on each ROC.

2. Scan over Vcal and Vsf . On each trigger, read out the decoded hits from

the FED. (Note that this uses the FED’s internal decoding, rather than the

transparent data.) Record the pulse height, keeping separate scans for

different pixels.

3. For each scan of pulse height vs. Vcal (for a given ROC, pixel, and Vsf

value), fit with the function in Eq. B.1. (See Fig. B.4 examples of these

scans.) If the fit is successful, compute the nonlinearity parameter (either

xmid/xsize or the integral in Eq. B.2) and add it to a scan of nonlinearity

vs. Vsf for that ROC and pixel. (See Fig. B.5 for examples of this scan.)

4. For each scan of nonlinearity vs. Vsf , determine an optimal Vsf . This is

done by finding the highest Vsf where the scan intersects a nonlinearity

threshold. This threshold may be either a fixed value or a multiple of the

nonlinearity at the highest Vsf in the scan.

5. For each ROC, examine the optimal Vsf s on the various pixels. If there are

at least 4 pixels, discard any Vsf outliers. After any discarding, average

the Vsf values to determine the Vsf setting for that ROC.

B.3.10 Vsf and VHldDel

We have also implemented a simpler algorithm for determining Vsf , as well

as the ROC setting VHldDel , which controls the time at which each pixel’s re-
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ceived charge is sampled. Figure B.6 shows plots of pulse height vs. VHldDel at

low, medium, and high values of Vsf , with a small amount of injected charge.

Operating experience has shown that linearity is good at a Vsf value for which

this curve rises and then falls so that the pulse heights at the two endpoints

(lowest and highest VHldDel ) are equal. Figure B.6 also includes a plot of these

endpoints as a function of Vsf ; the rightmost intersection point is the Vsf value

chosen. Low values of Vsf , below ∼90, produce garbage output.

After choosing a Vsf value, VHldDel should be set to the value that maxi-

mizes the pulse height.
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These Vsf and VHldDel settings are found to give good linearity in pulse

height vs. injected charge, while not drawing too much power.

Data collection uses the same method as described for the previous calibra-

tion in Sec. B.3.9 – reading pulse height information from the decoded hits at

each scan point.

This procedure is typically split into two calibration runs – the first to deter-

mine Vsf and the second to determine VHldDel . If the algorithm described in

Sec. B.3.9 is used to determine Vsf , VHldDel should be set with the algorithm

used here – maximizing pulse height at the chosen Vsf .

B.3.11 Pulse Height Range Calibration

A number of ROC settings affect the scaling of the pulse height signal that is sent

to the FED. (This refers not to the actual charge collection, but to the translation

of that charge into the signal sent out on the optical link.) We want the range

of this signal – the difference in recorded pulse height between small and large

amounts of charge – to be large. However, the pulse height signal should not go

low enough to be confused with the ultrablack level, nor high enough to exceed

the FED’s dynamic range.

The ROC setting VIbias_PH is intended to be used for adjusting the pulse

height. Several other settings also affect the pulse height, and they may also be

scanned.

The algorithm for this calibration is rather minimal. In the configuration, the

user specifies a set of ROC settings to be scanned, and also “low” and “high”
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amounts of injected charge (i.e., low and high Vcal settings). The pulse height

is recorded at each scan point for the low and high charges. (If multiple pixels

are enabled, their pulse heights are averaged on each ROC.) A scan point is

discarded if the low reading is too close to ultrablack, or if the high reading is

near the top of the FED’s dynamic range. From the remaining scan points, the

point chosen is the one with the largest pulse height difference between high

and low charges. The ROC settings at this point are written out for later use.

B.4 Conclusion

Given the large number of components in the CMS pixel detector readout sys-

tem, a great deal of setup is required to enable data-taking. Many settings must

be adjusted properly just to provide an analog output stream that the FED can

decode. Still more settings are needed to improve the quality of that decoded

data – to provide a linear response to collected charge and a wide dynamic

range. Each of the calibrations described above is an essential element in pro-

viding reliable, high-quality data from the pixel detector.
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