
TRACE-BASED LEARNING FOR AGILE
HARDWARE DESIGN AND DESIGN

AUTOMATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Yuan Zhou

May 2021

© 2021 Yuan Zhou

ALL RIGHTS RESERVED

TRACE-BASED LEARNING FOR AGILE HARDWARE DESIGN AND

DESIGN AUTOMATION

Yuan Zhou

Cornell University, May 2021

Modern computational platforms are becoming increasingly complex to

meet the stringent constraints on performance and power. With the larger de-

sign spaces and new design trade-offs brought by the complexity of modern

hardware platforms, the productivity of designing high-performance hardware

is facing significant challenges. The recent advances in machine learning pro-

vide us with powerful tools for modeling and design automation, but current

machine learning models require a large amount of training data. In the digital

design flow, simulation traces are a rich source of information that contains a

lot of details about the design such as state transitions and signal values. The

analysis of traces is usually manual, but it is difficult for humans to effectively

learn from traces that are often millions of cycles long. With state-of-the-art ma-

chine learning techniques, we have a great opportunity to collect information

from the abundant simulation traces that are generated during evaluation and

verification, build accurate estimation models, and assist hardware designers

by automating some of the critical design optimization steps.

In this dissertation, we propose three trace-based learning techniques for

digital design and design automation. These techniques automatically learn

from simulation traces and provide assistance to designers at early stages of the

design flow. We first introduce PRIMAL, a machine-learning-based power esti-

mation technique that enables fast, accurate, and fine-grained power modeling

of IP cores at both register-transfer level and cycle-level. Compared with gate-

level power analysis, PRIMAL achieves an average error within 5% while offer-

ing an average speedup of over 50x. Secondly, we present Circuit Distillation, a

machine-learning-based methodology that automatically derives combinational

logic modules from cycle-level simulation for applications with stringent con-

straints on latency and area. In our case study on network-on-chip packet ar-

bitration, the learned arbitration logic is able to achieve performance close to

an oracle policy under the training traffic, improving the average packet la-

tency by 64x over the baselines while only consuming area comparable to three

eight-bit adders. Finally, we discuss TraceBanking, a graph-based learning al-

gorithm that leverages functional-level simulation traces to search for efficient

memory partitioning solutions for software-programmable FPGAs. TraceBank-

ing is used to partition an image buffer of a face detection accelerator, and the

generated banking solution significantly improves the resource utilization and

frequency of the accelerator.

BIOGRAPHICAL SKETCH

Yuan Zhou received his bachelor’s degree in Electronics Engineering from Ts-

inghua University, Beijing, China in 2015. He then joined the School of Electri-

cal and Computer Engineering (ECE) at Cornell University as a Ph.D. student.

Since then, Yuan studied under the supervision of Prof. Zhiru Zhang at the

Computer Systems Laboratory, where he passed his Ph.D. candidacy exam and

received a Master of Science degree in ECE in March 2019. During his graduate

study, Yuan has worked on a variety of research areas, including high-level syn-

thesis, deep learning acceleration, benchmarking, and application of machine

learning in digital design. He interned at NVIDIA research and Google in sum-

mer 2018 and summer 2020, respectively.

iii

For everyone who has faith in me.

iv

ACKNOWLEDGEMENTS

I sincerely appreciate the support from my family, my friends, my mentors,

and all other people who have helped and encouraged me during my graduate

study. This dissertation would not have been possible without their support.

First and foremost, I would like to thank my advisor, Prof. Zhiru Zhang,

for his support and supervision during my Ph.D. Zhiru saw my potential of be-

coming a researcher and brought me into CSL. In the past five-and-a-half years,

Zhiru advised me patiently and consistently provided precious suggestions to

my research. Zhiru always encouraged me and had faith in me, even when I

was questioning myself.

I would also like to thank my dissertation committee members: Prof. David

Albonesi, Prof. Adrian Sampson, and Dr. Mark Haoxing Ren. I thank Dave for

detailed suggestions on my dissertation and concrete feedback on my power

estimation work from a circuit expert’s perspective. His comments during our

discussions made me realize the value of high-level modeling and pointed me

in the direction of research that is actually important to hardware designers. I

thank Adrian for being a very supportive mentor and an inspiring source of re-

search ideas. Adrian also taught me a lot about programming languages and

compilers, which will be very useful for the first job in my career. Last but not

least, I would like to thank Mark for being my mentor during my internship at

NVIDIA in 2018 and serving on my committee afterwards. It was from a dis-

cussion with Mark and other collaborators where we got the idea of accelerating

power estimation with machine learning. Mark pointed me to the correct direc-

tion during my internship and continued to provide suggestions to my research

after I left NVIDIA.

I am grateful to all members of the Zhang research group and the CSL com-

v

munity for building such a lively and friendly environment for my research and

daily life. Specifically, I really appreciate the help from the Zhang group alumni:

Dr. Steve Haihang Dai, Dr. Gai Liu, Dr. Ritchie Zhao, Dr. Nitish Srivastava, Dr.

Zhenghong Jiang, and Prof. Cunxi Yu. They got me familiar with the research

infrastructure in our group, provided valuable suggestions on how to be suc-

cessful during my Ph.D., and served as a great source of research ideas. I ac-

knowledge all the hard work from my collaborators within and outside of Cor-

nell, and I thank Weizhe Hua, Yu Gan, and Chenhui Deng for inspiring research

discussions. I would also like to thank my friends at CSL and all members of

the Zhang group for the fun activities, including badminton, table tennis, card

games, and picnic. Special thanks to Bo Yuan at Google and Dr. Yanqing Zhang

at NVIDIA for being outstanding mentors during my internships and providing

valuable suggestions to my future career.

Finally, I would like to express my deepest gratitude to my parents, Fugen

Zhou and Wenyan Liu, for raising me to become who I am today and always

being supportive throughout my graduate study. Also, I would like to deeply

thank my girlfriend Mengyao Xu, for being loving, caring, and supportive in

the past three years.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . ix
List of Figures . x

1 Introduction 1
1.1 Challenges in Digital Design: Productivity and Quality 3
1.2 Trace-Based Design-Specific Learning for Agile Hardware Design 5
1.3 Dissertation Overview . 7
1.4 Collaborations, Funding, and Previous Publications 10

2 Preliminaries on EDA and Machine Learning 13
2.1 Overview of the EDA Flow . 13
2.2 Machine Learning Overview . 18

2.2.1 Linear and Tree-Based Models 20
2.2.2 Deep Learning . 23
2.2.3 Reinforcement Learning . 27

3 PRIMAL: Power Inference Using Machine Learning 31
3.1 Methodology . 34

3.1.1 RTL Power Estimation Methodology 36
3.1.2 HLS Power Estimation Methodology 37

3.2 Feature Construction . 40
3.2.1 Feature Encoding for Cycle-by-Cycle Power Estimation . . 40
3.2.2 Mapping Registers and Signals to Pixels 42
3.2.3 Feature Construction for HLS Power Estimation 44

3.3 Experimental Results for RTL Power Estimation 45
3.3.1 Benchmarks . 45
3.3.2 Results . 46

3.4 Experimental Results for HLS Power Estimation 51
3.5 Related Work and Discussions . 55

4 Circuit Distillation: Distilling Arbitration Logic from Traces using Ma-
chine Learning 58
4.1 NoC Arbitration Background . 61
4.2 Distilling Arbitration Logic from Data 62

4.2.1 Step 1: Learning an Arbitration Policy 63
4.2.2 Step 2: Selecting the Tree Model 65
4.2.3 Step 3: Generating Implementable Logic 65

4.3 Case Study: NoC Arbitration Policy 67

vii

4.3.1 Area and Performance of the Distilled Arbitration Logic . 70
4.3.2 Analysis of the Distilled Arbitration Logic 71
4.3.3 Generalization to Different Injection Rates 72
4.3.4 Generalization to Different Traffic Patterns 74

4.4 Related Work and Discussions . 75

5 Trace-Based On-Chip Memory Banking for Software-Programmable
FPGAs 79
5.1 Motivational Example . 81
5.2 TraceBanking Algorithm . 84

5.2.1 Finding Mask Bits . 86
5.2.2 Mapping Mask IDs to Banks 88
5.2.3 Offset Generation . 89

5.3 SMT-Based Verification . 92
5.4 Experimental Results . 94

5.4.1 Results on Stencil Benchmarks 94
5.4.2 Case Study: Haar Face Detection 99

5.5 Related Work . 101

6 Conclusion 104
6.1 Dissertation Summary and Contributions 105
6.2 Future Directions . 106

Bibliography 112

viii

LIST OF TABLES

1.1 Summary of techniques presented in this dissertation 6

3.1 Benchmarks for RTL power estimation 46
3.2 Training time of different ML models 47
3.3 Accuracy and speedup of PRIMAL-RTL, FLASH-CNN, and

PRIMAL-HLS against gate-level power analysis on test sets . . . 51

4.1 Performance and area comparison of different arbitration policies 69

5.1 Timing and resource usage comparison with baseline where the
minimum number of memory banks is used 95

5.2 Timing and resource usage comparison with baseline, where the
number of memory banks is restricted to be a power-of-two . . . 96

5.3 Execution time of TraceBanking on Motion LV with different in-
put array sizes . 97

5.4 Execution time of TraceBanking with reduced memory trace . . 98
5.5 Timing and resource usage comparison of two face detection de-

signs . 100

ix

LIST OF FIGURES

1.1 Digital design flow with HLS . 2
1.2 Time consumption of EDA steps and simulation throughput at

different abstraction levels . 4
1.3 Dissertation outline . 7

2.1 Digital design flow with HLS . 14
2.2 Examples of tree-based models for regression tasks 22
2.3 Examples of different DL models 24
2.4 Overview of RL model training . 28

3.1 Conventional ASIC power estimation flow vs. PRIMAL 32
3.2 Two phases of the PRIMAL workflow 35
3.3 Pipelined integer MAC unit example 38
3.4 Ground truth and predicted power traces for the MAC unit . . . 39
3.5 Example circuit and waveform for illustrating feature construc-

tion methods . 40
3.6 Default 1D and 2D feature encoding 41
3.7 Graph-based register-to-pixel mapping methods 43
3.8 Performance of different machine learning models on test sets . . 47
3.9 Ground truth vs. CNN-default and PCA+Linear for RISC-V . . . 48
3.10 3D rendering trace comparison . 53
3.11 SystemC power estimation accuracy of NoCRouter using a

VGG16 CNN model . 57

4.1 Proposed flow of distilling logic from traces 59
4.2 Architecture diagram for router arbitration 63
4.3 Convert tree models to combinational logic 66
4.4 Training dynamics of the MLP agent and comparisons with dif-

ferent policies . 67
4.5 Arbitration policy learned by linear model tree with a max depth

of one . 71
4.6 Performance of different policies under Uniform Random traffic 72
4.7 Performance of different policies under unseen traffic patterns . 73

5.1 Hardware template for memory banking 82
5.2 Bicubic interpolation example . 83
5.3 TraceBanking flow . 85
5.4 The heuristic in TraceBanking to find mask bits 87
5.5 The heuristic in TraceBanking to map mask IDs to banks 88
5.6 Example of mapping banking solution into closed-form equations 90
5.7 SMT formulation of the banking solution checker 93
5.8 Classifier loop kernel in a face detection accelerator 99

x

CHAPTER 1

INTRODUCTION

With the end of Dennard scaling, the performance improvement of single-

core microprocessors has significantly slowed down in the past decade [51]. In

order to satisfy the stringent performance and power requirements under cur-

rent and future application scenarios, modern computational platforms are in-

creasingly relying on parallel and/or heterogeneous processing to achieve high

performance under a tight power budget. Multi-core CPUs are now prevalent

in embedded systems [13], desktop- and server-grade computers [72, 74], as

well as supercomputers [70]. Hardware acceleration using specialized acceler-

ators is also becoming popular in both cloud and embedded computing plat-

forms. In fact, FPGA and ASIC accelerators are now empowering a number of

major products and services provided by some of the industry giants in their

datacenters [11, 36, 81], while also being integrated into smartphones [55] and

self-driving cars [113].

Unfortunately, high performance and power efficiency often come at the cost

of the scale and complexity of modern hardware platforms. Notably, the lat-

est Apple M1 system-on-chip (SoC) contains sixteen billion transistors, with an

eight-core CPU, an eight-core GPU, and a neural engine for machine learning

(ML) workloads [13]. The NVIDIA GPUs are massively parallel with thousands

of CUDA cores and contain specialized accelerators for ray tracing and tensor

computation [114, 115]. Hardened AI engines are also introduced into mod-

ern FPGAs which have already incorporated dedicated DSP units and memory

modules [165]. Furthermore, the hardware industry is rapidly redesigning and

updating their products to adapt to the emerging applications. The increase

1

.c .h

High-Level Synthesis

.v

Logic Synthesis

Placement and Routing

Functional-level
verification pass?

Y

N

RTL verification pass?
QoR target met?

Y

N

Gate-level verification pass?
QoR target met?

Y

N

Circuit-level verification pass?
QoR target met?

N

Y
Fabrication (ASIC)

Bitstream Generation (FPGA)

Design Stage: Mostly Manual

• Functionality
• Architecture and micro-architecture
• Algorithms and heuristics

For RTL design
• Interface
• Finite-state-machines

Implementation Stage: Automated

• Repeated verification and quality-
of-result evaluation

• Manual fix if necessary
• Time-consuming

Figure 1.1: Digital design flow with HLS — The design stage is still mostly
manual even with the assistance of HLS. The implementation stage, including
synthesis, placement, and routing, is mostly automated by EDA tools. Hard-
ware designs must be iteratively modified to pass verification and meet QoR
targets.

in complexity and the urge for fast development are posing significant chal-

lenges to both hardware designers and the existing electronic design automa-

tion (EDA) tools.

2

1.1 Challenges in Digital Design: Productivity and Quality

Figure 1.1 shows a typical hardware design flow based on high-level synthe-

sis (HLS)1. While the implementation of digital circuits is highly automated

with the assistance of EDA tools, the hardware is usually designed manually

by experienced engineers. At the design stage, developers must first provide

a functional description of the hardware. In cases where the more traditional

register-transfer-level (RTL) design methodology is applied, developers then

further specify the RTL description including the connection of sub-modules,

interfaces, and the logic and state transition of each sub-module. HLS raises the

level of abstraction from RTL to the behavioral level and automates the gener-

ation of hardware microarchitecture. However, the design of hardware archi-

tecture is still not fully automated. Furthermore, modern hardware relies on

carefully-designed heuristics to make decisions at run time, and the design of

these heuristics is mostly manual.

Hardware designers rely on their intuition and experience to search for good

design points in the vast design space. For modern hardware platforms, this

process is becoming more and more challenging because of the even larger de-

sign space and the potentially different design trade-offs brought by new ap-

plications. Under this scenario, experience from past projects may not lead to

successful design decisions, and the heuristics that were effective may no longer

be satisfying for the new hardware. As a result, developers have to spend many

more iterations to reach a good design point, and for every iteration the EDA

tools must be rerun for functional verification and QoR evaluation. In some

cases, it might be out of the designers’ capability to design an effective heuristic

1More traditional hardware design flows start from the RTL design step.

3

Logic
Synthesis

Placement
and Routing

High-Level
Synthesis

Seconds - Minutes Minutes - Hours Hours - Days

Functional-Level Sim.
~ 1MHz

RTL Sim.
1k - 10kHz

Gate-Level Sim.
10 - 1kHz

Circuit-Level Sim.
< 10Hz

Increasing Modeling Accuracy

Figure 1.2: Time consumption of EDA steps and simulation throughput at dif-
ferent abstraction levels — Modeling accuracy increases at lower levels of ab-
straction. The speed of cycle-level simulation supported by SystemC [1] or
GEM5 [99] is between functional-level simulation and RTL simulation.

algorithm or find a satisfying design point in a limited amount of time, and the

final hardware implementation will be sub-optimal. The growing complexity

of hardware systems will make manual hardware design more challenging and

time-consuming.

Even without the increased number of design iterations, optimizing and im-

plementing a hardware design is a time-consuming process. Figure 1.2 shows

a rough breakdown of the time required at each step of the digital design flow.

For large designs, the implementation stage itself may take hours or days, and

the simulation at lower levels of abstraction can be as slow as ten cycles per

second. Despite the low speed/throughput of these steps, they are necessary

for designers to obtain meaningful evaluation results in the current hardware

design flow, because modeling at earlier steps or higher levels of abstraction

is not accurate enough. Combined with the increased number of design itera-

tions, the turn-around time of hardware design will quickly become intolerable

for fast-paced development.

4

1.2 Trace-Based Design-Specific Learning for Agile Hardware

Design

There is an emerging trend of applying ML to EDA [69]. Existing works

have explored a variety of topics including high-level modeling [44, 150, 175],

design-space exploration [97, 109, 149, 158], automated architectural and micro-

architectural design [30, 60, 133, 146, 171, 182], verification [68, 78], place-

ment [107, 143, 164, 173], and layout pattern generation [170, 177]. These tech-

niques have been shown to achieve superior performance on a variety of tasks

in the EDA toolchain, and are able to significantly accelerate the hardware de-

sign flow by providing assistance to developers.

While ML techniques are shown to be effective for EDA problems in exist-

ing work, learning a design-agnostic model that performs well for any arbitrary

design is very difficult. A design-agnostic ML model must learn the underlying

characteristics of the target technology library and the optimization algorithms

in the EDA tool flow. Due to the complexity of the digital design flow, many

algorithms used in EDA are highly sophisticated and stochastic. Modern ML

models would require a massive amount of training data from many different

designs to effectively learn the behavior of these algorithms. In addition, hard-

ware designs from different application domains have distinct characteristics.

Without a collection of comprehensive datasets, new designs are likely to be out

of the training distribution, causing the ML models to make inaccurate predic-

tions.

Unfortunately, due to the lack of open-source designs and the long execu-

tion time of EDA tools, collecting and constructing large and useful datasets for

5

Table 1.1: Summary of techniques presented in this dissertation.

Technique PRIMAL Circuit Distillation TraceBanking

Traces Used Gate-level/RTL/Cycle-level Cycle-level Functional-level
Learning Technique ML ML & RL Graph-based data mining

Target Designs Hardened IP cores Partially-reconfigurable modules Specialized accelerators
Design Metric Power Performance & Area Performance

EDA problems remains a daunting task. An alternative is to use ML for design-

specific learning. In this setting, the data collection effort is greatly reduced

since the training data can be easily acquired from the given design. Further-

more, with design-specific learning, ML models only need to learn about the

target design. The behavior of hardware designs is usually deterministic. In

addition, while the ML models still need to learn the behavior of the EDA tools

on the target design, this learning task is much easier than learning complete

EDA algorithms. As a result, design-specific models can usually provide more

detailed and more accurate predictions than their design-agnostic counterparts.

In this dissertation we focus on using design-specific learning to improve the

quality of one single design.

We argue that simulation traces generated by various stages of the hard-

ware design flow are a good source of information for design-specific learn-

ing. Hardware developers often run millions or even billions of cycles of tests

to guarantee the correctness of their designs and discover performance bottle-

necks. Furthermore, depending on the level of abstraction, simulation traces

contain different levels of details about the design: (1) Functional-level simula-

tion verifies the functional correctness of a software-specified design and pro-

vides a sequence of transactions that is useful for understanding the high-level

functional behavior of the design; (2) Cycle-level simulation evaluates the la-

tency and throughput of the design while exposing the value of critical signals

in each cycle for analysis and verification; (3) Simulation at RTL or lower ab-

6

.c .h

High-Level Synthesis

.v

Logic Synthesis

Placement and Routing

Functional-Level Simulation

RTL Simulation

Gate-Level Simulation

Circuit-Level Simulation

Chapter 5. TraceBanking
Micro-architectural optimization
for specialized accelerator

Chapter 4. Circuit Distillation
Learning efficient heuristics for
partially-reconfigurable modules

Chapter 3. PRIMAL
Fast and accurate high-level
power modeling for IP cores

Cycle-Level Simulation

Chapter 2. Backgrounds
Preliminaries of ML and EDA

Figure 1.3: Dissertation outline.

straction levels exposes more internal details of the design, better reflects its

timing behavior, and can be used to calculate the power and thermal charac-

teristics of the underlying circuit. These details are necessary for accurate and

fine-grained analysis of hardware designs. By collecting and analyzing these

details, trace-based learning with ML can effectively assist the hardware design

process.

1.3 Dissertation Overview

In this dissertation we introduce three trace-based, design-specific learning

techniques for agile hardware design and design automation. As shown in

7

Figure 1.3, our research aims to improve both the optimization and modeling

aspects of the hardware design flow. Moreover, our proposed techniques ad-

dress the challenges that arise from optimizing different hardware design met-

rics, including performance, area, and power. Table 1.1 shows the coverage of

this dissertation, which spans multiple levels of hardware design abstraction

and explores a rich set of learning techniques. A more detailed overview of this

dissertation is as follows:

• Because of the broad coverage of this dissertation, Chapter 2 is dedicated

to introducing the necessary background for readers to get a better under-

standing of the techniques discussed in this dissertation. We will intro-

duce the digital design flow and also broadly discuss several widely-used

ML techniques, including linear and tree-based ML models, deep learning

(DL), and reinforcement learning (RL).

• Chapter 3 presents PRIMAL, a ML-based methodology that provides fine-

grained RTL and cycle-level power estimation for IP cores. In this work

we explore the potential of using DL models to characterize large circuit

modules such as RISC-V processor cores and accelerators designed using

HLS. Our experiments show that for RTL power estimation, convolutional

neural networks can effectively model the power of large hardware mod-

ules, even if the test workloads are completely independent from the train-

ing sets. PRIMAL can achieve less than 5% error on cycle-by-cycle RTL

power estimation while providing around 50� speedup compared with

gate-level power analysis. This work was published in DAC’19 [186]. For

cycle-level power estimation, we leverage recurrent neural networks to

tolerate the inaccuracies in cycle-level simulation traces. Thanks to the

faster simulation throughput at cycle level, we were able to achieve an-

8

other 3.5� speedup over our RTL power estimation technique on a collec-

tion of HLS accelerators, with marginal degradation in estimation accu-

racy.

• Chapter 4 proposes a fully automated methodology to directly learn com-

binational logic from simulation traces and presents a case study on a

network-on-chip (NoC) router arbitration task. Specifically, we leverage

deep RL to learn a neural network (NN) agent which implements an op-

timized arbitration policy from simulation. The proposed Circuit Distilla-

tion flow then uses tree-based ML models as a bridge between the learned

NN policy and a compact, combinational logic implementation. Exper-

iments show that the learned arbitration logic is able to achieve a 64�

reduction in average packet latency and a 5% improvement in network

throughput over the baseline FIFO policy under the training traffic. This

work has been accepted to DAC’2021.

• Chapter 5 presents TraceBanking, a data-driven approach to auto-

matically generating on-chip memory banking solutions for software-

programmable FPGAs. Our approach takes a memory trace of the target

application as input and uses a graph-coloring-based algorithm to gener-

ate an efficient memory banking with no conflicts. Compared with exist-

ing compile-time memory partition techniques, our approach can handle

arbitrary memory access patterns that are fixed at run time. This work was

published in FPGA’17 [184].

• Chapter 6 summarizes the contributions of this dissertation and discusses

future research directions.

9

1.4 Collaborations, Funding, and Previous Publications

This dissertation would not be possible without the contributions of my col-

leagues within the Zhang Research Group and Batten Research Group in the

Computer Systems Laboratory at Cornell University, as well as collaborators

from University of California Los Angeles (UCLA), Lehigh University, and the

VLSI research group at NVIDIA. My advisor and committee chair, Prof. Zhiru

Zhang, provided valuable suggestions and assistance to all the projects men-

tioned in this dissertation. The ideas of the high-level power modeling tech-

niques presented in Chapter 3 originated from a discussion with Dr. Mark Ren,

Dr. Yanqing Zhang, Dr. Ben Keller, and Dr. Brucek Khailany at NVIDIA re-

search during my summer internship in 2018, and we collaborated on the RTL

power estimation part of the PRIMAL project. The HLS power estimation part

of PRIMAL is a collaboration with Dr. Young-kyu Choi and Prof. Jason Cong at

UCLA. Dr. Choi and Prof. Cong provided valuable support on cycle-level sim-

ulation of HLS designs. The Circuit Distillation project in Chapter 4 was done

in collaboration with Prof. Jieming Yin at Lehigh University and Hanyu Wang

from Shanghai Jiao Tong University2. The initial idea of tackling this problem

arose from Prof. Yin’s paper on learning NoC arbitration policy using reinforce-

ment learning [171]. Prof. Yin also provided detailed suggestions on the usage

of the GEM5 simulator [99], the hyperparameter settings during training, and

the writing of the submission. Khalid Al-Hawaj from Prof. Christopher Bat-

ten’s group contributed significantly to the TraceBanking project presented in

Chapter 5.

This dissertation was supported in part by a DARPA Young Faculty Award,

2Hanyu was a (remote) research intern at Cornell when participating in this project.

10

NSF Awards #1337240, #1453378, #1512937, #1909661, the Intel ISRA Program,

the Semiconductor Research Corporation (SRC), and research gifts from Xilinx,

Inc and NVIDIA Corporation. A complete list of my publications during my

Ph.D. in reverse chronological order is as follows:

1. Yuan Zhou, Hanyu Wang, Jieming Yin, and Zhiru Zhang, Distilling Ar-

bitration Logic from Traces using Machine Learning: A Case Study on

NoC, to appear in Design Automation Conference (DAC), December 2021.

2. Eshan Singh, Florian Lonsing, Saranyu Chattopadhyay, Maxwell Strange,

Peng Wei, Xiaofan Zhang, Yuan Zhou, Jason Cong, Deming Chen, Zhiru

Zhang, Priyanka Raina, Clark Barrett, and Subhasish Mitra, A-QED Ver-

ification of Hardware Accelerators, Design Automation Conference (DAC),

July 2020.

3. Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G. Edward

Suh, Channel Gating Neural Networks, Thirty-third Conference on Neural

Information Processing Systems (NeurIPS), December 2019.

4. Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G. Ed-

ward Suh, Boosting the Performance of CNN Accelerators with Dy-

namic Fine-Grained Channel Gating, International Symposium on Microar-

chitecture (MICRO), October 2019.

5. Yuan Zhou, Haoxing Ren, Yanqing Zhang, Ben Keller, Brucek Khailany,

and Zhiru Zhang, PRIMAL: Power Inference using Machine Learning,

Design Automation Conference (DAC), June 2019.

6. Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou,

Jason Cong, and Zhiru Zhang, HeteroCL: A Multi-Paradigm Program-

ming Infrastructure for Software-Defined Reconfigurable Computing,

11

International Symposium on Field-Programmable Gate Arrays (FPGA), Febru-

ary 2019.

7. Steve Dai, Yuan Zhou, Hang Zhang, Ecenur Ustun, Evangeline F.Y. Young,

and Zhiru Zhang, Fast and Accurate Estimation of Quality of Results

in High-Level Synthesis with Machine Learning, International Sympo-

sium on Field-Programmable Custom Computing Machines (FCCM), April/-

May 2018.

8. Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava,

Hanchen Jin, Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo Ve-

lasquez, Wenping Wang, and Zhiru Zhang, Rosetta: A Realistic High-

Level Synthesis Benchmark Suite for Software Programmable FPGAs,

International Symposium on Field-Programmable Gate Arrays (FPGA), Febru-

ary 2018.

9. Yuan Zhou, Khalid Al-Hawaj, and Zhiru Zhang, A New Approach to Au-

tomatic Memory Banking using Trace-Based Address Mining, Interna-

tional Symposium on Field-Programmable Gate Arrays (FPGA), February 2017.

12

CHAPTER 2

PRELIMINARIES ON EDA AND MACHINE LEARNING

In this chapter we provide background knowledge for the techniques pre-

sented in this dissertation. The rest of this chapter will introduce the electronic

design automation (EDA) flow, basic concepts and important techniques of ma-

chine learning (ML), as well as the application of learning-based methods in

EDA and computer architecture.

2.1 Overview of the EDA Flow

Figure 2.1 shows the digital design flow with more details. As mentioned in

Chapter 1, designing a digital circuit is a time-consuming process that involves

many design iterations. The process of finding a satisfactory design point is

usually referred to as design space exploration (DSE). Each promising design

point must be repeatedly verified and evaluated at different levels of abstrac-

tion, and manual optimizations are necessary if the design fails to meet the con-

straints. When evaluating the design, some metrics such as area and frequency

can be directly provided by the EDA tools, while other metrics like latency and

power can only be obtained by running simulation using a comprehensive set

of workloads. The extensive use of simulation further increases the design time

because detailed simulation is very time-consuming, especially at lower levels

of abstraction such as gate-level and circuit-level.

As shown in Figure 2.1, accurate estimations of the quality-of-result (QoR)

metrics can only be obtained at later stages of a typical EDA flow. To facilitate

DSE, ideally designers would like such estimations to be available earlier in

13

.c .h

High-Level Synthesis

.v

RTL Synthesis

Placement and Routing

Functional-Level Simulation

RTL Simulation

Gate-Level Simulation

Circuit-Level Simulation

Designer
Annotations

Hardware architecture
and microarchitecture

Latency and throughput

Technology Mapping

Logic
Synthesis

Gate-level netlist
Accurate area, timing, power

Wire delay and capacitance
Final area, timing, power

Figure 2.1: Digital design flow with HLS — Accurate estimations of many QoR
metrics are only available at lower levels of abstraction because each step in the
design flow introduces additional details about the design.

the design flow, where the level of abstraction is higher and exploring different

design points is easier. Unfortunately, high-level modeling of digital circuits

is inherently challenging, because each step in the EDA flow introduces many

additional details about the design which are hard to predict at higher levels of

abstraction. Chapter 3 focuses on the power estimation aspect of this problem.

The rest of this section briefly introduces each step in the EDA flow.

High-Level Synthesis The high-level synthesis (HLS) step converts a

behavioral-level description of the design to an register-transfer-level (RTL) de-

14

scription. The behavioral-level description can be specified in C/C++ [71, 168],

OpenCL [73, 167], or Python [88, 166]. With HLS, the designer no longer has

to design the interface between hardware modules or the finite-state-machine

(FSM) of each module. Modern HLS tools usually provide a set of predefined

interface protocols. In addition, the scheduling and binding algorithms in the

HLS tools are able to directly generate optimized datapath and FSM from the

behavioral-level description. The designers are given the flexibility to specify

additional optimizations to the generated hardware, such as parallelizing the

computation, customizing the datatype, or partitioning the data memory for

higher memory bandwidth. While the decisions of where and how to add these

optimizations need to be made manually in modern HLS tools, automatically

finding good combinations of the optimizations and effective optimization so-

lutions are active lines of research.

The RTL source code generated by the HLS tools accurately describe the ar-

chitecture and microarchitecture of the hardware. The reports from HLS tools

contain a lot of useful information such as the type and count of operators, the

size of memories, and the latency of fixed-latency hardware modules. For hard-

ware blocks with variable latency, accurate performance measurements can be

obtained from RTL simulation. However, the low-level implementation details

of the design are yet to be determined by the downstream flow. Even with the

information from the generated RTL representation, the HLS tools have limited

knowledge on the selection of operators or the sizing of gates, and can only

provide very crude estimates of wire delay and capacitance. All these missing

details make accurate modeling at RTL and higher abstraction levels extremely

challenging.

15

Logic Synthesis Logic synthesis refers to the step which transforms the

RTL description written in hardware description languages (HDLs) into a

technology-specific gate-level netlist. As shown in Figure 2.1, logic synthesis

can be further divided into two steps: RTL synthesis and technology mapping.

RTL synthesis converts the HDL into a technology-independent logic represen-

tation. This process involves several key steps, including RTL elaboration, dat-

apath synthesis, and logic minimization. RTL elaboration converts the HDL

code into an abstract, intermediate format which is suitable for downstream

processing of the synthesis tool. The common operators such as addition and

multiplication are directly converted to logic by datapath synthesis, while the

rest of the design are synthesized to logic and further optimized by the logic

minimization step.

Technology mapping takes the optimized technology-independent logic rep-

resentation as input and maps it to components provided by the technology

library. For ASICs, the technology library contains basic elements of digital

circuits, such as flip-flops and combinational logic gates with different drive

strengths, memory modules, and register files. When mapping to FPGAs, the

mapper is limited to a small set of elements provided by the FPGA architec-

ture, including look-up tables (LUTs), flip-flops, digital-signal-processing (DSP)

units, and block RAMs (BRAMs).

After technology mapping, the gate-level implementation of the design is

precisely defined. The synthesis tool now has complete information about the

size, capacitance and delay of each gate in the design. As a result, the tool will be

able to provide more accurate estimations of area, frequency, and power, which

are often used as indicators of the design quality in practice. However, the gate-

16

level netlist still does not contain any topological information, so the details of

the wires and interconnects are unavailable. The wire delay and capacitance sig-

nificantly affect the frequency and power consumption of the design. Without

these details, the modeling accuracy at gate-level is still limited.

Placement and Routing The placement and routing steps are often referred to

as physical design. For ASIC design, these steps arrange the components of the

gate-level netlist on the chip area and connect them together without violating

the constraints specified by the fabrication technology. As the names suggest,

the placement step places the standard cells and macros onto the chip area, and

the routing step connects the components together using metal wires. For FP-

GAs, the positions of the logic elements are fixed for each device. Therefore,

rather than performing placement and routing on an empty chip area, the placer

for FPGAs allocate the elements in the synthesized netlist onto the predefined

positions, while the routing algorithm for FPGAs configures the programmable

interconnects on the FPGA to connect the logic elements. Since the solution

spaces of the placement and routing problems are large and hard-to-predict,

stochastic algorithms are often used to search for good solutions within a lim-

ited amount of time. In modern EDA toolchains, the placer and router often

work together to generate higher-quality layouts: the placer tries to predict the

final routing quality and generate easy-to-route placements, while the router

may slightly modify the placement to improve the routing quality. Because of

the complexity and randomness of these steps, it is challenging to accurately

estimate all the circuit-level details even from gate-level.

17

2.2 Machine Learning Overview

In the past decade, ML techniques have been applied to a wide variety of fields

including autonomous driving [56], gaming AI [134, 135], image classification

and captioning [62, 172], machine translation [142, 151], protein structure pre-

diction [131], and trading [14, 176]. Most of these successes leverage deep learn-

ing (DL), a branch of ML that uses deep neural networks (DNNs) with a large

amount of parameters to approximate arbitrary target functions. Instead of pre-

senting a rigorous, mathematical introduction to ML, the purpose of this section

is to help the readers build an intuitive understanding of the basic concepts and

important techniques in the field of ML. For a more comprehensive introduc-

tion, interested readers can refer to the abundant online resources [4, 5, 6, 117]

or textbooks [54, 111].

At a high level, ML techniques learn from data and try to model the prob-

ability distribution of data. The process of “learning from data” is referred to

as training, and the process of evaluating the learned model using another por-

tion of available data is called testing or evaluation. During training, a training

dataset is provided to the ML model, and the training algorithm tries to opti-

mize a carefully-designed objective function. Since the model only has access to

a sampled subset of the input space, it will never observe the complete data dis-

tribution, and the distribution in the training set often slightly differs from the

actual data distribution because of the randomness of sampling or the bias in the

data collection process. As a result, the ML model will overfit the training set

if it only focuses on perfectly fitting the training distribution but overlooks the

generalization to the whole input space. This often happens when the model

is too complicated for the task. On the contrary, if the model does not have

18

enough complexity to fit the training distribution to a satisfying degree, we say

the model is underfitting. To balance the complexity and generalizability of

the model, the objective function during training often has the form shown in

Equation 2.1:

J(w;D) = L(w;D) + �R(w) (2.1)

where w refers to the learnable parameters of the model and D refers to the

training set. The first term on the right hand side, L(w;D), is called the loss

term and represents how well the model performs on the training set. The sec-

ond term, �R(w), is a regularization term to constrain the model’s complexity

and avoid overfitting, where � and R(w) are often called the regularization fac-

tor and the regularization function, respectively. Notice that the form in Equa-

tion 2.1 is consistent with constrained optimization problems, and the goal of

ML techniques is just to optimize an objective function. As a result, by a broad

definition, traditional optimization techniques such as combinatorial optimiza-

tion methods can also be considered as a form of ML.

Depending on the specific use case, ML techniques can be roughly cate-

gorized as supervised learning, unsupervised learning, and reinforcement

learning. In supervised learning, the ML models learn from labeled training

data. Specifically, each training data sample is associated with a categorical

label for classification tasks, or a numerical label for regression tasks. As a re-

sult, supervised learning techniques actually model the probability distribution

of labels given the input. In contrast, unsupervised learning techniques learn

from unlabeled data and try to directly model the distribution of the input data.

For reinforcement learning, no training dataset is directly provided to the ma-

19

chine learning model. Instead, the model (also called an “agent” in the rein-

forcement learning setting) is given an environment that can respond to the

decisions made by the model, as well as a user-defined reward function which

evaluates the model’s performance based on the state transition in the environ-

ment. Under this setup, the goal is to train an agent which can make optimal

decisions according to information provided by the environment. During train-

ing, the agent repeatedly makes decisions, and new training data is generated

on-the-fly every time the agent makes a new decision.

The rest of this section will briefly discuss both supervised learning and re-

inforcement learning techniques that are used in the approaches introduced in

this dissertation. Section 2.2.1 outlines linear models and tree-based models.

Section 2.2.2 introduces the fundamentals of deep learning. We also discuss the

basics of reinforcement learning in Section 2.2.3, with a focus on deep reinforce-

ment learning.

2.2.1 Linear and Tree-Based Models

Linear models and tree-based models are widely-used, traditional ML models.

In contrast to deep learning models that can approximate arbitrary target func-

tions, these two types of models only target a specific type of functions. While

this constraint limits the expressiveness of these models, it also allows them to

be extremely efficient when the function to be approximated falls into the cate-

gory that can be accurately modeled by them. Without special mentioning, the

following discussions on linear and tree-based models assume a single-target

regression scenario.

20

Linear Models As one of the simplest ML models, linear models assume the

target function has a linear relationship with the input features. In a single-

target regression setting, a linear model can be represented in the form shown

in Equation 2.2:

f (x) =
MX

i=1

wi xi + b (2.2)

where x is an M-dimensional input feature vector of real numbers fx1; :::;xMg,

w = fw1; :::;wNgrepresents the learnable linear coef�cients, and b is a learnable

bias value. Suppose the training set is represented asD = f(x1; y1); :::;(xN; yN)g,

for regression tasks common objective functions to optimize during training are

shown in Equation 2.3 [65, 147].

J(w;D) =
1
N

NX

i=1

(f (xi) � yi)2 Ordinary Least Squares

1
N

NX

i=1

(f (xi) � yi)2 + � jjw jj1 Lasso Regression (2.3)

1
N

NX

i=1

(f (xi) � yi)2 + � jjw jj2 Ridge Regression

If trained with different loss functions, linear models are also very effec-

tive on classi�cation tasks when samples from different classes are linearly-

separable. For binary classi�cation tasks, linear models can be used to predict

class labels by testing f (xi) > 0 or by estimating the probability of the data sam-

ple belonging to class one with a logistic function (p(yi = 1jxi) = 1
1+e� f (xi)

). The

latter approach is often referred to as logistic regression [66]. Linear support

vector machines (SVMs) improve the robustness of linear classi�ers by enforc-

21

(a) Decision tree. (b) Random forest and boosted trees.

Figure 2.2: Examples of tree-based models for regression tasks.

ing a minimum margin between any training data sample and the learned deci-

sion boundary [41].

Tree-Based Models Tree-based models approximate the target function by re-

peatedly partitioning the input space and learning a separate function in each

partition. As the simplest form of tree-based models, a decision tree recursively

partitions the input space using axis-parallel splits and learns a constant value

in each partition. Figure 2.2a shows a decision tree for regression. The leaf

nodes encode the �nal predicted values, which are constants for decision trees.

Multiple decision trees can be assembled together using bagging or boosting,

resulting in random forests [63] or boosted trees [31] as shown in Figure 2.2b.

When more complicated models are used at the leaf nodes, such trees are re-

ferred to as model trees. For example, if linear regression models are used at

the leaves, the resulting linear model tree will be able to learn piecewise-linear

functions.

During training, a decision tree or model tree is gradually “grown” by re-

peatedly partitioning the training data. At the root node, all the training data

22

is analyzed and a certain gain function is computed to �nd the best split that

maximizes the gain. For classi�cation problems, the difference of gini impurity

or mutual information are common gain functions, while for regression prob-

lems the mean-squared error between the predictions and ground-truth labels

can be used [23]. After the training data is split into two partitions, the same

process is repeated at the children of the root node, where each child node only

considers one partition of the data. This procedure is applied recursively until

the splitting condition is not met. In this case, the node where the partitioning

process terminates is a leaf node, and a function is used to �t all training data

that arrives at this node.

A decision tree or model tree without any regularization is very prone to

over�tting, because it can keep partitioning the input space until there are only

a few samples at each leaf. Such a tree is unlikely to generalize well to unseen

inputs. Common regularization methods for tree models include constraining

the maximum depth, the minimum samples at each leaf, the minimum number

of samples to make a split, and the minimum gain to make a split. Bagging is

also an effective method to avoid over�tting for tree-based models.

2.2.2 Deep Learning

The fundamental building blocks of deep learning (DL) models are linear “lay-

ers” followed by non-linear activation functions. While a single layer has lim-

ited expressiveness, the �exibility of combining multiple layers in various ways

enables DL models to accurately approximate a wide range of target functions.

The non-linear activation functions are crucial for DL models to represent com-

23

(a) MLP. (b) Vanilla RNN.

(c) CNN.

Figure 2.3: Examples of the most basic versions of different DL models — MLP :
Only contains FC layers and activation functions. Vanilla RNN : The output ot

at each time step depends on the input at the current time step xt and the hidden
signal from the previous time step ht� 1. CNN : Performs repeated convolution
and subsampling to the input image, where subsampling can be performed us-
ing either pooling layers or convolution layers with non-unit stride. One or
more FC layers are used at the end of the network to generate outputs for re-
gression or classi�cation.

plicated nonlinear functions. Depending on the speci�c use case, common acti-

vation functions include sigmoid, hyperbolic tangent (tanh), and recti�ed linear

unit (ReLU) [112] and its extensions [38, 61, 102].

Figure 2.3 shows the most basic versions of the DL models used in this

24

dissertation: multi-layer perceptrons (MLPs), convolutional neural networks

(CNNs), and recurrent neural networks (RNNs). As the simplest type of DL

model, MLPs only contain fully-connected (FC) linear layers and activation

functions. RNNs are designed for sequence processing where the output at

the current time step may depend on inputs from previous time steps. As

shown in Figure 2.3b, the outputs from the previous time step are used to com-

pute outputs at the current time step. While this recurrent connection enables

RNNs to leverage information from the past, it also limits the parallelizabil-

ity of the RNN models. Popular RNN models such as long short-term mem-

ories (LSTMs) [64] and gated recurrent units (GRUs) [34] have more sophisti-

cated mechanisms to control the importance of historical information. CNNs

specialize for image processing by replacing the fully-connected layers with

convolution layers, which can be considered as large fully-connected layers

with most elements being zeros. The convolution layers exploit local infor-

mation from image patches, while global information is gradually collected

through subsampling using pooling layers or convolution layers with non-unit

stride. Figure 2.3c shows a basic CNN architecture for regression. Modern CNN

models often feature small convolution �lters [136], residual connections [62],

and batch-normalization [75]. Computationally ef�cient CNN architectures use

group convolution [87, 163] or depthwise-separable convolution [35, 67] to re-

place normal convolution layers, and apply channel shuf�ing [100, 178] to avoid

signi�cant accuracy degradation.

Training State-of-the-art DL models often contain many layers and millions

of parameters in the weight matrices, enabling them to approximate extremely

complicated functions. As a result, a large amount of training data is required

25

to properly optimize all parameters in the model without over�tting. For ex-

ample, the smaller datasets for image classi�cation contain tens of thousands of

images [86, 91], the popular ImageNet dataset has several million images [130],

while industrial datasets may contain tens of millions of training samples. It

is impractical to directly optimize all parameters in the models with so many

training samples using traditional solvers.

DL models are usually trained using stochastic gradient descent (SGD),

where the whole training set is divided into small batches containing only tens

to hundreds of training samples. For each batch, the model being trained �rst

makes its predictions using its current version of parameters, and the loss func-

tion (the L term in Equation 2.1) on this batch is computed. If regularization is

applied and the regularization function can be explicitly expressed as a regu-

larization term (the R term in Equation 2.1), the regularization function is also

computed based on the current version of parameters. The goal of training is

to minimize the objective function (J in Equation 2.1), and the gradient of each

parameter in the model can be computed from the objective function using the

chain rule. For vanilla SGD, the parameters are then updated using the com-

puted gradient values according to Equation 2.4:

wn+1 = wn � � 5 w (2.4)

where wn refers to the parameter values at batch n. The hyper-parameter � is

called the learning rate and is set by the user to control the step size of each up-

date. To guarantee convergence, the learning rate is usually set to a small value

and the model must be trained using a large number of batches. More advanced

variants of SGD introduce additional mechanisms and hyper-parameters to es-

26

cape bad local minima [123, 141] and automatically adjust the learning rate for

individual parameters [46, 83]. Training with SGD allows DL models to effec-

tively exploit a large amount of training samples and be continuously updated

with new data.

Regularization Due to the large capacity, DL models can easily over�t to train-

ing sets. The most basic regularization method for DL models is weight decay,

which uses the L2 norm of all the weights as the regularization term 1. Weight

decay encourages the weights of the model to have small magnitudes so that

a small change in the input would not cause drastic changes in the outputs.

Dropout [137] randomly drops part of the output neurons in a layer with prob-

ability p by setting the output values of these neurons to zeros. Because a dif-

ferent set of neurons are present for each training batch, the neurons learn more

robust representations by themselves instead of trying to correct other neurons'

mistakes. During evaluation, no neuron is dropped and all the weights in the

layer are multiplied by p to maintain the magnitude of the outputs. In prac-

tice, reducing the batch size during training also helps avoid over�tting. With

smaller training batches, the sampling noise in each batch prevents the model

from quickly converging to the optimal solution on the training set and results

in a more generalizable model.

2.2.3 Reinforcement Learning

Different from supervised learning and unsupervised learning where a training

dataset must be provided in advance, reinforcement learning (RL) techniques

1Similar to the regularization term of Ridge regression in Equation 2.3.

27

(a) Agent interacts with environment. (b) Update the policy.

Figure 2.4: Overview of RL model training.

generate data during the training process and use this data to update a model

that is used to make decisions. This model is often referred to as an “agent” in

the RL setting. Figure 2.4 presents a high-level illustration of the RL training

process. The goal of training is for the agent to learn an effective policy � which

can make optimal decisions according to the information from the environment.

The agent is trained by repeatedly making decisions and interacting with the

provided environment. At each time step t, the agent is provided with the state

of the environment, st, and selects an actionat according to its current policy

� t. The agent then interacts with the environment by performing action at and

changes the environment's state from st to st+1. A reward value at the current

time step, r t, is computed based on st, st+1, and at using a human-designed re-

ward function. The internal parameters of the agent can then be updated using

the tuple (st; st+1; at; r t) from the current time step as well as tuples from earlier

time steps. The updated policy, � t+1, will be used in the next time step for select-

ing the most promising action.

Rather than taking a greedy approach and focusing on the immediate re-

ward, the goal of the RL agent is to maximize the long-term cumulative reward.

28

A common way of computing the long-term cumulative reward Rfrom the cur-

rent time step T to the future is shown in Equation 2.5, where a user-speci�ed

parameter
 determines whether to focus on near-term reward or long-term re-

ward.

R =
1X

t=T

 t� Tr t; 0 <
 < 1 (2.5)

Q-Learning One important branch of RL is Q-learning [160], where the agent

directly tries to predict the long-term cumulative reward of each state-action

pair (s; a). The predicted rewards, denoted as Q(s;a), are called Q-values, and

the function that computes the Q-value of a given state-action pair is called the

Q-function. When making a decision at time step t, the learned policy � t simply

chooses the action with the maximum Q-value. During training, the Q-values

are updated following the famous Bellman equation:

Q� t+1(st; at) = r t +
 maxa0(Q� t(st+1; a0)) (2.6)

An intuitive explanation of Equation 2.6 is that the updated Q-value of the cur-

rent state-action pair Q� t+1(st; at) equals to the reward at the current time step

plus the maximum cumulative reward obtainable from the next state times a

discount factor. Proof of convergence is out of the scope of our discussion, but

in practice the Q-values usually converge well because of the exponential decay

of long-term rewards.

29

Deep Q-Learning Traditional Q-learning techniques often use table-based ap-

proaches to store the Q-values. Table-based Q-learning is effective when the

state space and action space are both small. When applied to computer archi-

tecture, the Q-value tables can be easily updated in hardware during execu-

tion [76, 110]. However, table-based Q-learning does not scale well to more

complicated problems where the state space and action space are large. With

the advance of DL, Mnih et al. propose deep Q-learning (DQN), which repre-

sents the Q-function using a DNN [108]. While losing the ability to be ef�ciently

updated in hardware, DQN presents a uni�ed and scalable approach to compli-

cated, large-scale decision-making problems.

During training, the DQN agent is trained with SGD, and the loss function

can be as simple as an L2 loss2. To encourage the agent to explore the environ-

ment, at the beginning of training, the agent has a high probability of choosing

a random action instead of following the prediction of the neural network. This

probability gradually decreases during the training process so that the agent

can learn a stable policy towards the end of training. In addition, since the ear-

lier decisions made by the agent affect the state of the environment, the training

samples would be highly dependent on each other if the neural network is only

trained using the latest state-action pairs. A “replay memory” mechanism is

designed to alleviate the dependency problem and encourage the agent to suf-

�ciently learn from its past experiences. The replay memory caches the state-

action pairs and rewards during training. At each time step, the training data to

the neural network is randomly sampled from the replay memory.

2L = (Q� t (st; at) � rt �
 maxa0(Q� t (st+1; a0))2

30

CHAPTER 3

PRIMAL: POWER INFERENCE USING MACHINE LEARNING

Modern VLSI design requires extensive optimization and exploration in a

large design space to meet the ever stringent requirements with respect to per-

formance, area, and power. Existing electronic design automation (EDA) tools

can provide reasonably accurate area and performance estimates at register-

transfer level (RTL) or even behavioral level with the aid of high-level synthesis

(HLS) tools. However, in order to achieve power closure, designers must obtain

detailed power pro�les for a diverse range of workloads from different applica-

tion use cases or even from different levels of design hierarchy. Currently, the

common practice is to feed the gate-level netlist and simulation results to power

analysis tools such as Synopsys PrimeTime PX (PTPX) to generate cycle-level

power traces. Figure 3.1a depicts a typical ASIC power analysis �ow, which of-

fers accurate estimates but runs at a very low speed. The throughput of power

analysis is in the order of 10-100s of cycles per second, while the gate-level sim-

ulation step for generating simulation traces runs at less than one thousand cy-

cles per second. Given the high complexity of present-day ASIC designs, it

can take hours or days to perform gate-level power analysis for one intellec-

tual property (IP) core under desired workloads. Furthermore, power-directed

optimization is an iterative process, which means designers have to repeat this

time-consuming power estimation process after every optimization step. As a

result, power analysis has become a critical bottleneck which prevents rapid

design-space exploration.

An alternative is to analyze power above the gate level. There exists a

rich body of research on power analysis at RTL or higher abstraction levels

31

(a) Traditional �ow. (b) PRIMAL �ow.

Figure 3.1: Conventional ASIC power estimation �ow vs. PRIMAL — (a) With
existing EDA tools, designers must rely on the time-consuming gate-level sim-
ulation and power analysis for accurate power pro�les. (b) PRIMAL trains
ML-based power models for reusable IPs. Using the trained models, detailed
power traces are obtained by running ML model inference on RTL or timed C
simulation traces.

[9, 12, 21, 29, 92, 126, 132, 140, 169]. These efforts typically make use of measured

constants or simple curve �tting techniques such as linear regression to charac-

terize the power of a given circuit, improving the speed of power analysis at

the expense of estimation accuracy. For accurate power characterization, many

low-level details of the circuit need to be modeled, including standard cell pa-

rameters, sizing of the gates, and clock gating status of the registers. Gate-level

power analysis uses them to estimate the switching capacitance and activity fac-

tor of each circuit node. However, these low-level details are unavailable at (or

above) RTL by design. It is also very dif�cult for simple analytical models or

linear regression models to capture the complex nonlinear relationship between

32

the register toggles and the total switching capacitance.

In this chapter we introduce PRIMAL, a methodology based on machine

learning (ML) for fast and accurate high-level power estimation. PRIMAL lever-

ages gate-level power analysis to train ML models on a set of training work-

loads. These trained models can then be used to infer power pro�les of the

same IP core under a different set of user-speci�ed workloads. Figure 3.1b il-

lustrates the inference �ow of PRIMAL, which only requires inputs from RTL

simulation or C simulation with timing information to generate accurate power

estimates at a much higher speed (> 1k cycles per second). By greatly reducing

the required number of gate-level simulation cycles, PRIMAL allows designers

to perform power-directed design space exploration in a much more productive

manner. The major technical contributions of this work are �ve-fold:

1. We present PRIMAL, a novel ML-based methodology for rapid power es-

timation with RTL or timed C simulation traces. The trained ML models

can provide accurate, cycle-by-cycle power estimation for user workloads

even when they differ signi�cantly from those used for training.

2. We investigate several established ML models for RTL power estima-

tion, and report trade-offs between accuracy, training effort, and infer-

ence speed. Our study suggests that nonlinear models, especially con-

volutional neural networks (CNNs), can effectively learn power-related

design characteristics for large circuits.

3. We propose to use long short-term memory (LSTM) [64] for HLS power

estimation. Because LSTMs are designed for sequence processing, they

are able to tolerate the inaccuracies in the simulation traces generated by

C-based simulators by leveraging history information before the current

33

cycle.

4. For RTL power estimation, we demonstrate that PRIMAL is at least 50x

faster on average than PTPX for cycle-accurate power estimation with a

small error. Notably, our CNN-based approach is 35 � faster than PTPX

with a 5.2% error for estimating the power of a RISC-V core. PRIMAL also

achieves a 15� speedup over a commercial RTL power analysis tool for

average power estimation.

5. For HLS power estimation, our LSTM-based approach offers an additional

3.5� speedup over the CNN-based RTL power estimation approach while

achieving comparable estimation accuracy.

The RTL power estimation part of this chapter was published in

DAC'19 [186]. The remainder of this chapter is organized as follows: Sec-

tion 3.1 presents the overall methodology and intended use cases of PRIMAL.

Section 3.2 introduces our feature construction methods. Experimental results

for RTL and HLS power estimation are reported in Sections 3.3 and 3.4, respec-

tively. Section 3.5 presents related works with additional discussions.

3.1 Methodology

Unlike previous works, PRIMAL uses state-of-the-art ML models for fast and

accurate high-level power estimation. Figure 3.2 shows the two phases of

the PRIMAL work�ow 1. The characterization phase (Figure 3.2a) requires an

RTL/C model of the module, the gate-level netlist, and a set of training work-

loads. RTL register or C variable traces are used as the input features, while

1We assume C-based HLS design �ows for HLS power estimation.

34

(a) Characterization phase. (b) Estimation phase.

Figure 3.2: Two phases of the PRIMAL work�ow — Power models are trained
once per module. Models can then be used across different workloads, as well
as in different designs that instantiate the module.

ground-truth power numbers for the training workloads are obtained from

gate-level power analysis. The characterization process only needs to be per-

formed once per IP block. The trained power models can then be used to esti-

mate power for different user workloads in the estimation phase as illustrated

in Figure 3.2b.

It is important to note that the training workloads may be very different

from the actual user workloads. For example, designers can use functional

veri�cation tests to train the power models, which then generalize to realistic

workloads. By using state-of-the-art ML models, our approach accommodates

diverse workloads and can model large, complex circuit blocks. The ML models

are trained for cycle-by-cycle power estimation, which provides a more detailed

power pro�le than average power and enables more effective design optimiza-

tion.

35

3.1.1 RTL Power Estimation Methodology

For RTL power estimation, the RTL register traces are used as input features

during the characterization phase. More speci�cally, we use register switching

activities in the simulation traces as input features. Compared with using all

signals from the RTL simulation trace, only using register switching activities

signi�cantly reduces input feature size, prevents over�tting, and still captures

the complete current state of the circuit. In addition, the mapping between RTL

signals and gate-level registers can be retrieved from the logic synthesis tool

report. Because we use cycle-accurate power traces from gate-level simulation

as ground truth, the ML models are essentially learning the complex relation-

ship between the switching power of all gate-level cells and register switching

activities.

In this work we explore a set of established ML models for RTL power es-

timation. The classical ridge linear regression model is used as a baseline. We

also experiment with gradient tree boosting, a promising non-linear regression

technique [104]. For linear models and gradient tree boosting models, we ap-

ply principal component analysis (PCA) [80] to the input data to reduce model

complexity and avoid over�tting. We also study the ef�cacy of deep learn-

ing (DL) models, which are capable of approximating more complex nonlinear

functions. Speci�cally, we experiment with multi-layer perceptron (MLP) and

CNN for RTL power estimation. MLP contains only fully-connected network

layers and is more compute-ef�cient than CNN. However, the parameter count

of MLP grows quickly with respect to the feature size of the design, resulting

in over�tting and training convergence issues. CNNs have shown impressive

performance in image classi�cation tasks. Thanks to the structure of convolu-

36

tional layers, the parameter count of CNNs does not increase signi�cantly as

input image size grows. As a result, CNN is a more scalable choice than MLP

for large designs.

3.1.2 HLS Power Estimation Methodology

For HLS power estimation, since we rely on timed software simulation at cycle

level, the RTL register information is no longer available. As a result, we use C

variable traces as the input features to the ML models. We leverage the FLASH

simulator [33] to generate C/C++ source code annotated with timing informa-

tion. Using the timing information from the HLS synthesis report, FLASH accu-

rately estimates the execution time and simulates FIFO communication cycle-

accurately. Because FLASH abstracts the binding and allocation information

of the computational statements, it is several orders of magnitude faster than

the RTL co-simulation provided by current HLS tools. The software simula-

tion trace is obtained by compiling the annotated source code together with the

testbench and running the generated executable.

FLASH abstracts the binding and allocation information away to achieve

speedup over RTL simulation. However, this abstraction also causes FLASH

to simulate the computational statements in a cycle-approximate manner. In

addition, the C variables do not have a one-to-one correspondence with RTL

or gate-level signals, adding to the dif�culty of accurately estimating power

consumption. As a result, the values of the C variables in each cycle is only

an incomplete and shifted approximation of the current state of the circuit, and

may have poor correlation with the power of the circuit.

37

int mac(int A[N], int B[N]) {
int result = 0;
for (int i = 0; i < N; i ++) {

#pragma HLS pipeline II=1
result += (A[i] * B[i]);

}
return result;

}

(a) C++ HLS code.

Cycle A[i] B[i] result i

0 — — — —
1 3 5 15 1
2 0 3 15 2
3 -1 7 8 3
4 -4 -6 32 4
...

(b) FLASH simulation trace.

module mult(clk, ce, a, b, p);
input clk;
input ce;
input[31:0] a;
input[31:0] b;
output[31:0] p;
reg [31:0] a_reg0;
reg [31:0] b_reg0;
reg [31:0] buff0;
wire [31:0] tmp;
assign p = buff0;
assign tmp = a_reg0 * b_reg0;
always @ (posedge clk) begin

if (ce) begin
a_reg0 <= a;
b_reg0 <= b;
buff0 <= tmp;

end
end

endmodule

(c) Verilog code of the multiplier.

Figure 3.3: Pipelined integer MAC unit example — The HLS-generated multi-
plier has a two-cycle latency, so the result column of the FLASH-generated
trace is not perfectly aligned with the output of the multiplier.

We illustrate this phenomenon using a motivational example. Consider the

pipelined integer MAC unit shown in Figure 3.3a. HLS generates an integer

multiplier for this design, which consumes a signi�cant part of the total power.

Figure 3.3c shows the Verilog code of the integer multiplier generated by Vivado

HLS. It is clear that the multiplier has a two-cycle latency, and multiplication is

performed in the middle of the pipeline. Therefore, the power of this multi-

plier not only depends on the inputs in the current cycle, but also depends on

the inputs of the previous cycle. Figure 3.3b shows a FLASH simulation trace

for this example. We can only observe the inputs and outputs of the multiplier

but not the internal register values. Furthermore, notice that in Figure 3.3b the

result variable changes in the same cycle asA[i] and B[i] , without the two-

cycle latency. If we only allow an ML model to take the signals from the current

cycle as input, any model that cannot leverage history information is unable to

make accurate power estimations. The orange dashed curve in Figure 3.4 shows

38

Figure 3.4: Ground truth and predicted power traces for the MAC unit — The
LSTM prediction follows the trend of the ground truth, while XGBoost predicts
average power.

the prediction of XGBoost [31], a tree-based regression model. Since the signals

from the current cycle have poor correlation with the power consumption, the

XGBoost model struggles to follow the ground truth and only predicts the av-

erage power.

To accurately estimate per-cycle power using C variable traces generated

by FLASH, the ML model must be able to rectify the “mistakes” in the traces

and use the C variable values from the history to estimate power of the current

cycle. We propose to use LSTM [64] to achieve this goal. LSTM is a variant

of RNN which has been successfully applied to linguistic tasks such as speech

recognition, machine translation, and image captioning. The design of LSTM

allows it to effectively capture long-term dependencies and relationships within

a sequence, thus enabling LSTMs to make accurate power predictions from the

C variable traces. As shown in Figure 3.4, the LSTM makes better predictions

for the pipelined MAC unit because it can leverage history information. When

updating its hidden state, the LSTM can compensate for the shifting behavior

39

(a) (b)

Figure 3.5: Example circuit and waveform for illustrating feature construction
methods — (a) Sequential logic with �ve registers and three gates; (b) Waveform
of register output values.

in the FLASH traces and infer the internal state of the multiplier.

3.2 Feature Construction

This section describes the feature construction procedure using the circuit in

Figure 3.5a as an example. An example waveform is shown in Figure 3.5b. The

discussion in Sections 3.2.1 and 3.2.2 is under the RTL power estimation context.

Section 3.2.3 describes how we extend the feature construction methods to HLS

power estimation.

3.2.1 Feature Encoding for Cycle-by-Cycle Power Estimation

For cycle-by-cycle power estimation, we use RTL register traces as input fea-

tures without any manual feature selection. Both internal register traces and

I/O signal traces are required to capture all circuit states. A good feature encod-

40

(a) (b)

Figure 3.6: Default 1D and 2D feature encoding for the circuit and waveform
in Figure 3.5 — (a) 1D switching encoding for three clock cycles; (b) Default 2D
encoding for edge 1.

ing of the simulation traces should capture the switching activities and differen-

tiate between switching and non-switching events. A concise encoding, which

we refer to as switching encoding, is to represent each register switching event as

a 1, and non-switching event as a 0. For an RTL module with n registers, each

cycle in the RTL simulation trace is represented as a 1 � n vector. Figure 3.6a

shows the corresponding encoding for the waveform in Figure 3.5b. Each vec-

tor in Figure 3.6a represents one clock rising edge in the waveform. We use this

1D switching encoding for all but the CNN models. The same feature encoding

is used in [169].

In order to leverage well-studied two-dimensional (2D) CNN models, we

create a three-channel 2D image representation for every clock rising edge in

the register trace. For an RTL module with n registers, we use ad
p

ne � d
p

ne � 3

image to encode one clock rising edge in the RTL simulation trace. We use one-

hot encoding in the channel dimension to represent the switching activities of

each register: non-switching is represented as [1;0;0], switching from zero to

41

one is represented as[0;1;0], and switching from one to zero is [0; 0;1]. We refer

to this encoding as default 2D encoding. Figure 3.6b shows how we encodeedge

1 of the waveform shown in Figure 3.5b. Since the total number of pixels in

the image can be greater than n, the pixels shown as d's are paddings which

do not represent any register. In our implementation, the padding pixels have

zero values in all three channels. Every other pixel corresponds to one register

in the module. For this default 2D encoding, the registers are mapped by their

sequence in the training traces. For example, since in Figure 3.5b the order of

registers is A, B, C, D, and E, in each channel the top-left pixel in Figure 3.6b

corresponds to A, the top-right pixel is mapped to C, and the center pixel refers

to E.

3.2.2 Mapping Registers and Signals to Pixels

In the default 2D encoding described above, the mapping between registers and

pixel locations are determined by the way the registers are arranged in the trace

�le. This mapping method does not guarantee any meaningful local structure

in the constructed images: Registers that are mapped to adjacent pixels may not

be correlated or physically connected.

CNNs are most effective when there are spatial relationships in their 2D

inputs. As a result, it is natural to exploit graph topology information in the

gate-level netlist so that the register-to-pixel mapping can re�ect the connectiv-

ity or even physical placement of the registers. Since the gate-level netlist of

the design is available during the characterization phase, we use the outputs

of logic synthesis tools to map RTL signals to netlist nodes and construct the

42

(a) (b) (c)

Figure 3.7: Graph-based register-to-pixel mapping methods — (a) The register
connection graph generated from the circuit in Figure 3.5a; (b) Register map-
ping based on graph partitioning. The register connection graph is recursively
partitioned into two parts. Each partition also divides the map into two non-
overlapping parts; (c) Register mapping based on graph node embedding. The
coordinates of each mapped register are generated by node2vec followed by
dimensionality reduction techniques. In the generated mapping each register
occupies a unit square.

graph. Since we only use register traces as our features, we ignore all combina-

tional components in the gate-level netlist and only extract register connection

graphs when processing the gate-level netlist. The CNN models are expected

to “learn” the information of combinational gates between each pair of regis-

ters. The graph constructed for the example circuit in Figure 3.5a is shown in

Figure 3.7a. Each node in the graph corresponds to one register in the design.

We propose two graph-based methods for generating register-to-pixel map-

pings. The �rst method is based on graph partitioning, in which the graph is

recursively divided into two partitions of similar sizes, and the partitions are

mapped to corresponding regions in the image (see Figure 3.7b). The area al-

located for each partition is computed according to the number of nodes in the

partition. The second method is based on graph node embedding as shown

in Figure 3.7c. We apply node2vec [57], a popular graph node embedding

43

technique, to map nodes in the register connection graph into a vector space.

PCA [80] and t-SNE [103] are used to further reduce the dimensionality of the

vector representation to two. The resulting 2D vector representations are scaled

according to the image size, and indicate the mapping locations of the registers.

These two methods introduce local structures into the images according to

the structural similarities between nodes. We still use the channel-wise one-hot

encoding for every register when we apply the graph-based mapping methods.

However, with the two graph-based methods, the area of each pixel can overlap

with the area occupied by multiple registers. In such cases, for every channel,

each register's contribution to the pixels is proportional to the overlapping area

of the register's occupied space and the pixel.

3.2.3 Feature Construction for HLS Power Estimation

Feature Encoding The same feature encoding methods described in Sec-

tions 3.2.1 and 3.2.2 can be directly applied to HLS power estimation if we de-

compose each signal recorded in the cycle-level simulation trace into single bits.

In our experiments we use switching encoding for the LSTM models. As a re-

sult, given a simulation trace that is T cycles long and all signals sum up to N

bits, the encoded trace is a(T � 1)� N matrix where each row is a 1� N binary vec-

tor. Despite increasing the input dimensionality, this encoding method incurs

minimal information loss compared to more compact encoding methods.

Handling Unobserved Variables in the Simulation Trace Software simula-

tors cannot guarantee to track the value of every variable in every cycle because

44

the variables can only be tracked when their corresponding instructions are exe-

cuted. For instance, the variables inside a not-taken branch will not be observed.

In the absence of a loop, when the program has �nished certain instructions the

outputs of those instructions will no longer be tracked. In this work, whenever

the value of a variable is unobserved from the trace, we assume it maintains the

previously observed value. We believe this is a reasonable assumption, because the

logic corresponding to the unobserved variables is most likely idle in this case.

3.3 Experimental Results for RTL Power Estimation

The proposed RTL power estimation framework is implemented in Python 3.6,

leveraging networkx [58], metis [82], and a node2vec package [57]. MLP and

CNN models are implemented using Keras [3]. Other ML models are realized

in scikit-learn [121] and XGBoost [31]. We conduct our experiments on a server

with an Intel Xeon E5-2630 v4 CPU and a 128GB RAM. We run neural network

training and inference on a NVIDIA 1080Ti GPU. We use Synopsys Design Com-

piler for RTL and logic synthesis, targeting a 16nm FinFET standard cell library.

The RTL register traces and gate-level power traces are obtained from Synopsys

VCS and PTPX, respectively. Gate-level power analysis is performed on another

server with an Intel Xeon CPU and 64GB RAM using a maximum of 30 threads.

3.3.1 Benchmarks

Table 3.1 lists the benchmarks used to evaluate the ef�cacy of PRIMAL for RTL

power estimation. Our benchmarks include a number of �xed- and �oating-

45

Table 3.1: Benchmarks for RTL power estimation — We evaluate PRIMAL with a
diverse set of benchmark designs. For NoC router and RISC-V core, the test sets
are realistic workloads which are potentially different from the corresponding
training set.

Design Description
Register + I/O
signal count

Gate count
PTPX throughput

(cycles/s)
Training set

(# cycles)
Test set

(# cycles)

qadd pipe
32-bit �xed-
point adder

160 838 1250
Random stimulus

(480k)
Random stimulus

(120k)

qmult pipe
f 1, 2, 3g

32-bit �xed-point
multiplier with 1, 2,
or 3 pipeline stages

f 384, 405, 438g f 1721, 1718, 1749g f 144.9, 135.1, 156.3g
Random stimulus

(480k)
Random stimulus

(120k)

�oat adder
32-bit �oating-

point adder
381 1239 714.3

Random stimulus
(480k)

Random stimulus
(120k)

�oat mult
32-bit �oating-
point multiplier

372 2274 454.5
Random stimulus

(480k)
Random stimulus

(120k)

NoCRouter
Network-on-chip router
for a CNN accelerator

5651 15076 44.7
Unit-level

testbenches (910k)
Convolution tests

(244k)

RISC-V Core
RISC-V Rocket

Core (SmallCore)
24531 80206 45

RISC-V ISA tests
(2.2M)

RISC-V benchmarks
(1.7M)

point arithmetic units from OpenCores [118]. We also test our approach against

two complex designs — a NoC router used in a CNN accelerator and a RISC-V

processor core. The NoC router block is written in SystemC and synthesized to

RTL by an HLS tool. The RISC-V core is an RV64IMAC implementation of the

open-source Rocket Chip Generator [15] similar to the SmallCore instance. We

use different portions of random stimulus traces as training and test sets for the

arithmetic units. For the NoC router and the RISC-V core, we select functional

veri�cation testbenches for training and use realistic workloads for testing. For

the NoC router, we test on actual traces of mesh network traf�c from a CNN

accelerator SoC. In the RISC-V experiment,dhrystone , median , multiply ,

qsort , towers , and vvadd form the set of test workloads.

3.3.2 Results

Figure 3.8 summarizes the results for RTL power estimation. Here we use RTL

register traces as the raw input, and apply the feature construction techniques

46

(a) Cycle-by-cycle estimation error.

(b) Average power estimation error.

(c) Speedup vs. Synopsys PTPX.

Figure 3.8: Performance of different machine learning models on test sets —
The ML models used by PRIMAL achieve high accuracy for both cycle-by-cycle
and average power estimation, while offering signi�cant speedup against both
Synopsys PTPX and a commercial RTL power analysis tool (Comm). PRIMAL is
also signi�cantly more accurate than Commin average power estimation.

Table 3.2: Training time of different ML models.
Design PCA Ridge Regression XGBoost MLP CNN

arithmetic units ˜10 min ˜1 min ˜15 min ˜25 min ˜3 h
NoCRouter ˜7 h ˜15 min ˜1 h ˜1.5 h ˜10 h
RISC-V Core ˜20 h ˜30 min ˜1.5 h ˜7 h* ˜20 h*

* A random 50% of training data is used per training epoch.

described in Section 3.2. Two percent of the training data is used as a validation

set for hyper-parameter tuning of the ML models. They are also used for early

stopping when training the deep neural networks. All models except CNNs use

the 1D switching encoding, while CNNs use the 2D image encoding methods in-

troduced in Section 3.2. For ridge regression and gradient tree boosting, we ap-

ply PCA to reduce the size of input features to 256, except for qadd pipe which

has only 160 features with 1D switching encoding. We use three-layer MLP

models for the arithmetic unit and four-layer MLP models for the NoC router

47

