Software For Estimatin
Sparse Hessiam Matrices

Thomas F. Coleman1
Burton S. Garbow
Jorge J. Moré

TR 85-660
January 1985

Department of Computer Science
Cornell University
Ithaca, New York 14853

* Also available as Technical Memorundum No. 43, Mathematics and
Computer Science, Argonne National Laboratory, Argonne, IL
60439,

1 Dept of Computer Science, Cornell University, Ithaca, NY
14853.

2 Argonne National Laboratory, Argonne, IL 60439.

ABSTRACT

The solution of a nonlinear optimization problem often requires an estimate of
the Hessian matrix for a function f. In large scale problems the Hessian matrix
is usually sparse, and then estimation by differences of gradients is attractive
because the number of differences can be small compared to the dimension of the
problem. In this paper we describe a set of subroutines whose purpose is to esti-
mate the Hessian matrix with the least possible number of gradient evaluations.

Categories and Subject Descriptors: E.1 [Data Structures]: Graphs; E.2 [Data
Storage Representations]: Linked Representations; G.1.3 [Numerical Analysis]:
Numerical Linear Algebra - sparse and very large systems; G.1.6 [Numerical
Analysis]: Optimization - nonlinear programming

General Terms: Algorithms

Additional Key Words and Phrases: Numerical differentiation, gradient, Hessian
matrix, large sparse optimization, nonlinear problems, graph coloring

Software for Estimating Sparse Hessi:;n Matrices

Thomas F. Coleman, t+ Burton S. Garbow, § and Jorge J. Moré't

Cornell University and Argonne National Laboratory

1. Introduction.

The solution of a nonlinear optimization problem often requires an estimate
of the Hessian matrix for a mapping f : R®* —R. In large scale problems the Hes-
sian matrix 2/ (z) is usually sparse, and then estimation by differences of gra-
dients is attractive because the number of differences can be small compared to
the dimension of the problem. In this paper we describe a set of subroutines
whose purpose is to estimate the Hessian matrix of a mapping f : R®*—R with
the least possible number of gradient evaluations.

The problem of estimating a sparse Hessian matrix can be phrased in the fol-
lowing terms: Given a symmetric matrix A of order n, obtain vectors
dy,dy, . . ., d, such that Ad,Ady, . .. ,Ad, determine A uniquely. In this for-
mulation A is associated with the Hessian matrix 2/ (z) and the product Ad is
associated with an estimate of 2f (z)d. Typically, the estimate of w2f (z)d is
obtained by the forward difference

(1.1) Vi (2)d = vf(z+d)-vf(z)
or the central difference
(1.2) Vi (z)d = %[vf(z+d)-v/(z-d)

approximation. Thus each evaluation of Ad requires at least one gradient evalua-
tion. Also note that since A is associated with the Hessian matrix, the sparsity
structure of A should represent the sparsity structure of 2f (z) for all z of
interest. In particular, since in a minimization problem the Hessian matrix is
usually positive definite at the solution, it is natural to assume that A has

t Department of Computer Science, Cornell University, Ithaca, New York 14853. Work supported in part by
the Applied Mathematical Sciences subprogram of the Office of Energy Research of the U.S. Department of En-
ergy under Contract DE-AC02-83ER13069.

$ Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, lllinois 60439. Work
supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research of the
U.S. Department of Energy under Contract W-31-1090-Eng-38.

nonzero diagonal elements.

The algorithms that we have implemented are based on the work of Powell
and Toint [1979], and Coleman and More' [1984]. These authors considered direct
and indirect methods for determining symmetric matrices. Indirect methods usu-
ally require fewer gradient evaluations while direct methods produce more accu-
rate approximations to the Hessian matrix. We have implemented both types of
methods. For purposes of exposition it is convenient to view our algorithms as
lower triangular substitution methods.

A lower triangular substitution method is specified by a permutation matrix
n and a partition of the columns of a symmetric matrix A into groups
Cy, ..., C, such that if L, is the lower triangular part of 7T Ax then columns
in the same group do not have a nonzero in the same row position of L,. We
now show that a partition of the columns of A with this property is consistent
with the determination of A by a lower triangular substitution method. Let

§ = {(5,§): 7(5) > =(j)},

and given a group C define a direction d €ER"™ with components §; 7 0 if j
belongs to C' and §; = 0 otherwise. Then

Ad = Z 61 a ,
leC
where @y, . . ., a, are the columns of A. To determine ¢;; with (¢,5)€ S and

J € C, note that for any other column !/ € C we must have (5,/)¢S. Thus,

(Ad). = 61 G5 + E 6{ ag -
(s,1)¢S,leC
This expression and the symmetry of A show that g;; depends on (Ad); and on
elements of L, in rows [> ¢. It follows that we can determine the rows of L, in
the order n, . . ., 1, and thus A can be determined with p evaluations of Ad.

A lower triangular substitution method is direct if whenever (¢,5) €S and
§ € C for a given group C, then there is no pair (¢,!) with (¢,)¢ S and I €C.
Thus in a direct method a;; depends only on the difference parameter 6;, while in
an indirect method a;; may also depend on other difference parameters §; with
1 € C. As we shall see, this is an important difference between direct and indirect
methods.

Given the sparsity pattern of a symmetric matrix A of order n, subroutine
DSSM determines a permutation matrix 7 and a partition of the columns of A
consistent with the determination of A by either a direct or indirect lower tri-
angular substitution method. Subroutine FDHS computes an approximation to
the Hessian matrix of a mapping f : R®*—R by a lower triangular substitution
method. Most of the information needed by FDHS is provided by DSSM; the

-3-

user only needs to provide the appropriate difference parameters and gradient
differences. Additional information on DSSM and FDHS can be found in Sections
2 and 3, respectively. An example illustrating the use of subroutines DSSM and
FDHS is provided in Section 4. This example also serves as a test program for our
package.

An overview of the complete package is presented in Section 5. Users
interested in algorithmic details should consult Section 6 where we describe the
algorithms that determine the partition of the columns of A in the direct method
and the permutation matrix 7 in the indirect method. The interface subroutines
and the subroutines that implement the algorithms of Section 6 are new; all other
subroutines are from the package of Coleman, Garbow, and More [1984] for
estimating sparse Jacobian matrices.

~ Numerical results are presented in Section 7. We discuss the performance of
DSSM on the Everstine [1979] sparsity patterns, and we also compare our
software with subroutines TD03A and TD03B in the Harwell subroutine library.

2. Subroutine DSSM.

Given the sparsity pattern of a symmetric matrix A of order n, subroutine
DSSM determines a symmetric permutation of A and a partition of the columns
of A consistent with the determination of A by a lower triangular substitution
method.

The user specifies a definition of the sparsity pattern of A by providing the
pairs (1,5) for which g¢;; % 0. Since A is symmetric it is only necessary to pro-
vide the indices for the nonzero elements in the lower triangular part of A:

(2.1) (¢ndrow(k),indcol(k)), k = 1,2,...,npairs .

These pairs can be provided in any order. Duplicate pairs are allowed, but the
subroutine eliminates them. DSSM requires that the diagonal elements be part of
the sparsity pattern and replaces any pair (¢,5) where s < j with the pair (7,7).

On output DSSM defines the symmetric permutation of A via the integer
array listp by placing the (¢,5) element of A in the (listp(¢),listp(s)) position of
the permuted matrix. Since the permuted matrix is 77 A, it follows that column
listp(j) of « is the j-th column of the identity matrix. The partition of the
columns of A is defined via the integer array ngrp by setting ngrp(y) to the
group number of column j. In addition, the variable mingrp provides a lower
bound on the number of groups required in a partition consistent with the deter-
mination of A by a lower triangular substitution method, and the variable
mazgrp is the number of groups in the partition obtained by DSSM.

On output DSSM also has transformed the specification of the sparsity pat-
tern provided by sndrow and sndcol into an alternative specification more

-4-

appropriate for the algorithms used by DSSM. The original data is effectively
preserved because this alternative specification allows the user to recover the
pairs (¢,5) for which a;; 7% 0. Details are provided at the end of this section.

The algorithm used by DSSM to determine the symmetric permutation and
the partition of the columns of A depends on the integer parameter method. If
method = 1 then DSSM uses a direct method; otherwise an indirect method is
used.

The value of mingrp is independent of the choice of method. If L, is the
lower triangular part of #7 A7 and p_,,(7) is the maximum number of nonzeroes
in any row of L, then DSSM sets

mingrp = min{p,,.(7): T @ permutation} .

The value of mazgrp, on the other hand, is heavily dependent on the choice of
method. The direct method usually requires more evaluations of Ad to determine
A than the indirect method. Thus, if method = 1, a user should expect a larger
value of mazgrp than for method#1. However, the direct method produces a
more accurate approximation to the Hessian matrix; see, for example, the numeri-
cal results in Section 4.

Our experience on practical problems is that a direct method usually deter-
mines a partition with mazgrp about 50% higher than with an indirect method.
We have also noted that the indirect method in DSSM typically requires one or
two more groups than the bound specified by mingrp. For some problems
mazgrp agrees with mingrp and then DSSM is an optimal lower triangular sub-
stitution method.

Execution times for the indirect method in DSSM are satisfactory - the
number of operations required by one call is proportional to

n
(2.2) Y p¥(m),
=1

where p;(7) is the number of nonzeroes in the s-th row of L,. Estimates for the
execution time of the direct method are not as simple. We note, however, that in
all the practical problems tried the direct method has been faster than the
indirect method. Of course, the claim that (2.2) is a measure of the running time
of DSSM assumes that npairs is not more than a constant times (2.2). This is
certainly the case in any nontrivial situation since (2.2) is not less than the
number of nonzero elements in the lower triangular part of A.

An impression of the overhead required by DSSM can be obtained by noting
that the number of operations needed to evaluate the Hessian matrix by
differences is on the order of (2.2) when the mapping f is quadratic. Indeed, since
a lower triangular substitution method requires at least p,.(7) gradients, the

-5-
number of operations needed to evaluate all the gradients is at least

n
(2:3) Pmax(7) _le.-(w)-
-
Note that (2.2) is bounded above by (2.3) for any choice of permutation matrix 7.
If 7/ is a nonlinear mapping, then estimation of the Hessian matrix is likely to
require considerably more operations than (2.3). Moreover, in a typical nonlinear
problem DSSM will only be called once, whereas it will be necessary to estimate
the Hessian matrix many times. These arguments support our claim that the
execution times for DSSM are satisfactory.

Implementation of DSSM so that the execution time is proportional to (2.2)
requires an appropriate data structure. The pairs (¢,5) for which ¢;; # 0 is a
convenient data structure for the user, but DSSM requires a different data struc-
ture. The algorithms called by DSSM require both column-oriented and
row-oriented definitions of the sparsity pattern of the lower triangular part of
A. The arrays indrow and jpntr provide a column-oriented definition if the row
indices for the nonzero elements of the j-th column are

indrow(k), k = jpntr(s5), ..., jpntr(5+1)-1,

while the arrays fndcol and spntr provide a row-oriented definition if the column
indices for the nonzero elements of the ¢-th row are

tndeol(k), k = ipntr(s), ..., ipntr(s+1)-1.

Given the pairs (2.1) for which a;; 5% 0, subroutine DSSM generates column-
oriented and row-oriented definitions of the sparsity pattern of the lower triangu-
lar part of A. The original data can be recovered because

(indrow(k),j) ’ k = Jpntr(.’)) LRI ,Jpntr(1+ l)_l’

are the nonzero elements in column j of the lower triangular part of A; the
nonzero elements in a given row can be generated in a similar manner.

3. Subroutine FDHS.

Given a symmetric permutation of the Hessian matrix and a partition of the
columns of the Hessian matrix consistent with the determination of the Hessian
matrix by a lower triangular substitution method, subroutine FDHS computes an
approximation to the Hessian matrix.

Most of the information needed by FDHS is provided by DSSM. In particu-
lar, the symmetric permutation is defined by the array listp and the partition is
defined by the array ngrp. The user must provide an array efa of difference

-6-

parameters and, for each group number numgrp, an array fhesd with an approx-
imation to y2f(z)d where the vector d is defined by setting d(;j) = eta(s) if
ngrp(j) = numgrp and d(y) = 0.0 otherwise. We do not discuss techniques for
choosing the difference parameters, but see, for example, Curtis and Reid [1974],
and Gill, Murray, and Wright [1981]. The approximation to w2f(z)d would
usually be either (1.1) or (1.2).

The lower triangular method requires that the approximations to 2f (z)d
be stored in special locations of the array fhes. This is done by executing

call Jdhs(n,sndrow,jpntr,indcol spntr,listp,
ngrp,mazgrp,numgrp,eta,fhesd, fhes, swa)

successively with numgrp = 1,2,...,mazgrp. On the call with numgrp = mazgrp,
FDHS proceeds to overwrite fhes with the approximation to the lower triangular
pért of the Hessian matrix. Storage is done with a column-oriented definition of
the sparsity pattern, and thus the nonzero elements of column j in the lower tri-
angular part of the Hessian matrix are

[hes(k), k = jpntr(s), ..., jontr(j+1)-1.

An example of the use of FDHS can be found in the next section.

4. Example.

We illustrate the use of subroutines DSSM and FDHS by considering the
problem of approximating the Hessian matrix in a minimal surface problem.

The classical minimal surface problem is to find a function with minimal sur-
face area over the unit square and with specified values at the boundary. We
discretize this problem as done by Griewank and Toint [1982]. The unit square is
subdivided into m = (I+ 1)? equal subsquares so that the unknowns of the prob-
lem become the n = [? function values at interior corners of the subsquares.
The discrete minimal surface problem is then to minimize

(4.1 fe)= 3 oi5(a),
f,Jm=0

where o; ;(z) is the surface area approximation for the #,5 subsquare; if we let
§, = 8/(1+1), then the ¢,j subsquare has coordinates (§;,§;) in the corner-
closest to the origin. For the interior subsquares we use the approximation

1 m
o; i(z) = m [l Ay By re1-m)P + (@ep -z)?) |

where z;, with k¥ = I(j-1)+ ¢, is the minimal area function at (§;,{;). A similar
approximation is used for the subsquares on the boundary. Thus %f(z) is a

-7-

block tridiagonal matrix where each block is a tridiagonal matrix of order /.

The sparsity pattern of the Hessian matrix of (4.1) can be specified by Pro-
gram 4.1 where it is assumed that n = I2. Given the sparsity pattern, an
appropriate partition can be determined with a call to DSSM:

call dssm(n,nnz,indrow,sndcol, method,listp,ngrp,mazgrp, mingrp,
* m]o,spntr,jpntr,twa,hwa)

As pointed out in Section 2, on output from DSSM the array pairs indrow, jpntr
and indcol, ipntr provide, respectively, column-oriented and row-oriented
definitions of the sparsity pattern for the lower triangular part of the Hessian
matrix. In this section we are mainly interested in the output values of mingrp
and mazgrp.

nnz = 0
do 103 =1, n
nnz = nnz + 1
indcol(nnz) = J
indrow l{nnz =
if (mod(3,l) .ne. 0) then
nnz = nnz
indcol(nnz) = j
indrow(nnz) = j + 1
end sf
if (j+1 .le. n) then
nnz = nnz + 1
indcol(nnz) = j
indrow(nnz) = 5 + 1
if (mod(j,l) .ne. 1) then
nnz = nnz + 1
indcol(nnz) = 5
indrow(nnz) = 5 + 1 -
end if
if (mod(3,l) .ne. 0) then
nnz = nnz + 1
indeol(nnz) =
indrow(nnz) = j +1+1
end if
end if
10 continue

Program 4.1

Table 4.1 shows that on this problem the mazgrp values for the direct
method (method = 1) are about 50% higher than for the indirect method; this is
typical. Also note that the indirect method requires two more groups than the
bound specified by mingrp. This is not unusual, although for many problems
mazgrp is closer to mingrp. We will discuss further the relationship between

mazgrp and mingrp in Section 7.

Direct method Indirect method

| n nnz ___ mingrp maxgrp time maxgrp time
100 442 5 10 0.37 7 0.57
400 1882 5 10 1.52 7 2.53
900 4322 5 11 3.67 7 5.72
1600 7762 5 11 6.40 7 10.30
2500 12202 5 10 9.55 7 17.80

Table 4.1. Output from DSSM for Minimal Surface Problem.

The timing results in Table 4.1 show that for this problem the execution
time (measured in seconds on a VAX 11/780) for the indirect (as well as the
direct) method in DSSM is a linear function of n. This is as expected because
the execution time for the indirect method is proportional to (2.2), and for the
minimal surface problem (2.2) is bounded by a linear function of n. The timing
results further support our observation that on realistic problems the direct
method executes faster than the indirect method.

Given the output from DSSM, we can readily determine an approximation to
the Hessian matrix of (4.1). In addition to the output from DSSM, we need a
subroutine to evaluate the gradient v/ of f. Since o; ; has a simple form, and
since (4.1) holds, it is not difficult to write a subroutine fen(l,z,gvec) which will
evaluate 7/ at z and return yf(z) in the array gvec of length n = 2. Given
this information, we can call FDHS to obtain an approximation to the Hessian
matrix of f. Assuming that eta is a vector of difference parameters suitable for
the forward difference approximation (1.1), the code in Program 4.2 stores the
approximation in the array fhes.

call fen(l z,gvec)
do 30 numgrp = 1, mazgrp
do 103y =1, n
zd(j) = z(j) , , ,
if (ngrp(s) .eq. numgrp) zd(j) = z(j) + eta(j)
10 continue
call fen(l,zd,fhesd)
do 20§ =1 n
Jhesd(s) = fhesd(s) - gvee(s)

20 continue
call fdhs(n,sndrow,jpntr,indcol,spntr,listp,
* ngrp,mazgrp,numgrp,eta,fhesd, fhes,iwa)
30 continue

Program 4.2

-0

We have already noted that indirect methods usually determine the Hessian
matrix with fewer evaluations of the gradient. This is clearly an advantage. On
the other hand, indirect methods produce less accurate approximations to the
Hessian matrix than direct methods. We will use the minimal surface problem to
illustrate this last point.

Table 4.2 shows the largest absolute and relative errors of the approximate
Hessian matrix when FDHS is used to approximate the Hessian matrix of (4.1) at
the point z where

z(l(j-l)"' ‘) = faz"' €j2) 1 S ’1] ..<_ l)

with &, = s /(I+ 1). At this point the magnitudes of the nonzero elements of the
Hessian matrix range between 2.0 and about 1/n. The approximate Hessian
matrix was determined by Program 4.2 with difference parameters

(4.2) eta(5) = 10™.

All computations were done in single precision on a VAX 11/780 which has a
machine precision of 1.21077.

Table 4.2 shows that the direct method produces a more accurate approxi-
mation to the Hessian matrix. In a direct method the accuracy of the approxi-
mate Hessian matrix is completely determined by the choice of difference parame-
ters, and in this case the accuracy is quite reasonable. In an indirect method the
accuracy of the approximate Hessian matrix also depends on the errors from the
substitution process. The results of Table 4.2 show that in this case the addi-
tional loss of accuracy is not severe.

Direct method Indirect method

n abserr _ relerr _abserr _ relerr
100 2.4e4 6.5¢-3 3.6e-4 1.0e-2
400 33e-4 22e2 1.1e3 5.1e2
900 48¢-4 48e2 3.4e3 1.2e-1
1600 6.3e-4 8.6e-2 83e3 3.4el
2500 7.8e-4 13e-l 7.4e3 7.7e1

Table 4.2. Output from FDHS.

It is important to note that the loss of accuracy in an indirect method can
be severe if the difference parameters vary significantly in magnitude. Consider,
for example, the choice of difference parameters

(4.3) eta(j) = 51?4 [[j;l]+ 1],

