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1 Executive Summary
1.1 Purpose and brief history

The creation of public use data that combine variables from the Census Bureau’s Survey of Income and Program
Participation (SIPP), the Internal Revenue Service’s (IRS) individual lifetime earnings data, and the Social Security
Administration’s (SSA) individual benefit data began as part of ongoing collaborative research at the Census Bureau
and SSA. The current project had its genesis with the formation of a joint committee containing representatives from
the Census Bureau, SSA, IRS, and the Congressional Budget Office (CBO) that designed a prospective public use file.
Aimed at a user community that was primarily interested in national retirement and disability programs, the selection
of variables for the proposed SIPP/SSA/IRS-PUF focused on the critical demographic data to be supplied from the
SIPP, earnings histories from the IRS data maintained at SSA, and benefit data from SSA’s master beneficiary records.

After attempting to determine the feasibility of adding a limited number of variables from the SIPP directly to the
linked earnings and benefit data, it was decided that the set of variables that could be added without compromising
the confidentiality protection of the existing SIPP public use files was so limited that alternative methods had to be
used to create a useful new public use file. The committee agreed to allow the Census Bureau to experiment with
the confidentiality protection system known generically as “synthetic data.” The actual technique adopted is called
partially synthetic data with multiple imputation of missing items. As the term is used in this report, “partially synthetic
data” means the release of person-level records containing some variables from the actual responses and other variables
where the actual responses have been replaced by values sampled from the posterior predictive distribution for that
record, conditional on all of the confidential data.

From 2003 until the present, four preliminary versions of the SIPP/SSA/IRS-PUF have been produced. This final
report accompanies the delivery of version 4.0 to SSA as part of the fiscal year 2006 Jointly Financed Cooperative
Agreement between the Census Bureau and SSA.

1.2 Structure of the inputs to the SIPP/SSA/IRS public use file

The SIPP/SSA/IRS-PUF contains data from the records of individuals who responded to the SIPP panels conducted
in 1990-1993 and 1996 A standardized extract of approximately 125 variables from all waves of each of these panels
was created. We included the following demographic variables: gender, marital status, race (black), five categories
of education, Hispanic ethnicity, birth date, death date, disability status, number of children, marital history, foreign
born, decade arrived in United States if foreign born, and a spouse identifier that links to the marriage partner if the
respondent is married and the spouse was also surveyed. We took the values for these variables at a point in time. For
the time-invariant variables–gender, race, and Hispanic ethnicity, values were taken from the point in the SIPP when
they were first reported, generally wave 1. Values for the other demographic variables were generally chosen from
month 8 of the respective SIPP panel (i.e., the last reference month of the second interview). We chose this point
because marital, immigration, and disability histories were collected in the wave 2 topical modules and we wanted to
take all the variables from the closest possible interview dates. For education, we searched over all reported education
values in each wave of the SIPP and chose the highest level of education ever reported. Thus gender, marital status,
race, education, Hispanic ethnicity, and spouse identifier are never missing in the standardized extract because these
variables are all reported at least once, and we chose to take the self-reported values whenever they were available.
Disability status, number of children, marital history, foreign born, and decade arrived in United States if foreign born
are sometimes missing because individuals did not answer the relevant topical modules or because we chose not to
search over every available month of SIPP data. All item missing data, with the exception of structurally missing
items, were flagged for imputation.

This standardized extract was linked using the respondent’s validated Social Security Number (SSN) to the fol-
lowing data provided by SSA:

• From SSA’s Summary Earnings Record (SER), a longitudinal history of all FICA-covered wage and salary
income earned since 1937, we linked the annual summary and the quarters-worked summary. These are the
only earnings data available from the SSA and IRS files prior to 1978. This array is capped at the FICA taxable
maximum;1

1These data, as well as the Detailed Earnings Record data cited in the next bullet, are also confidential under the protocol defined in Title 26
of the U.S. Code. Prior permission from the IRS disclosure officer is required before they can be used in a project in combination with Title 13
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• From SSA’s Detailed Earnings Record, a longitudinal history of wage and salary items from the employer-filed
W-2 form by employer, we linked annual total wage and salary income and deferred earnings from all FICA-
covered jobs. We also linked an analogous set of variables for non-FICA-covered jobs;

• From SSA’s Master Beneficiary Record (MBR), a longitudinal history of type and amount of all benefits paid
to an individual, we linked the entire history and created variables for type of benefit initially received, type of
benefit received in April 2000, and the monthly benefit amount associated with those two benefit receipt dates.

• From the Census Bureau version of the master Social Security Number data base, known as Numident when
sorted in SSN order, we linked the administrative birth and death dates.

Next, we added variables that were not destined for the public use file but would provide additional information
useful in the process of completing the missing data, synthesizing the variables to be protected, creating a weight for the
merged SIPP panels, and assessing the quality and disclosure risk of the final product. The documented, standardized
extract from the SIPP 1990-1993 and 1996 panels, the linked SSA and IRS data, the supplemental variables added to
facilitate processing and review, and the customized weight collectively define what we call the “Gold Standard” file.
The codebook and technical description of the Gold Standard Version 4.0 accompanies this report. This codebook also
documents the variables found in the completed Gold Standard files and the synthetic data files.

1.3 Completion of the missing data and synthesis of the confidentiality-protected data

Although the existing SIPP public use files have had all item non-response allocated using the methods developed for
this purpose as part of the regular SIPP data processing, the Gold Standard version of the consolidated 1990-1993 and
1996 panels has item missing data for two basic reasons. First, SIPP respondents in the Gold Standard file for whom
the Census Bureau does not have validated SSNs were missing all data items whose linkage depends upon the SSN;
that is, all earnings, benefit, and administrative birth and death data. Second, because one of the critical components of
the confidentiality protection is to prevent identifying the source record of the synthetic data in the existing SIPP public
use files, all information regarding the dating of variables whose source was a SIPP response, and not administrative
data, has to be made consistent across individuals regardless of the panel and wave from which the response was
taken. This requirement resulted in the creation of ten-element arrays that contained all dated SIPP items, like family
total income, with values inserted for each year from 1990 to 1999. No SIPP respondent household ever provided all
ten of these items. Those array elements that were available for a particular respondent, which depend upon which
panel the respondent answered, were populated by the actual value (from the public use version of the variable). All
other elements in the array were item missing data. All missing data items that resulted from either missing validated
SSN or missing items in an array were multiply imputed using the techniques described in the report. The imputation
models were based on Bayesian bootstrap and Sequential Regression Multivariate Imputation methods for estimating
and sampling from multivariate posterior predictive distributions.

There is a third source of missing data in the Gold Standard file. Some data items are structurally missing because it
is not logically possible for the item to have a value; for example, no data are available concerning the second marriage
of individuals who never married or married only once. Structurally missing data remain in the Gold Standard file and
in the synthetic data implicates that constitute the SIPP/SSA/IRS-PUF.

The public use file contains several variables that were never missing and are not synthesized. These variables are:
gender, marital status, spouse’s gender, initial type of Social Security benefits, type of Social Security benefits in 2000,
and the same benefit type variables for the spouse. All other variables in the public use file were synthesized.

In order to preserve exact logical relations among the variables, the first step of the missing data imputation process,
and the first step of the data synthesizing process, is to implement a binary tree of parent-child relations among all the
variables. This tree guides the execution of first the missing data imputation and then the synthetic data phase. We
created the binary tree to organize the data processing by summarizing all of the assumptions and logical restrictions
that must be preserved in the final data product.

The top level of this binary tree contains all variables that exhibit no logical dependencies on any other variables
in the file, for example birth date. The tree has nine levels. At each level below the top, variables depend upon their

confidential data. Permission to conduct the present research is monitored by the Census Bureau under Adminstrative Records Tracking System
project 458, which contains a copy of the IRS approval.
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parents, and are only processed when appropriate. In the intermediate levels of the tree, a variable can be both a parent
and a child, for example, whether or not there is a second marriage is a child of the same variable for the first marriage
and a parent of the variable for the third marriage. The terminal level and all leaves of the binary tree contain only
child variables.

For each iteration of the missing data imputation phase and again during the synthesis phase, we estimate a joint
posterior predictive distribution for all of the required variables according to the following protocol. At each node of
the parent/child tree, a statistical model is estimated for each of the variables at the same level. The statistical model is
a Bayesian bootstrap, logistic regression, or linear regression (possibly with transformed inputs). All statistical models
are estimated separately for detailed groups of individuals based on the values of categorical variables that include both
demographic and economic controls. Logistic and linear regressions also include additional linear controls that are
selected from a long list of potential right-hand-side control variables on the basis of the Bayes Information Criterion.
Once the analyst specifies the grouping variables and their associated control variables, the estimation of a proper
posterior predictive distribution from which to impute or synthesize, as appropriate, is fully automated. On the basis
of the estimated models, and taking proper account of parameter uncertainty, each variable is imputed (missing data
phase) or synthesized (synthetic data phase) conditional on all values of all other variables for that individual. The
missing data phase included nine iterations of estimation. The synthetic data phase occurred on the tenth iteration.
Four missing data implicates were created. These constitute the completed data files that are the inputs to the synthesis
phase. Four synthetic implicates were created for each missing data implicate. Thus, there are a total of sixteen
synthetic implicates in the SIPP/SSA/IRS-PUF Version 4.0.

A complete diary of the assumptions used to synthesize every variable in the PUF: parent/child relations, synthe-
sizer method, statistical model, grouping variables, control variables, allowable values, logical limitations, synthesizer
restrictions, and usage notes is included as an Excel workbook accompanying this report.

The software to implement the missing data imputation and confidentiality synthesis is written in SAS as a mas-
sively parallel application. Running on two 64-processor large memory computers at the Census Bureau the estimation
phase for completing all 616 variables can be accomplished in about two months. Given completed data, a full run of
the synthesizer (16 implicates) takes about three weeks.

1.4 Development of the weights

The final Gold Standard file contains data drawn from the survey responses and administrative records of individuals
who responded to the Survey of Income and Program Participation in the 1990-1993 and 1996 panels. The design of
the 1990-1993 panels envisioned combining data from waves of different SIPP panels that corresponded to the same
calendar dates. Consequently, there are explicit instructions for recalibrating the SIPP weights when using individuals
or households from the same year who were surveyed in different panels. The recalibrated weights account for the
design and ex-post differences across the panels. The data collected as part of the 1996 panel do not overlap the
time periods covered by the 1990-1993 panels. Hence, no official formulae exist for recalibrating the weights when
combining data from the 1996 panel with data from the earlier panels.

The linkage of longitudinal lifetime earnings data from SSA’s Summary and Detailed Earnings Records to individ-
uals from these five SIPP panels implies that records that correspond to the same calendar year will come from all of
the panels. Analyses that use these longitudinal earnings data cannot use any combination of the official SIPP weights
to produce an estimate that has a fully specified reference population. This conundrum has faced analysts who used
linked SIPP/SSA/IRS data, such as internal researchers at SSA and the Census Bureau, for years. In order to allow
users of the SIPP/SSA/IRS-PUF Version 4.0 to conduct analyses with a known reference population, we created an ex
post weight for the PUF. This weight can be used to make estimates representative of individuals age 18 or older in
the civilian non-institutionalized U.S. population as of April 1, 2000, the reference date for Census 2000.

Our method for creating an ex-post weight for the merged SIPP panels involved seven steps. First, we reproduced
the major component of the 1996 sampling frame (the unit frame) in the Census 2000 micro-data, updating the SIPP
reference population to April 1, 2000. Next, we divided the Decennial individual records (long and short form) into
strata according to the 1996 SIPP sampling plan. Then we standardized all five SIPP panels with respect to geographic
definitions and strata used in the 1996 sampling plan. Each individual observation in the merged panels was then placed
in a stratum according to the 1996 SIPP sampling plan. The fifth step was to link each SIPP person to a person in the
Census 2000 reference population. This match was accomplished using probabilistic record linking. Most observations
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could be linked on the basis of the PIK2 that had been assigned to the SIPP or Decennial individual. For those SIPP
individuals who did not link by PIK, a cruder probabilistic record linkage based on characteristics used to define the
sampling strata was used. Having accomplished this linkage for all in-scope individuals in the 1990-1993 and 1996
SIPPs, we created a preliminary weight as the ratio of in-scope individuals in Census 2000 to in-scope individuals
in the merged SIPPs within each final (stage-2) SIPP sampling cluster. The final weight was created by raking the
preliminary weights to agree with official U.S. population control totals for the sex/age/race/ethnicity demographic
breakdown of the reference population, as supplied by the Census Bureau’s Population Estimates Division. This final
raking was controlled to exactly the same population categories as the official 1996 SIPP weights.

The final weight was tested for analytical validity by creating weighted tables summarizing earnings and benefit
measures from the administration of the Old Age, Survivor, Disability Insurance (OASDI) program. The estimates
from the PUF were compared to SSA’s published statistical summaries for the year 2000. When the final weight is
applied to the completed Gold Standard data, the results reproduce most aspects of published SSA data derived from
the universe of OASDI recipients.

Because copying the final weight to each implicate of the synthetic data would have provided an additional un-
synthesized variable with 55,552 distinct values, the disclosure risk associated with the weight variable had to be
addressed. We created a synthetic weight using a posterior predictive distribution based on the Multinomial/Dirichlet
natural conjugate likelihood and prior. The likelihood component was created by modeling the 55,552 distinct cells
created by all feasible combinations of the six variables used to create the final sampling clusters. The cell counts were
the sums of the weights in each cell. The Dirichlet prior was uniform over all 55,552 cells with a prior sample size
selected to insure adequate confidentiality protection. We sampled a complete table from the Dirichlet posterior for
each synthetic implicate. An observation was assigned a weight equal to the posterior probability in its final sampling
cluster times the civilian non-institutionalized U.S. population as of April 1, 2000 age 18 or older.

The synthetic weight was tested for analytical validity by comparing the pooled results from the 16 synthetic
implicates to the analysis from the Gold Standard file of the same earnings and benefit measures that were studied
to assess the quality of the final weight itself. When weighted analyses from the synthetic implicates are combined
according to the correct formulae, the synthetic weight is just as reliable as the final weight we created for the Gold
Standard file. The maximum discrepancy between the weighted Gold Standard analysis and the weight synthetic data
analysis is -4.44% and most discrepancies are less than 2% in absolute value.

1.5 Analytical validity testing

Although synthetic data are designed to solve a confidentiality protection problem, the success of this solution is
measured by both the degree of protection provided and the user’s ability to estimate scientifically interesting quantities
reliably. The latter property of the synthetic data is known as analytical (or statistical) validity. Analytical validity
exists according to Rubin Rubin (1987) when, at a minimum, estimands can be estimated without bias and their
confidence intervals (or the nominal level of significance for hypothesis tests) can be stated accurately. The estimands
can be summaries of the univariate distributions of the variables, bivariate measures of association, or multivariate
relationships among all variables.

When creating synthetic data, the analyst’s goal must be to refrain from imposing prior beliefs about the relation-
ships among the variables. Instead, the synthesizer must be constructed in a manner that allows existing relationships
to be expressed with approximately the same degree of precision as they have in the underlying original data. When
modeling a particular variable using the Sequential Regression Multivariate Imputation method that is our primary
technique, all other variables, powers of these variables and interactions among these variables can potentially be used
as explanatory variables even when such a relationship might not seem sensible to a researcher. Of course, due to
feasibility constraints, the analyst must choose some subset of variables to go on the right-hand side of the predictive
regressions but the goal remains to impose as few prior beliefs as possible. If the analyst is successful in specifying
these components of the synthesizer, the result should be analytically valid synthetic data.

Section 6 gives a complete summary of the inference framework and computational formulae for assessing analyt-
ical validity. From a theoretical framework, the synthetic data will be analytically valid for the precise set of relations
embodied in the posterior predictive distributions used for the synthesis. This theoretical result is reassuring to the

2A PIK is the Census Bureau’s internal unique person identifier that replaces Privacy Act protected identifiers, like SSN, on files that have been
approved for linking at the individual level.
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extent that substantial computational power and flexible methods for estimating complex multivariate distributions
can produce reliable posterior predictive distributions. Given the limits of current technology, however, the analytical
validity of a particular synthetic data product must be directly assessed. Our method of assessment proceeds as fol-
lows. Parallel analyses of a large number of estimands are conducted on the completed Gold Standard data and on the
synthetic data. The estimand is averaged over all implicates: four in the case of the completed confidential data and
16 in the case of the synthetic data. Next, the within and between implicate components of the estimand’s variance
are combined, according to rules that depend upon the precise multiple imputation method used, to generate an esti-
mate of the total variance. The square roots of the diagonal elements of the total variance matrix and the appropriate
degrees of freedom are used to form 95% confidence intervals for the completed and synthetic data estimates of the
estimand. Ideally, the confidence intervals computed from the synthetic data should cover the confidence intervals
computed from the completed data. At a minimum, there should be substantial overlap in the confidence intervals.
The point estimates should also be “close,” but this result is a by product of confidence interval coverage. In general,
the confidence interval in the synthetic data will be wider than the interval computed from the completed confidential
data for a specified nominal level, and this loss of precision is part of the cost of confidentiality protection. However,
the width of the synthetic confidence interval can be reduced by increasing the number of synthetic implicates. A
summary of our analytical validity results follows.

1.5.1 All univariate distributions

We compared the results for univariate distributions of all continuous variables using the first, fifth, tenth, twenty-fifth,
fiftieth, seventy-fifth, ninetieth and ninety-fifth percentiles, and the means. Our synthesizer was designed to repro-
duce univariate distributions through the use of kernel density estimator transformations and inverse transformations.
Our comparison of univariate results confirms that the synthesizer worked as designed. Only the wealth-related vari-
ables, which have notoriously skewed and multi-modal distributions, proved difficult to synthesize as measured by
the univariate distributions. Even the kernel density estimators were not completely successful. One could as reliably
compute univariate statistical tables representative of the civilian, non-institutional population age 18 and over on
April 1, 2000 from the synthetic data as from the completed data.

We also compare the frequency distributions for categorical variables. These, too, are analytically valid as regards
their univariate distributions.

1.5.2 Summary statistics for all workers and for OASDI beneficiaries

Although our synthesizer automatically develops models for subgroups when there are adequate sample sizes, the order
in which the subgroups will be formed and tested for sample size adequacy is specified in advance. Consequently,
one cannot say a priori that results will be analytically valid for all subsamples. We compared the results for all
workers and for all OASDI beneficiaries using subsamples constructed on demographic variables and benefit type.
This testing focused on important earnings and benefit measures. Work histories, average annual earnings, average
indexed monthly earnings (AIME) or average monthly wages (AMW), primary insurance amount (PIA), lifetime
earnings, and personal savings account accumulated balances are very similar between the synthetic and completed
data files for all major demographic subgroups and all types of benefits. In general, the univariate confidence intervals
in the synthetic data cover those in the completed data and are not excessively wide. These results hold whether the
reference group is all persons age 18 or older or only OASDI benefit recipients. Overall, the version 4.0 synthetic data
have almost complete analytic validity for these tests. This is a notable improvement over all previous versions and, in
particular, over version 3.1. See section 6.4.3 for the detailed summary of the results for all workers and section 6.4.2
for the detailed summary of the OASDI recipient results.

1.5.3 Summary statistics by education and foreign born

We also studied summary statistics for several important variables by three-way interactions of race, gender, and
education category. This analysis focused on earnings and benefits in 2000. Again, most point estimates were very
close and synthetic confidence intervals covered the completed data intervals. In earlier versions, there were problems
with certain educational categories. Some problems remain with the groups having no high school diploma or graduate
degrees. These problems are usually that the confidence interval in the synthetic data is excessively wide–indicating
that the synthesizer had trouble simulating these relationships and reflected a great deal of model uncertainty in the
posterior predictive distribution. This is not surprising since these education categories, when cross-classified by race
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and gender, contain relatively few individuals in the Gold Standard file. See section 6.4.4 for a detailed summary of
these results.

The same analysis was repeated for foreign born individuals, which is a four-way interaction in the underlying
data. The results are generally encouraging but in this case the small Gold Standard sample sizes frequently produce
very wide (or undefined) synthetic confidence intervals. See section 6.4.5 for a detailed discussion of the foreign born
results.

1.5.4 Selected regression model results

We studied the coefficients in selected regression models, fit for the entire sample and for demographic subgroups.
Our analysis of the logarithm of total Detailed Earnings Record wage and salary income (deferred and non-deferred
at FICA and non-FICA-covered jobs) is representative of earnings analyses. All analyses are markedly improved
over version 3.1 of the synthetic data. Most coefficients have some analytic validity–point estimates are similar and
synthetic data confidence intervals significantly overlap completed data intervals. There is a detailed discussion of
both the successes (most education categories, ethnicity) and the relative failures (actual labor force experience). The
earnings analysis is repeated for other earnings measures with similar results.

The analysis of regressions modeling the logarithm of AIME/AMW shows analytical validity for all major
demographic groups and virtually all studied variables. The synthetic data can be used to model this variable almost
as reliably as the completed data. This is remarkable considering that AIME/AMW was not directly synthesized.
Rather, it is derived from the synthetic earnings data.

We also studied regression models for the monthly benefit amount. We believe that the monthly benefit amounts
are some of the most accurately synthesized variables and these regression results support this conclusion.

The analytical validity results for measures of earnings and wealth from the SIPP data were less successful. These
variables have proven very resistant to synthesis by SRMI and, to date, no adequate alternative technology has been
developed.

See section 6.4.8 for a detailed discussion of the regression results.

1.6 Disclosure avoidance assessment

The link of administrative earnings, benefits and SIPP data adds a significant amount of information to an already very
detailed survey and could pose potential disclosure risks beyond those originally managed as part of the regular SIPP
public use file disclosure avoidance process. The creation of partially synthetic data is meant to prevent a link between
these new public use files and the original SIPP public use files, which are already in the public domain. In addition,
the synthesis of the earnings data meets the IRS disclosure officer’s criteria for properly protecting the federal tax
information found in the summary and detailed earnings histories used to create the longitudinal earnings variables in
the Gold Standard and public use files. Our disclosure avoidance research uses the principle that a potential intruder
would first try to re-identify the source record for a given synthetic data observation in the existing SIPP public use
files, which were used to create the SIPP component of our Gold Standard file.

In order to test the effectiveness of the synthetic data in controlling disclosure risk, we conducted two distinct
matching exercises between the synthetic data and the Gold Standard. Since the Gold Standard contains actual values
of the data items as released in the original SIPP public use files, the Gold Standard variables are the equivalent
of the best available information for an intruder attempting to re-identify a record in the synthetic data. Successful
matches between the Gold Standard and the synthetic data represent potential disclosure risks. However, for an actual
re-identification of any of records that were successfully matched to an existing SIPP public use file, an additional
non-trivial step is required–the intruder must make another successful link to exogenous data files that contain direct
identifiers such as names, addresses, telephone numbers, etc. Hence, the results from our experiments are very
conservative estimates of re-identification risk. Nevertheless, we find that the re-identifiable records represent only a
very small proportion of the candidate records, less than three percent using the most aggressive technology, and that
these correct re-identifications are swamped by a sea of false re-identifications, which a real intruder would not be able
to distinguish from the true re-identifications.

The Census Bureau Disclosure Review Board has adopted two standards for disclosure avoidance in partially
synthetic data. First, using the best available matching technology, the percentage of true matches relative to the
size of the files should not be excessively large. In our case, the true match rate never exceeds three percent of the
relevant candidate records. Second, the ratio of true matches to the total number of matches (true and false) should
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be close to one-half. We have performed two types of matching exercises, probabilistic and distance-based. The first
criterion ensures that very few candidate re-identifications occur. The second criterion ensures that those candidate
re-identifications are surrounded by substantial uncertainty as regards their correctness.

We conducted two types of record linking experiments to assess disclosure risk. The first experiment used the
Census Bureau’s internal probabilistic record linking software to attempt to re-identify the source record of a synthetic
file observation in the Gold Standard file. The second experiment used four recently proposed distance-based record
linking metrics to attempt the same reidentification. Both experiments were aggressive and conservative.

Aggressive record linking experiments use information that should not be available to a potential intruder but
which is available to the analysts conducting the experiment. In our probabilistic record linking, we made aggressive
use of the fact that we know the correct linkages between the Gold Standard and synthetic records to estimate the
parameters of the agreement score that is used to find candidate matches. In our distance record linking, we made
aggressive use of this same knowledge to estimate the full Mahalanobis distance between two records. Such a distance
measure uses the covariance structure of the errors in synthesizing the data.

Conservative record linking strategies ensure that the estimated linking rates are upper bounds to what an intruder
would calculate. In both experiments, we blocked on the unsynthesized SIPP variables. An intruder would do likewise.
To reduce computational burdens, we also segmented the comparison files in a manner that ensured that the true match
was always in the segment of the Gold Standard file that was compared to a segment of the synthetic file. Without prior
knowledge of the true matches, which would make the record linking exercise superfluous, no intruder could reduce
the computational burden with a similar strategy. Because both experiments could always find a correct link in their
candidate records, while at the same time the number of at-risk records was artificially limited to reduce computation
time, all estimated true match rates are over-estimates.

In the probabilistic record linking experiments, we found true match rates that never exceeded 1.2% overall. The
ratio of true to false matches is always around 1/100 and never even approaches unity. In our distance record linking
experiments, we found true match rates that never exceed 3%. The ratio of the true to false match rate is not as useful
in distance record linking because the false match rate is always one minus the true match rate–every synthetic record
has a best match in the Gold Standard file using distance linking techniques. We substituted an analysis of the true
match rates based on using the best, second best, and third best distance record linking match candidate. Our analysis
shows that there is considerable uncertainty regarding which of these three candidates is the correct match. The ratio
of true matches associated with the second or third best candidate to true matches associated with the best candidate
hovers around unity.

Both experiments clearly demonstrate that the partially synthetic SIPP/SSA/IRS PUF meets the standards of the
Census Disclosure Review Board, which is expected to formally declare the version 4.0 file releaseable before the end
of November. Because the public use file is also based on data from SSA and IRS, the consent of their disclosure
review officers is also required before the file can be officially released.

1.7 Using the SIPP/SSA/IRS-PUF

This report includes a brief primer on using synthetic data. We explain how to calculate statistical measures on the
different synthetic implicate files. Then we explain how to use the control variables placed on those files to properly
compute confidence intervals and hypothesis tests. Our primer is not intended to be exhaustive. Rather, it provides a
beginning user the wherewithal to process the PUF using standard statistical programming languages like SAS.

1.8 Next steps

Given the length and scope of this project, it is perhaps beneficial at this point to consider what has been accomplished.
This collaboration between four government agencies has produced several new data products and advanced the body
of knowledge on missing data imputation, assessing the validity of automated statistical modeling, disclosure avoid-
ance techniques, and disclosure risk analysis. In the past six years, we have produced a highly useful compilation
of SIPP data that combines five separate panels with edited administrative data from IRS and SSA, a weight to allow
meaningful analysis of these combined panels, a set of files that multiply impute all missing data, and a set of synthetic
data files that meet disclosure standards of the Census Bureau, the Internal Revenue Service, and the Social Security
Administration. For the first time in 30 years, it appears that it will be possible to release lifetime earnings histories
taken from administrative records, an accomplishment that will be of enormous benefit to the research community and
the general population. This project has been a model for what inter-agency cooperation can accomplish by pooling
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the expertise of researchers from the Census Bureau, IRS, SSA, and CBO.
When we began this project, there was a great deal of uncertainty over whether synthesizing techniques could

produce micro-data that would preserve relationships among variables and mitigate disclosure risk. In fact, almost
none of the enhanced theory or experience with these methods required to complete the project existed. Based on
the results at this point, we feel that both these questions can be answered in the affirmative. It is now imperative
that outside users be given a chance to test these synthetic data and that the agencies involved develop a system for
validating outside results using the Gold Standard in order to promote general confidence in the methods and to permit
quality improvements. This process will help us to discover remaining flaws in the synthetic data and improve the
synthesizing process, both of which will enable the collaborators to provide useful future updates to this data product,
as funding resources permit.
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2 Project Background
2.1 Purpose and brief history

In February 2001, a temporary U.S. Treasury Regulation went into effect that allowed the U.S. Census Bureau to obtain
administrative W-2 earnings data for certain survey respondents from the Social Security Administration (SSA) and
the Internal Revenue Service (IRS) for the purpose of improving core Census Bureau data products. To accomplish
the goal of improving the Survey of Income and Program Participation (SIPP), the Census Bureau created an approved
project entitled the “Demographic Survey Improvement Project” as a part of the Longitudinal Employer-Household
Dynamics (LEHD) Program. Work began on the improvement of the SIPP and on the creation of a new public use file,
which is the subject of this report. In February 2003, the temporary Treasury Regulation became final (see Federal
Register, Vol. 68, No. 13 Tuesday, January 21, 2003, Rules and Regulations, pp. 2691-5).

One of the primary goals of the survey improvement project was to create a new public use file that linked existing
SIPP data with the administrative earnings data as well as administrative benefits data maintained by SSA. To this
end, a joint committee was created with members from the Census Bureau, the SSA, the IRS, and the Congressional
Budget Office (CBO). Individuals with related interests from the staff of the Joint Committee on Taxation (JCT) were
also invited to participate. Committee members from the Census Bureau included John Abowd, Nancy Bates, Gary
Benedetto, Pat Doyle, Judy Eargle, Sam Hawala, and Martha Stinson, who has served as the coordinator of the project
since 2003. SSA has been represented by Susan Grad, Brian Greenberg, Howard Iames, and Dawn Haines. IRS
members included Nick Greenia and Karen Masken. John Sabelhaus participated for the CBO. This committee has
guided all major decisions concerning the creation of the public use file.

Beginning with fiscal year 2004, an Inter-Agency Agreement and subsequently a Jointly Financed Cooperative
Agreement established an official jointly financed and sponsored project between the Census Bureau and SSA whose
main purpose was the research leading to the improvement of the SIPP and the creation of the new public use file.
Those agreements provide the basis of the financial and intellectual support for this work. This report summarizes the
work done during fiscal year 2006 to finish the creation of the public use file. Inasmuch as the goal is to release a file
for use by others outside the development group, this report also includes some history of the project where necessary
to understand the final product.

2.2 Overview project description

From the beginning of the project, two over-arching requirements have guided the decisions made by the committee
about the type of public use file to create. First, the file should contain micro-data in a format usable by researchers
and others familiar with the structure and content of the regular SIPP public use files. Second, the file should stand
alone and not be linkable to any of the existing SIPP public use products previously published by the Census Bureau.
These criteria led to several other early decisions.

The first major design decision was that the file would contain records for individuals surveyed in one of five
SIPP panels, 1990, 1991, 1992, 1993, and 1996, but the panel of origin for each individual would not be revealed.
The decision to suppress the panel of origin for the individual was part of the overall confidentiality protection plan
for the new PUF. The second major design decision was that the number of variables on the new public use file that
came from the SIPP would be limited and would be chosen to facilitate national studies by retirement and disability
researchers. The third major design decision was that the primary disclosure avoidance method would be to produce
partially synthetic micro-data that could not be re-identified in the existing SIPP public use files. Thus, instead of
containing the actual values of SIPP-reported variables, administrative earnings and benefits, the file would contain
values that were draws from the joint posterior predictive distribution of the underlying variables conditional on the
existing confidential data. The process of synthesizing data is described in detail in section 4.

The committee began its work by selecting the variables to include on the file. The selection process involved
detailed discussions between all four agencies and consultations with outside researchers. As part of the process,
the Census Bureau created a standardized extract of variables from each SIPP panel and merged these extracts with
individual administrative earnings and benefits records. These extracts were combined and named the “Gold Standard”
file. (See section 3 for a detailed description of this file.) The Gold Standard file has been revised many times during
the past five years as new variables have been added, old ones dropped, and formatting for some variables changed.
This file serves as the basis for the creation of the SIPP/SSA/IRS-PUF. It establishes the metadata for each variable,
determines the sample of people to be included, and serves as the source data for the modeling required to create the
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synthetic data. The Gold Standard file contains data that are Title 13, Title 26, and Title 42 confidential because it
commingles Census Bureau , IRS, and SSA data.

The next step in the process was to create a set of synthetic files that replicated the structure of the Gold Standard
data. The Census Bureau produced the first such files in late fall 2003, and called it preliminary SIPP/SSA/IRS-PUF
version 1.0. Since that time there have been three other preliminary public use files: version 2.0 (fall 2004), version
3.0 (December 2005), and version 3.1 (June 2006). The current preliminary public use file, which is expected to
become final, is version 4.0, and is being delivered in conjunction with this report.

After each preliminary public use file was produced, committee members from each agency were responsible for
reviewing the file to assess analytical validity and disclosure risk. Analytical validity tests have consisted of comparing
univariate distributions, cross-tabulations, moments, and regression coefficients calculated from the synthetic and
the completed Gold Standard data. (See section 6 for a detailed discussion of the analytical validity assessment.)
Disclosure risk analysis has included probabilistic and distance-based record linking between the synthetic and the
Gold Standard files. (See section 7 for a detailed discussion).
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3 Creation of the Gold Standard File
The work of creating a new public use SIPP product with linked administrative data began with the creation of a base
data set called the “Gold Standard” file. To create this file, we extracted variables from the five SIPP panels conducted
in the 1990s (beginning in 1990, 1991, 1992, 1993, 1996, respectively) and merged SSA-provided administrative data
from the Summary Earnings Records (SER), Detailed Earnings Records (DER), and the Master Beneficiary Record
(MBR). This data compilation serves as the basis for the public use file. We refer to these data as the Gold Standard
because they represent the available confidential micro-data that would be used for analysis by an authorized researcher
working in a restricted-access facility. Any public use version of these data must, of necessity, closely reproduce the
characteristics of the Gold Standard while at the same time taking steps to ensure the confidentiality of the actual data
on the sampled individuals.

In this section, we describe each data source, list the variables chosen for inclusion in the Gold Standard file, and
explain the major decisions made regarding different types of variables. A complete data dictionary for Gold Standard
Version 4.0 accompanies this report. The data dictionary provides exact details about the creation of every variable in
the Gold Standard, including the specific source SIPP, SER, DER and MBR variables used.

3.1 SIPP data

We chose the following demographic variables to be included on the Gold Standard file: gender, marital status, race
(black/African-American), five categories of education, Hispanic ethnicity, birth date, death date, disability status,
number of children, marital history, foreign born indicator, decade arrived in the United States if foreign born, and
a spouse identifier that links to the marriage partner if the respondent is married and the spouse was also surveyed.
We took the values for these variables at a point in time and thus none of these variables are time-varying in the
Gold Standard file. For the time-invariant variables–gender, race, and Hispanic ethnicity, values were taken from the
point in the survey when they were first reported, generally wave 1. Values for the other demographic variables were
generally chosen from month 8 of the respective SIPP panel (i.e., the last reference month of the second interview).
We chose this point because marital, immigration, and disability histories were collected in the wave 2 topical modules
and we wanted to take all these variables from the same point in time as nearly as possible. However, if an individual
was not surveyed in wave 2 of the SIPP panel either because he or she exited the sample due to attrition from the panel
after wave 1 or joined the panel in wave 3 or later, we took values for marital status and the spouse identifier from the
closest available point in time. In other words, if marital status was missing in month 8, we checked for a marital
status value in months 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, 16, 17, and so on until the end of the panel. We
chose the first non-missing value that was found. For individuals whose marital status was taken from a month other
than 8, we chose the value for number of children from the same month as marital status. If this value was missing,
we did not search in any additional months. For education, we searched over all reported education values in each
wave of the SIPP and chose the highest level of education ever reported. Thus gender, marital status, race, education,
Hispanic ethnicity, and spouse identifier are never missing in the Gold Standard data because these variables are all
reported at some point in the SIPP, and we chose to take self-reported values whenever they were available. Disability
status, number of children, marital history, foreign born indicator, and decade arrived in the United States if foreign
born are sometimes missing because individuals did not answer the relevant topical modules or because we chose not
to search over every available month of SIPP data.

The marital history variables are some of the most complicated historical variables on the Gold Standard file.
Most of the information in this history came from the marital history topical module collected in wave 2 of each panel.
We supplemented this information by creating a short marital status history that covered the period of the panel from
wave 2 forward by using the marital status reported in each month. In the topical module, individuals could report
0, 1, 2, 3, or more than 3 marriages. Dates for the beginning and end of first, second, and most recent marriages
were then collected, as well as the reason for a marital termination (death or divorce/separation). If an individual
had more than 3 marriages, no dates for those marriages between the second and most recent were collected. We
used our short history from the panel period post-wave 2 to check for additional marital events: beginning of a new
marriage or ending of an existing marriage. We took account of at most one additional marital history event for an
individual. We summarized all this information in a set of 16 variables. They include: mh category, a categorical
variable that classifies individuals according to their number of marriages and the type and order of the endings of
those marriages; mh1−mh7, a set of flags that provides the same information as mh category but broken down by
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event; flag mar4t, an indicator for whether the individual was missing a marriage because the SIPP only collected
information on three marriages; age at the time of every reported marital history event.

It is important to understand that the marital history variables may differ from the marital status variable described
earlier. In particular if a person reports being married in wave 2, month 8 but is not married at the end of his or her
history, this is because a divorce or death occurred over the course of the SIPP panel. Similarly, if a person reports not
being married in wave 2, month 8 but is married at the end of his or her history, this is because a marriage occurred
during the course of the SIPP panel. Although a person may report only 3 marriages during the topical module, it is
possible to have a fourth marriage as part of the marital history because the last marriage occurred during the course
of the SIPP panel. However no more than 4 marriages can be recorded in the SIPP from all available sources. There
are also some things that must be consistent between the marital history and the wave 2 marital status. If the person
reports being divorced or widowed in wave 2, month 8 then at least one divorce or widowhood much occur during that
individual’s marital history. Likewise if the person reported being married, then the history must contain at least one
marriage.

Birth date and death date are unique variables in both their source and treatment. We originally extracted birth date
from the first self-reported value in the SIPP survey. However, after several discussion between the Census Bureau and
SSA about the measurement error likely to be contained in this variable, we switched to using an administrative birth
date. Thus, in the final version of the Gold Standard, we create a variable called birthdate pcf from the Census Per-
sonal Characteristics File (PCF), an administrative database that has as one of its inputs the Social Security Numident
file. Any individual that has applied for a Social Security Number (SSN) has a record in the Numident file that con-
tains, among other things, SSN and birth date. The administrative record birth date variable (birthdate pcf ) serves
as the basis for the synthesis process and is comparable to the variable birthdate in the synthetic public use files. We
chose the administrative source for this important variable in order to insure as much consistency as possible between
the administrative earnings and benefits variables and age. Using administrative birth date helps to avoid cases where
it appears that people receive retirement benefits prior to age 62, a legal impossibility caused by self-reported birth
dates that are several years later than the actual dates.3 We also included a variable called birthdate sipp on the
Gold Standard file in order to facilitate re-identification tests that attempt to link the synthetic data back to the Gold
Standard. Since the administrative birth date is not an existing SIPP public use variable, anyone attempting to link the
new synthetic SIPP/SSA/IRS-PUF to the existing SIPP public use data would have to use the SIPP reported birth date
for this purpose.

Death date was extracted from the same PCF file as administrative birth date. In this case, however, the original
sources were the Numident file and SSA’s Death Master File (DMF), another supplementary file that the Census
Bureau receives from SSA that reports deaths every month. The link between SIPP respondents and the PCF was
performed using a validated SSN, a process described in more detail in section 3.2.

For economic variables, we included the following annual time series, beginning in 1990 and ending in 1999:
weeks worked with pay, weeks worked part-time, total annual hours, family poverty threshold, total family in-
come, total personal income, total personal earnings, welfare program participation and amount of payments, private
health/disability program participation and amount of payments, and health insurance coverage and type. Since no
individual was followed by a SIPP panel for more than 4 years, these time series arrays contain at least 6 years of
missing data for every individual. The exact number and timing of missing years depends upon the original panel.
Individuals surveyed in the 1990 panel are missing 1993-1999 data whereas individuals surveyed in the 1996 panel
are missing 1990-1995 data. We included the following point-in-time variables: industry and occupation for the main
job, chosen from the first available wave, and total net worth, home ownership, home equity, non-housing wealth, and
indicators for defined benefit and defined contribution pensions, all taken from topical modules.

Some SIPP variables were purposely omitted from the public use file in order to minimize disclosure risk. Specif-
ically, no data are provided on geography. We include a state of residence variable Gold Standard file but will not
release this variable on the public use file. The exact linkage of spouses is the only family relationship data on the
file. No other family relationship data are provided on either the Gold Standard or public use files. No panel dating
information is provided on the public use file although we retained the panel source variable in the Gold Standard data

3It is worth noting that the administrative birth date is not without some error. Unlike the SIPP reported birthdate, which was edited prior to
public release to produce a set of plausible ages, the administrative birthdate contains some values that make individuals in our sample 100 years
old or more. However the number of these cases is very limited and we feel that this small error is out-weighed by the general accuracy gains and
the benefits to disclosure avoidance.
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to facilitate evaluation and testing.
An individual was eligible to be included in the Gold Standard file if he or she met one major requirement: the

individual must have been at least 15 years old at the time of the second wave of the SIPP panel in which that person
was interviewed. We chose this age because at 15 or older, the SIPP considered the individual to be an adult and asked
the full battery of questions. In order to make this determination, we used the variables popstat (1990-1993 panels)
or epopstat (1996 panel) from the wave 2 core data. For those who were not interviewed in wave 2, their age at the
end of wave 2 was calculated and if they would have been at least 15, they were kept in sample. It is important to note
that these age calculations were done using the self-reported SIPP birth date. We did this in order to reproduce the
survey determination of who was eligible to be treated as an adult as accurately as possible in the new public use file.

3.2 IRS/SSA earnings data

Administrative earnings data were extracted from the Master Earnings File (MEF), a historical compilation of earnings
reports filed with the IRS by employers (most commonly using the W-2 form). This administrative database is
maintained by SSA for the purpose of calculating benefits when workers retire or become disabled. We receive
earnings in two forms: Summary Earnings Records (SER) and Detailed Earnings Records (DER). The SER data
contain total personal earnings capped at the FICA taxable maximum for each year from 1951-2003. The DER data
contain uncapped earnings broken out by employer from 1978-2003. In the Gold Standard file we include the entire
annual SER history plus total earnings from 1937 to 1951. From the DER, we create total annual earnings from
FICA covered jobs by summing earnings from each employer that was required to withhold social security tax. We
also create total annual deferred earnings from FICA covered jobs by summing deferred wages (i.e., contributions to
401(k) plans) from these same employers. We create an analogous set of earnings and deferred earnings variables
that pertain to jobs not covered by FICA. Thus, in each year from 1978-2003, the SER earnings variable indicates the
amount of FICA covered earnings in a year, up to the taxable maximum, and the set of four DER earnings variables
indicates total earnings, uncapped, split between deferred and paid, and FICA and non-FICA covered jobs. The sum
of the two DER earnings variables that represent paid wages gives total wages and salary that an individual would
report on IRS Form 1040 and which would be taxable under federal income tax laws.

These IRS/SSA earnings variables are matched to the SIPP extracts using a validated Social Security Number. The
1990s SIPP panels collected the SSN from respondents. Using name, address, birth date, gender, and race information,
the Census Bureau and SSA validated these self-reports against the SSA Numident file. If the demographic variables
collected by the SIPP matched the demographic variables associated with the reported SSN on the Numident, then the
SSN was declared valid.4 If the demographic variables did not match, an alternative SSN was sought. For individuals
who reported that they did not know their SSN, an SSN was sought in the PCF file based on these demographic
variables. For individuals who refused to provide an SSN, no match was sought in the PCF and we did not receive
earnings records for these individuals. Thus, for individuals without valid SSNs, all the administrative earnings arrays
described above were treated as missing data. Approximately 12% of individuals in the gold standard did not have
valid SSNs and were, consequently, missing MBR, SER and DER data.

3.3 SSA data

In addition to administrative earnings records, the Census Bureau also received records for SIPP respondents contain-
ing information about the type and amount of benefits paid under the Old Age, Survivor, and Disability Insurance
Program (OASDI). These SSA data were contained in the Master Beneficiary Record (MBR) file and were linked
to the SIPP data using the same method as the earnings data (i.e., validated SSN). The MBR is an extensive and
complicated file and, after much deliberation, the decision was made to include only a few variables from it on the
Gold Standard file. Specifically, we included the date of initial entitlement to OASDI benefits, the initial reason for
receiving these benefits (TOB), and the initial monthly amount paid (MBA). We also included the type and amount
of benefit received in April 2000. Using the formulae published by SSA, we calculated average indexed monthly
earnings (AIME) or average monthly wage (AMW ) and the primary insurance amount (PIA) from the adminis-
trative earnings history and included these on the Gold Standard as a help for researchers. However, it is important
to note that the AIME/AMW and the PIA contain no information not already represented in the earnings history.
Thus, they can be recreated in the Gold Standard, the completed Gold Standard, or the SIPP/SSA/IRS-PUF data using

4Prior to 2003, the process of validating an SSN was performed by a clerical edit using the same information.
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alternative assumptions.

3.4 Weight creation and use

One concern that arose early in the process of creating the public use file was the provision of proper weights for a
file that pooled SIPP respondents from five separate samples. The 1990-1993 panels contain some overlapping time
periods. The official SIPP public use file documentation explains how to pool the published weights for those panels in
order to construct a weight that has a well-defined reference population and reference date. However, there is no design
guidance for pooling the individuals from all five SIPP panels in order to produce estimates representative of a well-
defined target population at a known reference date. In addition, the different SIPP panels over-sample low income
individuals and other groups at differential rates. Hence, these survey data can only be used to construct estimates
representative of the U.S. civilian non-institutionalized population as of a particular date if an appropriate weight is
provided. Thus, another major data activity for this project has been to create an ex post weight for the individuals
in the Gold Standard file such that each person’s weight indicated how many persons in the reference population that
SIPP person represented as of a known date. The designated reference population is all individuals age 18 or older
in the civilian non-institutionalized U.S. population as of April 1, 2000, the reference date for Census 2000. A full
report on the details of this process is provided in section 5.

3.5 Gold Standard data dictionary

The Gold Standard data dictionary for version 4.0 is included as an appendix to this report.
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4 Data Completion and Synthesis
4.1 General methodology

In this section, we describe the basic theoretical framework for creating synthetic data. The notation and definitions
follow Rubin (1987), which treats multiple imputation of missing data, and Rubin (1993), which is the first paper
to define the use of fully synthetic data for confidentiality protection. We adopt enhancements for the application of
Sequential Regression Multivariate Imputation (SRMI) to synthetic data from Raghunathan, Reiter and Rubin (2003).
We use the formal inference methods for multiple imputation-based partially synthetic data from Little (1993) and
Reiter (2003). Finally, we incorporate the formal inference methods for multiple-imputation based partially synthetic
data that also have missing data from Reiter (2004). We have attempted to make the notation consistent in this section.
Hence, it does not match the original authors’ notation.

A finite population contains N entities whose characteristics are known and constitute the f columns of X ,
(N × f) . A sample of size n < N is drawn from the population. Let the vector I (N × 1) be defined as Ii = 1
if entity i is sampled and Ii = 0, otherwise. Data are collected for p variables denoted by the matrix Y (N × p). Note
that the matrix Y is defined for the entire population, not just for the sampled units. Of course, some elements of Y
are missing because the entity that constitutes that row was not sampled. Other elements of Y are missing because
of item non-response in the sample. (In administrative data, item non-response is equivalent to missing data items on
an in-scope administrative record.) Let the matrix R (N × p) be defined as Rij = 1 if the data represented by item
Yij are available in the sample and Rij = 0, otherwise. Certain submatrices of Y and R are of interest. Let Yinc

(n× p) be the submatrix of Y that corresponds to the rows for which Ii = 1. So Yinc contains the data for all the
sampled entities. The complement of Yinc is Yexc, the rows of Y that correspond to the rows for which Ii = 0. So
Yexc contains the data for all the unsampled entities. Similarly, let Robs (n× p) be the submatrix of R corresponding
to the item missingness for the sampled entities; i.e., those rows for which Ii = 1. Finally, define the submatrices Yobs

and Ymis as follows

Yobs,ij =
{

Yij , if Ii = 1 and Rij = 1
undefined, otherwise

}
and

Ymis,ij =
{

Yij , if Ii = 1 and Rij = 0
undefined, otherwise

}
So, the matrix Yobs contains all the sampled values of Yij that contain data and the matrix Ymis contains all the sampled
values of Yij that are item missing. The observed data are summarized by the set D={X, Yobs, I, R}. The following
table gives a summary of all these definitions.

General Definitions
N = number of individuals in the population

X (N × f) = population characteristics of f variables for N individuals,
f variables are known for all N individuals in the population

p = number of variables for which survey/admin. systems will collect data
Y (N × p) = data on p variables for N individuals; only sampled values available
I (N × 1) = identifies which individuals from the population were sampled,

i.e. tells which rows of Y are non-missing
R (N × p) = identifies non-missing elements,

i.e. tells which variables are non-missing for which individuals
Yobs = observed data, submatrix of Y (N × p) that contains only elements

where individual was sampled and provided data on specific variable
Ymis = missing data, submatrix of Y (N × p) that contains elements where

individual was sampled but did not provide data on specific variable
D = {X, Yobs, I, R} or all known data about individuals in survey sample
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In the context of our public use file, the above notation applies as follows: Y (N × p) is a matrix with one row
for every member of the U.S. population age 15 and older at any time between January 1, 1990 and January 1, 1996
and one column for each of p variables that describe these individuals. In our case, there are 173 SIPP variables, 443
SSA/IRS earnings variables, and 5 SSA benefit variables so p = 621 and N = 287 million. I (N × 1) contains one
row for every member of the U.S. population age 15 and older and Ii = 1 when an individual was surveyed by the
Census Bureau using the 1990, 1991, 1992, 1993, or 1996 SIPP survey instrument. The matrix I defines Yinc (n× p)
which is a submatrix of Y (N × p). The I matrix tells which n rows from the population Y matrix were sampled
into one of the five SIPP panels and eligible according to age to be in the gold standard: n = 261, 000. R(n× p) is
a matrix that records which of the n SIPP respondents are missing responses to which of the p variables. Rij = 1 if
person i has non-missing data for variable j. The R matrix defines Yobs (n× p) which contains the data we actually
observe. The following table provides a summary of these definitions.

Specific Definitions for SIPP/SSA/IRS-PUF
N = 287 million, i.e. population of U.S.

X (N × f) = race, gender, and birth date, known for all individuals on Census short form
p = 173 SIPP variables, 443 SER/DER variables, 5 SSA benefit variables

Y (N × p) = data on all the above variables for entire U.S. population
I (N × 1) = identifies which individuals from the population were sampled by the SIPP

and included in gold standard
R (N × p) = identifies which SIPP and administrative variables are non-missing

for which individuals
Yobs = observed data, submatrix of Y (N × p) that contains only elements

where individual was sampled by SIPP and data is non-missing
Ymis = missing data, submatrix of Y (N × p) that contains elements where

individual was sampled by SIPP but did not provide data on specific variable
D = {X, Yobs, I, R} or all known data about individuals in the SIPP samples

In the classic Rubin (1987) missing data application, Ymis is imputed m times by sampling from p (Ymis |D ) , the
posterior predictive distribution of Ymis given D. The completed data consist of m sets D(`) =

{
D,Y

(`)
mis

}
, where

Y
(`)
mis is the `th draw from p (Ymis |D ) and is called the `th implicate. The basic insight for using synthetic data as part

of a confidentiality protection system is that sampled individuals can be treated as having missing data for some or all
variables even if they provided valid data. When these data are “completed” in the same manner as described above,
namely by drawing from the posterior predictive distribution of Ymis, p (Ymis|D), a file is produced that remains
statistically valid but no longer contains the sampled individuals values for the variables that were synthesized.

In our application of synthetic data methods to the linked SIPP and administrative data, we first use Rubin’s general
multiple imputation method to complete our missing data. Next, we used this same method to create synthetic data.
It is important to note that data resulting from this process are most accurately described as “partially” synthetic data.
The terms “partially synthetic” and “fully synthetic” are now used in the statistics literature to distinguish between two
related synthetic data generating models. Partially synthetic data are created using an actual sample of the population
(i.e. the actual SIPP surveys) as source records so that a record in the partially synthetic data is based upon an actual
record from the underlying survey. Fully synthetic data are created by sampling from a synthetic population in which
the unsampled entities from the original survey have synthetic values for all variables from the survey. Fully synthetic
samples are created by using all the known population characteristic variables to generating synthetic values for all
survey variables conditional on the known population characteristics. Thus fully synthetic implicates do not have an
actual source record in the original survey and can be described as fictitious entities. This project did not attempt to
create fully synthetic data.

The major focus of the synthesizing process is to obtain a good estimate of the posterior predictive distribution
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(PPD) for all the variables to be completed and synthesized. We now discuss the computational formulae for estima-
tiong and sampling from the PPD. More general methods exist, such as Markov Chain Monte Carlo, but the methods
summarized herein are the ones used by this particular project.

To begin, an explicit representation of D is required. As defined above D = {X, Yobs, I, R}. While, in principle,
the analyst at the Census Bureau has access to X , the population characteristics, in the applications described in this
section, only the rows of X corresponding to Ii = 1 are used.5 Hence, there is no practical difference between X
and Yobs for our synthetic data modeling. Complete data are guaranteed for X but nevertheless many variables in
X require confidentiality protection before they can be placed in a public use data file. In this section, we adopt
the notational convention that a variable appears in X if it is always available when Ii = 1 and it never requires
confidentiality protection. Otherwise, the variable is included in Yobs. This set of X variables can be empty without
affecting the discussion below.

We describe two methods: Bayesian bootstrap (BB) and SRMI.6 In both of these methods, we apply the principle
of estimating the conditional distribution of group of variables (columns of Y ) conditional on all other columns. For
each distinct group of variables in Y , the columns of D are partitioned into four mutually exclusive sets: grouping
variables, conditioning variables, dependent variables, and ignored variables. Grouping variables are used to stratify
D such that a separate PPD is estimated in each stratum. Conditioning variables are a list of potential right-hand-
side variables to be entered linearly in model-based estimation of the PPD. Dependent variables are those for which
the PPD is being estimated. Finally, ignored variables are all other columns of (X, Yobs). For purposes of doing
the computations below, the data matrix (X, Yobs) should be interpreted as including any variables that have been
calculated as exact functions of the available data. Hence, the dimensionality of the matrices used below potentially
exceeds f + p.

4.2 Bayesian Bootstrap

The Bayesian bootstrap was originally defined by Rubin (1981). As explained therein, the BB is used to simulate
the posterior distribution of the parameter whereas the regular bootstrap simulates the sampling distribution of the
parameter. Whereas a conventional bootstrap assumes that the sample CDF is equal to the population CDF, the BB
properly accounts for the uncertainty of the sample CDF.

4.2.1 Generic BB algorithm

The notation used to describe the BB algorithm in this subsection is generic and does not refer to the matrices defined
elsewhere. Let X (n× k) be the source data matrix and Y (s× k) be the target data matrix. This means that we want
to construct an s× k Bayesian bootstrap sample from an n× k matrix of source data. Each BB replicate ` is a unique
Y (`).

1. Draw n− 1 random variables from U (0, 1).

2. Sort ui ascending and let u(i) denote the order statistics from lowest to highest. Define u(0) = 0 and u(n) = 1.

3. For i = 1, . . . , n, let p̂i = u(i) − u(i−1).

4. For j = 1, . . . , s sample with replacement from the rows X using p̂i as the probability of selecting row i. Place
the sampled row into Yj .

5. Repeat from step 1 for as many BB replicates as desired.

In other words, beginning with a data matrix, X , that contains values for the k variables of interest, this process
assigns a probability of choosing a given observation from X to provide data to a corresponding observation in Y for
the k variables. The set of probabilities constitutes a non-parametric representation of the posterior distribution from
which the sampling is done. In a conventional bootstrap, because of the assumption that the sample CDF is equivalent
to the population CDF, each observation in X would be assigned probability 1

n of being chosen. There would be no

5An exception is the process used to create and synthesize the ex post weight, which is described in section 5. In that process the full matrix X
was used.

6For a description of the Bayesian bootstrap see Rubin (1981). For a description of SRMI in its original application to missing data problems
see Raghunathan et al. (1998).
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uncertainty in what probability would be assigned to a given observation. However, the Bayesian bootstrap accounts
for the fact that the sample CDF is not the population CDF and hence does not assign equal probability to each
observation. To better understand this concept, consider the example of k = 1 where the variable of interest, x1, is
an indicator variable. Suppose that for 75% of the sample of individuals, x1 = 1 and that x1 = 0 for the remaining
25%. In a conventional bootstrap, with each individual assigned a probability of 1

n of being chosen, the CDF used
for sampling would always give x1 = 1 a 0.75 probability and x1 = 0 a 0.25 probability. The resulting target
matrix Y would not necessarily have a realized 75%/25% frequency distribution for the two values for x1 but all
the bootstrap samples would have been drawn from such a distribution. In a Bayesian bootstrap, when each source
record is assigned a unique probability whose expected value is 1

n , the CDF used for BB sampling might have 73%
versus 27% probability of drawing x1 = 1 or 0. The next BB might have 76% versus 24%. The variation in the BB
probabilities reflects the fact that the sample proportion of 75% in X is an estimate of the probability that x1 = 1.

4.2.2 Bayesian bootstrap application

Choose grouping variables such that the rows of (X, Yobs) can be assumed to come from the same joint distribution
within each group defined by the unique combinations of values of the grouping variables. Some collapsing of
categories may be required and is described later under implementation details. What is required is the creation of G
groups based on the values of the variables in the grouping variable list. It is essential to the success of the Bayesian
bootstrap in accurately replicating statistical properties of the data that the observations in a given source (donor)
group and a given target (donee) group be as homogenous as possible. Thus, ideally, a large list of grouping variables
should be chosen initially. One of the main advantages of the Bayesian bootstrap is that the group sizes do not have
to be as large as groups where parametric modeling is done. Another advantage that is described below is that groups
of dependent variables can be done together. This method also helps to preserve the statistical properties of the data
by keeping intact relationships among variables.

In the BB application, none of the grouping variables can contain missing data. There are no conditioning variables
because no linear model is used. The dependent variables consist of all columns j of Y for which Rij = 0 for some
i. The ignored variable list consists of all variables that are neither grouping variables nor dependent variables. We
first describe the application of BB to the missing data problem. This is complicated if the missing data pattern is
non-monotone as defined in Rubin Rubin (1987). For the moment, assume that the missing data pattern is monotone.
Then, proceed through the dependent variables in groups constructed as follows:

1. All dependent variables with missing data exactly comparable to the variable with the least missing data; i.e., all
j for which Rij = 0 if and only if Rij∗ = 0, where j∗ is the column index of the variable with the least missing
data. This is dependent variable group 1.

2. Remove all variables from the dependent variable list that are already in a group. Let j∗ represent the column
index of the variable with the least missing data from among those dependent variables that remain. Group all
dependent variables with missing data exactly comparable to the variable indexed by j∗; i.e., all j for which
Rij = 0 if and only if Rij∗ = 0. This is dependent variable group h.

3. Increment h and repeat step 2 until no dependent variables remain.

This defines H dependent variable groups. Initialize the BB missing data algorithm by placing all dependent
variables into the ignored variable list and setting h = 1.

1. Remove the variables in group h from the ignored variable list and place them in the dependent variable list.

2. For g = 1, . . . G, BB the rows of Ymis (target data matrix) using the rows of Yobs as the source data matrix.
Repeat the BB m times to get m imputations Y

(`)
mis.

3. Put the dependent variables in group h back into the list of ignored variables.

4. If h < H then increment h and return to step 1; otherwise, stop.
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The result is m completed data sets. When the missing data are not monotone, the BB algorithm can be used to
get starting values for other algorithms described below, in particular, SRMI. The BB algorithm can also be used for
synthesizing data. In this case, simply treat all observations as missing and use the above steps to find donors for
every individual in the data.

4.3 Sequential Regression Multivariate Imputation

Sequential Regression Multivariate Imputation (SRMI) was first proposed as a general technique for multiple impu-
tation of missing data by Raghunathan et al. (1998). Raghunathan, Reiter and Rubin (2003) extend the method to
confidentiality protection. Abowd and Woodcock (2001) use the SRMI method for confidentiality protection com-
bined with missing data imputation. Although the formulae for SRMI can be stated generically using joint probability
distributions like p (Ymis|D), almost all applications assume that the entities that constitute the rows of (X, Yinc) have
been sampled independently. Nothing in the generic statement of the problem prohibits dependent sampling; however,
as a practical matter, formalizing this dependence while implementing SRMI is complicated. Abowd and Woodcock
(2001) illustrate these complications for the case of longitudinally linked employer-employee data. The algorithms are
summarized below ignoring the complications associated with dependent sampling.

4.3.1 Definitions and general algorithm

In SRMI, the analyst cycles iteratively through the dependent variable list. In any given iteration, conditioning data
may be taken from either the current or the previous iteration depending upon the location of the current dependent
variable in the variable list. For missing data applications, the procedure is normally iterated until the effect of this
conditioning has been minimized. In synthetic data data applications, the conditioning values are the same regardless
of the position of the variable in the dependent variable list and so iteration is not required.7

Let Yj denote the current dependent variable and let Y∼j denote all other columns of Y. The general algorithm is
most cleanly stated for the missing data case. The refinements for the partially synthetic data case will be noted below.

For each dependent variable, the analyst selects grouping variables, conditioning variables and ignored variables.
The grouping variables stratify the estimation into G mutually exclusive and exhaustive groups as illustrated in section
(4.2.2) . The conditioning variables may include all columns of (X, Y˜j) , including columns that are created to allow
for nonlinearities in the conditional relations. The ignored variables are all columns of (X, Y˜j) not included among
the conditioning variables. We wish to generate m implicates Y

(`)
mis. SRMI is an iterative procedure. Denote the

interim values of implicate ` as Y
(`,s)
mis . Initialize ` = 1 and s = 1. Initialize Y

(1,0)
mis using Bayesian bootstrap methods.

1. For j = 1, . . . , p :

(a) If ` = 1 then estimate

p
(
Yj |X, Yobs,˜j , Y

(`,s−1)
mis,1 , . . . , Y

(`,s−1)
mis,j−1, Y

(`,s)
mis,j+1, . . . , Y

(`,s)
mis,p

)
(b) Fill Y

(`,s)
mis,j with data sampled from

p
(
Yj |X, Yobs,˜j , Y

(`,s−1)
mis,1 , . . . , Y

(`,s−1)
mis,j−1, Y

(`,s)
mis,j+1, . . . , Y

(`,s)
mis,p

)
2. If converged then

(a) Set Y
(`)
mis = Y

(`,s)
mis .

(b) Increment `.

(c) Reinitialize Y
(`,0)
mis = Y

(`−1,s)
mis

(d) Reinitialize s = 1
7An exception to this statement occurs when the data to be synthesized have exact logical dependencies among the variables. In this case a

parent/child tree is used to coordinate these dependencies. The conditioning data for a particular variable will include the results of the synthesis of
variables that were antecedents in the parent/child tree (parents). Iterating this process, however, simply produces another synthetic implicate.
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3. If ` ≤ m, go to 1.

The test for convergence is not formal. In practice s is often limited to 10 or less. The algorithm estimates the
joint distribution p (Ymis|D) by iterating over each conditional distribution p (Ymis,j |D) and filling the “data matrix”
with imputed values based on the previous iteration’s estimate of p (Ymis|D) . Once the estimation has converged,
the implicates are all drawn from the same estimate of p (Ymis|D) . However, the completion of D for each implicate
results in different conditioning data for the draws. In the implementation of the algorithm, one cycles over the
grouping variables g = 1, . . . , G performing the entire algorithm for each homogeneous group. In steps 1.a and 1.b
only the conditioning variables appropriate for Ymis,j in conditioning group g are actually included in the conditioning
set. The initial selection of these variables is dependent on the analyst. However after the variables are tentatively
included in the model the Bayes Information Criterion (BIC) is used to reduce the variable list by eliminating variables
that have a posterior odds ratio below a pre-specified level. The posterior odds ratio cutoff for the BIC value in this
variable selection mechanism can be controlled by the analyst. See Abowd and Woodcock (2001) for details.

4.4 Summary of synthetic data production

We now provide specific details about the process used to create synthetic data for this project. The first step of the
process was to multiply impute all missing data. Missing data in our sample are due to survey item non-response and
to out-of-scope survey years. Failing to provide an answer to the question about whether an individual was born in the
United States or a foreign country is an example of item non-response. Missing income in 1996 because the individual
was surveyed in the 1990 SIPP panel, which ended before 1996, is an example of missing due to out-of-scope survey
years. The goal of the first step is to impute values for every variable whenever it is missing due to item non-response
or out-of-scope survey years. We call this “completing the data,” because the result of this first step is a set of files
that contain all the original data plus imputed values when the original data were missing. Each one of these files is
then referred to as a “completed” data set.

Regular missing data, which we multiply impute, result from item non-response or an out-of-scope survey year.
Structurally missing data occur when an item is missing due to the logical structure of a set of variables in the survey
or administrative record. Stucturally missing data still exist in our completed and synthetic data–every individual will
not necessarily have a value for every variable. For example, an individual who was born in the United States will
have structurally missing data for the variable that indicates which decade the person immigrated to the United States.
For survey data, structurally missing values occur when the skip logic of the survey dictates that a question is not
appropriate because of the response given to a prior question. Administrative record data have a similar, albeit implicit,
structure. Statisticians usually call such values “structural zeroes.” Structurally missing data are never completed (i.e.,
imputed) because they do not represent missing information. In contrast, regular missing data, which we complete
by multiple imputation, do represent a failure on the part of the survey or administrative records to capture certain
information. In this report we use the term “missing” to mean “missing-to-be-completed” and will explicitly describe
any other data that are missing as “structurally missing.”

Completing data involves choosing a model for each variable with missing data. We used the SRMI methodology
to impute missing values for most of the SIPP variables. The few exceptions are described in 4.5.5 where we give
details about the modeling for each variable. We used the BB technique to handle missing data due to missing
SSNs. When an individual failed to provide an SSN that could be validated, we could not link that individual to the
administrative databases (PCF, SER, DER, and SSA benefits) and, as a result, several hundred administrative variables
were missing. One approach to this problem would have been to use the SRMI methodology to model each individual
administrative variable and impute missing values. However the magnitude of this task and concern about the need to
preserve internal consistency among all the administrative variables, led us to choose the BB completion method for the
SSN variable. This method allowed us to choose an appropriate donor record with a non-missing SSN which provided
the complete set of administrative variables: PCF (birth date, death date), SER and DER (earnings), and MBR (SSA
benefits). Once the SSN had been completed, we treated all administrative data as completed. If a validated SSN
did not have a record in a particular administrative database, we treated these data as structurally missing. In other
words, no Master Beneficiary Record meant the person had not received benefits from SSA under a program that
would generate an MBR record and no DER job records meant the person had not earned federally taxable income
since 1978. Once again, in the completed administrative data, an individual does not have a value for every variable.
But individuals who were originally missing SSNs now have donated SSNs which link to administrative data that is

20



either present or structurally missing.
One important feature of how we applied the BB is worth mentioning. When both members of a married couple

were both missing SSNs, we chose a donor couple based on couple characteristics instead of two separate individual
donors. In this way we hoped to preserve the important effects of marriage on SSA benefits. When only one member
of a couple was missing an SSN, we also chose a donor couple based on couple characteristics but then only used the
donated SSN for the couple member with the missing SSN. By using this method, we were able to choose a donor
donor couple that resembled the couple with the single missing SSN and a donor spouse who looked liked the donee
and was married to someone who looked like the donee’s spouse.

The actual process of completing data is iterative. We begin with a base data set that contains only original, non-
missing data. We then use the BB to complete the SSN and hence the administrative data. Donors are chosen on the
basis of non-missing SIPP variables. This data set serves as the input for the SIPP data completion stage using SRMI.
Models are estimated using originally non-missing dependent variables and any available non-missing explanatory
variables from either the administrative or SIPP data. Variables are modeled beginning with the variable with the least
missing data and progressing to the variable with the most missing data. As models are estimated and missing values
are imputed, the data set is updated to include the imputed values. Hence, for the first variable modeled, almost all
other SIPP variables will have missing values and hence a number of cases will be excluded from the estimation in
this first round. As variables are completed and the data set is updated, there will be fewer and fewer missing values,
and increasingly more cases available for model estimation. The end product of the SRMI process is a data set that
contains completed administrative and SIPP variables.

We then iterate the process. We perform the Bayesian bootstrap again to complete the SSN, this time using the
updated, completed SIPP variables from the end product of iteration 1. We then use SRMI to estimate models for
the SIPP variables again. As in the first iteration, only originally non-missing dependent variables are used in model
estimation. However beginning with the second iteration, the first variable to be modeled uses explanatory variables
from the completed data that was the output of iteration 1. This prevents the exclusion of any cases due to missing
data. The second variable to be modeled uses the most up-to-date values for variable 1, i.e., the values imputed in
iteration 2, and the completed data from iteration 1 for every other variable. The sequential estimation progresses
until the last variable, which uses imputed values from iteration 2 for all explanatory variables. In this manner, the
modeling is always done with the most up-to-date imputed values available, allowing the modeling to improve itself
over iterations. At the conclusion of this second SRMI step, another completed data set is generated which has updated
values for all the SIPP and administrative variables.

As part of the creation of version 3.0 of the preliminary public use file, we performed 8 iterations of missing data
completion as described. As part of the creation of version 4.0 of the preliminary public use file, we performed one
additional iteration of missing data completion. This was done for two reasons. First, our experience modeling vari-
ables over the past year led us to make many improvements that we wished to implement both in the data completion
and data synthesis phases. Second, Yves Thibaudeau, from the Census Bureau Statistical Research Division (SRD),
provided us with new 1996 SIPP data for home equity. These data were the result of an on-going research project at
SRD, sponsored by SSA, to improve the imputation models for some of the variables collected in the wealth topical
module in wave 3 of the 1996 panel. Our hope was that these improved starting data would lead to better models for
our completion and synthesis of the wealth variables.

The SRMI method estimates the posterior distribution of the regression parameters (coefficients and variance of
the error) and draws from this distribution to obtain parameters used to impute values. We impute multiple times,
meaning we take multiple draws from the posterior distribution of the regression parameters. The data product that
results is actually a set of files called the completed data implicates. Each implicate has an identical structure (same
number of observations, variables, etc.) and contains identical data in cases where the information was originally
non-missing. For example, if total net worth was non-missing for 75% of the individuals in the sample, then 75%
of the observations in each implicate file would have identical values for total net worth. The remaining 25% of the
observations would have different values of total net worth across implicate files because of the multiple imputation.
The implicates are generated by 4 separate SRMI processes, which is necessary because of the inter-related nature
of the variables. Once a variable has been completed, its updated value is used as a right-hand-side variable in the
imputation process for other variables. For example, once total net worth has been completed, its updated value will
be used to impute a missing value for total income in 1990. Thus, in order to maintain internal consistency within an
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implicate file, each implicate must be generated separately. For version 4.0, we created four missing data implicates.
Because of the many iterations necessary to complete the data, the majority of the computing time spent creating a

synthetic data set is actually spent dealing with missing values. Once the data are completed and contain no missing
data except for structurally missing items, the final step of actually synthesizing all the data is takes much less time
(i.e., several weeks versus several months). Synthetic implicates are just like completed data implicates except that
every individual has his or her values imputed, variable by variable, conditional on the completed data.8 For example,
in the case of total net worth, in the data completion phase 25% of individuals received imputed values to replace
originally missing data. In the synthesizing phase, 100% of individuals received an imputed value to replace their
original data, whether it was missing or not. Synthesizing data is in essence like doing one more iteration of missing
data completion except everyone’s data has to be completed.

The completed data from the appropriate 9th iteration implicate serve as the input for estimating the PPD used
in the synthesizing phase. SRMI models are estimated using only originally non-missing dependent variables and
completed explanatory variables. Explanatory variables thus contain either original non-missing data or imputed
values from the 9th iteration.9 We take a draw from the distribution of regression parameters and then impute a value
based upon the most up-to-date synthetic data. This means that while the synthetic variables are not used in the model
estimation, they are used to impute other synthetic values. For example, when estimating a model for total income in
1990, the values of total net worth used as explanatory variables would come from the 9th iteration completed data.
However, when taking draws from the posterior predictive distribution for total income in 1990 in order to generate
the synthetic total income 1990 variable, the synthetic value of total net worth would be used if this variable had been
previously synthesized. Otherwise, the value from the 9th iteration of completed data was used.

Each one of the completed data implicates serves as the basis for creating four synthetic implicates. Since there
are four completed data implicates, there are four separate input files to the synthesizing process. Each completed
data implicate then has four distinct modeling steps and produces four separate draws for the regression parameters
and four separate sets of synthesized values. This procedure preserves the internal consistency of each implicate file.
In the end there are 16 synthetic implicates.

4.5 Modeling details

The actual implementation of either a Bayesian bootstrap iteration or an SRMI iteration is controlled by a SAS program
that contains information about every variable and, based on this information, executes the appropriate modeling
routines. The critical information that the analyst must provide for every variable is variable type, parent-child
relationships, restrictions, level, and a set of grouping and conditioning variables to use in modeling. In this section
we define these terms and explain how we assigned values in general. In the next section we list the specific values
chosen for every variable.

4.5.1 Types of variables

The first information the analyst must provide about a variable to be completed and synthesized is the variable type.
There are three major types of variables in the public use file: continuous, binary discrete, and categorical. The
variable type determines which estimation routine will be used for the modeling step. We describe each in turn.

For continuous variables, the imputation model is a normal linear regression, which means that the posterior
predictive distribution is based on the normal/inverted gamma posterior distribution for the parameters of a normal
linear regression. Under an appropriate uninformative or conjugate prior, the posterior predictive distribution for the
variable under study is normal (given the conditioning variables and the standard error of the equation). If the univariate

8Reiter (2004) distinguishes between the models used for the missing data imputation and those used for the synthesis, indicating that these
models should not be the same if different conditions apply to the selection of values to be synthesized as compared to those that are missing.
We fully implemented this distinction. Estimation and sampling from the posterior predictive distribution correctly reflects differences in the
conditioning information. For example, to sample a synthetic birth date, we first estimated the PPD for birth date unconditional on range restictions.
When we sampled from the birth data PPD, we imposed the range restrictions discussed below using accept/reject resampling from the unconditional
PPD.

9This final step of model estimation in the synthesizing phase is in essence a repeat of the estimation done in the 9th iteration of missing data
completion. This is because there is no updating of the explanatory variables. The explanatory variables always come from the completed data
set that was generated in the 8th iteration of data completion. In fact if we had stored the parameter distribution results from the last round of data
completion, we could skip this final model estimation step altogether and use the model results from the data completion phase. However, our
programs are not set up to operate in this manner so this has been left for future research.
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distribution of the variable we are trying to synthesize, yk, differs greatly from conditional normality, the distribution
of the synthetic values will differ from that of the confidential values. To handle this situation, we transform the
confidential data so that they have an approximately normal distribution, estimate the posterior predictive model on
the transformed data, and perform the inverse transformation on the imputed values.

The first step is to obtain an estimate of the unconditional distribution of yk. Since the exact parametric distribution
of yk is unknown, we use a nonparametric estimator; namely, the kernel density estimate K̂. For technical reasons,
the kernel density estimator (KDE) is computed from a Bayesian bootstrap sample of yk, not the exact Gold Standard
copy of yk. The KDE K̂ is estimated separately for each set of grouping variable values. In addition, for each set of
grouping variable values, the transformation is also estimated and applied to other continuous conditioning variables
when appropriate (e.g., if yk is DER earnings this year and one of the conditioning variables is DER earnings next
year, then both variables are transformed by an appropriate KDE estimate of each of their univariate distributions).
Next we use the estimated KDEs to transform the actual dependent variable and any appropriate independent variables
to normality. For each observation yk, obtain the transformed value y′k = Φ−1

(
K̂ (yk)

)
, where Φ denotes the

standard normal CDF. By construction, the y′k have a standard normal distribution. Next, estimate the regression of
y′k on its (possibly transformed) predictor variables to get an estimate of the posterior predictive distribution of y′k.
Sample synthetic values ỹ′k from this posterior predictive distribution. The synthetic values are normally distributed
with conditional mean and variance defined by the regression model.10 After standardizing the ỹ′k to have zero mean
and unit variance, compute the inverse transformation ỹk = K̂−1 (Φ (ỹ′k)) . The imputed values ỹk are distributed
according to K̂, preserving the univariate distribution of the underlying confidential data. Further details of this
procedure can be found in Woodcock and Benedetto (2006).

For binary discrete variables, the PPD is based on the asymptotic posterior distribution of the parameters of a
logistic regression model. As described in section 4.3, we first split our sample of SIPP respondents into homogenous
sub-groups using a set of grouping variables (sometimes called by-variables because they specify the subsets of
observations that will be used for a particular model). Next, we estimated logistic regression models for each sub-
group. We encountered problems with this approach when some sub-groups did not have enough variation to make
the computation of a unique maximum likelihood estimate feasible. In other words, for some sub-groups, there were
some combinations of right-hand-side variables that perfectly determined some value of the dependent variable. This
problem, which is well known in the logistic regression literature see Albert and Anderson (1984), created a continuum
of maximizers and prevented convergence in the algorithm used to maximize the likelihood function.11 Because of
this problem, known as quasi-separation, the results of the logistic regressions were sometimes unreliable and the
coefficients had very large standard errors. The problem of partial ordering of the dependent variable in a logistic
regression, which causes the log likelihood function not to have an interior maximum even though it is globally
concave, is usually handled by respecifying the logistic regression. Failure to do so causes numerous problems with
our synthesizer–in particular, the BIC-based automatic variable selection drops too many variables, if not all of them,
and the draws from the posterior predictive distribution are extremely dispersed.

We believe that we used well-formulated logistical regression models and that none of the conditioning variables
(sometimes called x-variables because they serve as right-hand side variables in the statistical models) had structurally
determined relationships with the dependent variable. Hence, we believe that the quasi-complete separation problem
was actually a sample size issue. Some of the sub-groups were simply too small. If we were to have large enough sub-
group samples, every combination of x-variables and responses would eventually take on some positive probability
for every sub-group. That is, we believe that the problem was sampling zeroes, not structural zeroes. Hence, we
addressed this problem by using an informative prior on the logistic regression probabilities that is implemented
using data augmentation; see Tanner (1996). The augmenting data matrix consists of one record for each potential
combination of discrete conditioning variables and each discrete outcome. This imposes an informative Dirichlet prior
on the space of outcomes of the logistic regression. The augmenting data provide the variation guaranteed to create
a unique estimator for the posterior mode (equivalent to the maximum likelihood estimator in this case). However,

10This explanation is simplified. We take proper account of the inverted-gamma distribution on the standard error of the regression. Our procedure
samples from the posterior distribution of the standard error of the regression, conditional on the sample error sum of squares and degrees of freedom.
The sampled value of the regression equation standard error is used in the conditional normal posterior distribution of the regression coefficients.

11In the SAS logistic regression procedure, this error is reported as the warning for possible “QUASI-COMPLETE SEPARATION OF DATA
POINTS.”
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the effects of the informative prior are dominated by the original data matrix in determining the parameter estimates
except when one of the sampling zeroes occurs in a particular sub-group. Then, the prior distribution ensures a unique
posterior mode.

For categorical variables, the PPD is based on the asymptotic posterior distribution of the parameters of a binary
tree of logistic regression models that are used to model each level of the categorical variable successively as branches
in the binary tree. The categorical variable modeling program looks for an equal split of individuals across categories,
thus lumping some of the original categories together, and then models the probability that a person falls in either the
first group or the second group. Then, within these two groups, another split is done and the probability that a person
falls into one or the other of these subcategories is modeled. The binary tree continues until all the original categories
have been modeled. Finally, the binary tree is synthesized and the synthetic values are used to recreate a synthetic
value of the original categorical variable. For example, when the industry variable with four categories is modeled, the
program might first split people into groups based on those with ind 4cat = {1, 2} and those with ind 4cat = {3, 4}.
It will then split the groups again in order to model ind 4cat = 3 versus 4 and ind 4cat = 1 versus 2. After the
modeling is finished, a new synthesized ind 4cat variable is created that takes on values 1 to 4.

4.5.2 Parent-child relationships and constrained variables

Next the analyst must provide information that appropriately accounts for explicit relationships among the original
variables that need to be preserved in the synthetic data. We have developed two tools for handling these relationships.

Our first tool is to specify parent-child relationships. We define parent variables as those that restrict which
observations of another variable are present and which observations are structurally missing. These parent-child
relations formalize the skip patterns in the SIPP survey instrument and the logical dependencies in the administrative
records. A parent variable determines the universe of observations that are in scope to estimate the model for the
associated child variable and will receive an imputed value following the estimation. If the parent variable indicates
that the child variable is structurally missing (out of the universe) for an individual, then this observation will not be
included in the estimation nor will it receive an imputed value. Instead, it will be set to SAS missing. An example of
this type of relationship can be constructed from the variables foreign born and time arrive usa. Foreign born
is the parent variable and takes a value of zero or one for everyone in the data set. It controls whether an individual
is in scope to have a value for time arrive usa, the child variable. If a person was born outside the US, then that
person should have a value for decade of arrival in the U.S. This value may be originally missing or not, but when
foreign born = 1, the person is in scope to contribute data to the estimation of the model for time arrive usa and
will receive an imputed value for this variable that either replaces the missing data or synthesizes the original data. In
this manner, we can prevent structurally missing data from skewing our modeling and we can also ensure that only the
appropriate people receive a value for time arrive usa. In this example, the child variable is in-scope only when the
parent variable takes a specific value (foreign born = 1). However, the method generalizes so the parent can take
on a range of values. For instance, a person is in-scope to have a value for weeks worked part-time if weeks worked
with pay is greater than or equal to one and less than or equal to five. In other words, as long as weeks worked with
pay is positive, the person is in-scope to have a value for weeks worked part-time. If a person works a full month
but never part-time, that person will have weeks worked with pay equal to four or five (depending on the month) and
weeks worked part-time equal to zero. If a person does not work at all in a month, that person will have weeks worked
with pay equal to zero and weeks worked part-time will be SAS missing.

Our second tool for handling relationships among variables is to place restrictions or constraints on some variables.
Constraints do not restrict which observations are used in estimation nor do they restrict which observations receive
an imputed or synthetic value. Instead, constraints specify a minimum and maximum value that restricts the range of
draws from the posterior predictive distribution. For example, we synthesize birth date for every individual regardless
of the value of any other variables. Thus, there is no parent variable for birth date. However the synthesized value
for birth date must be consistent with the age requirements for any SSA benefits received by an individual. For
example, if the individual began receiving retirement benefits in 1980, he or she must have been born by 1918 at
the latest in order to be at least 62 years old by the time initial retirement benefit receipt. Thus, restrictions are
imposed on birth date by the initial type of benefit and date of initial entitlement variables. Our programs impose
these constraints by calculating what we term “utility variables” that contain these maximum and minimum values for
every constrained variable. When we draw from the posterior predictive distribution for a constrained variable, the
candidate sampled value is compared to the maximum and minimum for this individual and if the candidate draw falls
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outside the specified range, another draw is taken. This comparison and re-sampling is repeated until the candidate
sampled value satisfies the constraints or 100 candidate draws have been performed–at which point the value is set
equal to the closest boundary (i.e., if the value is over the maximum on the 100th candidate draw, it is set equal to the
maximum).

4.5.3 Levels of the parent/child tree

The implementation of the parent-child relationships and the imposition of exact restrictions are accomplished by
assigning every variable a level in the binary tree representing the graph of the parent-child relations. Hence, this
information must be provided by the analyst for every variable. The level governs the order in which the sequential
regression imputation is done. If the variable does not depend (for any reason) on another variable being modeled
first, then it is at the first level, the root of the graph representing the binary tree. Otherwise, a variable must be one
level higher than the highest level of any variables on which it depends, so that estimation occurs when the algorithm
reaches a node with a binary decision or a leaf of the tree (nodes which are not parents of any variable) where the child
variable is not structurally missing. The dependence modeled in the binary tree can be either in the form of a parent-
child relationship or constraints. The variable list is then sorted by level (ascending) and missingness (descending) so
that all first level variables are imputed or synthesized in a given iteration prior to second level variables, etc. In most
cases, any variable with either a parent or restrictions of some type will be either a level two variable or higher.

There are a few exceptions. If a parent variable or a variable imposing a restriction is never missing and will not
be synthesized, then its child variable or constrained variable can still be at level one for purposes of the estimation.

At the outset of each iteration, the values of all parent variables are stored in a separate file, orig parents. Since
a parent variable must be at a lower level in the tree than its associated child variables, in any given iteration, it will
be imputed or synthesized before its children. Once a parent variable has been imputed or synthesizd, the current
iteration file contains the most up-to-date parent values. The previous iteration’s values of the parent variable are still
in orig parents. However, at this point in the iteration cycle (after a parent has been imputed but before its children
have been imputed), the previous iteration’s parent values are the ones that correspond to the most up-to-date child
variable values. Hence, when the programs reach the point at which they must estimate current iteration models
for child variables, they use only observations where the value of the parent variable in orig parents falls in the
aforementioned range for the estimation.

At each level and for every variable, fresh model estimation is used to form the posterior predictive distribution.
However, when actually imputing values (sampling from the PPD), the programs use the most-up-to-date parent vari-
ables to select the observations that will receive values for the children variables. Thus, when the iteration is finished,
the parent and children variables all agree again. Child variables only take on values when their parent variables are
in the appropriate range and all other observations are set to SAS missing to denote structural missingness.

4.5.4 Grouping and conditioning variables

Finally, as described in sections 4.2 and 4.3, the analyst chooses both grouping variables and conditioning variables.
Grouping variables are chosen so that each group meets a minimum size requirement and at the same time contains
people who are as similar as possible. In SRMI models, adding additional grouping variables is very costly in terms
of computational time so the analyst must seek to make a parsimonious but effective list of variables to use for group
stratification. Each unique group, defined by the values of all the variables in the grouping list, has its own posterior
predictive distribution. This is the equivalent of fully interacting every grouping variable with every conditioning
variable. Conditioning variables are used so that within homogeneous groups, important relationships between the
dependent variables and other variables on the file can be preserved.

Problems develop when the grouping variables produce sub-groups that are too small to esitmate a statistically
reliable PPD. We use the rule that the number of observations in any sub-group must be at least 15 times the number
of conditioning variables or 1,000, whichever is greater. To implement this rule, the programs begin with the complete
set of grouping variables, form all possible sub-groups, and then check their sample sizes. Sub-groups that are too
small are collapsed along specified dimensions and then split into sub-groups again, using a list of grouping variables
that is shorter and produces fewer groups. Hence, the analyst actually specifies multiple lists of grouping variables
and conditioning variables for each model. Each set of grouping variables is defined by progressively fewer variables
as variables are dropped in order to create sub-groups of larger sizes. As variables are dropped from the grouping
variables list, they are added to the list of conditioning variables. Hence, each list of conditioning variables becomes
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progressively longer. For example, the analyst might originally use black, male, and age cat expand, an 11 category
age variable, as grouping variables. This would produce 44 groups (2 categories for black, 2 categories for male, and
11 categories for age). The program would form these 44 sub-groups and check the sample size of each group against
the minimum of 15 times the number of conditioning variables. If the analyst included 7 conditioning variables,
each sub-group would need at least max (1000, 105) = 1000 observations. If the analyst included 100 conditioning
variables, then each sub-group would require at least max (1000, 1500) = 1500 observations. Any sub-group that
was large enough would be sent directly to the modeling step using the specified conditioning variables. All groups
that were too small would be combined and then split again using a the next set of grouping variables specified
by the analyst. In this case the analyst might use only black and male as grouping variables and then include
age cat expand in the list of conditioning variables that corresponds to this second list of grouping variables. This
process continues until all the sub-groups meet the minimum observation requirements or until the list of grouping
variables provided by the analyst is exhausted, at which point all groups that are still too small are combined and sent
to the regression modeling step.

As with grouping variables, the initial selection of conditioning variables is dependent on the analyst. However
each time a set of candidate conditioning variables is included in the model for a particular dependent variable in
a particular sub-group, a Bayesian variable selection process is used to reduce the variable list by eliminating vari-
ables that are deemed to have weak relationships with the dependent variable, as measured by the Bayes Information
Criterion (BIC). The analyst controls the criteria for determining the critical BIC (posterior odds ratio for the model
including the variable versus the model excluding the variable) and can make the selection criterion stronger or weaker,
depending on the need to keep fewer or more conditioning variables. In version 4.0, we have considerably weakened
the critical BIC in order to ensure that important conditioning variables were not dropped from the right-hand side of
models.

4.5.5 Specific variable details

We have created an Excel workbook with spreadsheets that give the details of the synthetic data creation procedure for
every variable on the public use file.12 The workbook is attached to this report and should be useful to analysts who
need information about the methods used for any particular variable in the data completion and synthesis phases. We
give the source of each variable (SIPP, IRS/SSA, SSA), whether it contained missing data, whether it was synthesized,
what type of model was used to complete missing data, what type of model was used to create synthetic data, and the
range of values. We list variables that serve as either parents or children and we specify restrictions, if any, imposed
by other variables. We describe any post-processing requirements for the variable, including whether any additional
variables need to be created for the final file. Finally, we provide a link to the set of grouping and conditioning
variables used in the modeling. We also provide this information in Appendix Table A1 which is included with this
report as a separate PDF file. In this section of the report, we describe groups of variables and the modeling techniques
used for the group in both the completion and synthesis phases.

Unsynthesized variables Early discussions among committee members produced a list of variables that would not
be synthesized: gender, race (black/African-American), three categories of education, marital status, three categories
of age, and a link to the record of the spouse at the time of interview. The idea behind unsynthesized variables was
that these would enhance the analytic validity of the synthetic file by preserving some basic individual characteristics.
Unsynthesized variables, however, also provided a very effective matching strategy for anyone trying to link the new
synthetic public use file to the original SIPP public use files. If the unsynthesized variables are used to stratify the
sample and if some combinations produce very small groups of people in the Gold Standard file, then an intruder
attempting to link synthetic data records to already public SIPP files could match these small groups and might be able
to re-identify some individuals in the original SIPP public use files. Thus, this original list of unsynthesized variables
was chosen to minimize the number of cells in the Gold Standard file with fewer than 10 people when cross-classified
by all the unsynthesized variables.

During this final year of the project, the Census Bureau and SSA conducted lengthy discussions about the possi-
bility of including unsynthesized SSA benefit variables on the file. Although these variables were administrative and
hence did not have direct equivalents in the original SIPP survey files, the Census Bureau was concerned that adding
more unsynthesized variables to the file would create even more small cells that would allow a user to link across

12See varlists description version 4 0.xls in the appendix to this report.
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synthetic implicates. If the synthetic implicates were linked, they could be averaged and something resembling the
original record could possibly be re-created. The Census Bureau felt that this possibility presented too much disclo-
sure risk and preferred to keep the number of unsynthesized variables small enough to avoid large numbers of cells
with fewer than 10 people.

Discussions between the two agencies produced the following compromise. Gender, marital status, and the spouse-
link would remain unsynthesized. In addition, we would add two important SSA benefit variables to the unsynthesized
list: type of benefit at time of initial benefit receipt and type of benefit in April 2000. These two categorical variables
quantify fact of receipt as well as the reason and are hence the most fundamental of all the SSA benefit variables.
Thus, the list of unsynthesized variables in the final version of the synthetic public use files is gender, marital status,
initial type of benefit, type of benefit in 2000, spouse initial type of benefit and spouse type of benefit in 2000 (both
created using the unsynthesized spouse link), and the spouse identifier variable.13 The resulting configuration of
unsynthesized variables creates no small cells using only the variables originating from Gold Standard SIPP variables.
Furthermore, there are only approximately 130 cells with fewer than 10 individuals when stratifying using the full list,
which includes the two SSA-provided type of benefit variables that are not present on any current SIPP public use file.
See Table 1 for a full break down of small cells created by various configurations of unsynthesized variables.

The existence of unsynthesized variables requied the imposition of some constraints on other variables. In partic-
ular, receipt of certain types of benefits imposed constraints on an individual’s age at a given point in time and marital
status at the time of the survey imposed constraints on the marital history of an individual. We describe how we
handled these restrictions in sections 4.5.5 and 4.5.5, respectively.

Birth date, death date, and dates of benefit receipt One of the most important variables in the file, from the
perspective of both disclosure risk and usefulness in analyses, is birthdate.14 It was essential that this variable be
adequately protected yet synthesized well enough to reproduce appropriate age distributions for many sub-groups. We
used the administrative value of the date of birth (from SSA administrative records) whenever we could. The admin-
istrative birthdate pcf was missing in cases where the individual did not have a validated SSN and was completed
using the couple-level Bayesian bootstrap described in 4.4. We modeled the variable in the data synthesis phase as
a continuos variable with restrictions. If a person received benefits in April 1, 2000 (tob 2000 = {1, 2, 3, 5, 100}),
we forced the synthetic birthdate to be such that the individual would be appropriately old enough for the benefit
received. Individuals with retirement benefits had to be at least 62 by April 1, 2000, individuals with aged spouse
benefits (tob 2000 = 3) had to be at least 62, individuals with aged widow benefits (tob 2000 = 5) had to be at least
60, and individuals receiving disability benefits (tob 2000 = 2) could not be 65 years old or older. In addition, we
restricted draws for the synthetic birthdate such that it was no more than a year in either direction from the original
administrative birth date (birthdate pcf). So that

birthdate pcf − 365 ≤ birthdate ≤ birthdate pcf + 365

where we note that date variables are measured in days.
Because tob 2000 and tob initial are unsynthesized, further consistency restrictions were imposed on birthdate.

If an individual’s initial benefit types were retired or retired spouse (tob initial = {1, 3}) and unsynthesized date initial entitle
is before April 1, 2000, then birthdate must be consistent with age at April 1, 2000 greater than 62. The reason for this
restriction is that when date initial entitle is synthesized, there will be support for a synthetic value that is consistent
with these types of benefits starting before April 1, 2000. If an individual’s initial benefit types were retired or retired
spouse (tob initial = {1, 3}) and unsynthesized date initial entitle is on or after April 1, 2000, then birthdate
must be consistent with the individual turning 62 (and thus being eligible for these types of benefits) before December

13We did make one change with respect to the gender variable that was necessitated by disclosure risk. The Gold Standard contained 5 married
couples that had the same gender. Due to the unusual nature of these cases, we could not leave gender and marital status unchanged for these
couples without ensuring a link between the synthetic data and the public use SIPP. Hence for these 5 couples, we randomly changed the gender of
one of the spouses. We did so in a manner that allowed the weighted counts of males and females in the synthetic data files to remain close to what
they were before the gender swaps.

14In the synthetic data files there is only one birth date variable: birthdate. In the Gold Standard file, there are two birth date variables:
birthdate pcf , the administrative birth date, and birthdate sipp, the SIPP birth date. The SIPP birth date is only used during the disclosure
avoidance analysis.
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31, 2002.15 The same process is repeated for aged widow benefits (tob initial = 5) using an age cut off of 60. Finally,
for disabled benefits (tob initial = 2) we reverse this procedure to keep birthdate consistent with being less than
65 years old when this type of benefit is collected. If tob initial = 2 and unsynthesized date initial entitle is on
or after April 1, 2000, then the minimum synthetic birthdate is May 1, 1935 so that there is support for a synthetic
date initial entitle on or after April 1, 2000 and the individual would be age-eligible for disability benefits at that
time.

The completed data, which are based on the Gold Standard file and which contain either the matching adminis-
trative data for the individual and his/her spouse or a complete administrative record (all dates, all earnings, and all
benefit variables drawn from the same individual’s administrative records and his/her spouse), exhibit some dating in-
consistencies that are not due to either the missing data imputation or the synthesis. Because age eligibility restrictions
have been imposed in the synthetic data, the synthetic data are cleaner than the completed data; that is, they do not
display as many age-related eligibility anomalies as can be seen in the completed data.

The variable deathdate was completed in a similar manner as birthdate, using the donor chosen in the couple-
level Bayesian bootstrap. This variable was also modeled as a continuous variable during the synthesis phase;
however, we also synthesized whether or not the individual died (flag deathdate exist). The construction of
flag deathdate exist used the existence of a date of death in the PCF as the indicator of death without modifi-
cation.. The synthetic flag deathdate exist is the parent to deathdate. Deathdate was restricted such that the
earliest possible year of death was 1990.

The following constraints on deathdate obviously only pertain to the cases where the synthetic death indicator is
in scope (flag deathdate exist = 1). In the cases where the completed flag deathdate exist = 1, we constrained
the draw of synthetic deathdate to be within 365 days of the completed deathdate. If benefits were received in the
month of April 2000 (tob 2000 > 0), then the minimum value of the synthesized deathdate is April 1, 2000, since we
do not want anyone receiving benefits after death. If there is no benefit amount reported for the entire month of April
2000 (tob 2000 = SAS missing), the initial benefit type is present (tob initial > 0), and the unsynthesized initial
entitlement date is before April 1, 2000 (date initial entitle < April 1, 2000), then deathdate can be no later than
March 31, 2000. Thus, if an individual dies and stops receiving benefits between the initial entitlement date and April
1, 2000, we ensure that the explanation for this loss of benefit is the date of death. If there is no benefit amount reported
for the entire month of April 2000 (tob 2000 = SAS missing), the initial benefit type is present (tob initial > 0), and
the unsynthesized initial entitlement date is on or after May 1, 2000 (date initial entitle >= May 1, 2000), then the
minimum value for deathdate is May 1, 2000. We do this to create support for a draw of the synthetic date of initial
entitlement that is consistent with receiving no benefits in the month of April 2000 and the synthetic date of death.

The final date variable that we completed and synthesized was year of initial entitlement to SSA benefits (date initial entitle).
Both completion and synthesis were done in the same manner as the birthdate and deathdate variables. The restric-
tions on the initial entitlement variable were derived from the draws for the synthetic birthdate and deathdate as
well as from the type of benefit variables. If initial type of benefit was retired worker (tob initial = 1), then year
of initial entitlement had to be at least 62 years (actually 62 × 365.25 days) from the synthetic birthdate value.
For other types of initial benefits we imposed the following restrictions: at least 62 years old for aged spouses
(tob initial = 3), at least 60 years old for aged widows (tob initial = 5), and less than 65 years old for dis-
abled workers (tob initial = 2)). Date of initial entitlement had to be before deathdate and before April 1, 2000 if
type of benefit 2000 indicated benefit receipt at this point in time. If no benefits were received in April 2000, then
date of initial entitlement had to be after April 2000. Hence, date of initial entitlement did not cross the April 2000
boundary. We made two additional restrictions. Because the MBR file did not provide benefit amounts prior to 1962,
we did not allow date of initial entitlement to cross the January 1962 boundary. This allowed us to leave the monthly
benefit amount variable missing for those with a synthetic (and original) date of initial entitlement prior to January
1962. Finally we restricted draws for date initial entitle such that the synthetic value was forced to be no more
than 2 years in either direction from the original value.

Administrative earnings After completing missing SER and DER data using the couple-level Bayesian bootstrap,
the administrative earnings variables were synthesized in two parts. We first modeled whether the SIPP individual had
positive earnings in a given year and then only modeled actual earnings for those with a positive earnings indicator.

15In Version 4.0 of the Gold Standard and SIPP/SSA/IRS-PUF the SSA MBR data end with calendar year 2002, even though the earnings data
end with calendar year 2003. This separation is due to the schedule of extract updates maintained between the Census Bureau and SSA.
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Thus, the earnings indicator was the parent variable and the actual earnings variable was the child. We synthesized
the earnings indicators using a Bayesian bootstrap, done one year at a time. We used leads and lags for previous and
future years as grouping variables as well as demographic variables and summary earnings measures. We began with
SER earnings (capped at the FICA maximum) in 1951. Using the bootstrap, we created a synthetic value for every
individual for the variable ser posearn 1951. For those with ser posearn 1951=1, we then used a bootstrap to create
a synthetic value for whether each individual had reached the FICA taxable maximum in 1951 (ser maxearn 1951).
For those with ser maxearn 1951 = 1, we automatically set totearn ser 1951 equal to the maximum. For those
with ser maxearn 1951 = 0, we modeled earnings using our continuous variable techniques, including the two-
sided KDE transform. After 1951 was completed, we moved to 1952 and repeated the process. When creating
grouping variables for 1952, we used the new synthetic values for 1951 and the completed data for 1953 and after.
We moved through the entire array in this manner until the year 1978.

The DER array of earnings begins in 1978. Beginning with this year, we synthesized total earnings. We used
a similar process to the one used for the SER earnings except that we synthesized four separate time series: non-
deferred total earnings at FICA covered jobs (nondefer der fica {year}), deferred total earnings at FICA covered
jobs (defer der fica {year}), non-deferred total earnings (nondefer der nonfica {year}) at non-FICA covered
jobs, and deferred total earnings at non-FICA covered jobs (defer der nonfica {year}). After each year of DER
earnings was synthesized, we calculated SER earnings as the lesser of total non-deferred and deferred earnings at
FICA covered jobs or the FICA taxable maximum:

totearn ser {year} = min(taxmax, nondefer der fica {year}+
defer der fica {year})

This process was continued until 2003, the last year of available earnings data.
One final constraint was imposed on the SER and DER earnings arrays. Earnings could only be positive in years

where the individual was at least 15 years old and in years up to and including date of death.

Social Security benefits We synthesized two SSA benefit variables: monthly benefit amount for the month of initial
entitlement and monthly benefit amount for April 2000. Each of these variables was the child of the corresponding type
of benefit variables. Only individuals with a positive initial type of benefit received a synthesized value for the initial
MBA (mba initial) and likewise for mba 2000. However since neither type of benefit variable was synthesized, the
set of people with positive mba initial and mba 2000 values was the same in the completed and synthetic data. Both
MBA variables were synthesized using continuous variable methods and were restricted such that synthetic values had
to be no more than $50 less than or greater than the original values:

mba initial(completed)− $50 ≤ mba initial(synthetic) ≤ mba initial(completed) + $50.

and similarly for mba 2000.
Once the synthetic data files had been created, we created two additional variables that were direct derivatives

of SER earnings: Average Indexed Monthly Earnings (AIME) or Average Monthly Wage (AMW ) and Primary
Insurance Amount (PIA). The AIME/AMW calculation is the method used to summarize a person’s lifetime
earnings in order to make OASDI benefit calculations. The AIME/AMW is used to calculate the PIA, which in
theory tells what benefit a person receives. However, additional rules about spouses, children, family maximums,
etc., mean that the actual monthly benefit amount often differs from the PIA. The precise calculations for the
AIME/AMW and the PIA depend on a person’s gender, date of birth, type of benefit sought, and year of application.
The rules governing these calculations are quite complicated (partly because they change a great deal over time) and
depend on many things not necessarily observable in our data set. The PIA is an actual variable on the SSA Master
Beneficiary File (MBR), but the decision was made by SSA and the Census Bureau not to synthesize this variable or
include it on the file, primarily because of concerns that it would be inconsistent with the synthetic SER earnings array.
Instead, it was decided that the AIME/AMW and the PIA would be calculated directly from the synthetic earnings
using a simplified set of rules.

For individuals who reached age 62 before 1979, we calculated the AMW and for those who reached age 62 after
1979, we calculated the AIME. To compute the AMW , we first calculated the number of years between age 21
(or 1951 if later) and age 62, subtracted five years, and multiplied by 12 to get the number of months at risk. We
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then summed earnings between age 21 and age 62, dropping the five lowest years. Total summed earnings were then
divided by the number of months at risk to give the Average Monthly Wage. There was one exception. For men (but
not women) born before 1911, the calculation was performed using the years between age 21 and age 65 because the
retirement age for men was three years older prior to 1973. The AIME calculation was essentially the same as the
AMW but earnings were indexed to the year in which the individual turned 60.

Once the AIME/AMW had been calculated, the PIA was determined by applying the cut-off points and per-
centages applicable for the year of initial entitlement to benefits. In a given year, a% of the first X dollars of the
AIME formed the initial portion of the PIA. The b% of the next Y dollars formed the next portion and c% of the
next Z dollars formed the final portion. The sum of these three portions was the PIA. Prior to 1979, the cut-off
points stayed constant across years and the percentages changed. Post 1979, the cut-offs changed every year while
the percentages stayed constant. We used tables 2.A8, 2.A10, 2.A11, and 2.A16 from the SSA Statistical Supplement
2005 to make these calculations and consulted with Barbara Lingg at SSA to clarify details.

It is important to note that we calculated the AIME/AMW and the PIA for individuals based on the assumption
that they were applying for retired worker benefits. We did not make separate calculations for individuals who
received disability, spouse, or death benefits. Thus the AIME/AMW and PIA on the file will not correspond to the
MBA for types of benefits other than retired worker. However, since the AIME/AMW and PIA do not contain
any additional information and are direct calculations based on other variables in the file, any researcher interested in
performing a different calculation may do so. We include these two variables solely for the convienence of retirement
researchers.

SIPP time series arrays The synthetic data includes 13 time series of SIPP variables: weeks with pay, weeks part-
time, total annual hours, family poverty cut-off, family total income, personal total income, personal total earnings,
family welfare participation, family welfare income, private health program participation, private health program
income, general health insurance coverage, employer-provided health insurance coverage. In addition, weeks with
pay, weeks part-time, annual hours, family income, personal income, and personal earnings have corresponding arrays
of indicator variables that serve as parent variables and tell whether the continuous variable takes on a value or not.
We use a Bayesian bootstrap to complete and synthesize all the indicator arrays. We then use continuous variable
methods to complete and synthesize the remaining variables with the indicators serving as parent variables.

Wealth variables In modeling the wealth variables (total networth, own home indicator, home equity, and non-
housing wealth), we create a set of flags to indicate whether the three continuous variables are non-zero. We then use
a Bayesian bootstrap to complete and synthesize these three flags together with the home ownership indicator. These
four variables are bootstrapped as a group to ensure consistency. We then use the three flags as parents of the three
continuous variables. Using our continuous variable techniques, individuals are modeled to have a value of each of
the three wealth variables only if the the appropriate flag indicates a non-zero value.

Marital history variables The challenge in synthesizing the marital history variables was to ensure that the historical
variables were consistent with the reported marital status and with each other. To accomplish this, we used a Bayesian
bootstrap to both complete and synthesize marital history variables. We first bootstrapped a group of variables that
summarized the history (mh category, number of marriages, number of divorces, and married at end of history)
using marital status as one of the grouping variables. This guaranteed that individuals would receive donated values
of mh category and the three other summary variables only from other individuals with the same marital status so
no inconsistencies would arise. We then used an additional Bayesian bootstrap for flag mar4t with mh category
as one of the grouping variables. Once these variables had been modeled, we created a set of indicator flags that
indicated whether the individual should have an age at time of first marriage, duration of first marriage, duration of
end of first marriage, duration of second marriage, duration of end of second marriage, duration of third marriage,
duration of end of third marriage, and duration of fourth marriage based on the events that occurred in his or her
history. Individuals with at least one marriage in their history were modeled to have an age at time of first marriage.
Individuals whose first marriage had ended were modeled to have a duration of first marriage and duration of first
marriage end. Individuals with at least two marriages were modeled to have a duration of end of first marriage (i.e.,
time between first and second marriages) and duration of second marriage and so on until the fourth marriage. The
age and duration variables were modeled using our continuous variable techniques and were children of the indicator
flags.
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After the synthesizing was finished, we post-processed these data to create the mh1-mh7 flags that report the
same information as mh category. We used the age at time of first marriage and the duration variables to create the
ages at time of each marital history event. To accomplish this, we first summed all the synthetic duration variables to
create a total duration and calculated what percentage of the total duration was accounted for by each particular spell.
For example, if the individual had 2 marriages, with the second marriage on-going, we calculated what percentage
of the total duration was made up of the first marriage duration, time between first and second marriage, and second
marriage duration. We took the time period between age at time of first marriage and 2003 (end of our administrative
data) and divided it into marital event intervals using the percentages. To continue our example, if age at time of first
marriage was 25 and (based on birthdate) occurred in 1983, then the total time period was 20 years which would
need to be divided between duration of first marriage, interval between first and second marriages, and duration of
second marriage. If according to the modeled durations, the first marriage accounted for 50% of the time, the interval
between marriages accounted for 25% of the time, and the second marriage accounted for 25% of the time, then age
at time of first marriage ending would be 35 (1993) and age at time of second marriage would be 40 (1998).
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5 Weight Creation and Synthesis
5.1 Introduction and background

The creation of a unique new public use file that combines SSA/IRS administrative data with extracts from five separate
SIPP panels required many special efforts to insure that the final product would be analytically valid. One concern that
arose early in the process was how to provide researchers with proper weights for a file that pooled survey respondents
from five separate samples. There are design instructions that explain how to combine the official SIPP weights
when using panels that contain overlapping years in order to produce estimates that are representative of a known
universe at a specific date, but the existing SIPP public use files do not contain the information needed to create a
weight that is appropriate for pooling all of the panels into a single analysis. When longitudinal administrative data are
linked to these SIPP panels, every observation potentially contributes data to any time period; therefore, the problem
of constructing an appropriate weight was integral to permitting these data to be used to make national estimates.
In addition, because the different SIPP panels over-sample low income individuals and other targeted demographic
groups at different rates, the pooled survey data can only be used to make estimates about the U.S. population if an
appropriate weight is used in analyses. Thus, one of the stated objectives of the SIPP/SSA/IRS-PUF project was to
create a weight for the five merged SIPP panels where each SIPP person’s weight indicated how many persons in the
reference population that individual represented. The designated reference population is all individuals age 18 or older
in the civilian non-institutionalized U.S. population as of April 1, 2000, the reference date for Census 2000.

In order to determine how many people in the reference population each SIPP person represented, we used the
1996 SIPP sampling plan as our guide and divided the Decennial reference population into the same strata (i.e.,
groups) from which SIPP individuals were originally sampled. We then located each SIPP individual in the Decennial
reference population. Once we knew how many SIPP people were in each stratum, the preliminary weight calculation
was straight forward: each SIPP person’s weight equals the number of Decennial persons in that particular stratum
divided by the number of SIPP persons in the same stratum. For example, if the tenth stratum contained 100 Decennial
persons and two SIPP sample individuals, then each SIPP person in the tenth stratum received a preliminary weight
of 50=100/2. The final weight was calculated by raking the preliminary weight to match official U.S. civilian non-
institutional population estimates as of April 1, 2000 based on the same control total categories used for the 1996 SIPP
weights in the current public use files. The validity of the final weight was tested by computing univariate statistics for
key SIPP and SSA variables and comparing them to independently derived estimates from other sources. The results
of this testing are reported in Table 2.

In order to locate SIPP individuals in the Decennial reference population, we linked the two data files using the
PIK, a unique Census person identifier that replaces the SSN, and which has been added via probabilistic record linking
to the Census 2000 micro-data files. For about two-thirds of the individuals in the Gold Standard SIPP file, the PIK
link was successful. For the remaining one-third of SIPP individuals, it was not possible to locate an exact match in
the Decennial reference population. This occurred either because these SIPP individuals did not provide an SSN to the
SIPP survey (and therefore had no PIK) or their PIK did not successfully match to an individual in the Census 2000
micro-data. Of the 263,793 individuals in version 4.0 of the Gold Standard file, 177,165 matched exactly to a Census
2000 reference person by PIK. The other 88,628 SIPP individuals were matched to a Census 2000 reference person
using probabilistic record linking.

The strata from the SIPP sampling plan had several levels. The first stratification level (or grouping level) was
Primary Sampling Units (PSUs), which were created by grouping geographic counties together. The SIPP Survey
Design Branch (SIPPSDB) in the Demographic Statistical Methods Division (DSMD) provided us with a file that
assigned geographic counties to PSUs. Large counties were assigned a unique PSU while smaller counties were
grouped together to form a single PSU. The second stratification level was by stage-1-clusters, which were simply
created by grouping PSUs together. Some PSUs were self-representing, meaning that they were the only PSU in their
stage-1-cluster and were sampled with certainty. Other PSUs were non-self-representing, meaning they were grouped
with other PSUs and were sampled with probability less than one. The SIPP Survey Design Branch provided us with
a file that assigned the 1,928 PSUs to 217 stage-1 clusters. These stage-1 clusters were then used to select PSUs from
which individuals would be sampled. Once PSUs were selected, individuals in high poverty strata were over-sampled
in each selected PSU. Therefore, our final stratification level was defined by whether an individual was in the high
poverty stratum or the low poverty stratum according to the definitions of high and low poverty in the SIPP Sampling
Plan. The final stratification which combined the location of an individual in a stage-1-cluster and a poverty stratum
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was called a stage-2-cluster. The number of SIPP and Decennial persons in each stage-2 cluster was used to calculate
the preliminary weight according to the above formula. Raking was then applied directly to the preliminary weight to
create the final weight. Finally, a synthetic version of the weight was created for each of the synthetic implicates.

The rest of this subsection provides the details of this weight creation process. We begin by giving a summary of
each of the seven main steps in the process. This summary is meant to give the reader a general idea of how the weight
was created before we present the details. Following the summary, parts A-G give careful descriptions of exactly how
each step was performed.

5.2 Summary of the weight creation process

Our method for creating an ex-post weight for the merged SIPP panels involved seven steps. Parts A and B describe
the method of creating the Census 2000 reference population and dividing it into strata according to the 1996 SIPP
Sampling Plan. Parts C and D do the same for the SIPP, describing the method by which the SIPP was divided
into strata according to the 1996 SIPP Sampling Plan. Part E describes the method by which each SIPP person was
located in the Decennial reference population. Part F describes the creation of the preliminary weight according to the
formula mentioned above. Part G describes the creation of the final weight by raking (i.e., adjusting) the preliminary
weights to agree with official U.S. population control totals for the sex/age/race/ethnicity demographic breakdown of
the reference population, as supplied by the Census Bureau’s Population Estimates Division. The next two subsections
(5.11 and 5.12) describe some geography and birth date issues that arose during the weight creation process. The next
subsection (5.13) discusses the overall evaluation of the Gold Standard weight, and the final two subsections (5.14
and 5.15) describe the creation of the synthetic weight and discuss the results of the analytical validity testing of this
weight.

5.2.1 Part A: Creation of poverty stratification variable for Census 2000 records

Part A describes the creation of a poverty stratification variable for Census 2000 records according to original 1996
SIPP stratification rules. Households were assigned to a poverty stratum based on either household income or house-
hold composition. For long form households (Sample Census Edited File, SCEF), an income variable was available
and households/records were assigned to the high poverty stratum if 1999 household income was below 150 percent
of the poverty threshold. For long form respondents for whom income data was not available and for short form
respondents (Hundred percent Census Edited File, HCEF), household composition was used to proxy poverty status.
A household was assigned to the high poverty stratum if it had any of six characteristics such as a black householder
under age 18 or over age 64 (see 5.3 below for the full list of characteristics).

5.2.2 Part B: Creation of stage-2 clusters for Census 2000 records

Part B describes the methods by which counties were assigned to PSUs, PSUs were assigned to stage-1 clusters,
and stage-2 clusters were created for the Census 2000 records. This section also describes the manner in which
the Decennial reference population was created by only including decennial records that were in the civilian, non-
institutionalized U.S. population ages 18 and older on April 1, 2000.

5.2.3 Part C: Creation of poverty stratification variable for SIPP records

Part C is analogous to Part A for the SIPP. It describes the creation of a poverty stratification variable for SIPP records
according to the original SIPP stratification rules. Households were assigned to a poverty stratum in the same manner
as they were for the Decennial records.

5.2.4 Part D: Creation of stage-2 clusters for SIPP records

Part D is analogous to Part B for the SIPP. It describes the methods by which counties were assigned to PSUs, PSUs
were assigned to stage-1 clusters, and stage-2 clusters were created for the SIPP records.

5.2.5 Part E: Matching SIPP individuals to the Census 2000 records

Part E describes the methods by which SIPP persons were located in the Census 2000 reference population. There were
263,793 individuals in the SIPP Gold Standard file, 177,165 of which were matched exactly by PIK to a Decennial
record. The remaining 86,628 SIPP records were matched by a probabilistic record linking method to an in-scope
Census 2000 record (i.e., a record determined to be in the reference population) in the following manner. Each SIPP
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person was first assigned a set of Decennial candidate records (candidates for a match) that agreed exactly with that
SIPP record’s values for each variable in a set of blocking variables. Then, one of the Decennial candidates was chosen
as a match for the SIPP record based on how closely that Decennial record’s values agreed with that SIPP record’s
values for each variable in a set of matching variables. There were two blocking passes through the data. The first
blocking pass used 6 blocking variables and 7 matching variables (see 5.8 below for the complete list). Any SIPP
record that had 30 or fewer Decennial candidates was considered unmatched and sent through the second blocking
pass, which used 3 blocking variables and 10 matching variables.

5.2.6 Part F: Creation of a preliminary weight

Part F describes the calculation of the preliminary weight using Census 2000 stage-2 cluster counts and SIPP stage-2
cluster counts, and the formula above: preliminary weight equals the number of records in Decennial stage-2 cluster
divided by the number of records in SIPP stage-2 cluster. This preliminary weight was the same for all SIPP records
in a particular stage-2 cluster.

5.2.7 Part G: Creation of final weight

Part G describes the creation of the final weight by raking (i.e., adjusting) the preliminary weights to agree with
population control totals for the demographic breakdown of the reference population as provided by the Population
Estimates Division. The reference date for the population control totals was April 1, 2000. The list of groups to
which the weights were controlled (e.g.., black males ages 19-24, black males ages 25-29, etc.) was provided by SIPP
Survey Design Branch and was the same as the list of population subgroup totals used for raking the original 1996
SIPP weights.

5.3 Part A: Creation of poverty stratification variable for Census 2000 records

We first created the variables that were needed to define poverty status of individuals and households in the SIPP
unit frame. The SIPP had four other sampling frames in addition to the unit frame: Area, New Construction, Group
Quarters, and Coverage Improvement. However, in the 1996 SIPP panel approximately 80% of records came from the
unit frame. Therefore, due to the extraordinary amount of work involved in identifying the stratification rules for the
other four sampling frames, we only created the poverty stratification variable according to the unit frame and assumed
everyone came from the unit frame. Construction of the necessary poverty-defining variables was different depending
on whether the individual completed the Census 2000 short or long form.

5.3.1 Data sources for short-form respondents

For individuals completing the short-form, we took relevant geographic and demographic information from two HCEF
data files, namely a person-level file and a block-level file. From the person-level file we obtained indicators for
householder, child of householder, spouse of householder, gender, black, Hispanic, age groups (<18, 18-64, >64; and
<18, 18-62, >62), birth date, and geography (state, county, approximate tabulation geography). From the block-level
file we obtained county, state, population count, housing count, and place code by geocodecoll (unique collection block
identifier). We then used the person-level data to create a housing-unit file that contained an indicator for family-type
housing versus group quarters, a count of persons living in family-type housing, number of children under age 18,
householder information (female, black, Hispanic, age: <18, 18-64, >64), and an indicator variable for households
with a female householder and no spouse present. Also, in cases where no person was assigned to be the householder
(e.g., group quarters have no householder in the Decennial), we assigned the oldest person to be the householder. This
file was then merged to each person’s record.

5.3.2 Data sources for long-form respondents

Information about long-form individuals came from three SCEF data files: block-level, housing-unit level, and person-
level files. From the person-level file we obtained the same demographic and geographic variables as from the short-
form: indicators for householder, child of householder, spouse of householder, gender, black, Hispanic, age groups
(<18, 18-64, >64; and <18, 18-62, >62), birth date, state, county, and approximate tabulation geography. In addition,
we obtained information on education (college, some high school) and income (total annual personal income, 1999).
From the block-level file we also obtained the same variables as from the short-form: county, state, population
count, housing count, place code by geocodefull (unique tabulation block identifier) as well as housing counts and
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population counts. Finally, from the housing-unit file we obtained an indicator for family-type housing versus group
quarters, count of persons living in family-type housing, number of children under age 18, and an indicator for monthly
rent below $300. We also used the person-level data to create some additional housing-unit information, in particular
an indicator for family-type housing versus group quarters, count of persons living in family-type housing, number of
children under age 18, householder information (female, black, Hispanic, age: <18, 18-64, >64), and an indicator
variable for households with female householder and no spouse present. In cases where no person was assigned to be
the householder (e.g., group quarters have no householder in the Decennial), we assigned the oldest person to be the
householder. Using the person-level income variable, we created a variable for total annual housing unit income in
1999. All household information was again attached to each person’s record.

5.3.3 Data source for MSA variable

The Population Division provided us with a file that included an indicator for “Living in a central city (MSA)”. This
indicator was merged to the Census 2000 records by state, county, and Census place code. Accordingly, 82,249,968
persons lived in a central city and there were 636 unique central cities.

5.4 Poverty stratum assignment

Households were assigned to strata based on income and household composition. Long-form households for whom
an income variable was available were assigned to the high poverty stratum if 1999 household income was below 150
percent of the poverty threshold for that household type. The following list gives the poverty thresholds for various
household types.

· if one-person-housing-unit, age of householder <=64 years, and no children under 18 years then poverty
threshold 1999(hhpov1999)=8667;

· else if one-person-housing-unit, age of householder >64, and no children under 18 years then poverty thresh-
old 1999 =7990;

· else if two-person-housing-unit, age of householder <=64 years, and no children under 18 years then poverty
threshold 1999 =11156;

· else if two-person-housing-unit, age of householder >64, and no children under 18 years then poverty thresh-
old 1999 =10070;

· else if two-person-housing-unit, age of householder <=64 years, and 1 child under 18 years then poverty
threshold 1999 =11483;

· else if two-person-housing-unit, age of householder >64, and 1 child under 18 years then poverty threshold
1999 =11440;

· else if three-person-housing-unit and no children under 18 years then poverty threshold 1999 =13032;
· else if three-person-housing-unit and 1 child under 18 years then poverty threshold 1999 =13410;
· else if three-person-housing-unit and 2 children under 18 years then poverty threshold 1999 =13423;
· else if four-person-housing-unit and no children under 18 years then poverty threshold 1999 =17184;
· else if four-person-housing-unit and 1 child under 18 years then poverty threshold 1999 =17465;
· else if four-person-housing-unit and 2 children under 18 years then poverty threshold 1999 =16895;
· else if four-person-housing-unit and 3 children under 18 years then poverty threshold 1999 =16954;
· else if five-person-housing-unit and no children under 18 years then poverty threshold 1999 =20723;
· else if five-person-housing-unit and 1 child under 18 years then poverty threshold 1999 =21024;
· else if five-person-housing-unit and 2 children under 18 years then poverty threshold 1999 =20380;
· else if five-person-housing-unit and 3 children under 18 years then poverty threshold 1999 =19882;
· else if five-person-housing-unit and 4 children under 18 years then poverty threshold 1999 =19578;
· else if six-person-housing-unit and no children under 18 years then poverty threshold 1999 =23835;
· else if six-person-housing-unit and 1 child under 18 years then poverty threshold 1999 =23930;
· else if six-person-housing-unit and 2 children under 18 years then poverty threshold 1999 =23436;
· else if six-person-housing-unit and 3 children under 18 years then poverty threshold 1999 =22964;
· else if six-person-housing-unit and 4 children under 18 years then poverty threshold 1999 =22261;
· else if six-person-housing-unit and 5 children under 18 years then poverty threshold 1999 =21845;
· else if seven-person-housing-unit and no children under 18 years then poverty threshold 1999 =27425;
· else if seven-person-housing-unit and 1 child under 18 years then poverty threshold 1999 =27596;

35



· else if seven-person-housing-unit and 2 children under 18 years then poverty threshold 1999 =27006;
· else if seven-person-housing-unit and 3 children under 18 years then poverty threshold 1999 =26595;
· else if seven-person-housing-unit and 4 children under 18 years then poverty threshold 1999 =25828;
· else if seven-person-housing-unit and 5 children under 18 years then poverty threshold 1999 =24934;
· else if seven-person-housing-unit and 6 children under 18 years then poverty threshold 1999 =23953;
· else if eight-person-housing-unit and no children under 18 years then poverty threshold 1999 =30673;
· else if eight-person-housing-unit and 1 child under 18 years then poverty threshold 1999 =30944;
· else if eight-person-housing-unit and 2 children under 18 years then poverty threshold 1999 =30387;
· else if eight-person-housing-unit and 3 children under 18 years then poverty threshold 1999 =29899;
· else if eight-person-housing-unit and 4 children under 18 years then poverty threshold 1999 =29206;
· else if eight-person-housing-unit and 5 children under 18 years then poverty threshold 1999 =28327;
· else if eight-person-housing-unit and 6 children under 18 years then poverty threshold 1999 =27412;
· else if eight-person-housing-unit and 7 children under 18 years then poverty threshold 1999 =27180;
· else if >=9-person-housing-unit and no children under 18 years then poverty threshold 1999 =36897;
· else if >=9-person-housing-unit and 1 child under 18 years then poverty threshold 1999 =37076;
· else if >=9-person-housing-unit and 2 children under 18 years then poverty threshold 1999 =36583;
· else if >=9-person-housing-unit and 3 children under 18 years then poverty threshold 1999 =36169;
· else if >=9-person-housing-unit and 4 children under 18 years then poverty threshold 1999 =35489;
· else if >=9-person-housing-unit and 5 children under 18 years then poverty threshold 1999 =34554;
· else if >=9-person-housing-unit and 6 children under 18 years then poverty threshold 1999 =33708;
· else if >=9-person-housing-unit and 7 children under 18 years then poverty threshold 1999 =33499;
· else if >=9-person-housing-unit and >= 8 children under 18 years then poverty threshold 1999 =32208;
When income data were not available for long-form households, household composition was used to proxy poverty

status. A household was assigned to the high poverty stratum if it had any of the following characteristics:
1) Female householder with children under 18 and no spouse present;
2) Living in a central city of a MSA and renter with rent less than $300;
3) Black householder and living in a central city of a MSA;
4) Hispanic householder and living in a central city of an MSA;
5) Black householder and householder less than age 18 or greater than 64;
6) Hispanic householder and householder less than age 18 or greater than 64.
Since short form respondents did not report income, the available household composition was used to proxy

poverty status.
1) Female householder with children under 18 and no spouse present;
2) Black householder and living in a central city of an MSA;
3) Hispanic householder and living in a central city of an MSA;
4) Black householder and householder less than age 18 or greater than 64;
5) Hispanic householder and householder less than age 18 or greater than 64.
There were a total of 285,230,516 Decennial records, 64,493,265 of which were placed into the high poverty

stratum, and 220,737,251 into the low poverty stratum.

5.5 Part B: Creation of stage-2 clusters for Census 2000 records

In order to group all Decennial individuals into the same stage-2 clusters for SIPP sampling, we first added SIPP
sampling frame information to all Census 2000 records. The SIPP Survey Design Branch provided us with several
files and memos containing SIPP sampling information. These files assigned Primary Sampling Units (PSUs) to
geographic entities (mostly counties, with smaller counties grouped together to form a PSU); determined which PSUs
were in the same risk pool to be sampled (i.e., in the same stage-1 cluster); and reported which PSUs were in actuality
sampled. Thus, the SIPP sampling frame information allowed us to begin with state and county information from the
Decennial file and assign every Decennial record to a stage-1-cluster. We then combined the stage-1 cluster with the
poverty stratum created in Part A and created stage-2 clusters.
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5.5.1 Creation of PSUs

The original file containing the mapping between state/county and PSUs had 3,141 unique state/county observations
and 1,928 unique PSU values. However, at this point we encountered a problem caused by the fact that SIPP sampling
for the 1990s panels was based on 1990 geography definitions. Since we were creating weights with a reference point
of April 1, 2000 and were linking to Census 2000, we needed to extrapolate the 1990 SIPP sampling frame to the year
2000. We therefore needed to take account of the county changes between 1990 and 2000. During that time period
several counties were deleted/added/changed in such a way that their geographic changes needed to be addressed.

· Alaska: Denali (02-068) was created from part of the Yukon-Koyukuk Census Area (02-290) and an un-
populated part of the Southeast Fairbanks Census Area (02-240) in December 1990. Given that there were very few
people in the area that was taken from the Southeast Fairbanks Census Area, Denali was assigned the same PSU as
Yukon-Koyukuk. Yukon-Koyukuk Census Area and Southeast Fairbanks Census Area had different PSUs, but were
in the same stage-1-cluster.

· Alaska: Skagway-Yakutat-Angoon Census Area (02-231) was split to create the Skagway-Hoonah-Angoon
Census Area (02-232) and Yakutat City and Borough (02-282) in September 1992. Both new counties were assigned
the PSU value of Skagway-Yakutat-Angoon Census Area and its stage-1-cluster code.

· Florida: Dade County (12-025) was renamed as Miami-Dade County (12-086) in November 1997. The
county codes just needed to be changed for 2000.

· Montana: Yellowstone National Park (30-113) was annexed to Gallatin (30-031) and Park (30-067) counties
in November 1997. Park County and Yellowstone National Park were assigned in 1990 to the same PSU and stage-1-
cluster, Gallatin was assigned to a different PSU and stage-1-cluster. Because most people were moving to Park County
from Yellowstone National Park and only very few people were living in Yellowstone National Park, no changes were
made to the sampling frame, except that the record for Yellowstone National Park was taken out.

· Virginia: South Boston City (51-780) changed to town status and was added to Halifax County (51-083) in
June 1995. In 1990 both South Boston City and Halifax County belonged to the same PSU. Therefore the change in
county status was irrelevant for the assignment of counties to PSUs. The county code just needed to be changed.

The changes outlined above resulted in 2 additional state/county records and in the deletion of 2 other state/county
records.

5.5.2 Creation of stage-1 clusters

The SIPP Survey Design Branch provided us with a file that assigned the 1,928 PSUs to 217 stage-1-clusters that were
used to select PSUs to be sampled. Memos given to us provided the information about the PSUs that were actually
sampled from. We merged that information onto the Census 2000 data by PSU.

5.5.3 Creation of stage-2 clusters

The Census 2000 file now held information on the 217 stage-1-clusters and on poverty status. The poverty variable had
two values, high and low, and, hence, our final grouping of Decennial records contained 434 different stage-2-clusters.

5.5.4 Dropping Census 2000 records that were out-of-scope for SIPP samples

Because of the differing nature of a census and a program survey, we recognized the need to exclude some Decennial
records as out-of-scope to be sampled for the SIPP. The SIPP Quality Profile 1998, third edition states:

The survey population for SIPP consists of persons resident in United States households and persons
living in group quarters, such dormitories, rooming houses, religious group dwellings, and family-type
housing on military bases. Persons living in military barracks and in institutions, such as prisons and
nursing homes, are excluded ... The survey population for the SIPP consists of adults (ages 15 and older)
of responding households at the first interview. Each original sample member is followed until the end
of the panel or until the person becomes ineligible (by dying, entering an institution, moving to Armed
Forces barracks, or moving abroad) or leaves the sample. (page 17)

Several groups of the U.S. population that were counted in the Decennial but were out-of-scope for the SIPP
based on the above definition and therefore were not considered when calculating the final weight. Accordingly, the
following groups were not counted in the strata for the Decennial files:
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1. Residents of the commonwealth of Puerto Rico, and residents of the outlying areas under U.S. sovereignty
or jurisdiction (principally American Samoa, Guam, Virgin Islands of the U.S., and the Commonwealth of the Northern
Mariana Island). This restriction excluded 3,808,610 persons.

2. Residents living in institutional group quarters: persons residing in correctional and juvenile institutions
and nursing homes. This restriction excluded an additional 4,059,039 persons.

3. Residents living in non-institutional group quarters: persons living in military quarters, crews of maritime
vessels, and staff residents of military institutions. This restriction excluded an additional 361,815 persons.

4. Children under age 18 (born before April 1, 1982). This restriction excluded an additional 72,145,912
persons.

In total, we excluded 80,375,376 Decennial records because they were out-of-scope for the SIPP samples.

5.5.5 Census 2000 stage-2 cluster tabulations

After removing the Census 2000 records that were out-of-scope for the SIPP, we made the appropriate Decennial cell
counts for the 434 stage-2-clusters explained above. The 204,885,140 Decennial in-scope observations translated into
a 472,016.45 mean cell count. The largest cell contained 4,578,514 observations and the smallest cell contained 8,754
observations.

5.6 Part C: Creation of poverty stratification variable for SIPP records

The creation of the poverty stratification variable for each SIPP record involved similar steps to those undertaken for the
Census 2000 records. We first created the necessary variables. When data were available, household income in 1999
was created by summing monthly household income across all twelve months for 1999. The following demographic
variables were taken from the earliest wave of the SIPP panel in which they were available for each respondent: birth
year, birth month, sex, race, and ethnicity. All other demographic variables used for creating the poverty status of a
household or the final weight were taken from the year closest to 2000 for each panel, i.e., the last year of each panel.
These variables were: dummy variables for female householder, black householder, and Hispanic householder, age of
householder (age categories were <18, 18-64, >64), number of children under 18 in the household, and whether a
spouse was present in the household.

We then created the poverty stratification variable for each SIPP record. Individuals were assigned to strata based
on either household income or household composition. For Gold-Standard respondents surveyed in the 1996 SIPP
panel, 1999 household income was available (81,409 respondents) and they were assigned to the high poverty stratum
if 1999 household income was below 150 percent of the poverty threshold for their household type. Thresholds were
defined according to criteria used for the Census 2000 records (see 5.3).

For SIPP respondents from the early 1990s SIPP panels or for individuals who were missing from the later waves
of the 1996 panel because of attrition, 1999 income data were not available. Household composition was used to proxy
poverty status. A household was assigned to the high poverty stratum if it had any of the following characteristics:

1) Female householder with children under 18 and no spouse present;
2) Black householder and householder less than age 18 or greater than 64;
3) Hispanic householder and householder less than age 18 or greater than 64.
It was not possible to assign SIPP respondents to the high poverty stratum based on whether they lived in the

central city of an MSA (as was done for the Decennial respondents) because this variable depended upon knowing
state, county, and Census place code information for each household, and we did not have Census place code on the
internal SIPP file. The final stage of adjusting the weight to correct population control totals within sex, race, ethnicity,
and geographic location (see 5.10) handled this problem.

Of the 263,293 total individuals in version 4.0 of the Gold Standard file, 33,868 of them were placed into the high
poverty stratum, and 229,925 into the low poverty stratum.

5.7 Part D: Creation of stage-2 clusters for SIPP records

As with Census 2000 records, we used the information provided by the SIPP Survey Design Branch to assign Primary
Sampling Units (PSUs) to geographic entities. To assign each SIPP individual to a PSU, we needed state and county
information. Unfortunately, county level geography was very difficult to obtain for the 1990-1993 SIPP panels.
Given the likelihood that an individual’s county had changed between the early 1990s and 2000, we did not invest in
obtaining SIPP county information for the early panels. Instead we used the state variable recorded for respondents
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during the last year of their panel and then randomly assigned county and the corresponding PSU. For respondents
from the 1996 panel, state and county geography was available and PSUs were assigned as they were for Census 2000.

Once SIPP respondents were placed in PSUs, the creation of stage-1and stage-2 clusters proceeded as outlined in
5.5. At this point, we used the link between the Decennial and the SIPP to flag SIPP individuals who matched to
a Decennial record that had previously been determined to be out-of-scope, as explained in 5.5. The Gold Standard
version 4.0 file contained 263,793 people, 177,165 of which were matched by PIK (i.e., replacement SSN) to a De-
cennial record. Of these 177,165 records, 2,229 were matched to a Census 2000 record that was out-of-scope for the
SIPP, meaning that these SIPP records received a zero weight in the final weight calculation. The remaining 261,564
SIPP in-scope records were used in calculating the weight. The link between the Decennial and the SIPP essentially
served to indicate when a person interviewed in the 1990s had experienced a life-change by 2000 that removed them
from the reference population.

After removing the SIPP records that matched to out-of-scope Decennial records, we made the appropriate SIPP
cell counts for the 434 stage-2-clusters. The 261,564 SIPP in-scope observations translated into a 602.68 mean cell
count. The largest cell contained 4,210 observations and the smallest cell contained 2 observations. The strata with
very small numbers of SIPP observations could have presented a confidentiality problem when the weight is used on
the SIPP/SSA/IRS public use file. We addressed this issue by synthesizing the weight in the Preliminary PUF 4.0 (see
5.14.

5.8 Part E: Matching SIPP individuals to Census 2000 records

There were 263,793 total SIPP individuals in the Gold Standard file, 177,165 of which were matched by PIK to a
Census 2000 record. Of these 177,165 records, 2,229 were matched to a Decennial record that was out-of-scope for
the SIPP, meaning that these SIPP records received a zero weight in the final weight calculation. Of these 177,165
records, 4,695 were matched by PIK to more than one Decennial record, because sometimes two Decennial records
had the same PIK.

5.8.1 Un-duplication of SIPP-Census 2000 matches

Two match scores were created for each Decennial record. The first match score checked whether the Census 2000
record’s date of birth and gender matched exactly to the date of birth and gender for that PIK in the Numident data.
The first match score also checked whether the Decennial record’s date of birth, gender, and race matched exactly
to the same variables in the SIPP record. The first match score went up by 1 anytime the Decennial record matched
on a variable (either to the Numident data or to the SIPP record). The second match score checked whether the
Decennial record’s date of birth, gender, and race were allocated or imputed, and went up by 1 anytime one of these
characteristics was not allocated or imputed. After creating these match scores, the Decennial record with the highest
first match score was chosen as the correct match for the SIPP record. If the two Decennial records tied on the first
match score, the one with the highest second match score was chosen. If they tied on the second match score, one
Decennial record was chosen at random as the correct match for the SIPP record.

5.8.2 Matching SIPP to Decennial through probabilistic record linking

The remaining 86,628 SIPP records were matched by probabilistic record linking to an in-scope Decennial record.
The first blocking pass used 6 blocking variables and 7 matching variables. The 6 blocking variables were

a. psu (as defined above)
b. poverty stratum (as defined above)
c. male (dummy variable)
d. black (dummy variable)
e. Hispanic (dummy variable)
f. birth year
The 7 matching variables were
a. birth month
b. children under 18 (dummy variable)
c. no spouse present (dummy variable)
d. female householder (dummy variable)
e. black householder (dummy variable)
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f. Hispanic householder (dummy variable)
g. age of householder (<18,18-64,>64)
Each SIPP record was assigned a set of Decennial candidates which agreed with that SIPP record exactly on all six

blocking variables. Any SIPP record that had 30 or fewer Decennial candidates was considered unmatched and sent
through the second blocking pass, which used 3 blocking variables and 10 matching variables. There were 72,866
SIPP records who had at least 31 Decennial candidates, and these SIPP records were each matched to a Decennial
record using the same 7 matching variables as above.

For each matching variable, conditional m and u probabilities were created using the definitions in Fellegi and
Sunter (1969):

• m = conditional probability that a SIPP-Decennial match had values for the matching variable that agreed
exactly, given that the match was correct;

• u = conditional probability that a SIPP record and a randomly chosen Decennial record within the same set of
blocking variables had values for the matching variable that agreed exactly.

The m conditional probabilities were estimated using the 177,165 SIPP records who were already matched to a
Decennial record by PIK, and the u conditional probabilities were estimated by randomly assigning to each SIPP
record in the first blocking pass one of its Decennial candidates. For both blocking passes (using 6 and 3 blocking
variables, respectively), m and u probabilities were first created within cells using 3 blocking variables: psu, poverty
stratum, and male. The cells were defined by the complete cross-classification of the three blocking variables psu,
poverty stratum, and male. If there was a cell which had at least one SIPP record in the probabilistic record link, but
no SIPP records in the set already matched by PIK to Census 2000, then that cell had no m probability. For these
cells, m probabilities were estimated using coarser cells, first by only 2 blocking variables: psu and poverty stratum,
and finally using no blocking variables. In other words, if a cell created from the complete cross-classification of 2
blocking variables was still missing an m probability because there were no SIPP records in that cell which had already
been matched by PIK to a Decennial record, then that cell was assigned an m probability using all the SIPP records
that had already been matched by PIK to a Decennial record. Whenever an m probability was created using a coarser
set of cells, the u probability was created using the same set of cells. In other words, some m and u probabilities were
created within cells that used three blocking variables, some within cells that used only two blocking variables, and
some with no blocking variables, but the number of blocking variables used to create the m and u probabilities for a
particular SIPP record always agreed.

Once m and u probabilities were created for each matching variable and for each SIPP record, agreement and
disagreement weights were created for each Decennial candidate as follows: agreement weight = ln(m/u) and dis-
agreement weight = ln((1−m) / (1− u)). These weights were used to create a matching score for each Census 2000
candidate based on whether the Decennial candidate agreed with the SIPP record on the value of each matching vari-
able. Then, the Decennial candidate with the highest matching score for each SIPP record was chosen as the correct
match for that SIPP record.

The matching score was created in the following manner: if a Decennial candidate agreed exactly with its SIPP
record on the matching variable, that Decennial candidate’s matching score went up by the agreement weight for
that matching variable, and if a Decennial candidate disagreed with its SIPP record on the matching variable, that
Decennial candidate’s matching score went up by the disagreement weight (which was always negative) for that
matching variable. A few SIPP records had u−probabilities that were greater than m−probabilities for a particular
matching variable (which differed across SIPP records), causing that particular matching variable to have no matching
power for that particular SIPP record. In this case, that matching variable was not used in creating the matching score,
so the matching score went up by zero whether or not the Decennial candidate agreed with its SIPP record on the
matching variable.

Once all Decennial records were assigned a matching score, the Decennial record with the highest matching score
for each SIPP record was chosen as the match in the following manner: For each SIPP record that was alone in a cell
created from the complete cross-classification of the blocking variables (created from 6 blocking variables in the first
blocking pass and 3 in the second blocking pass), and hence had a unique set of Decennial candidates, the Decennial
record with the highest matching score was chosen as the match. If two or more records had identical matching scores,
one record was chosen at random as the match. For the SIPP records who shared cells (created from the complete
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cross-classification of blocking variables) with other SIPP records, it was possible that two SIPP records each had
the same Decennial record chosen as the match because it had the highest matching score. When this happened, the
Decennial record with the higher matching score was chosen (or chosen at random if the two had identical matching
scores), and the SIPP record that had been matched to the Decennial record that was not chosen was sent back through
to receive another Decennial record as its chosen match from the pool of Decennial records that had not yet been
chosen as a match for any SIPP record. This process was repeated until each SIPP record was matched to a Decennial
record, and each Decennial record that had been chosen as a match was unique.

The second blocking pass contained the remaining 13,762 SIPP records who had 30 or fewer Decennial candidates
from the first blocking pass, and used 3 blocking variables: psu90sip, poverty stratum, and male, and 10 matching
variables: black, Hispanic, birth year, birth month, children under 18, spouse present, male householder, black house-
holder, Hispanic householder, and householder’s age. m and u probabilities and matching scores were created as they
were in the first blocking pass, and a Decennial match was chosen for each SIPP record in the same manner as well.

5.9 Part F: Creation of preliminary weight

After all SIPP records were matched to Decennial records, a preliminary weight was calculated. In order to calculate
this weight, we used the Decennial stage-2 cluster counts from 5.5 and the SIPP stage-2 cluster counts from 5.7. The
preliminary weight was calculated using the following formula:

prelim weight =
number of records in Decennial stage-2 cluster

number of records in SIPP stage-2 cluster

This preliminary weight was the same for all SIPP records in a particular stage-2 cluster. The weights ranged from
163.39 to 23,643.67, with a mean of 783.19.

5.10 Part G: Creation of the final weight

After calculating the preliminary weights we calculated population totals for the newly-weighted SIPP for particular
subgroups. Given the discrepancy between these totals and the corresponding totals in the Census 2000, the weights
needed to be controlled by population totals. We used a method called iterative proportional fitting to adjust the
preliminary weights to reflect correct population totals for certain subgroups. This is the same method used by other
Census Bureau surveys to calculate final weights. The list of subgroups used was the same list of population subgroups
used to adjust the original 1996 SIPP sampling weights, and was provided to us by Tracy Mattingly from the SIPP
Survey Design Branch.

To get the population totals for each subgroup, we used the Population Estimates Base for the U.S. civilian non-
institutionalized population ages 18 and older on April 1, 2000 as released on the following Population Estimates web
site on June 9, 2005: http://www.census.gov/popest/national/asrh/2004 nat ni.html. A file containing the population
totals used from this web site for April 1, 2000, and a spreadsheets containing the population totals that we calculated
for certain subgroups have been supplied as part of this final report.

The iterative proportional fitting the preliminary weights to the population subgroup totals for the following de-
mographic breakdown. We first divided the SIPP into four separate tables by race (black/non-black) and ethnicity
(Hispanic/non-Hispanic). Then within each table, the rows of the table were the appropriate ages for that subgroup
(provided by Tracy Mattingly) and the columns were male/female. The iterative proportional fitting raked the weighted
SIPP tables (weighted by the preliminary weights) to the Population Estimates tables, where the numbers to rake to
were both the row and column totals from the Population Estimates tables. The output was a set of adjusted tables.
For each age/sex cell in a table, the ratio of the adjusted count for that cell to the unadjusted count for that cell was the
factor which was multiplied by the preliminary weight to create the final weight for each individual. The final weights
ranged from 30.90 to 32,625.69, with a mean of 780.64.

5.11 Geography issues

5.11.1 Different geography concepts on HCEF and other Census 2000 files

In order to establish the poverty indicator we used information from the HCEF and from other files that were merged
onto the HCEF either through person IDs or geography (e.g., central city indicators, PSUs). Merging by person IDs
did not pose any problems, but merging by geography did. We were working with an internal HCEF file that had not
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yet been converted to the “tabulation” geography concept that the SCEF (as well as the other files) used. Our HCEF
file had geography that was on collection geography level, which made it easier for the enumerators to perform the
interviews. The SCEF file we used (as well as the files that we received from the pop-division and the SIPP Survey
Design Branch) had tabulation geography (which was the geography concept that all the Census 2000 tabulations
on the web used, for example). While state information was the same for “collection” and “tabulation” geography,
county information could be different. Merging therefore was not straightforward. On our internal version of the
HCEF was another geography variable (Current geography). This was not “Tabulation geography” either but matches
it reasonably well. We used this variable to merge by geography.

5.11.2 Changing geography boundaries between the 1990s and 2000

Geography and, especially, county boundaries changed between 1990 and 2000. There were boundary changes as
well as the deletion and creation of new counties during that time frame. This affected the use of SIPP-sampling units,
because the SIPP sampling units for the 1991-1996 panels were created using the 1990 Census, and the SIPP sampling
units for the 1990 SIPP sample used geography from before the 1990 Census. Also, people moved across county
boundaries and therefore were counted in different PSU units in 2000 compared to the time they started participating
in the SIPP survey. The changes that were made to accommodate the additions and deletions of counties were written
down in detail in 5.5. We have not made any changes for counties that purely changed boundaries.

5.12 Birth date issue

Several people claimed to have been born on February 29, 1900. SAS did not accept this date as a leap year. We
therefore changed the birth date for these people to February 28, 1900.

5.13 Overall evaluation of Gold Standard weight

Our method of creating an ex-post weight for the SIPP-SSA public use file utilizes our link between Census 2000
and the SIPP samples of the 1990s to determine how many people in the U.S. population each SIPP individual should
represent. This weight will be a key component of the proposed public use product and will allow researchers to
confidently represent the U.S. population as of April 1, 2000.

Table 2, Columns B and C presents the results of testing of the Gold Standard weight. We chose several selected
statistics from the 2001 SSA Annual Statistical Supplement and calculated these same statistics using our weighted
Gold Standard data. Our weighted Gold Standard file reproduces all of these selected statistics fairly closely. In
particular, the number of workers receiving retirement benefits in December of 2000 in the Gold Standard data is
lower than the number reported by SSA by only one million. The number of widows and widowers receiving benefits
in the Gold Standard is lower than the corresponding SSA statistic by only 300,000, and the number of disabled
receiving benefits is higher by only 800,000. The average monthly benefit received by these various sets of workers
falls within 3%, 7%, and 6% of the SSA reported average monthly benefit for retired workers, widows and widowers,
and disabled workers, respectively. The number of permanently insured individuals in December 2000 in the Gold
Standard data falls within 1% of the corresponding number reported by SSA, and the number of wage and salary
workers with taxable earnings for 2000 falls within 3% of the SSA reported number. The DER average earnings
for 2000 in the Gold Standard is about $3,000 higher than the DER average earnings reported by SSA, and the SER
average earnings for 2000 in the Gold Standard is about $1,400 higher than the SER average earnings reported by
SSA. In general, we believe our Gold Standard weight does a particularly good job of reproducing these selected
statistics from the 2001 SSA Annual Statistical Supplement.

5.14 Synthesizing the weight

The weights on the sixteen synthetic implicates were quite similar across implicates, allowing many observations
to be identified across implicates by the value of their weight. Thus, we decided to create a synthetic weight for
each synthetic implicate. We created synthetic weights by taking draws from a Dirichlet distribution to obtain the
probabilities of having each possible value of the weight for each person in the data.

The theory for sampling from the Dirichlet distribution is described in Tanner (1996), Gelman et al. (2000) and
Minka (2003). Suppose that each observation in the data can take on one of k possible outcomes. Let y be the vector
of counts of the number of observations that take on each outcome. The multinomial distribution describes this data
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as follows:
p(y|n; θ) ∝ Πk

j=1θ
yj

j ,

where θj is the probability of taking on the jth outcome category; these probabilities sum to one (Σk
j=1θj = 1). The

total number of observations is Σk
j=1yj = n. The conjugate prior distribution for this multinomial distribution is

known as the Dirichlet,
p(θ|α) ∝ Πk

j=1θ
αj−1
j ,

where the θj’s are all nonnegative and again sum to one. The posterior distribution for the θj’s is Dirichlet with
parameters αj + yj . We call a = Σk

j=1αj the “prior sample size” and we call n = Σk
j=1yj the likelihood component,

or the “data sample size.”
In our application, each person in the data can take on one of 55,552 possible values for the weight.16 The sum

of the weights played the role of the “data sample size, and equaled 204,044,727. We used a noninformative prior
distribution by spreading additional observations evenly across the 55,552 cells; this was the “prior sample size.”17

The sum of the “data sample size” and the “prior sample size,” is called the ”posterior sample size” in the posterior
Dirichlet distribution for the cell probabilities.

In practice, we replaced the likelihood counts, yj , with their expected values. We used the SAS procedure PROC
CATMOD to model the expected counts for each of the possible 55,552 cells created by the six strata variables (stage-1
cluster, poverty stratum, male, black, Hispanic, and age category). This procedure performs categorical data modeling
of data that can be represented by a contingency table. We supplied the procedure with the weighted cell count data
from the completed data, where each observation was a cell in the contingency table created by the complete cross-
classification of the six strata variables, and each cell count was the weighted sum of the number of persons in that
cell. The procedure used maximum likelihood analysis to estimate a log-linear model and calculate the predicted
cell frequencies. We computed the maximum likelihood estimates using an iterative proportional fitting algorithm
rather than the usual Newton-Raphson algorithm because it allowed us to obtain the predicted cell frequencies without
performing time-consuming parameter estimation. The log-linear model included all six main effects (one for each
stratum variable), all two-way interaction effects, and a single three-way interaction effect between the poverty stratum,
black, and Hispanic variables.

We took four draws from the Dirichlet distribution for each input contingency table coming from one of the four
completed data implicates, giving us a total of sixteen draws, one for each synthetic implicate. Each draw provided us
with a vector of 55,552 posterior probabilities (which summed to one) for belonging to each of the 55,552 cells. We
then multiplied these probabilities by the “data sample size,” 204,044,727, to obtain the final weight value for each
cell as a whole, and finally divided by the number of SIPP observations in each cell to obtain the final synthetic weight
value for each person in that cell.

5.15 Evaluation of the synthesized weight

Table 2, Columns C and D present the results of comparing the weighted completed data to the weighted synthetic
data for the same published SSA statistics as were chosen for the testing of the Gold Standard weight. The results
from the synthetic data very closely match those from the completed data. Column E shows that the percentage
difference between these statistics for the two types of data is very small, ranging from no difference in the number
of disabled workers receiving benefits to 4.4% difference in the number of widows and widowers receiving benefits.
More specifically, the estimated number of individuals in the reference population receiving retirement benefits in
December of 2000 in the synthetic data is lower than the estimated number in the completed data by 700,000. The
estimated number of widows and widowers receiving benefits in the synthetic data is lower than the corresponding
statistic in the completed data by only 200,000, and the number of disabled receiving benefits is exactly the same in the
synthetic and completed data. The average monthly benefit received by workers in the synthetic data falls within 1% of
the average monthly benefit in the completed data for all three types of workers. The number of permanently insured
individuals in December 2000 in the synthetic data falls within 2% of the corresponding number in the completed

16This number of different possible values for the weight comes from the fact that the weight differed only by the values of the following variables:
stage-1 cluster, poverty stratum, male, black, hispanic, and age category. There were 217 stage-1 clusters, 2 values for poverty straturm, male,
black, and hispanic, and 16 age categories, resulting in 217*2*2*2*2*16 = 55,552 possible unique values for the weight.

17By agreement with the Census Bureau Disclosure Review Board, we do not disclose the prior sample size when a Dirichlet prior is used for
confidentiality protection.
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data, and the number of wage and salary workers with taxable earnings for 2000 falls within 1% of the corresponding
statistic in the completed data. The DER average earnings for 2000 in the synthetic data is about $1,400 higher than
the DER average earnings in the completed data, and the SER average earnings for 2000 in the synthetic data is about
$800 higher than the SER average earnings in the completed data. Overall, we have shown that our weighted synthetic
data does a very good job of matching our weighted completed data on these selected statistics from the 2001 SSA
Annual Statistical Supplement.
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6 Analytical Validity
Of primary importance to the success of any synthetic data set is the ability to preserve the univariate distributions
of variables and to maintain relationships among variables. In this sense, the modeling done to create synthetic data
is different than modeling done in order to predict future outcomes or to analyze cause and effect relationships that
are important to policy makers. In creating synthetic data, the analyst’s goal is to refrain from imposing prior beliefs
about the relationships amongst variables and instead to allow the data themselves to determine the nature of these
relationships. Thus, when modeling a particular variable, all other variables can potentially be used as explanatory
variables, even when such a relationship might not seem sensible to a social science researcher. In practice, due
to feasibility issues, the analyst must choose some subset of variables to go on the right hand side of the predictive
regressions but the goal remains to impose as few prior beliefs as possible.

Once the synthetic data are created, however, a different kind of analysis becomes necessary, where prior beliefs
become important. Standard economic and demographic models must be tested using the synthetic data and analysts
with experience evaluating such results must determine whether the synthetic data are statistically valid. We define
statistical validity according to Rubin (1996) as:

First and foremost, for statistical validity for scientific estimands, point estimation must be approxi-
mately unbiased for the scientific estimands averaging over the sampling and posited nonresponse mecha-
nisms. ... Second, interval estimation and hypothesis testing must be valid in the sense that nominal levels
describe operating characteristics over sampling and posited nonresponse mechanisms. (p. 474)

This definition should be modified to include the phrase “confidentiality protection mechanisms” wherever “nonre-
sponse mechanisms” appears.

Thus in order to assess the quality and usefulness of synthetic data, an analyst must determine what statistics are
of interest, calculate these statistics, average them over the implicates of synthetic data, and then compare them to the
best estimate of the same statistics from the completed Gold Standard data, which we will euphemistically call the
“truth” since it is the best available comparison data. If the estimates are unbiased and the variances of the estimates
are such that inferences drawn about the estimates are similar to the inferences in the completed Gold Standard (i.e.,
“true”) data, then the data are statistically valid.

6.1 Complete data estimation

Interest focuses on a complete data estimand Q which is a function of (X, Y ) and has dimensions (c× 1). This
estimand can be any computable, vector-valued function of the data. For example, it could be the average value of
Y , many moments of Y , conditional moments of Y , given X , parameters of a model relating columns of (X, Y ),
percentiles of the distribution of Y , and so on. The essential feature of Q is that it is computable from complete data
on the population and, therefore, is not random. To help clarify the ideas of this section, we will use the example of
average income in 1990. If we had complete income data on every individual in the United States, i.e., if we knew
every element of Y (N × p) associated with the column representing 1990 income, we could calculate the national
average with certainty.

Estimates of Q are random because they are based on D, which involves sampling from the finite population and
incomplete observation of Y in the sample. We can only calculate an estimate of the average 1990 income because
of the sampling involved with the SIPP and because not all SIPP individuals provided 1990 income data. When all
sampled individuals provide data on all p variables, there are no item missing data. However, an estimator of Q is
still random because of the sample design embodied in I . Even if all SIPP individuals in our sample reported 1990
income, the sample design of the SIPP would still make the average 1990 income a random variable. We will call
the complete data estimator q (D) and its variance estimator u (D). Notice that because of the definition of complete
data, q and u depend only on (X, Yobs, I) and not on R. The analyst is assumed to have an inference system for q (D)
and u (D) . In particular, complete data inference can be based on (q (D)−Q) ∼ N (0, u (D)), which may be exact
or an approximation but is assumed to be appropriate in what follows.
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6.2 Inference frameworks using multiple imputation

6.2.1 Missing data only

In the classic Rubin (1987) missing data application, Ymis is imputed m times by sampling from p (Ymis |D ) , the
posterior predictive distribution of Ymis given D. The completed data consist of m sets D(`) =

{
D,Y

(`)
mis

}
, where

Y
(`)
mis is the `th draw from p (Ymis |D ) and is called the `th implicate. Continuing the example of 1990 income, we

estimate the posterior predictive distribution of missing 1990 income conditional on everything else we observe about
the individual (1991 income, gender, race, marital status, etc.). We sampled four times and created four implicates
D(1), D(2), D(3), and D(4), each of which consists of original non-missing 1990 income data (D) and imputed 1990
income (Y (1)

mis...Y
(4)
mis). Inference is based on the following formulae:

statistic calculated on each implicate file: q(`) = q
(
D(`)

)
.

In our example the function q is the average of 1990 income across all individuals in the sample. This average is
calculated separately for each implicate and then averaged across implicates as the next formula indicates:

average of the statistic across implicates: q̄m =
m∑

`=1

q(`)

m
.

The statistic q̄m is the new quantity of interest and will serve as the basis for comparison with the synthetic data.
Analytic validity requires that synthetic data reproduce q̄m, on average, and that inferences made about q̄m remain
the same, as expressed by the confidence interval associated with q̄m. In order to draw proper inferences, the correct
variance measure must be used. The variance of q̄m has two parts. The first part is commonly referred to as the
“between-implicate” variance, defined by the following formula:

variance of the statistic across implicates: bm =
m∑

`=1

(
q(`) − q̄m

) (
q(`) − q̄m

)′
m− 1

The measure bm tells how much variation has been introduced by the multiple draws from the posterior predictive
distribution. The second component of the overall variance of q̄m is calculated by averaging the within implicate
variance across implicates. We define the variance of q(`) for each implicate ` and the average across implicates as
follows:

variance of the statistic on each implicate file: u(`) = u
(
D(`)

)
and

average variance of the statistic across implicates: ūm =
m∑

`=1

u(`)

m
.

In our continuing example of 1990 income, u(`) is the sampling variance of average income (defined as s2
income

N ) for
each implicate `. The total variance of 1990 income is then calculated as a weighted sum of the between implicate
variance and the average within implicate variance, defined as follows:

total variance of the average statistic across implicates: Tm = ūm +
(

1 +
1
m

)
bm

When n and m are large, inference is based on (q̄m −Q) ∼ N (0, Tm) . When m is moderate and the estimator q̄m is
univariate (i.e., c = 1), inference is based on (q̄m −Q) ∼ tνm

(0, Tm) , where the degrees of freedom νm are defined
as

νm = (m− 1)

(
1 +

ūm(
1 + 1

m

)
bm

)2

Proofs and further details can be found in Rubin (1987, 1996).
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6.2.2 Missing and partially synthetic data

In order to analyze synthetic data that were created from data that originally contained some missing values, the miss-
ing data imputation and the synthetic data sampling must be done sequentially. First, complete m versions of D by
sampling from p (Ymis|D) . Denote the m completed data sets as D(`) =

{
X, Yobs, Y

(`)
mis, I, R

}
, ` = 1, . . . ,m. Let

the vector Z (n× 1) denote entities i for which any values of Yobs have been synthesized. So, Zi = 1 if any of the
values of Yobs,i have been synthesized. Partition Yobs into Ynrep containing the rows where Zi = 0 and Yrep contain-
ing the rows where Zi = 1. Then, for each completed data set, partially synthesize r implicates by sampling from
p
(
Yrep|D(`), Z

)
. Denote the r completed partially synthetic data sets as D(`,k) =

{
X, Y

(`)
nrep, Y

(`,k)
rep , I, R, Z

}
, k =

1, . . . , r and where Y
(`)
nrep corresponds to the rows of

(
Yobs, Y

(`)
mis

)
for which Zi = 0 and Y

(`,k)
rep corresponds to the

rows of
(
Yobs, Y

(`)
mis

)
for which Zi = 1. Note that Y

(`)
nrep contains no synthetic data but may contain missing data

imputations whereas Y
(`,k)
rep may contain both missing data implicates (an element of Y

(`,k)
rep , say ij, for which item

j is missing for entity i but not synthesized; entity i is in this set because Zi = 1 whenever any element of Yinc is
synthesized) and synthetic data (an element of Y

(`,k)
rep , say ij, for which item j is missing for entity i and is synthesized;

entity i is in this set because Zi = 1 and element j element of Yinc,i is synthesized).
As with the case of missing data only, a statistic of interest is calculated for each implicate and averaged across

implicates. However, because of the data structure that resulted from first completing missing data and then creating
synthetic data, the averaging must account for the different types of implicates. Consider the continuation of the
example of average 1990 income. Suppose there are 4 missing data implicates and that 2 synthetic implicates per
missing data implicate were generated. In the notation used above, m = 4 and r = 2, which results in 8 unique data
sets. We first calculate average income for each of the 8 implicates:

statistic calculated on each implicate file: q(`,k) = q
(
D(`,k)

)
.

Then, we average across the 2 synthetic implicates that correspond to a given missing data implicate creating q̄(1),
q̄(2), q̄(3), q̄(4) according to the formula:

average of the statistic across the synthetic implicates: q̄(`) =
r∑

k=1

q(`,k)

r

Finally, we average across all 8 implicates to create q̄M . This final average can then be compared to the q̄m created
from the missing data implicates only:

average of the statistic across synthetic and missing data implicates: q̄M =
m∑

`=1

r∑
k=1

q(`,k)

mr
=

m∑
`=1

q̄(`)

m
.

The variance calculations for data that have been completed and synthesized must also account for the additional
source of variation that comes from synthesizing. Thus, we calculate the “between synthetic implicate” variance
using the following formula:

variance of the statistic due to variation in synthetic implicates: b(`) =
r∑

k=1

(
q(`,k) − q̄(`)

) (
q(`,k) − q̄(`)

)′
r − 1

.

This formula quantifies the variation introduced by differences between two synthetic implicates that were generated
from the same missing data implicate, i.e., deviations of the synthetic implicate from the average across both synthetic
implicates q(`,k) − q̄(`). We then average this variance over the missing data implicates:

average of b(`) over missing data implicates: bM =
m∑

`=1

r∑
k=1

(
q(`,k) − q̄(`)

) (
q(`,k) − q̄(`)

)′
m (r − 1)

=
m∑

`=1

b(`)

m
.
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The next source of variation comes from the multiple implicates due to missing data completion. This variance is
calculated using the deviations of the average for a missing data implicate from the overall average, i.e., q̄(`) − q̄M .
This is the “between missing data implicate” variance:

variance of the statistic due to variation in missing data implicates: BM =
m∑

`=1

(
q̄(`) − q̄M

) (
q̄(`) − q̄M

)′
m− 1

.

Finally, the last source of variance comes from the within implicate variance, which is averaged across the synthetic
implicates for a given missing data implicate and then averaged across all the implicates according to the formulae:

variance of the statistic on each implicate file: u(`,k) = u
(
D(`,k)

)
,

average variance of the statistic across synthetic implicates: ū(`) =
r∑

k=1

u(`,k)

r

and

average variance of the statistic across synthetic and missing data implicates: ūM =
m∑

`=1

r∑
k=1

u(`,k)

mr
=

m∑
`=1

ū(`)

m

The total variance is, once again, a weighted sum of the difference sources of variation–between synthetic implicate,
between missing data implicate, and within implicate:

total variance of the average statistic across implicates: TM =
(

1 +
1
m

)
BM − bM

r
+ ūM .

TM is the variance used to draw inferences about q̄M and variation introduced by the synthetic and missing data
implicates must not be so large that the inferences will be substantially different from those drawn using q̄m and
Tm.When n, m and r are large, inference is based on (q̄M −Q) ∼ N (0, TM ) . When m and r are moderate and the
estimator q̄M is univariate (i.e., c = 1), inference is based on (q̄M −Q) ∼ tνM

(0, TM ) where the degrees of freedom
νM are defined as

νM =
1(

((1+ 1
m )BM)2

(m−1)T 2
M

+ (bM /r)2

m(r−1)T 2
M

)
Proofs and details can be found in Reiter (2004).

6.3 Application to the SIPP/SSA/IRS-PUF

Version 4.0 of the public use file consists of 16 implicates. We created four implicates in the missing data completion
phase and then created four synthetic implicates per missing data implicate, thus m = 4 and r = 4. We chose to focus
on two types of statistics–regression coefficients and univariate statistics (means, variances and percentiles) because
these are most likely to be of interest to the potential users of our public use file. When showing regression results,
we report q̄m and q̄M as vectors of regression coefficients. To calculate q̄m we run the same regression on each of
the four missing data implicates and then average the coefficients across implicates. To calculate q̄M we run the same
regression on each of the 16 synthetic implicates and then average the coefficients across these implicates. We also
report the variance associated with each average coefficient in the form of vectors that contain the diagonal elements
of the covariance matrices Tm and TM . In the same format we report the standard error (square root of diagonal
elements of Tm and TM ), t−ratio (each coefficient divided by the standard error), degrees of freedom (calculated
using formulae above), and upper and lower bounds of the 95 percent confidence interval. To show the effect of the
two types of implicates on the total variance calculation, we also report the component pieces of the overall variance:
diagonal elements of BM , bM , ūM for the synthetic data, and bm and ūm for the missing data. Univariate statistics
are reported in the same manner except the results are scalars instead of vectors.
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6.4 Results

6.4.1 General interpretation

When comparing results from completed data to results from synthetic data, there are a number of things to consider.
First, and most obvious, is how closely to the point estimates correspond to each other. Regression coefficients and
moments of the univariate distribution should be similar between the two data sources. However, this leads to the
obvious question: “How similar is similar enough?” To answer this question it is important to compare the confidence
intervals surrounding the point estimates. In an ideal situation, the point estimates are very close and the confidence
intervals completely overlap, presumably with the synthetic confidence interval being slightly larger because of the
increased variation due to synthesizing. Results like this give us confidence that the point estimates really are very
similar and that inferences drawn about the coefficients will be the same whether one uses synthetic or completed data.
In cases where the point estimates are somewhat further apart, the confidence intervals give us some idea of how far
off we are. If there is still some overlap, then the synthetic and completed analyses are not so radically different. In
cases where there is no overlap of the confidence intervals, the synthetic variable will need to be carefully examined
to determine what might have caused the discrepancy.

Even in cases where the synthetic confidence interval contains the entire completed data confidence interval, we
might still be concerned with the relative size of the synthetic interval. If the synthetic point estimate is in the
middle of a very large interval, then inferences drawn using synthetic data may be too weak. This could happen
because the variables being synthesized cannot be well-modeled and, therefore, each synthetic implicate introduces
considerable variation into the analyses that involve those variables. This problem can be improved by the creation
of more synthetic implicates. Higher numbers of r implicates would reduce the between r−implicate variance,
bM , and tighten the confidence intervals. It would also solve another potential problem. If bM is too large in the
synthetic data, the overall variance TM can become negative because the bM term is subtracted in the total variance
formula. A large between r−implicate variance swamps other sources of variation and makes the synthetic total
variance undefined. When we have cases like this in our results, we revert to the asymptotic formulae (based on
r = ∞), and note this in the tables. Essentially we calculate TM as the weighted sum of the between m−implicate
variance and the within variance and do not subtract the between r−implicate variance. Then we treat the coefficients
as if they were normally distributed and calculate the confidence intervals using the appropriate critical points from the
normal distribution instead of from the t−distribution. In the tables we create an indicator called flag dfnotexist
which indicates that we could not calculate degrees of freedom for a t−distribution. In cases where the degrees of
freedom are less than or equal to two, we also indicate that degrees of freedom do not exist and use the asymptotic (in
r) normal distribution to calculate the confidence interval.

It is important to note one more detail about the univariate and regressions results we present here. We have
used the weight that we created by matching individuals in our sample to the Census 2000 micro-data. Hence, in
both the completed data and the synthetic data, all the statistics we report are weighted and should be interpreted as
representative of individuals from the civilian non-institutional U.S. population age 18 or older as of April 1, 2000.

6.4.2 Summary statistics for OASDI beneficiaries

Tables 3-18 give results comparing means of important earnings and benefits variables by demographic group and
type of benefit for individuals who became OASDI beneficiaries during the time period covered by these data (i.e., had
date of initial entitlement between 1951 and 2002). Tables 3-10 show results for SER work indicators (positive FICA
covered earnings in a year) and SER earnings (total FICA covered earnings up to the maximum). As in version 3.1,
the percentage of individuals who worked in a given year is very close, on average, for all the groups and across all
the years and the confidence intervals overlap. In addition, average earnings are now much closer for all the groups.
For example in 1995 average earnings for white males who retire at some point were $10,347 in the synthetic data
and $11,012 in the completed data. For white females who retire the correspondence is even closer: $5,495 versus
$5,566. Particularly strong improvement was made for black males. In 1995, black males who retire at some point
earned $8,856 on average in the synthetic data and $8,564 in the completed data and there is almost complete overlap
in the confidence interval. Synthetic earnings data for this group was particularly problematic in earlier versions so
this result represents a significant step forward in our modeling. Charts 1 and 2 show the time trend for labor force
participation for the four main demographic groups for individuals who retire at some point. Charts 3 and 4 show
the same time trend for earnings for the same groups. Labor force participation and earnings trends are the closest
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for white women, followed by black women and black men. White men have a slightly higher discrepancy between
synthetic and completed earnings in 1985. Still the trend is the same and other years have closer correspondence.

As shown in Tables 11-12, Total SER earnings summed over all years 1951-2003 and total number of years with
positive earnings are also very close for most groups. White females who retire at some point earned on average
$192,468 over this time period according to the synthetic data compared to $198,303 in the completed data and they
worked a total of 26.17 versus 26.69 years. None of the individuals who retire or receive disability benefits have total
years off by even a full year when comparing the synthetic and completed data. Total earnings differ by between
$1,000 (black males) and $25,000 (white males). Table 13 shows that patterns of work are also similar between the
synthetic and completed data. This table reports on balances in a “personal account” created by taking 2% of earnings
annually from age 21 or 1951 (which ever was later) and compounded it annually at 5% interest until the date of
entitlement. If individuals worked in predominantly different decades in the synthetic versus the completed data, we
would expect the accumulated totals to be very different. Instead these totals are quite similar, even for white male
retirees (less than $1000 difference).

Tables 14-18 compare the synthetic and complete OASDI benefit variables. Table 14 shows that synthetic year
of initial entitlement is very close to the completed value, with the differences being less than 6 months for retirees
and disability recipients in every demographic group. The confidence intervals are very tight for this variable and
the overlap between synthetic and completed is high. Initial MBA in Table 15 is equally well synthesized. The
+/-$50 restriction helps to ensure that the averages for every category in this table are very close. Retired white
males received $716 in benefits on average in the synthetic data, compared to $730 on average in the completed data.
Table 16 shows similar results for average monthly benefit amount in April 2000. Finally tables 17 and 18 show the
average AIME/AMW and PIA for the various demographic/beneficiary groups. We remind users of the data that
these variables were not taken from the Master Beneficiary File but were calculated according to basic retiree benefit
formulae for both the synthetic and complete data. Comparisons of these variables between the two data types is
simply another way of summarizing the SER earnings data and judging how well we synthesized the history. On
average the AIME/AMW is very close: $725 synthetic versus $765 completed for white retired females and $1,693
versus $1,789 for white retired males. The PIA is $411 versus $434 and $749 versus $776 for the same groups. These
results provide us some level of confidence that our synthetic earnings history will produce valid benefit calculations.

6.4.3 Summary statistics for all workers

Tables 19-28 show comparisons between some of the same synthetic and completed variables described above but
for all workers instead of just OASDI beneficiaries. Specifically, Tables 19-26 show percentages of individuals
who worked and average earnings for the years 1965, 1975, 1985, and 1995. These comparisons show very close
correspondence between the synthetic and completed data. Average earnings for white males in 1995 is $17,047
using synthetic data and $17,241 using completed data. Of the white males in our sample, 67.1% had positive FICA
covered earnings in 1995 according to the synthetic data versus 67.5% according to the completed data. These
results are consistent across years and demographic groups. Charts 5-8 show these trends graphically. For whites,
the synthetic and completed time trends lie on top of each other. For blacks, there are a few more differences, in
particular earnings for black males seem to diverge a bit in 1995, but generally the time trends are close and show the
same pattern.

Tables 27 and 28 compare total earnings and years worked from 1951-2003. The group with the closest corre-
spondence on average between the synthetic and complete data is white females (total earnings of $211,817 versus
$212,751 and total years 17.76 versus 17.99). The group with the largest difference is black males ($257,525 versus
$240,933 and 18.99 versus 18.41 years). None of the groups differ by more than half a year in the total number of
years worked and both black females and white males differ by less than $10,000 in total earnings.

6.4.4 Summary statistics by education categories

We next consider means of several important variables stratified by race, gender, and education category. In our
analyses of version 3.1, we found that the relationship between education and other variables had not always been well
preserved in the synthetic data. In this version of synthetic data, we find some improvements in this respect. Tables
29-34 show means for monthly benefit amount in April 2000, uncapped non-deferred earnings from all FICA-covered
jobs in the year 2000, total FICA covered earnings up to the maximum in the year 2000, and percentages of foreign-
born, Hispanic, and disabled individuals by race, gender, and education. Both mba 2000 and totearn ser 2000 show
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very close correspondence between the synthetic and complete data. For example, calculated using the synthetic data,
white male college graduates received, on average, $786 in monthly benefits in April 2000 compared to $812 calculated
from the completed data. For this same group, the confidence interval also overlaps $758 to $814 in the synthetic
data versus $796 to $828 in the completed data. The same group has FICA covered earnings of $34,103 on average
in the synthetic data compared to $35,830 in the completed data with complete overlap in the confidence interval.
Synthetic and completed average FICA covered earnings are particularly close in the “some college” and “college
degree” categories for every demographic group, differing by no more than $500 in almost every group. Total non-
deferred earnings (nd der fica 2000) have greater differences between the synthetic and completed data where the
discrepancies range between $1,000 and $5,000 on average. The confidence intervals calculated from the synthetic
data for the “high school degree,” “some college,” and “college degree” categories overlap the confidence intervals
from the completed data for almost every demographic group. The confidence intervals for the “graduate degree” and
“no high school degree” categories are generally very large in the synthetic data and sometimes do not overlap the
completed data. These categories contain far fewer individuals and, hence, are more difficult to model; consequently,
the synthetic data display more uncertainty.

The percentages of individuals who are foreign-born and Hispanic are also very close for the demographic and
education sub-groups. Again the three middle education categories show particularly close correspondence between
the synthetic and completed data. For example 9.3% of white males with some college are foreign-born according
to the synthetic data compared to 9.4% in the completed data. The synthetic and completed data both give 9.0% of
individuals as being Hispanic for the same group. In both cases there is complete overlap in the confidence intervals.
In past versions, Hispanic was a particularly difficult variable to synthesize but these results seem to indicate that we
have made significant progress modeling this variable. Percentages of individuals who report being disabled in the
SIPP are also relatively consistent between the synthetic and completed data. White males are the closest across
all education categories (%disabled synthetic - %disabled completed < 1% for all groups except graduate degrees)
and black males are the most different (but still %disabled synthetic - %disabled <2% for all groups except graduate
degrees), but in all cases there is significant overlap in the confidence intervals.

6.4.5 Summary statistics by foreign born

We also consider means of the three administrative variables discussed in the previous section, stratified by race,
gender, and foreign born in Tables 35-37. Both uncapped and capped earnings from FICA covered jobs are relatively
close for non-foreign-born and foreign-born workers in the year 2000. For uncapped earnings (DER), the confidence
intervals for white females and white males completely overlap, although the intervals for the foreign-born workers
are significantly larger in the synthetic data, as one would expect for the smaller sub-group. For black females
the confidence intervals overlap but are shifted up slightly in the synthetic data and the same is true for foreign-
born black males, while non-foreign-born black males have a large synthetic confidence interval that completely
overlaps. A similar pattern holds for capped earnings (SER). Average monthly benefit amounts in April 2000 show
some differences when stratified by foreign-born. The difference in the average benefit between the synthetic and
completed data is about $60 for black female, white male, and black male foreign-born individuals. Even though
synthetic mba 2000 is always within $50 of the completed value for this variable at the individual level, different
individuals end up in a given sub-group because black and foreign-born are synthesized. Hence multiple individuals
in the completed data who were not foreign-born may have been synthesized to be foreign-born, and hence may move
from one sub-group to another, changing the overall average monthly benefit amount in that sub-group by more than
$50, even though as individuals their personal monthly benefit amounts did not change by more than $50. For these
three groups of foreign-born individuals, there is some overlap in the confidence intervals, although the synthetic data
interval is somewhat lower than the completed data interval.

6.4.6 Summary statistics for marital histories

Table 38 shows means and confidence intervals for six marital history variables: number of marriages, percent ever
divorced, percent ever widowed, duration of 1st marriage, duration of 2nd marriage, and age at first marriage. The first
three variables are nearly indistinguishable on average between the synthetic and completed data, clearly the result of a
successful Bayesian bootstrap of mh category. The durations are shorter in the synthetic data than in the completed
data for both the point estimates and the confidence intervals by 2-3 years. Age at first marriage is approximately
23 years in both data types. The consistent synthesis of these marital history variables is another major step forward
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given that past versions of the synthetic data contained synthetic values that did not even meet minimum consistency
standards with the unsynthesized and other synthesized variables.

6.4.7 Age at time of retirement

Of particular interest when considering the synthesis of birth date and year of initial entitlement is whether these two
variables are consistent enough with each other to produce an expected distribution of retirement ages. Table 39
gives both weighted and unweighted counts of individuals who retired (i.e., had tob initial = 1) at different ages and
Charts 9-10 graph the weighted and unweighted distributions respectively. The first important thing to note is that
the completed data have some discrepancies between recorded retirement age and legal retirement age. There are
almost 5,000 individuals in our sample whose original administrative birth date and year of initial entitlement imply
that they retired between age 61 and age 62. It also appears that in the completed data there are large numbers of
individuals retiring at age 62 and at age 64. We had expected the spike at age 62 but thought the later spike would
be at age 65. In our synthetic data, we attempt to impose the restriction that retirees must be at least 62 and are
successful in all but a few cases. Hence the group retiring between ages 61 and 62 vanishes in our synthetic data. The
synthetic data also have a high point at age 62 but then taper off more uniformly across ages 63, 64, and 65. Ideally
the counts of individuals retiring at age 63 in the synthetic data might have dropped off more quickly. However
the modeling is difficult here because the completed data are not entirely as expected and we are forcing some data
consistency that does not exist in the original data. Given our careful modeling of date of initial entitlement and its
close correspondence on average between the synthetic and completed data, more research is needed to determine the
exact cause of the differences in these distributions.

6.4.8 Selected regression results

We begin our discussion of regression results with Tables 40-43 where the dependent variable is the log of total DER
earnings (sum of deferred and non-deferred at FICA and non-FICA jobs) in the year 2000. We ran four separate
regressions for each of the major demographic groups: white males, black males, white females, and black females.
The closest correspondence between the synthetic and completed regression coefficients is in the education variables
which always have the same sign and generally have significant overlap in the confidence intervals. The exceptions
for overlapping confidence intervals are usually the graduate degree indicator, not surprising given the results in the
means presented earlier. The demographic group with the closest synthetic and completed education coefficients is
white males. The coefficient on high school degree only in the synthetic data regression is .214 compared to .230
using the completed data, and for some college, the coefficients are .400 and .431 respectively. In both these cases the
confidence intervals in the synthetic data contain the confidence intervals in the completed data. In comparison the
high school degree only coefficients for black females are .263 and .347 for synthetic and completed data respectively
and for some college the coefficients are .494 and .587. The confidence intervals overlap to a great extent but not
completely.

The other SIPP demographic variables, Hispanic, disabled, and foreign-born, are not as consistently similar be-
tween the synthetic and completed data but they have improved significantly compared to prior versions of the synthetic
data. Foreign-born and disabled always have the same sign and Hispanic has the same sign in the regressions for white
males and black females. For white males and females the confidence intervals for foreign-born and disabled overlap,
and for black males and females the confidence intervals for all three variables overlap. The magnitudes of the coef-
ficients differ but the confidence intervals give reason to be hopeful that the synthetic data are not producing estimates
that are entirely different from the completed data.

The right hand side variables with the most discrepancies in these regressions are the experience coefficients
(years of positive SER earnings, with squared, cubed, and quartic terms). While the signs are generally the same
and the point estimates of the higher order terms are sometimes similar in magnitude, the confidence intervals do not
usually overlap, meaning that the synthetic and completed coefficients are significantly different. Using the synthetic
data provides a lower return to experience than using the completed data. For example the coefficient on years of
experience for white males is .173 in the synthetic data regression versus .275 in the completed data. For black males
the difference is .173 versus .388.

Tables 44-47 show regression results where the dependent variable is log of total SER earnings (capped at FICA
maximum) in the year 2000. These results follow the same pattern as the DER earnings. The education coefficients
are quite similar between the synthetic and completed data and the confidence intervals overlap to quite a large extent.
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The signs for disabled, foreign-born, and Hispanic agree in all four regressions and the confidence intervals for black
males and females and white males overlap for Hispanic and foreign-born. In addition they overlap for disabled for
black males and females and Hispanic for white females. The experience coefficients are again significantly different
in the synthetic and completed data. Not surprisingly, the coefficients on marital status indicators are very similar
between the synthetic and completed data. Since marital status was not synthesized and was a grouping variable in
the modeling of earnings, this is to be expected.

Table 48 shows results for a regression of the log of the AIME/AMW variable on various demographic char-
acteristics. The results for this summary measure of earnings generally show point estimates that are quite close
between the completed and synthetic data. The race/gender interaction terms have overlapping confidence intervals
except for black females and even in this case the point estimates and the intervals are not very different (-.928 versus
-.995). The education coefficients all have overlapping confidence intervals with the exception of graduate degree.
The Hispanic and marital status indicators are all very close both in terms of confidence intervals and point estimates.
Only disabled shows significant bias. The age coefficients are slightly different between the synthetic and completed
data but the confidence intervals do overlap.

Tables 49-52 show results using the log of the monthly benefit amount, first at the date of initial entitlement for
retired and then disabled workers, followed by the April 2000 amount for the same two groups of beneficiaries. We
believe that the monthly benefit amounts are some of the most accurately synthesized variables and these regression
results support this belief. For the initial MBA for retirees, all the confidence intervals overlap with the exception
of log of total net worth. Even the disability variable performs well, with the synthetic data coefficient being -.048
and the completed data coefficient being -.039 and very close overlap of the confidence intervals. We also include as
a right-hand side variable the percentage of years an individual worked from age 15 to time of retirement/death/end
of data, whichever was first. This variable also performs similarly in the synthetic and complete data, causing us
to be optimistic about the preservation of relationships between years worked and benefits received. The results are
equally encouraging for beneficiaries receiving disability payments. Again almost all the confidence intervals overlap
(with the exception of graduate degree) and the point estimates are very close. Particularly reassuring is the fact that
age at time of initial entitlement and year of initial entitlement have extremely close coefficients in the synthetic and
completed data regressions.

The April 2000 monthly benefit amount regressions in Tables 51-52 continue to show close correspondence be-
tween the synthetic and completed data. For retirees, the education coefficients are particularly similar between the
two data types with overlapping confidence intervals for all four education indicators. Age in the year 2000 and the
race/gender indicators are also essentially statistically the same. Even Hispanic and disabled, which have greater
differences in the point estimates, have some overlap in the confidence intervals. Log of total net worth continues to
be the largest discrepancy between the two regressions. The results for recipients of disability payments are similar.
The point estimates are slightly further apart but there is still significant overlap in the confidence intervals.

Tables 53-54 consider comparisons between regressions results using log of total family income and log of total
personal income in the year 1999. These SIPP variables have generally been difficult to model because of the large
amounts of missing data due to the combination of five SIPP panels. Income variables for 1999 had to be completed
for all individuals in the 1990-1993 panels. Thus the majority of completed data is imputed and not taken from
survey responses. This fact contributes to difficulties in modeling these variables for synthesis. For many of the
coefficients in these regressions, the synthetic degrees of freedom are missing, either because the total variance was
negative or because the degrees of freedom calculated using the appropriate formula was not strictly greater than 2. It
appears that the between synthetic implicate variance relative to the between completed implicate variance is too high
with respect to these variables. In spite of this fact, the point estimates are often quite close between the synthetic
and completed data total family income regressions, especially for marital status indicators, type of benefit receipt
indicators, race/gender indicators, year of birth, and the first two education categories. Using the asymptotic formula
for the confidence intervals in the synthetic data when the degrees of freedom do not exist, there is overlap with the
completed data intervals for almost all variables (college only, graduate, disabled, and total number of kids in the
family are the only exceptions). Results for total personal income are similar and even show some improvements over
total family income. There is overlap in the confidence intervals for the college only and graduate degree indicators
so that now only two sets of coefficients are statistically different - disabled and total number of kids in the family.

Table 55 shows results from a logistic regression of a pension indicator variable on various demographic and
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economic control variables. These regression coefficients have similar problems to those in the income regressions,
namely the synthetic degrees of freedom often do not exist. Again, in spite of this, the coefficients from the synthetic
data regression and the completed data regression generally agree in sign and have overlapping confidence intervals
that confirm that the magnitudes are not entirely disparate. Some notable exceptions to this are age and age squared
in the year 2000 and the industry and occupation indicators where the confidence intervals have no overlap.

Table 56 shows results from another logistic regression where the dependent variable was an indicator for positive
weeks with pay in 1999, taken from the SIPP survey. The results here are somewhat mixed. The race/gender
coefficients have very similar point estimates and overlapping confidence intervals. The education coefficients diverge
somewhat from the completed and synthetic data regressions. Only some college has an overlapping confidence
interval. Total number of kids, foreign-born, and Hispanic all have overlapping confidence intervals and quite close
point estimates. An indicator for positive benefit receipt in 2000 does not have an overlapping confidence interval.
The coefficient on average log real earnings from the DER, calculated using earnings from 1978-2003, has a different
sign and non-overlapping confidence interval between the synthetic and completed data regressions. However the
quartile indicators calculated using the distribution of this variable have similar coefficients in the two regressions and
overlapping confidence intervals. For percentage of eligible years worked in the SIPP, the point estimate appears to
disagree between the synthetic and completed data regressions but the confidence interval does overlap and again the
quartile indicators are much closer in magnitude with overlapping confidence intervals. The coefficients on the marital
status indicators are consistent between the two data types but coefficients on marital history variables that indicate
whether the individual has ever been divorced (divorced1) or ever been widowed (widowed1) are less consistent, with
non-overlapping confidence intervals.

The final four tables of regression results 57-60 use wealth variables from the SIPP as the dependent variables.
Table 57 begins with log of total net worth for married couples, with one observation per married couple. Control
variables for both members of the couple have been included on the right-hand side of the regression. The results
here are not as encouraging as in other regressions. The education indicators for both members of the couple have
significantly different effects in the synthetic and completed data regressions. Total number of kids, foreign-born,
foreign-born-spouse, Hispanic, and Hispanic-spouse do have overlapping confidence intervals but an indicator for
owning a home does not. The indicator for receiving retirement benefits also does not have an overlapping confidence
interval although all the other benefit indicators do. Table 58 show results from a regression of log of total net worth
for single individuals on characteristics of the individual. Again there is often not overlap between in the confidence
intervals. Only the high school degree only indicator has any overlap among the education coefficients.

Tables 59-60 show results for the home equity variables. There is some overlap in the confidence intervals for
the education coefficients for the main individual in the couple (chosen as whichever individual had the first sorted
person identifier variable, basically random) but the spouse education coefficients are significantly different. There is
also overlap for the quartile of average log real DER earnings for both the individual and the spouse. Some of the
coefficients on the SSA benefit indicators have overlapping confidence intervals and some do not. Year of birth is
very similar in the synthetic and completed data. The results for single individuals are similar.

6.4.9 Univariate distributions of continuous variables

Table 61 examines univariate distributions for all the continuous variables in our sample. The continuous variable
synthesis techniques used in this project generally did a very good job of modeling the overall univariate distribu-
tions of a variety of variables. The percentiles of the synthesized variables match closely with the percentiles of the
corresponding completed variables, capturing the general shape of the distribution; although, very sudden spikes and
cliffs in the distributions do get smoothed out a bit. Some of the variables had their synthetic draws restricted to rather
narrow windows making the close match not too surprising, but even the variables whose synthesis was unrestricted
resulted in very similar univariate distributions.

The three date variables were all restricted to be close to the unsynthesized values (when in scope). Synthetic
birthdate (restricted to be within one year of administrative birthdate pcf ) and synthetic date of initial entitlement
(restricted to be within 2 years) are extremely close to their completed counterparts with all the percentiles within a
couple months of each other. Synthetic deathdate appears to struggle a little bit on the lower end of the distribution,
but it turns out that this is do to a quirk in the synthetic weight. Unweighted, the synthetic and completed distributions
of deathdate are also very similar, but the completed files give zero weight to the people who die before the year 2000.
The construction of the synthetic weight did not preserve this characteristic, thus making the weighted percentiles at
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the lower end of the synthetic deathdate distribution seem significantly lower than the completed deathdate.
The MBA variables–MBA in the initial month of benefit receipt (mba initial real) and MBA in April 2000

(mba 2000)–were restricted to be within $50 of the original amounts, thus it is no surprise that the univariate distribu-
tions and means were preserved nearly perfectly.

The continuous marital history variables were synthesized without any constraints. As one can see, this did not
affect the quality of the age at first marriage synthesis. The synthetic distribution lies almost exactly on the completed
distribution. The duration variables which measure the lengths of all applicable events in the marital history–length of
first marriage if ever married (duration mar1), length of single spell after first marriage if the first marriage ended
(duration end1), length of second marriage if there was a second marriage (duration mar2), etc.–exhibit some of
the smoothing that can take place in the synthesis when extremely sharp changes occur in the density of the completed
variable. For example, duration end1 has an extremely dramatic rise somewhere between the 50th and 75th per-
centiles in the completed data. The synthetic data matches the 25th and 75th percentiles well, but overestimates the
median because it has smoothed this spike out a bit. It is also worth noting that some of these duration variables for
second, third, and fourth marriages have very small sample sizes which makes synthesis a little less accurate. Never-
theless, the synthetic and completed distributions for these variables match quite closely except for a little smoothing
here and there.

The wealth variables have some of the toughest distributions to synthesize. They are highly skewed and have
extreme outliers on the high end of the distribution. For both homeequity and nonhouswealth, the synthesized
variables tend to under-estimate the lower end of the distribution and over-estimate the upper end of the distribution,
while totnetworth also underestimates the lower end of the distribution but matches the upper end of the distribution.
The means, however, look very good, and the general shape of the distribution is preserved.

The DER earnings arrays present some of the same challenges as the wealth variables only to a lesser degree. They
also have some very large outliers and are heavily skewed. As a result, the synthetic values display some of the same
problems as the synthetic wealth variables, but again, to a lesser degree. The lower ends of the distributions tend to be
slightly underestimated and the upper ends slightly overestimated. The deferred earnings arrays have extremely small
sample sizes and struggle a lot more than the non-deferred earnings arrays, but once again, the means and general
shape of the distributions are preserved very well for all the years.

The SER earnings are capped and, therefore, take away one challenge of extreme outliers and introduce a new
problem of a truncated distribution. The cap was modeled by introducing another binomial parent variable indicating
whether an individual earned equal to or more than the cap in a given year. If not, the amount was modeled with our
continuous variable techniques and the draws were restricted to lie between $0 and the cap. For the most part, these
distributions look very good putting about the same amount of weight at the cap and matching the lower percentiles
quite closely.

Finally the continuous SIPP arrays all look quite good at the overall univariate level. Although these variables
sometimes exhibited analytical difficulties in multivariate analyses, the general approach used for transforming and
modeling continuous variables has done an excellent job of matching the percentiles for almost all of these variables.
The weeks worked variables are constrained to lie between 0 and 52, but otherwise the synthesis for all the SIPP arrays
was unconstrained.

6.4.10 Counts and percentages of categorical variables

Finally, Table 62 shows weighted and unweighted counts and percentages of some of the basic demographic and
benefit variables in the synthetic and completed data. Included variables are: male, black, Hispanic, marital status,
tob initial, tob 2000, home ownership, foreign-born, education category, age category in 1990, age category at time
of initial entitlement, and age category at time of retirement. We include these as a help to those seeking to do basic
comparisons between the synthetic and completed data.
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7 Assessing Disclosure Risk
7.1 Overview

The link between administrative earnings, benefits data and SIPP data adds a significant amount of information to an
already very detailed survey and could pose potential disclosure risks beyond those originally managed as part of the
regular SIPP public use file disclosure avoidance process. The creation of synthetic data is meant to prevent a link
between these new public use files and the original SIPP public use files, which are already in the public domain.
In addition, the synthesis of the earnings data meets the IRS disclosure officer’s criteria for properly protecting the
federal tax information. Our disclosure avoidance research uses the principle that a potential intruder would first try
to re-identify the source record for a given synthetic data observation in the existing SIPP public use files, which were
used to create the SIPP component of our Gold Standard file.

In order to test the effectiveness of the synthetic data in controlling disclosure risk, we conducted two distinct
matching exercises between the synthetic data and the Gold Standard. Since the Gold Standard contains actual values
of the data items as released in the original SIPP public use files, the Gold Standard variables are the equivalent of the
best available information for an intruder attempting to re-identify a record in the synthetic data. Successful matches
between the Gold Standard and the synthetic data represent potential disclosure risks.

It is important to remember that for an actual re-identification of any of the records that were successfully matched
to an existing SIPP public use file, an additional non-trivial step is required. This additional step consists of making
another successful link to exogenous data files that contain direct identifiers such as names, addresses, telephone
numbers, etc. Hence, the results from our matching process are a very conservative estimation of re-identification
risk.

The Census Bureau Disclosure Review Board has adopted two standards for disclosure avoidance in partially
synthetic data. First, using the best available matching technology, the percentage of true matches relative to the
size of the files should not be excessively large. Second, the ratio of true matches to the total number of matches
(true and false) should be close to one-half. We have performed two types of matching exercises, probabilistic and
distance-based. This section describes the results from both exercises and gives an assessment of the risk of disclosure
associated with the synthetic data files.

7.2 Matching based on probabilistic record linking

We begin with the probabilistic record linking experiment. Since the public use files consist of 16 different implicates,
one must consider the risk associated with each file. In previous runs of this matching process, similar results were
found on the different implicates. The evaluation of disclosure risk described here centers on the risk presented by the
publication of one single implicate file (the first synthetic implicate that matches to the first missing data implicate, i.e.
m = 1 and r = 1). In view of the results that are described below, we expect that similar results would be obtained
for the other implicate files individually. We will, however, need to conduct research to evaluate the disclosure risk
presented by the release of all 16 implicate files. In particular, we will evaluate the disclosure risk presented by the file
obtained by averaging the variables across all the implicate files. The analysis of the averaged file is currently being
conducted.

Probabilistic matching requires cashing a set of blocking and matching variables that are common to both files.
We implemented one blocking strategy using the unsynthesized variables for blocking. For married individuals we
use the unsynthesized variable male for each member of the couples. For unmarried individuals we use the two
unsynthesized variables, male and maritalstat. The latter can be either widowed, divorced/separated, or never
married (maritalstat = {2, 3, 4}). In other words, for two records to be a match, they must necessarily have
identical values for marital status and gender since these two variables were not synthesized. After this has been
determined to be the case, other variables can be compared to determine the probability that two records represent the
same person.

The probabilistic record linking was performed using the Census Bureau’s internal record linking software, which
is maintained by the Statistical Research Division. The discussion in this section describes the technical settings used
for that software. We set the blank filter flag equal to 0 so that if the variable is missing, the record will automatically be
considered to agree on that field. Matching for the two groups, married and unmarried, was done separately. Blocking
variables help to reduce the number of records used for comparison; however, in any given run all records in the same
blocking group of the synthetic implicate and the Gold Standard files are compared. Thus, record linking computation
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is quadratic with run times dominated by the size of the largest block. In this latest version of the SIPP/SSA/IRS-
PUF, the block sizes are very large. For this reason, the matching is done within corresponding segments of the Gold
Standard and PUF files. Internally we know when segments of the Gold Standard and PUF files (single implicate)
correspond to the same individuals, because we make use of the common artificial person identifier (personid) that is
on both files. Without the information contained in personid (which is not on the actual PUF), an intruder would have
to compare many more record pairs to find true matches and would not find any more true matches (the true match is
guaranteed to be in the blocks being compared) and would almost certainly find more false matches. For this reason
our approach leads to a conservative measure of the disclosure risk.

When the SIPP/SSA/IRS-PUF is finally publicly released there will be no link between the Gold Standard data
and the synthetic implicate files. However for testing purposes, we have maintained this link by keeping the common
person identifier on the Gold Standard file and the PUF implicate files. Thus, by naming this person identifier in the
sequence field of the record linking software, we can check which matched record pairs with a given score are correct
matches and which are false matches by comparing this person identifier. When the person identifier is the same, the
matching algorithm was successful in finding the person in the Gold Standard file to whom the synthetic data record
belonged. When the person identifier is different, the matching algorithm was unsuccessful. This technology is also
used for the distance matching discussed in section 7.3.

Automatic searches for matches occur only within those records sharing the same values on the blocking variables.
Matches agree exactly on values for the blocking variables and, additionally, they agree on values for the matching
variables. An input file to the matching software specifies the agreement criterion for each of the matching variables.
Two numbers have to be specified for each of the matching variables. The first number represents the conditional prob-
ability that the two records agree on the matching field value given that the two records represent a match, called the
m probability. The second number represents the conditional probability that the two records agree on the matching
field value given that the two records do not represent a match, called the u probability. This technology was also used
in creating the weight; see 5.8.2.

From the agreement criterion, the software computes a score. The agreement score for a match on a particular
variable from two comparison records is based upon ln (m/u). A larger ratio implies a stronger distinguishing power
for that matching field. Presumably, the ratio m/u > 1. When using Census Bureau matching software for the
un-duplication of a file, one is trying to identify specific duplicate pairs, so more precise probability estimates may be
helpful. However, when using this software for extracting subsets of plausible matches from a large file, the conditional
agreement probabilities can be rough general estimates. To lean towards a more conservative assessment of disclosure
risk, we obtained the best possible m and u estimates by using the personid variable that is common between the files.
Given that the public will not have access to this variable, an intruder trying to match the two files cannot possibly
obtain better results using matching software that is at least as efficient as the Census Bureau software.

It is easy to calculate the conditional agreement probabilities m = Pr(agreement | match) for each matching
field, if one knows when true matches occur. This is just the relative frequency of the fields on the Gold Standard and
PUF files being equal, call this f0. It is also easy to calculate the unconditional probability Pr(agreement) for each
matching field that has a categorical variable. If, for example, X is a categorical variable that can take on 3 possible
values, x1, x2, x3 then we obtain the distributions of X in the Gold Standard (GS) and PUF files (implicate 1) and
calculate

Pr(agreement) =
∑

i=1,2,3

Pr(X = xi | GS) Pr(X = xi | PUF ).

Next it is clear that Pr(match) = 1
N , with N being the common size of both the GS and the PUF files, since for each

GS record there is only one PUF record representing the same person. Therefore Pr(nonmatch) = N−1
N , so given

m = Pr(agreement | match) = f0, we have

Pr(agreement) =
f0

N
+

Pr(Agreement | nonmatch)(N − 1)
N

and can solve for u = Pr(Agreement | nonmatch).
The agreement and disagreement conditional probabilities for those variables used for matching individuals with

spouses are shown in Table 63. All matching fields were assigned the exact matching comparison type. This caused

57



the program to assign full agreement/disagreement scores according to whether the fields agree or disagree. The
corresponding agreement probabilities for single individuals are just slightly different and are shown in Table 64.

These probabilities are used to calculate the scores given to this variable when it agrees or disagrees. The agreement
score is defined as ln(m

u ). The disagreement score is defined as ln( 1−m
1−u ). For example, the full agreement score for

a “c-match” on Hispanic is ln( 0.888222038
0.817697432 ) ≈ 0.08. The disagreement score is ln( 1−0.888222038

1−0.817697432 ) ≈ −.50.
The software compares each matching field, decides whether the field agrees or not, and then assigns the appro-

priate score to the field based on the user supplied m and u probabilities. Next, a cumulative match score is calculated
by summing the scores across all the matching variables. This cumulative score is used to decide whether two records
match. It is compared to the cutoff values provided by the user and if it passes the stated threshold, a match is declared.
The influence of a one variable relative to another on this cumulative score is controlled by the relative matching and
non-matching agreement probabilities specified by the user, but in this case based on actual calculations from the
relevant files. The non-matching agreement probability essentially tells how often a field will agree at random across
two files. A high value for this probability will reduce the importance of this variable in the matching by causing the
agreement score to be lower. This is desirable because if the field is likely to agree at random, any match in values
between two files is less likely to signify a true match. At the same time, a high non-matching agreement probability
causes the disagreement score to be less negative or smaller, meaning that the penalty for not matching on this variable
is not as high. In contrast, the relative matching agreement probability tells the importance of this variable compared
to other variables in determining whether two records are a match. A high matching agreement probability means
that a match on this field is crucial to determining an overall match between two records. Thus a high value for
m produces a high agreement score. It also produces a more negative or higher disagreement score, more severely
penalizing non-matching in this field. Consider the example of the variable flag mar4t, which is used to identify
individuals who reported more than three marriages. When two records agree on this variable, and they are a match,
the cumulative matching score increases by 5.317686217. If the records are not a match, but agree on this variable,
then the cumulative score decreases by −4.609063992.

The output cutoff flag for the cumulative matching score provides the comparison points for the matching score. In
our testing we declare any pair of records with a cumulative score between −20 and 20 to be a potential match. That
is, we consider matching two records whenever their agreement score exceeds −20 even though most applications of
probabilistic record linking use a positive cut-off for the automatic selection of potential matches. Thus, we declare
records to be candidate matches based on an aggressive matching strategy. From either Table 63 or 64 we can see that
the total matching scores cannot be outside of this range. Essentially, we allow every record in the synthetic file to
have candidate matches in the Gold Standard. The output files are sorted by decreasing cumulative agreement score;
then, the best two matches are kept. Finally, the proportions of true matches and the ratio of true to false matches are
obtained.

The number and proportions of false and true matches, for each of the segments of the file, are given in Tables 65
and 66. The number of true and false matches in each segment are reported in column 3 and sum to equal the total
number of records in each segment. The ratio of true to total matches and false to total matches gives the percentage of
true matches and false matches in each segment and is reported in column 4. In Table 65, there are no data segments
that have a true match rate over 1% and the ratio of true to false matches is extremely low. In Table 66, the percentages
of true matches are slightly higher but the highest value is still just over 1% (1.18% for segment 2).

7.3 Distance matching

Distance-based record linking is another common approach to estimating the risk of disclosure in micro data. In recent
work, Domingo-Ferrer, Abowd and Torra (2006) use distance-based methods to re-identify records on two synthetic
micro-data samples. They find that distance-based metrics perform similarly to (if not better than) the more commonly
used probabilistic methods. Their work suggests that re-identification exercises should also include distance based
methods. The broader the selection of methods used, the more informed the analyst is of the risk of disclosure. In
particular, it is important to understand which methods pose the largest threat. Domingo-Ferrer et al. (2006) conduct
similar comparisons of distance-based and probabilistic record linking methods.

Our tests consider the case of an intruder who uses distance-based re-identification to match the source records
from the Gold Standard to synthetic SIPP/SSA/IRS-PUF observations. Such re-identification methods calculate the
distance between a given record in the Gold Standard and every record in the synthetic implicate. The j closest records
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are then declared potential candidates for a match to the source record. In our analysis we consider j = 3.
Our distance-based re-identification proceeds in two stages. First we split both the Gold Standard and the first

synthetic implicate (m = 1 and r = 1) into groups based on the unsynthesized variables. In this case, marital
status and male are the only two unsynthesized variables. We next split each blocking group into smaller segments
of approximately 10,000 observations in order to decrease the processing time, which is quadratic in the size of the
largest files compared. We performed the segment split on both the Gold Standard and synthetic files so that the correct
match in the Gold Standard was always in the same block and segment of the synthetic data used for comparison. In
other words, we forced the segmentation of the files to guarantee that the correct match could always be found in the
block/segments being compared. This is the same assumption as we used in section 7.2 to segment the comparison
files in that analysis. The segmentation of the blocks uses our prior knowledge of which records are actual matches
and hence our matching results are conservative–overestimates as compared to a distance record link that could not
segment the comparison files because the intruder did not have access to the true personid. After splitting the data
into blocking groups and segments, we then calculate the distance between a given Gold Standard record and every
record in the synthetic file in its corresponding blocking group and segment using a set of 163 matching variables. The
three closest records are then declared possible matches.

We use four distance metrics. Each metric is a special case of either Mahalanobis or Euclidian distance. Before
formally defining the distance, we first define some notation. Let A and B represent the two data sets being matched.
For our purposes, conceptualize the block and segment of the Gold Standard as the A file and the block and segment
of the synthetic implicate as the B file. Denote α as the vector of 163 matching variables from an observation in the
A file and β as the analogue for the B file. Given this notation we define the distance between a given vector α in the
A file and a given vector β in the B file as follows:

d(α, β) = (α− β)′[V ar(A) + V ar(B)− 2Cov(A,B)]−1(α− β)

We consider four specific cases of the general distance. In the first case we assume that the intruder can properly
calculate the Cov(A,B). We denote this distance MAHA1, and note that it is a true Mahalanobis distance; hence
we expect that this distance measure will give us the highest match rates since it uses all of the available information,
including the correct covariance structure of the errors in synthesizing all 163 variables. In the second case, we
assume that the Cov(A,B) = 0. This is equivalent to assuming that we do not know how to link the observations
across the A and B files and cannot compute Cov(A,B). A real intruder would not have access to Cov(A,B). We
denote the second distance MAHA2, and note that it is a “feasible” Mahalanobis distance. In the third case, we
assume [V ar(A) + V ar(B) − 2Cov(A,B)] = I , where I is the identity matrix. We denote the third measure as
EUCL1, which is a Euclidian distance with unstandardized inputs. For the fourth measure, we transform all of the
matching variables in the A and B files to N(0, 1) variables. Call the transformed files Ã and B̃. We then calculate
the distance using [V ar(Ã) + V ar(B̃)− 2Cov(Ã, B̃)] = I . We denote this fourth metric EUCL2, and note that it is
a standardized Euclidian distance.

Tables 67-68 shows the results of the re-identification exercises for each of the four metrics. Table 67 shows the
results using the Mahalanobis distance measures and Table 68 shows the results for the Euclidian distance measures.
For each metric there are six columns. Match rate 1 (closest two records in A and B), match rate 2 (second closest two
records in A and B), ratio of 2/1, match rate 3 (third closest two records in A and B), ratio of 3/2, and ratio (3+2)/1.
Match rate j is calculated as the number of successful matches within a blocking group based on the jth closest
observation divided by the total number of observations in that group (multiplied by 100 to convert to percentages).
For example, match rate 2 is calculated as the number of successful matches within a blocking group and segment
based on the second closest observation divided by the total number of observations in that group (multiplied by 100
to convert to percentages).

We first note that match rate 1 finds the highest rate of re-identifications. This implies that choosing the closest
record using the indicated distance metric is more likely to find true match than choosing the second or third closest
record. We further note that the highest match rate among all blocking groups is only 2.91%. Thus, an intruder who
defined the closest- distance record as a match would correctly link 1.09% of records overall in the synthetic files and
less than 3% in the worst-case sub-group.

The three ratio columns give us a sense of how much better the closest match does than the second and third best
matches. Ideally, we want to ensure that if an intruder looked at the top three matches, he or she would face sufficient
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uncertainty about which one was the correct match. If the second closest record is exactly as likely to be the correct
match as the closest record, then the ratio of match rate 2 to match rate 1 would be unity. If this ratio is less than
one, then the closest record is more likely to be the correct match. If this ratio is greater than one, then the second
closest record is more likely to be the correct match. The other ratio columns have the same interpretation. For the
MAHA1 metric, the column Ratio (3+2)/1 ranges from 0.79 to 1.12. This suggests that the 2nd or 3rd closest matches
are almost as likely to be correct as the closest match. The totals in the last row are essentially weighted averages of
each column where the weights are the percentage of records in each group.

As expected, the MAHA1 metric produces the highest match rates. The highest match rate for the MAHA2
metric, perhaps the most likely to be used by an intruder, is 2.2% and the ratio of (3+2)/1 is very close to unity for
every sub-group. The Euclidian metrics are very similar to the MAHA2 metrics with the overall match rate not
exceeding 1.2%, the highest sub-group match rate less than 2.4%, and the ratio of (3+2)/1 generally being very close
to or slightly higher than unity.
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8 Using Synthetic Data
Many potential users may be concerned about how to begin using synthetic data and multiple implicate files. In this
section we give some suggestions and advice for using these data sets to perform analyses and apply the formulae
described in 6.

We suggest that users begin with one synthetic implicate and write code to prepare variables and verify the spec-
ification of statistical models for this single data set. Since all the synthetic implicates are identical in terms of file
structure, number of records, variables names, etc., any code that works on one implicate also works on the remaining
implicates. Users can debug their models and, once they are satisfied with the programming specification, run the
model on all 16 implicates. In this sense, synthetic data are no different from any other micro-data set. Analyses
are run in exactly the same manner but are repeated multiple times. We recommend saving analysis results such as
regression coefficients or summary statistics in a data set that can be manipulated on its own. This will be useful
for combining results. We also recommend that users base all their statistical inferences on the proper combining
formulae. That is, we do not recommend that users conduct statistical specification searches on a single implicate and
then estimate “final” standard errors with the proper formulae. The statistical inference theory that underlies partially
synthetic data with multiple imputation relies on the multiple analyses, conducted on independently drawn implicates,
to reflect the model uncertainty inherent in the original confidential data.

Each synthetic implicate has two variables that control the relationship between implicate files. The variable
m implicate tells which completed data implicate served as the starting basis for this particular synthetic data im-
plicate. The variable r implicate gives the synthetic implicate number for the file. There are four completed data
implicates, so the variable m implicate ranges from 1 to 4. There are four synthetic implicates per completed data
implicate so the variable r implicate ranges from 1 to 4 also. The first synthetic implicate will have m implicate = 1
and r implicate = 1, the second synthetic implicate will have m implicate = 1 and r implicate = 2, and so on,
until the fifth synthetic implicate, which will have m implicate = 2 and r implicate = 1. In this manner a user can
tell which synthetic implicates stemmed from the same completed data implicate. This information is necessary in
order to apply the combining formulae.

Any statistic of interest to a researcher can be calculated from the synthetic data by calculating it once per synthetic
implicate and then averaging across the 16 implicates. If the researcher wants to know average earnings in a given
year, he or she should calculate the average in each of the 16 implicates using standard methods and then calculate
the simple average these 16 separate means to get one grand mean. If the researcher wants to know the variance of
earnings in a given year, he or she should follow the same procedure: calculate the variance in each implicate and then
calculate the simple average these 16 statistics to get one grand variance. Note, and this is very important, the grand
mean of the variances is just one component of the estimated total variance required to compute a confidence interval
for average earnings. The complete formula is contained in section 6. Point estimates for any statistic of interest
from regression results to moments or percentiles of a distribution can be obtained in this manner. In the standard
combining formulae, every implicate is equally weighted, so simple averaging is all that is required.

The calculation of the estimated total variance of a statistic of interest, from which one might compute a confidence
interval or test statistic, is more complicated but still can be performed with standard software. In addition to the
statistic of interest, the user should save the estimated sampling variance of this statistic for each of the 16 implicates.
For example, if calculating one mean per implicate, the user should calculate the sampling variance of the mean
once per implicate.18 The within-implicate sampling variances are then averaged to estimate the average within-
implicate variance, one component of the total variance. The user must then make use of the m implicate and
r implicate variables to calculate the between-completed-data-implicate variance and the between-synthetic-data-
implicate variance according to the formula in 6.2.2. The user first calculates the variance of the statistic across the
four r implicates associated with a particular m implicate. There will be four of these variances: one per completed
data implicate. These four variances are then averaged to give the overall between-synthetic-data-implicate variance.
The user then calculates the mean of the statistic of interest for all the synthetic implicates associated with a particular
completed data implicate. Again, there will be four of these means. The between m implicate variance is then
calculated as the average of the squared deviations of these four means from the overall grand mean. If the statistics

18The reader is cautioned to be certain to perform all calculations on variances and not standard deviations. To compute a standard deviation
or standard error, the square root operation should be peformed on the total variance that has been computed by combining all of the component
variances appropriately.
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of interest are saved in a data set, these calculations can be easily performed. The variance pieces are then combined
to create the total variance and calculate degrees of freedom. In the case that the total variance becomes negative,
we recommend not subtracting the between-synthetic-data-implicate variance when calculating the total variance.
The confidence interval can be calculated using the asymptotic assumption of normality instead of the finite sample
t−distribution.

When presenting research results, users should not report the result from a single synthetic implicate. This is
not an accurate representation of either the point estimates or their associated variances. This is especially important
when comparing synthetic and completed data in order to determine analytic validity. No synthetic implicate can
be judged for accuracy as a stand-alone file. It must be considered in conjunction with the other synthetic data sets.
Likewise, all implicates of the completed data must be used together in the manner described above in order to create
a comparison basis.
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9 Conclusion
Given the length and scope of this project, it is perhaps beneficial at this point to consider what has been accomplished.
This collaboration between four government agencies has produced several new data products and advanced the body
of knowledge on missing data imputation, assessing the validity of automated statistical modeling, disclosure avoid-
ance techniques, and disclosure risk analysis. In the past six years, we have produced a highly useful compilation
of SIPP data that combines five separate panels with edited administrative data from IRS and SSA, a weight to allow
meaningful analysis of these combined panels, a set of files that multiply impute all missing data, and a set of synthetic
data files that meet disclosure standards of the Census Bureau, the Internal Revenue Service, and the Social Security
Administration. For the first time in 30 years, it appears that it will be possible to release lifetime earnings histories
taken from administrative records, an accomplishment that will be of enormous benefit to the research community and
the general population. This project has been a model for what inter-agency cooperation can accomplish by pooling
the expertise of researchers from the Census Bureau, IRS, SSA, and CBO.

When we began this project, there was a great deal of uncertainty over whether synthesizing techniques could
produce micro-data that would preserve relationships among variables and mitigate disclosure risk. In fact, almost
none of the enhanced theory or experience with these methods required to complete the project existed. Based on
the results at this point, we feel that both these questions can be answered in the affirmative. It is now imperative
that outside users be given a chance to test these synthetic data and that the agencies involved develop a system for
validating outside results using the Gold Standard in order to promote general confidence in the methods and to permit
quality improvements. This process will help us to discover remaining flaws in the synthetic data and improve the
synthesizing process, both of which will enable the collaborators to provide useful future updates to this data product,
as funding resources permit.
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A Appendix
The appendices to this report have been included as separate files. The list is provided here.

• Technical Description of the Creation of the SIPP/SSA/IRS Gold Standard Files and the SIPP-SSA-IRS PUF
Version 4.0 (PDF file)

• Appendix Table A1 Detailed Variable Information (PDF file)

• Varlists description version 4.0.xls (Excel workbook)

• CompletionSynthesisTables1.xls (table 1) - Completion and Synthesis (Excel workbook)

• WeightsTables1.xls (table 2) - Weights (Excel workbook)

• AnalyticValidityTables1.xls (tables 3-18) - Analytical Validity (Excel workbook)

• AnalyticValidityTables2.xls (tables 19-28) - Analytical Validity (Excel workbook)

• AnalyticValidityTables3.xls (charts 1-8) - Analytical Validity (Excel workbook)

• AnalyticValidityTables4.xls (tables 29-34) - Analytical Validity (Excel workbook)

• AnalyticValidityTables5.xls (tables 35-37) - Analytical Validity (Excel workbook)

• AnalyticValidityTables6.xls (table 38) - Analytical Validity (Excel workbook)

• AnalyticValidityTables7.xls (table 39, charts 9-10) - Analytical Validity (Excel workbook)

• AnalyticValidityTables8.xls (tables 40-60) - Analytical Validity (Excel workbook)

• AnalyticValidityTables9.xls (table 61) - Analytical Validity (Excel workbook)

• AnalyticValidityTables10.xls (table 62) - Analytical Validity (Excel workbook)

• DisclosureTestingTables1.xls (tables 63-66) - Disclosure Testing (Excel workbook)

• DisclsoureTestingTables2.xls (table 67-68) - Disclosure Testing (Excel workbook)
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Chart1: 
Comparison of Synthetic and Completed Annual Work Indicators 
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Chart 2:  
Comparison of Synthetic and Completed Annual Work Indicators 

Retired Black Males and Females
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Chart 3:  
Comparison of Synthetic and Completed Earnings 

Retired White Males and Females

-1600

400

2400

4400

6400

8400

10400

12400

14400

16400

1965 1975 1985 1995

years

no
m

in
al

 d
ol

la
rs

females synthetic
females completed
males synthetic
males completed



Chart 4:  
Comparison of Synthetic and Completed Earnings 

Retired Black Males and Females
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Chart 5:  
Comparison of Synthetic and Completed Annual Work Indicators 
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Chart 6:  
Comparison of Synthetic and Completed Annual Work Indicators 
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Chart 7:  
Comparison of Synthetic and Completed Earnings
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Chart 8:  
Comparison of Synthetic and Completed Earnings 

Black Males and Females
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Table 38:  Marital History Variables
Mean Confidence IntervalConfidence Interval Synthetic Total Variance

Variable Synthetic Completed Synthetic Completed DF Not Exist Synthetic Completed
Number of marriages 0.88 0.87 0.87 0.87 1 -5.38E-08 9.68E-07
Percent ever divorced 0.24 0.24 0.24 0.24 1 1.15E-07 3.89E-07
Percent ever widowed 0.07 0.07 0.07 0.07 0.07 0.07 0 2.53E-07 1.03E-07

23.17 26.18 22.50 23.83 26.07 26.29 0 9.28E-03 2.21E-03
12.96 14.41 11.31 14.61 14.14 14.68 0 0.17 0.01

Age at first marriage 23.05 23.28 23.24 23.32 1 -3.94E-03 3.13E-04

Duration of 1st marriage
Duration of 2nd marriage



Table 39:  Retirement Age – Weighted and Unweighted Counts

Age Completed Synthetic Completed Synthetic
<55 25,115 24,089 35 33
>=55 and <56 0 0 0 0
>=56 and <57 1,724 141 1 1
>=57 and <58 0 2,396 1 2
>=58 and <59 268 0 1 1
>=59 and <60 733 3,467 1 5
>=60 and <61 4,686 13,601 11 21
>=61 and <62 2,160,505 92,222 4,919 139
>=62 and <63 15,042,278 11,330,115 21,771 18,046
>=63 and <64 2,243,418 8,648,017 3,820 14,081
>=64 and <65 7,688,675 4,461,798 12,248 7,274
>=65 and <66 605,260 1,998,145 988 3,335
>=66 and <67 302,360 781,017 474 1,388
>=67 and <68 165,783 284,813 305 472
>=68 and <69 148,499 149,679 218 229
>=69 and <70 216,884 89,701 298 137
>=70 and <71 62,259 58,498 106 91
>=71 228,409 182,367 348 289

WEIGHTED UNWEIGHTED
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� &∋�&� )∋�)� )∋,�, &∋�(� +∋&&∗ )∋�∗� �∋�&, �∋−�& −

�∋−+( �∋(�� 0�∋�(− �∋(∗) �∋�(− �∋�−( �∋�,� �∋�∗( �
�∋()∗ �∋∗∗− �∋��� �∋∗�+ �∋�)+ �∋+�) �∋�)� �∋��+ �

�������.���� �∋+&� �∋&+� �∋�−∗ �∋,�∗ �∋)(∗ �∋,&∗ �∋−�� �∋�)∗ �
����/��� �∋),) −∋−+, �∋�+− −∋−(( −∋�−& −∋(�� �∋−∗+ �∋�,− �

0�∋��� 0�∋+(− 0�∋∗(( 0�∋�+) 0�∋)+( 0�∋�,, �∋�+� �∋�)∗ �

������.���� �∋�&� �∋��+ 0�∋�,& �∋�+� 0�∋−�+ �∋−,) �∋�&� �∋�&� �

0�∋�(� �∋−∗+ 0�∋−�& �∋�+) �∋�−) �∋�,+ �∋�∗− �∋�&� �
�∋−)( �∋(&& �∋−∗� �∋−,− �∋((+ �∋��� �∋�−− �∋�(� −
0�∋�+) 0�∋��� 0�∋�)& 0�∋�∗∗ 0�∋�&� 0�∋−,) �∋��) �∋��∗ −
�∋�−( �∋�+) �∋��, �∋�−& �∋�∗( �∋�&� �∋��( �∋��& −
0�∋��− 0�∋��) 0�∋��� 0�∋��− 0�∋��& 0�∋��∗ �∋��� �∋��− −
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� &∋()( )∋)−) &∋�,∗ &∋�∗− )∋+∗& )∋))) �∋��+ �∋�(+ −

�∋−&� �∋��& �∋−∗) �∋��( �∋��− �∋�)� �∋�−( �∋�−+ −
�∋��∗ �∋�,− �∋�&� �∋∗�) �∋�+( �∋∗�� �∋�∗− �∋�−) �

�������.���� �∋)−, �∋&(� �∋∗+− �∋&)+ �∋&�� �∋&+∗ �∋�+( �∋�−, �
����/��� �∋),� −∋��( �∋+�& �∋,∗� −∋��& −∋�)& �∋�+� �∋��− �

0�∋�∗, 0�∋�)� 0�∋�,+ 0�∋��� 0�∋∗−− 0�∋��& �∋��� �∋��� −

������.���� �∋�)∗ �∋�,) �∋�(� �∋−−) �∋�+� �∋−(� �∋��∗ �∋��� −

0�∋��& �∋��( 0�∋��, �∋�(( �∋��) �∋�), �∋��� �∋��− �
�∋−�� �∋�−+ �∋�(, �∋−+, �∋��− �∋�(� �∋��∗ �∋��, �
0�∋�(& 0�∋−−, 0�∋�,− �∋�−� 0�∋−(− 0�∋−�) �∋��� �∋��) �
�∋��, �∋�(� 0�∋��) �∋��∗ �∋��, �∋�(+ �∋��+ �∋��� �
0�∋��− 0�∋��( 0�∋��( �∋��− 0�∋��� 0�∋��( �∋��− �∋��� �
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� &∋�(+ )∋−,� &∋−�− &∋()� )∋�∗, )∋(�, �∋�&� �∋�&� −

�∋�+( �∋(�) �∋−,) �∋((� �∋�&� �∋�−� �∋�(� �∋�(, �
�∋�,� �∋∗&) �∋()+ �∋+−� �∋∗−& �∋+∗+ �∋��+ �∋��− �

�������.���� �∋&�� −∋−−& �∋))� �∋,−� −∋�(� −∋��) �∋��� �∋�∗� −
����/��� �∋,∗( −∋�&, �∋)�& −∋−∗) −∋−), −∋(,, �∋�)) �∋�+) �

0�∋(�� 0�∋�∗( 0�∋��& 0�∋−,� 0�∋∗�( 0�∋(+( �∋�∗� �∋�∗� �

������.���� �∋−−� �∋−&( 0�∋�−+ �∋��∗ �∋�∗� �∋(−) �∋�++ �∋�)( �

0�∋�−− 0�∋��) 0�∋−�� �∋−�− 0�∋−−( �∋�,, �∋�+� �∋�+� �
�∋�&+ �∋�,) 0�∋�−� �∋−&( �∋�+� �∋((∗ �∋�() �∋��( �
0�∋�−, 0�∋−)∗ 0�∋�,� �∋�∗� 0�∋��) 0�∋−�� �∋�(− �∋�−, �
�∋��( �∋��& 0�∋�−, �∋��� �∋�(& �∋�∗, �∋�−� �∋��+ �
�∋��� 0�∋��∗ 0�∋��( �∋��� 0�∋��+ 0�∋��� �∋��− �∋��− �
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� &∋�)) )∋&�) &∋−(∗ &∋�−, )∋)�+ )∋&+) �∋�&� �∋�(+ −
����������.���� �∋−,� �∋−,& �∋−�� �∋�)& �∋−)∗ �∋��− �∋�(& �∋�−� �
����������� �∋(∗) �∋(++ �∋��+ �∋�+) �∋(�� �∋(,� �∋��& �∋�−∗ �
�������.���� �∋∗,+ �∋)�� �∋�(� �∋)+� �∋+)� �∋)�) �∋�)− �∋�−+ �
����/��� �∋+(& �∋),� �∋�∗& �∋&−, �∋)+∗ �∋&�( �∋�)) �∋�−& �
����� 0�∋(�� 0�∋∗&� 0�∋(+� 0�∋(−+ 0�∋+(� 0�∋∗�) �∋�−� �∋��& �

������.���� �∋�−∗ �∋��� 0�∋�&+ �∋−−+ �∋�−) �∋�+) �∋��∗ �∋�−∗ �
���∀���� 0�∋��− 0�∋��& 0�∋�,� �∋��) 0�∋�∗( 0�∋��( �∋��� �∋�−∗ �
���.������.���� �∋−,� �∋�&� �∋−∗� �∋�(& �∋�++ �∋�,& �∋�−+ �∋��, �
���.������.����.� 0�∋�&) 0�∋−�& 0�∋−�� 0�∋�)− 0�∋−+� 0�∋−(+ �∋��, �∋��) −
���.������.����.( �∋�−, �∋�(+ �∋�−+ �∋��( �∋�(( �∋��� �∋��� �∋��� −
���.������.����.� 0�∋��� 0�∋��( 0�∋��� 0�∋��− 0�∋��� 0�∋��( �∋��� �∋��� −
������� �∋−−− �∋−−� �∋�)& �∋−�∗ �∋�&& �∋−(� �∋�−+ �∋�−( �
�������� 0�∋�)� 0�∋��� 0�∋�,� 0�∋�∗� 0�∋�)( 0�∋�−� �∋�−� �∋�−, �
������� 0�∋(∗) 0�∋��( 0�∋∗,, 0�∋−−∗ 0�∋∗�∗ 0�∋(�� �∋−�� �∋�)� �
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� &∋��� )∋−�+ )∋&+− &∋−&( +∋,(− )∋�&− �∋�,∗ �∋−�∗ −
����������.���� �∋−(� �∋�,� 0�∋��, �∋(�& �∋−,� �∋(,� �∋�&� �∋�∗+ �
����������� �∋(−) �∋∗�� �∋−&+ �∋��, �∋��− �∋∗), �∋�∗& �∋��& �
�������.���� �∋∗∗) �∋+∗& �∋(�, �∋)&∗ �∋∗�∗ �∋),� �∋−�, �∋�&� �
����/��� �∋∗,& �∋&)� �∋((( �∋&+� �∋)−) −∋��) �∋−�, �∋�,� �
����� 0�∋(+) 0�∋∗)− 0�∋∗−∗ 0�∋�−& 0�∋)�� 0�∋�(, �∋�+) �∋�)+ �

������.���� �∋�(� �∋�++ 0�∋−�� �∋��� 0�∋�,+ �∋��& �∋�), �∋�,� �
���∀���� �∋��− �∋−&) 0�∋−�) �∋−�& �∋�∗� �∋(�∗ �∋�∗+ �∋�&( �
���.������.���� �∋−)� �∋(∗, �∋−(− �∋�−( �∋(−− �∋��) �∋��� �∋��, −
���.������.����.� 0�∋�++ 0�∋�−∗ 0�∋�,& 0�∋�(� 0�∋�∗∗ 0�∋−)∗ �∋�−, �∋��� −
���.������.����.( �∋�−( �∋�∗, �∋��( �∋��( �∋��) �∋�)� �∋��+ �∋��& −
���.������.����.� 0�∋��− 0�∋��+ 0�∋��� �∋��� 0�∋��) 0�∋��∗ �∋��− �∋��− −
������� �∋−−� �∋�,) �∋�∗) �∋−)− �∋��� �∋−)� �∋�(� �∋��∗ �
�������� 0�∋−&) 0�∋−,� 0�∋�)& 0�∋�,∗ 0�∋(�� 0�∋��� �∋�∗( �∋�&∗ �
������� 0�∋(−− 0�∋�,� 0�∋)−+ �∋�,( 0�∋,,, �∋�−+ �∋��( �∋�,( �
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� &∋(�� )∋+�− &∋�−+ &∋(&∗ )∋∗), )∋)�� �∋�∗� �∋�() −
����������.���� �∋−+& �∋��� �∋−(� �∋��� �∋�−∗ �∋�+, �∋��� �∋�−+ −
����������� �∋()� �∋�(− �∋��� �∋∗�( �∋��( �∋�+� �∋�∗∗ �∋�−) �
�������.���� �∋+�+ �∋)−� �∋�)− �∋&�� �∋+)) �∋)�� �∋�)− �∋��� �
����/��� �∋+&+ �∋&(( �∋∗(− �∋&�� �∋),) �∋&+, �∋�∗, �∋��� �
����� 0�∋��, 0�∋��∗ 0�∋(�� 0�∋−,∗ 0�∋�&+ 0�∋��( �∋�−, �∋��� �

������.���� �∋�)+ �∋−,� �∋��+ �∋−�) �∋−∗, �∋��, �∋��∗ �∋��� �
���∀���� �∋�−, �∋�(� 0�∋��) �∋�++ 0�∋�−� �∋�)� �∋��� �∋��( �
���.������.���� �∋−−− �∋��, �∋��( �∋−), �∋�−� �∋��� �∋��) �∋��, �
���.������.����.� 0�∋��& 0�∋−�, 0�∋�&− �∋��∗ 0�∋−�− 0�∋�,+ �∋��− �∋��& �
���.������.����.( �∋��� �∋��) 0�∋�−− �∋��� �∋��( �∋�(− �∋��+ �∋��� �
���.������.����.� 0�∋��− 0�∋��( 0�∋��� �∋��− 0�∋��( 0�∋��� �∋��− �∋��� �
������� 0�∋��− 0�∋(�� 0�∋�)∗ 0�∋��& 0�∋()� 0�∋(−� �∋��� �∋�−+ −
�������� 0�∋−,� 0�∋��( 0�∋�+∗ 0�∋−−+ 0�∋�)+ 0�∋�−� �∋��, �∋��� �
������� 0�∋�)( 0�∋∗+( 0�∋∗)− 0�∋()+ 0�∋+(+ 0�∋�,− �∋��, �∋��� �
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� &∋−�) )∋−∗� )∋,)� &∋��� )∋��+ )∋�,� �∋�&− �∋�&) −
����������.���� �∋�(� �∋(�) �∋−∗� �∋(�) �∋��� �∋()� �∋�(+ �∋�(& �
����������� �∋�(, �∋�,( �∋(�∗ �∋∗∗( �∋��� �∋∗+� �∋��) �∋��− �
�������.���� �∋)(( �∋,−( �∋+�∗ �∋&�� �∋&−& −∋��) �∋�+� �∋�∗) −
����/��� �∋&−− −∋�−( �∋+−, −∋��� �∋&,, −∋−�+ �∋�&∗ �∋�+, �
����� 0�∋�&� 0�∋��) 0�∋()∗ 0�∋−,( 0�∋∗�− 0�∋(−� �∋��) �∋�∗+ �

������.���� �∋�,� �∋��, 0�∋�∗( �∋��− �∋−�� �∋(∗) �∋�)� �∋�)− �
���∀���� �∋��& �∋�(( 0�∋−�, �∋−�∗ 0�∋�)� �∋−(, �∋�+) �∋�+∗ �
���.������.���� �∋−�� �∋�,� �∋��− �∋−+� �∋�∗� �∋((( �∋�(+ �∋��� −
���.������.����.� 0�∋��− 0�∋−∗, 0�∋�,& �∋�∗+ 0�∋−,( 0�∋−�+ �∋��, �∋��� �
���.������.����.( �∋��( �∋��( 0�∋�−, �∋��� �∋�(� �∋�∗� �∋��, �∋��) �
���.������.����.� �∋��� 0�∋��� 0�∋��� �∋��� 0�∋��+ 0�∋��( �∋��− �∋��− �
������� 0�∋�)( 0�∋�,− 0�∋−�+ 0�∋��− 0�∋−∗) 0�∋��∗ �∋�(− �∋�(, �
�������� 0�∋−)� 0�∋�−� 0�∋�−& 0�∋−�( 0�∋�,� 0�∋−(( �∋��& �∋��) �
������� 0�∋�(∗ 0�∋�+, 0�∋+�+ 0�∋�+� 0�∋+�− 0�∋((+ �∋�,� �∋�&− �
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� )∋+�� )∋�∗� )∋∗∗� )∋+∗� )∋−)� )∋((∗ �∋��, �∋��& −
���.���� �∋���� �∋��,( 0�∋��+) �∋��)∗ �∋��∗∗ �∋�−(− �∋��( �∋��� �
���.����.�7 0�∋���� 0�∋���( 0�∋���( 0�∋���− 0�∋���( 0�∋���� �∋��� �∋��� �
����1
����� 0�∋,�& 0�∋,,∗ 0�∋,�, 0�∋,�+ 0−∋�−, 0�∋,)� �∋�−� �∋�−� �
����1���� 0�∋��( 0�∋�∗) 0�∋��� 0�∋(+� 0�∋�,, 0�∋�−∗ �∋�−, �∋��� �
�����
����� 0�∋&�� 0�∋&�( 0�∋&(+ 0�∋&�) 0�∋&∗( 0�∋&(� �∋��) �∋��+ �
����������.���� �∋(() �∋��� �∋�(∗ �∋�(& �∋(&� �∋�−) �∋��( �∋�−� �
����������� �∋∗)� �∋+,� �∋��− �∋+,, �∋+)( �∋)�& �∋�∗∗ �∋�−� �
�������.���� �∋)−) �∋&++ �∋∗)− �∋&+� �∋&�� �∋&,− �∋�+� �∋�−� �
����/��� �∋)�& �∋,−− �∋+�− �∋&∗∗ �∋&), �∋,�� �∋��+ �∋�−) �
����� 0�∋(+∗ 0�∋∗∗, 0�∋�&& 0�∋��− 0�∋∗&� 0�∋∗(& �∋�∗( �∋�−� �
���∀���� 0�∋��, 0�∋�∗) 0�∋�&� 0�∋�−& 0�∋�)+ 0�∋�() �∋�−� �∋�−− �
�������� �∋−(+ �∋−∗, �∋−�& �∋−+� �∋−−& �∋��� �∋�−∗ �∋��− �
������� �∋−(� �∋−(� �∋−�∗ �∋−+� �∋�,, �∋−+∗ �∋�−� �∋�−) �
������� 0�∋−�+ 0�∋��� 0�∋−�∗ 0�∋�+) 0�∋�+� �∋�−� �∋��� �∋��( �
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� 0+−∋∗(� 0+)∋∗�− 0++∋(�� 0∗+∋)�∗ 0)−∋�)− 0+(∋∗(− �∋∗�− �∋−,� �
���.�������.������� �∋�(( �∋�(& �∋��& �∋�(& �∋�(( �∋��� �∋��( �∋��( �
����1
����� 0�∋(+� 0�∋(�, 0�∋�(∗ 0�∋�&∗ 0�∋(&+ 0�∋�)� �∋�(+ �∋�(� �
����1���� 0�∋−−� 0�∋−�� 0�∋−∗� 0�∋�)− 0�∋−∗� 0�∋�&, �∋�−∗ �∋�−& �
�����
����� 0�∋(�− 0�∋�,) 0�∋(+� 0�∋�(& 0�∋(∗� 0�∋��� �∋��) �∋��+ �
����������.���� �∋�)� �∋�+− �∋��� �∋�,) �∋��+ �∋�,+ �∋�−� �∋�−) �
����������� �∋−�− �∋�&, �∋�)& �∋−+( �∋�∗� �∋−�� �∋��� �∋�−& �
�������.���� �∋−+� �∋−�� �∋−�( �∋−&� �∋�&� �∋−+& �∋�−− �∋��� �
����/��� �∋−,− �∋−�) �∋−∗� �∋�(� �∋−−, �∋−)∗ �∋��� �∋�−+ �
����� 0�∋��& 0�∋�(, 0�∋�)+ 0�∋��− 0�∋�+) 0�∋�−− �∋�−( �∋�−∗ �
���∀���� 0�∋�,& 0�∋�∗& 0�∋−+− 0�∋�(∗ 0�∋−�� �∋��, �∋��, �∋�(� �
�������� �∋−−� �∋−(� �∋�+, �∋−∗, �∋�,& �∋−++ �∋��( �∋��� �
������� �∋�)& �∋�∗� �∋�∗� �∋−�� �∋�−, �∋�&∗ �∋�−∗ �∋�−, �
������� �∋−), �∋−+� �∋−�+ �∋�−( �∋−�+ �∋−,) �∋��� �∋��− �
���.����������� �∋�−∗ �∋��+ �∋��∗ �∋��∗ �∋�() �∋�∗∗ �∋��∗ �∋��∗ �
���.∀��.���.��1�� −∋�∗� −∋��� �∋+�, −∋�,+ �∋+&, −∋(,& �∋−&) �∋−∗− �
����.�������.������� �∋�(( �∋�(∗ �∋�(� �∋�(∗ �∋�(( �∋�() �∋��− �∋��− �
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� 0)+∋−), 0)∗∋()& 0&�∋+�& 0)−∋)∗− 0&�∋∗�� 0)�∋�∗( �∋�&( �∋++( �
���.�������.������� �∋�−� �∋�−� �∋��, �∋�−− �∋��, �∋�−� �∋��− �∋��− �
����1
����� 0�∋�,, 0�∋�∗∗ 0�∋(∗( 0�∋��� 0�∋(�− 0�∋−&& �∋��, �∋�(∗ �
����1���� 0�∋�∗∗ 0�∋��� 0�∋�,( 0�∋�−& 0�∋�∗, �∋�−∗ �∋��− �∋��� �
�����
����� 0�∋(�& 0�∋(�+ 0�∋(�) 0�∋(�, 0�∋(�& 0�∋(�� �∋�−− �∋�−( �
����������.���� �∋�)� �∋−�( �∋��& �∋−−( �∋−�+ �∋−&� �∋��− �∋��� �
����������� �∋−(, �∋��− �∋−�� �∋−)+ �∋−+& �∋�(( �∋��� �∋�−, �
�������.���� �∋�−( �∋�&) �∋−+� �∋�+� �∋��∗ �∋(�, �∋��( �∋�(� �
����/��� �∋�(( �∋(�( �∋−,� �∋�)� �∋�&) �∋(,, �∋��( �∋�(( �
����� 0�∋��∗ 0�∋��� 0�∋�+& 0�∋��� 0�∋��∗ �∋�−) �∋�−� �∋�−( �
���∀���� 0�∋�∗& 0�∋��) 0�∋�,− 0�∋��∗ 0�∋�,+ �∋��− �∋�−, �∋��) �
�������� �∋�,, �∋−�− �∋�+) �∋−(− �∋�)� �∋−(( �∋�−, �∋�−, �
������� �∋−�∗ �∋−(( �∋−�� �∋−�, �∋�,) �∋−)� �∋�−� �∋��− �
������� �∋��+ �∋�+) �∋��( �∋�&& �∋�−& �∋−−+ �∋��∗ �∋�(� �
���.����������� �∋��∗ �∋�−+ 0�∋��� �∋�−− �∋�−� �∋��� �∋��( �∋��� �
���.∀��.���.��1�� �∋∗�� �∋∗(+ �∋(∗− �∋)(� �∋(&& �∋+&( �∋�&∗ �∋�+, �
����.�������.������� �∋��− �∋��� �∋�(, �∋��( �∋�(& �∋��( �∋��− �∋��− �
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� �−∋(+∗ −+∋,&∗ −−∋+∗+ (−∋�)� )∋�)∗ �+∋�,+ �∋�&) �∋�∗, �
���.���� �∋��, �∋��, �∋��∗ �∋�−� �∋��) �∋�−− �∋��� �∋��− �
����1
����� 0�∋�)� 0�∋�∗� 0�∋((, 0�∋��+ 0�∋(�− 0�∋−,, �∋�(� �∋��+ �
����1���� 0�∋�,∗ 0�∋�,� 0�∋−�� 0�∋�+& 0�∋−�) 0�∋�∗+ �∋�−� �∋��� �
�����
����� 0�∋�−− 0�∋−,� 0�∋�&� 0�∋−(, 0�∋�∗) 0�∋−�+ �∋�(� �∋��, �
����������.���� �∋�∗� �∋�∗� �∋�(, �∋�+& �∋��� �∋�&� �∋��) �∋�−∗ �
����������� �∋�,& �∋�)& �∋�)∗ �∋−�− �∋�∗� �∋−�� �∋�−� �∋�−� �
�������.���� �∋−(+ �∋−�& �∋−�( �∋−+, �∋�&� �∋−)� �∋�−+ �∋��� �
����/��� �∋−∗) �∋−∗� �∋−(� �∋−&� �∋−�∗ �∋−)∗ �∋�−( �∋�−∗ �
����� 0�∋�−, �∋��− 0�∋�(∗ 0�∋��( 0�∋�−, �∋��− �∋��, �∋�−− �
���∀���� 0�∋−�� 0�∋�∗, 0�∋−+� 0�∋��� 0�∋−�& 0�∋��, �∋��& �∋��∗ �
�������� �∋−−� �∋−�+ �∋�)− �∋−�& �∋�)∗ �∋−)) �∋��− �∋��) �
������� �∋−�) �∋�&− �∋�)( �∋−�� �∋�∗− �∋−−� �∋�−, �∋�−) �
������� �∋�(� �∋�−) �∋−&) �∋�)& �∋−)− �∋�+� �∋��� �∋��+ �

�����∀���−,,, 0�∋��& 0�∋��� 0�∋−�( �∋��& 0�∋�∗& �∋�−( �∋��+ �∋�−, �
��������/��−,,, �∋��( 0�∋��− �∋�−( �∋�(( 0�∋�−� �∋�−� �∋��+ �∋��) �
���.����������� �∋�−� �∋��� �∋��� �∋��− �∋�(∗ �∋��+ �∋��� �∋��( �
���.∀��.���.��1�� �∋,�& −∋��− �∋�)( −∋��( �∋∗,( −∋��, �∋��� �∋−)� �
����.�������.������� 0�∋��& 0�∋��+ 0�∋�−( 0�∋��( 0�∋�−− 0�∋��− �∋��� �∋��� �
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� 0−∗∋,�� 0−&∋)+( 0−,∋−(− 0−�∋)∗& 0��∋(�( 0−∗∋��� −∋&�, �∋−�, �
���.���� �∋�−� �∋�−� �∋��, �∋�−− �∋��, �∋�−� �∋��− �∋��− �
����1
����� 0�∋�+� 0�∋��+ 0�∋(−, 0�∋��− 0�∋�&� 0�∋−+& �∋�(( �∋�(( �
����1���� 0�∋��& 0�∋��& 0�∋�&+ 0�∋�−− 0�∋�∗+ �∋��− �∋��� �∋��& �
�����
����� 0�∋�,( 0�∋�,∗ 0�∋(−� 0�∋�)− 0�∋(�+ 0�∋�+� �∋�−( �∋�−& �
����������.���� �∋�+∗ �∋−−− �∋��� �∋−�+ �∋�)( �∋−�, �∋�−, �∋��� �
����������� �∋−�+ �∋−)∗ �∋�,( �∋−∗& �∋−�− �∋��, �∋�−& �∋��� �
�������.���� �∋−&, �∋�&� �∋−∗� �∋��+ �∋��� �∋(∗) �∋��− �∋��( �
����/��� �∋��) �∋�&� �∋−+− �∋�∗( �∋�−∗ �∋(�∗ �∋��+ �∋�(, �
����� 0�∋��� �∋�−, 0�∋�)� 0�∋��& 0�∋��) �∋��∗ �∋�−+ �∋�−∗ �
���∀���� 0�∋�(� 0�∋�∗) 0�∋�)( �∋��∗ 0�∋�,) 0�∋�−) �∋��( �∋��� �
�������� �∋�() �∋��, 0�∋��∗ �∋�,, 0�∋��� �∋�)) �∋�(− �∋��& �
������� �∋�+) �∋�+∗ �∋��, �∋−�� �∋�−� �∋−−∗ �∋��− �∋��& �
������� 0�∋��, �∋��& 0�∋�)+ �∋�∗, 0�∋��& �∋−�( �∋�(, �∋��∗ �

�����∀���−,,, 0�∋�(� 0�∋�−) 0�∋�)� �∋��& 0�∋�∗, �∋��∗ �∋��� �∋��� �
��������/��−,,, �∋�(& �∋�−) �∋��) �∋�+, 0�∋�−( �∋��+ �∋�−) �∋�−& �
���.����������� �∋��� �∋�−, 0�∋��+ �∋�−� �∋�−� �∋��+ �∋��� �∋��� �
���.∀��.���.��1�� �∋�−( �∋(), �∋(−& �∋∗�) �∋�&& �∋�)� �∋��& �∋��, �
����.�������.������� �∋�−− �∋�−� �∋��, �∋�−( �∋�−� �∋�−� �∋��− �∋��− �
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� 0�∋�,− (∋,−� 0−∋&∗� �∋&)� 0�∋��� &∋��, �∋&�− −∋,�∗ −
����1
����� 0�∋(∗� 0�∋�∗� 0�∋�−& 0�∋�,− 0�∋∗�∗ 0�∋(∗+ �∋�(& �∋��− −
����1���� 0�∋�(, 0�∋�,( 0�∋(�, 0�∋−�, 0�∋+�� �∋�(� �∋�+∗ �∋−(, −
�����
����� 0�∋−∗+ 0�∋−)− 0�∋�∗� 0�∋�∗& 0�∋∗�� �∋−+− �∋�∗& �∋−�� −
����������.���� �∋−−& �∋�−− 0�∋��� �∋�)∗ �∋�∗, �∋(+� �∋�∗∗ �∋�+∗ �
����������� �∋�∗� �∋��� �∋−+� �∋(�� �∋�&� �∋∗�� �∋�∗� �∋�∗− −
�������.���� �∋(∗� �∋)−∗ �∋(�− �∋(&) �∋��+ �∋,&( �∋��� �∋−−� −
����/��� �∋�−� �∋&,∗ �∋()∗ �∋��, �∋�,� −∋(�� �∋��� �∋−)� −
����� 0�∋−�− 0�∋�∗� 0�∋−∗− 0�∋�,− 0�∋�&& 0�∋�−∗ �∋�−( �∋�−) �

������.���� 0�∋�∗− 0�∋�+� 0�∋�,� 0�∋�−− 0�∋�,& 0�∋��� �∋�−& �∋�−) �
���∀���� 0�∋−−) 0�∋−∗� 0�∋−&+ 0�∋��& 0�∋��� 0�∋�&− �∋�(� �∋�(− �
�������� 0�∋−,� 0�∋−)+ 0�∋��& 0�∋−(� 0�∋&�� �∋��) �∋�(� �∋�+∗ −
������� �∋�&∗ �∋��� �∋��) �∋∗+� �∋��+ �∋+(� �∋��+ �∋�,− −
������� 0�∋�(− 0�∋�(∗ 0�∋�,− �∋�(� 0�∋��( �∋()� �∋�(+ �∋−)� −
������� 0�∋�(+ 0�∋−�− 0�∋(−+ 0�∋−∗+ 0�∋−)− 0�∋−−− �∋��, �∋�−∗ �
����������� 0�∋(∗( 0�∋��� 0�∋�−� 0�∋�,∗ 0�∋��∗ 0�∋−∗& �∋��∗ �∋��� �
�����∀�/�� 0�∋�,− 0�∋��& 0�∋(∗− 0�∋�(� 0�∋�(� 0�∋�+− �∋�(+ �∋�&( −
������∀�/�� 0�∋(�∗ 0�∋��� 0�∋()+ 0�∋�(� 0�∋(�, 0�∋−(, �∋��& �∋�∗� �
���������
�� 0�∋−−− 0�∋�,� 0�∋−�∗ 0�∋�)) 0�∋−(− 0�∋�∗( �∋�−+ �∋�−& �
���
��.1��� 0�∋�∗� �∋��) 0�∋�∗) 0�∋�∗− �∋��, �∋��∗ �∋��� �∋��& −
����.����� �∋��+ �∋��( �∋��∗ �∋��+ �∋��− �∋��∗ �∋��� �∋��− −
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� ��∋)�� (,∋(,) (+∋(&� �∗∋�+� (−∋�(− �)∋∗+� �∋∗∗( (∋∗�, −
����1
����� 0�∋++( 0�∋∗)� 0�∋&)( 0�∋�∗� 0�∋)−+ 0�∋�(( �∋�)( �∋�+− �
����1���� 0�∋(&− 0�∋(�+ 0�∋�−− 0�∋(∗� 0�∋(∗� 0�∋�,, �∋�−& �∋�−+ −
�����
����� 0�∋)�∗ 0�∋+,( 0�∋,−( 0�∋�,) 0−∋��− 0�∋(+∗ �∋�&+ �∋−�� �
����������.���� �∋��) �∋�,, �∋−�� �∋(∗� �∋�+� �∋((& �∋��� �∋�−& �
����������� �∋��( �∋�∗� �∋(�� �∋∗�( �∋(&) �∋∗−& �∋��& �∋��, �
�������.���� �∋)�� �∋,�� �∋∗�� �∋,�− �∋+&� −∋−+� �∋�&) �∋−�� �
����/��� �∋)&) −∋−+∗ �∋∗() −∋�(+ �∋&(∗ −∋�,∗ �∋�,) �∋−�− �
����� 0�∋−∗∗ 0�∋(−( 0�∋−&& 0�∋−�− 0�∋(∗+ 0�∋�)� �∋�−∗ �∋��� �

������.���� 0�∋�+( 0�∋−�− 0�∋−−+ 0�∋�−� 0�∋−�∗ 0�∋�)) �∋��− �∋�−( �
���∀���� 0�∋−�, 0�∋�∗& 0�∋��, 0�∋�+, 0�∋�&) 0�∋��, �∋�(( �∋�−∗ �
�������� �∋�∗� �∋��( 0�∋�−& �∋∗�) �∋�(, �∋��) �∋�,+ �∋�), �
������� �∋��+ �∋�−− �∋�−� �∋�)& �∋�,∗ �∋(�+ �∋�−, �∋�∗� −
������� �∋�(( �∋((∗ �∋−&) �∋�)& �∋−�� �∋∗�, �∋��) �∋�&∗ −
������� 0�∋+�� 0�∋∗�) 0�∋)�� 0�∋∗�� 0�∋+(, 0�∋�−∗ �∋�∗− �∋��, �
����������� 0�∋��∗ 0�∋�)( 0�∋�)� 0�∋(�� 0�∋(∗− 0�∋−,� �∋��, �∋�() �
�����∀�/�� 0−∋�−− 0−∋�−) 0−∋−&) 0�∋&(∗ 0−∋−)( 0�∋&+� �∋�)� �∋�)( �
������∀�/�� 0�∋+∗& 0�∋+(� 0�∋&(� 0�∋�&) 0�∋&&� 0�∋(&+ �∋�)+ �∋−−� �
���������
�� 0�∋�∗� 0�∋��∗ 0�∋�,∗ 0�∋�−( 0�∋�∗� �∋��( �∋�−, �∋��( �
���
��.1��� �∋��� 0�∋�() 0�∋��� �∋��& 0�∋�∗( 0�∋��− �∋��, �∋��) �
����.����� 0�∋�−+ 0�∋�−∗ 0�∋�−& 0�∋�−� 0�∋�−, 0�∋�−− �∋��− �∋��� −
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� 0�∋∗)( 0�∋,,, 0�∋+(( 0�∋∗−� 0∗∋��) 0�∋))− �∋�(∗ �∋�,) −
���.���� �∋��, �∋�), �∋��( �∋�∗∗ �∋�+∗ �∋�,( �∋��� �∋��+ −
���.����.�7 0�∋���( 0�∋���+ 0�∋���� 0�∋���� 0�∋���& 0�∋���∗ �∋��� �∋��� −
����1
����� 0�∋−−� 0�∋−�∗ 0�∋�&− �∋�∗) 0�∋(−, �∋�)� �∋�+� �∋�&( �
����1���� �∋�)) �∋��+ �∋�)− �∋�&( 0�∋�+& �∋−+− �∋��( �∋��, −
�����
����� 0�∋�−( 0�∋��+ 0�∋�&� 0�∋−�� 0�∋(−� 0�∋−)& �∋��& �∋��, �
����������.���� �∋(�� �∋(&) �∋�−) �∋(,− �∋()+ �∋(,& �∋�(− �∋��∗ �
����������� �∋�,� �∋∗), �∋(+& �∋+−) �∋∗�& �∋+�, �∋��& �∋��� �
�������.���� �∋)�� �∋&�� �∋+−� �∋&)) �∋)�� �∋&+∗ �∋�∗� �∋��+ �
����/��� �∋+∗+ �∋+)& �∋∗�∗ �∋)&& �∋+++ �∋+,� �∋��) �∋��∗ �
����� 0�∋�+( 0�∋��∗ 0�∋−�( 0�∋��( 0�∋(�& 0�∋−�� �∋�(∗ �∋��� −
���∀���� 0�∋−&) 0�∋�+− 0�∋�,− 0�∋�&( 0�∋(�� 0�∋−,, �∋��− �∋��) �
�������� �∋�&� �∋−�− �∋��) �∋−�� �∋�+( �∋−)& �∋��− �∋��� −
������� �∋−,& �∋�∗) �∋−)& �∋�−& �∋��, �∋(�∗ �∋�−� �∋��� −
������� 0�∋�+( �∋�−+ 0�∋−(∗ �∋��, 0�∋��( �∋�(� �∋��� �∋�,( −
��������.���.���� �∋�∗� �∋��, �∋��� �∋�+� �∋��& �∋�∗− �∋��+ �∋��, −
���������� �∋−)) �∋(−∗ �∋�&) �∋�+& �∋�,∗ �∋((∗ �∋�(� �∋��, �
����.�/∀∀��� �∋�&∗ �∋��& �∋�(, �∋−(� �∋−,− �∋��+ �∋��) �∋��) −
���/
���/���� �∋−�� �∋�,� �∋−(∗ �∋−∗( �∋�(− �∋(∗� �∋��∗ �∋��+ −
������ �∋�−− 0�∋(�, 0�∋��∗ �∋��) 0�∋��) 0�∋�,− �∋��− �∋��∗ −
�������� �∋��− 0�∋�+( �∋�−+ �∋�++ 0�∋−�( 0�∋��( �∋�−∗ �∋��+ −
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� �∋��) �∋�+− �∋−&+ �∋�+& 0�∋�∗∗ �∋()& �∋��� �∋−(� −
����1
����� 0�∋��� 0�∋(,( 0�∋∗�) 0�∋�+� 0�∋∗�� 0�∋�&− �∋�∗� �∋��) �
����1���� 0�∋(&, 0�∋�&+ 0�∋∗�& 0�∋�(� 0�∋∗,− 0�∋(&� �∋�∗, �∋��∗ �
�����
����� 0�∋(�+ 0�∋(&) 0�∋(+� 0�∋((� 0�∋��+ 0�∋(�& �∋��& �∋�−) −
����������.���� �∋∗)− �∋),∗ �∋∗�) �∋∗,∗ �∋+(� �∋,+� �∋�−� �∋�)� −
����������� �∋))∗ �∋,�− �∋)�, �∋&�� �∋)&& −∋�∗� �∋�−∗ �∋�∗) −
�������.���� �∋,+− −∋��∗ �∋,�� −∋�−, −∋−∗� −∋(�� �∋�(∗ �∋��� −
����/��� �∋,−, −∋�−� �∋&+� �∋,)& −∋−�( −∋(�∗ �∋�(∗ �∋�(, −
���
��.1��� �∋−+− �∋−∗∗ �∋−�( �∋−,, �∋−�) �∋−&� �∋�−∗ �∋�−� �

������.���� �∋��& �∋�,∗ 0�∋−�) �∋−�( 0�∋�−) �∋��+ �∋�∗+ �∋��) �
���∀���� �∋−�+ �∋−)+ �∋−−∗ �∋−)+ �∋�,� �∋�+� �∋�−& �∋�() −
∀��.������� 0−∋−�& 0−∋∗�∗ 0−∋−+) 0−∋−�& 0−∋+�− 0−∋��& �∋�−− �∋�(( −
���.���.���.����.���� �∋��� 0�∋�−− �∋��� �∋��, 0�∋��� 0�∋��( �∋��( �∋��� −
7���� �∋−,, �∋�,� �∋−+� �∋�(+ �∋−,� �∋(,− �∋��� �∋��� −
7���( �∋(�( �∋�(, �∋��− �∋��∗ �∋(�− �∋∗(+ �∋��+ �∋��− �
7���� �∋�∗) �∋�)& �∋�&) �∋��) �∋−∗− �∋��∗ �∋�+, �∋�∗� �
���.∀��.���.��1�� �∋(�) −∋−), 0�∋�)( �∋&&& �∋−&& �∋−)� �∋�(& �∋��− �
7���� �∋−&� �∋−−� �∋�−� �∋(∗� 0�∋��, �∋��, �∋�)� �∋−(∗ �
7���( �∋)�� �∋∗+) �∋�−, �∋,&& �∋�+� −∋�)� �∋−−) �∋�−∗ �
7���� −∋−�� −∋−�∗ �∋)(, −∋�+∗ �∋∗�− −∋+&, �∋−∗� �∋��& �
�������� 0�∋�+� 0�∋�&, 0�∋�,∗ 0�∋�(� 0�∋(,∗ 0�∋−&� �∋�−& �∋��∗ −
��������− �∋�&+ �∋−�& �∋�)∗ �∋�,& �∋−�� �∋−∗) �∋��) �∋�−� −
������� 0�∋�,& 0�∋∗�� 0�∋∗)� 0�∋��( 0�∋∗,� 0�∋�∗− �∋��, �∋�(� �
������� 0�∋,&� 0�∋,∗∗ 0−∋��& 0�∋,�� 0−∋�∗, 0�∋&∗� �∋��+ �∋��� −
�������− 0�∋+�( 0�∋�)� 0�∋++) 0�∋∗), 0�∋∗(� 0�∋�−( �∋��+ �∋��∗ −
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� +)∋−−� )∗∋&&( +�∋∗+� )(∋++� +&∋+)� &(∋�,� �∋,�& (∋(∗� �
����1 0�∋+∗� 0�∋(−∗ 0�∋&�) 0�∋�&− 0�∋�)� 0�∋−∗∗ �∋�)� �∋�,� �
����1.�∀�/�� 0�∋��+ 0�∋�,� 0�∋−+� �∋−−− 0�∋��+ 0�∋−�� �∋�+� �∋�&) �
����������.���� �∋�&� �∋(−∗ �∋�+� �∋∗�� �∋�&( �∋(�+ �∋�−− �∋�−, −
����������� �∋+(� �∋��( �∋∗+∗ �∋)�( �∋(,, �∋�&+ �∋��� �∋��∗ −
�������.���� −∋�∗) �∋)+, �∋,∗, −∋−∗∗ �∋)−& �∋&−, �∋�∗& �∋��, −
����/��� −∋−∗� �∋&�− −∋�∗� −∋�∗� �∋)&& �∋&,� �∋�∗& �∋�(� −
����������.����.�∀�/�� �∋�(− �∋�,� �∋��� �∋�+� �∋�∗& �∋(�( �∋�−& �∋�−, �
�����������.�∀�/�� �∋��� �∋(,& 0�∋��( �∋�&) �∋(++ �∋�(− �∋��∗ �∋��� �
�������.����.�∀�/�� �∋�)� �∋+)) �∋��� �∋−�) �∋+�− �∋)−( �∋�−, �∋��� �
����/���.�∀�/�� �∋�&( �∋+,+ �∋�∗− �∋−−∗ �∋+∗� �∋)�� �∋�−, �∋��+ �
���
��.1��� 0�∋�(, 0�∋��� 0�∋�+� 0�∋�−+ 0�∋�+) 0�∋�−) �∋�−� �∋�−� �

������.���� �∋�(+ 0�∋��− �∋��) �∋�++ 0�∋�∗− �∋��& �∋�−& �∋��& �

������.����.�∀�/�� �∋�−� �∋�+− 0�∋�−& �∋��� 0�∋�−� �∋−(( �∋�−& �∋�() �
���∀���� 0�∋�+& 0�∋−+& 0�∋−−, 0�∋�−) 0�∋�+( 0�∋�)� �∋��, �∋�∗− �
���∀����.�∀�/�� 0�∋�∗+ 0�∋−�+ 0�∋�,� 0�∋��� 0�∋�−) 0�∋�(∗ �∋�−& �∋��, �
���.���� −∋(�, −∋)+∗ −∋(�+ −∋()− −∋)−� −∋&−& �∋�−( �∋��) −
������� �∋��� 0�∋�&, 0�∋�(( �∋�&− 0�∋−(& 0�∋�(, �∋��� �∋��& �
����������� 0�∋−+( 0�∋�∗( 0�∋(�& �∋��� 0�∋(−) 0�∋−&& �∋�&∗ �∋�(& �
�����∀�/�� �∋��( 0�∋�&, 0�∋�+− �∋−�+ 0�∋−)� 0�∋��( �∋��, �∋�∗� −
������∀�/�� 0�∋�(� 0�∋�&� 0�∋��� �∋−∗− 0�∋(&, 0�∋−)� �∋�)( �∋�+� �
���������
�� 0�∋�−− 0�∋�∗& 0�∋�∗� �∋�(� 0�∋−�� 0�∋�−∗ �∋��� �∋��∗ �
�������.�∀�/�� �∋�(� �∋�), 0�∋��( �∋�&) �∋�(& �∋−�� �∋��& �∋��� �
�����������.�∀�/�� 0�∋��+ 0�∋�), 0�∋−�� �∋�)� 0�∋−(∗ 0�∋��( �∋��) �∋�(� �
�����∀�/��.�∀�/�� �∋��∗ �∋−�� 0�∋��� �∋−(� �∋�(( �∋−)∗ �∋��) �∋��( �
������∀�/��.�∀�/�� 0�∋�+− 0�∋��� 0�∋��+ �∋�&( 0�∋��� �∋−∗− �∋�)� �∋�,∗ �
���������
��.�∀�/�� 0�∋�−, 0�∋�(, 0�∋�+� �∋��+ 0�∋�&) �∋�−� �∋��∗ �∋��& �
����.����� 0�∋��+ 0�∋��− 0�∋��& 0�∋��� 0�∋��+ 0�∋�−+ �∋��− �∋��� −
����.�����.�∀�/�� 0�∋��( 0�∋�−� 0�∋��) �∋��� 0�∋�−+ 0�∋�−− �∋��� �∋��− −
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� −+∋&,� −∗∋−−� −�∋()� −,∋�−� −−∋+�+ −&∋+−( −∋�&− −∋))( −
���� �∋�)( �∋�+) �∋�−∗ �∋−(� �∋��� �∋−(( �∋�(� �∋�(� −
����1 0�∋+&) 0�∋+�+ 0�∋))∗ 0�∋∗,, 0�∋),& 0�∋�,( �∋�∗� �∋�+) −
����������.���� �∋�∗) �∋−�& 0�∋��− �∋−(+ �∋�)� �∋��� �∋��+ �∋�(� −
����������� �∋−,& �∋(,� �∋−−� �∋�&∗ �∋(�� �∋�+∗ �∋�∗− �∋�(� −
�������.���� �∋()+ �∋+�∗ �∋(−+ �∋�(+ �∋∗&+ �∋)�� �∋�(∗ �∋�(− −
����/��� �∋�+� �∋))& �∋(,( �∋∗�+ �∋+,� �∋&++ �∋�(, �∋��� −
������� 0�∋�)� 0�∋�), 0�∋−�) 0�∋�(� 0�∋−(& 0�∋�−, �∋��� �∋�(( −
�������� 0�∋(�− 0�∋(�+ 0�∋(∗( 0�∋�∗� 0�∋��, 0�∋�+( �∋�(� �∋�(& −

������.���� �∋�(� �∋�(+ 0�∋�−( �∋�)) 0�∋�∗� �∋−�− �∋��+ �∋��− −
���
��.1��� �∋��, 0�∋�−) 0�∋��� �∋��− 0�∋��) 0�∋��) �∋��) �∋��+ −
���∀���� 0�∋−(� 0�∋(+) 0�∋−&) 0�∋�)+ 0�∋��, 0�∋(�∗ �∋��� �∋�(− �
���.���� −∋))� �∋−�+ −∋)�∗ −∋&�( �∋�,� �∋−+( �∋�−) �∋�−& −
������� �∋�(� �∋(−� �∋−&� �∋�), �∋�++ �∋(∗) �∋��& �∋��) −
����������� 0�∋�+, 0�∋−∗, 0�∋−(( 0�∋��∗ 0�∋��− 0�∋�,) �∋�(∗ �∋�(+ �
�����∀�/�� �∋−() �∋(�, 0�∋−∗∗ �∋��& �∋�(( �∋∗&+ �∋−∗− �∋−∗� �
���������
�� 0�∋��( 0�∋−−� 0�∋�,( �∋��+ 0�∋−∗∗ 0�∋�+∗ �∋��∗ �∋��� �
������∀�/�� �∋−∗) �∋�&, �∋�++ �∋��) �∋�(∗ �∋(�( �∋�(∗ �∋�(( �
����.����� 0�∋��� 0�∋��( 0�∋��∗ 0�∋��( 0�∋��∗ 0�∋��− �∋��− �∋��− −
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�!∀���������#��������  �������� ���∀�����  �������� ���∀�����  �������� ���∀������∃�%����!���
�������∀� ∗)∋��� +&∋)+, ∗�∋++( +−∋)�+ +�∋−�+ )∗∋�−− �∋+)− (∋−)� −
����1 0�∋�)− 0�∋−�) 0�∋+)( �∋−(� 0�∋�∗) �∋��� �∋−�& �∋�)& �
����1.�∀�/�� 0�∋��& 0�∋�+, 0�∋−�) �∋�,� 0�∋(,∗ 0�∋−�� �∋�∗∗ �∋�)+ �
����������.���� �∋�−& �∋−(� �∋�+� �∋()( �∋�+) �∋��� �∋�,− �∋�(� −
����������� �∋(−� �∋−&) �∋−∗+ �∋�)− �∋−�( �∋�∗− �∋�,( �∋�(� −
�������.���� �∋∗∗� �∋((∗ �∋��, �∋+∗� �∋�−∗ �∋�∗∗ �∋�+− �∋�∗) −
����/��� �∋∗)) �∋(&( �∋�+� �∋+,∗ �∋(−( �∋�∗� �∋�+, �∋�(& −
����������.����.�∀�/�� �∋�−� �∋−�� 0�∋�−+ �∋��− �∋−�� �∋−)) �∋�−+ �∋��− �
�����������.�∀�/�� �∋�−� �∋−&& 0�∋�(� �∋�∗( �∋−∗� �∋��+ �∋��� �∋��( �
�������.����.�∀�/�� �∋��− �∋(�, 0�∋�(� �∋�)+ �∋�+� �∋(∗∗ �∋��& �∋��) �
����/���.�∀�/�� �∋�(� �∋(−( 0�∋��− �∋�&+ �∋�∗∗ �∋()− �∋��) �∋�(( �

������.���� �∋−�+ �∋�,� �∋�)− �∋−&� �∋�−, �∋−+− �∋��, �∋�() �

������.����.�∀�/�� �∋��� �∋�+, 0�∋��& �∋��& �∋�−� �∋−�∗ �∋�−∗ �∋�(− �
���
��.1��� 0�∋�−∗ 0�∋��− 0�∋��, 0�∋��� 0�∋��∗ �∋��( �∋��) �∋�−� �
���∀���� 0�∋�&) 0�∋�++ 0�∋−�& 0�∋��) 0�∋−(( �∋��− �∋��( �∋��� �
���∀����.�∀�/�� 0�∋��− 0�∋−�− 0�∋��( �∋��� 0�∋−&� 0�∋�∗& �∋��� �∋�(& �
7���� �∋�−+ 0�∋��� 0�∋�−+ �∋��, 0�∋��( �∋�(+ �∋�−, �∋��( �
7���( 0�∋��& �∋�−+ 0�∋�∗� �∋�(& 0�∋��� �∋�∗( �∋��� �∋��� �
7���� �∋�+� �∋−)& 0�∋��∗ �∋−�∗ �∋−(( �∋��( �∋�(, �∋��∗ −
7����.�∀�/�� �∋�−( �∋�−+ 0�∋��, �∋�∗∗ 0�∋�−( �∋��+ �∋��( �∋�−& �
7���(.�∀�/�� �∋�(− �∋��( 0�∋�−+ �∋�)& 0�∋��) �∋�∗( �∋��( �∋�−& �
7����.�∀�/�� �∋�,− �∋�−, �∋��� �∋−�( �∋−&& �∋�∗� �∋�(� �∋�−, −
7���� 0�∋��� 0�∋�(+ 0�∋��& �∋��( 0�∋�)+ �∋��� �∋��� �∋��� �
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Table 62: Selected Variables – Weighted and unweighted counts and percentages (averaged across completed and synthetic implicates)

Variable Synthetic Completed Synthetic Completed Synthetic Completed Synthetic Completed
Male

0 106,949,968 106,470,823 52.41 52.18 138,357 138,357 52.45 52.45
1 97,094,759 97,573,904 47.59 47.82 125,436 125,436 47.55 47.55

Black
0 181,725,962 180,358,529 89.06 88.39 232,401 233,326 88.10 88.45
1 22,318,765 23,686,198 10.94 11.61 31,392 30,467 11.90 11.55

Hispanic
0 184,181,614 181,560,851 90.27 88.98 238,277 238,558 90.33 90.43
1 19,863,113 22,483,876 9.73 11.02 25,516 25,235 9.67 9.57

Maritalstat
1 103,680,995 102,213,429 50.81 50.09 141,292 141,292 53.56 53.56
2 9,673,233 9,958,884 4.74 4.88 17,483 17,483 6.63 6.63
3 23,885,992 24,400,916 11.71 11.96 31,103 31,103 11.79 11.79
4 66,804,507 67,471,498 32.74 33.07 73,915 73,915 28.02 28.02

Tob_initial
144,158,303 142,951,882 70.65 70.06 173,251 173,251 65.68 65.68

1 28,120,067 28,896,858 13.78 14.16 45,543 45,543 17.26 17.26
2 9,771,612 9,934,114 4.79 4.87 15,401 15,401 5.84 5.84
3 2,562,145 2,603,705 1.26 1.28 4,028 4,028 1.53 1.53
5 3,881,472 4,000,409 1.90 1.96 6,920 6,920 2.62 2.62

100 15,551,128 15,657,759 7.62 7.67 18,652 18,652 7.07 7.07

Tob_2000
150,570,926 149,502,998 73.79 73.27 196,028 196,028 74.31 74.31

1 26,411,823 27,162,166 12.94 13.31 34,306 34,306 13.00 13.00
2 5,873,327 5,926,142 2.88 2.90 7,571 7,571 2.87 2.87
3 1,860,289 1,880,083 0.91 0.92 2,433 2,433 0.92 0.92
5 4,311,070 4,460,705 2.11 2.19 5,781 5,781 2.19 2.19

100 15,017,292 15,112,633 7.36 7.41 17,675 17,675 6.70 6.70

Own_home
0 69,152,585 69,785,113 33.89 34.20 87,230 86,839 33.07 32.92
1 134,892,142 134,259,614 66.11 65.80 176,563 176,955 66.93 67.08

Foreign_born
0 180,969,389 179,239,395 88.69 87.84 234,496 235,262 88.89 89.18
1 23,075,338 24,805,332 11.31 12.16 29,297 28,531 11.11 10.82

WEIGHTED UNWEIGHTED
Count Percentage Count Percentage



Table 62: Selected Variables – Weighted and unweighted counts and percentages (averaged across completed and synthetic implicates)

Variable Synthetic Completed Synthetic Completed Synthetic Completed Synthetic Completed

WEIGHTED UNWEIGHTED
Count Percentage Count Percentage

Educ_5cat
1 43,271,926 42,898,854 21.21 21.02 56,851 55,903 21.55 21.19
2 69,217,821 68,520,001 33.92 33.58 89,529 90,001 33.94 34.12
3 51,100,854 52,842,654 25.04 25.90 64,585 66,115 24.48 25.06
4 22,930,251 23,458,739 11.24 11.50 29,804 29,230 11.30 11.08
5 17,523,875 16,324,479 8.59 8.00 23,024 22,544 8.73 8.55

Age_cat12
<=21 10,993,657 12,355,657 5.39 6.06 4,452 4,480 1.69 1.70
22-24 11,083,762 11,637,091 5.43 5.70 8,296 8,484 3.14 3.22
25-29 19,330,649 18,791,213 9.47 9.21 24,922 25,344 9.45 9.61
30-34 20,827,765 19,839,766 10.21 9.72 28,311 27,657 10.73 10.48
35-39 22,623,857 22,137,354 11.09 10.85 28,824 28,715 10.93 10.89
40-44 22,702,993 22,384,522 11.13 10.97 28,493 28,579 10.80 10.83
45-49 20,541,360 20,091,637 10.07 9.85 26,195 26,150 9.93 9.91
50-54 18,114,622 17,779,895 8.88 8.71 23,761 23,797 9.01 9.02
55-59 13,593,649 13,497,244 6.66 6.61 17,822 17,895 6.76 6.78
60-64 10,666,518 10,893,885 5.23 5.34 14,636 14,469 5.55 5.48
65-69 9,336,754 9,547,527 4.58 4.68 12,829 12,849 4.86 4.87
>=70 24,229,138 25,088,937 11.87 12.30 45,255 45,375 17.16 17.20

Agecat_initial_entitle (Tob_initial=1,2,3,5)
<62 11,699,746 11,688,294 26.39 25.73 18,555 18,184 25.81 25.29

>=62 and <63 7,273,818 18,508,709 16.41 40.74 11,673 29,067 16.24 40.43
>=63 and <64 11,912,607 3,419,745 26.87 7.53 19,452 5,391 27.06 7.50
>=64 and <65 7,337,083 2,757,925 16.55 6.07 11,964 4,961 16.64 6.90
>=65 and <66 3,351,021 7,440,877 7.56 16.38 5,536 11,672 7.70 16.24
>=66 and <67 1,514,780 482,726 3.42 1.06 2,587 798 3.60 1.11

>=67 1,208,960 1,077,981 2.73 2.37 2,051 1,726 2.85 2.40
>=80 37,283 58,829 0.08 0.13 73 90 0.10 0.13

Agecat_retire (Tob_initial=1 only)
<62 56,373 45,537 0.20 0.16 83 73 0.18 0.16

>=62 and <63 5,843,165 15,661,703 20.78 54.20 9,187 24,252 20.17 53.25
>=63 and <64 10,449,792 2,770,806 37.16 9.59 16,945 4,374 37.21 9.60
>=64 and <65 6,457,351 2,351,612 22.96 8.14 10,486 4,237 23.02 9.30
>=65 and <66 2,941,391 6,703,497 10.46 23.20 4,850 10,471 10.65 22.99
>=66 and <67 1,323,219 406,445 4.71 1.41 2,259 663 4.96 1.46

>=67 1,020,418 910,199 3.63 3.15 1,677 1,403 3.68 3.08
>=80 28,357 47,059 0.10 0.16 56 71 0.12 0.16
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Marital N N Match Rate 1 Match Rate 2 Ratio Match Rate 3 Ratio Ratio
Male Status N GS Maha1 Maha1 2 to 1 Maha1 3 to 2 3, 2 to 1

1 1 70,814 70,814 1.11 0.50 0.45 0.44 0.88 0.84
0 1 70,478 70,478 1.03 0.55 0.53 0.44 0.81 0.96
1 4 39,434 39,434 0.97 0.52 0.54 0.39 0.74 0.93
0 4 34,481 34,481 1.18 0.73 0.62 0.55 0.74 1.09
0 3 18,733 18,733 1.05 0.54 0.51 0.33 0.61 0.83
0 2 14,668 14,668 1.04 0.67 0.64 0.50 0.74 1.12
1 3 12,370 12,370 1.04 0.46 0.44 0.38 0.82 0.81
1 2 2,815 2,815 2.91 1.53 0.52 0.78 0.51 0.79

Totals 263,793 263,793 1.09 0.57 0.52 0.44 0.79 0.93
Marital N N Match Rate 1 Match Rate 2 Ratio Match Rate 3 Ratio Ratio

Male Status N GS Maha2 Maha2 2 to 1 Maha2 3 to 2 3, 2 to 1

1 1 70,814 70,814 0.80 0.39 0.48 0.31 0.81 0.87
0 1 70,478 70,478 0.67 0.38 0.57 0.32 0.83 1.05
1 4 39,434 39,434 0.68 0.39 0.58 0.28 0.71 0.99
0 4 34,481 34,481 0.80 0.50 0.63 0.42 0.84 1.15
0 3 18,733 18,733 0.64 0.40 0.62 0.34 0.85 1.15
0 2 14,668 14,668 0.78 0.41 0.53 0.38 0.93 1.02
1 3 12,370 12,370 0.74 0.30 0.41 0.35 1.16 0.88
1 2 2,815 2,815 2.20 0.99 0.45 0.75 0.75 0.79

Totals 263,793 263,793 0.75 0.41 0.55 0.34 0.83 1.00

Table 67: Mahalanobis Distance Matching Results
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Table 68: Euclidean Distance Matching Results
Marital N N Match Rate 1 Match Rate 2 Ratio Match Rate 3 Ratio Ratio

Male Status N GS EUCL1 EUCL1 2 to 1 EUCL1 3 to 2 3, 2 to 1

1 1 70,814 70,814 0.60 0.40 0.66 0.31 0.77 1.17
0 1 70,478 70,478 0.58 0.39 0.67 0.27 0.71 1.15
1 4 39,434 39,434 0.49 0.28 0.58 0.21 0.75 1.01
0 4 34,481 34,481 0.53 0.32 0.61 0.30 0.93 1.18
0 3 18,733 18,733 0.90 0.57 0.63 0.36 0.63 1.03
0 2 14,668 14,668 0.47 0.42 0.90 0.22 0.53 1.38
1 3 12,370 12,370 0.74 0.45 0.61 0.40 0.88 1.14
1 2 2,815 2,815 0.82 0.50 0.61 0.36 0.71 1.04

Totals 263,793 263,793 0.59 0.38 0.65 0.29 0.75 1.14
Marital N N Match Rate 1 Match Rate 2 Ratio Match Rate 3 Ratio Ratio

Male Status N GS EUCL2 EUCL2 2 to 1 EUCL2 3 to 2 3, 2 to 1

1 1 70,814 70,814 1.26 0.74 0.58 0.55 0.75 1.02
0 1 70,478 70,478 1.43 0.81 0.57 0.66 0.81 1.03
1 4 39,434 39,434 0.94 0.59 0.62 0.51 0.87 1.16
0 4 34,481 34,481 1.16 0.67 0.58 0.51 0.76 1.02
0 3 18,733 18,733 0.91 0.56 0.61 0.42 0.76 1.07
0 2 14,668 14,668 1.03 0.53 0.52 0.52 0.99 1.03
1 3 12,370 12,370 0.91 0.53 0.58 0.44 0.85 1.06
1 2 2,815 2,815 2.31 1.17 0.51 1.03 0.88 0.95

Totals 263,793 263,793 1.20 0.70 0.58 0.56 0.81 1.05
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