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ABSTRACT 

Modelling a Particular Philatelic Mixture 

using the Mixture Method of Clustering 

by 

Kaye E. Basford and Geoffrey J. McLachlan 

November 1992 

Izenman and Sommer (1988) used a nonparametric kernel 

density estimation technique to fit a seven component model to 

the paper thickness of the 1872 Hidalgo Stamp Issue of Mexico. 

They observed an apparent conflict when fitting a three component 

normal mixture model. This conflict is resolved by further 

investigation into the determination of the most appropriate 

group number to represent the data when fitting parametric 

mixture models. The likelihood ratio test is not always reliable 

and allocation of the entities to the components in the 

underlying mixture must be considered. This leads to a seven 

component, equal variance, model consistent with that found by 

the nonparametric assessment of multimodality. It illustrates 

that the finite mixture model can be a useful tool for describing 

real data such as in the philatelic mixture in question. 
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Summary 

The mixture likelihood method of clustering is applied to the Philatelic mixture 

discussed by Izenrnan and Sommer (1988). A seven component mixture of normal 

homoscedastic distributions is determined to be an appropriate description of the paper 

thicknesses of the 1872 Hidalgo Stamp Issue of Mexico. This resolves the apparent 

conflict of seven modes (from the nonparametric approach to identify components in the 

density estimate) compared with a mixture of three heteroscedastic normals (from a 

parametric finite mixture model approach), as observed in the last section of Izenrnan and 

Sommer's paper. 
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1. Introduction 

Izenman and Sommer (1988) recently wrote an article on "Philatelic Mixtures and 

Multimodal Densities" where the fitting of a mixture of distributions is most appropriate to 

the mixture of paper types with different thicknesses used for printing a given stamp issue. 

Their main concern was the application of the nonparametric approach to identify 

components by the resulting placement of modes in the density estimate. The specific 

example of a philatelic mixture, the 1872 Hidalgo issue of Mexico, was used as a 

particularly graphic demonstration of the combination of a statistical investigation and 

extensive historical data to reach conclusions regarding the mixture components. 

For comparison, the parametric fmite mixture model was also fitted to the data 

with Izenman and Sommer using the likelihood ratio test (Wolfe, 1970) to determine the 

appropriate number of underlying distributions. However, recent work (McLachlan, 

Basford and Green 1992a,b) has indicated .that Wolfe's approximation is not always 

reliable. Other considerations, such as the component variances and the allocation of the 

entities to these components in the underlying mixture, should also be taken into account. 

If a homoscedastic mixture model is fitted to the Hidalgo data, then a seven 

component model consistent with that found by the nonparametric assessment of 

multimodality is preferred. This resolves the conflict of seven modes (from the 

nonparametric approach) versus a mixture of three normals (from the parametric 

approach), as observed in the last section of Izenman and Sommer's paper. 

2. Mixture Method of Clustering 

The mixture method of clustering uses the measurements on a set of elements to 

partition these elements into g clusters for a specified value of g. Under the mixture 



3 

model imposed, it is assumed that the data have been sampled from a mixture of g 

distributions in some unknown proportions. This mixture model can be fitted 

parametrically, whereby the component distributions are specified up to a manageable 

number of unknown parameters. The underlying distributions are, in this instance, 

assumed to be univariate normal. Thus 

g 

f(x) = L, 1t ;t;<x) (1) 
; .. t 

where f.{ xi) is the normal density function with mean P,; and variance cr/, X; (i=l , ... ,g) 

represent the mixing proportions, and xi (j=l , ... ,n) are the individual data values. In the 

subsequent section, the notation is abused by writingf(x) as L 1t; N(p,;,cr/). The unknown 

parameters, i.e. means, variances and mixing proportions, are estimated by maximum 

likelihood. The likelihood equation is solved here using the EM algorithm of Dempster, 

Laird and Rubin (1977). Note that the chosen solution of the likelihood equation is 

referred to as the maximum likelihood estimate, although in the case of unrestricted 

component variances the likelihood is unbounded For a detailed explanation of this 

approach, the reader is referred to McLachlan and Basford (1988). 

The fitting of the finite mixture model (1) provides a probabilistic clustering of the 

n elements in terms of their posterior probabilities of membership of the individual g 

components of the mixture of distributions. Thus the estimated probability that xi (really 

the element with observation x) comes from the i'h component of the mixture is given by 

x. f.(x.) 
I I J 

f(x.) 
J 

(2) 



for i=l , ... ,g and j=l , ... ,n. An outright assignment of the data into g nonoverlapping 

clusters can be effected by assigning each xj to the component to which it has the highest 

posterior probability of belonging. 
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One difficulty with the practical application of this clustering method is that the 

number, g, of underlying distributions is assumed to be known. As stated by Izenman and 

Sommer (1988), attempts at formulating criteria to test for the number of components in a 

parametric mixture of distributions have not been overly successful. The test procedure to 

receive the most attention in the literature is that of Wolfe (1970, 1971), where minus 

twice the difference in the log likelihoods for different values of g ( -2/og'A) is taken to be 

distributed approximately as chi-square with degrees of freedom equal to twice the 

difference between the number of parameters under the null and alternative hypotheses, 

excluding the mixing proportions. 

Recent empirical evidence (Milligan and Cooper, 1985 and McLachlan, Basford 

and Green, 1992b) suggests that at least for medium sized samples, Wolfe's approximation 

tends to overestimate the number of components present in a mixture, although this is not 

a problem with the Hidalgo stamp data. Many authors (Aitkin and Rubin, 1985; Ghosh 

and Sen, 1985; Hartigan, 1985; Quinn, McLachlan and Hjort, 1987) have noted that the 

regularity conditions break down, so asymptotically the null distribution of chi-square does 

not hold. Even if regularity conditions did hold, it is unlikely that the consequent 

asymptotic results would be applicable in most practical situations. This is because with 

mixture models, the sample size has to be extremely large for large sample theory to be of 

practical relevance. For the two component normal mixture with equal variances, 

Mendell, Thode and Finch (1991) determined that in order to detect a mean difference of 

three standard deviations for mixing proportions between 0.2 and 0.8, sample sizes of 40 
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and 90 were needed to achieve 50% and 90% power, respectively. 

Practical considerations are also important if a sensible description or summary of 

the data is to be obtained. If, for instance, a mixture model is used to describe a 

univariate multimodal frequency distribution, it may be impractical to have the tail of one 

distribution (say the one centred on the highest mean) accounting for data at the lower end 

(below that of the lowest mean) by allowing unequal variances. Then, elements which 

have the lowest value would be said to belong to the group with the highest mean, rather 

than to the group to which it is closest Therefore, it may be more realistic to impose the 

condition of equal variance for the underlying component distributions. 

3. The 1872 Hidalgo Stamp Issue of Mexico 

Izenman and Sommer (1988) gave a detailed account of the content and historical 

data available on the particular philatelic mixture to be discussed; i.e. the 1872 Hidalgo 

Stamp Issue of Mexico. In accordance with these authors, we consider the stamp­

thickness data (which they listed) on the 485 unwatermarked used white wove stamps, of 

which 289 had an 1872 overprint and 196 had either an 1873 or 1874 overprint As noted 

by Izenman and Sommer, there is some clustering around the values 0.07mm, 0.08mm, 

0.09mm, O.lOmm, O.llmm, 0.12mm, and 0.13mm with about half the data between 

0.06mm and 0.08mm and the other half spread over the larger interval from 0.08mm to 

0.13mm (Figure 1). These two portions essentially correspond to the assertion of 

bimodality in Wilson (1983), although he had analysed a slightly different data set (see 

Izenman and Sommer, 1988, for details). 

Izenman and Sommer tested for multimodality, as suggested by Silverman (1981), 

using nonparametric kernel density estimation techniques to determine the most probable 
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number of modes in the underlying density. Silverman's test has been viewed primarily 

as an exploratory data-analytic technique and window-widths near to the critical one must 

be investigated for the differing number of modes. Using 100 bootstrap replications and a 

flexible stopping rule with a nominal P-value of 0.40, Izenman and Sommer found that the 

stamp thickness data were consistent with an underlying density having seven modes. 

Using the extensive historical information, plus analysis of some related data (the 1868 

issue), they showed that seven modes was a sensible description of these data; i.e. it is 

plausible that paper of seven different thicknesses was used in the production of this stamp 

issue. 

To compare with the nonparametric mode fitting technique, Izenman and Sommer 

fitted a mixture of seven normal distributions with unrestricted variances. This produced a 

completely consistent result in that the parametrically fitted mixture density had modes at 

almost the same locations as the seven modes previously determined. The estimated 

mixture distribution was given by 

0.310 N(0.0723, 0.00000863) + 0323 N(0.0797, 0.00000359) 

+ 0.090 N(0.0905, 0.00000625) + 0.132 N(0.1002, 0.00000632) 

+ 0.101 N(0.1095, 0.00000738) + 0.032 N(0.1208, 0.00000659) 

+ 0.012 N(0.1293, 0.00000088). 

But using Wolfe's test, they determined that the number of normal components in the 

mixture was three, with the estimated mixture given by 

0.196 N(0.0712, 0.00000176) + 0367 N(0.0786, 0.00000564) 

+ 0.437 N(0.0989, 0.00019666). 

This assessment followed Wolfe (1971) where the smallest value of g compatible with the 

data is determined by sequentially testing g against g + 1 groups, starting from g = 1. 



The graphs of these density estimates are given (Figures 2 and 3, respectively). For 

completeness, the values of the log likelihood for g = 1 to 7 for both unrestricted and 

equal variances are also presented (Table 1 ). 
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In an attempt to reconcile the nonparametric (seven modes) and parametric (three 

component mixture) approaches, Izenman and Sommer postulated that size effects (the 

presence of the two major modes at 0.07mm and 0.08mm) might be dominating the result 

for the parametric mixture model. They suggested that further study of this result was 

warranted. 

Using the historical evidence presented by Izenman and Sommer, there could be 

some explanation for the three component mixture in terms of paper types. They 

separated the data from the 1872 consignment from that of the 1873 and 1874 

consignment, both of which make up the 1872 Hildago Stamp Issue. This showed that the 

stamps were printed on two different paper types, one of which conforms to the 

characteristics of the unwatermarked white wove paper used for the 1868 issue and a 

second much thicker paper (possibly the unwatermarked portions of the Papel Sellado 

paper) that disappeared completely by the end of 1872. From the data available on the 

watermarked portions of the Papel Sellado paper (lzenman and Sommer, 1988), its 

thickness was quite variable (ranging from 0.81mm to 0.130mm) with a mean of 

0.1033mm and variance of 0.00011674mm2• Unwatermarked portions of this thicker Papel 

Sellado paper could be largely responsible for the third component with mean 0.0989mm 

and variance 0.00019666mm2• However, both types of paper had multimodal thickness 

features (lzenman and Sommer, 1988). 

Given that the aim here is to adequately describe the distribution of the thickness 

measurements as displayed in the histogram (Figure 1), independent of the paper types, it 
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may be appropriate to look further than the three component mixture. 

Consider the influence of the large variance of the third component distribution 

centred on the highest mean. As a consequence of the long left hand tail of this 

distribution, the five thinnest stamps (ranging from 0.60mm to 0.66mm) are assigned to 

this component which has a mean of 0.0989mm and not the nearest one which has a mean 

of 0.0712mm (Table 2). This would not be accepted as a satisfactory grouping of the 

stamps based on their thickness. Thus, the impracticability of the three group solution as 

an adequate description or summary of the data is apparent This implies that 

consideration of the log likelihood values may not be sufficient in determining the 

appropriate number of groups used to summarize univariate data. It is informative to also 

consider the allocation of the elements to the groups, or more explicitly, the estimated 

posterior probabilities of group membership (McLachlan and Basford, 1988). 

Given the unreliability of Wolfe's approximation for the likelihood ratio test, other 

methods for determining the appropriate number of underlying groups in the data should 

be considered. Professor John Tukey suggested that a plot of the log likelihood minus the 

number of estimated parameters (including the proportions) against the group number 

could be useful. If the mixing proportions are not included, this is equivalent to using 

Akaike's Information Criterion (Akaike, 1973) which is minus twice the value presented in 

Figure 4 (see also Bozdogan, 1986). Unfortunately, this procedure is similar to Wolfe's in 

that it only considers the likelihood. Using the further information on the allocation of the 

stamps to the underlying groups, the otherwise satisfactory solutions for unrestricted 

variances at g = 3, 4, and 5 would be rejected. The severe overlap of distributions causes 

an impractical allocation of stamps to groups and consequent summary description as 

demonstrated for g = 3 above. 



From consideration of this plot and the estimates of the posterior probabilities of 

group membership, both the g = 6 and g = 7 solutions for unrestricted and equal 

variances would appear acceptable. The common value for the log likelihood minus the 

estimated parameters for the unrestricted and equal variances mixture models for g = 7 

would appear to further support either of these seven group solutions. 
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Finally, it seems reasonable to assume that the variability of stamp thickness would 

be consistent about any particular mean in the production process across the range of 

measurements observed. Even when the heteroscedastic model was fitted, the estimates of 

the variances of the normal components did not vary greatly, as evidenced by the equation 

of the seven component mixture distribution displayed above. Only the group 

corresponding to the largest mean had a variance different from (substantially smaller 

than) the others. Given that this component also contributed the smallest proportion 

(about 0.01) to the overall mixture, this is far from being unexpected. The equal variance 

model would also appear to be more consistent with the non-parametric approach used by 

Izenman and Sommer (1988). 

Given the above arguments, a seven component normal mixture with equal 

variances would appear to be the most appropriate representation of the data (Figure 5). 

The resulting maximum likelihood estimate of the mixture is 

0272 N(0.0716, 0.00000588) + 0363 N(0.0792, 0.00000588) 

+ 0.089 N(0.0907, 0.00000588) + 0.136 N(0.1003, 0.00000588) 

+ 0.097 N(0.1096, 0.00000588) + 0.027 N(0.1202, 0.00000588) 

+ 0.016 N(0.1285, 0.00000588). 

The estimates of the posterior probabilities of group membership for this solution (Table 

3) indicate a satisfactory allocation of the stamps to groups without any of the overlap 
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apparent in the three component solution. 

We believe that this resolves the apparent conflict expressed by Izenman and 

Sommer and illustrates that the fmite mixture model can be a useful tool for describing the 

philatelic mixture under investigation. 
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TABLE 1 

Value of the /o g likelihood for g = 1 to 7 for the fitted mixture of 
normal distributions with unrestricted and equal variances to the 1872 
Hidalgo Issue of Mexico. 

Number Unrestricted Equal 
of Groups Variances Variances 

1 1350.3 1350.3 

2 1484.8 1442.6 

3 1518.8 1475.7 

4 1521.9 1487.5 

5 1527.4 1489.6 

6 1529.3 1512.9 

7 1531.3 1525.4 



TABLE 2 

Estimated posterior probabilities of group membership for the fitted mixture of 
three normal distributions with unrestricted variances to the 1872 Hidalgo Issue 
of Mexico. 

Thickness 
(xy 

.060 

.064 

.065 

.066 

.068 

.069 

.070 

.071 

.072 

.073 

.074 

.075 

.076 

.077 

.078 

.079 

.080 

.081 

.082 

.083 

.084 

.085 

.086 

.087 

.088 

.089- .112 

.114- .115 

.117 

.119- .123 

.125 

.128- .131 

.03 

.73 

.92 

.96 

.96 

.94 

.80 

.36 

.05 

Estimated posterior probability 

~(X;) 

.01 

.02 

.12 

.50 

.83 

.91 

.93 

.94 

.93 

.91 

.87 

.79 

.63 

.40 

.18 

.06 

.01 

1.00 

1.00 

1.00 

.97 

.27 

.08 

.04 

.03 

.04 

.08 

.14 

.12 

.09 

.07 

.06 

.07 

.09 

.13 

.21 

.37 

.60 

.82 

.94 

.99 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 



TABLE 3 
Estimated posterior probabilities of group membership for the fitted mixture of seven 
normal distributions with equal variances to the 1872 Hidalgo Issue of Mexico. 
Thickness Estimated posterior probability 

(xj) t1(~) tixj) t3(~) ti~) t5(~) 
.060 1.00 
.064 - .066 1.00 
.068 - .071 1.00 
.072 .98 
.073 .94 
.074 .81 
.075 .54 
.076 .24 
.077 .08 
.078 .02 
.079 .01 
.080- .083 
.084 
.085 
.086 
.087 
.088 

.. 089- .092 
.093 
.094 
.095 
.096 
.097 
.098 

.. 099- .101 
.102 
.103 
.104 
.105 
.106 
.107 
.108 
.109- .112 
.114 
.115 
.117 
.119- .121 
.122 
.123 
.125 
.128 
.129- .131 

.02 

.06 

.19 

.46 

.76 

.92 

.98 

.99 
1.00 
.97 
.80 
.36 
.07 
.01 

.03 

.20 

.64 

.93 

.99 
1.00 
.98 
.90 
.61 . 
.23 
.05 
.01 

.02 

.11 

.39 

.77 

.94 

.99 
1.00 
.99 
.97 
.86 
.56 
.21 
.05 
.01 

.01 

.03 

.14 

.44 

.79 

.95 

.99 
1.00 
.95 
.73 
.07 

.05 

.27 

.93 
1.00 
.98 
.93 
.46 
.01 

.02 

.07 

.54 

.99 
1.00 
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Figure 1. 
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Histogram of all 485 measurements from the 1872 Hidalgo Issue of Mexico 
(from Izenman and Sommer, 1988). 
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Figure 2. 

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 
·. thickness {in mm.) 

Maximum likelihood density estimate of a mixture of seven unrestricted 
normals fitted to the 485 measurements of the 1872 Hidalgo Issue of 
Mexico (from lzenman and Sommer, 1988). 
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Figure 3. 
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Maximum. likelihood density estimate of a mixture of three unrestricted 
nonnals fitted to the 485 measurements of the 1872 Hidalgo Issue of 
Mexico (from Izenman and Sommer, 1988). 
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Figure 4. 
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Plot of log likelihood minus the number of estimated parameters agaiilst the 
number of distributions in the mixture of normal distributions (with 
unrestricted and equal variances) fitted to the 1872 Hidalgo Issue of 
Mexico. 
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Figure 5. 
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thickness (in rom.) 

Maximum likelihood density estimate of a mixture of seven nonnals with 
equal vatiances fitted to the 485 measurements of the 1872 Hidalgo Issue of 
Mexico (from Izenman and Sommer, 1988). 


