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ABSTRACT

Motivated by hotel housekeeping staffing challenges, we study a model in which

reusable resources require service between intervals of use by successive cus-

tomers. For each day, the firm decides how many servers to work a shift and

when each should begin working. Customers arrive and depart randomly over

the course of the day. The firm’s objective is to minimize the combined staffing

cost and cost of guest waiting.

We use a sample average approximation approach to solve this problem as

an integer linear program and provide structural properties for a simple version

of the problem. We test the resulting policy on a discrete-event simulation using

both stylized and empirical hotel guest arrival and departure data. We show that

the optimization methods based scheduling heuristics can save up to 17% of the

total cost compared to a common industry staffing heuristic. With less or equal

labor force than the common staffing, the schedule heuristics we propose can

lower the guest wait time by up to 80% at a higher guest flow level and 50% at a

lower level of guest flow. The optimization methods covered by this paper can be

applied by hotel, airport, car rental managers to save the labor costs and improve

service readiness.
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CHAPTER 1

INTRODUCTION

The successful operation of a hotel depends largely on the management of

housekeeping processes. Decisions related to the housekeeping workforce can

have a significant impact on the hotel’s profitability and the customer experience.

However, hotels and other service providers face increasing challenges due to ris-

ing labor costs and diminished worker availability. Few models have connected

tactical workforce decisions to customer wait times. Motivated by hotel house-

keeping, we present a model of reusable resources that require attention from a

service workforce and study staffing decisions to improve service readiness.

In particular, hotels face an important trade-off between housekeeping labor

costs and the room readiness wait time that guests experience. Kandampully and

Suhartanto (2003) report that the performance of the housekeeping department,

including the responsiveness of the housekeeping satff and cleanliness of rooms,

is deemed as the most significant factor for brand image and customer satisfac-

tion. The explicit cost associated with the guest waiting mostly appears to be the

compensation to guests who experienced waiting. Anecdotally, one rooms man-

ager of a large center-city hotel reported to us that the hotel’s standard practice

was to offer a $50 in food and beverage credit if a room was not available for a

guest upon arrival after the stated check-in time. They increased compensation of

one-half that day’s room rate for more significant delays or other special circum-

stances with guests. Many of these guests came to the hotel to attend weddings

and related events; a delay in room readiness often meant that the guest had to

change attire in hotel restrooms rather than the guest’s room.

The United States Bureau of Labor Statistics (2020) reports that the hotel in-

dustry in the United States employs about half a million people — almost one

out of every four workers in the industry — who earning a mean hourly wage of

$12.76. The hourly wage in the housekeeping department increased by nearly
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10% from 2016 to 2019, according to United States Bureau of Labor Statistics

(2019), and the turnover rate is at a high level of 79.9% (United States Bureau of

Labor Statistics 2020). In an article about the tight labor market for hotel house-

keepers, the New York Times quotes one general manager, who said, “Everyone I

speak to in the industry is having trouble getting housekeeping staffed. It’s al-

ways been one of the hardest jobs to fill, and harder than ever now (Weed 2019).”

In this paper, we focus on the daily decisions related to housekeeper staffing,

and connect those decisions to customer wait times. Managerial decisions in a ho-

tel’s housekeeping process include: (1) how many housekeepers should the hotel

employ, and (2) what should the daily schedule be? A popular rule deployed by

managers is to hire the number of housekeepers equals to the number of gue-

strooms divide by 13 or 14, which is the number of rooms that a housekeeper can

clean in a shift, and have most of the housekeepers keep regular hours from 8

AM to 5 PM (Branson and Lennox 1988).

Emerging hotel industry trends in guest stay patterns underscore the impor-

tance of understanding housekeeping operations. Major hotel brands, including

Marriott, Hilton, and IHG, have offered various types of flexible check-in and

check-out policies. Some offer this as guaranteed amenity for loyalty program

members, and some sell flexible stay policies as an opportunity to increase rev-

enue. Other hotels, such as luxury resorts where guests are already paying a high

room rate, simply offer early check-in and late check-out based on availability.

An operations executive of one luxury resort that attracts visitors from around

the world reported to us that many guests expect to have a room ready upon

their arrival, regardless of posted check-in times. Hotels connected to casinos

also prioritize flexibility for high-spending guests. Another trend is a 24-hour

check-in/check-out policy, where the guest may check in at any time of day and

occupy the room for the next 24 hours (Yahoo 2015). In today’s culture, the flex-

ibility of arriving and leaving becomes a general amenity in the hotel industry
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to create a unique experience of customized services for guests. The implemen-

tation of this concept is a result of guests’ demands that hotels are realizing that

they have to fulfill to remain in business and stay relevant (Yahoo 2015). Cus-

tomer loyalty, increased profit, and customer satisfaction are major incentives for

hotels implementing this policy (Suri 2015, Trejos 2019).

Programs presented as environmentally friendly actions for guests to take

may increase the variability in the number of rooms to clean each day and the

cleaning time of each room. Many hotels is offering guests incentives to skip their

daily room cleaning, promoting the program as a “green” choice that reduces the

use of cleaning chemicals, energy and water. However, Weed (2019) reported that

housekeeping departments are facing operational challenges in coping these pro-

grams because extra work occurs when skipped room finally needs cleaning, and

the managers are less certain about the number of housekeepers needed.

Despite the appealing competitive advantages provided by flexible arrival

and departure policies and housekeeping labor reduction strategies, the imple-

mentation of these models poses significant operational challenges for hotel op-

erations. We are the first to approach this problem with queuing model and pro-

vide analytical properties. Jones (2014) identifies several key operational deci-

sions that would benefit from deeper analysis: (i) How long late (early) should

the early check-in (late check-out) period be extended? (ii) How many guests

should be allowed to check-in early (check-out late)? (iii) How should house-

keepers be scheduled to adopt the new check-in and check-out patterns?

We study this problem using a model in which the completion of a customer’s

time using a resource is analogous to the breakdown of a server, which then needs

to be repaired before use by another customer. Both the customer departure times

and the repair process affect the customer queue. We present a discrete-time

stochastic model of this system that does not require assumptions on the arrival

or departure distributions. We use sample-path methods to develop important
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system properties.

We are the first to formalize stochastic and integer programming models of

housekeeping operations, and we contribute analytical properties, heuristics, and

numerical insights for staffing decisions. Specifically, we demonstrate the ex-

pected profit is concave in the number of housekeepers starting at one time — a

helpful property for guiding the search for an optimal solution using simulation.

The following managerial insights also emerge from numerical analysis in which

we compare our heuristics to a common scheduling strategy at an upscale airport

hotel:

1. Our proposed scheduling heuristic can reduce labor costs by 15% while

maintaining the same level of customer waiting. Our results indicate that

the hotel should reduce the total number of workers while shifting some

workers who start in the morning to start in the afternoon.

2. Alternately, without increasing the number of housekeepers to schedule,

our scheduling heuristic can eliminate 90% of total guest waiting time by

starting worker later in the morning.

3. We identify alternate optimal solutions that allow managers to select a

schedule that best matches the needs and preferences of the workforce,

which can mitigate the labor shortage that the hotel faces.
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CHAPTER 2

LITERATURE REVIEW

The housekeeper staffing problem that we define most closely resembles work

in the operations management literature on the combined problems of determin-

ing staffing requirements and tour scheduling for personnel. Call center staffing

motivates much of the research with this focus and has been well-studied, start-

ing with A. C. Erlang (Brockmeyer 1948). Buffa et al. (1976) propose the following

commonly-used step-wise approach to call center scheduling:

1. Forecast demand rates by period.

2. Develop a period-by-period cost function based on these forecasts, usually

relying on stationary analysis of a queuing system.

3. Determine the set of feasible shifts.

4. Select a shift that minimizes the total cost in terms of customer wait times

and staffing costs.

(Green et al. 2001) later named this approach as “stationary independent period-

by-period” (SIPP) and demonstrated its usefulness for making staffing recom-

mendations. However, the ability to keep an inventory of cleaned rooms makes

our problem fundamentally different from call center staffing; e.g., the optimal

strategy to reduce wait times of guests arriving during the evening “rush hour”

may be to start housekeepers’ shifts earlier in the morning. Furthermore, the

fluctuations in departure and arrival rates throughout the day make it difficult

to develop a stationary distribution of the hotel housekeeping process, especially

if one tries for a sufficiently high number of servers to achieve stability in each

period. Additionally, the need to serve both changeover and stayover rooms in-

troduces dynamic decision-making into the problem as hotel managers decide

which class of rooms for housekeepers to clean over the course of their shifts.
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The operational dynamics of the housekeeping problem bear some similarity

to models of machine breakdown and repair, which date to White and Christie

(1958). Hotel rooms correspond to machines that break down (i.e., when a guest

departs), and housekeepers are like repairmen who render the room suitable for

occupation. Neuts and Lucantoni (1979) studied the relationship between the size

of the repair crew and the queue length under Markovian assumptions. Tang

(1997) explored the machine breakdown and repair model with a single server

but relaxed assumptions on the service time distribution. By introducing the no-

tion of a negative queue length, Moinzadeh and Aggarwal (1997) developed a

production-inventory system with machine breakdowns and deterministic repair

time to study the throughput of the model. Based on this work, Sabri-Laghaie

et al. (2012) presented search algorithms to find the optimal number of repair

crews. Delasay et al. (2012) offered strategies to maximize the throughput with

stochastic breakdown and repair times. However, the highly non-stationary ar-

rival and departure processes, as well as the finite horizon, of our problem limit

the applicability of these approaches.

Another application similar to hotel housekeeping is the admissions and dis-

charge process for hospitals. Shi et al. (2015) demonstrated the impact of dis-

charge times on inpatient (check-in) delay due to bed availability. Based on this

study Zychlinski et al. (2019) applied a fluid model in modelling the total cost of

inpatient flow congestion problem in a hospital setting. Gaughan et al. (2015) ex-

amined the association between the number of nurses and the bed blocking time

using regression models. Kim and Giachetti (2006) proposed overbooking strate-

gies to decrease wait times. A key difference in this setting is that health care facil-

ities have a high level of control over inpatient and discharge processes, while the

hospitality industry is subject to more uncertainty in guest behavior(Zygourakis

et al. 2014). Furthermore, while these papers model bed availability, they do not

explicitly model cleaning crews or decisions related to their operation.
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Methodologically, we use a sample path approach to analyze hotel house-

keeper staffing due to the problem’s operational complexity. Sample-path analy-

sis has played an increasingly important role in certain applied probability prob-

lems. In particular, researchers have found advantages to analyzing queueing

models based on realized sample paths (El-Taha and Stidham Jr 2012). Stidham

(1982) argued that sample-path method can provide "distribution-free" analysis

between variables and performance measures in the finite horizon setting. Mar-

golius (1999) used sample path method to solve steady states of time dependent

arrival queues. Sigman and Yamazaki (1992) analyzed properties of overloaded.

Sample-path analysis has often been applied to generalize the arrival and ser-

vice assumptions of the queuing models. In the operations literature, Kapuś-

ciński and Tayur (1998) found the optimal inventory policy of the single prod-

uct, single-stage capacitated production-inventory model using a sample-path

approach. Slaugh et al. (2016) used sample path approach to prove the concavity

of the expected profit function and identified the optimal recirculation rule under

different models in a rental managing settings. Freund (2018) analyzed the prob-

lem of allocating bicycles among stations in a bike-sharing system using sample

path framework.

We are the first to explicitly model housekeeping operations and provide an-

alytical results, although some related operational decisions in the hotel context

have received attention. Bitran and Gilbert (1996) modeled reservation accep-

tance decisions and presented heuristics to decide how many rooms to allocate to

“walk-in” customers. Soltani and Wilkinson (2010) has studied how hotels could

use flexible housekeepers to enhance its performance on housekeeping efficiency.

Motivated by front-desk operations, Thompson and Goodale (2006) presented a

tour scheduling approach for a service workforce with heterogeneous produc-

tivity rates among workers. Sari (2017) measured housekeeper performance by a

fuzzy score-based model. Kadry et al. (2017) simulated the housekeeping process

for a hotel using discrete-event simulation software to reduce customer waiting
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and staffing costs but did not describe or analyze a formal model. Wood et al.

(2005) described metrics for the performance of the hotel housekeeping opera-

tions through audit questionnaires.
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CHAPTER 3

MODELS AND ANALYTICAL RESULTS

3.1 Models

We represent the hotel housekeeping process using a discrete-time model with

equal-length periods over a finite time horizon to keep track of the transition

of the room states. Each room is in one of the four states: occupied, vacant dirty,

cleaning in process, or vacant clean. Before the guest checks out of the hotel room,

the state of the room is occupied. The event of a guest checking out changes the

state of the room from occupied to vacant dirty, which means the room is avail-

able for housekeepers to clean. Once an available housekeeper starts to clean the

vacant dirty room, the room is updated to cleaning in process. Simultaneously, the

housekeeper who started to clean the room is no longer available until after some

time interval when cleaning is finished. After the housekeeper finishes cleaning,

the room will turn to state vacant clean and the housekeeper is available again.

Finally, upon guest arrival the hotel will assign a vacant clean room to guests

if available. Otherwise, the guest will wait in a queue. Hotels generally use a

first-come first-served discipline for assigning rooms to waiting guests. For sim-

plicity, we consider all the rooms to be interchangeable, and all guest arrivals can

be assigned to any rooms.
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3.2 Deterministic Service Time Model with Single Start Time

We first introduce a model that assumes a deterministic cleaning time and house-

keepers whose shifts extend for the entire time horizon. After defining our vari-

ables and state equations, we prove a relationship between wait time and the

staffing level. The following table lists all variables used in this initial model.

Table 3.1: Notation

Notation Description

Dn Number of departures at nth period

An Number of arrivals at nth period

y Number of housekeepers

h Units of time needed to clean a room

Vc
n(y) Number of vacant clean rooms at the beginning of nth period with y housekeepers

VD
n (y) Number of vacant dirty rooms at the beginning of nth period with y housekeepers

Rn(y) Number of available housekeepers at the beginning of nth period with y housekeepers

Wn(y) Number of guests waiting at the beginning of nth period with y housekeepers

State Equations. The state equations specify the state transition from one

period to the next. In the state equations, y is the decision variable representing

the staffing level over the entire horizon. In each period n = 1, 2, . . ., the number of

departures and arrivals are defined as Dn and An, respectively. Each housekeeper

requires h periods to clean one room. We focus on Wn, the queue length at the end

of each period, as our primary performance measure.

At the beginning of each period, we first update the number of available

housekeepers. Within any h periods, the cleaning process can start for no more

than y rooms, and any job started in previous y−1 periods will not be finished dur-

ing the current period. Therefore, the number of available servers equals to the

difference between the total number of servers and the number of busy servers.

We represent the number of vacant dirty rooms in each period n for a system with

y housekeepers as VD
n (y) — which we may write as VD

n for convenience — and use
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Rn(y) to represent the number of housekeepers available. Our equation for Rn(y)

captures the number of rooms for which cleaning could begin.

Available housekeepers at the start of period n:

Rn(y) = y −
n−1∑

i=n−h+1

min{VD
i ,Ri} (3.1)

Number of vacant dirty rooms at start of period n:

VD
n (y) = Dn + [VD

n−1 − Rn−1]+ (3.2)

The number of vacant clean rooms in period n, denoted by VC
n (y), represents

the number of available rooms to assign guests. Similar to VD
n (y), the number of

vacant clean rooms consists of two parts. The first part is the number of rooms

for which cleaning began h periods ago completes at the beginning of period n.

The second part is the number of clean rooms left from previous period.

Number of vacant clean rooms at the start of period n:

VC
n (y) = min[VD

n−h,Rn−h] + [VC
n−1 − An−1 −Wn−2]+ (3.3)

The queue length represents the number of arrived guests who are waiting

for a room at the end of period n, which we can also represent as the difference

between the number of vacant clean rooms and the demand for the vacant clean

rooms in period n. The demand includes the newly arrived guests and the wait-

ing guests from the previous period.

Queue length at the start of period n:

Wn(y) = [Wn−1 + An − VC
n ]+ (3.4)

The system begins with no vacant dirty or vacant clean rooms; i.e., VD
0 (y) =

VC
n (y) = 0. The number of rooms that can be started equals the minimum of the
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number of guest departures and the number of housekeepers that are available to

work. Also, all guests that arrived during this period will need to join the queue

as no vacant clean rooms are available.

3.3 Queue Length Convexity With Regards to Number of

Servers

In this section, we use induction to show the convexity of the queue length Wn(y)

in each period n as a function of number of housekeepers. In the proof pro-

cess, the base case assumption will be that the queue length is convex for period

1, 2, . . . , n − 1, and the object is to prove period n is convex.

Base Case Proof. For i ∈ [1, h] , the average queue length is independent of

the number of housekeepers. To be more specific:

Wi(y) = Wi(y + 1) = Wi(y + 2) =

i∑
j=1

A j i ∈ [1, h], y ≥ 0 (3.5)

We know that none of the arriving guests can be checked-in, hence Wh =
∑h

j=1 A j.

Based on this fact, we can insert Wh into formula of Wh+1 to get a cleaner form of

the queue length. For period h + 1, solving the queue length with y housekeepers:

Wh+1(y) = [Wh(y) + Ah+1 − VC
h+1]+

= [
h+1∑
i=1

Ai − min(VD
1 ,R1)]+

= [
h+1∑
i=1

Ai − min(D1, y)]+

(3.6)

solving the queue length of y + 1 housekeepers with indicator function:

Wh+1(y + 1) = [
h+1∑
i=1

Ai − min(D1, y) + I1]+, (3.7)
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solving the queue length of y + 2 housekeepers with indicator function:

Wh+1(y + 2) = [
h+1∑
i=1

Ai − min(D1, y) + I1 + I2]+ (3.8)

I1 =


1, if D1 ≥ y + 1.

0, otherwise.
I2 =


1, if D1 ≥ y + 2.

0, otherwise.
(3.9)

Given the fact that I2 = 1 ⇐⇒ I1 = 1, the queue length is point-wise convex

at h1 as equation below holds:

Wh+1(y) −Wh+1(y + 1) ≥ Wh+1(y + 1) −Wh+1(y + 2) (3.10)

Until this point, we have proved the convexity for period 1 . . . h + 1.

Induction Steps. Given that the clean process takes h period for all periods,

we can know that the queue length is equivalent to the difference of arrivals

and number of rooms that has finished being cleaned, which equals to the work

started before n − h periods. Formally, we claim that:

Claim 1.

Wn = [
n∑

i=1

Ai −

n−h∑
j=1

min(VD
j ,R j)]+ (3.11)

Based on the same logic, we could also rewrite the number of vacant dirty

rooms since the number of vacant dirty rooms at period n equals to the all depar-

tures up to period n subtract with all work has been started before.

Claim 2.

VD
n =

n∑
i=1

Di −

n−1∑
j=1

min(VD
j ,R j) (3.12)

Given the base case assumption that Wn−1 is concave and the claim 1, we

claim that the
∑n−h−1

j=1 min(VD
j ,R j), the number of rooms started, is concave since

the
∑n

i=1 Ai is irrelevant of y and Wn−1 is convex. Axiomatically, for all period ear-

lier than period h − 1, concavity holds for the total number of rooms started.
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Claim 3.
∑k

j=1 min(VD
j ,R j) is concave ∀k ≤ n − 1.

Based on the information provided by the base case assumption, we can write

out the queue length at periodn as follow:

1. Rewrite Wn−1 then plug in Wn based on claim 1,

Wn = [Wn−1 + An − VC
n ]+

= [[
n∑

i=1

Ai −

n−h−1∑
j=1

min(VD
j ,R j)]+ + An − VC

n ]+

2. Expand the term VC
n based on claim 2,

= [[
n−1∑
i=1

Ai −

n−h−1∑
j=1

min(VD
j ,R j)]+ + An −min(VD

n−h,Rn−h) − [
n−h−1∑

j=1

min(VD
j ,R j) −

n−1∑
i=1

Ai]+]+

3. Combine the first term with the last term,

[
n∑

i=1

Ai −

n−h−1∑
j=1

min(VD
j ,R j) −min(VD

n−h,Rn−h)]+

4. Expand the term VD
n−h and Rn−h based on equation (3.1)

{

n∑
i=1

Ai −

n−h−1∑
j=1

min(VD
j ,R j) −min[

n−h∑
i=1

Di −

n−h−1∑
i=1

min(VD
i ,Ri), y −

n−h−1∑
n−2h

min(VD
i ,Ri)]}+

5. Break the term
∑n−h−1

j=1 min(VD
j ,R j) into

∑n−h−1
j=n−2h min(VD

j ,R j) +
∑n−2h−1

i=1 min(VD
i ,Ri),

then move those two part inside the minimum function to cancel out the term∑n−h−1
j=1 min(VD

j ,R j),

{

n∑
i=1

Ai −min[
n−h∑
i=1

Di, y +

n−2h−1∑
i=1

min(VD
i ,Ri)]}+

Given the claim 3,
∑n−2h−1

i=1 min(VD
i ,Ri) is concave with respect to y, we know

that y +
∑n−2h−1

i=1 min(VD
i ,Ri) is a concave function with respect to y. Di is invariant

of y, hence min([
∑n−h

i=1 Di, y +
∑n−2h−1

i=1 min(VD
i ,Ri)]) is a concave function of y.

∑n
i=1 Ai

is a constant, therefore the Wn is a convex function with respect to the y provided

that the base assumption is true.

Given that the the base case is true, and if the W1...n−1 is convex, Wn is convex,

the convexity is proved for all periods by induction.
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Average Waiting Time Convexity With Regards to Number of Servers

Given that the queue length is a convex function with respect to the number of

housekeepers. We argue that the average time that the guests spending in the

queue is convex. According to the model, the total wait time experienced by

all guests (T ) equals the sum of queue length at each period times the period

length(τ). Formally, we make the claim that:

Claim 4.

T =

n∑
i=1

Wi(y) · τ (3.13)

Given that τ is a irrelevant of y, and Wi(y) is a convex function, T must be a

convex function with regards to the number of housekeepers τ

3.4 Restricted Stochastic Service Time Model

In this section, we relax the assumption of deterministic service times to accom-

modate stochastic service times. This model captures randomness in the time

required to clean a room. However, we also must consider the room selection

decision for choosing among the vacant dirty rooms each period — e.g., whether

random, shortest job first, or longest job first. We formulate the stochastic service

time model with the shortest job first ordering, which minimizes waiting time

among room selection policies. Adding the cleaning time for each room requires

adding a dimension to our state variables for each sample path, and we use the

following notation:
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Table 3.2: Notation for the Stochastic Service Time Model

Notation Description

Di,k Number of departures in period i that needs k units of time to clean

Ai Number of arrivals in the ith period

y Number of housekeepers

xi,k Number of rooms for which cleaning lasting k periods begins in period i

Ri Number of available housekeepers at the beginning of the period i

qi Queue length in period i

Di,k, Ai are non-negative parameters, and y is our only decision variable, given

that we are assuming the job at the same time will start follow some principle.

Number of jobs to start each period. Since we have specified the shortest job

first ordering, the number of rooms that can be cleaned at each time will depend

on both jobs that arrived in previous periods and jobs that arrived at the same

period but need a short time to finish.

xi,k = min{[Ri −

k−1∑
l=1

xi,l]+, [
i∑

j=0

D j,k −

i−1∑
m=0

xm,k]+} (3.14)

Number of available housekeepers. The number of available housekeepers

at the beginning of the period is the difference in the number of total housekeep-

ers and the number of housekeepers that are busy, which equals the number of

rooms that have been started but not finished.

Ri = y −
i∑

j=0

∞∑
l=i− j+1

x j,l (3.15)

Queue length. The number of people in the queue at the end of period i equals

the difference in the cumulative number of arrivals and the number of rooms that

have been cleaned.

qi = {

i∑
j=0

[A j −

i− j∑
l=0

x j,l]}+ (3.16)

16



CHAPTER 4

OPTIMIZATION METHODS: SAMPLE AVERAGE APPROXIMATION AND

INTEGER LINEAR PROGRAMMING

In this chapter, we will introduce two optimization methods for solving prob-

lems related to those presented in the previous chapter. We extend these mod-

els to incorporate two key features. First, the decision variable is now a tour-

planning problem for determining how many housekeepers start in each period.

Second, the hotel must also clean a certain number of its room for guests who are

stayovers, that is, neither arriving or departing on the day in question. As each

housekeeper becomes available to clean a room, the hotel must choose whether

to assign the housekeeper to a changeover room or a stayover room.

4.1 Deterministic Service Time Model

We begin with a basic model where the cleaning time for each room is determin-

istic. We first introduce data and parameters needed in the model, then introduce

the objective function and constraints. Finally, we describe a simulation model

for the process.

4.1.1 An Integer Programming Approach

Data and Parameters. We consider a hotel with k rooms that have equal numbers

of guests checking in/out in a same day. Also, other than cleaning the changeover

rooms, the housekeeper has to service all the stayover guest rooms by a certain

deadline. According to the setting above, the following data and parameters con-

stitute a sample-path:

Ω: the total number of scenarios
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Dω
i : number of guests checked out at time i in scenarios ω

Aω
i : number of guests checked in at time i in scenarios ω

CostL: Labor cost per housekeeper per shift

CostW : Penalty cost per unit of time per guest waiting in queue

H: Expected units of time needed per cleaning

Z: Number of stayovers needed to be cleaned

Td: Number of time units of a day

Tz: Deadline for stayovers to be cleaned

Ts: Number of time units per working shift

The arrival and departure data can be collected by point-of-sales software.

The majority of hotels keep an record on when does the guests arrive at the ho-

tel. The departure time, however, can be tricky to collect accurately as guests

can check out without notifying the front desk. However, in this paper, we ar-

gue that it would not affect the accuracy of our model since it does not affect the

changeover process. In addition to the changeover, it is necessary that we control

stayover cleaning process in our model.

Decision Variable.We introduce the following decision variable:

yi = number of housekeepers that should be started at time period i.

xωi = number of room changeovers to start at period i,in scenarios ω.

zωi = number of stayovers that should be be started at period i, in scenarios ω

Other than the major decision variables — when and how many housekeeper

to start — the integer linear program also has two other sets of decision variables:

the number of changeovers and stayovers to start in each period. This decision

has to be re-considered at each time period as the dynamics of this decision alters

according to the time. For example, the changeover is prioritized at the beginning
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of the day, however, the priority of the stayover cleanings will rise as closer to the

deadline. Partitioning of the decision variables in such a way allows for more

dynamic and flexible modeling.

States. To consistently update the variables for all time periods, we keep

track of the following states:

Qω
i = number of people in the queue at time period i,in scenarios ω.

Rω
i = number of housekeepers available at time period i, in scenarios ω.

VC,ω
i = number of vacant clean rooms at time period i, in scenarios ω.

VD,ω
i = number of vacant dirty rooms at time period i, in scenarios ω.

The Integer Program Formulation. We formulate and solve an integer pro-

gram that maximizes the objective over the average of r sample paths, and deter-

mine from the optimal solution how housekeepers should be scheduled to begin

their shift in each period. The proposed model is as follows:

Objective Function:

min

 Td∑
i=1

Ω∑
ω=1

CostW Qω
i

Ω
+ CostLyi

 (4.1)

The objective function is to minimize the total cost of the housekeeping sched-

ule, which involves two parts: a penalty cost for having guests waiting in the

queue, and a labor cost for each shift scheduled.

Constraints: The number of the rooms that can be started at time period i is

subject to two constraints: a labor constraint and an availability constraint for the

number of dirty vacant rooms that can be cleaned.

(1) Labor Constraint:

∀i ∈ 1..Td,∀ω ∈ 1..Ω :

xi,r + zi,r ≤ Ri,r (4.2)
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Rω
i =

i∑
i−ts

yωi −
i−1∑

[l=i−H]+

xωi −
i−1∑

[l=i−H]+

zωi (4.3)

(2) Room Constraints

∀i ∈ 1..td, ∀ω ∈ 1..Ω :

xωi ≤
i∑

j=0

Dω
i −

i−1∑
j=0

xωi (4.4)

The labor constraints ensure that the number of rooms to start in each period

does not exceed the available labor capacity. The room constraints ensure that

the number of rooms to start at each period does not exceed number of dirty

vacant rooms at each period.

(3) Stayover Constraints

∀r ∈ 1..Rep :

Tz−H∑
i=0

zωi = Z (4.5)

The stayover constraints guarantee that all stayover rooms are cleaned before the

deadline.

(4) Queue Length

∀i ∈ 1..td, ∀ω ∈ 1..Ω :

qωi =

i∑
j=0

Aω
j −

i−h∑
k=0

xωk (4.6)

The optimal solution, y, is a vector that keeps track of the number of housekeepers

we should start at different time periods. By limiting the size of this vector, we

could also change number of shifts allowed in total.

In this basic model for hotel housekeeping staffing, we also need to decide the

length of each time period. With a shorter length of the time period, the model

gain the advantage of being more flexible and dynamic. However, the trade-off

of choosing a shorter time horizon is that the solving time for the IP is longer as

more decision basis will be added to the IP.
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Initial States. Since the variables updated by the state equations are directly

dependent on that of previous period, values for the initial states need to be spec-

ified in order to get a consistent model.

Rω
1 = yω1 (4.7)

Wω
1 = Aω

1 (4.8)

The Simulation

The integer program described can be solved whenever the hotel needs a staffing

plan based on a forecast of the guest arrival and departure pattern. In the imple-

mentation, we could first fit the time distribution of the arrivals and departures,

then generate a large number of sample paths to ensure that the optimal solution

accommodates the randomness of the arrival/departure dynamics. If simulat-

ing for the stochastic service time model, a service time should be generated and

assigned to each departures.

In each time period, there are six events drive the model. To update the states

consistently, we specify the sequence of events to clarify state transitions in Table

(4.1.1).

Table 4.1: Sequence of Events

Sequence Events

1 Cleaning finished, update available housekeepers Rω
i

2 Add rooms just finished cleaning to the inventory

3 Guests depart, update number of vacant dirty rooms

4 Assign housekeeper to vacant dirty rooms, get xωi

5 Guest arrive, get Aω
i

6 Assign cleaned rooms to guests, update queue length Qω
i
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4.2 Stochastic Service Time Integer Programming Model

One of the disadvantage of the basic model is its sole use of the expected service

time as an indication of the service time for each room. The stochastic version of

the IP introduces various service time associated with each guest departure and

stayover cleaning. By adding another dimension to the variables, the IP attempts

to more accurately capture the future demand characteristics.

The stochastic service time model works with Γ service times. For each depar-

ture or stayover cleaning, there is a stochastic service time γ ∈ 1..Γ associated with

it. γ is an integer indicating the number of periods needed to finish this job. With

new dimension of the service time, we modify some of the variables as follow:

Modified Data. Dω
i,γ : Number of departures at time period i that requires γ units

of time to clean in scenario ω.

Modified Decision Variables xωi,γ : Number of changeovers to start at time period

i that requires γ units of time to clean in scenario ω.

zωi,γ : Number of stayovers to start at time period i that requires γ units of time to

clean in scenario ω.

Objective function.The objective function remains the same with the objective

function in the basic model.

Constraints.

(1) Labor constraint ∀ω ∈ 1..Ω,∀i ∈ 1..Td :

xωi,γ ≤ Rω
i −

γ−1∑
l=1

xi,l (4.9)

Rω
i =

i∑
i−Ts

yωi −
i∑

j=0

Γ∑
γ=i− j

x j,γ −

i∑
j=0

Γ∑
γ=i− j

z j,γ (4.10)

(2) Room Constraint ∀ω ∈ 1..Ω,∀i ∈ 1..Td :

xωi,γ ≤
i∑

j=0

Dω
j,k −

i−1∑
m=0

xωm,γ (4.11)
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(3) Stayover Constraint ∀ω ∈ 1..Ω :

Zω =

Tz∑
i=0

Tz−i∑
γ=0

zωi,γ (4.12)

(4) Queue length ∀ω ∈ 1..Ω,∀i ∈ 1..Td :

Qω
i ≥

i∑
j=0

A j −

i− j∑
γ=0

x j,γ

 (4.13)

Qi ≥ 0 (4.14)

The initial states of the stochastic service model is same as the basic model.

4.2.1 The Simulation for the Stochastic Model

The simulation using the stochastic service cleaning time is similar to that of the

basic model. The sequence of the events driving the model is identical to that

of the basic model. The important difference is that we generate a stochastic

service time for each room upon a guest departure. However, in order to be able

to express the process consistently, the cleaning order has to be specified. For

simplicity, in the simulation, we choose the shortest job first ordering to start to

clean the vacant dirty room at the beginning of each period.
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CHAPTER 5

NUMERICAL EXAMPLES AND COMPUTATIONAL RESULTS

In this section, we describe a numerical example based on stylized data to

illustrate analytical results descried in §3.1 and the performance of the optimiza-

tion method described in §3.2. Then, using empirical data from an upper-scale

airport hotel, we simulate the performance of both models on multiple metrics.

We use a discrete event simulation to evaluate the performance of staffing plans.

In both examples, we assume that there is are vacant clean/dirty room left from

the previous day.

5.1 Simulated Data Example

In this section we demonstrate a hotel scenario using stylized data to illustrate the

models. We specify the data for arrival, departure, service time, cost parameters

and guest flow by using known distributions.

Arrival Data. The timestamps for guest arrival follow a normal distribution

with mean of µA = 5 P.M. and a standard deviation of σA = 4 hours. Additionally,

any arrival times outside of the range of 4:01 AM and 11:59 PM are re-sampled.

Departure Data. The timestamps for guest departures follow a normal dis-

tribution with mean of µD = 10 P.M. and a standard deviation of σD = 3 hours.

Additionally, the departure times are within the range of 12:01 AM and 7:59 PM.

Service Data. The timestamps for guest departures follow a normal distribu-

tion with mean of µS = 30 minutes and a standard deviation of σS = 5 minutes.

Cost Parameters. Labor cost per housekeeper per shift is $250, and the penalty

cost for having a guest waiting is $1 per minute.

Guest Flow. To comprehensively present the performance of the algorithm,
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we displayed the stylized example in two different guest flow levels: a busy ex-

ample with 400 check-ins and check-outs and a light day with 200 guests check-

ing in and checking out. For each example, we assume there are no dirty va-

cant/clean rooms left from the previous day and that 300 stayover cleanings must

to be performed by 5 P.M..

Based on the specified data and parameters, we generate 100 sample paths

and input them into both models to output the calculated optimal solution of the

housekeeping schedules. Then, we test the schedules to another 500 independent

iterations of the discrete event simulation to measure the performance of the dif-

ferent schedules. Solving the optimal schedule over multiple iterations of sample

path will yield a schedule that better address the randomness in the guest arrivals

and departures processes.

5.1.1 Wait Times and Staffing Levels

Table 4 exhibits the simulation results of wait time and queue length differences

with regard to the number of housekeepers. We assumed that all of the house-

keepers start their work at the beginning of the day and maintain a full day shift.

In the result, both wait time and queue length are convex decreasing function

with regard to the number of housekeepers. Average waiting time decreases at

a faster rate than queue length when extra housekeeper are added to the sys-

tem. In this example, at around 18 housekeepers, the wait time reaches the lower

bound. Another interpretation is that with 18 housekeepers, the congestion is

mostly caused by the late check-out of the previous guests of the room.
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Table 5.1: Queue Length with regards to Number of Housekeepers

Number of Housekeepers(y) 11 12 13 14 15 16 17 18 19 20

Average Wait Time 137.2 92.8 58.1 34.0 17.8 8.0 3.3 2.3 2.3 2.3

Average Queue Length 51.7 42.2 32.8 23.7 15.5 9.3 5.0 2.4 1.0 0.7
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5.1.2 Computational Results for the Stylized Example

Table 5 shows the performance of schedules calculated by different models un-

der different levels of guest flows on both the training data and test data. The

performance metrics include the average total cost, average labor cost, average

waiting time, and average queue length. To better illustrate the performance of

both models, we add a control schedule that is commonly used by the hotels

without schedule optimization. The control scheduling heuristic comes from in-

terviews conducted among the hotel managers. The performance given by the

discrete event simulation based on same 500 sample paths. From top to bottom,

Table 5 exhibits the performance for the controlling schedule (CS), the schedule

calculated by the deterministic service time model (DTST) and the schedule cal-

culated by the stochastic service time model (SCST).

For either guest flow level, we observe that increasing the sophistication of

the model provide monotonically lower total costs. At a higher guest flow, DTST
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schedule provides a 15% cost cut, and STCS provides a 17% cost cut. In the lower

guest flow settings, DTST provides a 14.5%cost reduction, and STSC provides a

14% reduction.In the larger guest flow scenario, the DTST model schedule least

housekeepers but maintained a similar or better performance than the control-

ling schedule. Although the schedule calculated by the SCST have a higher labor

cost, the performance of the SCST schedule is significantly increased compared

to DTSC model. In a lower guest flow scenario, both SCST schedule and DTSC

schedule have roughly the same performance. We also observe that the marginal

cost saving is decreasing along with the decreasing guest flow. It is also worth-

while noticing that the increasing sophistication of the model results in a decrease

in the standard deviation of the total cost.
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Table 5.2: Computational Results for Stylized Model with Test Data

Models Measure Metrics

(Guest Flow = 400, Train Data) Total Cost ($) Labor Cost ($) Wait Time (min/guest) Queue Length

CS–(31 housekeepers start at 9:25 AM, 2 start at 12:10 PM, 4 start at 3:50 PM)

Mean

95% CI

Standard Deviation

12784 10000 4.46 3.13

(10127, 13894) N/A (2.1, 7.6) (1.1,4.2)

556 N/A 1.3 0.70

DTST–(31 housekeepers start at 9:25 AM, 6 housekeepers start at 3:10 PM)

Mean

95% CI

Standard Deviation

11799 9250 3.72 2.88

(10303, 13773) N/A (2.01,4.74) (1.03,4)

336.14 N/A 0.76 0.41

STCS–(30 housekeepers start at 9:10 AM, 6 start at 4:15 PM, 2 start at 5:05 PM)

Mean

95% CI

Standard Deviation height

10625 9500 0.91 0.80

((9760, 13373)) N/A (0.58,1.62) (0.09, 1.24)

90.12 N/A 0.34 0.24

(Guest Flow = 200, Train Data)

CS–(20 housekeepers start at 8:30 AM, 3 starts at 1:00PM ,and 2 start at 5:00 PM)

Mean

95% CI

Standard Deviation

6687 6250 2.18 1.23

(6291, 7002) N/A (0.82, 3.70) (0.68,2.91)

151.74 N/A 1.18 0.70

DTST–(18 start at 9:05 AM, 4 start at 2:10 PM, and 1 start at 4:00 PM)

Mean

95% CI

Standard Deviation

5776 5750 0.13 0.11

(5750,5820) N/A (0,0.35) (0,0.28)

44.44 N/A 0.14 0.07

STCS–(1 housekeeper start at 7:30 AM, 17 start at 9:25 AM, 4 start at 2:10 PM, and 1 start at 3:55 PM)

Mean

95% CI

Standard Deviation height

5754 5750 0.02 0.01

(5750, 5764) N/A (0,0.07) (0, 0.03)

8.81 N/A 0.024 0.015

(Guest Flow = 400, Test Data) Total Cost ($) Labor Cost ($) Wait Time (min/guest) Queue Length (guests)

CS–(35 housekeepers start at 8:30 AM, 3 starts at 1:00PM ,and 2 start at 5:00 PM)

Mean

95% CI

Standard Deviation

11812 10000 4.53 3.20

(10303, 12941) N/A (2.3, 7.6) (1.2,4.5)

569.88 N/A 1.3 0.83

DTST–(31 housekeepers start at 9:25 AM, 6 housekeepers start at 5:10 PM)

Mean

95% CI

Standard Deviation

11187 9250 3.76 2.91

(9840,13911) N/A (2.77,4.78) (1.02,4.01)

330.21 N/A 0.78 0.43

STCS–(30 housekeepers start at 9:10 AM, 6 start at 4:15 PM, 2 start at 5:05 PM)

Mean

95% CI

Standard Deviation height

10993 9500 0.93 0.82

(9760, 13648) N/A (0.03,1.65) (0.09, 1.32)

98.2 N/A 0.35 0.24

(Guest Flow = 200, Test Data)

CS–(20 housekeepers start at 8:30 AM, 3 starts at 1:00PM ,and 2 start at 5:00 PM)

Mean

95% CI

Standard Deviation

6674 6250 2.12 1.20

(6278, 7211) N/A (0.81, 3.82) (0.68,2.88)

278.24 N/A 1.12 0.69

DTST–(18 start at 9:05 AM, 4 start at 2:10 PM, and 1 start at 4:00 PM)

Mean

95% CI

Standard Deviation

5800 5750 0.12 0.09

(5750,6009) N/A (0,0.34) (0,0.28)

45.53 N/A 0.13 0.07

STCS–(1 housekeeper start at 7:30 AM, 17 start at 9:25 AM, 4 start at 2:10 PM, and 1 start at 3:55 PM)

Mean

95% CI

Standard Deviation height

5754 5750 0.02 0.01

(5750, 5766) N/A (0,0.07) (0, 0.03)

19.73 N/A 0.023 0.014
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In summary, the stochastic service time model seems to be the best model: it

provides the schedule that has lower labor cost, best performance ,and stability

of both cost and performance. However, the STSC model adds exponentially

more basis to the linear program, which result in a significantly longer run time.

The run time for the branch and bound tree gets to 2% within the LP-relaxation

optimal value the for the DTST is typically 15 seconds and 28 seconds for SCST

at 100 replications while using CPLEX solver.

5.1.3 Queue Length Distribution with regards to Time

Figure 3 exhibits the queue length distributions at a 400 guest flow under different

schedules in each hour from 4 A.M. to 12 A.M of the next day. The majority of the

waiting happens after 5 P.M for all schedules. As shown in the figure, CS exhibits

a two peaks of waiting at 6 P.M. and 10 P.M., whereas DTST scheduling is able

to alleviate waiting around the first peak with less housekeepers in total. STSC

scheduling keeps very low queue length throughout the day.
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Figure 3. Average Queue Length Distribution (Guest Flow = 400)
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Figure 4 shows the queue length distribution with 200 guests checking in and

out. In the 200 guest flow settings, all schedule have better performance regards

to queue length. For CS and DTST scheduling, majority of the waiting happens
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in time window between 9:00 P.M. and 10:00 P.M.. The STSC scheduling is able

to keep the queue empty throughout the day except for one time slot early in the

morning.
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Figure 4. Average Queue Length Distribution (Guest Flow = 200)
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5.1.4 Sensitivity Tests

Marginal costs of the number of housekeepers. Figure 4 exhibits the marginal

costs when increase/decrease one housekeeper to each schedule of DTST

scheduling at different shifts with different guest flows. We observe that the in-

crement of number of housekeepers results in higher cost increase in the morning,

however, the total cost is more sensitive to decrementing the number of house-

keepers in the afternoon period. Overall, the total cost DTST scheduling is sensi-

tive to the change of the numeber of housekeepers.

30



Shift@9:25AM Shift@5:10PM

198.1

78.163.2

263.2

M
ar

gi
na

lC
os

ts
In

cr
ea

se
DTST Marginal Costs (Guest Flow =400)

Increment Decrement

Shift@9:05AM Shift@2:10PM Shift@4:00PM

113.1

56.3 39.5
63.2

113.2

277.8

DTST Marginal Costs (Guest Flow =200)

Increment Decrement

The figure below shows the marginal increased costs for the STSC scheduling. In

general, STSC is less sensitive than that of DTST scheduling.
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Cleaning Duration Sensitivity

We examined the sensitivity of the performance of each schedule with regard

to the change of cleaning duration. Table 6 shows the mean of the total cost,

labor cost, average waiting time, and queue length when the cleaning duration

is increase or decreased by 5 minutes. The total cost is positively correlated with

cleaning duration. We also observe that the all performances of the schedules are

more sensitive to the cleaning duration when the guest flow is high.
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Table 5.3: Computational Results for Different Cleaning Time with Test
Data

Models Measure Metrics

(Guest Flow = 400, µc = 25 mins) Total Cost ($) Labor Cost ($) Wait Time (min/guest) Queue Length

DTST–(17 start at 9:15 AM, 15 start at 2:55 PM),4 starts at 4:00 PM

Mean

95% CI

Standard Deviation

10164 9000 2.91 2.19

(9496,11545) N/A (0.75,3.86) (1.03,4)

311.16 N/A 0.76 0.41

STCS–(20 start at 9:00 PM, 14 start at 12:05 PM, 3 start at 4:25 PM)

Mean

95% CI

Standard Deviation height

9546 9250 0.74 0.61

(9224, 9898) N/A (0.03,1.62) (0.09, 1.24)

90.12 N/A 0.34 0.24

Guest Flow = 400, µc = 35 mins

DTST–(1 housekeeper start at 6:50 AM, 28 start at 9:10 PM, 10 start at 2:25 PM)

Mean

95% CI

Standard Deviation

12442 10000 3.63 2.23

(11772,13909) N/A (1.87,5.06) (0.81,4.32)

322.12 N/A 0.81 0.77

STCS–(2 start at 7:15 AM, 17 start at 8:50 AM, 16 start at 9:55 AM, 6 start at 2:55 PM, and 3 start at 5:05)

Mean

95% CI

Standard Deviation height

11952 10500 1.13 0.68

(11710,13212) N/A (0.55,1.78) (0.33, 0,98)

191.21 N/A 0.49 0.26

Guest Flow = 200, µc = 25 mins Total Cost ($) Labor Cost ($) Wait Time (min/guest) Queue Length

DTST–(1 housekeeper starts at 7:35 AM, 19 starts at 9:10 AM, and 2 start at 4:00 AM)

Mean

95% CI

Standard Deviation

5532 5500 0.08 0.08

(5508,5624) N/A (0.02,0.31) (0,0.22)

44.14 N/A 0.12 0.06

STCS–(1 housekeepers start at 7:35 AM, 19 start at 9:10 AM, 1 start at 2:55, 1 start at 4:05 PM)

Mean

95% CI

Standard Deviation height

5520 5500 0.05 0.06

(5507,5620) N/A (0.02,0.30) (0,0.21)

39.14 N/A 0.09 0.06

Guest Flow = 200, µc = 35 mins

DTST–(1 housekeepers start at 7:35 AM, 21 start at 9:00 PM, 1 start at 2:25, 1 start at 4:30 PM)

Mean

95% CI

Standard Deviation

6084 6000 0.21 0.15

(6006,6223) N/A (0.015,0.57) (0,0.28)

40.01 N/A 0.14 0.11

STCS–(1 housekeeper start at 7:25 AM, 20 start at 8:50 AM, 2 start at 1:35 PM, and 1 start at 3:55 PM)

Mean

95% CI

Standard Deviation height

6072 6000 0.18 0.014

(6005,6206) N/A (0.014,0.51) (0,0.26)

38.77 N/A 0.13 0.11
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Figure 5 shows the percentage change of the mean total cost, wait time, and

queue length of either scenarios when compared to the original 30 minutes mean

cleaning time scenarios. Both scheduling methods are more sensitive to the the

increase of the cleaning duration.

DTST-GF=400 STCS-GF=400 DTST-GF=200 STCS-GF=200

−5.3%
−3.2%

−4.4% −4.1%

6.5%

10.7%

5.3% 5.1%

Figure 5. Total Cost Change with regard to Cleaning Duration

µc = 25 µc = 35
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Sensitivity Over Scheduling Flexibility

As shown above, a flexible and dynamic schedule can provide cost savings and

enhanced performance, however, in the empirical settings, it is impossible to con-

trol the shift starting time in such a detailed manner. We explore the effect of

relaxed control by only allow shifts start at whole hours (e.g. 5 P.M. , 6 P.M. etc.)

Table 7 exhibits the computational results when housekeepers are only allowed

to start the whole hours for both models at each guest flow levels.

Table 5.4: Computational Results for Shifts Start at Whole Hours with Test
Data

Models Measure Metrics

(Guest Flow = 400) Total Cost ($) Labor Cost ($) Wait Time (min/guest) Queue Length

DTST–(1 housekeeper starts at 7:00AM, 24 start at 8:00 AM, 12 start at 11:00 PM, 3 starts at 4:00 PM)

Mean

95% CI

Standard Deviation

12342 10000 2.5 2.12

(10593,14104) N/A (1.17,5.26) (1.03,5)

311.16 N/A 0.76 0.71

STCS–(1 housekeeper starts at 7:00AM, 20 start at 8:00 AM, 5 start at 9:00 PM, 10 starts at 10:00 PM, 5 starts 4:00 PM)

Mean

95% CI

Standard Deviation height

11793 10000 1.98 1.66

(10297,12880) N/A (0.76,3.45) (0.93,3.98)

188.32 N/A 0.76 1.21

(Guest Flow = 200)

DTST–(1 housekeeper start at 7:00 AM, 20 start at 8:00 AM, 2 start at 3:00 PM, 1 start at 4:00 PM)

Mean

95% CI

Standard Deviation

6061 6000 0.15 0.08

(6022,6101) N/A (0.057,0.25) (0.02,0.17)

22.3 N/A 0.81 0.04

STCS–(1 housekeeper start at 7:00 AM, 20 start at 8:00 AM, 2 start at 3:00 PM, 1 start at 4:00 PM)

Mean

95% CI

Standard Deviation height

6061 6000 0.15 0.08

(6022,6101) N/A (0.057,0.25) (0.02,0.17)

22.3 N/A 0.81 0.04

We observe that the sensitivity of the STCS is significantly higher than that

of DTST scheduling. STCS schedule’s mean cost has raised around 5% when the
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whole hour constraints is imposed, whereas that of DTST only raised 3%. More

interestingly, when the guest flow is at a lower level, the DTST and STCS are

offering the same schedule, which has a 4.5% higher cost than the more flexible

schedule.

5.2 Computational Results for the Empirical Data Example

The show the applicability in the empirical settings, we report the computational

results based on real data from a west coast upper-scale airport hotel. In this

specific hotel, the daily average number of arrivals and departures are around

300. Noticeably, this hotel has implemented the early-check-in and late check-

out policy. As shown in the histograms below, there are around 40% of the guests

checked in before 2 pm and 40% checked out after 12 pm. We uniformly draw 500

sample path fro the empirical data, which has 400 guest flows for each sample-

path. Based on those sample paths, we solve for the optimal schedule using both

models. Table 8 shows the computational results for the empirical data. The

controlling schedule is shown below.
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Table 5.5: Computational Results for Empirical Example

Models Measure Metrics

(Guest Flow = 400) Total Cost ($) Labor Cost ($) Wait Time (min/guest) Queue Length

DTST

Mean

95% CI

Standard Deviation

12184 10500 4.21 3.32

(11332, 12894) N/A (2.2, 6.75) (1.2,5.0)

523 N/A 1.3 1.10

STCS

Mean

95% CI

Standard Deviation height

11924 11000 2.12 1.97

(11232, 12678) N/A (1.2, 4.09) (1.0,3.87)

445 N/A 0.92 1.10

(Guest Flow = 200)

DTST

Mean

95% CI

Standard Deviation

6128 6000 0.32 0.23

(6049,6213) N/A (0.13,0.51) (0.11,0.34)

37.2 N/A 0.12 0.04

STCS

Mean

95% CI

Standard Deviation height

6099 6000 0.25 0.19

(6038,6201) N/A (0.08,0.5) (0.02,0.17)

39.3 N/A 0.09 0.04

Due to the fact that this hotel has adopted the early check-in/late check-out

policy, the total cost and the wait time are both larger than that of stylized exam-

ple. Also, the utilization of the housekeepers has gone down as the number of

housekeepers scheduled in the empirical example is larger than that of the styl-

ized data.
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CHAPTER 6

FUTURE WORK

In this paper, we have discussed the modeling and analysis of the initial model of

the housekeeping process. Although our model has generalized the hotel arrival

and departure process, we see the potential directions that should be considered.

First, we can study the model under stochastic settings of the service time. Also,

according to the on-site investigation. Adding a infinite server queue to approxi-

mate the travel time of the housekeepers between cleaning may also be necessary.

In housekeeper scheduling, we could explore the various policies regarding to

the starting time of the housekeeping shifts. Ultimately, the authors are develop-

ing a close form total cost function with respect to the number of housekeepers

and their shift schedules under a generalized arrival, departure and service time

distributions.
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