
109

Although I am the deputy director of a recently formed joint effort—the Energy Bio
sciences Institute (EBI)1 involving the University of California at Berkeley and the 
University of Illinois at Urbana-Champaign, funded by British Petroleum (BP)—I’ve 
worked in this area for many years. Much of this presentation comes from that back-
ground, rather than from current research2. A lot of my work has been on the impacts of 
global change. When I moved to Illinois in 2000, I set up a unique facility for looking 
at the impacts of global change on corn and soybean3; my interest in bioenergy comes 
from seeing biofuels as part of the solution.

Food Crops as Feedstocks
At the present time, our main bioenergy crops are sources also of food and feed. The 
motivation is that we have a huge knowledge base for these species. We have agronomy, 
genetics and genomics information, and huge germplasm resources. And the infrastructure 
is in place to make use of extension-service know-how and commercial advisors who are 
used to dealing with these crops.

Why, then, is there interest in nonfood/nonfeed crops as feedstocks for bioenergy? 
First of all, generally, they require few inputs. They are perennial and you plant them 
only once. Optimal nutrition is not important, since you only want the carbon; you are 
not interested in the protein, which can get in the way of a successful system. So, these 

1http://www.energybiosciencesinstitute.org/.
2Many people have helped in this work, most notably graduate students Clyde Beale, Emily Heaton and 
	Frank Dohlman
3http://soyface.uiuc.edu
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plants have these options plus the fact that, if your main requirement is lignocellulose, 
it opens up virtually every plant there is as a possible feedstock; there’s a huge range of 
germplasm to be explored. An advantage is that they can grow on non-prime land. We 
have a wide range of germplasm that can grow in saline soils or on land irrigated with 
sea water. For example, spartina (cordgrass) will produce about 60 tons of dry matter per 
hectare per year—about 26 tons per acre—growing in sea water. Perennials, in general, 
are well suited to sloping, erodible land because they bind the substrate and they can be 
grown on low-fertility soils. This is one way of avoiding food-versus-fuel issues. 

The Ideal Biomass Crop
The concept of an ideal biomass crop comes from an EU bioenergy network that I was 
involved in 25 years ago. We said, “If we could start from scratch, what would our ideal crop 
look like?” I should say that we were thinking about crops that could be put on set-aside 
or Conservation Reserve Program (CRP) land, or possibly on nonagricultural land that 
would probably be managed by farmers. This is the shopping list we came up with:

•	 C4 photosynthesis
•	 Long canopy duration
•	R ecycles nutrients to roots
•	 Low input
•	 High water-use efficiency
•	 Sterile, non-invasive
•	 Can store harvest in field
•	E asily removed
•	N o known pests/diseases
•	 Uses existing farm equipment

At the top of the list is C4 photosynthesis, because it’s the most efficient form of pho-
tosynthesis that we know of. Long canopy duration is important; to be efficient, a plant 
has to capture energy for as much of the year as possible. Within 1 day, the solar energy 
the earth receives is equal to all the energy that we consume in a whole year. Recycling 
nutrients to the roots is important, otherwise when you harvest the above-ground mate-
rial you remove nitrogen and other expensive inputs. Low input is also important, from 
the environmental aspect and even more so from the economic aspect. Pressure on water 
resources is ever greater; it’s unlikely that biofuel-feedstock crops will be grown with 
irrigation. Sterility and/or noninvasiveness are necessary to avoid the possibility of new 
crops becoming aggressive weeds. Huge volumes of feedstocks will be needed to service 
biofuel-production plants. If biomass can be stored at the farm, just-in-time delivery 
systems become feasible, circumventing problems of long-term biomass storage. Being 
easily removed is important because if prices or pressures on food increase, farmers may 
need the flexibility to quickly change crops. If you grow anything on a large scale, you 
are not going to escape pests and diseases but, initial lack of such problems is desirable. 
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And ability to use existing farm equipment again makes a crop a more viable option, 
potentially part of a more diverse operation.

Corn, the major US crop, is a C4 species. However, it doesn’t have long canopy dura-
tion. As we approach the summer solstice, most of the Midwest corn is nowhere near 
covering the soil surface. Neither does it recycle nutrients. On the other hand, it’s not 
invasive and is easily removed.

Another option, which is quite widely used, is short-rotation coppice. Fast-growing 
trees, such as willows, poplars, eucalypts and bamboos, can be productively harvested on 
a 3- to 5-year cycle. Although there are no C4 trees, they do have long canopy duration 
and are good at intercepting radiation. Some trees store nutrients in the roots over winter 
and others store them in the trunk; nutrient recycling does not occur in the latter. They 
require moderately low inputs, are generally considered noninvasive, and harvested feed-
stock can be stored in the field. On the other hand, they are not easily removed, which 
is a major encumbrance for many growers.

A third option is C4 perennial grasses. This system works well if harvested after it 
has senesced in the fall. Possible crops include switchgrass, miscanthus, big and small 
bluestem, Indian grass, and many US-prairie, pampas and steppe species. Considering 
the “ideal” list above, attributes vary from species to species, but they come closest to the 
ideal biomass crop.

Biomass Yield
Biomass yield depends on the solar energy available and the efficiency with which the 
crop intercepts and converts that energy:

Wh = Seiec
where Wh = harvested yield, 
S = total solar energy,
ei = energy interception efficiency, and
ec = energy conversion efficiency.

Issues include how much of the year the ground is covered with green leaves and the 
efficiency with which intercepted radiation is converted into biomass as determined by 
photosynthesis and respiration. Of course, the interception efficiency is often a factor 
of resistance to pests and diseases, and of nutrient availability and use efficiency. The 
maximum theoretical conversion efficiency is about 6% for C4 plants and about 4.6% 
for C3 plants. However, no C4 plant reaches that 6% limit. Some reach about 4% in the 
short term, maybe 3% in the long term. We could gain a great deal of energy by getting 
closer to the maximum theoretical efficiency.

Perennial Grasses
Perennials do a better job of absorbing solar radiation than do annuals. As soon as it is 
warm enough, the former have the reserves to form an active leaf system that intercepts 
that radiation. Perennial grasses also recycle nutrients efficiently; in the spring they move 
them from the root system into the shoot, allowing it to be photosynthetically active. In 
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the fall, those nutrients move back, thus autumn harvesting leaves the nutrients in the 
root for growth needs the following spring. It has been shown, in Denmark for example, 
that these crops can maintain a high level of productivity over as much as 20 years without 
application of nitrogen.

Two frontrunners in this arena are switchgrass, which has been heavily trialed by the 
USDA with much progress made, and miscanthus, which has been trialed quite extensively 
in Europe. The plant we work with4 is a hybrid (Miscanthus x giganteus) of M. sinensis 
and M. sacchariflorus. They have different ploidy levels, so the hybrid is a sterile triploid, 
eliminating the risk of it becoming invasive. The triploid is very productive. It is closely 
related to sugar cane and to sorghum. In our genomics work we are using sorghum as 
a scaffold for addressing the sequence of miscanthus. In 2002 we ran three trials in Il-
linois, planting rhizomes—rather like planting potatoes—of miscanthus and seeds of 
‘Cave-in-Rock’ switchgrass, the recommended cultivar from Illinois. In 2004, the trial 
number was increased to seven. With BP’s help, we are now setting up trials around the 
country and in Canada.

Miscanthus
We say that by the fourth of July, corn should be knee high. Figure 1 shows that by that 
date in 2006, miscanthus was already high enough to hide me, demonstrating how much 
more efficient it is than corn in intercepting radiation early in the growing season. Even 
with poor conditions in the spring of 2008, miscanthus is already covering the ground 
(June 4), whereas some of our corn is only at the fourth leaf stage. By early August the 
crop is usually over 11 feet in height (Fig. 2) and by late October it is flowering (Fig. 3). 
The crop in Fig. 3 produced 26 tons of dry matter per acre, one of the highest yields we 
have seen. That was in 2004. January, when it has died back (Fig. 4), is a good time to 
harvest because the atmosphere is dry—you can get its moisture content down to 6 or 
7%—and farm equipment is idle. We often harvest in February using the Animal Science 
Department’s cutting and baling equipment. Bales left in the field for as much as 2 years 
lost remarkably little biomass. Miscanthus is a traditional thatching material in Japan, 
which shows that it’s not easily broken down when exposed to the elements.

In plot trials around the state, we found that miscanthus consistently out-yielded 
switchgrass. It has been suggested that if we had included the cultivar ‘Alamo,’ we would 
have seen higher switchgrass yields and that may well be the case. However, published 
records show that miscanthus has been consistently more productive than switchgrass. The 
trials we are now setting up across the country should give us a better idea. But, in 2004, 
our best plots in south and central Illinois gave over 20 tons per acre. One of the reasons 
for this yield level is that miscanthus intercepts solar radiation for a longer period of the 
year than does corn (Fig. 5). It invests a considerable amount of biomass in the roots. 
Over 5 years, we have accumulated, on average, about 15 tons of dry matter—about 7 
tons of carbon—below ground. The idea that planting something like this means you 
forego any opportunity to sequester carbon is certainly incorrect.

4http://miscanthus.uiuc.edu/
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Figure 1. Miscanthus in Illinois: July 4.

Figure 2. Miscanthus in Illinois: early August.
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Figure 3. Miscanthus in Illinois: late October.

Figure 4. Miscanthus in Illinois: January.
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Figure 5. Light-interception efficiency, miscanthus and corn, 2007.

Figure 6. Miscanthus: shoot nitrogen distribution.
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Miscanthus does require nitrogen; in one experiment the shoot accumulated almost 400 
kg of nitrogen per hectare or 200 pounds per acre during the summer months (Fig. 6), 
but with the onset of autumn that material was translocated below ground and relatively 
little nitrogen was removed when the shoots were harvested in February.

Implications for Fuel Production
What does this mean in terms of fuel? To achieve the “20 in 10” target of 35 billion gal-
lons of ethanol, how much land would be needed? At current corn yields, it computes at 
25% of row-crop land in the United States (Table 1). A yield of miscanthus of 15 tons 
per acre computes at about 8% of crop land. It was suggested at this meeting that 1,000 
gallons of ethanol per acre from corn will be possible with improvements in seed yield 
and inclusion of the stover as a feedstock. But even with current yields of unimproved 
miscanthus and little knowledge of its optimum agronomy, we should be able to average 
1,500 gallons per acre.

Another way of looking at this question is in terms of a need for about 23 million acres 
(Table 1), which is about the area now planted to corn for ethanol. If we planted miscan-
thus on that land we could achieve the long-term target without taking any further land 
out of food/feed production. Furthermore, we know from Europe that miscanthus can 
be grown on marginal land; in the west of Ireland, on shallow acid soils, low in fertility 
and never previously used for row crops, 10 tons of dry matter per acre were obtained.

Table 1. Land area required for various crop options 
(Heaton et al., 2008).

			   Acres needed for	 Fraction of
Feedstock	 Harvestable	 Ethanol	 35 billion gals	 2006 harvested
 	 biomass		  of ethanol	 US crop land
	 (t/acre)	 (gal/acre)	 (millions)	 (%)
Corn grain	 4.5	 454	 70	2 4	  
Corn stover	 3.0	 330	1 06	 37	  
Corn total	 7.5	 784	 42	1 5	  
Prairie	1 .7	16 9	2 07	 73	  
Switchgrass	 5.6	 557	6 3	22	   
Miscanthus	1 5	1 ,500	2 3	 8.0	  

Water-Use Efficiency
How water-use efficient is miscanthus? You can’t get large amounts of biomass without 
water, but its water-use efficiency is equivalent to that of sorghum—for a kilogram of 
water it gives about 10 grams of biomass, with a vapor pressure deficit of 1 kilopascal 
(Illinois average)—so it’s pretty good. A rainfall of 1,000 millimeters in Illinois allows 
a theoretical production, if the plant is capable of it, of 100 tons per hectare or about 
40 tons per acre. In Nebraska, with about 500 millimeters and 4 kilopascals, the yield 
potential drops to about 12.5 tons per hectare or 5 tons per acre. Almost anywhere east 
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of the Mississippi River will have enough precipitation to produce 40-ton crops with 
the appropriate germplasm. In fact, the further east and south you go, the better are the 
conditions for miscanthus productivity.

Miscanthus Improvement?
Switchgrass and miscanthus cover the ground for similar periods of time, so why does 
the latter produce more biomass? The reason is that miscanthus’s photosynthetic rate is 
higher. This tells us that improved photosynthesis may be achieved in other crops. In the 
past 30 years, we’ve learned a lot about photosynthesis, little of which has been applied 
to crop plants because the information has not being viewed as particularly important. 
If anything, too much productivity has been seen as a problem, rather than too little. 
Furthermore, a huge range of other opportunities has been identified in recent decades 
that could be applied to agriculture. High yields are clearly important if biofuel crops 
are to be successful.

Our work to date has been with just one genotype of miscanthus. It is likely that superior 
alternatives exist. We need to look for higher leaf photosynthetic rates, better early-season 
growth, and ecotypes for various climate zones. The potassium level is relatively high 
which is an advantage if it can be translocated to the roots. Lower lignin content would 
be advantageous, as would ability to retranslocate labile lignocellulose. 

EBI
Although we hear a lot about greenhouse-gas balance, it’s actually never been measured for 
important crops. At EBI, we are comparing miscanthus, switchgrass, no-till continuous 
corn and mixed-grass prairie, looking at their exact greenhouse balances and nitrogen 
drainage patterns, side by side. One of the themes of the Institute is that all of the people 
who are funded—the postdocs and graduate students—work together. Environmental-
ists, genomicists, microbiologists and plant breeders are located in a building adjacent to 
the Morrow plots, which is probably the longest running experiment on sustainability 
in the United States.
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