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Online information and interaction is becoming more and more prominent in

our lives. This development is made possible by the growth of large-scale user-

based applications on the Web (including sites such as Wikipedia and Facebook).

As the number of people using these applications increases, the number of social

interactions increases and we start to witness social phenomena which originally

appeared in the offline world, as well as new ones.

Our main goal in this thesis is to obtain a better understanding of some of

these phenomena both in the online and the offline world. We will concentrate on

phenomena from two main domains. First, motivated by the increasing interest in

polarization and the implications that social interactions in the online world has

on it, we study how people form their opinion. We present and analyze two models

of opinion formation and a more general model of culture dynamics describing the

process by which people form opinions on a set of issues simultaneously.

Second, we consider how to allocate credit to incentivize effort. We explore

this question in the realm of scientific communities by studying a simple game

theoretic model illustrating the process by which researchers choose a research

project. Our results are not restricted to the academic domain alone, as crowd

sourcing sites like Wikipedia are already implementing number of credit-allocation

conventions familiar from the scientific community. We also take a special interest

in studying the effects long range reasoning has on individuals’ choices in other

academic domains.



We will take the algorithmic approach in which we first try to construct a model

of the phenomena in question. For the most part of this thesis we choose to model

individuals as strategic agents maximizing some utility function. Then we analyze

the model using tools from various fields such as game theory, computer science

and statistical physics. Finally, we use our analysis to derive lessons for designing

new systems.
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CHAPTER 1

INTRODUCTION

1.1 The Online World

Every day billions surf the web, hundreds of millions login to Facebook, tens of

millions buy online, hundreds of thousands Wikipedia articles are edited – and the

numbers are just going up. The world today is not what it used to be 20 years

ago. It is faster, global, collaborative, selective – it is an online world. The world

is changing but the people are in part the same people, with the same aspirations,

objectives and biases. As a result, some social phenomena reappear in the online

world and occasionally take a more extreme form.

This new world is governed by algorithms – from determining which content

you will see in your Facebook News Feed, and which ads Google shows when you

search “hotel” to movie recommendations on Netflix. As the amount of data stored

on each of us grows, the power of these algorithms grows as well. This entails great

social and economic potential. The key for fulfilling this potential is obtaining a

deeper understanding of the relevant social phenomena.

Among the opportunities the online world encompasses is the possibility of

alleviating (or even eliminating) social phenomena that are perceived as negative.

It enables us to keep a complete history on users’ actions which together with a

strict set of rules can automate decision processes. For example, Wikipedia keeps

detailed statistics for every editor (number of edits, participance in discussions,

new articles created). The detailed statistics together with the online nature of the

process allow to allocate credit according to a strict set of rules, almost eliminating

1



the human biases usually involved in this process. As ideal as this might sound,

a lack of thorough understanding of the underlying reasons for these phenomena

might actually transform this opportunity into a double edge sword.

Example: Polarization

The online world gives us greater freedom in choosing our news sources and friends.

It should not come as a surprise that many of us exercise this power to follow news

sources that are closer to our views and interact with those that are similar to us.

In the offline world we have a limited number of news sources we can choose from;

our friends are usually our classmates, coworkers or neighbors. In contrast, the

online world offers numerous different news sources to choose from, and a variety

of people to interact with. It is therefore much easier to find others who are more

similar to us.

The result can be a polarized society (see, e.g., [101]). This is not the worst of

it, since exposure to similar opinions alone can lead to even more extreme opinions

and isolation from the rest of society. As the psychologist David G. Myers writes

[78]:

As the Internet connects the like-minded and pools their ideas, White

supremacists may become more racist, Obama-despisers more hostile, and

militia members more terror prone ... In the echo chambers of virtual worlds,

as in real worlds, separation + conversation = polarization.

A related by-product of the online world is a possible undermining of traditional

establishments that are considered as drivers of diversity and tolerance. One ex-

ample of this was discussed in [22]: future freshmen begin to cherry pick their
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future college friends by Facebook even before the school year starts.

Usually users cannot navigate by themselves the vast amounts of information

offered by the online world. They need someone to filter the information for

them. For example, search results provided by Google are based on personal

information to provide better filtering. While this personalization approach has

many merits, it may enhance polarization [81]. On the other hand, the necessity

of filtering also gives us the key for reducing polarization. Instead of completely

personalizing search results or feeds we can try to mix in some content that feature

slightly different views. By doing this carefully enough, to not alienate users, we

can actually use the online world to increase the exposure to different opinions

and reduce polarization. While such applications are still speculative, there are

clearly mechanisms in place at present – such as the Facebook News Feed – where

algorithmic ideas can affect the mixture of information that a user receives. [77]

takes the first steps in this direction by suggesting algorithms for creating blog

aggregators exposing readers to a greater variety of opinions. Later in the thesis we

return to some of these issues at a more technical level, studying opinion formation

in Chapters 2 and 3, and culture dynamics in Chapter 4.

1.2 The Algorithmic Approach as Applied in this Thesis

In this thesis we apply the algorithmic approach to analyzing social phenomena.

Our approach consists of three different steps: modeling, analysis and design. We

now elaborate on each of them separately:

1. Modeling: We apply methods from two different fields: (i) Game theory

– where we assume that users are rational and strategic agents maximizing
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some utility function. (ii) Statistical physics – where users are modeled

as particles obeying some set of rules and the properties of the resulting

dynamical system are analyzed.

When trying to model a social phenomena either as a game or as a dynamical

system, we consider the simplest model which can still teach us something

new about the world. In many of the chapters, we start from a very ele-

mentary – almost toy like model – and gradually develop it together with

our understanding to a more complex model. The challenge here is to decide

which parts of the problem are to be included in the model and which should

be left aside.

2. Analysis: For most of this thesis we will choose to model individuals as ra-

tional agents. Such game theoretic modeling raises the question of how will

the selfish players play the game? In particular, even when a set of social

conventions is not presented as a game, it often creates incentives; combined

with individual self-interest, this channels behavior toward certain outcomes

and away from others. Game theory suggests that players often play strate-

gies that are in some form of equilibrium (such as Nash equilibrium). This

raises a set of computer science questions: Can they find which strategies to

play efficiently? How efficient is the worst Nash equilibrium comparing to

the optimal solution induced by a central planner (this ratio is termed “the

price of anarchy” - see, e.g., [80])? What about the best Nash equilibrium

(price of stability [7])? We draw on tools and techniques from the field of

Algorithmic Game Theory to answer some of these questions.

3. Design: After performing the first two steps and gaining a better under-

standing of some social phenomena that has negative implications, we can

ask a natural question: what can we do about that? Concretely, can we
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change the players’ utility functions in a way that both makes sense in real

life and manages to close the gap between the worst/best Nash equilibrium

and the optimal solution? We will address this question for several of the

social phenomena we discuss in this thesis.

In this thesis we apply the algorithmic approach to social phenomena in two

domains. First, we consider how people form their opinion on either a single issue

or a set of issues. Second, we address questions such as how to allocate credit to

incentivize contribution and how do competition and long range reasoning affect

this allocation. We will now elaborate more on these two domains and describe

our progress in studying these questions.

1.3 Opinion and Culture Dynamics in Social Networks

In general, when modeling a social phenomenon on a social network there are

many choices to make. Should we consider a fixed network and concentrate only

on modeling the phenomenon in question (ignoring in a sense how this network was

formed)? Or should we also take into account the process by which the network is

evolving? Should the nodes of the network represent individuals? Or maybe they

should represent types (where similar individuals are clustered to one type)? At

large, different social phenomena call for applying different techniques.

Here we consider opinion formation procedures that take place on a network.

Such procedures can be described by a repeated process in which at each step each

individual inquires his friends (neighbors in the network) for their opinions and

then aggregates this information (possibly together with some private information)

to form his opinion for the next step. As the modest task of understanding how

5



opinions form in a fixed social network is not well understood yet, we will start

our inquiries there.

A natural staring point is the prominent DeGroot model operating on a fixed

network and modeling opinions as real numbers. We will see how casting this

model as a game can earn us new insights. Then, we will consider the opinion

formation process for issues in which opinions cannot be meaningfully modeled as

real numbers. Lastly, we will switch gears and – instead of analyzing the process by

which an opinion on a single issue is formed – we will consider how opinions on a set

of issues are formed simultaneously. This is usually referred to as culture dynamics.

Here, we will present a model generalizing (at least to some extent) the previous

works on this subject. As in this work we are interested in the interactions and

influences between different “cultures” we will take the statistical physics approach

of modeling individuals as particles and consider networks defined on types instead

of individuals.

Opinion Formation (Chapter 2)

The starting point for this work is the DeGroot model [35] suggesting the follow-

ing concrete implementation of the opinion formation process previously described:

Each individual holds a numerical opinion and arrives at a shared opinion (con-

sensus) by repeated averaging of his opinion with his neighbors’ opinions.

Motivated by the observation that in real life consensus is rarely reached, we

study a related sociological model suggested by Friedkin and Johnsen [42]. In

this model, individuals have some internal opinions which do not change over

the averaging process. This small modification of the model yields a diversity of
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opinions instead of consensus.

Informally speaking, the question we want to answer is “how much does society

lose from disagreement?”. To answer this we interpret the repeated averaging as

best-response dynamics in an underlying game with natural payoffs. Let us define

these payoffs more formally: the cost player i incurs for expressing opinion zi when

the rest of the players express opinions described by the vector z is:

ci(z) = (si − zi)2 +
∑
j∈N(i)

wi,j(zi − zj)2,

where si denotes the internal opinion of player i, N(i) denotes the set of neighbors

i has in the network and wi,j is the weight of the edge connecting between i and j.

The repeated averaging converges to the unique Nash equilibrium and enables

us to answer the price of anarchy question: what is the cost of disagreement in

this model relative to a social optimum? By drawing a connection between these

agreement models and extremal problems for generalized eigenvalues we can show

that for undirected graphs the price of anarchy is at most 9/8.

We show that for directed graphs the price of anarchy is unbounded. For this

class of graphs, a design question becomes relevant: can we improve the cost of the

Nash equilibrium by getting individuals to interact with some other individuals?

In the language of our model: can we reduce the cost of disagreement at equilib-

rium by adding edges to the graph? We show that this can be done. However,

we also show that finding the optimal set of edges to add according to various

natural restrictions is NP-hard. Therefore approximation algorithms are of inter-

est. Potentially these ideas might be used to reduce polarization in society, as we

discussed earlier.
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Discrete Preferences (Chapter 3)

The model described in Chapter 2 allows players to adopt arbitrarily fine-grained

“average” opinions from among any set of options. Most of the dynamics and

equilibrium properties of it are driven by this type of averaging. However, some-

times an “average” opinion cannot be meaningfully defined. Consider for example

choosing a favorite movie genre; what is the average of drama and action?

This can be classified as an instance of a larger family of games featuring

a tension between coordination and individual preferences while the strategies

available to the players come from a fixed, discrete set, and where players may

have different intrinsic preferences among the possible strategies. It is natural to

model the tension among these different preferences by positing a distance function

(d(·, ·)) on the strategy set that determines a notion of similarity among strategies;

a players payoff is determined by the distance from her chosen strategy to her

preferred strategy and to the strategies chosen by her network neighbors:

ci(z) = α · d(si − zi) +
∑
j∈N(i)

(1− α) · d(zi − zj).

This cost function is defined similarly to the cost function in Chapter 2. As

before si is i’s preferred strategy (or opinion) and zi is the strategy he plays. α is a

parameter that essentially controls the extent to which players are more concerned

with their preferred strategies or their network neighbors. The behavior of the

game undergoes qualitative changes as we vary α.

Even when there are only two strategies available, this framework already leads

to natural questions about a version of the classical Battle of the Sexes problem

played on a graph; such questions generalize issues in the study of network coor-

dination games. We are able to shed some light on some of them by studying the
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game through the price of stability lens (the ratio between the best Nash equilib-

rium and the optimal solution). We show that in this case the price of stability is

non-monotonic in α and exhibits “saw-tooth” behavior with infinitely many local

minima in the interval [0, 1].

More generally we show that for α < 1/2 the price of stability is equal to 1 for

any discrete preference game in which the distance function on the strategies is a

tree metric; as a special case, this includes the Battle of the Sexes on a graph. We

also show that trees essentially form the maximal family of metrics for which the

price of stability is 1, and produce a collection of metrics on which the price of

stability converges to an asymptotically tight bound of 2.

Culture Dynamics (Chapter 4)

Up till this point we were discussing the dynamics of a single opinion. However,

our opinions on different issues might exhibit correlations, both simple and com-

plex. For example, someone that opposes gun control is more likely to be pro-life.

The process by which we shape our opinions is also a contributing factor to the

generation of complex correlations. We usually do not form an opinion on each

issue separately; we read news and have conversations with our friends on many

issues. Naturally, people that share our opinions on some issues have easier time

(and more opportunities) influencing us on others. This idea was formalized in the

beautiful work of Axelrod [10].

The process that looks at how individuals form opinions on a set of issues

(or features) is referred to as cultural dynamics. Axelrod’s cultural dynamics

model relies on two main forces: influence (the tendency of people to become
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similar to others they interact with) and selection (the tendency to be affected most

by the behavior of others who are already similar). Influence tends to promote

homogeneity within a society1, while selection frequently causes fragmentation.

When both forces are in effect simultaneously, it becomes an interesting question

to analyze which societal outcomes should be expected.

One drawback of the Axelrod’s model and other relevant models is that the

influence and interaction is limited to a few specific patterns. We try to provide a

model that keeps true to the influence and selection forces while allowing arbitrary

interaction and influence patterns. To allow us to get a more global picture, instead

of considering a social network, our model cluster people of the same beliefs to

types. The network and the analysis is done on this higher level.

Our model posits an arbitrary graph structure describing which types of people

can influence one another: this captures effects based on the fact that people are

only influenced by sufficiently similar interaction partners. In a generalization of

the model, we introduce another graph structure describing which types of people

even so much as come in contact with each other. These restrictions on interaction

patterns can significantly alter the dynamics of the process at the population level.

For the basic version of the model, in which all individuals come in contact with

all others (the global model), we achieve an essentially complete characterization

of (stable) equilibrium outcomes and prove convergence from all starting states.

For the other extreme case (the local model), in which individuals only come

in contact with others who have the potential to influence them, the underlying

process is significantly more complicated; nevertheless we present an analysis for

certain graph structures.

1Under the assumption that the choice of interaction partners is independent of similarity.
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At a higher level, formalizing the distinction between interaction and influence

ties back to the issue of polarization discussed earlier. In particular, our work

suggests that the choices of who to interact with and who to be influenced by can

have a great impact on the final outcome. We later show an example suggesting

that increasing the interaction with different types might drive polarization as it

dilutes the influence more similar types have on one another.

1.4 Competition and Credit

Incentivizing people to contribute effort is essential in many domains. Many times,

workers should be incentivized to perform their work the best they can, scientists to

stretch the limits of knowledges and kids to do their schoolwork. The online world

readily provides additional concrete examples such as Wikipedia, Stack Overflow,

Amazon Mechanical Turk and more. The rise of these crowd sourcing sites brings

with it many interesting questions: How do users choose which Wikipedia page to

edit or which Amazon Mechanical Turk tasks to take? How do credit allocation

rules affect those choices?

Credit here can be interpreted in many different ways: it can be some reputation

measure, possibly symbolized by badges as in Stack Overflow or by a promotion

as in Wikipedia; alternatively it can simply be a monetary payment. The exact

ways credit is perceived and allocated can have profound implications on the users’

choices and in turn on the system’s efficiency.

We study these questions from two perspectives, both are motivated by anal-

ogous questions from the academic world. We first consider how should we best

allocate credit in a setting in which each user chooses one project to work on
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and only cares about maximizing his utility for this choice. After observing that

allocating credit fairly can sometime be suboptimal, we tap into our experiences

from the research community and show that the observed phenomena of credit

misallocation might actually be a solution to this suboptimality.

Next, we add another dimension to the problem – time. We consider how the

choices a user makes change once long range effects are taken into account. The

analogous question we study here is how academic departments choose which fac-

ulty candidates to hire – when the candidate choice is affected by the departments’

reputations and the departments care about maximizing their reputation in the

long run.

Incentives to Contribute Effort (Chapter 5)

We start our exploration of this topic in a domain where this problem has a long

history: Science. Psychologists, philosophers, sociologists and economists all stud-

ied the process by which scientists get credit for their work. There are many

documented cases in which scientific credit was allocated unfairly. To name just a

few: in mathematics, Newton is credited for the discovery of Calculus which was

independently discovered by Leibniz; in Biology, Watson and Crick are credited for

the discovery of the DNA double helix structure and the contribution of Rosalind

Franklin is somewhat neglected. Some more examples are described in [87].

We suggest a novel explanation for this phenomenon. We address two types of

unfair credit allocations:

• Researchers who solve more technically difficult problems tend to get more
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credit than those solving technically easier problems which are equally or

even more important. This type of unfairness is a great concern for at least

part of the theoretical computer science community [48].

• Famous researchers tend to get more credit than less famous ones for solving

the exact same problem independently. This is a well-known phenomenon

both in sociology and philosophy of science. Merton termed it the ”Matthew

effect” [70].

Academic credit is allocated in many ways. Examples include: prizes, papers

accepted to prestigious venues, and grants. We suggest a simple game theoretic

model that attempts to capture how researchers choose which project to work

on. Our model is based on a model of Kitcher from the philosophy of science

[62]. Our game-theoretic model assumes that players are selfish and care only

about maximizing their own utility. We show that if credit is allocated fairly then

the selfish behavior of the agents would lead to a suboptimal result. However,

by introducing some unfairness it is possible to direct the players to the optimal

assignment. We conclude that the unfairness in allocating credit might not be just

the artifact of human biases but can actually be of help to a research community’s

collective productivity.

Competition and Temporal Dynamics Effects

(Chapter 6)

Previously, we discussed how credit should be allocated when users are myopic

and only care about maximizing their short term utility. Here, we take another

step and try to understand what happens when the choices made are not myopic
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but also take into account the effects of current actions on the future. Consider

for example a firm, currently hiring employees, that has to decide which caliber

of candidates to pursue. Should the firm try to increase its reputation by making

offers to higher-quality candidates, despite the risk that the candidates might reject

the offers and leave the firm empty-handed? Or is it better to play it safe and go for

weaker candidates who are more likely to accept the offer? The question acquires

an added level of complexity once we take into account the effect one hiring cycle

has on the next: hiring better employees in the current cycle increases the firm’s

reputation, which in turn increases its attractiveness for higher-quality candidates

in the next hiring cycle.

Even though we framed the previous question in a setting considerably different

than the settings previously discussed, we can still identify in it ingredients common

to other settings featuring competition as well. To take just one example from

the crowd sourcing world, consider a website such as DesignCrowd.com in which

consumers publish various design requests for logos, brochures, etc. Similarly to a

firm choosing which candidate to pursue a designer chooses which project to work

on. A designer can work on a high profile project which will probably attract more

competition but winning it will help him win more high profile projects later on;

or he could go for less popular projects, thus increasing the probability that his

work is selected and he gets paid.

We develop a model that captures these long-range planning and evolving rep-

utational effects in a setting where two firms repeatedly compete for job candidates

over multiple periods. Within this model, we attempt to estimate the effect that

reasoning about future hiring cycles has on the efficiency of the job market: do

people end up unnecessarily unemployed while the firms compete over the top
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candidates, or does the evolution of reputation over time eventually converge to a

two-tiered system in which the firms each target different parts of the market?

Our model sets up this trade-off in a stylized setting, governed by a parameter

q that captures the difference in strength between the top candidate in each hiring

cycle and the next best. Using a standard economic model of competition between

parties of unequal strength, we show that when q is relatively low, the efficiency

of the job market is improved by long-range reputational effects, but when q is

relatively high, taking future reputations into account can sometimes reduce the

efficiency. While this trade-off arises naturally in the model, the multi-period

nature of the strategic reasoning it induces adds new sources of complexity to the

analysis. We obtain a tight bound of
2

1 +
√

1.5
≈ 0.898 on the ratio of the welfare

at the canonical equilibrium of the model to the socially optimal welfare.
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CHAPTER 2

OPINION FORMATION: OPINIONS AS REAL NUMBERS

2.1 Introduction

An active line of recent work in economic theory has considered processes by which

a group of people in a social network can arrive at a shared opinion through a

form of repeated averaging [3, 32, 36, 49, 59]. This work builds on a basic model

of DeGroot [35], in which we imagine that each person i holds an opinion equal

to a real number zi, which might for example represent a position on a political

spectrum, or a probability that i assigns to a certain belief. There is a weighted

graph G = (V,E) representing a social network, and node i is influenced by the

opinions of her neighbors in G, with the edge weights reflecting the extent of this

influence. Now, in each time step node i updates her opinion to be a weighted

average of her current opinion and the current opinions of her neighbors.

This body of work has developed a set of general conditions under which such

processes will converge to a state of consensus, in which all nodes hold the same

opinion. This emphasis on consensus, however, can only model a specific type

of opinion dynamics, where the opinions of the group all come together. As the

sociologist David Krackhardt has observed,

We should not ignore the fact that in the real world consensus is usually not reached.

Recognizing this, most traditional social network scientists do not focus on an equi-

librium of consensus. They are instead more likely to be concerned with explaining

the lack of consensus (the variance) in beliefs and attitudes that appears in actual

social influence contexts [66].
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In this chapter we study a model of opinion dynamics in which consensus is

not reached in general, with the goal of quantifying the inherent social cost of this

lack of consensus. To do this, we first need a framework that captures some of the

underlying reasons why consensus is not reached, as well as a way of measuring

the cost of disagreement.

Lack of Agreement and its Cost

We begin from a variation on the DeGroot model due to Friedkin and Johnsen

[42], which posits that each node i maintains a persistent internal opinion si. This

internal opinion remains constant even as node i updates her overall opinion zi

through averaging. More precisely, if wi,j ≥ 0 denotes the weight on the edge (i, j)

in G, then in one time step node i updates her opinion to be the average

zi =
si +

∑
j∈N(i) wi,jzj

1 +
∑

j∈N(i) wi,j
, (2.1)

where N(i) denotes the set of neighbors of i in G. Note that, in general, the pres-

ence of si as a constant in each iteration prevents repeated averaging from bringing

all nodes to the same opinion. In this way, the model distinguishes between an

individual’s intrinsic belief si and her overall opinion zi; the latter represents a

compromise between the persistent value of si and the expressed opinions of oth-

ers to whom i is connected. This distinction between si and zi also has parallels in

empirical work that seeks to trace deeply held opinions such as political orienta-

tions back to differences in education and background, and even to explore genetic

bases for such patterns of variation [5].

Now, if consensus is not reached, how should we quantify the cost of this lack

of consensus? Here we observe that since the standard models use averaging as
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their basic mechanism, we can equivalently view nodes’ actions in each time step

as myopically optimizing a quadratic cost function: Updating zi as in Equation

(2.1) is the same as choosing zi to minimize

(zi − si)2 +
∑
j∈N(i)

wi,j(zi − zj)2. (2.2)

We therefore take this as the cost that i incurs by choosing a given value of zi, so

that averaging becomes a form of cost minimization.

Given this view, we can think of repeated averaging as the trajectory of best-

response dynamics in a one-shot, complete information game played by the nodes

in V , where i’s strategy is a choice of opinion zi, and her payoff is the negative of

the cost in Equation (2.2).

Nash Equilibrium and Social Optimality in a Game of Opinion Forma-

tion

It was already observed in [42] that repeated averaging always converges. In Sec-

tion 6.2 we repeat the convergence proof and show it actually converges to the

unique Nash equilibrium of the game defined by the individual cost functions

in (2.2): each node i has an opinion xi that is the weighted average of i’s in-

ternal opinion and the (equilibrium) opinions of i’s neighbors. This equilibrium

will not in general correspond to the social optimum, the vector of node opin-

ions y that minimizes the social cost, defined to be sum of all players’ costs:

c(y) =
∑

i

(
(yi − si)2 +

∑
j∈N(i)wi,j(yi − yj)2

)
.

The sub-optimality of the Nash equilibrium can be viewed in terms of the

externality created by a player’s personal optimization: by refusing to move further

toward their neighbors’ opinions, players can cause additional cost to be incurred
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by these neighbors. In fact we can view the problem of minimizing social cost for

this game as a type of metric labeling problem [23, 65], albeit a polynomial-time

solvable case of the problem with a non-metric quadratic distance function on the

real numbers 1: we seek node labels that balance the value of a cost function at each

node (capturing disagreement with node-level information) and a cost function for

label disagreement across edges. Viewed this way, the sub-optimality of Nash

equilibrium becomes a kind of sub-optimality for local optimization.

A natural question for this game is thus the price of anarchy, defined as the

ratio between the cost of the Nash equilibrium and the cost of the optimal solution.

Our Results: Undirected Graphs

The model we have described can be used as stated in both undirected and directed

graphs — the only difference is in whether i’s neighbor set N(i) represents the

nodes with whom i is connected by undirected edges, or to whom i links with

directed edges. However, the behavior of the price of anarchy is very different in

undirected and directed graphs, and so we analyze them separately, beginning with

the undirected case.

As an example of how a sub-optimal social cost can arise at equilibrium in an

undirected graph, consider the graph depicted in Figure 2.1 — a three-node path

with uniform edge weights in which the nodes have internal opinions 0, 1/2, and 1

respectively. As shown in the figure, the ratio between the social cost of the Nash

equilibrium and the social optimum is 9/8. Intuitively, the reason for the higher

cost of the Nash equilibrium is that the center node — by symmetry — cannot

1In the next chapter we will consider the version of the question in which the distance function
is indeed a metric.
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Figure 2.1: An example in which the two players on the sides do not compromise

by the optimal amount, given that the player in the middle should

not shift her opinion. The social cost of the optimal set of opinions is

1/3, while the cost of the Nash equilibrium is 3/8.

usefully shift her opinion in either direction, and so to achieve optimality the two

outer nodes need to compromise more than they want to at equilibrium. This is

a reflection of the externality discussed above, and it is the qualitative source of

sub-optimality in general for equilibrium opinions — nodes move in the direction

of their neighbors, but not sufficiently to achieve the globally minimum social cost.

Our first result is that the very simple example in Figure 2.1 is in fact extremal

for undirected graphs: we show that for any undirected graph G and any internal

opinions vector s, the price of anarchy is at most 9/8. We prove this by casting the

question as an extremal problem for quadratic forms, and analyzing the resulting

structure using eigenvalues of the Laplacian matrix of G. From this, we obtain a

characterization of the set of graphs G for which some internal opinions vector s

yields a price of anarchy of 9/8.

We show that this bound of 9/8 continues to hold even for some generalizations

of the model — when nodes i have different coefficients wi on the cost terms for

their internal opinions, and when certain nodes are “fixed” and simply do not

modify their opinions.

20



ONMLHIJK0

ONMLHIJK0

ONMLHIJK0

ONMLHIJK0

ONMLHIJK1

ONMLHIJK0

ONMLHIJK0

ONMLHIJK0

ONMLHIJK0

??���

//
��?

??

OO

��

__???

oo
�����

(a) internal opinions.

ONMLHIJK1
2

ONMLHIJK1
2

ONMLHIJK1
2

ONMLHIJK1
2

ONMLHIJK1

ONMLHIJK1
2

ONMLHIJK1
2

ONMLHIJK1
2

ONMLHIJK1
2

??���

//
��?

??

OO

��

__???

oo
����

�

(b) Nash equilibrium.
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(c) optimal solution.

Figure 2.2: An example demonstrating that the price of anarchy of a directed

graph can be unbounded.

Our Results: Directed Graphs

We next consider the case in which G is a directed graph; the form of the cost func-

tions remains exactly the same, with directed edges playing the role of undirected

ones, but the range of possible behaviors in the model becomes very different. This

is due to the fact that nodes can now exert a large influence over the network with-

out being influenced themselves. Indeed, as Matt Jackson has observed, directed

versions of repeated averaging models can naturally incorporate “external” media

sources; we simply include nodes with no outgoing links, so that they maintain

their internal opinion [59].

We first show that the spectral machinery developed for analyzing undirected

graphs can be extended to the directed case; through an approach based on gener-

alized eigenvalue problems we can efficiently compute the maximum possible price

of anarchy, over all choices of internal node opinions, on a given graph G. However,

in contrast to the case of undirected graphs, the price of anarchy can be very large

in some instances; the simple example in Figure 2.2 shows a case in which n − 1

nodes with internal opinion 0 all link to a single node that has internal opinion 1

and no out-going edges, producing an in-directed star. As a result, the social cost

of the Nash equilibrium is 1
2
(n − 1), whereas the minimum social cost is at most
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1, since the player at the center of the star could simply shift her opinion to 0.

Intuitively, this corresponds to a type of social network in which the whole group

pays attention to a single influential “leader” or “celebrity”; this drags people’s

opinions far from their internal opinions si, creating a large social cost. Unfor-

tunately, the leader is essentially unaware of the people paying attention to her,

and hence has no incentive to modify her opinion in a direction that could greatly

reduce the social cost.

In Section 2.4 we show that a price of anarchy lower-bounded by a polynomial

in n can in fact be achieved in directed graphs of constant degree, so this behavior

is not simply a consequence of large in-degree. It thus becomes a basic question

whether there are natural classes of directed graphs, and even bounded-degree

directed graphs, for which a constant price of anarchy is achievable.

Unweighted Eulerian directed graphs are a natural class to consider — first,

because they generalize undirected graphs, and second, because they capture the

idea that at least at a local level no node has an asymmetric effect on the system.

We use our framework for directed graphs to derive two bounds on the price of

anarchy of Eulerian graphs: For Eulerian graphs with maximum degree ∆ we

obtain a bound of ∆ + 1 on the price of anarchy. For the subclass of Eulerian

antisymmetric directed graphs2 with maximum degree ∆ and edge expansion α,

we show a bound of O(∆2α−2) on the price of anarchy.

2An Eulerian antisymmetric directed graph is an Eulerian graph that does not contain any
pair of oppositely oriented edges (i, j) and (j, i).
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Our Results: Modifying the Network

Finally, we consider an algorithmic problem within this framework of opinion for-

mation. The question is the following: if we have the ability to modify the edges in

the network (subject to certain constraints), how should we do this to reduce the

social cost of the Nash equilibrium by as much as possible? This is a natural ques-

tion both as a self-contained issue within the mathematical framework of opinion

formation, and also as discussed earlier in the context of applications: many social

media sites overtly and algorithmically consider how to balance the mix of news

content [4, 13, 76, 77] and also the mix of social content [12, 100] that they expose

their users to, so as to optimize user engagement on the site.

Adding edges to reduce the social cost has an intuitive basis: it seems natural

that exposing people to others with different opinions can reduce the extent of

disagreement within the group. When one looks at the form of the social cost c(y),

however, there is something slightly counter-intuitive about the idea of adding

edges to improve the situation: the social cost is a sum of quadratic terms, and

by adding edges to G we are simply adding further quadratic terms to the cost.

For this reason, in fact, adding edges to G can never improve the optimal social

cost. But adding edges can improve the social cost of the Nash equilibrium, and

sometimes by a significant amount — the point is that adding terms to the cost

function shifts the equilibrium itself, which can sometimes more than offset the

additional terms. For example, if we add a single edge from the center of the star

in Figure 2.2 to one of the leaves, then the center will shift her opinion to 2/3 in

equilibrium, causing all the leaves to shift their opinions to 1/3, and resulting in a

Θ(n) improvement in the social cost. In this case, once the leader pays attention

to even a single member of the group, the social cost improves dramatically.
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We focus on three main variants on this question: when all edges must be

added to a specific node (as in the case when a site can modify the amount of

attention directed to a media source or celebrity); when all edges must be added

from a specific node (as in the case when a particular media site tries to shift its

location in the space of opinions by blending in content from others); and when

edges can be added between any pair of nodes in the network (as in the case when

a social networking site evaluates modifications to its feeds of content from one

user to another [12, 100]).

In Section 2.5 we show that, in the previously discussed variants, the problem

of where to add edges to optimally reduce the social cost is NP-hard. On the

positive side, we obtain a 9
4
-approximation algorithm when edges can be added

between arbitrary pairs of nodes.

2.2 Convergence and Nash Equilibrium Uniqueness

In this section, we show that the opinion game has a unique Nash equilibrium

to which the repeated averaging process converges. Our proof makes use of some

matrix notation which will also turn out to be useful for the rest of the chapter.

Given an edge-weighted graph, we write W for the weighted adjacency matrix, and

let D be the diagonal matrix of node degrees di =
∑

j 6=iwi,j. The weighted graph

Laplacian is L = D −W . A useful fact about the Laplacian is that it is a positive

semidefinite matrix. This implies that all of its eigenvalues are non-negative.

We are now ready to show that the Nash equilibrium is unique and is the limit

of the repeated averaging process.
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Claim 2.2.1 The opinion game admits a unique Nash equilibrium.

Proof: In the Nash equilibrium x each player chooses an opinion which minimizes

her cost; in terms of the derivatives of the cost functions, this implies that c′i(x) = 0

for all i. Thus, to find the players’ opinions in the Nash equilibrium we should solve

the following system of equations: ∀i (xi−si)+
∑

j∈N(i) wi,j(xi−xj) = 0. Therefore

in the Nash equilibrium each player holds an opinion which is a weighted average

of her internal opinion and the Nash equilibrium opinions of all her neighbors.

After some rearranging we get that ∀i
∑

j∈N(i) wi,j(xi−xj) +xi = si. This system

of equations can be succinctly written as (L + I)x = s. Observe that, L + I is a

positive definite matrix as the Laplacian matrix is a positive semidefinite matrix

and once we add the identity matrix to it all its eigenvalues are strictly greater

than 0. Since a positive definite matrix is invertible, we have that the unique Nash

equilibrium is x = (L+ I)−1s.

Claim 2.2.2 The repeated averaging process defined by the Friedkin and Johnsen

update rule (Equation 2.1) converges to the Nash equilibrium x = (L+ I)−1s.

Proof: Changed back to the previous version of the proof and added that the

fixed point is a Nash equilibrium. I think this version is easier to understand

even though it is longer. Let z(t) be the opinions vector at time t. Let b be a

“normalized” internal opinions vector defined as follows bi =
si

1 +
∑

j∈N(i) wi,j
. We

also define a matrix R to be the “normalized” adjacency matrix of G: Ri,i = 0 and

for i 6= l, Ri,l =
wi,l

1 +
∑

j∈N(i) wi,j
. With this notation in place the update rule in

Equation 2.1 can now be written as z(t) = F (z(t− 1)) = Rz(t− 1) + b. If v1 and

v2 are arbitrary vectors, then

‖F (v1)− F (v2)‖∞ = ‖R(v1 − v2)‖∞ ≤ ‖R‖∞‖v1 − v2‖∞
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where ‖v‖∞ = maxi |vi| is the usual max norm and the associated matrix norm

‖R‖∞ is given by

‖R‖∞ = max
i

∑
j

|Ri,j| = max
i

∑
j∈N(i)wi,j

1 +
∑

j∈N(i) wi,j
< 1.

Thus, F is a contraction mapping in the max norm, and so the iteration converges

to a unique fixed point. To compute this fixed point, we observe that R =

(D+I)−1W and that b = (D+I)−1s. Thus, we can alternatively write the repeated

averaging process as z(t + 1) = (D + I)−1(Wz(t) + s). After some rearranging

we get that the fixed point of this process is indeed the Nash equilibrium: x =

(D + I −W )−1s = (L+ I)−1s

2.3 Undirected Graphs

We first consider the case of undirected graphs and later handle the more general

case of directed graphs. The main result in this section is a tight bound on the

price of anarchy for the opinion-formation game in undirected graphs. After this,

we discuss two slight extensions to the model: in the first, each player can put a

different amount of weight on her internal opinion; and in the second, each player

has several fixed opinions she listens to instead of an internal opinion. We show

that both models can be reduced to the basic form of the model which we study

first.

For undirected graphs we can simplify the social cost to the following form:

c(z) =
∑
i

(zi − si)2 + 2
∑

(i,j)∈E,i>j

wi,j(zi − zj)2.
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We write this concisely in matrix form as c(z) = zTAz + ||z − s||2, where the

matrix A = 2L captures the tension on the edges. Recall that L is the weighted

Laplacian of G and is defined by setting Li,i =
∑

j∈N(i) wi,j and Li,j = −wi,j.

The optimal solution is the y minimizing c(·). By taking derivatives, we see that

the optimal solution satisfies (A + I)y = s. Since the Laplacian of a graph is a

positive semidefinite matrix, it follows that A + I is positive definite. Therefore,

(A+ I)y = s has a unique solution: y = (A+ I)−1s. In comparison, as we showed

in Claim 2.2.1, the Nash equilibrium is x = (L+ I)−1s = (1
2
A+ I)−1s.

We now begin our discussion on the price of anarchy (PoA) of the opinion

game — the ratio between the cost of the optimal solution and the cost of the

Nash equilibrium.

Our main theorem is that the price of anarchy of the opinion game is at most

9/8. Before proceeding to prove the theorem we present a simple upper bound of

2 on the PoA for undirected graphs. To see why this holds, note that the Nash

equilibrium actually minimizes the function zT (1
2
A)z + ||z − s||2 (one can verify

that this function’s partial derivatives are the system of equations defining the

Nash equilibrium). This allows us to write the following bound on the PoA:

PoA =
c(x)

c(y)
≤

2(xT (1
2
A)x+ ||x− s||2)

c(y)

≤
2(yT (1

2
A)y + ||y − s||2)

c(y)

≤ 2c(y)

c(y)
= 2.

We note that this bound holds only for the undirected case, as in the directed case

the Nash equilibrium does not minimize zT (1
2
A)z + ||z − s||2 anymore.

We now state the main theorem of this section.
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Theorem 2.3.1 For any graph G and any internal opinions vector s, the price of

anarchy of the opinion game is at most 9/8.

Proof: The crux of the proof is relating the price of anarchy of an instance

to the eigenvalues of its Laplacian. Specifically, we characterize the graphs and

internal opinion vectors with maximal PoA. In these worst-case instances at least

one eigenvalue of the Laplacian is exactly 1, and the vector of internal opinions is

a linear combination of the eigenvectors associated with the eigenvalues 1, plus a

possible constant shift for each connected component. As a first step we consider

two matrices B and C that arise by plugging the Nash equilibrium and optimal so-

lution we previously computed into the cost function and applying simple algebraic

manipulations:

c(z) = ‖z − s‖2 + zTAz

= (zT z − 2sT z + sT s) + zTAz

= zT (A+ I)z − 2sT z + sT s.

c(y) = sT (A+ I)−1(A+ I)(A+ I)−1s− 2sT (A+ I)−1s+ sT s

= sT [I − (A+ I)−1︸ ︷︷ ︸
B

]s.

c(x) = sT (L+ I)−1(A+ I)(L+ I)−1s− 2sT (L+ I)−1s+ sT s

= sT (L+ I)−1
[
A+ I − 2(L+ I) + (L+ I)2

]
(L+ I)−1s

= sT [(L+ I)−1(A+ L2)(L+ I)−1︸ ︷︷ ︸
C

]s.

Next, we show that the matrices A,B,C are simultaneously diagonalizable:

there exists an orthogonal matrix Q such that A = QΛAQT , B = QΛBQT and
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C = QΛCQT , where for a matrix M the notation ΛM represents a diagonal matrix

with the eigenvalues λM1 , . . . , λ
M
n of M on the diagonal.

Lemma 2.3.2 A,B and C are simultaneously diagonalizable by a matrix Q whose

columns are eigenvectors of A.

Proof: It is a standard fact that any real symmetric matrix M can be diag-

onalized by an orthogonal matrix Q such that M = QΛMQT . Q’s columns are

eigenvectors of M which are orthogonal to each other and have a norm of one.

Thus in order to show that A, B and C can be diagonalized with the same matrix

Q it is enough to show that all three are symmetric and have the same eigenvectors.

For this we use the following basic fact:

If λN is an eigenvalue of N , λM is an eigenvalue of M and w is an

eigenvector of both then:

1. 1
λM

is an eigenvalue of M−1 and w is an eigenvector of M−1.

2. λN + λM is an eigenvalue of N + M and w is an eigenvector of

N +M .

3. λN · λM is an eigenvalue of NM and w is an eigenvector of NM .

From this we can show that any eigenvector of A is also an eigenvector of B and

C. Recall that A is a symmetric matrix, thus, it has n orthogonal eigenvectors

which implies that A,B and C are all symmetric and share the same basis of

eigenvectors. Therefore A,B and C are simultaneously diagonalizable.

We can now express the PoA as a function of the eigenvalues of B and C. By
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defining ŝ = QT s we have:

PoA =
c(x)

c(y)
=
sTCs

sTBs
=
sTQΛCQT s

sTQΛBQT s

=
ŝTΛC ŝ

ŝTΛB ŝ
=

∑n
i=1 λ

C
i ŝ

2
i∑n

i=1 λ
B
i ŝ

2
i

≤ max
i

λCi
λBi

The final step of the proof consists of expressing λCi and λBi as functions of the

eigenvalues of A (denoted by λi) and finding the value for λi maximizing the ratio

between λCi and λBi .

Lemma 2.3.3 maxi
λCi
λBi
≤ 9/8. The bound is tight if and only if there exists an i

such that λi = 2.

Proof: Using the basic facts about eigenvalues which were mentioned in the

proof of Lemma 2.3.2, we get:

λBi = 1− 1

λi + 1
=

λi
λi + 1

.

λCi =
λi + λ2

i /4

(λi/2 + 1)2
=
λ2
i + 4λi

(λi + 2)2
.

We can now write λCi /λ
B
i = φ(λi), where φ is a simple rational function:

φ(λ) =
(λ2 + 4λ)/(λ+ 2)2

λ/(λ+ 1)
=

(λ2 + 4λ)(λ+ 1)

(λ+ 2)2λ
=

(λ+ 4)(λ+ 1)

(λ+ 2)2
=
λ2 + 5λ+ 4

λ2 + 4λ+ 4
.

By taking the derivative of φ, we find that φ is maximized over all λ ≥ 0 at

λ = 2 and φ(2) = 9/8.

The eigenvalues λi are all non-negative, so it is always true that maxi φ(λi) ≤

9/8. If 2 is an eigenvalue of A (and hence 1 is an eigenvalue of the Laplacian)

then there exists an internal opinions vector s for which the PoA is 9/8. What is
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the internal opinions vector maximizing the PoA? Rewriting our expression from

above, we have

PoA =

∑n
i=1 ŝ

2
iλ

B
i φ(λi)∑n

i=1 ŝ
2
iλ

B
i

,

i.e. the price of anarchy is a weighted average of the values φ(λi), where the

weights are given by ŝ2
iλ

B
i . The only way to achieve the maximum value is if the

only nonzero weights are on eigenvalues maximizing φ(λ). Because λBi is positive

whenever λi is positive, this means that to achieve a PoA of 9/8, ŝ2
i can only be

nonzero if λi = 2 or λi = 0. Recall that s = Qŝ, where the columns of Q are

the eigenvectors of A. Thus, any internal opinion vector that is an eigenvector

of A with eigenvalue 2 plus some null vector of A will achieve the maximal price

of anarchy. In particular, since the all-ones vector is always an eigenvector of

the weighted Laplacian matrix (and thus A) we have that there exists an internal

opinions vector where all the opinions are positive for which the maximal PoA is

achieved.

With Lemma 2.3.3, we have completed the proof of Theorem 2.3.1.

Corollary 2.3.4 We can scale the weights of any graph to make its PoA be 9/8.

If α is the scaling factor for the weights, then the eigenvalues of the scaled A matrix

are αλi. Therefore by choosing α = 2
λi

for any eigenvalue other than 0 we get that

there exists an internal opinions vector for which the PoA is 9/8.
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2.3.1 Arbitrary Node Weights and Players with Fixed

Opinions

Our first extension is a model in which different people put different weights on

their internal opinion. In this extension, each node in the graph has a strictly

positive weight γi and the cost function is

c1(z) =
∑
i

γi(zi − si)2 +
∑
j∈N(i)

wi,j(zi − zj)2

 = (z − s)TΓ(z − s) + zTAz,

where Γ is the diagonal matrix of node weights γi and A = 2L is defined as in the

previous section. In the next claim we show that the bound of 9/8 on the PoA

holds even in this model:

Claim 2.3.5 The PoA of the game with arbitrary strictly positive node weights is

bounded by 9/8.

Proof: We define the scaled variables ẑ = Γ1/2z, ŝ = Γ1/2s and the scaled

matrices Â = Γ−1/2AΓ−1/2 and L̂ = Γ−1/2LΓ−1/2 = Â/2. Now, in terms of the

scaled variables, we have

c1(z) = (z − s)TΓ(z − s) + zTAz

= (ẑ − ŝ)T (ẑ − ŝ) + ẑT Âẑ

= ‖ẑ − ŝ‖2 + ẑT Âẑ,

and the Nash equation (L + Γ)x = Γs can similarly be multiplied by Γ−1/2 and

rewritten in terms of the scaled variables as (L̂ + I)x̂ = ŝ. Thus, in terms of the

scaled variables the problem takes exactly the same form as in the previous section,

and the argument of Theorem 2.3.1 applies.
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Next we show how to handle the case in which a subset of the players may have

node weights of 0, which can equivalently be viewed as a set of players who have

no internal opinion at all.

Lemma 2.3.6 The PoA of the game with non-negative node weights is bounded

by 9/8.

Proof: We assume without loss of generality that every connected component

of G includes at least one player i with weight γi > 0. Observe that otherwise, the

cost associated with this connected component both in the Nash equilibrium and

in the optimal solution is 0 and hence we can ignore this component. We begin by

showing the matrix L+ Γ is positive definite, and thus nonsingular. Both L and Γ

are semidefinite, so we only need to show that their sum is definite. If zTLz = 0,

then z is constant over each connected component of G; and if zTΓz = 0, then

z is zero for at least one node in each component. Therefore, zTLz = zTΓz = 0

if and only if z = 0. Because A=2L , the same argument shows that A + Γ is

nonsingular. Thus, the Nash equilibrium equations (L + Γ)x = Γs and the social

optimality equation (A+ Γ)y = Γs each have a unique solution.

To show the PoA is bounded by 9/8, consider a modified problem with weights

γi + ε for ε ≥ 0. Because L + Γ + εI and A + Γ + εI are nonsingular for all

ε ≥ 0, the Nash equilibrium xε = (L+ Γ + εI)−1(Γ + εI)s and the social optimum

yε = (A + Γ + εI)−1(Γ + εI)s are both continuous functions of ε. The modified

social cost c1,ε(z) is a continuous function of both ε and z. Therefore,

PoAε =
c1,ε(xε)

c1,ε(yε)

is a continuous function in ε, provided that c1,ε(yε) 6= 0. Thus, there are two cases:
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1. At least one connected component of G includes nodes i and j with γi and γj

both positive and si 6= sj. In this case c1,ε(yε) 6= 0 for any ε > 0, and PoAε

is a continuous function of ε for any ε ≥ 0. Because PoAε ≤ 9/8 for ε > 0,

continuity implies PoA0 ≤ 9/8.

2. No connected component of G includes nodes i and j with γi and γj both

positive and si 6= sj. In this case, xε = yε is constant on each connected

compoment, and c1,ε(xε) = c1,ε(yε) = 0 for any ε ≥ 0. In this case, we define

the price of anarchy to be 1, which is bounded by 9/8.

In the second model we present, some nodes have fixed opinions and others do

not have an internal opinion at all. We partition the nodes into two sets A and

B. Nodes in B are completely fixed in their opinion and are non-strategic, while

nodes in A have no internal opinion – they simply want to choose an opinion that

minimizes their disagreement with their neighbors (which may include a mix of

nodes in A and B). We can think of nodes in A as people forming their opinion

and of nodes in B as news sources with a specific fixed orientation. We denote the

fixed opinion of a node j ∈ B by sj. The cost for player i ∈ A in this model is

c2
i (z) =

∑
j:(i,j)∈EAB

wi,j(zi − sj)2 +
∑

j:(i,j)∈EAA

wi,j(zi − zj)2,

where EAB and EAA denote the edges between A and B and between A and

A, respectively. Note that this clearly generalizes the original model, since we

can construct a distinct node in B to represent each internal opinion. Next, we

perform the reduction in the opposite direction, reducing this model to the basic

model. To do this, we assign each node an internal opinion equal to the weighted

average of the opinions of her fixed neighbors, and a weight equal to the sum of her
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fixed neighbors’ weights. We then show that the PoA of the fixed opinion model

is bounded by the PoA of the basic model and thus get:

Proposition 2.3.7 The PoA of the fixed opinion model is at most 9/8 .

Proof: We assume without loss of generality that any component of the

subgraph G′ on nodes in A has an edge to some node in B. This is a valid

assumption as the cost associated with any component that do not have such an

edge is 0 both in the Nash equilibrium and in the optimal solution. Hence, we can

ignore such components. For each player i ∈ A with edges into B, define the total

edge weight γi and the weighted mean si and variance νi of the fixed opinions of

neighbors as

γi =
∑

j:(i,j)∈EAB

wi,j

si =
1

γi

∑
j:(i,j)∈EAB

wi,jsj

νi =
1

γi

∑
j:(i,j)∈EAB

wi,j(s
2
j − s2

i ).

For convenience, let γi, si, and νi be zero for nodes with no edges into B. Note

that
∑

j:(i,j)∈EAB wi,j(zi − sj)
2

=

 ∑
j:(i,j)∈EAB

wi,j

 z2
i − 2

 ∑
j:(i,j)∈EAB

wi,jsj

 zi +

 ∑
j:(i,j)∈EAB

wi,js
2
j


= γiz

2
i − 2γisizi + γi(νi + s2

i )

= γi(zi − si)2 + γiνi.

Thus, the cost for a player i ∈ A in the fixed opinion game is

c2
i (z) = γiνi + γi(zi − si)2 +

∑
j:(i,j)∈EAA

wi,j(zi − zj)2 = c1
i (z) + γiνi,
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where c1(z) is the cost for the game played on the subgraph G′ over the nodes in

A with node weights γi and intrinsic opinions si. Similarly, the social cost in the

fixed opinion game is

c2(z) = c1(z) + ν,

where ν =
∑

i γiνi. Because the variance costs are independent of z, we have that

∂c2
i /∂zj = ∂c1

i /∂zj; thus, the equations for the Nash opinion vector and the optimal

opinion vector are the same as in the previous model with arbitrary weights. From

Lemma 2.3.6, we know c1(x) ≤ 9
8
c2(y); therefore,

c2(x) = c1(x) + ν ≤ 9

8
c1(y) + ν ≤ 9

8
c1(y) +

9

8
ν =

9

8
c2(y).

Hence, the price of anarchy is again bounded by 9/8.

2.4 Directed Graphs

We begin our discussion of directed graphs with an example showing that the

price of anarchy can be unbounded even for graphs with bounded degrees. Our

main result in this section is that we can nevertheless develop spectral methods

extending those in Section 2.3 to find internal opinions that maximize the PoA for

a given graph. Using this approach, we identify classes of directed graphs with

good PoA bounds.

In the introduction we have seen that the PoA of an in-directed star can be

unbounded. As a first question, we ask whether this is solely a consequence of the

unbounded maximum in-degree of this graph, or whether it is possible to have an

unbounded PoA for a graph with bounded degrees. Our next example shows that
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one can obtain a large PoA even when all degrees are bounded: we show that the

PoA of a bounded degree tree can be Θ(nc), where c ≤ 1 is a constant depending

on the in-degrees of the nodes in the tree.

Example 2.4.1 Let G be a 2k-ary tree of depth log2k n in which the internal opin-

ion of the root is 1 and the internal opinion of every other node is 0. All edges

are directed toward the root. In the Nash equilibrium all nodes at layer i hold the

same opinion, which is 2−i. (The root is defined to be at layer 0.) The cost of

a node at layer i is 2 · 2−2i. Since there are 2ik nodes at layer i, the total social

cost at Nash equilibrium is

log
2k
n∑

i=1

2ik21−2i = 2

log
2k
n∑

i=1

2(k−2)i. For k > 2 this cost is

2k−1 (2k−2)log
2k
n − 1

2k−2 − 1
= 2k−1n

k−2
k − 1

2k−2 − 1
. The cost of the optimal solution is at most

1; in fact it is very close to 1, since in order to reduce the cost the root should

hold an opinion of ε very close to 0, which makes the root’s cost approximately 1.

Therefore the PoA is Θ(n
k−2
k ). It is instructive to consider the PoA for extreme

values of k. For k = 2, the PoA is Θ(log n), while for k = log n we recover the

in-directed star from the introduction where the PoA is Θ(n). For intermediate

values of k, the PoA is Θ(nc). For example, for k = 3 we get that the PoA is

Θ(n
1
3 ).

For directed graphs we do not consider the generalization to arbitrary node

weights (along the lines of Section 2.3.1), noting instead that introducing node

weights to directed graphs can have a severe effect on the PoA. That is, even in

graphs containing only two nodes, introducing arbitrary node weights can make

the PoA unbounded. For example, consider a graph with two nodes i and j. Node

i has an internal opinion of 0 and a node weight of 1, while node j has an internal

opinion of 1 and a node weight of ε. There is a directed edge (i, j) with weight 1.

The cost of the Nash equilibrium is 1/2, but the social cost of the optimal solution
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is smaller than ε. Thus, from now on we restrict our attention to uniform node

weights.

2.4.1 The Price of Anarchy in a General Graph

For directed graphs we can define matrices B and C, similarly to their definition

for undirected graphs, such that the cost of the optimal solution and the cost of

the Nash equilibrium are respectively c(y) = sTBs and c(x) = sTCs. Recall that

the matrix A is used in the social cost function to capture the cost associated

with the edges of the graph (disagreement between neighbors). We define it for

directed graphs by setting Ai,j = −wi,j − wj,i for i 6= j and Ai,i =
∑

j∈N(i)wi,j +∑
{j|i∈N(j)}wj,i. The matrix A can be also interpreted as the weighted Laplacian

for an undirected graph where the weight on the undirected edge (i, j) is the sum

of the weights in the directed graph for edges (i, j) and (j, i). Note that A is no

longer a linear function of L, which is what makes analyzing the PoA of directed

graphs more challenging. Recall that the matrices B and C are defined as follows:

B = I − (A+ I)−1

C = (L+ I)−T (A+ LTL)(L+ I)−1.

The price of anarchy, therefore, is
sTCs

sTBs
as before. The primary distinction

between the price of anarchy in the directed and undirected cases is that in the

undirected case, B and C are both rational functions of A. In the directed case, no

such simple relation exists between B and C, so that we cannot easily bound the

generalized eigenvalues for the pair (and hence the price of anarchy) for arbitrary

graphs. However, given a directed graph our main theorem shows that we can

always find the vector of internal opinions s yielding the maximum PoA:
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Theorem 2.4.2 Given a graph G it is possible to find the internal opinions vector

s yielding the maximum PoA up to a precision of ε in polynomial time.

Proof: The total social cost is invariant under constant shifts in opinion. There-

fore, without loss of generality, we restrict our attention to the space of opinion

vectors with mean zero. Let us define a matrix P ∈ Rn×(n−1) to have Pj,j = 1,

Pj+1,j = −1, and Pi,j = 0 otherwise. The columns of P are a basis for the space of

vectors with mean zero; that is, we can write any such vector as s = P ŝ for some ŝ.

We also define matrices B̄ = P TBP and C̄ = P TCP , which are positive definite if

the symmetrized graph is connected. The price of anarchy for internal opinion vec-

tor s is
ŝT C̄ŝ

ŝT B̄ŝ
which is also known as the generalized Rayleigh quotient ρC̄,B̄(ŝ). To

compute the maximum value that the PoA can take we observe that the stationary

points of ρC̄,B̄(·) satisfy the generalized eigenvalue equation (C̄ − ρC̄,B̄(ŝ)B̄)ŝ = 0.

In particular, the maximal price of anarchy is the largest generalized eigenvalue,

and the associated eigenvector ŝ∗ corresponds to the maximizing choice of internal

opinions.

The solution of generalized eigenvalue problems is a standard technique in

numerical linear algebra, and there are good algorithms that run in polynomial

time; see [50, §8.7]. In particular, because B̄ is symmetric and positive definite,

we can use the Cholesky factorization B̄ = RTR to reduce the problem to the

standard eigenvalue problem (R−T C̄R−1 − λI)(Rŝ) = 0.

2.4.2 Upper Bounds for Classes of Graphs

Our goal in this section is rather simple: we would like to find families of graphs

for which we can bound the price of anarchy. The main tool we use is bounding

39



the cost of the Nash equilibrium by a function of a simple structure. By using a

function that has a similar structure to the social cost function we are able to frame

the bound as a generalized eigenvalue problem that can be solved using techniques

similar to the ones that were used in proving Theorem 2.3.1.

Proposition 2.4.3 Let G be a graph family for which there exists a β such that

for any G ∈ G and any internal opinion vector s, we have c(x) ≤ minz c̃(z),

where c̃(z) = β(zTAz) + ||z − s||2. Then, ∀G ∈ G and internal opinion vector s,

PoA(G) ≤ β+βλ2
1+βλ2

, where λ2 is the second smallest eigenvalue of A.

Proof: Let ỹ = (βA + I)−1s be the vector minimizing c̃(·). We can derive the

following bound on the price of anarchy:

PoA(G) =
c(x)

c(y)
≤ c̃(ỹ)

c(y)
=
sT C̃s

sTBs
,

where C̃ and B are defined similarly to the matrices in Theorem 2.3.1:

B = I − (A+ I)−1

C̃ = I − (βA+ I)−1

and are simultaneously diagonalizable. If λi is an eigenvalue of A then λBi =

λi
1+λi

and λC̃i = βλi
1+βλi

. As before, the maximum PoA is achieved when λC̃i /λ
B
i =

βλi
1+βλi

/ λi
1+λi

= βλi+β
βλi+1

is maximized. The maximum here is taken over all eigenvalues

different than 0 as we know that the PoA for the internal opinions vector associated

with eigenvalue 0 (which is a constant vector) is 1. Therefore, for a connected graph

the maximizing eigenvalue is λ2.

An immediate corollary is that if there exists a β as in Proposition 2.4.3 then

the PoA is bounded by this β.
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We say that an unweighted bounded degree antisymmetric expander is an un-

weighted directed graph that does not contain any pair of oppositely oriented edges

(i, j) and (j, i), and whose symmetrized graph has maximum degree ∆ and edge

expansion α. We show:

Claim 2.4.4 Let Ge ⊆ G be a graph family consisting of unweighted bounded degree

antisymmetric expanders for which the β defined in Proposition 2.4.3 exists. The

PoA of G ∈ Ge is bounded by O(∆2/α2).

Proof: For an antisymmetric graph, the matrix A is simply the Laplacian

of the underlying graph; this is why we require in this claim that the graph is

antisymmetric.

If ∆ is the maximum degree, then we have λ2 ≤ λn ≤ ∆. We also have

that λ2 ≥ α2/2∆ [30]. We can now use this to bound the expression we got in

Proposition 2.4.3 for the PoA in terms of the graph’s expansion as follows:

β + βλ2

1 + βλ2

≤ β + βλ2

βλ2

≤ 1 + λ2

λ2

≤ 2∆(1 + ∆)

α2
= O(∆2/α2).

The next natural question is for which graph families such a β exists. Intu-

itively, such a β exists whenever the cost of the Nash equilibrium is smaller than

the cost of the best consensus — that is, the optimal solution restricted to opinion

vectors in which all players hold the same opinion (constant vectors). This is true

since the function β(zTAz) + ||z − s||2 is the social cost function of a network

in which the weights of all edges have been multiplied by β. However using this

intuition for finding graph families for which β exists is difficult and furthermore

does not help in computing the value of β (or a bound on it). Hence, we take a dif-

ferent approach. In Lemma 2.4.5, we introduce an intermediate function g(·) with
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the special property that its minimum value is the same as the cost of the Nash

equilibrium. By showing that there exists a β such that g(z) ≤ βzTAz + ||z − s||2

we are able to present bounds for Eulerian bounded-degree graphs and additional

bounds for Eulerian bounded-degree antisymmetric expanders. As a first step, we

prove the following:

Lemma 2.4.5 For Eulerian graphs, the social cost at Nash equilibrium is c(x) =

minz g(z), where g(z) = zTMz + ‖z − s‖2 and M = A+ LLT .

Proof: In the Eulerian case we have A = L + LT , and we use this to simplify

the expression

C = (L+ I)−T (A+ LTL)(L+ I)−1.

We first note that

A+ LTL = L+ LT + LTL = (L+ I)T (L+ I)− I,

then substitute to find

C = (L+ I)−T
[
(L+ I)T (L+ I)− I

]
(L+ I)−1

= I − (L+ I)−T (L+ I)−1

= I −
[
(L+ I)(L+ I)T

]−1

= I − (M + I)−1.

Where the last transition was based in the fact that

(L+ I)(L+ I)T − I = L+ LT + LLT = A+ LLT = M

Because M is positive semidefinite, g(z) has a unique minimizer ŷ = (M + I)−1s;

proceeding as in the derivation for the cost at optimality, we find the minimum
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value achieved is

g(ŷ) = ŷT (M + I)ŷ − 2sT ŷ + sT s = sT
[
I − (M + I)−1

]
s = sTCs = c(x).

Recall that ∆ is the maximum degree of an Eulerian graph. We are now ready

to prove the following proposition:

Proposition 2.4.6 For unweighted bounded degree Eulerian graphs c(x) ≤

minz(∆ + 1)(zTAz) + ||z − s||2.

Proof: By Lemma 2.4.5 we have that for Eulerian graphs c(x) = minz g(z) =

minz z
T (A + LLT )z + ||z − s||2. What remains to show is that for β = ∆ + 1 it

holds that g(z) ≤ βzTAz + ||z − s||2. After some rearranging this boils down to

showing that the following holds: zTLLT z ≤ (β − 1)zTAz.

Note that A is the Laplacian for a symmetrized version of the graph; assuming

this graph is connected (since otherwise we can work separately in each compo-

nent), this means A has one zero eigenvalue corresponding to the constant vectors,

and is positive definite on the space orthogonal to the constant vector. Similarly,

LLT has a zero eigenvalue corresponding to the constant vectors, and is at least

positive semi-definite on the space orthogonal to the constant vectors. Since A is

positive definite on the space of non-constant vectors, the smallest possible β can

be computed via the solution of a generalized eigenvalue problem

β = 1 + max
z 6=αe

zTLLT z

zTAz
,

where e denotes the all-ones vector. In the case of an unweighted graph, one get a

bound via norm inequalities. Using the fact that the graph is Eulerian, LT is also
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a graph Laplacian, and we can write

(
LT z

)
i

=
n∑
j=1

wj,i(zi − zj),

so

zTLLT z =
n∑
i=1

(
n∑
j=1

wj,i(zi − zj)

)2

.

Similarly, we expand the quadratic form zTAz into

zTAz =
∑
i<j

(wi,j + wj,i)(zi − zj)2 =
n∑
i=1

(
n∑
j=1

wj,i(zi − zj)2

)
.

Now, recall that in general
(∑d

j=1 xj

)2

≤ d
∑d

j=1 x
2
j , which means that in the

unweighted case
(∑n

j=1 wj,i(zi − zj)
)2

≤ di

(∑n
j=1wj,i(zi − zj)2

)
. where di =∑

j wj,i is the in-degree of node i (which is the same as the out-degree). Therefore,

zTLLT z

zTAz
≤
∑n

i=1 di
∑n

j=1wj,i(zi − zj)2∑n
i=1

∑n
j=1 wj,i(zi − zj)2

≤ max
i
di = ∆.

So for a general Eulerian graph, β ≤ 1 + ∆.

We observe that for a cycle the bound of 2 on the price of anarchy is actually

tight:

Observation 2.4.7 The PoA of a directed cycle is bounded by 2 and approaches

2 as the size of the cycle grows.

Proof: For a cycle it is the case that A = LLT ; therefore g(z) = 2(zTAz) +

||z − s||2, and hence the bound assumed in Proposition 2.4.3 is actually a tight

bound. In order to show that the PoA indeed approaches 2 we need to show that

λ2 approaches 0 as the size of the cycle grows. The fact that A is the Laplacian
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of an undirected cycle comes to our aid and provide us an exact formula for λ2:

λ2 = 2(1− cos(2π
n

)), where n is the size of the cycle ([30]), and this concludes the

proof.

For general Eulerian graphs we leave open the question of whether the bound

of ∆ + 1 is a tight bound or not. Indeed, it is an intriguing open question whether

there exists a Eulerian graph with PoA greater than 2.

2.5 Adding Edges to the Graph

The next thing we consider is the following class of problems: Given an unweighted

graph G and a vector of internal opinions s, find edges E ′ to add to G so as to

minimize the social cost of the Nash equilibrium. We begin with a general bound

linking the possible improvement from adding edges to the price of anarchy. Let G

be a graph (either undirected or directed). Denote by cG(·) the cost function and by

x and y the Nash equilibrium and optimal solution respectively. LetG′ be the graph

constructed by adding edges to G. Then:
cG(x)

cG′(x′)
≤ cG(x)

cG′(y′)
≤ cG(x)

cG(y)
= PoA(G).

To see why this is the case, we first note that cG′(y
′) ≤ cG′(x

′) since the cost

of the Nash equilibrium cannot be smaller than the optimal solution. Second,

cG(y) ≤ cG′(y
′) simply because cG′(·) contains more terms than cG(·). Therefore

we have proved the following proposition:

Proposition 2.5.1 Adding edges to a graph G can improve the cost of the Nash

equilibrium by a multiplicative factor of at most the PoA of G.

We study three variants on the problem, discussed in the introduction. In all

variants, we seek the “best” edges to add in order to minimize the social cost of
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the Nash equilibrium. The variants differ mainly in the types of edges we may

add.

Adding edges from a specific node

First, we consider the case in which we can only add edges from a specific node

w. Here we imagine that node w is a media source that therefore does not have

any cost for holding an opinion, and so we will use a cost function that ignores

the cost associated with it when computing the social cost. Hence, our goal is to

find a set of nodes F such that adding edges from node w to all the nodes in F

minimizes the cost of the Nash equilibrium while ignoring the cost exhibited by w.

By reducing the subset sum problem to this problem we show that:

Proposition 2.5.2 Finding the best set of edges to add from a specific node w is

NP-hard.

Proof: Denote by G + F the graph constructed by adding to G edges from w

to all nodes in F . Our goal is to find a set F minimizing c̃G+F (x), where x is a

Nash equilibrium in the graph G + F and c̃ denotes the total cost of all nodes in

x except for node w. We show that finding this set is NP-hard by reducing the

subset sum problem to this problem. Recall that in the subset sum problem we are

given a set of positive integers a1, . . . , an and a number t. We would like to know

if there exists any subset S such that
∑

j∈S aj = t. Given an instance of the subset

problem, we reduce it to the following instance of the opinion game. The instance

contains an in-directed star with n peripheral nodes that have an internal opinion

of 0 and a center node w which has an internal opinion of 1 and n isolated nodes

that have internal opinions of −ai
t

. This construction is illustrated in Figure 2.3.
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Figure 2.3: An illustration of the instance structured for Proposition 2.5.2.

Lemma 2.5.3 For the graph G and the vector of internal opinions s defined above,

there exists a set F such that c̃G+F (x) = 0 if and only if the answer to the subset

problem is yes.

Proof: As seen in the introduction, in the Nash equilibrium each one of the

peripheral nodes holds an opinion of 1
2
xw. Node w hold an opinion of xw =

1 +
∑

j∈F sj

1 + |F |
. As we assume that w does not incur any cost, the cost of the Nash

equilibrium in G+ F is just the cost of the n peripheral nodes:

c̃G+F (x) = n

(
(
1

2
xw − 0)2 + (xw −

1

2
xw)2

)
= 2n

(
1 +

∑
j∈F sj

2(1 + |F |)

)2

.

Clearly the cost is nonnegative as it is a sum of quadratic terms; moreover it

equals 0 if and only if
∑

j∈F sj = −1. Defining F ′ = {j ∈ F |sj < 0}, we have∑
j∈F ′ sj = −1. By the reduction we have that

∑
j∈F ′ −

aj
t

= −1; if we multiply

by −t we get that
∑

j∈F ′ aj = t implying that there exists a solution to the subset

sum problem.
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Adding edges to a specific node

Next, we consider the case in which we can only add edges to a specific node. We

can imagine again that node w is a media source; in this case, however, our goal

is to find the best set of people to expose to this media source. By reducing the

minimum vertex cover problem to this problem we show that:

Proposition 2.5.4 Finding the best set of edges to add to a specific node w is

NP-hard.

Proof: Given an instance of the minimum vertex cover problem, consisting of

an undirected graph G′ = (V ′, E ′), we construct an instance of the opinions game

as follows:

• For each edge (i, j) ∈ E ′ we create a vertex vi,j with internal opinion 1.

• For every vi,j we create an in-directed star with 24 peripheral nodes that

have an internal opinion of 0. We later refer to node vi,j and all the nodes

directed to it as vi,j’s star.

• For each vertex i ∈ V ′ we create a vertex ui with internal opinion 1.

• For each edge (i, j) ∈ E ′ we create directed edges (vi,j, ui) and (vi,j, uj).

• We create an isolated node w with internal opinion −3.

We illustrate some of this construction in Figure 2.4.

Let T be the set of vertices such that adding edges from all the nodes in T to

node w minimizes the cost of the Nash equilibrium. Denote by G + T the graph

constructed by adding to G edges from all nodes in T to w. Consider some node
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Figure 2.4: A partial illustration of the construction in Proposition 2.5.4.

b with internal opinion of 0. Observe that since nodes with internal opinion of 0

do not have any incoming edges, any edge that would be added from b to w would

only effect b’s cost. Since adding an edge from b to w amounts to adding a positive

term to b’s cost function, it cannot be the case that this improves b’s cost and thus

the total social cost. Thus, T contains only vertices of type vi,j and ui. In the table

in Figure 2.5 we compute vi,j’s opinion in the Nash equilibrium and the cost of its

star as a function of which vertices that influence vi,j are in T . For example in the

first row we consider the case in which vi,j, ui, uj /∈ T . In this case, vi,j’s opinion

is (1 + 1 + 1)/3 = 1 and the cost of its star is 1
2
· 24 = 12. We use the costs in this

table to reason about the structure of T and the cost of the Nash equilibrium in

G+ T .

Configuration vi,j’s opinion vi,j’s star cost
1 vi,j, ui, uj /∈ T 1 12
2 vi,j ∈ T, ui, uj /∈ T 0 12
3 vi,j, ui ∈ T, uj /∈ T −1/2 14
4 vi,j, ui, uj ∈ T −1 20
5 vi,j, uj /∈ T, ui ∈ T 1/3 4
6 vi,j /∈ T, ui, uj ∈ T −1/3 4

Figure 2.5: The total cost of vi,j’s star for different configurations

In Lemma 2.5.5 we show how to construct from T a set T ′ such that cG+T ′(x
′) =

cG+T (x) and T ′ is a pseudo vertex cover. We say that a set T ′ is a pseudo vertex
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cover if it obeys two properties: (i) it contains only vertices of the type ui. (ii) the

vertices in V ′ corresponding to the ui’s in V constitute a vertex cover in G′.

Next, we consider the cost of the Nash equilibrium in the graph G + S where

S is a pseudo vertex cover: By the table in Figure 2.5 we have the cost associated

with every vi,j’s star is 4. This is by the fact that S is a pseudo vertex cover and

hence the only applicable cases are 5 and 6, in both cases the total cost of vi,j’s star

is 4. Also, note that the cost for each ui ∈ S is 8. Hence, the total cost of the Nash

equilibrium for network G+S is f(S) = 4|E|+8|S|. By construction, T ′ is a pseudo

vertex cover and it also minimizes f(·), since cG+T (x) = cG+T ′(x
′) = 4|E| + 8|T ′|

and T is optimal. Therefore T ′ corresponds to a minimum vertex cover in G′. A

key element in this reduction is the property that the cost of vi,j’s star is the same,

whether ui ∈ T ′ or both ui and uj belong to T ′.

Lemma 2.5.5 There exists a pseudo vertex cover T ′ such that cG+T ′(x
′) =

cG+T (x)

Proof: First, we obtain T ′′ by removing from T all vertices of type vi,j. We have

that cG+T ′′(x
′′) ≤ cG+T (x) since by examining the table in Figure 2.5 we observe

that including vertices of type vi,j in T ′′ can only increase the cost of the Nash

equilibrium. Since T is optimal, it has to be the case that cG+T ′′(x
′′) = cG+T (x).

Next, to get T ′ we take T ′′ and for each vertex vi,j such that ui, uj /∈ T ′′ we add ui

to T ′. By adding these vertices we have not increased the cost since in the worst

case vi,j’s star and ui have a total cost of 12 which is the same as their previous

total cost. As before by the optimality of T we could not have reduced the cost by

adding the vertices, therefore it still holds that cG+T ′(x
′) = cG+T (x). To complete

the proof observe that by construction T ′ is a pseudo vertex cover.
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Adding an arbitrary set of edges

In the last case we consider, which is the most general one, we can add any set

of edges. For this case we leave open the question of the hardness of adding an

unrestricted set of edges. We do show that finding the best set of k arbitrary edges

is NP-hard. This is done by a reduction from k-dense subgraph [39] :

Proposition 2.5.6 Finding a best set of arbitrary k edges is NP-hard.

Proof: We show a reduction from the “Dense k-Subgraph Problem” defined

in [39]: given an undirected graph G′ = (V ′, E ′) and a parameter k, find a set

of k vertices with maximum average degree in the subgraph induced by this set.

Given an instance of the “Dense k-Subgraph Problem” we create an instance of

the opinion game as follows: (illustrated in Figure 2.6)

• For every edge (i, j) ∈ E ′ we create a node vi,j with internal opinion 0.

• For every vertex i ∈ V ′ we create a node ui with internal opinion 1.

• For every vi,j we add directed edges (vi,j, ui) and (vi,j, uj).

• For every ui we create an in-directed star with 2n3 peripheral nodes that

have an internal opinion of 0. We later refer to node ui and all the nodes

directed to it as ui’s star.

• Finally, we create a single isolated vertex w with internal opinion −1.

The proof is composed of two lemmas. In Lemma 2.5.7 we show that all edges

in the minimizing set are of type (ui, w). Then we denote by T the set of nodes
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Figure 2.6: A partial illustration of the construction in Proposition 2.5.6.

of type ui such that adding an edge from each one of these nodes to w minimizes

the cost, and in Lemma 2.5.8 we show that T is a k densest subgraph.

Lemma 2.5.7 The best set of edges to add contains only edges from nodes of type

ui to w.

Proof: Observe that by construction connecting a node of type ui to w reduces

the cost of ui’s star from n3 to less than 2. Thus, the reduction in the cost for

choosing k nodes of type ui and connecting them to w is at least k(n3 − 2). Now,

assume towards a contradiction that the set T of best edges includes some edges of

type different than (ui, w). Consider the set of nodes that their cost was effected

as the result of the addition of these edges. Let t < k be the number of stars that

include at least a single effected node. The total cost of all nodes in this effected

set is at most n3t + n2. Since, the cost of a complete star is n3 and there are

at most n2 possible effected nodes of type vi,j, each has a cost of 2
3
< 1. This is

an upper bound on the reduction in cost that adding the edges in T can achieve.

Observe that k(n3 − 2) > n3t + n2 since (k − t)n3 > n2 + 2k as n3 > n2 + 2k for

any interesting value of n (recall that k < n). Thus we have that the origin of each
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edge in T has to be a different node in ui’s star for some i.

For every star that does not have any incoming edges it is easy to observe

that the best edge to add from this star is an edge between ui to w, as this edge

reduces the cost by n3− 2. Therefore, either from each star there exists an edge of

type (ui, w), or there exists a cycle, connecting several stars to one another. Also,

observe that this cycle can only include nodes of type ui since they are the only

ones that influence other nodes. By including a peripheral node the only change

in cost would be of this specific node’s cost and not of the star it belongs to. It

remains to rule out the existence of a cycle consisting of some of the ui’s. To

see why this cannot be the case, note that in equilibrium all the nodes of type

ui express the exact same opinion. Thus, connecting them in a cycle would not

change their opinion and in turn would not reduce the cost associated with their

stars at all.

Lemma 2.5.8 The previously defined set T is a solution to the dense k-subgraph

problem.

Proof: The key point is the fact that the cost associated with a node of type vi,j

is 0 if and only if both ui and uj are in T ; otherwise this cost is exactly 2
3
. When

ui ∈ T , the opinion of ui in the Nash equilibrium is 0 since it is averaging between

1 and −1. Therefore node vi,j’s associated cost in the Nash equilibrium is:

• 0 - if both ui and uj are in T - since vi,j holds opinion 0.

• 2
3

- if both ui and uj are not in T - since vi,j’s opinion is 2
3

and therefore the

cost is (0− 2
3
)2 + 2(1− 2

3
)2 = 2

3
.
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• 2
3

- if only one of ui, uj is in T - then vi,j’s opinion is 1
3

and therefore the cost

is (0− 1
3
)2 + (0− 1

3
)2 + (1− 1

3
)2 = 2

3
.

Hence to minimize the cost of the Nash equilibrium we should choose a set T

maximizing the number of nodes of type vi,j for which both ui and uj are in T . In

the graph G′ from the k-dense subgraph problem that set T is a set of vertices and

what we are looking for is the set T with an induced graph that has the maximum

number of edges. By definition this set is exactly a k-densest subgraph.

Finding approximation algorithms for all of the problems discussed in propo-

sitions 2.5.2, 2.5.4, and 2.5.6 is an interesting question. As a first step we offer a

9
4
-approximation for the problem of optimally adding edges to a directed graph G

— a problem whose hardness for exact optimization we do not know. The approx-

imation algorithm works simply by including the reverse copy of every edge in G

that is not already in G; this produces a bi-directed graph G′.

Claim 2.5.9 cG′(x
′) ≤ 9

4
cG(y).

Proof: By Theorem 2.3.1 we have that cG′(x
′) ≤ 9

8
cG′(y

′). Also notice that in

the worst case, in order to get from G to G′, we must double all the edges in G.

Therefore cG′(y
′) ≤ 2cG(y). By combining the two we have that cG′(x

′) ≤ 9
4
cG(y).

Observe that for undirected graph, we are restricted to include only the reverse

copy of every edge in G that is not already in G. For some instances this prevents

us from adding edges to construct the graph which A is the Laplacian of and

therefore the Nash equilibrium of the new graph is the optimal solution of the

original one. Once, we deal with weighted graph the restriction no longer holds
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and therefore by include reverse copies of all edges that do appear in G we can

achieve an approximation ratio of 2.
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CHAPTER 3

DISCRETE PREFERENCES AND COORDINATION

3.1 Introduction

In the previous chapter we analyzed a model of opinion formation in which each

person has an internal opinion and has to choose a potentially different opinion to

express with the goal of minimizing her cost. This is just one example for settings

in which the outcome does not depend only on personal choices, but also on the

choices of the people they interact with. A natural model for such situations is to

consider a game played on a graph that represents an underlying social network,

where the nodes are the players. Each node’s personal decision corresponds to

selecting a strategy, and the node’s payoff depends on the strategies chosen by

itself and its neighbors in the graph [18, 38, 73].

Coordination and Internal Preferences

A fundamental class of such games involves payoffs based on the interplay between

coordination — each player has an incentive to match the strategies of his or her

neighbors — and internal preferences — each player also has an intrinsic preference

for certain strategies over others, independent of the desire to match what others

are doing. Trade-offs of this type come up in a very broad collection of situations,

and it is worth mentioning several that motivate our work here.

• In the context of opinion formation, as was discussed in the previous chapter,

a group of people or organizations might each possess different internal views,
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but they are willing to express or endorse a “compromise” opinion so as to

be in closer alignment with their network neighbors.

• Questions involving technological compatibility among firms tend to have this

trade-off as a fundamental component: firms seek to coordinate on shared

standards despite having internal cost structures that favor different solu-

tions.

• Related to the previous example, a similar issue comes up in cooperative

facility location problems, where firms have preferences for where to locate,

but each firm also wants to locate near the firms with which it interacts.

In the previous chapter we discussed the line of work beginning in the math-

ematical social sciences that is concerned with opinion formation — where the

possible strategies correspond to a continuous space such as <d [42, 59]. This

makes it possible for players to adopt arbitrarily fine-grained “average” strategies

from among any set of options, and most of the dynamics and equilibrium prop-

erties of such models are driven by this type of averaging. In particular, dynamics

based on repeated averaging have been shown in early work to exhibit nice conver-

gence properties [42]. In the previous chapter we contributed to this line of work

by developing bounds on the relationship between equilibria and social optima.

Discrete Preferences

In many settings that exhibit a tension between coordination and individual pref-

erences, however, there is no natural way to average among the available options.

Instead, the alternatives are drawn from a fixed discrete set — for example, there

is only a given set of available technologies for firms to choose among, or a fixed set
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of political candidates to endorse or vote for. On a much longer time scale, there

is always the possibility that additional options could be created to interpolate be-

tween what’s available, but on the time scale over which the strategic interaction

takes place, the players must choose from among the discrete set of alternatives

that is available.

Among a small fixed set of players, coordination with discrete preferences is

at the heart of a long line of games in the economic theory literature — perhaps

the most primitive example is the classic Battle of the Sexes game, based on a

pedagogical story in which one member of a couple wants to see movie A while

the other wants to see movie B, but both want to go to a movie together. This

provides a very concrete illustration of a set of payoffs in which the (two) players

have (i) conflicting internal preferences (A and B respectively), (ii) an incentive

to arrive at a compromise, and (iii) no way to “average” between the available

options.

But essentially nothing is known about the properties of the games that arise

when we consider such a payoff structure in a network context. Even the direct

generalization of Battle of the Sexes (BoS) to a graph is more or less unexplored in

this sense — each node plays a copy of BoS on each of its incident edges, choosing

a single strategy A or B for use in all copies, incurring a cost from miscoordination

with neighbors and an additional fixed cost when the node’s choice differs from

its inherent preference. Indeed, as some evidence of the complexity of even this

formulation, note that the version in which each node has an intrinsic preference for

A is equivalent to the standard network coordination game, which already exhibits

rich graph-theoretic structure [73]. And beyond this, of course, lies the prospect

of such games with larger and more involved strategy sets.
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Formalizing Discrete Preference Games

In this chapter, we develop a set of techniques for analyzing this type of discrete

preference games on a network, and we establish tight bounds on the price of

stability for several important families of such games.

To formulate a general model for this type of game, we start with an undirected

graph G = (V,E) representing the network on the players, and an underlying finite

set L of strategies. Each player i ∈ V has a preferred strategy si ∈ L, which is

what i would choose in the absence of any other players. Finally, there is a metric

d(·, ·) on the strategy set L — that is, a distance function satisfying (i) d(i, i) = 0

for all i, (ii) d(i, j) = d(j, i) for all i, j, and (iii) d(i, j) ≤ d(i, k) + d(k, j) for all

i, j and k. For i, j ∈ L, the distance d(i, j) intuitively measures how “different”

i and j are as choices; players want to avoid choosing strategies that are at large

distance from either their own internal preference or from the strategies chosen by

their neighbors.

Each player’s objective is to minimize her cost (think of this as the negative

of her payoff): for a fixed parameter α ∈ [0, 1], the cost to player i when players

choose the strategy vector z = 〈zj : j ∈ V 〉 is

ci(z) = α · d(si, zi) +
∑
j∈N(i)

(1− α) · d(zi, zj),

where N(i) is the set of neighbors of i in G. The parameter α essentially controls

the extent to which players are more concerned with their preferred strategies or

their network neighbors; we will see that the behavior of the game can undergo

qualitative changes as we vary α.

We say that the above formulation defines a discrete preference game. Note

that the network version of Battle of the Sexes described earlier is essentially the
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special case in which |L| = 2, and network coordination games are the special case

in which |L| = 2 and α = 0, since then players are only concerned with matching

their neighbors. The case in which d(·, ·) is the distance metric among nodes

on a path is also interesting to focus on, since it is the discrete analogue of the

one-dimensional space of real-valued opinions from continuous averaging models

[17, 42] — consider for example the natural scenario in which a finite number of

discrete alternatives in an election are arranged along a one-dimensional political

spectrum.

We also note that discrete preference games belong to the well-known frame-

work of graphical games, which essentially consist of games in which the utility of

every player depends only on the actions of its neighbors in a network. The inter-

ested reader is referred to the relevant chapter in [79] and the references within. In

this context, Gottlob et al. proposed a generalization of Battle of the Sexes (BoS)

to a graphical setting [51], but their formulation was much more complex than

our starting point, with their questions correspondingly focused on existence and

computational complexity, rather than on the types of performance guarantees we

will be seeking.

For any discrete preference game, we will see that it is possible to define an

exact potential function, and hence these games possess pure Nash equilibria.

Price of Stability in Discrete Preference Games

We can also ask about the social cost of a strategy vector z = 〈zj : j ∈ V 〉, defined

as the sum of all players’ costs:

c(z) =
∑
i∈V

α · d(si, zi) + 2
∑

(i,j)∈E

(1− α) · d(zi, zj).
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We note that the problem of minimizing the social cost is an instance of the metric

labeling problem, in which we want to assign labels to nodes in order to minimize

a sum of per-node costs and edge separation costs [23, 65].

Since an underlying motivation for studying this class of games is the tension

between preferred strategies and agreement on edges, it is natural to study its

consequences on the social cost via the price of anarchy and/or the price of stability.

The price of anarchy is in fact too severe a measure for this class of games; indeed,

as we discuss in the next section, it is already unbounded for the well-studied class

of network coordination games that our model contains as a special case.

We therefore consider the price of stability, which turns out to impart a rich

structure to the problem. The price of stability is also natural in terms of the

underlying examples discussed earlier as motivation; in most of these settings,

it makes sense to propose a solution — for example, a compromise option in a

political setting or a proposed set of technology choices for a set of interacting

firms — and then to see if it is stable with respect to equilibrium.

Overview of Results

As a starting point for reference, observe that network coordination games (where

players are not concerned with their preferred strategies) clearly have a price of

stability of 1: the players can all choose the same strategy and achieve a cost of 0.

But even for a general discrete preference game with two strategies — i.e. Battle

of the Sexes on a network — the price of stability is already more subtle, since the

social optimum may have a more complex structure (as a two-label metric labeling

problem, and hence a minimum cut problem).
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We begin by giving tight bounds on the maximum possible price of stability in

the two-strategy case as a function of the parameter α. The dependence on α has a

complex non-monontonic character; in particular, the price of stability is equal to

1 for all instances if and only if α ≤ 1/2 or α = 2/3, and more generally the price of

stability as a function of α displays a type of “saw-tooth” behavior with infinitely

many local minima in the interval [0, 1]. Our analysis uses a careful scheduling of

the best-response dynamics so as to track the updates of players toward a solution

with low social cost.

Above we also mentioned the distance metric of a path as a case of interest

in opinion formation. We show that when α ≤ 1/2, the price of stability for

instances based on such metrics is always 1, by proving the stronger statement

that in fact the price of stability is always 1 for any discrete preference game based

on a tree metric. Our analysis for tree metrics involves considering how players’

best responses lie at the medians of their neighbors’ strategies in the metric, and

then developing combinatorial techniques for reasoning about the arrangement of

these collections of medians on the underlying tree.

Like path metrics, tree metrics are also relevant to motivating scenarios in

terms of opinion formation, when individuals classify the space of possible opinions

according to a hierarchical structure rather than a linear one. To take one example

of this, consider students choosing a major in college, where each student has an

internal preference and an interest in picking a major that is similar to the choices

of her friends. The different subjects roughly follow a hierarchy — on top we

might have science, engineering, and humanities; under science we can have for

example biology, physics, and other areas; and under biology we can have subjects

including genetics and plant breeding. This setting fits our model since each person
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has some internal inclination for a major, but still it is arguably the case that a

math major has more in common in her educational experience with her computer

science friends than with her friends in comparative literature.

The two families of instances described above (two strategies and tree metrics)

both have price of stability equal to 1 when α ≤ 1/2. But the price of stability

can be greater than 1 for more general metrics when α ≤ 1/2. It is not hard to

show (as we do in the next section) that the price of stability is always at most

2 for all α, and we match this bound by constructing and analyzing examples,

based on perturbations of uniform metrics, showing that the price of stability can

be arbitrarily close to 2 when α = 1/2.

3.2 Preliminaries

Recall that in a discrete preference game played on a graph G = (V,E) with

strategy set L, each player i ∈ V has a preferred strategy si ∈ L. The cost

incurred by player i when all players choose strategies z = 〈zj : j ∈ V 〉 is

ci(z) = α · d(si, zi) +
∑
j∈N(i)

(1− α) · d(zi, zj).

The social cost of the game is the sum of all the players’ costs:

c(z) =
∑
i∈V

α · d(si, zi) + 2
∑

(i,j)∈E

(1− α) · d(zi, zj).

Another quantity that is useful to define is the contribution of player i to the social

cost – by this we quantify not only the cost player i is exhibiting but also the cost

it is inflicting on its neighbors:

sci(z) = α · d(si, zi) + 2
∑
j∈N(i)

(1− α) · d(zi, zj).
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As is standard, we denote by z−i the strategy vector z without the ith coordinate.

We first show that this class of games includes instances for which the price of

anarchy (PoA) is unbounded. A simple instance for which the PoA is unbounded

is one in which the preferred strategy of all the players is the same – thus the cost

of the optimal solution is 0, and it is also an equilibrium for all the players to play

some other strategy and incur a positive cost.1 In the next claim, we use this idea

to construct, for every value of α < 1, an instance for which the PoA is unbounded.

Claim 3.2.1 For any α < 1 there exists an instance for which the price of anarchy

is unbounded.

Proof: Assume the strategy space contains two strategies A and B, such that

d(A,B) = 1. For any 0 < α < 1 we consider a clique of size d α
1−αe+ 1 in which all

players’ preferred strategy is A and show it is an equilibrium for all the players to

play strategy B. To see why, observe that if the rest of the players play strategy

B, then player i’s cost for playing strategy A is (1 − α) · d α
1−αe which is at least

α. Since the cost of player i for playing strategy B is α we have that it is an

equilibrium for all players to play strategy B. The PoA of such an instance is

unbounded as the cost of the equilibrium in which all players play strategy B is

strictly positive but the cost of the optimal solution is 0.

To show that the PoA can be unbounded for α = 0, a slightly different instance

is required, which will be familiar from the literature of network coordination

1This type of equilibrium, in addition to simply producing an unbounded PoA, has a natural
interpretation in our motivating contexts. In technology adoption, it corresponds to convergence
on a standard that no firm individually wants, but which is hard to move away from once it has
become the consensus. In opinion formation, it corresponds essentially to a kind of “superstitious”
belief that is universally expressed, and hence is hard for people to outwardly disavow even though
they prefer an alternate opinion.
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games. When players do not have a preference the optimal solution is clearly for

all players to play the same strategy, as such a solution has a cost of 0. However,

Figure 3.1 depicts an instance for which there exists a Nash equilibrium in which

not all the players play the same strategy and hence the cost of this equilibrium is

strictly positive.

A A

AA

A A

AA

??? ���

???���

(a) An optimal solution
.

A A

AA

B B

BB

??? ���

???���

(b) A Nash equilibrium
.

Figure 3.1: An instance illustrating that the PoA can be unbounded even when

the players do not have a preferred strategy (i.e., α = 0).

We note that the worst equilibrium in the previous instances is not a strong

equilibrium. Thus, if all the players could coordinate a joint deviation to strategy A

they can all benefit. A natural question is what happens if we restrict ourselves to

the worst strong Nash equilibrium (strong PoA), in which a simultaneous deviation

by a set of players is allowed. Unfortunately, the strong PoA can still be quite high

(linear in the number of players). Take for example α < 1
2

and consider a clique

of size n in which all but one of the players prefer strategy A. In this case it

is not hard to verify that the equilibrium in which all players play strategy B is

strong. The reason is that the player that prefers strategy B cannot gain from any

deviation, and the cost of any other player would increase by at least 1−α−α > 0

for any deviation. The cost of such an equilibrium is α(n − 1) in comparison to

the optimal solution which has a cost of α.

As we just showed both the PoA and the strong PoA can be very high, and
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hence for the remainder of the chapter we focus on the qualities of the best Nash

equilibrium, trying to bound the price of stability (PoS). We begin by showing

that the price of stability is bounded by 2. This is done by a potential function

argument which also proves that a Nash equilibrium always exists.

Claim 3.2.2 The price of stability is bounded by 2.

Proof: We first prove that the following function is an exact potential function:

φ(z) = α
∑
i∈V

d(zi, si) + (1− α)
∑

(i,j)∈E

d(zi, zj).

To see why, note that: φ(zi, z−i)− φ(z′i, z−i) =

α · d(zi, si) + (1− α)
∑
j∈N(i)

d(zi, zj)−
(
α · d(z′i, si) + (1− α)

∑
j∈N(i)

d(z′i, zj)
)

= ci(zi, z−i)− ci(z′i, z−i).

Denote by x the global minimizer of the potential function and by y the optimal

solution. By definition x is an equilibrium and it provides a 2-approximation to

the optimal social cost since c(x) ≤ 2φ(x) ≤ 2φ(y) ≤ 2c(y).

3.3 The Case of Two Strategies: Battle of the Sexes on a

Network

We begin by considering the subclass of instances in which the players only have

two different strategies A and B. Without loss of generality we assume that

d(A,B) = 1. We denote by Nj(i) the set of i’s neighbors using strategy j and

by s̄i the strategy opposite to si. When the strategy space contains only two
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strategies, a player’s best response is to pick a strategy which is the weighted ma-

jority of its own preferred strategy and the strategies played by its neighbors. The

next two observations formalize this statement and a similar statement regarding

a player’s strategy minimizing the social cost:

Observation 3.3.1 The strategy si minimizes player i’s cost (ci(z)) if:

(1− α)Ns̄i(i) ≤ α + (1− α)Nsi(i) =⇒ Ns̄i(i) ≤
α

1− α
+Nsi(i).

Observation 3.3.2 The strategy si minimizes the social cost (sci(z)) if:

2(1− α)Ns̄i(i) ≤ α + 2(1− α)Nsi(i) =⇒ Ns̄i(i) ≤
α

2(1− α)
+Nsi(i).

We present a simple best response order that results in a Nash equilibrium after

a linear number of best responses. We will later see how this order can be used to

bound the PoS.

Lemma 3.3.3 Starting from some initial strategy vector, the following best re-

sponse order results in a Nash equilibrium:

1. While there exists a player that can reduce its cost by changing its strategy to

A, let it do a best response. If there is no such player continue to the second

step.

2. While there exists a player that can reduce its cost by changing its strategy

to B, let it do a best response.

Proof: To see why the resulting strategy vector is a Nash equilibrium, observe

that after the first step, all nodes are either satisfied with their current strategy
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choice, or can benefit from changing their strategy to B. This property remains

true after some of the nodes change their strategy to B since the fact that a node

has more neighbors using strategy B can only reduce the attractiveness of switching

to strategy A. Thus, at the end of the second step all nodes are satisfied.

Next, we characterize the values of α for which the price of stability is 1.

Claim 3.3.4 If α ≤ 1
2

or α = 2
3
, then in any instance there exists an optimal

solution which is also a Nash equilibrium.

Proof: Let y be an optimal solution minimizing the potential function φ(·).

Assume towards a contradiction that it is not a Nash equilibrium. Let player i

be a player that prefers to switch to a different strategy than yi. Denote player

i’s best response by xi. By Observations 3.3.1 and 3.3.2, it is easy to see that if

yi = si, then the strategy minimizing player i’s cost is also si. Thus, we have that

yi 6= si and xi = si. If si is a minimizer of the social cost function then (si, y−i) is

also an optimal solution. This contradicts the assumption that y is a minimizer of

the potential function φ(·) since φ(si, y−i) < φ(y). Therefore by Observations 3.3.1

and 3.3.2 we have that Ns̄i(i) <
α

1− α
+ Nsi(i) and

α

2(1− α)
+ Nsi(i) < Ns̄i(i).

By combining the two inequalities we get that:

α

2(1− α)
+Nsi(i) < Ns̄i(i) <

α

1− α
+Nsi(i).

SinceNs̄i(i) andNsi(i) are both integers, this implies that there exists an integer

k such that
α

2(1− α)
< k <

α

1− α
. This holds for k = 1 if

α

2(1− α)
< 1 <

α

1− α
(implying 1

2
< α < 2

3
) or for some k > 1 if

α

1− α
− α

2(1− α)
> 1 (implying α > 2

3
).

Thus, for α ≤ 1
2

or α = 2
3

any instance admits an optimal solution which is also a

Nash equilibrium.
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It is natural to ask what is the PoS for the values of α for which we know the

optimal solution is not a Nash equilibrium. The following theorem provides an

answer to this question by computing the ratio between the optimal solution and

a Nash equilibrium obtained by performing the sequence of best responses Lemma

3.3.3 prescribes.

Theorem 3.3.5 For 1
2
< α < 1, PoS ≤ 2

⌈ α

1− α
− 1
⌉
· 1− α

α
.

Proof: Let x be the equilibrium achieved by the sequence described in Lemma

3.3.3 starting from an optimal solution y. Denote the strategy vector at the end

of the first step by x1 and at the end of the sequence by x2 = x. We assume that

a player performs a best response only when it can strictly decrease the cost by

doing so, thus we only reason about the case where the player’s best response is

unique. In the following Lemma we bound the increase in the social cost inflicted

by the players’ unique best responses (the proof can be found below):

Lemma 3.3.6 Let player i’s unique best response when the rest of the players play

z−i be xi then:

1. If xi = s̄i then c(s̄i, z−i)− c(si, z−i) ≤ α− 2(1− α)
⌊ α

1− α
+ 1
⌋

.

2. If xi = si then c(si, z−i)− c(s̄i, z−i) ≤ −α + 2(1− α)
⌈ α

1− α
− 1
⌉

.

Notice that by statement (1) of Lemma 3.3.6 a node that changes its strategy to a

strategy different than its preferred strategy can only reduce the social cost. Also,

note that if a node changes its strategy in the first step to A and in the second

step back to B its total contribution to the social cost is non-positive. The reason

is that in one of these changes the player changed its strategy from si to s̄i and in
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the other from s̄i to si. The effect of these two changes on the social cost sums up

to 2(1 − α)

(
d α

1− α
e − b α

1− α
c − 2

)
≤ 0. Thus we can ignore such changes as

well.

The only nodes that are capable of increasing the social cost by performing

a best response are ones that play in the optimal solution a different strategy

than their preferred strategy (yi 6= si). By definition their number equals exactly∑
i d(yi, si) as d(yi, si) = 1 if yi 6= si and 0 otherwise. Statement (2) of Lemma

3.3.6 guarantees us that each of these nodes can increase the social cost by at most

−α + 2(1− α)
⌈ α

1− α
− 1
⌉
. Thus, we get the following bound:

c(x) ≤ c(y) +

(
−α + 2(1− α)

⌈ α

1− α
− 1
⌉)∑

i∈V

d(yi, si)

= 2(1− α)
∑

(i,j)∈E

d(yi, yj) + 2(1− α)
⌈ α

1− α
− 1
⌉∑
i∈V

d(yi, si).

We are now ready to compute the bound on the PoS:

PoS ≤
2
⌈ α

1− α
− 1
⌉
· (1− α)

∑
i∈V d(yi, si) + 2(1− α)

∑
(i,j)∈E d(yi, yj)

α
∑

i∈V d(yi, si) + 2(1− α)
∑

(i,j)∈E d(yi, yj)

≤
2
⌈ α

1− α
− 1
⌉
· 1− α

α
·
(
α
∑

i∈V d(yi, si) + 2(1− α)
∑

(i,j)∈E d(yi, yj)
)

α
∑

i∈V d(yi, si) + 2(1− α)
∑

(i,j)∈E d(yi, yj)

≤ 2
⌈ α

1− α
− 1
⌉
· 1− α

α
.

Proof of Lemma 3.3.6: Notice we are only considering the effect player i’s strat-

egy has on the social cost, thus we have that: c(s̄i, z−i)− c(si, z−i) = sci(s̄i, z−i)−

sci(si, z−i). Implying that c(s̄i, z−i)− c(si, z−i) = α+2(1−α)(Nsi(i)−Ns̄i(i)). For

proving statement (1) we observe that since s̄i is player i’s unique best response

then: Ns̄i(i) >
α

1− α
+ Nsi(i) as player i has a strictly smaller cost for playing
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strategy s̄i than for playing strategy si. Since, Ns̄i(i) and Nsi(i) are integers this

implies that Ns̄i(i)−Nsi(i) ≥ b
α

1− α
+ 1c and the bound is achieved.

For proving statement (2), observe that c(si, z−i) − c(s̄i, z−i) = −α + 2(1 −

α)(Ns̄i(i)−Nsi(i)). Now since si is player i’s best response we have that: Ns̄i(i) <

α

1− α
+Nsi(i) as player i’s best response is to use strategy si. Which similarly to

the previous bound implies that Ns̄i(i)−Nsi(i) ≤ d
α

1− α
− 1e as required.

It is interesting to take a closer look at the upper bound on the PoS we com-

puted (as we will see later this bound is tight). In Figure 3.2 we plot the upper

bound on the PoS as a function of α. We can see that as α approaches 1 the

PoS approaches 2 and also that for any k ≥ 2, as ε approaches 0, the PoS of

α =
k − 1

k
+ ε also approaches to 2. This uncharacteristic saw-like behavior of the

PoS originates from the fact that for every value of α the maximal PoS is achieved

by a star graph. This is proved in the following claim.

0.6 0.7 0.8 0.9 1.0

1.2

1.4

1.6

1.8

2.0

Figure 3.2: The tight upper bound on the PoS for two strategies as a function
of α for the range 1

2
< α < 1.

Claim 3.3.7 For any α > 1/2, α 6= 2/3 there exists an instance achieving a price

of stability of 2
⌈ α

1− α
− 1
⌉
· 1− α

α
.
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Proof: Consider a star consisting of
⌈ α

1− α
− 1
⌉

peripheral nodes that prefer

strategy A and a central node that prefers strategy B. In the optimal solution

the central node plays strategy A for a cost of α. However, this is not a Nash

equilibrium since for playing strategyB it exhibits a cost of (1−α)·
⌈ α

1− α
−1
⌉
< α.

Thus, the central node prefers to play its preferred strategy.

Corollary 3.3.8 As n goes to infinity the PoS for α =
n− 1

n
approaches 2.

3.4 Richer Strategy Spaces

In the previous section we have seen that even when there are only two strategies

in the game (the Battle of the Sexes on a network), for at least some values of

α > 1
2
, the PoS can be quite close to 2.

These bounds carry over to larger strategy spaces since an instance can always

use only two strategies from the strategy space. However, for α ≤ 1
2

the PoS for

the Battle of the Sexes on a network is 1, so a natural question is how bad the PoS

can be once we have more strategies in the space. This is the question we deal

with for the rest of the chapter.

3.4.1 Tree Metrics

We begin by considering the case in which the distance function on the strategy

set is a tree metric, defined as the shortest-path metric among the nodes in a tree.

(As such, tree metrics are a special case of graphic metrics, in which there is a

graph on the elements of the space and the distance between every two elements
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is defined to be the length of the shortest path between them in the graph.) We

show that if the distance function is a tree metric then the price of stability is 1

for any rational α ≤ 1
2
.

Denote by Ci(z) and SCi(z) the strategies of player i that minimize ci(z) = α ·

d(zi, si)+(1−α)
∑

j∈N(i) d(zi, zj) and sci(z) = α·d(zi, si)+2(1−α)
∑

j∈N(i) d(zi, zj)

respectively. We show that if for every player i the intersection of the two sets Ci(z)

and SCi(z) is always non-empty then the price of stability is 1:

Claim 3.4.1 If for every player i and strategy vector z, SCi(z) ∩ Ci(z) 6= ∅, then

PoS = 1.

Proof: First, recall the potential function φ(·) used in the proof of Claim 3.2.2,

and consider an optimal solution y minimizing this potential function φ(·). If y

is also a Nash equilibrium then we are done. Else, there exists a node i that

can strictly reduce its cost by performing a best response. By our assumption

node i can do this by choosing a strategy xi ∈ SCi(y) ∩ Ci(y). The fact that

xi ∈ SCi(y) implies that the change in strategy of player i does not affect the

social cost. Therefore, (xi, y−i) is also an optimal solution and φ(y) > φ(xi, y−i),

in contradiction to the assumption that y is the optimal solution minimizing φ(·).

Our goal now is to show that the conditions of Claim 3.4.1 hold for a tree metric.

Our first step is relating the strategies that consist of a player’s best response (or

social cost minimizer) and the set of medians of a node-weighted tree.

Definition 3.4.2 (medians of a tree) Given a tree T where the weight of node

v is denoted w(v), the set of T ’s medians is M(T ) = arg minu∈V {
∑

v∈V w(v) ·
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d(u, v)}.

Definition 3.4.3 Given a network G, a tree metric T , a strategy vector z, a

player i and non-negative integers q and r, we denote by Ti,z(q, r) the tree T with

the following node weights:

w(v) =


q + r · |{j ∈ N(i)|zj = v}| for v = si

r · |{j ∈ N(i)|zj = v}| for v 6= si

Next we show that for α = a
a+b

, every player i and strategy vector z, it holds

that M(Ti,z(a, b)) = Ci(z). To see why, observe that by construction we have

M(Ti,z(a, b)) =

arg min
u∈V
{(a+ b · |{j ∈ N(i)|zj = si}|) · d(u, si) +

∑
v 6=si∈V

b · |{j ∈ N(i)|zj = v}| · d(u, v)}

= arg min
u∈V
{a · d(u, si) + b

∑
j∈N(i)

d(u, zj)} = Ci(z).

Similarly, it is easy to show that M(Ti,z(a, 2b)) = SCi(z). Thus, to show that

SCi(z) ∩ Ci(z) 6= ∅ it is sufficient to show that Ti,z(a, b) and Ti,z(a, 2b) share a

median. This is done by using the following proposition:

Proposition 3.4.4 Let T1 and T2 be two node-weighted trees with the same edges

and nodes, then:

• If there exists a node v, such that for every u 6= v ∈ V , we have w1(u) = w2(u)

and for v we have |w1(v)− w2(v)| = 1, then T1 and T2 share a median.

• If T1 and T2 share a median, then it is also a median of their union T1 ∪ T2.

Where the union of T1 and T2 is a tree with the same nodes and edges where

the weight of node v is w1+2(v) = w1(v) + w2(v).
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The proof of this proposition is based on combinatorial claims from Section 3.4.2

showing that a tree’s medians and separators (defined below) coincide and estab-

lishing connections between the separators of different trees. Given Proposition

3.4.4 we can now show that Ti,z(a, b) and Ti,z(a, 2b) share a median:

Lemma 3.4.5 For α = a
a+b

≤ 1
2
, every player i and strategy vector z,

M(Ti,z(a, b)) ∩M(Ti,z(a, 2b)) 6= ∅.

Proof: First, observe that by Proposition 3.4.4 we have that Ti,z(0, 1) and

Ti,z(1, 1) share a median. As medians are invariant to scaling this implies that

Ti,z(0, b− a) and Ti,z(a, a) also share a median. Next, by the second statement of

Proposition 3.4.4 we have that any median they share is also a median of their

union Ti,z(a, b); let us denote this median by u. Since u is a median of Ti,z(0, b)

and Ti,z(a, b), it is also a median of Ti(a, 2b) by applying Proposition 3.4.4 again.

Thus we have that u is a median of both Ti,z(a, b) and Ti,z(a, 2b) which concludes

the proof.

Hence we have proven the following theorem:

Theorem 3.4.6 If the distance metric is a tree metric then for rational α ≤ 1
2
,

there exists an optimal solution which is also a Nash equilibrium (PoS=1).

3.4.2 Combinatorial Properties of Medians and Separators

in Trees

We now state and prove the combinatorial facts about medians and separators

in trees that we used for the analysis above. This builds on the highly tractable
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structure of medians in trees developed in early work; see [44, 47] and the references

therein.

Consider a tree where all nodes have integer weights, and denote the weight of

the tree by w(V ) =
∑

v∈V w(v).

Definition 3.4.7 A separator of a tree T is a node v such that the weight of each

connected component of T − v is at most w(V )/2.

Claim 3.4.8 A node u is a median of a tree T if and only if it is a separator of

T .

Proof: Let u be a median of a tree T , and assume towards a contradiction that

it is not a separator; that is, there exists a component of T − u of weight strictly

greater than w(V )/2. Let v be the neighbor of u in this component. Consider

locating the median at v. This reduces the distance to a total node weight of at

least w(V )/2+1/2 by 1, and increases the distance to less than a total node weight

of w(V )/2 by 1. Hence the sum of all distances decreases, and this contradicts the

fact that u is a median. Thus, every median of a tree is also a separator.

To show that any separator is also a median, we show that for any two sepa-

rators u1 and u2 it holds that
∑

v∈V w(v) · d(u1, v) =
∑

v∈V w(v) · d(u2, v). Since,

we know that there exists a median which is a separator this will imply that any

separator is a median.

Denote by C the connected component of the graph T−u1−u2 that includes the

nodes on the path between u1 and u2. If u1 and u2 are adjacent let C = ∅. Denote

the connected component of T − u1−C that includes u2 by C2 and the connected

component of T − u2 − C that includes u1 by C1. Note that by construction
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C,C1, C2 are disjoint and the union of their nodes equals V . Since u1 is a separator

it holds that w(C2)+w(C) ≤ w(V )/2. This in turn implies that w(C1) ≥ w(V )/2.

Similarly, since u2 is a separator it holds that w(C1) + w(C) ≤ w(V )/2. This in

turn implies that w(C2) ≥ w(V )/2. Therefore, it has to be the case that w(C) = 0,

w(C1) = w(C2) = w(V )/2. We next show this implies that
∑

v∈V w(v) · d(u1, v) =∑
v∈V w(v) · d(u2, v). Observe that:

∑
v∈V

w(v) · d(u1, v) =
∑
v∈C1

w(v) · d(u1, v) +
∑
v∈C2

w(v) ·
(
d(u1, u2) + d(u2, v)

)
=
∑
v∈C1

w(v) · d(u1, v) +
∑
v∈C2

w(v) · d(u2, v) + w(C2) · d(u1, u2).

and similarly that:

∑
v∈V

w(v) · d(u2, v) =
∑
v∈C2

w(v) · d(u2, v) +
∑
v∈C1

w(v) · d(u1, v) + w(C1) · d(u1, u2).

The claim follows as we have shown that w(C2) = w(C1).

Next, we prove two claims relating the separators of different trees. We first

show that if two trees differ only in the weight of a single node and the difference

in weight of this node in the two trees is 1 – then they share a separator:

Claim 3.4.9 Consider two trees T1 and T2 with the same set of edges and nodes

that differ only in the weight of a single node v - such that w2(v) = w1(v) + 1.

Then, T1 and T2 share a separator.

Proof: We first handle the case where w1(V ) is odd. Let u be a separator of

T1, then, in this case the size of each component in T1 − u is at most w1(V )/2 −

1/2. Thus for the same separator u in T2 the size of each component is at most

w1(V ) + 1/2 = w2(V )/2. Therefore u is still a separator. Assume that w1(V ) is

even. This implies that w1(V ) + 1 is odd. Consider a separator u′ of T2. Then the
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size of each connected component in T2−u′ is at most w2(V )/2 + 1/2, since w1(V )

is even, this implies that the weight of each connected component is bounded by

w1(V )/2 and therefore u′ is also a separator of T1.

We show that if u is a separator of both T1 and T2 it is also the separator of

their union:

Claim 3.4.10 Every separator that T1 and T2 share is also a separator of T1∪T2.

Proof: Let u be a separator of both T1 and T2. This implies that in T1 the

weight of every connected component in T1 − u is at most w1(T1)/2 and in T2

the weight of every connected component in T2 − u is at most w2(T2)/2. Hence,

in T1 ∪ T2 the weight of every connected component in T1 ∪ T2 − u is at most

w1(T1)/2 + w2(T2)/2 = w1+2(T1 ∪ T2)/2. Thus, u is also a separator of T1 ∪ T2.

The previous three claims establish the proof of Proposition 3.4.4. First Claim

3.4.8 shows that the set of medians and separators coincide. Then, Claim 3.4.8

Claim 3.4.10 prove the two statements of the proposition respectively.

3.4.3 Lower Bounds in Non-Tree Metrics

In some sense tree metrics are the largest class of metrics for which the optimal

solution is always a Nash equilibrium for α ≤ 1
2
. The next example demonstrates

that even when the distance metric is a simple cycle the PoS can be as high as 4
3

for α = 1
2
. In the following section, we give a family of more involved constructions

that converge to the asymptotically tight lower bound of 2 on the price of stability.

Example 3.4.11 Consider a metric which is a cycle of size 3k+1 for some integer
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k ≥ 1. Let A,B,C be three strategies in this strategy space such that d(A,B) = k,

d(A,C) = k and d(B,C) = k + 1. Consider an instance where a node with

a preferred strategy A is connected to a node with preferred strategy B and to

another node with a preferred strategy of C. Also, assume that the node with

preferred strategy B is part of a clique of size 3k in which all nodes prefer strategy

B. Similarly, the node with preferred strategy C is part of a clique of size 3k in

which all nodes prefer strategy C.

Consider the following equilibrium in which the nodes in both cliques play their

preferred strategies. Then, the central node should play its preferred strategy. To

see why, note that for playing strategy A its cost is (1/2)2k = k. On the other

hand, its cost for playing any other strategy x which is between A and B (including

B) on the cycle is 1
2
(d(x,A) + d(x,B) + d(x,C)) which equals:

1

2

(
d(A,B) +min{d(x,A) + d(A,C), d(x,B) + d(B,C)}

)
.

which is greater than k. Similarly one can show that the central player prefers

strategy A over any strategy x. The cost of the Nash equilibrium is 2k. Note that

this is the best Nash equilibrium since the cost of any solution in which some of the

nodes in a clique play a strategy different than their preferred strategy is at least

3k. In the optimal solution the central node should play strategy B (or C) for a

total cost of (1/2)k+ 2 · (1/2)(k+ 1) = (3/2)k+ 1. Thus we have that the price of

stability approaches 4/3 as k approaches infinity.

Note that this lower bound of 4/3 is achieved on an instance in which the lowest-

cost Nash equilibrium and the socially optimal solution differ only in the strategy

choice of a single player. We now show that in such cases, where the difference

between these two solutions consists of the decision of just a single player, 4/3 is
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the maximum possible price of stability for α = 1
2
. More generally we show that

2

2− α
is the maximum possible price of stability for α < 1

2
.

By the definition of the model, a player’s strategy only affects its cost and the

cost of its neighbors. Recall that we denote this part of the social cost by sci(z):

sci(z) = α ·d(si, zi)+2(1−α) ·
∑

j∈N(i) d(zi, zj). We now prove the following claim.

Claim 3.4.12 Let α ≤ 1
2
. Fix an optimal solution y which is not a Nash equi-

librium and let player i be a player that can reduce its cost by playing xi. Then

sci(xi, y−i)

sci(y)
<

2

2− α
.

Proof: Since xi is player i’s best response, then α · d(si, xi) + (1 −

α)
∑

j∈N(i) d(xi, yj) < ci(y). By rearranging the terms we get that (1 −

α)
∑

j∈N(i) d(xi, yj) < ci(y)− α · d(si, xi). This in turn implies that

sci(xi, y−i) = α · d(si, xi) + 2(1− α)
∑
j∈N(i)

d(xi, yj)

< α · d(si, xi) + 2
(
ci(y)− α · d(si, xi)

)
= 2ci(y)− α · d(si, xi).

Thus, we have that

sci(xi, y−i)

sci(y)
<

2ci(y)− α · d(si, xi)

ci(y) + (1− α) ·
∑

j∈N(i) d(yi, yj)
.

If
∑

j∈N(i) d(yi, yj) ≥ ci(y) then sci(y) ≥ ci(y)+(1−α)ci(y) = (2−α)ci(y) and the

claim follows. Else, we show that d(si, xi) > d(si, yi)−
∑

j∈N(i) d(yi, yj) in Lemma

3.4.13 below; this in turn implies that

sci(xi, y−i) < 2ci(y)− α · d(si, xi) ≤ 2ci(y)− α
(
d(si, yi)−

∑
j∈N(i)

d(yi, yj)
)

= ci(y) +
∑
j∈N(i)

d(yi, yj).
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This brings us to the following bound:

sci(xi, y−i)

sci(y)
<

ci(y) +
∑

j∈N(i) d(yi, yj)

ci(y) + (1− α) ·
∑

j∈N(i) d(yi, yj)

= 1 +
α
∑

j∈N(i) d(yi, yj)

ci(y) + (1− α) ·
∑

j∈N(i) d(yi, yj)
.

Recall that by our assumption ci(y) >
∑

j∈N(i) d(yi, yj), this implies that

ci(y) + (1− α) ·
∑

j∈N(i) d(yi, yj) > (2− α)
∑

j∈N(i) d(yi, yj) and the claim follows.

Lemma 3.4.13 Let α ≤ 1
2
. Fix an optimal solution y which is not a Nash equi-

librium and let player i be a player that can reduce its cost by playing xi. Then:

d(si, xi) > d(si, yi)−
∑

j∈N(i) d(yi, yj).

Proof: Note the following: by the triangle inequality for any player j it holds

that: d(xi, yj) ≥ d(si, yj)− d(si, xi) and d(si, yj) ≥ d(si, yi)− d(yi, yj). By combin-

ing the two together we have that d(xi, yj) ≥ d(si, yi) − d(yi, yj) − d(si, xi). This

gives us the following lower bound on ci(xi, y−i):

ci(xi, y−i) = α · d(si, xi) + (1− α)
∑
j∈N(i)

d(xi, yj)

≥ α · d(si, xi) + (1− α)
∑
j∈N(i)

(
d(si, yi)− d(yi, yj)− d(si, xi)

)
= α · d(si, xi) + (1− α) · |N(i)| ·

(
d(si, yi)− d(si, xi)

)
− (1− α)

∑
j∈N(i)

d(yi, yj).

Since xi minimizes player i’s cost it has to be the case that: ci(xi, y−i) < ci(y).

Thus the following inequality holds:

α · d(si, xi) + (1− α)|N(i)| ·
(
d(si, yi)− d(si, xi)

)
− (1− α)

∑
j∈N(i)

d(yi, yj)

< α · d(si, yi) + (1− α)
∑
j∈N(i)

d(yi, yj).
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After some rearranging we get that:

d(si, xi) > d(si, yi)−
2(1− α)

(1− α) · |N(i)| − α
∑
j∈N(i)

d(yi, yj)

which implies that the claim holds whenever
2(1− α)

(1− α) · |N(i)| − α
≤ 1. For α ≤ 1

2
,

this later bound occurs for |N(i)| ≥ 3.

The case of |N(i)| ≤ 2 is handled separately and requires we use the assumption

that y is an optimal solution. Denote i’s neighbors by j and k. Then:

α · d(si, yj) + 2(1− α) · d(yj, yk) ≥ α · d(si, yi) + 2(1− α)
(
d(yi, yj) + d(yi, yk)

)
.

By the triangle inequality the previous inequality implies that d(si, yj) ≥ d(si, yi).

When combining this with the fact that d(xi, yj) ≥ d(si, yj)− d(si, xi) we get that

d(xi, yj) ≥ d(si, yi) − d(si, xi); similarly we get for k that d(xi, yk) ≥ d(si, yi) −

d(si, xi). Therefore,

ci(xi, y−i) = α · d(si, xi) + (1− α)
(
d(xi, yj) + d(xi, yk)

)
≥ α · d(si, xi) + 2(1− α)

(
d(si, yi)− d(si, xi)

)
.

and since xi is player i’s best response it has to be the case that:

α · d(si, xi) + 2(1− α)
(
d(si, yi)− d(si, xi)

)
< α · d(si, yi) + (1− α)

(
d(yi, yj) + d(yi, yk)

)
.

After some rearranging we get that:

(2− 3α)d(si, yi)− (1− α)
(
d(yi, yj) + d(yi, yk)

)
< (2− 3α)d(si, xi).

By dividing both sides of the inequality by (2−3α) we get that d(si, xi) > d(si, yi)−∑
j∈N(i) d(yi, yj) holds whenever 1−α

2−3α
≤ 1. This completes the proof since for α ≤ 1

2

it is always the case that 1−α
2−3α

≤ 1.
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3.5 Lower Bounds on the Price of Stability

At the end of the previous section, we saw that even in very simple non-tree met-

rics, the price of stability can be greater than 1. We now give a set of stronger lower

bounds, using a more involved family of constructions. First we give an asymptot-

ically tight lower bound of 2 when α = 1
2
, and then we adapt this construction to

give non-trivial lower bounds for all 0 < α < 1
2
.

3.5.1 Price of stability for α = 1
2

The following example illustrates that the PoS for α = 1
2

can be arbitrarily close

to 2. The network we consider is composed of a path of n nodes and two cliques

of size n2 connected to each of the endpoints of the path. We assume that the

preferred strategy of node i on the path is si, the preferred strategy of all nodes in

the leftmost clique is s0, and the preferred strategy of all nodes in the rightmost

clique is sn+1. The following is a sketch of the network:

©0 ©n+1•1 •n......

Since all the si’s are distinct we use them also as names for the different possible

strategies. We define the following distance metric on these strategies: for i > j,

we have d(si, sj) = 1 + (i − j − 1)ε. (When i < j, we simply use d(si, sj) =

d(sj, si).) In Claim 3.5.1 below we show that the best Nash equilibrium is the one

in which all players play their preferred strategies. The cost of this equilibrium is

c(s) = 1
2
· 2
∑n

i=0 d(si, si+1) = n + 1. On the other hand, consider the assignment

in which for some node i all the nodes up till node i choose strategy s0 and all

the nodes from node i + 1 choose strategy sn+1. The cost of such assignment is
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1
2
(n+ 2 +O(ε)); therefore as n goes to infinity and ε to zero the PoS goes to 2.

Claim 3.5.1 In the previously defined instance the best Nash equilibrium is for

each player to play its preferred strategy.

Proof: We show that the cost of any other equilibrium is at least 1
2
n2. Consider

an equilibrium in which there exists at least one node i that plays strategy sj such

that j < i. By the following lemma (which we prove below) this implies that node

i’s neighbors play strategies sa and sb such that a, b < i or a, b > i.

Lemma 3.5.2 Let sa and sb be the strategies played by player i’s neighbors such

that a ≤ b. If a ≤ i ≤ b, then player i’s best response is to play strategy si.

Observe that for i’s best response to be strategy sj it clearly has to be the case

that a, b < i. By applying Lemma 3.5.2 repeatedly, we get that in this equilibrium,

all nodes k > i play strategies k′ such that k′ < k. This includes the nth node of

the path, implying that its right neighbor which belongs to the right clique plays

strategy sk′ such that k′ < n + 1. The cost incurred by the nodes in the clique

in any such equilibrium is at least n2: indeed, if r nodes play a strategy different

than their preferred one, they pay a cost of at least 1
2
r and the remaining n2 − r

pay a cost of at least n2 − r for the edges connecting them to one of the r nodes

playing a strategy different than its preferred strategy. To complete the proof, one

can use an analogous argument for the case in which there exists an equilibrium

in which there is a node i playing strategy sj such that j > i.

Proof of Lemma 3.5.2: We first note that by the definition of the metric it is

never in i’s best interest to play a strategy sj such that j 6= i, a, b: playing such
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a strategy has cost 3 + O(ε) whereas the cost of playing the preferred strategy is

2 +O(ε).

Observe that player i prefers to play strategy si over strategy sa 6= si whenever

d(si, sa) + d(si, sb) < d(si, sa) + d(sa, sb) implying that d(si, sb) < d(sa, sb). This

conditions holds according to our assumptions since 1 + (b− i− 1)ε = d(si, sb) <

d(sa, sb) = 1 + (b− a− 1)ε. For the same reason, player i prefers strategy si over

sb 6= si since 1 + (i − a − 1) = d(si, sa) < d(sa, sb) = 1 + (b − a − 1) under the

lemma’s assumptions.

3.5.2 Extension for α < 1
2

We extend the construction in Section 3.5.1 to 0 < α < 1
2

by defining the following

metric: for i > j, let d(si, sj) = 1 + (i − j − 1)

(
1− 2α

1− α
(1 + ε)

)
. We consider

the same family of instances defined in Section 3.5.1 except for the fact that we

increase the size of the cliques to n2/α.

Next, we show that Lemma 3.5.2 also holds for this newly defined family of

instances. This fact together with the observation that the proof of Claim 3.5.1

carries over with only minor modifications, imply that in the best Nash equilib-

rium of the previously defined family of instances all players play their preferred

strategies.

Lemma 3.5.3 Let sa and sb be the strategies played by player i’s neighbors such

that a ≤ b. If a ≤ i ≤ b, then player i’s best response is to play strategy si.

Proof: For proving this claim it will be easier to use an equivalent distance
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function which is: d(si, sj) = 1 + (|i − j| − 1)

(
1− 2α

1− α
(1 + ε)

)
. Also, we only

present the proof for the case that a < i < b, the proof for the rest of the cases is

very similar. We first show that player i prefers to play strategy si over playing

any strategy sj such that j 6= a, b. The cost of player i for playing si is:

(1− α)

(
2 + (|i− a| − 1 + |b− i| − 1) · 1− 2α

1− α
(1 + ε)

)
= 2(1− α) + (|b− a| − 2) · (1− 2α)(1 + ε)

≤ 1 + (|b− a| − 1) · (1− 2α)(1 + ε).

The cost of playing strategy sj such that j 6= a, b is:

α(1 + (|i− j| − 1)
1− 2α

1− α
(1 + ε))

+ (1− α)

(
2 + (|j − a| − 1 + |j − b| − 1) · 1− 2α

1− α
(1 + ε)

)
≥ 2− α + (|b− a| − 2) · (1− 2α)(1 + ε).

The last transition is due to the fact that |j − a| + |j − b| ≥ |b − a| . Thus we

conclude that player i’s best response can only be si, sa or sb. Next we consider

strategies sa and sb. By writing the cost of playing each one of these strategies it

is easy to see that these costs are greater than the costs for playing si.

The cost of playing strategy sa 6= si is:

α(1 + (|i− a| − 1)
1− 2α

1− α
(1 + ε)) + (1− α)

(
1 + (|b− a| − 1) · 1− 2α

1− α
(1 + ε)

)
= 1 + (

α

1− α
(|i− a| − 1) + |b− a| − 1) · (1− 2α)(1 + ε).

The cost of playing strategy sb 6= si is:

α(1 + (|b− i| − 1)
1− 2α

1− α
(1 + ε)) + (1− α)

(
1 + (|b− a| − 1) · 1− 2α

1− α
(1 + ε)

)
= 1 + (

α

1− α
(|b− i| − 1) + |b− a| − 1) · (1− 2α)(1 + ε).
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This conclude the proof as we have shown that under the assumptions of the claim,

player i’s best response it to play its preferred strategy.

To get a lower bound on the PoS, we would like to simulate the technique

we used in the proof for α = 1
2

to compare between the cost of two solutions:

(i) a solution in which there is exactly one edge such that its two endpoints play

different strategies, and (ii) the best Nash equilibrium. We refer to the first solution

as a bi-consensus solution. The cost of the best bi-consensus solution is an upper

bound on the optimal solution, and hence computing the ratio between the best

Nash equilibrium and best bi-consensus solution gives a lower bound on the PoS

achieved by instances defined above.

Observe that in the best bi-consensus solution nodes i ∈ [1 . . . bn/2c] play

strategy s0 and nodes i ∈ [dn/2e . . . n] play strategy sn+1. The cost of this solution

b is the following:

c(b) = α
( bn/2c∑

i=1

(1 + (i− 1)(
1− 2α

1− α
(1 + ε))) +

n∑
i=bn/2c+1

(1 + (n− i)(1− 2α

1− α
(1 + ε)))

)
+ 2(1− α)(1 + (n+ 1− 0− 1)(

1− 2α

1− α
(1 + ε)))

≤ α · n+ α
1

4
(n− 1)2 · 1− 2α

1− α
(1 + ε) + 2(1− α) + 2n(1− 2α)(1 + ε).

Where the last transition is due to the fact that:

bn/2c∑
i=1

(i− 1) +
n∑

i=bn/2c+1

(n− i) ≤
bn/2c−1∑
i=1

i+

bn/2c∑
i=1

i = (bn/2c − 1) · bn/2c+ bn/2c

= bn/2c2 =
1

4
(n− 1)2.

The cost of the best Nash equilibrium x is simply c(x) = 2(1 − α)(n + 1).

Interestingly, once we pick α < 1
2

the maximum PoS for this example is obtained
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for an intermediate value of n. By taking the first derivative of the function c(x)
c(b)

with respect to n and comparing it to 0, we get that the maximum PoS is achieved

for n = d1−2α−2
√

2−7α+6α2

−1+2α
e or n = b1−2α−2

√
2−7α+6α2

−1+2α
c.

In Figure 3.3 we plot the lower bound on the PoS that can be achieved by

this example (solid line). As one might can expect, as α approaches 1
2

the PoS

approaches 2. For comparison, we also plot (via the dashed line) the lower bound

of 2
2−α on the PoS that we computed in Section 3.4.3 for instances in which the

best Nash equilibrium differs from an optimal solution only in the strategy played

by a single player. Interestingly, each of the two constructions offers a better

lower bound on the PoS for a different interval of α. We cannot rule out that the

maximum of these two constructions could match the best achievable upper bound

on the PoS for all α, but there may also be other constructions that can achieve

higher lower bounds on the PoS for some ranges of α.

0.0 0.1 0.2 0.3 0.4 0.5

1.2

1.4

1.6

1.8

2.0

Figure 3.3: The PoS achievable by a path (solid) and by a single strategic
node (dashed).

88



CHAPTER 4

CULTURAL DYNAMICS

4.1 Introduction

So far we have discussed models for opinion formation in which individuals form

their opinion on a single topic. In this chapter we take a different approach and

discuss how people form their opinions on a set of topics simultaneously. This is

usually referred to as cultural dynamics, which builds on the interaction patterns

between different cultures for answering questions such as how cultures evolve.

Human societies exhibit many forms of cultural diversity — in the languages

that are spoken, in the opinions and values that are held, and in many other

dimensions. An active body of research in the mathematical social sciences has

developed models for reasoning about the origins of this diversity, and about how

it evolves over time.

One of the fundamental principles driving cultural diversity is the tension be-

tween two forces: influence and selection. Influence refers to the tendency of people

to become similar to those with whom they interact, whereas Selection is the ten-

dency of people to interact with those who are more similar to them, and/or to be

more receptive to influence from those who are similar.

Both of these forces lead toward outcomes in which people end up interacting

with others like themselves, but in different ways: influence tends to promote ho-

mogeneity, as people shift their behaviors to become alike, while selection tends to

promote fragmentation, in which a society can split into multiple groups that have

less and less interaction with each other. Research that offers qualitative analyses
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for issues such as consensus-building, political polarization, or social stratifica-

tion can often be interpreted through the lens of this influence-selection trade-off

[31, 60, 69]1. The trade-off between influence and selection, and the development of

data analysis techniques to try separating the effects of the two, have been integral

to understanding and promoting the adoption of products and behaviors in social

networks [6, 8, 24, 67, 92], an active line of work at the interface of computing,

economics, and statistics.

When both influence and selection are operating at the same time, how should

we reason about their combined effects? Several lines of modeling work have

approached this question, all starting from similar underlying motivations, but

developing different mathematical formalisms.

1. Research on political opinions has studied populations in which each person

holds an opinion. The opinion is represented by a number drawn from a

bounded interval on the real line R1, or from a discrete set of points in an

interval. (For example, the interval may represent the political spectrum

from liberal to conservative.) Each person is influenced by the opinions of

others who are sufficiently nearby on the interval, thus capturing the interplay

between influence (people are shifting their opinions based on the opinions of

others) and selection (people only pay attention to others whose opinions are

sufficiently close) [15, 34, 56]. Other versions of models for opinion formation

were discussed in the previous two chapters.

2. Axelrod proposed a model of cultural diversity in which there are several

dimensions of culture, and each person has a value associated with each di-

1The term homophily is often used to refer to the mechanism of selection [69]. However, in
other contexts, it is used to refer to the broader fact that people tend to be similar to their
neighbors in a social network, regardless of the mechanism leading to this similarity. Hence, we
use the more specific term selection here.
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mension (e.g., a choice of language, religion, or political affiliation). Agents

are more likely to interact when they agree on more dimensions; when two

people interact, one person randomly chooses a dimension in which they dif-

fer, and changes his value so that they now match in this dimension [10]. For

example, two people who have passions for similar sports and styles of food

may end up having an easier time (and more opportunity for) associating,

and hence an easier time influencing one another along another dimension

such as religious beliefs. Again, the model represents an influence process in

which the interactions are governed by selection based on (cultural) similar-

ity. Axelrod’s model has generated a large amount of subsequent work; see

[27] for a survey.

3. Finally, Abrams and Strogatz exhibited some of the interesting effects that

can occur even when there are only two types of people. They modeled a

scenario in which people speak one of two languages. People mainly interact

with speakers of their own language, but there is gradual “leakage” over time

as speakers of one language may convert to become speakers of the other [2].

The Abrams-Strogatz model has also generated an active line of follow-up

results, including explorations of its microfoundations through agent-based

simulation [96] and analyses of the spatial effects and population density [82].

Commonalities among Models

Although the models described above differ in many details, they have the same

underlying structure: the population is divided into a set of types (the opinions,

the cultural choices, the language spoken), and a person of any given type may be

influenced to switch types, but only by others whose types are sufficiently similar.
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(In the case of the Abrams-Strogatz model, there is a preference for one’s own

type, but since there are only two types, all types can influence each other.) This

process generates a “flow” as people migrate among different types, and we can

ask questions about both dynamics (which outcomes the process will reach) and

equilibria (which outcomes are self-sustaining, in the sense that the flows between

types preserve the fraction of people who belong to each type). Following the

language around Axelrod’s work, we will refer to this type of process as representing

the cultural dynamics of the population.

In addition to their similarities in structure, these cultural dynamics models also

agree in their broad conclusions. In the first two models, the population gradually

separates into distinct “islands” in the space of possible types; subsequently, no

further interaction between the islands is possible. In the Abrams-Strogatz model,

with just two types, the only outcomes that are stable under perturbations are

the two extreme outcomes in which everyone ends up belonging to the same type.

Typically, there is also an unstable equilibrium in which each language is spoken

by a non-zero fraction of the population.

The most salient difference among the models is the structure that is imposed

on the set of types. In each case, there is an undirected influence graph T on

the set of types: when a person of type u interacts with a person of type v, the

person of type u has the potential to switch to (or move towards) v provided that

u and v are neighbors in T (i.e., provided that u and v are sufficiently similar

according to the interpretation of the model). In the models of one-dimensional

opinion dynamics on a discrete set, the graph T is the kth power of a path for

some k ≥ 1 (types are similar enough when they are within k steps on the path);

in Axelrod’s model, the graph T is the kth power of a (not necessarily binary)
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hypercube. The Abrams-Strogatz model shows that these kinds of processes can

exhibit subtle behavior even on a two-node influence graph T .

Cultural Dynamics on an Arbitrary Influence Graph

All of the prior results apply only to highly structured, symmetric graphs (essen-

tially hypercubes and paths), whereas in some of the settings that the models seek

to capture, the set of types can have a less orderly structure. A basic open problem

is to analyze cultural dynamics on an arbitrary influence graph.

This is the problem we address in this chapter, where we develop techniques for

resolving some of the main questions on arbitrary graphs. For a natural formulation

of cultural dynamics on an arbitrary influence graph (which refer to as the global

model, for reasons explained later), we prove convergence results and precisely

characterize the set of all stable equilibria. We then consider generalizations of

the global model, extending some of our convergence and stability results to these

more general settings and posing several open questions.

The Global Model

We now describe the global model in more detail. Because the models from the

earlier lines of work discussed above differ in many of their details, there is no

meaningful way to simultaneously generalize all of them in a precise syntactic

sense. Instead, our goal is to formulate a version of cultural dynamics that exhibits

the same basic interplay of selection and influence — specifically, the idea that

influence only happens among types that are “close together” — while allowing

for an arbitrary graph on the set of types.
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Let T be a graph on a set of types V ; for each type u ∈ V , let Tu ⊆ V

denote the set of u’s neighbors in T . As is standard in many of the approaches

to cultural dynamics, we model the population as a continuum: at the start of

the process, each type u ∈ V has a non-negative population mass associated with

it, corresponding to the fraction of the population that initially has this type.

(Consider, for example, the fraction of the world’s population that belongs to

a certain religion or speaks a certain language.) Time evolves in discrete steps

t = 0, 1, 2, . . ., and xu(t) denotes the mass on type u at time t. The full state of

the population at time t is thus given by the mass vector x(t), the vector of values

xu(t) for all u ∈ V .

We define a discrete-time dynamical system in which xu(t+1) is determined in

terms of the mass vector x(t). The dynamical system is motivated by imagining

that each person chooses a random other person to interact with. Selection effects

are captured in two ways by the model: first, people are more likely to interact with

their type; and second, they only have the potential to be influenced when they

interact with an individual of their own or a neighboring type. Specifically, each

person is α times more likely to choose an interaction partner of their own type

than someone of a different type, for a parameter α ≥ 1. When a person of type u

chooses to interact with a person of type v, such that v ∈ Tu, then with probability

p, he will switch to type v, where p ∈ (0, 1] is a fixed parameter. To express this

dynamic numerically, we let Mu(t) = αxu(t) +
∑

v∈V \{u} xv(t). A person of type

u chooses to interact with his own type with probability αxu(t)/Mu(t), and with

any other type v 6= u with probability xv(t)/Mu(t). Since a person can change his

type from u to v only when v ∈ Tu, the probability that a person of type u keeps

his current type after one interaction is (1− p) + p ·
αxu(t) +

∑
v∈V \(Tu∪{u}) xv(t)

Mu(t)
.
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It is easy to translate this idea into a deterministic update rule on the continuum

of people: following the motivation above, we set

xu(t+ 1) = (1− p)xu(t) + p·xu(t) ·
αxu(t) +

∑
v∈V \(Tu∪{u}) xv(t)

Mu(t)
+ p

∑
v:u∈Tv

xv(t) ·
xu(t)

Mv(t)
,

(4.1)

where the first two terms represent the mass that stays at u from time t to t +

1 (because this fraction of u was not influenced or interacted either with other

members of u, or with types v /∈ {u} ∪ Tu), and the third term incorporates all

the mass that moves from other types v to u. This defines the update rule for the

mass vectors x in the dynamical system.

It is natural to think of the parameter p as generally being very small, since most

interactions between people do not lead to a change of type. However, as it turns

out, the value of p does not have a major qualitative effect on our results. This is

not surprising, since introducing p < 1 (as opposed to p = 1) just slows down the

“flow” between any two types by a factor of 1/p. We include p in the model in

order to capture the range of possible speeds at which transitions can happen. For

example, if the types in our model correspond to dialects of a language, we can

choose a small p (since the probability that a person changes his dialect is very

small). However, if instead the types represent opinions in the period before an

election, people may switch much more rapidly, and a larger p is appropriate.

Convergence, Equilibria, and Stability in the Global Model

Our first result is that for any influence graph T and any initial mass vector x

the system converges to a limit mass vector x∗. We prove this by establishing a

system of invariants on the population masses over time, capturing a certain “rich-
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get-richer” property of the process — essentially, that the types of large mass will

tend to grow at the expense of the types of small mass.

We next consider the equilibria of this model: we say that a mass vector x is

an equilibrium if it remains unchanged after one application of the update rule. It

is easy to construct examples of equilibria that are not stable, in the sense that an

arbitrarily small perturbation of the masses x∗u can — after further applications of

the update rule — push the masses far away from the equilibrium. Such equilibria

are less natural as predicted outcomes of the cultural dynamics being modeled,

since the population would be unlikely to hold its position near this equilibrium.

To make this statement precise, we use the notion of Lyapunov stability. We

say that an equilibrium x∗ is Lyapunov stable (or, more briefly, stable) if given any

ε > 0, there exists a δ > 0 such that if ||x(t0) − x∗|| < δ, then ||x(t) − x∗|| < ε,

for all t ≥ t0.2 For simplicity, we use the L1 norm instead of the L2 norm in what

follows, although this is not an important distinction.

We prove that x∗ is a stable equilibrium if and only if the set of active types

A(x∗) = {u : x∗u > 0} is an independent set in the influence graph T . The proof

is based on the rich-get-richer properties of the process; these properties are used

to show that after a sufficiently small perturbation to the population masses, the

amount by which any type with positive mass can grow is bounded.

2One could ask about stronger notions of stability, in particular, asymptotic stability, which
requires that there exists a δ1 > 0 such that if ||x(t0) − x∗|| < δ1, then x(t) → x∗ as t → ∞.
Asymptotic stability is not a useful definition for our purposes; for example, if the underlying
influence graph T has no edges, then any assignment of population masses is an equilibrium, but
none are asymptotically stable, since there is no way for a small perturbation to converge back to
the original state. On the other hand, all equilibria are Lyapunov stable in this simple example.
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Interpretations of the Basic Results

These results establish, first of all, a precise sense in which the natural equilibria

the model tend to break the population into non-interacting islands. In addition to

offering a qualitative statement about fragmentation of opinions, the results also

suggest a way of reasoning about the phenomenon by which opinions on different

issues tend to become aligned, with an individual’s views on one issue providing

evidence for his or her views on another [85, 95]. To take a concrete example that

already appears on the 2-dimensional hypercube (i.e. the 4-node cycle), consider a

setting in which each individual has either a liberal or conservative view on fiscal

issues and either a liberal or conservative view on social issues. If we assume that

people only influence each other when they agree on at least one of these two

categories of issues, then the graph on the set of types is a 4-node cycle. Since our

results on stable equilibria indicate that independent sets are favored as outcomes,

we can interpret the conclusion in this example as predicting that either the whole

population will converge on a single node (representing a uniform choice of views),

or on an independent set of two nodes, in which case an individual’s opinion on

fiscal issues has become correlated with his or her opinion on social issues.

It is also instructive to compare our results to the main result of [2] discussed

above. Recall that they consider the influence graph T = K2 (two connected

nodes), and they find that the two stable equilibria are the outcomes in which all

the population mass is gathered at a single node. The family of dynamical systems

they consider strictly subsumes ours in the special case of a two-node graph, but for

the specific system we study, our results imply that their basic finding extends to

arbitrary graphs: in any graph, the stable equilibria correspond to the non-empty

independent sets, just as Abrams and Strogatz showed for the two-node graph K2.
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A Generalization: Limiting both Interaction and Influence

We now discuss a natural generalization of the model that is significantly more

challenging to analyze. In the global model, the members of type u can interact

with members of all other types, even though they are influenced only by the types

in Tu. However, there are settings in which it is more natural to assume that the

members of a type only ever interact with members of a subset of the other types.

For example, this may be a reasonable assumption when types represent different

languages.

To capture this idea, we now assume that there are two potentially distinct

graphs on the set of types V : the influence graph T (as before), as well as an

undirected interaction graph S, where T is a subgraph of S. Rather than inter-

acting with a person chosen from the full population, a member of type u selects

an interaction partner from the set Su of u’s neighbors in S. It is straightfor-

ward to write the new update rule for this more general dynamical system, by

summing over types in Su instead of V \ {u}. Specifically, we can now define

Mu(t) = αxu(t) +
∑

v∈Su xv(t), and get the following generalized update rule:

xu(t+ 1) = (1− p)xu(t) + p·xu(t) ·
αxu(t) +

∑
v∈Su\Tu xv(t)

Mu(t)
+ p

∑
v:u∈Tv

xv(t) ·
xu(t)

Mv(t)
.

(4.2)

The global model is simply the special case in which the interaction graph S is

the complete graph. The name global model emphasizes that each type interacts

“globally,” with all other types.3

3There are clearly many other potential generalizations which could incorporate notions of
non-uniform interaction, including different interaction strengths between different pairs of types.
Such extensions would lead to interesting questions as well. In this chapter, we focus on the
generalization with two unweighted graphs S and T because it captures in a direct way some of
the additional complexity that is introduced by simultaneously modeling limited interaction and
influence.
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The behavior of this general model is significantly more complex than the

behavior of the global model; for instance, for arbitrary S and T , it is not even

clear whether the process will always converge. Intuitively, much of the difficulty

comes from the fact that when we consider two neighboring types u and v, the sets

of types that they are interacting with, Su and Sv, can be quite different, whereas

in the global model they are both the full set V . Among other things, this can

lead to violations of the rich-get-richer property that was so useful for reasoning

about the dynamics of the global model.

For the general model, we first establish a necessary condition for equilibria, as

well as sufficient conditions for convergence and stability. We then focus further

on the special case in which S = T . This is in a sense the opposite extreme

from the global model; instead of making S as large as it can be, we make it

as small as possible subject to the constraint that it contains T as a subgraph.

Accordingly, we refer to the case S = T as the local model. There are many

interesting open questions surrounding the behavior of the local model; we make

progress on these through initial convergence results and the identification of a

large class of equilibria that are stable for all α > 1: non-empty independent sets

for which all nodes in the set are at a mutual distance of at least three. In fact, this

is an “if and only if” characterization for an important class of influence graphs:

those whose connected components are trees or, more generally, bipartite graphs.

An interesting observation is that the local and global models can have gen-

uinely different behaviors starting from the same initial conditions: Figure 4.1

shows an example of an initial mass distribution on the three-node path for which

the global model converges to an outcome in which the mass is divided evenly be-

tween the two endpoints, while the local model converges to the outcome in which
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all the mass is on the middle node.
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(c) Local model (α = 2).

Figure 4.1: An instance in which different models predict convergence to differ-

ent equilibria. The global model predicts an outcome in which two

non-interacting types survive (polarization), whereas the local model

predicts that only a single types survives (consensus).

At a higher level, formalizing the distinction between interaction (S) and in-

fluence (T ) is a potentially promising activity more broadly, particularly in light

of the considerable recent interest in the effects of information filtering on the

political process. (See [81, 101] for popular media accounts, and [14] for recent

experimental research.) The concern expressed in all these lines of work is that

personalization on the Internet makes it possible to sharply restrict the diversity

of information one sees, and thus risks accentuating the degree of polarization

and fragmentation in political discourse — essentially, the risk is that people will

only ever be exposed to those who already agree with them, making any kind of

consensus almost impossible to achieve.

In this context, our general model also brings into the discussion the interesting

contrast between interaction and influence. Personal filtering of information by

Internet users can restrict the set of people they interact with (affecting the sets

Su), and it can also, separately, restrict the set of people who may be able to

influence them (affecting the sets Tu). These two different effects are often bundled

together in discussions of information filtering; it will be interesting to see whether

treating them as genuinely distinct can shed additional light on this set of issues.
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4.2 Observations on the General Model

In this section, we develop several observations that apply to the fully general

model with an arbitrary interaction graph S. In the subsequent sections, we utilize

these observations to analyze the global model (where S is the complete graph)

and the local model (where S = T ).

We begin by restating the network dynamics in terms of flows on edges. Recall

from the introduction that the fraction of people of type u who switch to type

v ∈ Tu is p·xv(t)/Mu(t), whereMu(t) = αxu(t) +
∑

v∈Su xv(t). Thus, the fraction

of the entire population which is moving from u to v is p·xu(t)xv(t)/Mu(t). At

the same time as this mass of p·xu(t)xv(t)/Mu(t) is moving from u to v, a mass of

p·xv(t)xu(t)/Mv(t) is moving from v to u. These movements partially cancel each

other out, and motivate the following definition of the (directed) flow on the edge

(v, u) ∈ T :

fv→u(t) = p·xv(t)xu(t)
(

1

Mv(t)
− 1

Mu(t)

)
. (4.3)

The updated mass can then be written as

xu(t+ 1) = xu(t) +
∑
v∈Tu

fv→u(t). (4.4)

It is easy to check that (4.4) is equivalent to the original dynamics (4.2). Inter-

estingly, theMu(t) terms emerge as crucial quantities that determine the direction

of the flow; for that reason, we will call Mu(t) the interaction mass of node u at

time t.

We say that a node u is active at time t if xu(t) > 0, and inactive if xu(t) = 0.

We occasionally refer to a node u as x-active if it is active in x and x-inactive

otherwise. The set of all active nodes under x is denoted by A(x). Much of our
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analysis concerns the structure of the subgraph Tact(x) of the influence graph T

induced by the active nodes A(x). We begin by characterizing when mass vectors

are in equilibrium.

Proposition 4.2.1 A vector x∗ is an equilibrium if and only if each connected

component C of Tact(x∗) has the property that all nodes u ∈ C have the same

interaction mass Mu.

Proof: For the if direction, let (u, v) ∈ T be an arbitrary edge. If (u, v) lies

inside a component C of Tact(x∗), then by assumption, both u and v have the

same interaction mass, so the flow between them will be 0. Otherwise, at least

one of u, v is inactive, so that xuxv = 0, and again the flow is 0. Thus, x∗ is an

equilibrium.

For the converse direction, assume that for some connected component C of

Tact(x∗), the nodes do not all have the same interaction mass. Let U ⊆ C be the

set of all nodes u ∈ U minimizing Mu(t). By assumption, U ( C, and because C

is connected, there must be a node pair u ∈ U, v ∈ C \ U which is adjacent in T .

Fix this node pair.

By definition of U , the flow along any edge (u, v) ∈ T is non-negative, and

the flow along (u, v) is strictly positive. Thus, after one application of the update

rule, the mass on node u strictly decreases, which means that x∗ cannot be an

equilibrium.

The following useful lemma relates convergence and the change in directions of

flows:
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Lemma 4.2.2 If there exists a time t0 such that the flows do not change direction

after time t0, then the system converges.

Proof: Let G be the directed graph obtained by directing each edge (u, v) of T

according to the direction of the corresponding flow fu→v(t0). By the assumption,

these directions stay constant after time t0. As flow always goes from types with

smaller interaction mass to types with larger interaction mass, G must be acyclic.

Let v1, v2, . . . , vn be a topological sorting of the graph, so that all directed edges

of G are of the form (vi, vj), i < j.

We define Xk(t) =
∑k

i=1 xvi(t) to be the total mass at time t ≥ t0 on the k first

nodes in the topological sorting. Because the total mass in the system is constant,

and all flow goes from nodes with lower indices to nodes with higher indices, each

of the Xk(t) must be non-increasing as a function of t. Since they are also lower-

bounded by 0, each Xk(t) must converge to some value Zk as t → ∞. Therefore,

each xvi(t) converges to Zi − Zi−1 as t→∞.

Recall that we are interested in characterizing stable equilibria. We next pro-

vide a sufficient condition.

Proposition 4.2.3 An equilibrium x∗ is stable if it satisfies the following two

properties:

1. The active nodes form an independent set in the influence graph T .

2. The interaction mass of every active node is strictly greater than the inter-

action mass of each of its inactive neighbors in the influence graph T .

Proof: Let x∗ be an equilibrium for which both properties hold. A node u is

called x∗-active if it is active in x∗ and x∗-inactive otherwise. Let A be the set of

103



all x∗-active nodes, andM∗
u denote the interaction mass of node u with respect to

x∗. Define

δ = 1
2α+1

min
u∈A, v/∈A, (u,v)∈T

(M∗
u −M∗

v) > 0 (4.5)

by the second property of x∗. To show stability, we prove that whenever ||x∗ −

x(t0)||1 ≤ δ, the system will satisfy ||x∗ − x(t)||1 ≤ δ for all time steps t ≥ t0.

The key step of the proof is to establish that for each node u ∈ A, the mass

xu(t) is non-decreasing over time. For contradiction, assume that t is minimal, and

u ∈ A an x∗-active node, such that xu(t+1) < xu(t). Because A is an independent

set in T , all of u’s neighbors in T must be x∗-inactive. By definition of t, we have

that
∑

v/∈A xv(t) ≤ δ, and
∑

v∈A xv(t) ≥
∑

v∈A x
∗
v − δ. In particular, this implies

that Mu(t) ≥ M∗
u − αδ and for any neighbor v of u, Mv(t) ≤ M∗

v + αδ, so we

obtain that Mu(t)−Mv(t) ≥ (M∗
u −M∗

v)− 2αδ
(4.5)

≥ (2α + 1)δ − (2α)δ > 0.

This implies that no flow could have been directed from u to v, for any v ∈ Tu,

contradicting that u’s mass decreased.

Finally, because each of the xu(t), u ∈ A is non-decreasing, mass can only move

among x∗-inactive nodes, or from x∗-inactive nodes to x∗-active ones. Therefore,

it holds that
∑

u∈A |xu(t)− xu(t0)| =
∑

u/∈A xu(t0)−
∑

u/∈A xu(t). Thus,

||x(t)− x∗||1 ≤
∑
u∈A

|xu(t)− xu(t0)|+
∑
u∈A

|xu(t0)− x∗u|+
∑
u/∈A

xu(t)

=
∑
u∈A

|xu(t0)− x∗u|+
∑
u/∈A

xu(t0) = ||x(t0)− x∗||1 ≤ δ,

so the system is stable.
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4.3 The Global Model

In this section, we analyze the global model. The definition of the general model

states that flows are always directed from nodes with smaller interaction mass to

nodes with larger interaction mass. For the global model, this property is simplified

significantly: flow is always directed from types with smaller mass to types with

larger mass. This property lets us achieve an almost complete understanding of

the global model. We show that for this model, the system always converges, and

we present a complete characterization of which equilibria are stable. First, we

characterize equilibria by applying Proposition 4.2.1 to the global model.

Corollary 4.3.1 Under the global model with α > 1, the system is at equilibrium

x∗ if and only if the following holds: for every connected component C of Tact(x∗),

all nodes u ∈ C have the same mass.

Proof: Proposition 4.2.1 guarantees that x∗ is at equilibrium if and only if for

each edge (u, u′) ∈ Tact(x∗): αx∗u +
∑

v∈Su x
∗
v = αx∗u′ +

∑
v∈Su′

x∗v. In the global

model, for any node u, the set Su consists of of all types but u itself, implying that

the sum cancels out, and we obtain (α−1)x∗u = (α−1)x∗u′ . For α > 1, this implies

x∗u = x∗u′ .

We next show that the system always converges; the proof relies on the key

invariant that for any 1 ≤ k ≤ n, the total mass of the k smallest types never

increases over time. More formally, we define the following quantities:

Definition 4.3.2 Let y1(t) ≤ y2(t) ≤ . . . ≤ yn(t) be the node masses sorted in
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non-decreasing order. Define

Yk(t) =
∑
i≤k

yi(t) = min
R:|R|=k

∑
v∈R

xv(t) (4.6)

to be the sum of the masses of the k smallest nodes at time t.

The following lemma formally captures the notion that the rich get richer in

the global model.

Lemma 4.3.3 For every k, the function Yk(t) is non-increasing in t.

Proof: Let t, k be arbitrary, and assume for contradiction that Yk(t+1) > Yk(t).

Let R(t) be the set of k nodes achieving the minimum in (4.6) at time t, and

similarly for R(t+ 1) at time t+ 1 (breaking ties arbitrarily). By assumption and

the definition of R(t+ 1), we have

∑
v∈R(t)

xv(t) <
∑

v∈R(t+1)

xv(t+ 1) ≤
∑
v∈R(t)

xv(t+ 1),

so the total mass of nodes in R(t) must have strictly increased from time t to

time t + 1. In particular, because the total mass of all nodes is constant over

time, this means that the flow from R(t) (the complement of R(t)) to R(t) was

strictly positive, so it must have been strictly positive along some edge (u, v) with

u /∈ R(t), v ∈ R(t). But by definition of R(t), we have that xu(t) ≥ xv(t), a

contradiction to the flow dynamics of the global model.

Theorem 4.3.4 Under the global model, the system converges for any influence

graph and any starting mass vector x(0).
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Proof: By Lemma 4.3.3, each function Yj(t) is non-increasing in t. As all masses

are non-negative, the Yj(t) are also bounded below by 0. Hence, each function

Yj(t) must converge to some value Zj. Thus, each function yj(t) must converge to

Zj − Zj−1 =: zj. It remains to show that this also implies convergence of x(t).

Let δ > 0 be at most the smallest difference between any two distinct zj, i.e.,

δ ≤ mini,j:zi 6=zj |zi − zj|.

Let t0 be large enough that |yi(t)− zi| < δ
2n

for all t ≥ t0. Note that this also

implies that Yj(t)− Zj ≤
∑j

i=1 |yi(t)− zi| < j · δ
2n

.

We will show that if for some node v, there exists a time t ≥ t0 such that

xv(t) = yj(t) and xv(t+ 1) = yj′(t + 1), then zj = z′j. Assume towards a con-

tradiction that this is not the case; hence, there exist v and t≥ t0 such that

xv(t) = yj(t), xv(t + 1) = yj′(t + 1) and zj 6= z′j. Furthermore assume that

j < j′. (The proof for the case of j′ < j is similar.) Then, xv(t) ≤ zj + δ
2n

and

xv(t + 1) ≥ zj′ − δ
2n
≥ zj + 2n−1

2n
δ. Therefore, in time step t, v gained at least a

mass of 2n−2
2n

δ.

The source of this mass can only be nodes which at time t had smaller masses

than v. Hence,

Yj−1(t+ 1)− Zj−1 ≤ Yj−1(t)− Zj−1 −
2n− 1

2n
δ ≤ (j − 1) · δ

2n
− 2n− 1

2n
δ < 0.

This is a contradiction to the fact that Yj−1(t) is non increasing and converges to

Zj−1.

107



4.3.1 Characterization of Lyapunov Stable Equilibria

For the global model, the properties required for Proposition 4.2.3 hold for any

independent set, since the interaction mass of active types is always greater than

the interaction mass of inactive types. Therefore, any equilibrium in which the

set of active nodes is independent is stable. To complete the characterization, we

show that the converse is also true.

Theorem 4.3.5 In the global model, an equilibrium x∗ is Lyapunov stable if and

only if the active nodes form an independent set.

Proof: It remains to prove the “only if” direction. Assume the active nodes in

an equilibrium x∗ do not form an independent set. We will prove that x∗ is not

Lyapunov-stable.

Let C be a connected component of size |C| ≥ 2 in Tact(x∗). By the assumption

that the active nodes in x∗ do not form an independent set, such a connected

component exists. Notice that each component of Tact(x∗) evolves in isolation, so

we can focus on only C for the rest of the proof. Therefore, by Corollary 4.3.1,

x∗v = µ for all v ∈ C, for some value µ.

Let u, v ∈ C be two arbitrary nodes, and δ > 0 be arbitrarily small. Consider

the following perturbation: xu = x∗u + δ, xv = x∗v− δ, and xw = x∗w for all w 6= u, v.

By Theorem 4.3.4, the system, starting from the perturbed vector x, will converge

to some new equilibrium y. By Lemma 4.3.3, the smallest mass of any node in

C will always be at most µ − δ during the process. All y-active nodes must have

the same mass; therefore, if all nodes were active in y, they would all have to

have mass at most µ − δ, which would imply that mass has disappeared from C,
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a contradiction. Hence, at least one node of C must end up inactive in y. In

particular, this means that ||x∗ − y|| is not bounded in terms of δ, and x∗ is not

Lyapunov stable.

4.4 The Local Model

In the previous section, we have given essentially complete characterizations of

convergence and stability of equilibria under the global model, in which all types

have the potential to interact, even though only certain pairs of types can influence

each other (according to the graph T ).

We now consider the local model, which is at the other extreme of our general

family: here, the interaction graph S is the same as the influence graph T ; hence,

interactions occur only between individuals who also have the potential to influ-

ence each other. (We will generally denote this underlying graph by T , with the

understanding that S = T .) We find that the problems of convergence and sta-

bility are much more challenging in this case. For the global model, we were able

to extract very useful organizing structures in the dynamical system that gave us

a natural progress measure toward convergence. But as is well known, in general,

a dynamical system on even a small number of variables may have convergence

properties that are extremely difficult to analyze or express. Given the complex

behavior of the update rules for the local model, we find that the convergence and

stability questions are already difficult on graphs T with a small number of nodes,

and we focus our results here on such cases. (Of course, based on the motivating

premise of the model, even systems with a small number of variables are frequently

natural, corresponding to selection and influence dynamics in societies with, for
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example, a small number of languages, a small number of political parties, or a

small number of dominant religions or cultures.)

4.4.1 Convergence of a 3-path for α > 1

We begin by considering the case α > 1 and first prove the following theorem:

Theorem 4.4.1 Under the local model, if the influence graph is a 3-path, then the

system converges from any starting state.

We first provide a brief outline. The subtle difficulty arises due to the fact that

the flow between two types u and v does not necessarily go in the same direction

over all time steps, but instead may change its direction. To keep track of the

changes in direction, we define a configuration of the system to be a labeling of all

edges (u, v) in T by the direction along which flow is traveling (i.e., whether from

u to v or from v to u). In the case of a 3-node path, there are four possible configu-

rations. We study transitions among the configurations as the system evolves over

time; we show that each configuration is either a sink, which cannot transition to

any other configuration, or it has the property that any change in the direction of

an edge leads to a sink configuration. This ensures that there can be at most one

change in the direction of flow as the system evolves; hence, there is a time t0 such

that for any t > t0, no flow changes its direction. After this point, Lemma 4.2.2

guarantees that the system converges. For the case α ≥ 2, we show this fact only

for the 3-path; for α < 2, we establish a more general result, showing the same

fact for arbitrary star graphs.
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Lemma 4.4.2 Consider the local model with α ≥ 2 such that the influence graph

T is a 3-node path. Then, there is a time t0 such that for any t > t0, no flow

changes its direction.

Proof: Let the nodes of the path be (1, 2, 3), in order. Consider an arbitrary

time t. Consider the change in the interaction mass of node 1, for example, from

step t to t + 1. Recall that M1(t) = αx1(t) + x2(t). Node 1’s interaction mass

is decreased by αf1→2(t) from flow leaving node 1 to node 2, and increased by

f1→2(t) + f3→2(t) from flow entering node 2. By applying the same reasoning to

nodes 2 and 3, we get:

M1(t+ 1) =M1(t) + f3→2(t)− (α− 1)f1→2(t),

M2(t+ 1) =M2(t) + (α− 1)(f1→2(t) + f3→2(t)),

M3(t+ 1) =M3(t) + f1→2(t)− (α− 1)f3→2(t).

(4.7)

Let xi = xi(t),Mi = Mi(t), fi→j = fi→j(t) for i, j = 1, 2, 3. We will distinguish

three cases based on the relative sizes of M1,M2,M3.

1. If M2 ≥ M1 and M2 ≥ M3, then both f1→2 and f3→2 are non-negative.

According to Equation (4.7), M2 increases by at least as much as both

M1 and M3, so the same inequality will hold in the next step (and thus

inductively forever). Thus, we have reached a sink configuration.

2. If M2 < M1 and M2 < M3, then both f1→2 and f3→2 are negative. By

Equation (4.7), M2 decreases by at least as much as both M1 and M3, so

again, the inequalities will hold forever, and we have reached a sink configu-

ration.

3. The remaining case is that M2 < M1 and M2 ≥ M3. (The case M2 <

M3,M2 ≥ M1 is symmetric.) Here, M3 decreases, M1 increases, and M2
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may increase or decrease. If the relative order ofM1,M2,M3 stays the same

for all steps after t, then we have reached a sink configuration. Otherwise,

at some time t′ ≥ t, we must reach either a configuration with M2(t′) <

M1(t′),M2(t′) <M3(t′) or withM2(t′) ≥M1(t′),M2(t′) ≥M3(t′). Either

of those configurations is a sink configuration by the preceding two cases.

In summary, each configuration is either a sink configuration, or will reach a sink

configuration at the next transition to a different order of interaction masses.

Next we prove that for α < 2 the process converges on every star graph (and

in particular on the 3-path).

Theorem 4.4.3 Under the local model with α < 2, if the influence graph is a star

graph, then the system converges from any starting state.

In the remainder of this section we prove Theorem 4.4.3. More specifically, we

show that eventually the system enters a sink configuration.

Lemma 4.4.4 Consider the local model such that the influence graph T is a star

graph. Then, at any time, the number of edges with flow directed away from the

center is at most bαc.

Proof: Denote the central node by u. Fix some time t, and let R be the set of

all peripheral nodes v such that the flow on the edge (u, v) is directed from u to v.

Because the flow is directed towards v,Mv >Mu for all v ∈ R. Rearranging this

inequality gives us that (α− 1)(xv − xu) >
∑

w 6=u,v xw, which implies in particular
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that xv >
∑
w 6=u,v xw

α−1
. Summing over all v ∈ R now implies that∑

v∈R

xv >
∑
v∈R

∑
w 6=v,u xw

α− 1
> (|R| − 1)

∑
v∈R xv

α− 1
.

Thus we have that |R| ≤ bαc.

Lemma 4.4.5 Consider the local model such that the influence graph T is a star

graph, and with α < 2. Then, a configuration in which a flow on exactly one edge

is directed away from the center node is a sink configuration.

Proof: Let u be the center node. Suppose that at time t, the system is in a

configuration in which the flow on exactly one edge (u, v) is directed away from

the center; so Mu(t) <Mv(t).

We will prove that Mu(t + 1) <Mv(t + 1). By Lemma 4.4.4 there can be at

most one edge on which the flow is directed away from u, and (u, v) is such an

edge; hence, the configuration at time t + 1 is the same as at time t. To see that

Mu(t+ 1) <Mv(t+ 1), observe that the new interaction masses are

Mu(t+ 1) =Mu(t) + (α− 1)
∑
w 6=u,v

fw→u(t)− (α− 1)fu→v(t)

Mv(t+ 1) =Mv(t) + (α− 1)fu→v(t) +
∑
w 6=u,v

fw→u(t).

Now, since Mu(t) <Mv(t), their difference is

Mu(t+ 1)−Mv(t+ 1) < (α− 2)
∑
w 6=u,v

fw→u(t)− 2(α− 1)fu→v(t).

Because α < 2, the right-hand side is negative, and we have proved that Mu(t +

1) <Mv(t+ 1).

Theorem 4.4.3 now follows from Lemmas 4.2.2, 4.4.4 and 4.4.5, as follows. If the

system ever enters a configuration in which exactly one edge has flow directed away
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from the center, then by Lemma 4.4.5, it subsequently stays in this configuration

forever, so by Lemma 4.2.2, the system converges. By Lemma 4.4.4, the only other

alternative is that the system is always in the configuration with all edges directed

inwards; then, again, it converges by Lemma 4.2.2.

4.4.2 Convergence on a Path for α = 1

For α = 1, we are able to prove convergence if the active subgraph is a path of

n ≤ 5 nodes. The proof requires different techniques than the ones we use for

α > 1: for paths of more than 3 nodes, flows on edges can change their direction

infinitely often.

Assume that the active subgraph is an n-node path with nodes (1, 2, . . . , n).

The endpoints of the path, nodes 1 and n, always have interaction masses no larger

than their neighbors (nodes 2, n − 1), implying that their masses x1(t), xn(t) are

monotonically non-increasing. This implies convergence of x1(t), xn(t) as t→∞.

In the following proposition, we will exploit the convergence at the endpoints to

show that x2(t) and xn−1(t) must also converge. For a path of length at most 5,

this implies convergence of the vector x to an equilibrium, as the total mass stays

constant. Our technique does not apply beyond length 5; we do not know of a

direct way to generalize the argument inductively to paths of arbitrary lengths.

Theorem 4.4.6 Consider the local model with α = 1. If the influence graph is a

path of n ≤ 5 nodes, then the system converges.

Proof: We already argued above that x1(t) and xn(t) converge. If the path has

3 nodes, then x2(t) = 1− x1(t)− x3(t) (by mass conservation), so x2(t) converges
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as well. So assume that n ∈ {4, 5}. Below, we show that x2(t) converges as well;

a symmetric argument applies to xn−1(t). If the path has 4 nodes, we are done at

this point. If the path has 5 nodes, then x3(t) = 1− x1(t)− x2(t)− x4(t)− x5(t)

must converge as well. Thus, x(t) converges in all cases.

To prove that x2(t) converges, we distinguish two cases, based on y1 =

limt→∞ x1(t).

1. If y1 = 0, there are two subcases. If x1(t) ≥ x2(t) for all t, then clearly,

x2(t) → 0 as well. Otherwise, there exists a t0 with x2(t0) > x1(t0). By the

definition of the model, specialized to the local model and α = 1, we obtain

that for any t,

x1(t+ 1) = p·x1(t) ·
(
x1(t)

M1(t)
+

x2(t)

M2(t)

)
+ (1− p) · x1(t),

x2(t+ 1) = p·x2(t) ·
(
x1(t)

M1(t)
+

x2(t)

M2(t)
+

x3(t)

M3(t)

)
+ (1− p) · x2(t).

Then, clearly, x1(t) < x2(t) implies x1(t+ 1) < x2(t+ 1). In particular, this

means that x2(t) > x1(t) for all t ≥ t0. In turn, this inequality is used in the

last step of the following derivation:

max(f3→2(t), 0) ≤ p· x2(t)x3(t)

M2(t)M3(t)
· x1(t)

= p·x1(t)x2(t)x3(t)

M1(t)M2(t)
· M1(t)

M3(t)

= f1→2(t) · x1(t) + x2(t)

x2(t) + x3(t) + x4(t)

≤ 2 f1→2(t).

Thus, the total amount of flow entering node 2 after time t0 is at most

3
∑∞

t=t0
f1→2(t) ≤ 3x1(t0). The reason for the last inequality is that flow

never enters node 1, so the total amount of flow that can leave node 1 for

node 2 after t0 is at most the amount that was at node 1 at time t0.

115



Let F+(t) (resp., F−(t)) be the total amount of flow that has entered (resp.,

left) node 2 up to time t. We have just proved that F+(t) − F+(t0) ≤

3x1(t0). Therefore, F+(t), being monotone and bounded, must converge.

Because flow can only leave node 2 when it was already there, we get that

F−(t) ≤ x2(0) + F+(t) is also bounded, and must also converge. Hence,

x2(t) = x2(0) + F+(t)− F−(t), being the difference between two convergent

sequences, must also converge.

2. If y1 > 0, we will pursue a similar argument, but this time bounding the

cumulative flow out of node 2 instead of into it. Because x2(t) ≤ 1 for

all times t, this means that the cumulative flow into node 2 must also be

bounded. Then, an identical argument to the previous paragraph shows that

x2(t) = x2(0) + F+(t)− F−(t) must converge.

No flow can ever leave node 2 for node 1, so we just need to bound the flow

from node 2 to node 3. Flow leaves node 2 for node 3 at time t if and only

if x4(t) ≥ x1(t). Since x1(t) ≥ y1, it follows that M2(t),M3(t) ≥ y1 as well.

Therefore, we can bound the non-negative flow from node 2 to node 3 as

follows:

max(f2→3(t), 0) ≤ p· x2(t)x3(t)

M2(t)M3(t)
· x4(t) ≤ p·x2(t)x3(t)

y2
1

≤ p·x1(t)x2(t)x3(t)

y3
1

≤ 1

y3
1

· p·x1(t)x2(t)x3(t)

M1(t)M2(t)
=

1

y3
1

· f1→2(t).

Thus, the total positive flow from node 2 to node 3 is bounded above by a

constant times the total flow from node 1 to node 2, which in turn is at most

x1(0).
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4.4.3 Characterization of Universally Stable Equilibria

Next, we turn our attention to Lyapunov-stable equilibria. We focus on a very

strong notion of stability: stability for all α > 1. Formally, we call a mass vector

x a universally stable equilibrium if x is a Lyapunov-stable equilibrium for every

α > 1. Our goal here is to investigate which equilibria are universally stable. Such

equilibria are robust to (a very idealized notion of) a changing the environment,

as expressed by varying α.

Our main result for universally stable equilibria is a complete characterization

for influence graphs that are forests, and more generally for influence graphs whose

connected components are bipartite graphs.

Theorem 4.4.7 Consider the local model with α > 1. Assume that all connected

components of the influence graph T are bipartite graphs. Then, a mass vector x∗

is a universally stable equilibrium if and only if the distance between any two active

nodes in x∗ is at least 3.

The proof of Theorem 4.4.7 consists of several sub-results, all of which hold

for arbitrary influence graphs, and imply the desired characterization under the

assumption in the theorem. It is worth noting that these sub-results constitute

significant progress towards understanding the structure of universally stable equi-

libria for arbitrary influence graphs, as we discuss later. For brevity, if x is a mass

vector such that the distance between any two active nodes is at least 3, we will

say that x is 3-separated.

The first proposition proves the “if” direction of Theorem 4.4.7. Its proof

follows from our analysis in Section 4.2.
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Proposition 4.4.8 Under the local model with α > 1, any 3-separated mass vector

x∗ is a Lyapunov-stable equilibrium.

Proof: x∗ is an equilibrium by Proposition 4.2.1 since its active nodes form an

independent set. By Proposition 4.2.3, an equilibrium whose active nodes form

an independent set is stable if the interaction mass of each active node is greater

than the interaction mass of each of its neighbors. For α > 1, this property holds

when each inactive node has at most one active neighbor. In turn, this holds if

and only if the distance between every two active nodes is at least 3; thus, all such

equilibria are stable for every α > 1.

The “only if” direction of Theorem 4.4.7 is more complicated to prove. First,

we show that if the active nodes of an equilibrium do form an independent set,

then being 3-separated is necessary to ensure universal stability.

Proposition 4.4.9 Let x∗ be a universally stable equilibrium, and assume that the

active nodes under x∗ form an independent set. Then, x∗ is 3-separated.

Proof: For the sake of contradiction, suppose that x∗ is not 3-separated. Then

there exists an inactive node u with at least two active neighbors. Let Au be the

set of all active neighbors of node u. We use the following notation:

s =
∑

v∈Au x
∗
v; η = minv∈Au x

∗
v; µ = maxv∈Au x

∗
v.

Define α = 1 + η2. We will show that x∗ is not Lyapunov-stable for this α.

To prove instability, consider a perturbation x which coincides with x∗ on all
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nodes not in {u} ∪ Au, and satisfies
xv ≤ x∗v for all v ∈ Au

xu = δ for some δ ∈ (0, s− µ− η2)

xu +
∑

v∈Au xv =
∑

v∈Au x
∗
v = s.

(4.8)

(Note that s− µ− η2 > 0 because Au consists of at least two nodes.)

Under such an x, the interaction mass of node u is

Mu = αxu +
∑
v∈Au

xv = η2 · xu + s,

while the interaction mass of any node v ∈ Au is

Mv = αxv + xu ≤ αx∗v + xu ≤ (1 + η2)µ+ xu.

Since xu < s − µ − η2, we have that Mv < (1 + η2)µ + s − µ − η2 < s, and

hence, Mu > Mv. Thus, under this perturbation, mass starts flowing from all

nodes v ∈ Au to u, and this continues until xu ≥ s − µ − η2. Consequently, the

system cannot reach any equilibrium with xu < s−µ− η2; in particular, it cannot

reach any equilibrium with ||x∗ − x|| < s− µ− η2. Since this holds for arbitrarily

small δ, and s− µ− η2 > 0 is a constant independent of δ, we conclude that x∗ is

not Lyapunov-stable for this α.

With Proposition 4.4.9 in place, all that remains to complete the proof of the

“only if” direction of Theorem 4.4.7 is to ensure that the active nodes in any

universally stable equilibrium x∗ of a bipartite graph form an independent set, i.e.,

that each connected component C of Tact(x∗) consists of a single node. This is

implied by Lemma 4.4.10, which shows in general that if x∗ is a universally stable

equilibrium, then all the non-trivial connected components of the subgraph of its
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active nodes are not bipartite graphs. This completes the proof of Theorem 4.4.7,

as any connected subgraph of a bipartite graph is a bipartite graph itself.

An additional benefit of Lemma 4.4.10 is that it applies to arbitrary influence

graphs, and significantly limits the topologies a connected component of Tact(x∗)

can have for a universally stable equilibrium x∗. To state this lemma in the most

general form, we define a class of regular graphs which in particular subsumes all

bipartite graphs, all cliques, and all cycles whose length is a multiple of 3. We say

that a d-regular graph is locally balanced if its vertices can be partitioned into k

disjoint sets V1, V2, . . . , Vk such that each vertex v ∈ Vi has exactly d/(k− 1) edges

to each of the sets Vj, j 6= i.

Lemma 4.4.10 Let x∗ be a universally stable equilibrium and C a non-trivial

connected component of its active subgraph Tact(x∗). Then:

(a) C is a regular graph, and x∗ is uniform on C (i.e., x∗u = x∗v for all u, v ∈ C).

(b) C is not a bipartite graph, and, more generally, C is not locally balanced.

Proof: We begin by proving part (a). Let u, v ∈ C be a pair of adjacent nodes.

The equilibrium conditions for α = 2 imply that 2x∗v+
∑

w∈Tv x
∗
w = 2x∗u+

∑
w∈Tu x

∗
w,

and the ones for α = 3 that 3x∗v +
∑

w∈Tv x
∗
w = 3x∗u +

∑
w∈Tu x

∗
w. Subtracting the

first equation from the second shows that x∗v = x∗u. Because C is a connected

component, applying this argument along all edges in C proves that all nodes in

C must have the same mass µ.

The interaction mass of node v with α = 2 is therefore Mv = µ · (|Tv| + 1).

Considering again a pair u, v of adjacent nodes, the equilibrium condition Mu =
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Mv implies that |Tu| = |Tv|. Again by connectivity of C, this implies that all

nodes in C have the same degree, so C is regular.

Next, we prove part (b). Because x∗ is universally stable, part (a) implies that

C is d-regular for some d ≥ 1, and x∗u = µ (for some µ) for all u ∈ C. Assume for

contradiction that C is locally balanced, and let V1, . . . , Vk be the k partitions of

C. Because T [Vi ∪Vj] is a d/(k− 1)-regular bipartite graph for each pair i 6= j, all

partitions Vi must have the same size s = |C|/k.

Set α = d + 1, and let δ > 0 be arbitrary. Consider perturbed vectors of the

following form: xv = x∗v + 1
s
· δ for every v ∈ V1 and xu = xu − 1

s(k−1)
· δ for every

u /∈ V1. (That is, a total mass of δ is removed uniformly from nodes not in V1, and

added uniformly over the nodes in V1.)

In moving from x∗ to x, the interaction mass of each node v ∈ V1 changes by

α · 1
s
· δ − d · 1

s(k−1)
· δ > 0, while the interaction mass of each node u /∈ V1 changes

by

− α · 1

s(k − 1)
· δ − d(k − 2)

k − 1
· 1

s(k − 1)
· δ +

d

k − 1
· 1

s
· δ

=
(
− (d+ 1)− d(k − 2)

k − 1
+ d
)
· 1

s(k − 1)
· δ < 0.

Thus, for any such vector x(t) = x, all flows are directed from nodes not in V1

to nodes in V1. Furthermore, by symmetry of the original vector x∗ and the

perturbation, the new mass vector x(t+ 1) will be of the same form, for a different

δ′ > δ. Thus, the same argument will inductively apply in every time step. Hence,

the direction of flows never changes, and Lemma 4.2.2 guarantees that the system

converges. Since the interaction mass of all nodes in V1 is only increasing, and the

interaction mass of all nodes not in V1 is only decreasing, the only equilibrium y

the system can converge to is one in which all nodes outside of V1 have zero mass.
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In particular, this means that even starting from ||x∗ − x|| = δ′ (which would

correspond to using δ = δ′/2 in our analysis), ||x∗− y|| is not bounded in terms of

δ′, so x∗ is not stable.

Lemma 4.4.10 considerably narrows down the set of equilibria for which the

question of whether or not they are universally stable remains open.

More specifically, it only remains to consider mass vectors x in which there is

a non-trivial connected C of Tact(x) such that C is a d-regular graph (for some

d ≥ 1), is not a locally balanced graph (in particular not a bipartite graph),

and for every u, v ∈ C, xv = xu. We conjecture that such mass vectors are not

universally stable; it would then follow that in any universally stable equilibrium,

all components have size 1, and hence by Proposition 4.4.9 the active nodes would

be at mutual distance 3. Accordingly, we formulate the following:

Conjecture 4.4.11 A mass vector is a universally stable equilibrium if and only

if its active nodes are at pairwise distance at least 3 in the influence graph.

4.4.4 Characterization of Lyapunov Stable Equilibria for

α = 1

For α > 1, we have shown that any equilibrium whose active nodes form an

independent set of pairwise node distance at least 3 is stable. Perhaps surprisingly,

this ceases to be true for α = 1. Indeed, on the path of length 4, the equilibrium

x∗ = (1
2
, 0, 0, 1

2
) is not stable.

We can see this instability as follows. Consider vectors of the form x(δ) =

122



(1
2
−δ, δ, δ, 1

2
−δ). Under x(δ), for any δ ∈ (0, 1

2
), the interaction mass of nodes 1 and

4 is strictly smaller than the interaction mass of nodes 2 and 3 (whose interaction

masses are equal). This implies that no vector x(δ) can be an equilibrium for

δ ∈ (0, 1
2
), and that flow will always be directed from nodes 1 and 4 to nodes 2 and

3. Furthermore, the flow from node 1 to node 2 is equal to the flow from node 4

to node 3, implying that at the next time step, the mass vector will be of the form

x(δ′) with δ′ > δ. As we know by Theorem 4.4.6 that the 4-path always converges,

the system converges to some mass vector y = x(δ∗) such that δ∗ > 0. 4 Since the

update rule is continuous, this y must be an equilibrium. We have proved that the

only such equilibrium is the one with δ∗ = 1
2
. Thus, starting from the perturbation

x(δ) of x∗, the system can only converge to a state y in which y1 = y4 = 0.

While a pairwise distance of 3 between active nodes is not enough to guarantee

stability, a pairwise distance of 4 is sufficient.

Theorem 4.4.12 Let x∗ be a mass vector whose active nodes have pairwise dis-

tance at least 4. Then, x∗ is a stable equilibrium for α = 1.

Proof: The proof is much more involved than the proof of Proposition 4.2.3, for

the following reason: even for arbitrarily small perturbations to x∗, it is possible

that inactive neighbors v of an active node u have higher interaction mass; thus,

the conditions of Proposition 4.2.3 do not apply, and in fact, u could lose mass

over time. However, we will be able to show that the total mass u loses, starting

from a perturbation of magnitude at most δ, is bounded by a function g(δ) → 0

as δ → 0.

Let A be the set of all x∗-active nodes, and let x(0) be a perturbation of x∗

4This also follows directly from our argument with x(δ).
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with ||x∗ − x(0)||1 ≤ δ ≤ 1
8
· minu∈A x

∗
u. We will show below that for each node

u ∈ A, and all times t, we have that |xu(t)− x∗u| ≤ 2δ. Because

∑
v/∈A

|xv(t)− x∗v| =
∑
v/∈A

xv(t) =
∑
u∈A

(x∗u − xu(t)) ≤
∑
u∈A

|xu(t)− x∗u|,

we obtain that

||xv(t)− x∗||1 =
∑
u∈V

|xu(t)− x∗u| ≤ 2
∑
u∈A

|xu(t)− x∗u| ≤ 4nδ → 0 as δ → 0.

It remains to prove the inequality |xu(t) − x∗u| ≤ 2δ for all nodes u ∈ A and

times t. Define W = V \ (A ∪
⋃
u∈A Tu) to be the set of all nodes at distance at

least 2 from all active nodes. We will prove the inequality by showing that any

flow from u to its neighbors v can be “charged” against flow from W to v. More

formally, we will simultaneously prove the following invariants for all times t and

any set U ⊆ A:

∑
w∈W

xw(t) ≤
∑
w∈W

xw(0), (4.9a)

∑
u∈U

xu(t) ≥
∑
u∈U

xu(0)−
∑
w∈W

(xw(0)− xw(t)) for any set U ⊆ A. (4.9b)

Let t be an arbitrary time step, and assume that the invariants hold at time t.

We will establish that they still hold at time t + 1. First, we notice some useful

consequences of the invariants, including the desired fact that |xu(t)− x∗u| ≤ 2δ.

From Inequality (4.9a), we get that
∑

w∈W xw(t) ≤
∑

w∈W xw(0) ≤∑
v/∈A xv(0) ≤ δ. Substituting this bound into Inequality (4.9b) with U = {u},

and using that xu(0) ≥ x∗u − δ gives us that xu(t) ≥ x∗u − 2δ. Similarly, using

Inequality (4.9b) with U = A \ {u} gives us an upper bound of xu(t) ≤ x∗u + 2δ.

So we have shown that |xu(t)−x∗u| ≤ 2δ. It remains to establish the invariants for

time t+ 1.
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Let (w, v), w ∈ W, v /∈ W be an arbitrary edge, and u the unique active neighbor

of v in T . The flow on the edge (w, v) is fw→v(t) = p·xw(t)xv(t)(Mv(t)−Mw(t))
Mw(t)Mv(t)

. We

have just seen that x∗u−2δ ≤ xu(t) ≤ x∗u+2δ, so we can also boundMv(t) ≥ x∗u−2δ.

Applying Inequality (4.9b) with U = A \ {u} also gives us an upper bound of

Mv(t) ≤ 1−
∑

u′∈A,u′ 6=u xu′(t) ≤ x∗u + 2δ. Furthermore, using the definition of W

and Inequality (4.9b) for U = A,

Mw(t) ≤
∑
v/∈A

xv(t) ≤
∑
v/∈A

xv(0) +
∑
w∈W

(xw(0)− xw(t)) ≤ 2δ.

Substituting these bounds, we get that

fw→v(t) ≥ p·xw(t)xv(t)(x
∗
u − 4δ)

2δ(x∗u + 2δ)
. (4.10)

By definition of δ, this quantity is always non-negative. In particular, this

means that flow goes from w to v; since the edge (w, v) was arbitrary, we have

established the invariant (4.9a).

Next, fix an arbitrary node pair u ∈ A, v ∈ Tu. The flow from u to v is

fu→v(t) = p·xu(t)xv(t)(Mv(t)−Mu(t))

Mu(t)Mv(t)
≤ p·

xu(t)xv(t)
∑

w∈W∩Tv xw(t)

(xu(t))2

= p· 1

xu(t)

∑
w∈W∩Tv

xw(t)xv(t) ≤ p· 1

x∗u − 2δ

∑
w∈W∩Tv

xw(t)xv(t).

On the other hand, summing the bound (4.10) over all nodes w ∈ W ∩ Tv, we get

that ∑
w∈W∩Tv

fw→v(t) ≥ p· x∗u − 4δ

2δ(x∗u + 2δ)
·
∑

w∈W∩Tv

xw(t)xv(t).

Because δ ≤ x∗u/8, we get that 1
x∗u−2δ

≤ x∗u−4δ
2δ(x∗u+2δ)

, so the flow from u to v is at

most the total flow from all w ∈ W ∩ Tv to v. For any set U ⊆ A, summing this

inequality over all u ∈ U (and noticing that we never double-count the same edge)

now establishes Invariant (4.9b) at time t+ 1.
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4.5 Conclusions and Open Questions

In this chapter, we presented a novel model of cultural dynamics that captures

the essential aspect of several previously studied models: the interplay between

selection and influence. We concentrated on two instances of this model. In the

global model, each person selects another person from the entire population to

interact with. In the local model, a person selects an interaction partner from a

subset of the population consisting of similar people.

We provided a nearly complete treatment of the global model, showing that the

system always converges from any initial mass vector, and providing a complete

characterization of stable equilibria. An open question is to predict the equilibrium

to which the system converges starting from a given initial mass vector. We suspect

that with probability 1 over possible starting states, the system converges to an

equilibrium in which the active nodes form an independent set.

The local model involves, at its heart, a dynamical system on the population

fractions that is complicated even for small numbers of variables. As such, it raises

many interesting and challenging questions, and we have made progress on some

of these. In particular, we know that on paths of length 3 (for α > 1) and at most

5 (for α = 1), the system converges from any starting state. However, it is open

whether convergence occurs for all graphs. On the stability frontier, for α > 1, we

conjecture that the only stable equilibria are those in which the active nodes have

pairwise distance at least 3. We showed that such equilibria are indeed stable,

and that a number of other equilibria are unstable — including ones in which the

active nodes form any other independent set, or ones in which they form a locally

balanced graph (a class that includes bipartite graphs). Finally, we would like to

raise an even more challenging question: does the dynamical system defined by
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the general model always converge?
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CHAPTER 5

SCIENTIFIC CREDIT ALLOCATION

5.1 Introduction

In this chapter and the next one, we turn to the second theme of this thesis:

exploring the ways competition and credit create incentives. We will start our

exploration with understanding credit allocation in the domain of science.

As a scientific community makes progress on its research questions, it also

develops conventions for allocating credit to its members. Scientific credit comes

in many forms; it includes explicit markers such as prizes, appointments to high-

status positions, and publication in prestigious venues, but it also builds upon a

broader base of informal reputational measures and standing within the community

[19, 63, 71]. The mechanisms by which scientific credit is allocated have long

been the subject of fascination among scientists, as well as a topic of research for

scholars in the philosophy and sociology of science. A common theme in this line of

inquiry has been the fundamental ways in which credit seems to be systematically

misallocated by scientific communities over time — or at least allocated in ways

that seem to violate certain intuitive notions of “fairness.” Two categories of

misallocation in particular stand out, as follows.

1. Certain research questions receive an “unfair” amount of credit. In other

words, a community will often have certain questions on which progress is

heavily rewarded, even when there is general agreement that other questions

are equally important. Such issues, for example, have been at the heart of

recent debates within the theoretical computer science community, focusing
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on the question of whether conference program committees tend to overvalue

progress on questions that display “technical difficulty” [1, 48].

2. Certain people receive an “unfair” amount of credit. Robert Merton’s cel-

ebrated formulation of the Matthew Effect asserts, roughly, that if two (or

more) scientists independently or jointly discover an important result, then

the more famous one receives a disproportionate share of the credit, even

if their contributions were equivalent [70, 71].1 Other attributes such as af-

filiations or academic pedigree can play an analogous role in discriminating

among researchers.

There is a wide range of potential explanations for these two phenomena, and

many are rooted in hypotheses about human cognitive factors: a fascination with

“hard” problems or the use of such problems to identify talented problem-solvers

in the first case; the effect of famous individuals as focal points or the confidence

imparted by endorsement from a famous individual in the second case [70, 99].

A model of competition and credit in science

One can read this state of affairs as a story of how fundamental human biases

lead to inherent unfairness, but we argue in this chapter that it is useful to bring

into the discussion an alternate interpretation, via a natural formal model for the

process by which scientists choose problems and by which credit is allocated.

We begin by adapting a model proposed in influential work of Kitcher in the

philosophy of science [62, 63, 98], and with roots in earlier work of Peirce, Arrow,

1This is a kind of rich-get-richer phenomenon, and Merton’s use of the term “Matthew Effect”
is derived from Matthew 25:29 in the New Testament of the Bible, which says, “For unto every
one that hath shall be given, and he shall have abundance: but from him that hath not shall be
taken away even that which he hath.”
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and Bourdieu [9, 21, 83]. Kitcher’s model has some slightly complicated features

that we do not need for our purposes, so we will focus the discussion in terms

of the following closely related model; it is designed as a stylized abstraction of

a community of n researchers who each choose independently among a set of m

open problems to work on.

• The m open problems will also be referred to as projects. Each project j has

an importance wj (also called its weight), and a probability of success qj (with

a corresponding failure probability fj = 1 − qj). We assume these numbers

are rational. The researchers will initially be modeled as identical, but we

later consider generalizations to individuals with different problem-solving

abilities.

• Each researcher must choose a single project to work on. We model re-

searchers as working independently, so if kj researchers work on project j,

there is a probability of (1− fkjj ) that at least one of them succeeds.

• In the event that multiple researchers succeed at project j, one of them is

chosen uniformly at random to receive an amount of credit equal to the

project’s importance wj. We can imagine there is a “race” to be the first to

solve the problem, and the credit goes to the “winner” ; alternately, we get

the same model if we imagine that all successful researchers divide the credit

equally.

Suppose that researchers are motivated by the amount of credit they receive: each

researcher chooses a project to work on to maximize her expected amount of credit,

given the choices of all other researchers. The selection of projects is thus a game,

in which the players are the researchers, the strategies are the choices of projects,

and the payoffs are the expected amount of credit received. This game-theoretic
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view forms the basis of Kitcher’s model of scientific competition; the view itself

was perhaps first articulated explicitly in this form by the social scientist Pierre

Bourdieu [19, 21], who wrote that researchers’ motivations

are organized by reference to – conscious or unconscious – anticipation of the

average chances of profit ... Thus researchers’ tendency [is] to concentrate

on those problems regarded as the most important ones ... The intense

competition which is then triggered off is likely to bring about a fall in

average rates of symbolic profit, and hence the departure of a fraction of

researchers towards other objects which are less prestigious but around which

the competition is less intense, so that they offer profits of at least as great.

Like the frameworks of Bourdieu and Kitcher, our model is a highly simplified

version of the actual process of selecting research projects and competing for credit.

We are focusing on projects that can be represented as problems to be solved;

we are not modeling the process of collaboration among researchers, the ways in

which problems build on each other, or the ways in which new problems arise;

and we are not trying to capture the multiple ways in which one can measure the

importance or difficulty of a problem. These are all interesting extensions, but our

point is to identify a tractable model that contains the fundamental ingredients in

our discussion: a competition for credit among projects of varying difficulty, in a

way that causes credit-seeking individuals to distribute themselves across different

projects. We will see how phenomena that are complex but intuitively familiar

can arise even when a community has a single, universally agreed-upon measure

of importance and difficulty across projects.
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Figure 5.1: In (a), self-interested players do not reach a socially optimal selection

of projects. However, if the weight of project y is increased (b), or if

one of the players is guaranteed a sufficiently disproportionate share

of the credit in the event of joint success (c), then a socially optimal

assignment of players to projects arises.

Credit as a mechanism for allocating effort

Our main focus is to extend this class of models to consider the issues raised at

the outset of the chapter, and in particular to the two sources of “unfairness”

discussed there. The model we have described thus far is based on an intuitively

fair allocation of credit that does not suffer from either of these two pathologies:

all researchers are treated identically, and the credit a successful researcher re-

ceives is equal to the community’s agreed-upon measure of the importance of the

problem solved. In other words, no problems are overvalued relative to their true

importance, and no researchers are a priori favored in the assignment of credit.

As a first thought experiment, suppose that we were allowed to design the rules

by which credit was assigned in a research community; are these “fair” rules the
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ones we should use? The following very small example shows the difficulties we

quickly run into. Suppose, for simplicity, that we are dealing with a community

consisting of two players a and b, and two projects x and y. Project x is more

important and also easier; it has wx = 1 and qx = 1/2. Project y is less important

and more difficult; it has wy = 9/10 and qy = 1/3. Figure 5.1(a) shows the

unique Nash equilibrium for this research community: both players work on x, each

receiving an expected payoff 3/8 (since project x will be solved with probability

3/4, and a and b are equally likely to receive credit for it.)

If we were in charge of this research community, arguably the natural objec-

tive function for us to care about would be the social welfare, defined as the total

expected importance of all projects successfully completed. And now here’s the

difficulty: the unique Nash equilibrium does not maximize social welfare. It pro-

duces a social welfare of 3/4, whereas if the players divided up over the two different

projects, we would obtain a social welfare of 1/2 + 3/10 = 4/5.

Can we change the way credit is assigned so as to create incentives for the

players under which the resulting Nash equilibrium maximizes social welfare? In

fact, there are two natural ways to do this, and each should be recognizable given

the discussion at the beginning of the introduction.

First, we could declare that the credit received for succeeding at a project

will not be proportional to its importance. Instead, in our example, we could

decide that success at the harder project y will bring an amount of credit equal

to w′y 6= wy. If 9/5 > w′y > 9/8, then the unique Nash equilibrium is socially

optimal (Figure 5.1(b)).

Alternately we could declare that if players a and b both succeed at the same
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project, they will not split the credit equally, but instead in a ratio of c to 1.

(Equivalently, if they both succeed, player a is selected to receive all the credit

with probability c/(c + 1) and player b with probability 1/(c + 1).) If c > 4,

then it is not worth it for b to try competing with a on project x, and b will

instead work on project y, again leading to a socially optimal Nash equilibrium

(Figure 5.1(c)).

This example highlights several points. First, we can think of the amount of

credit associated with different projects as something malleable; by choosing to

have certain projects confer more credit, the community can create incentives that

cause effort to be allocated in different ways. Second, it is clearly the case that

actual research communities engage in this shaping of credit, not just at an im-

plicit level but through a variety of explicit mechanisms: the decisions of program

committees and editorial boards about which papers to accept, the decisions of

hiring committees about which people to interview and areas to recruit in, and

the decisions of granting agencies about funding priorities all serve to shift the

amounts of credit assigned to different kinds of activities. In this sense, a research

community is, to a certain extent, a kind of “planned economy” — it is much

more complex than our simple model, but many of its central institutions have the

effect of deliberately implementing and publicizing decisions about the allocation

of credit for different kinds of research topics.

What we see in the example is that the “fair” allocation of credit can be at

odds with the goal of social optimality: if the community believes that as a whole

it is being evaluated according to the total expected weight of successful projects,

then by rewarding its participants according to these same weights, it produces a

socially sub-optimal outcome. The two alternate ways of assigning credit above
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correspond to the two forms of “unfairness” discussed at the outset: overvaluing

certain projects (in our example, the harder and less important project), and

overvaluing the contributions of certain researchers. If done appropriately in this

example, either of these can be used to achieve social optimality.

As a final point on the underlying motivation, we are not claiming that research

communities are overtly trying to assign credit in a way that achieves social op-

timality, or arriving at credit allocations in general through explicit computation.

It is clear that the human cognitive biases discussed earlier — in favor of certain

topics and certain people — are a large and likely dominant contributor to this.

What we do see, however, is that social optimality plays an important and surpris-

ingly subtle role in the discussion about these issues: institutions such as program

committees and funding agencies do take into account the goal of shaping the

kind of research that gets done, and to the extent that these cognitive biases can

sometimes — paradoxically — raise the overall productivity of the community, it

arguably makes such biases particularly hard to eliminate from people’s behavior.

Social optimality and misallocation of credit: General results

Our main results begin by establishing that the two kinds of mechanisms suggested

by the example in Figure 5.1 are each sufficient to ensure social optimality in gen-

eral — that is, in all instances. For any set of projects, it is possible to assign each

project j a modified weight w′j, potentially different from its real weight wj, so that

when players receive credit according to these modified weights, all Nash equilibria

are socially optimal with respect to the real weights. It is also possible to assign

each player i a weight zi so that when players divide credit on successful projects

in proportion to their weights zi, all Nash equilibria are again socially optimal.
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This makes precise the sense in which our two categories of credit misallocation

can both be used to optimize social welfare.

These results in fact hold in a generalization of the basic model, in which the

players are heterogeneous and have different levels of ability at solving problems.

In this more general model, a player’s success at a project depends on both her

ability and the project’s difficulty: each player i has a parameter pi ≤ 1 such that

her probability of succeeding at project j is equal to the product piqj. Beyond

this, the remaining aspects of the model remain the same; in particular, if multiple

players all succeed at the same project, then one is selected uniformly at random

to receive the credit. (That is, their ability affects their chance of succeeding, but

not their share of the credit.) For this more general game, there still always exist

re-weightings of projects and also re-weightings of credit shares to players that lead

to socially optimal Nash equilibria.

Our results make use of the fact that the underlying game, even in its more

general form with heterogeneous players, is both a congestion game [72, 89] and a

monotone valid-utility game [46, 102, 104]. However, given the motivating setting

for our analysis, we have the ability to modify certain parameters of the game

— as part of a research community’s mechanism for allocating credit — that

are not normally under the control of the modeler. As a result, our focus is on

somewhat different questions, motivated by these credit allocation schemes. At

the same time, there are interesting analogies to issues in congestion games from

other settings. Re-weighting the amount of credit on projects can be viewed as

a kind of “toll” system, interpreting the effort of the researchers as the “traffic”

in the congestion game. The crux of our analysis for re-weighting the players is

to begin by considering an alternate model in which an ordering is defined on the
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players, and the first player in this ordering to succeed receives all the credit. This

suggests interesting potential connections with the theory of priority algorithms

introduced by Borodin et al. [20]; although the context is quite different, we too

are asking whether there is a “greedy ordering” that leads to optimality. A related

set of questions was considered by Strevens in her model of sequential progress on

a research problem, working within Kitcher’s model of scientific competition [98].

We also consider some of the structural aspects of the underlying game; among

other results, we show that the price of anarchy of the game is always strictly

less than 2 (compared with a general upper bound of 2, which can sometimes be

attained, for fully general monotone valid-utility games). For the case of identical

players, we also show that the ratio of the price of anarchy to the price of stability

(i.e. the welfare of the best Nash equilibrium relative to the worst) is at most

3/2. In particular, this implies that when there exists a Nash equilibrium that is

optimal, there is no Nash equilibrium that is less than 2/3 times optimal.

Finally, we consider a still more general model, in which player success prob-

abilities are arbitrary and unrelated: player i has a probability pij of succeeding

on project j. We show that there exist instances of this general game in which no

re-weighting of the projects yields a social optimal Nash equilibrium. However we

do not rule out the possibility that there exists a re-weighting of the players that

yields a socially optimal Nash equilibrium.

Interpreting the model

With any simple theoretical model of a social process — in this case, credit among

researchers — it is important to ask whether the overall behavior of the model

captures fundamental qualitative aspects of the real system’s behavior. In this

137



case we argue that it captures several important phenomena at a broad level.

First, it is based on the idea that institutions within a research community can

and do shift the amount of credit that different research topics receive, and in a

number of cases with the goal of creating corresponding incentives toward certain

research directions. Second, it argues that some of the typical ways in which credit

is misallocated can interact in a complex fashion with social welfare, and that these

misallocations can in fact play an important role in the maximization of welfare.

Moreover, there is a rapidly widening scope for the potential application of ex-

plicitly computational approaches to credit-allocation, as we see an increasing num-

ber of intentionally designed systems aimed at fostering massive Internet based-

collaboration — these include large open-source projects, collaborative knowledge

resources like Wikipedia, and collective problem-solving experiments such as the

Polymath project [52]. For example, a number of credit-allocation conventions

familiar from the scientific community have been built into Wikipedia, including

the ways in which editors compete to have articles “featured” on the front page of

the site [97], and the ways in which they go through internal review and promotion

processes to achieve greater levels of status and responsibility [26, 68]. While the

framework in this chapter is only an initial foray in this direction, the general issue

of designing credit-allocation schemes to optimize collective productivity becomes

an increasingly wide-ranging question.

There are also potential connections to work in an area termed the economics of

science, which studies the allocation of resources by organizations across different

research projects [19, 91], in the context of activities such as R&D (e.g. [33]).

While the central issues in these models are somewhat different, connecting them

more closely to the questions raised here is an interesting question.
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Finally, the model offers a set of simple and, in the end, intuitively natural

interpretations for the specific ways in which misallocation can lead to greater

collective productivity. The re-weighting of projects not only follows the informal

roadmap contained in Pierre Bourdieu’s quote above, but sharpens it. Even with-

out re-weighting of projects, the effect of competition does work to disperse some

number of researchers out to harder and/or less attractive projects, which helps

push the system toward states of higher social welfare. But the point is that this

dispersion is not optimally balanced on its own; it needs to be helped along, and

this is where the re-weighting of projects comes into play. The re-weighting of

players is based on a different point — that when certain individuals are unfairly

marginalized by a community, it can force them to embark on higher-risk courses

of action, enabling beneficial innovation that would otherwise not have happened.

In all these cases, it does not mean that such forms of misallocation are fair to

the participants in the community, only that they can sometimes have the effect

of increasing the community’s overall output.

5.2 Identical Players

We first consider the case of the project game defined in the introduction when all

players are identical, and then move on to the case in which players have different

levels of ability. Recall that wj denotes the weight (i.e. importance) of project

j, and fj denotes the probability that any individual player fails to succeed at it.

Thus, when there are k players working on project j, the contribution of project j

to the social welfare is wj(1− fkj ), and we denote this quantity by σj(k).

We denote the choices of all players by a strategy vector ~a, in which player
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i chooses to work on project ai. As is standard, we denote by a−i the

strategy vector ~a without the ith coordinate and by j, a−i the strategy vector

a1, . . . , ai−1, j, ai+1, . . . , an. We use Kj(~a) to denote the set of players working

on project j in strategy vector ~a, and we write kj(~a) = |Kj(~a)|. The social wel-

fare obtained from strategy vector ~a is u(~a) =
∑

j∈M σj(kj(~a)). Since each of the

players working on the project is equally likely to receive the credit, the payoff, or

utility, of player i under strategy vector ~a is ui(~a) =
σai(kai(~a))

kai(~a)
.

We make a few observations about these quantities. First, as noted in the

introduction, ui(~a) is the utility of i regardless of whether we interpret the credit

as being assigned uniformly at random to one successful player on a project, or

divided evenly over all successful players.

Moreover, since the players divide up the social welfare among themselves, we

have
∑

i∈N ui(~a) = u(~a). Since a player’s utility depends solely on the number

of other players choosing her project, it is not hard to verify that the game with

identical players is a congestion game, and hence has pure Nash equilibria. Finally,

we define the welfare improvement from increasing the number of players working

on project j by 1; we denote this improvement by rj(k) = (1 − fj)f
k
j , where k

is the number of players currently working on project j. The fact that rj(k) is

decreasing in k would become useful later on.

We begin by developing some basic properties of the social optimum and of the

set of Nash equilibria with identical players; we then build on this to prove bounds

on the price of anarchy (the ratio of the social welfare of the social optimum to

the worst Nash equilibrium) and the price of stability (the analogous ratio of the

social optimum to the best Nash equilibrium). After this, we provide algorithms

for re-weighting projects and re-weighting players so as to produce Nash equilibria
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that are socially optimal.

Before proceeding, we first state and prove three basic claims about the game

with identical players. We begin by showing that the project game is a monotone

valid-utility game.

Claim 5.2.1 The project game with identical players is a monotone valid-utility

game.

Proof: We need a bit of additional notation: the quantity u(ai|a−i) will denote

the marginal contribution of player i to the overall utility, given the choices made

by all other players. By definition, this means that u(ai|a−i) = rai(kai(~a)− 1).

The definition of a monotone valid-utility game [102, 104] requires verifying

four properties of the utility functions, as follows.

1. u(~a) is submodular: Since u(~a) is the summation of the projects’ separate

utilities, it is enough to prove that the utility of every project is submodular.

For identical players this is settled by the simple observation that rj(k) is

decreasing in k.

2. u(~a) is monotone: Naturally, a project’s success probability can only increase

when more players are working on it, thus, the utility is monotone increasing.

3. ui(~a) ≥ u(ai|a−i): For this, we notice that σj(kj(~a)) can be written as the

sum of the marginal utilities contributed by the players on project j when

they arrive to it in any order, and a player’s utility is the average of such

contributions over all arrival orders. Since the utility is submodular, the

smallest of these contributions occurs when i arrives last. In this case it is

equal to u(ai|a−i). Hence this quantity is at most ui(~a) as required.
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4. u(~a) ≥
∑

i ui(~a): In this game, by the definition of a player’s utility, they

are equal.

Next, we show that the optimal solution can be computed in polynomial time

by simple greedy algorithm.

Claim 5.2.2 The optimal assignment can be computed by the following greedy

algorithm: players are assigned to projects one at a time, and in each iteration a

player is assigned to a project j with the greatest current marginal utility rj(kj).

Proof: Assume towards a contradiction that the assignment resulting from

the greedy algorithm ~a is sub-optimal. Let ~o be an optimal assignment which is

the most similar to ~a (i.e., minimizes
∑

j |kj(~a) − kj(~o)|). Since assignments are

insensitive to the identity of the players and u(~o) > u(~a), there exist two projects

b and c such that:

• kb(~a) > kb(~o)

• kc(~a) < kc(~o)

Let i be the last player the algorithm assigned to project b. In the iteration when

i was assigned to project b there were at most kc(~a) players working on project c.

As we noted at the beginning of Section 5.2, the function rj(k) is decreasing in k

for all projects j, and hence rb(kb(~a)− 1) ≥ rc(kc(~a)). By this decreasing property

we also have that rb(kb(~o)) ≥ rb(kb(~a) − 1) and that rc(kc(~a)) ≥ rc(kc(~o) − 1).

Because ~o is the optimal assignment then rb(kb(~o)) ≤ rc(kc(~o)− 1). Hence we have
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that rb(kb(~o)) = rc(kc(~o)− 1). Therefore, we can get another optimal solution, ~o1

by starting with ~o and moving a single player from project c to project b. We can

now reach a contradiction by observing that by construction ~o1 is more similar to

~a than ~o is.

We now show that a simple greedy algorithm can be also used from computing

an optimal solution. A similar claim was also proved in [41] in the context of a

related class of congestion games.

Claim 5.2.3 A Nash equilibrium can be computed in polynomial time by the fol-

lowing algorithm: players choose projects one at a time in an arbitrary order, and

in each iteration the current player i chooses a project that maximizes her utility

in respect to the choices made by earlier players.

Proof: Denote the assignment the algorithm computes by ~a. Assume towards a

contradiction that player i, who is currently assigned to project j, can increase her

payoff by switching to project l: ui(j, a−i) < ui(l, a−i). Since all the players are

identical we can assume without loss of generality that i was the last player who

chose project j. Denote by ~a′ the assignment vector at the iteration at which it

was player i’s turn to choose a project. Since player i chose project j we have that

ui(j, a
′
−i) ≥ ui(l, a

′
−i). Noticing that kl(~a) ≥ kl(~a′) and that the utility function is

submodular, we obtain a contradiction.

We now prove that with identical players, any two Nash equilibria are very

similar in their assignment of players to projects2:

2A similar claim was independently proven for a related class of congestion games in unpub-
lished work of Kuniavsky and Smorodinsky.
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Claim 5.2.4 For every two different Nash equilibria ~a and ~b and for every two

projects j,l such that kj(~a) > kj(~b) and kl(~a) < kl(~b), we have the following rela-

tionships: kj(~a) = kj(~b) + 1 and kl(~b) = kl(~a) + 1.

Proof: As assignments are insensitive to the identities of the players, there

exists a player i such that ai = j and bi = l. Since ~a is a Nash equilibrium we have

ui(j, a−i) ≥ ui(l, a−i). On the other hand, ~b is also a Nash equilibrium, and hence

ui(j, b−i) ≤ ui(l, b−i). Recall that j and l are two projects such that kj(~a) > kj(~b)

and kl(~a) < kl(~b). Therefore, because a player’s utility is decreasing in the number

of players working on the project, we have

ui(j, a−i) ≤ ui(j, b−i) ≤ ui(l, b−i) ≤ ui(l, a−i) ≤ ui(j, a−i).

Therefore, ui(j, a−i) = ui(j, b−i). This implies that kj(~a) = kj(j, a−i) = kj(j, b−i) =

kj(~b) + 1. Similarly for ui(l, b−i) = ui(l, a−i) we have that kl(~b) = kl(l, b−i) =

kl(l, a−i) = kl(~a) + 1.

5.2.1 The Price of Anarchy and Price of Stability

Observe that the price of anarchy (PoA) of the project game is at most 2. This is

because our game is a monotone valid-utility game (Claim 5.2.1) and Vetta [104]

showed that the price of anarchy (PoA) of monotone valid-utility games is at most

2. Here we provide a strengthened analysis of the price of anarchy that yields

several consequences, all do not hold for monotone valid-utility games in general:

(i) a bound of 1 + c−1
c

on the PoA for instances in which the worst Nash equi-

librium has at most c players assigned to any single project.
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(ii) as a corollary of (i), a general upper bound of 2 − 1
n

on the PoA for any

instance.

(iii) a bound of 3
2

between the price of anarchy and the price of stability (PoS)

for any instance.

We first show that these bounds are tight, by means of the following example.

Consider an instance with n players and n projects; all projects are guaranteed to

succeed (i.e. qj = 1 for all j); and the weights of the projects are defined so that

w1 = 1 and wj = 1/n for j > 1. The socially optimal assignment of players to

projects in this game is for each player to work on a different project, yielding a

social welfare of 2− 1
n
. On the other hand, it is a Nash equilibrium for all players

to work on project 1, yielding a social welfare of 1. Furthermore, in the case of this

example when n = 2, the social optimum is also a Nash equilibrium, establishing

a gap of 3
2

between the PoA and PoS in this case. (We also note that for general

n, if we increase the weight of project 1 by arbitrarily little, then we obtain an

example in which the PoS is arbitrarily close to 2− 1
n
.)

To prove the upper bounds in (i)-(iii), we use Roughgarden’s notion of smooth-

ness [90].

Definition 5.2.5 A monotone valid-utility game is (λ, µ)-smooth if for every two

strategy vectors ~a and ~b, we have
∑

i∈N ui(bi, a−i) ≥ λu(~b)− µu(~a).

The following is a useful claim based on Roughgarden’s paper:

Claim 5.2.6 If a monotone valid-utility game is (λ, µ)-smooth then its price of

anarchy is at most
1 + µ

λ
.
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Proof: We show that a stronger claim holds: for every Nash equilibrium ~a

and every strategy vector u(~b) ≤ 1+µ
λ
u(~a). This, implies a bound on the PoA

by taking ~a to be the worst Nash equilibrium and ~b an optimal solution. To see

why the stronger claim holds first observe that since ~a is a Nash equilibrium then∑
i∈N ui(bi, a−i) ≤

∑
i∈N ui(~a). Recall also that

∑
i∈N ui(~a) = u(~a). Hence we have

that u(~a) ≥ λu(~b)− µu(~a). By rearranging the terms we get that u(~b) ≤ 1+µ
λ
u(~a)

as required.

Theorem 5.2.7 The project game with identical players is (λ, µ)-smooth for λ = 1

and

µ = max
{l| kl(~a)>kl(~b)≥1}

kl(~a)− kl(~b)
kl(~a)− kl(~b) + 1

.

Before proving the theorem we assert that (i)-(iii) can indeed be derived from

it. First observe that by Claim 5.2.6 an instance maximizing the PoA is an instance

for which the value of µ is maximized. It is not hard to see that if the number

of players working on each project is at most c, then µ ≤ c−1
c

as kl(~a) ≤ c and

kl(~b) ≥ 1 for a project l maximizing the expression for µ. Thus, By applying

Claim 5.2.6 we get consequence (i). Consequence (ii) is obtained by observing

that the number of players working on a project is always bounded by n. To

obtain consequence (iii), we call a game weakly-(λ, µ)-smooth provided the (λ, µ)-

smoothness condition holds just for all Nash equilibria ~a and ~b, rather than all

arbitrary strategy vectors. Now, for any two Nash equilibria ~a and ~b, Claim 5.2.4

implies that the number of players working on each project in ~a and ~b can differ

by at most one. Hence, by Theorem 5.2.7 we have that the project game with

identical players is weakly-(λ, µ)-smooth for µ = 1
2
. We can now apply Claim 5.2.6

with ~a equal to the worst Nash equilibrium and ~b equal to the best Nash equilibria

to get that
u(~b)

u(~a)
≤ 3

2
.
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We are now ready to prove Theorem 5.2.7. For this proof it will be useful to

require a stronger condition then the one in Definition 5.2.5, which is that the

(λ, µ)-smoothness condition:
∑

i∈N ui(bi, a−i) ≥ λu(~b)−µu(~a) will hold separately

for each project – there exist λ and µ such that, for every strategy vectors ~a and

~b:

∀j ∈M
∑

i∈Kj(~b)

ui(bi, a−i) ≥ λσj(kj(~b))− µσj(kj(~a)). (5.1)

The next two claims compare two strategy vectors ~a and ~b with respect to a

given project j in two cases: when kj(~a) > kj(~b) > 0 (Claim 5.2.8) and when

kj(~a) ≤ kj(~b) (Claim 5.2.9). More specifically, they establish the following:

• If kj(~a) > kj(~b) > 0 then
∑

i∈Kj(~b) ui(bi, a−i) ≥ σj(kj(~b)) −
kj(~a)−kj(~b)
kj(~a)−kj(~b)+1

σj(kj(~a)).

• If kj(~a) ≤ kj(~b) then
∑

i∈Kj(~b) ui(bi, a−i) ≥ σj(kj(~b)).

This completes the proof of Theorem 5.2.7 as we have that Condition

5.1 holds for the project game with identical players for λ = 1, µ =

max{l| kl(~a)>kl(~b)≥1}
kl(~a)−kl(~b)
kl(~a)−kl(~b)+1

and hence the game is (λ, µ)-smooth for the ap-

propriate values for Theorem 5.2.7.

Claim 5.2.8 If kj(~a) > kj(~b) ≥ 1 then
∑

i∈Kj(~b) ui(bi, a−i) ≥ σj(kj(~b)) −
kj(~a)−kj(~b)
kj(~a)−kj(~b)+1

σj(kj(~a)).

Proof: Since, all players that work on project j in ~b also work on it in ~a, we have

that ∀i ∈ Kj(~b) : ui(bi, a−i) = ui(~a) =
σj(kj(~a))

kj(~a)
. Thus,

∑
i∈Kj(~b) ui(bi, a−i) =
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kj(~b) ·
σj(kj(~a))

kj(~a)
. Hence, we need to show that

kj(~b)

kj(~a)
σj(kj(~a)) +

kj(~a)−Kj(~b)

kj(~a)− kj(~b) + 1
σj(kj(~a)) ≥ σj(kj(~b)).

Since σj(·) is monotone, we have that σj(kj(~a)) ≥ σj(kj(~b)). Therefore, it is

enough to show that for proving the claim

kj(~b)

kj(~a)
+

kj(~a)− kj(~b)
kj(~a)− kj(~b) + 1

≥ 1

Lastly, observe that the previous condition holds since kj(~b) > 0 implies that

kj(~a)− kj(~b)
kj(~a)− kj(~b) + 1

≥ kj(~a)− kj(~b)
kj(~a)

and the claim follows.

Claim 5.2.9 If kj(~a) ≤ kj(~b) then
∑

i∈Kj(~b) ui(bi, a−i) ≥ σj(kj(~b)).

Proof: revised the proof. If kj(~a) = kj(~b) then clearly the claim holds. Else,

kj(~a) < kj(~b). We first observe that ∀i ∈ Kj(~b) : ui(bi, a−i) ≥
σj(kj(~a) + 1)

kj(~a) + 1
,

since the utility of all player working on project j both in ~a and in ~b is
σj(kj(~a))

kj(~a)

and the utility of the rest of the players is
σj(kj(~a) + 1)

kj(~a) + 1
. Next, observe that

σj(kj(~a) + 1)

kj(~a) + 1
≥ σj(kj(~b))

kj(~a)
since σj(·) is monotone and by assumption kj(~a) + 1 ≤

kj(~b).

5.2.2 Re-weighting Projects to Achieve Social Optimality

We now describe a mechanism for re-weighting projects so as to achieve social

optimality. As discussed in the introduction, we show that it is possible to assign
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new weights {w′j} to the projects so that when utilities are allocated according

to these new weights, all Nash equilibria are socially optimal. Note that the re-

weighting of projects only affects players’ utilities, not the social welfare, as the

latter is still computed using the true weights {wj}.

The idea is to choose weights so that when players are assigned according to

the social optimum, they all receive identical utilities. The following re-weighting

accomplishes this: we compute a socially optimal assignment ~o, and define w′j =

kj(~o)

(1− fkj(~o)j )
for kj(~o) > 0 and w′j = 0 otherwise.

Theorem 5.2.10 With these weights, all Nash equilibria achieve the social welfare

of assignment ~o.

Proof: We first show that ~o is a Nash equilibrium with these weights. Denote

the utility of each player in ~o by x: that is, for every player i, we have ui(~o) = x.

We also have that for every project j 6= oi ui(j, o−i) < x. This holds for each j

because either kj(~o) = 0, in which case w′j = 0, or else kj(~o) > 0, in which case

there are already players assigned to j, and for such projects j a player’s utility

function is strictly decreasing in the number of players working on j. Therefore, ~o

is a Nash equilibrium.

Furthermore we also show that all Nash equilibria assign to every project j

exactly kj(~o) players. As a corollary of the proof of Claim 5.2.4 we have that if

there exist Nash equilibria ~o and ~a assigning different numbers of players to some

project, then there exists a player i such that oi 6= ai and ui(oi, o−i) = ui(ai, o−i).

But this is impossible since we have that ui(oi, o−i) = x and ui(ai, o−i) < x.

It is interesting to reflect on the qualitative interpretation of these new weights
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for an instance with n players and a very large set of projects of equal weight and

with success probabilities q1 ≥ q2 ≥ q3 ≥ · · · decreasing to 0. In this case, there

will be a largest j∗ for which the optimal assignment places any players on j∗,

and computational experiments with several natural distributions of {qj} indicate

that the number of players assigned to projects increases roughly monotonically

toward a maximum approximately near j∗. This means that the credit assigned to

projects must increase toward j∗, and then be chosen so as to discourage players

from working on projects beyond j∗. Moreover, the value of j∗ grows with n, the

number of players. Hence we have a situation in which the research community can

be viewed, roughly, as establishing the following coarse division of its projects into

three categories: “too easy” (receiving relatively little credit), “just right” (near

j∗, receiving an amount of credit that encourages extensive competition on these

projects), and “too hard” (beyond j∗, receiving an amount of credit designed to

dissuade effort on these projects). Moreover, smaller research communities reward

easier problems (since j∗ is smaller), while larger communities focus their rewards

on harder problems.

5.2.3 Re-weighting Players to Achieve Social Optimality

We now discuss the companion to the previous analysis: a mechanism for re-

weighting the players to achieve social optimality. Recall that this means we assign

each player i a weight zi, and when a set S of players succeeds at a project j, we

choose player i ∈ S to receive the credit wj with probability
zi∑
h∈S zh

.

When players are identical, we can base the re-weighting mechanism on the

optimality of the greedy algorithm expressed in Claim 5.2.2. That is, if we were

to assign an absolute order to the players, and announce the convention that
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credit would go to the first player in the order to succeed at a project, then the

players’ simultaneous choices would simulate the greedy algorithm to achieve social

optimality: the first player in the announced order would choose a project without

regard to the choices of other players; the second player would choose as though

the first player would win any direct competition, but without regard to the choices

of any other players; and so forth. Now, instead of an order, we need to define

weights on the players; but we can approximately simulate the order using sharply

decreasing weights in which zi = εi for an ε > 0 chosen to be sufficiently small.

The effect of these sharply decreasing weights is to ensure that a player i gets

almost no utility from a project j if a player of higher weight also succeeds at j,

and i gets almost all the utility from j if i is the player of highest weight to succeed

at j. From this, we can show that each player’s utility is roughly what it would

be under an order on the players. We prove that we can indeed find such an ε as

required.

Theorem 5.2.11 With ε > 0 sufficiently small and the re-weighting of players

defined by zi = εi, all Nash equilibria of the resulting game are socially optimal.

Even given the informal argument above, the proof is complicated by the fact

that, with positive weights on all players, their strategic reasoning is more complex

than it would be under an actual ordering. To prove Theorem 5.2.11, we consider

the relationship between the actual utilities of the re-weighted players for a given

strategy vector ~a, denoted ũi(~a):

ũi(~a) = waiqai
∑

S⊆{Kai (~a)−i}

zi
(
∑

h∈S zh) + zi
q|S|ai (1− qai)kai (~a)−|S|−1

and their “ideal” utility under the order we are trying to simulate, denoted

ûi(~a) — the utility function defined by having the first player in order to succeed
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at a project receive all the credit, which is formally defined next:

Definition 5.2.12

• π<i(S) = {h ∈ S|zi < zh} where S ⊆ N – the set of players before player i.

• π>i(S) = {h ∈ S|zi > zh} where S ⊆ N – the set of players after player i.

• ûi(~a) = rai(|π<i(Kai(~a))|) – the marginal contribution of player i to the social

welfare.

Recalling that the projects’ weights and success probabilities are rational, let d be

their common denominator. We first show that if these two different utilities are

close enough with respect to d, then our approximate simulation of an order using

weights will succeed:

Claim 5.2.13 If for every player i, project j and strategy vector ~a we have

ûi(j, a−i)−
1

4dn+1
≤ ũi(j, a−i) ≤ ûi(j, a−i) +

1

4dn+1
,

then any Nash equilibrium in the game with the weights {zi} is also an optimal

assignment.

Proof: Consider some Nash equilibrium ~a in the game with the weights {zi} and

let ~o be an optimal assignment that is the result of running the greedy algorithm

from Claim 5.2.2 with the same order of player, that shares the longest prefix with

~a: maxi ∀i′ ≤ i, ai′ = oi′ . Assume towards a contradiction that ~a is not an optimal

assignment. By definition, player i is the first player in the order that works on a

different project in ~a (denote it by j) and in ~o (denote it by l). Since ~a is a Nash

152



equilibrium with the weights {zi} we have that ũi(j, a−i) ≥ ũi(l, a−i). By applying

the Claim’s assumption we have that:

ûi(j, a−i) +
1

4dn+1
≥ ũi(j, a−i) ≥ ũi(l, a−i) ≥ ûi(l, a−i)−

1

4dn+1
.

This implies that ûi(j, a−i) +
1

2dn+1
≥ ûi(l, a−i). On the other hand, ~o is an

optimal solution that shares the longest prefix with ~a. Also, since ~o is the result of

a greedy algorithm with the same order, we have that ûi(l, o−i) > ûi(j, o−i). Since,

~a and ~o are identical for all players prior to player i in the order, we have that

ûi(l, a−i) > ûi(j, a−i).

To complete the proof, recall that d is the common denominator of all success

probabilities and weights. As both ûi(j, a−i) and ûi(l, a−i) are products of at most

n+ 1 terms of common denominator d, and they are not equal, so they must differ

by at least
1

dn+1
.

Next, we show that it is possible to choose ε sufficiently small such that for

every player i and project j: ûi(j, a−i) −
1

4dn+1
≤ ũi(j, a−i) ≤ ûi(j, a−i) +

1

4dn+1

as required by Claim 5.2.13. We begin by presenting the following definitions that

will be useful in simplifying the utility function:

Definition 5.2.14 For a strategy vector ~a, a project j and S ⊆ Kj(a−i) we define

ψi(j;S;~a) =
zi

zi +
∑

h∈S zh
· q|S|+1

j · (1− qj)kj(a−i)−|S|.

This is the probability that the players in S ∪ {i} succeed at project j, the rest of

the players working on j fail and player i gets the credit for succeeding the project.

Using the definition we now have ũi(~a) = wai
∑

S⊆Kai (a−i)
ψi(j;S;~a).
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By using π<i(S) and π>i(S) we can break up the player’s utility in the following

manner:

ũi(j, a−i) = wj ·

( ∑
S⊆π>i(Kj(~a))

ψi(j;S;~a) +
∑

S⊆Kj(a−i)
S∩π<i(Kj(~a))6=∅

ψi(j;S;~a)

)
(5.2)

This is a convenient representation of a player’s utility since it partitions the

successful player sets into two types:

1. S ⊆ π>i(Kj(~a)): for such a set S, player i’s weight is dominant in S, and

hence she gets most of the utility.

2. S ⊆ Kj(a−i) and S ∩ π<i(Kj(~a)) 6= ∅: for such a set S, player i’s weight is

dominated, and hence she gets only a very small fraction of the utility.

In the next two Lemmas we bound player i’s utility with respect to each of

these types separately. The bounds are later combined to bound ũi(j, a−i).

Lemma 5.2.15 ûi(j, a−i) ≥ wj ·
∑

S⊆π>i(Kj(~a)) ψi(j;S;~a) ≥ 1

1 + 2ε
ûi(j, a−i).

Proof: We first show that ûi(j, a−i) ≥ wj ·
∑

S⊆π>i(Kj(~a)) ψi(j;S;~a). To do this,

we write an alternative expression for ûi(j, a−i):

ûi(j, a−i) =

(
wjqj(1− qj)|π<i(Kj(~a))|︸ ︷︷ ︸

=rj(|π<i(Kj(~a))|)

)
·

( ∑
S⊆π>i(Kj(~a))

q
|S|
j · (1− qj)|π>i(Kj(~a))|−|S|

︸ ︷︷ ︸
=1

)

= wj
∑

S⊆π>i(Kj(~a))

q
|S|+1
j · (1− qj)kj(a−i)−|S|

The resulting expression is an upper bound on wj
∑

S⊆π>i(Kj(~a)) ψi(j;S;~a) since

it assumes that zi > 0 and the rest of the weights are 0.
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By the definition of the weights, we have that zh ≤ εzi for all h ∈ π>i(Kj(~a)).

This allows us to bound the weight coefficients
zi

zi +
∑

h∈S zh
in ũi(j, a−i):

∀S ⊆ π>i(Kj(~a)) :
zi

zi +
∑

h∈S zh
≥ zi
zi +

∑
h∈π>i(Kj(~a)) zh

≥ zi

zi +
∑|π>i(Kj(~a))|

h=1 εhzi

=
1

1 +
∑|π>i(Kj(~a))|

h=1 εh
>

1

1 + 2ε

where the last inequality holds for ε < 0.5. Hence we have that∑
S⊆π>i(Kj(~a)) ψi(j;S;~a) ≥ 1

1 + 2ε
ûi(j, a−i).

Lemma 5.2.16
∑

S⊆Kj(a−i)
S∩π<i(Kj(~a)) 6=∅

ψi(j;S;~a) ≤ ε

1 + ε
.

Proof: Observe that since for each of the sets S included in the sum, S ∩

π<i(Kj(~a)) 6= ∅, then in each set S there exists at least a single player h ∈ S

such that zh > zi. This implies the following bound on the weight coefficients in

ũi(j, a−i):

zi
zi +

∑
h∈S zh

≤ zi
zi + min{h∈S|zh>zi} zh

≤ zi

zi +
zi
ε

=
ε

1 + ε

The proof is completed by observing that
∑

S⊆Kj(a−i)
S∩π<i(Kj(~a)) 6=∅

q
|S|+1
j · (1 −

qj)
kj(a−i)−|S| < 1.

It is not hard to see that given Equation 5.2 and Lemmas 5.2.15 and 5.2.16 the

following bounds hold:

Corollary 5.2.17 For every strategy vector ~a, player i and project j:

1

1 + 2ε
ûi(j, a−i) ≤ ũi(j, a−i) ≤ ûi(j, a−i) + wj

ε

1 + ε
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We can now use the previous corollary to compute a value of ε for which the

assumptions of Lemma 5.2.13 hold:

Lemma 5.2.18 For ε ≤ minl∈M

(
1

4dn+1wl

)
we have that:

ûi(j, a−i)−
1

4dn+1
≤ ũi(j, a−i) ≤ ûi(j, a−i) +

1

4dn+1

Proof: By the lower bound on ũi(j, a−i) from Corollary 5.2.17 we have that

ûi(j, a−i)−
2ε

1 + 2ε
ûi(j, a−i) =

1

1 + 2ε
ûi(j, a−i) ≤ ũi(j, a−i).

Let l be the project with the maximal weight, observe that this is the same project

minimizing
1

4dn+1
wl. Thus, we have that for every ε ≤ minl∈M

(
1

4dn+1wl

)
the

following bound holds:

2ε

1 + 2ε
ûi(j, a−i) ≤ 2ε · wl ≤

1

4dn+1
.

Similarly, by the upper bound on ũi(j, a−i) from Corollary we have that

ũi(j, a−i) ≤ ûi(j, a−i) + wj
ε

1 + ε
≤ ûi(j, a−i) +

1

4dn+1
which completes the proof.

This completes our proof of Theorem 5.2.11 showing that there exists ε for

which any equilibrium of the game with player-weights {zi = εi} is an optimal

solution in the unweighted game.

5.3 Players of Heterogeneous Abilities

We now consider the case in which players have different levels of ability. Recall

from the introduction that in this model, each player i has a parameter pi ≤ 1, and
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her probability of success at project j is piqj. As before, player i receives credit

for her selected project ai if she succeeds at it and is chosen, uniformly at random,

from among all players who succeed at it. Player i’s utility is the expected amount

of credit she receives in this process.

Recall that Kj(~a) is the set of players working on project j in strategy vector ~a;

we write sj(Kj(~a)) = wj(1−
∏

i∈Kj(~a)(1−piqj)) for the contribution of project j to

the social welfare, so that the overall social welfare of ~a is u(~a) =
∑

j∈M sj(Kj(~a)).

We denote the marginal utility of adding player i to project j by sj(i|Kj(~a)) =

sj(Kj(~a) ∪ {i}) − sj(Kj(~a)) = wjpiqj
∏

l∈Kj(~a)(1 − plqj) and we use u(j|a−i) =

sj(i|Kj(a−i)) to denote the marginal utility of player i choosing project j when the

rest of the players choose a−i.

There is a useful closed-form way to write i’s utility, as follows. First, suppose

that in strategy vector ~a, player i selects project j, and let S denote the other

players who select j. Then in order for i to receive the credit of wj for the project,

she has to succeed (with probability piqj); moreover, some subset S ′ of the other

players on j will succeed (with probability
∏

h∈S′ phqj) while the rest will fail (with

probability
∏

h∈{S−S′}(1−phqj)), and i must be selected from among the successful

players (with probability
1

|S ′|+ 1
). Thus we have

ui(~a) = wjpiqj
∑
S′⊆S

 1

|S ′|+ 1

∏
h∈S′

phqj
∏

h∈{S−S′}

(1− phqj)

 .

This summation over all sets S ′ is a natural quantity that is useful to define

separately for future use; we denote it by cj(S) and refer to it as the competition

function for project j. The competition function represents the expected reduction

in credit to a player on project j due to the competition from players in the set

S; instead of the expected credit of wjpiqj that i would receive if she worked on
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j in isolation, she gets wjpiqjcj(S) when the players in S are also working on j.

Thus, with ai denoting the project chosen by i, and Kai(~a) denoting the set of all

players choosing project ai, we have ui(~a) = waipiqaicai(Kai(~a)− i). We now state

and prove a technical lemma giving an inductive form for the competition function

that will be useful later on. For the sake of brevity we define:

Definition 5.3.1 For S ′ ⊆ S and project j, let Ij(S
′, S) =

∏
i∈S′ piqj

∏
i∈{S−S′}(1−

piqj).

Lemma 5.3.2 For any project j, set of players S, and player h /∈ S, we have

cj(S + h) = cj(S)− phqj
∑
S′⊆S

(
1

(|S ′|+ 1)(|S ′|+ 2)
Ij(S

′, S)

)
.

Proof: By distinguishing between the case in which the new player h succeeds

and that she fails we have that:

cj(S + h) = (1− phqj)
∑
S′⊆S

(
1

(|S ′|+ 1)
Ij(S

′, S)

)
+ phqj

∑
S′⊆S

(
1

(|S ′|+ 2)
Ij(S

′, S)

)
= cj(S)− phqj

∑
S′⊆S

(
1

(|S ′|+ 1)(|S ′|+ 2)
Ij(S

′, S)

)
.

We can show the following basic facts about this general version of the game.

We first show that the more general version of the game is still a monotone valid-

utility game. The proof is very similar to the proof of Claim 5.2.1; the only part

that changes in a non-trivial way is the proof that the utility (social welfare)

function is submodular which we provide next:

Claim 5.3.3 The social welfare function of the project game with different abilities

is submodular.
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Proof: We show that u(~a) has decreasing marginal utility. Recall that u(~a)

is the summation of the projects’ separate utilities. Hence it is enough to prove

that the utility of every project is submodular. More formally, We need to show

that for every two sets of players S ⊆ S ′ and for every project j and player i, we

have sj(i|S) ≥ sj(i|S ′). To prove this, we observe that wjpiqj
∏

l∈S(1 − plqj) ≥

wjpiqj
∏

l∈S′(1− plqj) simply becasue 1 ≥
∏

l∈{S′−S∩S′}(1− plqj).

Next, we show that the more general version of the game is a congestion game.

This is less clear-cut than in the case of identical players, since now the payoffs

depend not just on the number of players sharing a project but on their identities.

To bypass this we prove that the utility functions for the project game with dif-

ferent abilities obey a certain structural property that, by results of Monderer and

Shapley [72], implies that the game is a congestion game.

Claim 5.3.4 The project game with different abilities is a congestion game.

Proof: Recall that the utility of a player i depends not only on the number of

other players working on i’s project, but also on their identities. As a result, to

establish that the game is a congestion game, we use a different characterization

of congestion given by Monderer and Shapley in Corollary 2.9 of their paper [72].

Using the notation and terminology we have defined for the project game, the

corollary can be written as follows.

Theorem 5.3.5 (Adapted from Monderer-Shapley) The project game is an

(exact) potential game if for every two players i, l, projects xi 6= yi, xl 6= yl and

strategy vector a−i,l:

ui(yi, xl, a−i,l)− ui(xi, xl, a−i,l) + ul(yi, yl, a−i,l)− ul(yi, xl, a−i,l)+
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ui(xi, yl, a−i,l)− ui(yi, yl, a−i,l) + ul(xi, xl, a−i,l)− ul(xi, yl, a−i,l) = 0

We now use this to prove that the project game with different abilities is an

exact potential game, from which the claim follows, since by another result of Mon-

derer and Shapley, every finite exact potential game is isomorphic to a congestion

game.

Recall that the utility of a player i is affected only by the players who are

working on the same project as i. Hence, we should differentiate in the condition

given in Theorem 5.3.5 between the cases in which players i and l are working on

the same project and those in which they are not. By symmetry we can assume

without loss of generality that xi 6= yl and that yi 6= xl. Before proceeding with

the case analysis, we present the following Lemma that will turn out useful for

handling some of the cases. The proof is provided below.

Lemma 5.3.6 For any three projects x, y, z such that x 6= y and x 6= z:

ui(x, x, a−i,l)− ui(x, y, a−i,l) = ul(x, x, a−i,l)− ul(z, x, a−i,l).

We distinguish between the following cases:

1. xi 6= xl and yi 6= yl. By rearranging the terms we get:

ui(yi, xl, a−i,l)− ui(yi, yl, a−i,l)︸ ︷︷ ︸
=0

+ ui(xi, yl, a−i,l)− ui(xi, xl, a−i,l)︸ ︷︷ ︸
=0

+

ul(yi, yl, a−i,l)− ul(xi, yl, a−i,l)︸ ︷︷ ︸
=0

+ ul(xi, xl, a−i,l)− ul(yi, xl, a−i,l)︸ ︷︷ ︸
=0

= 0.

For example, ui(yi, xl, a−i,l) − ui(yi, yl, a−i,l) = 0 since Kyi(yi, xl, a−i,l) =

Kyi(yi, yl, a−i,l).
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2. xi = xl and yi 6= yl. By using Lemma 5.3.6 and the previous argument we

have that:

ui(xi, yl, a−i,l)− ui(xi, xl, a−i,l) + ul(xi, xl, a−i,l)− ul(yi, xl, a−i,l)︸ ︷︷ ︸
=0

+

ui(yi, xl, a−i,l)− ui(yi, yl, a−i,l)︸ ︷︷ ︸
=0

+ul(yi, yl, a−i,l)− ul(xi, yl, a−i,l)︸ ︷︷ ︸
=0

= 0.

3. xi 6= xl and yi = yl. This case is symmetric to case 2.

4. xi = xl and yi = yl. This case can be proved by using Lemma 5.3.6 twice,

similar to case 2.

Proof of Lemma 5.3.6 By using Lemma 5.3.2 we have that:

ui(x, x, a−i,l) = wxpiqx · cx(Kx(a−i,l) + l)

= wxpiqx ·

cl(Kx(a−i,l))− plqx
∑

S⊆Kx(a−i,l)

(
1

(|S|+ 1)(|S|+ 2)
Ix(S,Kx(a−i,l))

)
= ui(x, y, a−i,l)− wxpiqx · plqx

∑
S⊆Kx(a−i,l)

(
1

(|S|+ 1)(|S|+ 2)
Ix(S,Kx(a−i,l))

)

Similarly we have: ul(x, x, a−i,l) =

ul(x, y, a−i,l)− wxplqx · piqx
∑

S⊆Kx(a−i,l)

(
1

(|S|+ 1)(|S|+ 2)
Ix(S,Kx(a−i,l))

)

Hence, ui(x, x, a−i,l)− ui(x, y, a−i,l) = ul(x, x, a−i,l)− ul(z, x, a−i,l).

Next, we show how one can compute a Nash equilibrium in the project game

with different abilities. We will later see that the optimal solution for this more

general version of the game can no longer be computed in polynomial time.
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Claim 5.3.7 A Nash equilibrium for the project game with different abilities can

be computed in polynomial time.

Proof: We begin by presenting a simple greedy algorithm for computing a Nash

equilibrium. We then prove that the algorithm indeed computes a Nash equilibrium

and that it runs in polynomial time. The algorithm is defined as follows:

1. Sort the players by their abilities.

2. Go over the players in descending order of ability and allocate each player

to the project maximizing her utility with respect to the players previously

allocated.

Denote the resulting allocation by ~a. Assume towards a contradiction that ~a is

not a Nash equilibrium. Let player i be the first player in the order for which

there exists some project j such that ui(j, a−i) > ui(~a). Let player l be the last

player that joined project ai. Note that for player l it has to be the case that

ul(~a) ≥ ul(j, a−l), since its expected utility is exactly the same as it was in the

time she made her choice and the expected utility from project j could have only

decreased (this also implies that l 6= i). Recall that:

waiplqaicai(Kai(~a)− l) = ul(~a) ≥ ul(j, a−l) = wjplqjcj(Kj(~a)).

This implies that waiqaicai(Kai(~a) − l) ≥ wjqjcj(Kj(~a)). We now observe that

cai(Kai(~a) − i) ≥ cai(Kai(~a) − l) since qi > ql and thus ui(j, a−i) ≤ ui(~a) in

contradiction to the assumption that ~a is not a Nash equilibrium.

We now show that the algorithm runs in polynomial time. To do this we should

show that the players utilities can be computed in polynomial time, this amounts

to computing the computation functions:
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Claim 5.3.8 The competition function can be computed in poly time.

Proof: We provide an alternative inductive formula for the competition function

that can be evaluated in polynomial time. We define the probability that the set

of successful players is of size k by l(S, k). With this notation in mind we have

that:

cj(S) =
∑
S′⊆S

 1

|S ′|+ 1

∏
h∈S′

phqj
∏

h∈{S−S′}

(1− phqj)

 =

k=|S|∑
k=0

1

k + 1
l(S, k)

We now consider the effect that adding an additional player h /∈ S to the set

of players working has on a project on the value of l(S + h, k). It is not hard to

see that l(S + h, k) = (1 − phqj)l(S, k) + phqjl(S, k − 1), where l(S,−1) = 0 and

l(S, |S|+ 1) = 0.

This formula readily admits a simple algorithm for computing cj(S). We first

fix some order on the players in S, for simplicity we rename the players accord-

ing to this order. The algorithm performs |S| steps, where in step i it com-

putes l({1, . . . , i}, k) for every k ∈ {1, . . . , i}. Observe that for each k computing

l({1, . . . , i}, k) can be done in constant time by using the values of l({1, . . . , i−1}, k)

and l({1, . . . , i− 1}, k − 1) that where computed in the previous step. Therefore,

we have that step i takes O(i) time implying that the whole computation of cj(S)

takes O(n2).

Claim 5.3.9 Computing the social optimum for the project game with different

abilities is NP-hard.
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Proof: We use a reduction from the Subset Product problem, whose NP-

completeness is established in Garey and Johnson [43]. The Subset Product prob-

lem is defined as follows: given a set of n natural numbers X = {x1, ..., xn} and a

target number Q∗, does there exist S ⊆ X such that
∏

xi∈S xi = Q∗?

As a first step, we show that the closely related Multiplicative Number Partition

problem (MNP) is NP-complete. In MNP, we are again given a set of n natural

numbers X = {x1, ..., xn}, but now we are asked whether there is a partition (S, T )

of X such that
∏

xi∈S xi =
∏

xj∈T xj. We can show that MNP is NP-complete by a

reduction from Subset Product, by analogy with the corresponding reduction from

Subset Sum to (Additive) Number Partition. That is, given an instance of Subset

Product with a set X and a target Q∗, we define P =
∏

xi∈X xi. Notice that if P is

not divided by Q∗ without a remainder then there is no subset as needed. Hence,

we can assume without loss of generality that Q∗ divides P . We then show that

we can solve MNP for X ′ = X ∪ {xn+1 = P 2/Q∗, xn+2 = P ·Q∗} if and only if we

can solve Subset Product.

Notice that xn+1 and xn+2 should be in different sets because xn+1 · xn+2 > P .

We assume without loss of generality that xn+1 ∈ S ′. Define Y =
∏

xi∈{S′−xn+1} xi.

By the definition of Y we have that
∏

xj∈{T ′−xn+2} xj = P
Y

. By substituting in the

equality
∏

xi∈S′ xi =
∏

xj∈T ′ xj we get that:

P 2

Q∗
· Y = P ·Q∗ · P

Y
⇐⇒ Y

Q∗
=
Q∗

Y

Since both Y and Q∗ are positive we get that Y = Q∗. Thus, we have proven the

following lemma:

Lemma 5.3.10 For a partition (S ′, T ′) of X ′ :
∏

xi∈S′ xi =
∏

xj∈T ′ xj ⇐⇒∏
xi∈{S′−xn+1} xi = Q∗
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We can now conclude that for S = {S ′ − {xn+1}}, which by the construction

is a subset of X, we have that
∏

xi∈S = Q∗. It follows that MNP is NP-complete.

Finally, we prove that the socially optimal assignment in the project game

with different abilities is NP-hard. We do this by a reduction from MNP to the

special case of the optimal assignment in which we have n players and 2 identical

projects. In this special case we assume both projects have a weight of 1 and

success probability 1, and player i has a failure probability p̄i.

Given an instance of MNP, we create an instance of this special case of the

optimal assignment problem by defining for every number xi a player i with failure

probability p̄i = 1
xi

. The optimal solution to the assignment of players to projects

is a partition (S, T ) that maximizes the social welfare: (1−
∏

i∈S p̄i)+(1−
∏

j∈T p̄j).

This implies that the optimal partition actually minimizes
∏

i∈S p̄i +
∏

j∈T p̄j. By

plugging in the values of p̄i and p̄j. we have that the optimal solution minimizes:

∏
i∈S

1

xi
+
∏
j∈T

1

xj
=

∏
i∈S xi +

∏
j∈T xj

P
.

The following lemma completes the proof by establishing the connection be-

tween social welfare maximization and MNP: (the proof is provided below)

Lemma 5.3.11 A partition (S, T ) minimizes
∏

i∈S xi +
∏

j∈T xj if and only if it

minimizes |
∏

i∈S xi −
∏

j∈T xj|

Thus, given a partition (S, T ) that is an optimal solution to the identical

projects variant, we can determine the answer to MNP by checking whether∏
i∈S xi =

∏
j∈T xj.
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Proof of Lemma 5.3.11: In this lemma, we use ΠS as a shorthand for
∏

i∈S xi.

Let (S, T ) and (S ′, T ′) be two partitions of X. We show that if ΠS + ΠT <

ΠS ′ + ΠT ′ then |ΠS − ΠT | < |ΠS ′ − ΠT ′|. We begin by observing that the

following three inequalities are equivalent, since all terms are products of natural

(and hence non-negative) numbers:

ΠS + ΠT < ΠS ′ + ΠT ′

(ΠS + ΠT )2 < (ΠS ′ + ΠT ′)2

(ΠS)2 + 2ΠS · ΠT + (ΠT )2 < (ΠS ′)2 + 2ΠS ′ · ΠT ′ + (ΠT ′)2.

Since both (S, T ) and (S ′, T ′) are partitions of X, we have that: ΠS · ΠT =

ΠS ′ · ΠT ′, and hence we can subtract four times this common product from both

sides of the previous inequality to get three more equivalent inequalities:

(ΠS)2 − 2ΠS · ΠT + (ΠT )2 < (ΠS ′)2 − 2ΠS ′ · ΠT ′ + (ΠT ′)2

(ΠS − ΠT )2 < (ΠS ′ − ΠT ′)2

|ΠS − ΠT | < |ΠS ′ − ΠT ′|.

5.3.1 Re-weighting Projects to Achieve Social Optimality

We now describe how to re-weight projects, creating new weights {w′j}, so as to

make a given social optimum ~o a Nash equilibrium. First, since the relative values

of the project weights are all that matters, we can choose any project x arbitrarily

and set its new weight w′x equal to 1. We will set the weights w′j of the other

projects so that every player’s favorite alternate project (and hence the target of

any potential deviation) is x.
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Now, among all the players working on another project j 6= x, which one has

the greatest incentive to move to x? It is the player i ∈ Kj(~o) with the lowest

ability pi, since all players i′ ∈ Kj(~o) experience the same competition function

cx(Kx(~o)), but i experiences the strongest competition from the other players in

Kj(~o). This is because they all have ability at least as great as i, so i has the most

to gain by moving off j.

Motivated by this, for a strategy vector ~a and a project j, we define δj(~a) to be

the player i ∈ Kj(~a) of minimum ability pi. We define w′x = 1 and for every other

project j 6= x, we define

w′j =
qxcx(Kx(~o))

qjcj(Kj(~o)− δj(~o))
. (5.3)

Theorem 5.3.12 The optimal assignment ~o is a Nash equilibrium in the game

with the given weights {w′j}.

Proof: To prove this, we will show that if a player did want to move to another

project, she would choose to move to project x. After establishing this, it is enough

to show that all the players working on project x in the optimal assignment do not

want to move to another project, and that the rest of the players do not want to

move to project x.

We now show that a player i working on a project other than x views x as her

best alternate project.

Lemma 5.3.13 For any player i such that oi 6= x, and for every project j 6= oi,

we have that ui(x, o−i) ≥ ui(j, o−i)

167



Proof: We need to show that w′xpiqxcx(Kx(~o)) ≥ w′jpiqjcj(Kj(~o)). By setting

the weights to their values according to Formula (5.3), we get that:

piqxcx(Kx(~o)) ≥
qxcx(Kx(~o))

qjcj(Kj(~o)− δj(~o))
piqjcj(Kj(~o))

By rearranging the terms we have that: cj(Kj(~o)− δj(~o)) ≥ cj(Kj(~o)). Intuitively,

this inequality follows from the fact that as more players work on a project, it is

less likely that a specific player will be the one to succeed at it. Formally, it follows

from Lemma 5.3.2 above.

Finally, we show that players working on project x do not want to leave project

x, and players not working on x do not want to move to x (and hence, by Lemma

5.3.13, do not want to move anywhere else either).

Lemma 5.3.14

1. All players who are working in the optimal assignment on project x do not

want to move to a different project.

2. All players who are working in the optimal assignment on project different

than x do not want to move to project x.

Proof: Assume towards a contradiction that there exists a player i who prefers

to work on project j 6= oi. This means that

w′oipiqoicoi(Koi(~o)− i) < w′jpiqjcj(Kj(~o))

For each of the two statements we set w′oi and w′j to their values according to

Formula (5.3) and get to a contradiction by rearranging the terms.

1. We set w′oi = 1 and w′j =
qxcx(Kx(~o))

qjcj(Kj(~o)− δj(~o))
and get the following inequality:

piqxcx(Kx(~o)− i) <
qxcx(Kx(~o))

qjcj(Kj(~o)− δj(~o))
piqjcj(Kj(~o))
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After rearranging the inequality we get that:

cx(Kx(~o)− i)
cx(Kx(~o))

<
cj(Kj(~o))

cj(Kj(~o)− δj(~o))

The contradiction follows by noticing that cx(Kx(~o) − i) > cx(Kx(~o)) by

Lemma 5.3.2; however, by the same lemma we also have that cj(Kj(~o)) <

cj(Kj(~o)− δj(~o)).

2. We set w′oi =
qxcx(Kx(~o))

qoicoi(Koi(~o)− δoi(~o))
and w′j = 1 and get the following in-

equality:

qxcx(Kx(~o))

qoicoi(Koi(~o)− δoi(~o))
piqoicoi(Koi(~o)− i) < piqxcx(Kx(~o))

After rearranging the inequality we get that:

coi(Koi(~o)− i)
coi(Koi(~o)− δoi(~o))

< 1

coi(Koi(~o)− i)
coi(Koi(~o)− δoi(~o))

=
coi({Koi(~o)− i− δoi(~o)}+ δoi(~o))

coi({Koi(~o)− i− δoi(~o)}+ i)

By Lemma 5.3.2 we have that as ph is greater the amount we subtract from

c(S) is greater. Therefore since by definition pi ≥ pδoi (~o), we have

coi({Koi(~o)− i− δoi(~o)}+ δj(~o)) > coi({Koi(~o)− i− δoi(~o)}+ i)

and this is a contradiction.

Since this establishes that all players want to stay with their current projects, it

follows that ~o is a Nash equilibrium under the modified weights, and hence the

proof of Theorem 5.3.12 is complete.
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5.3.2 Re-weighting Players to Achieve Social Optimality

It is also possible to re-weight the players so as to make the social optimum a

Nash equilibrium. Because the greedy algorithm no longer computes the social

optimum, it is no longer enough to use weights to approximately simulate an

arbitrary ordering on the players. However, we can use an extension of this plan

that incorporates two additional ingredients: first, we base the greedy ordering on

the socially optimal assignment, and second, we do not use a strict ordering but

rather one that groups the players into stages of equal weight.

The algorithm for assigning weights is as follows. In the beginning, we fix an

optimal assignment ~o and a sufficiently small value of ε > 0 (to be determined

below), and we declare all players to be unassigned. The algorithm then operates

in a sequence of stages c = 1, 2, . . .. At the start of stage c, some players have been

given weights and been assigned to projects, resulting in a partial strategy vector

~ac consisting only of players assigned before stage c. We show that at the start of

stage c, each unassigned player would maximize her payoff by choosing a project

from the set

Xc = {j | wj
∏

h∈Kj( ~ac)

(1− phqj)qj = max
l
wl

∏
h∈Kl( ~ac)

(1− phql)ql}

Thus in stage c, the algorithm does the following. It first computes this set of

projects Xc. Then, for each project j ∈ Xc for which there exists a player i such

that oi = j and i is unassigned, it assigns i to project j, and sets zi = εc.

It would be natural to try proving that with these weights, the assignment ~o

is a Nash equilibrium. However, this is not necessarily correct. In the final stage

c∗ of the algorithm, it may be that the number of unassigned players is less than

|Xc∗|, and in this case some of the unassigned players might go to projects other
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than the ones corresponding to ~o. However we show that the following defined

assignment ~o′, which is derived from ~o, is both an optimal assignment and a Nash

equilibrium with these weights.

Definition 5.3.15 Assignment ~o′ is constructed as follows:

1. For every player i that was not assigned in the last stage of the algorithm,

we define o′i = oi.

2. For every project j ∈ Xc∗ we compute the value

cj(~o′) =
∑

S⊆Kj(~o′)

z∗

(
∑

l∈S zl) + z∗
Ij(S,Kj(~o′))

where z∗ is the weight defined for players that were assigned last and

Ij(S,Kj(~o′) is the same as defined in Definition 5.3.1: Ij(S,Kj(~o′)) =∏
l∈S plqj

∏
l∈Kj(~o′)−S(1− plqj).

3. We sort all the projects in Xc∗ by their value for wjcj(~o′).

4. We assign each unassigned player to one of the top projects in Xc∗ according

to the sorting.

Theorem 5.3.16 The previously defined assignment ~o′ is an optimal assignment

and a Nash equilibrium in the game with weights {zi}.

We begin by showing that ~o′ is indeed an optimal assignment:

Claim 5.3.17 ~o′ is an optimal assignment (i.e., u(~o′) = u(~o)).

Proof: By the construction of ~o′ the only players that might not work on the

same project as in ~o are those that were assigned last. All these players are assigned
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to projects in Xc∗ . Notice that all projects in Xc∗ maximize wj
∏
{l∈Kj(~ac∗−1)}(1−

plqj)qj. Hence, the contribution of the players assigned last is the same regardless

of which specific project in Xc∗ they are working on. Therefore ~o′ is an optimal

assignment.

Next, we show that ~o′ is a Nash equilibrium in the game with weights {zi}. The

proof resembles the proof of Theorem 5.2.11. As in Theorem 5.2.11, the actual

utilities of the re-weighted players for a given strategy vector ~a are denoted by

ũi(~a), and their “ideal” utilities under the partial order we are trying to simulate

are denoted ûi(~a):

ûi(~a) = waipiqai
∏

l∈π<i(Kai (~a))

(1− plqai)

where π<i(Kai(~a)), as before, is the set of players working on project ai which are

strictly before player i in the order.

Recalling that the projects’ weights and success probabilities are rational, let

d be the common denominator of all the terms in the sets {wj : j ∈ M} and

{piqj : i ∈ N, j ∈M}.

Claim 5.3.18 If for every player i and project j such that the weight of player i

is unique among players working on project j:

ûi(j, o
′
−i)−

1

4dn+1
≤ ũi(j, o

′
−i) ≤ ûi(j, o

′
−i) +

1

4dn+1
,

then ~o′ is a Nash equilibrium.

Proof: Assume towards a contradiction that ~o′ is not a Nash equilibrium. Thus,

there exists a player i and a project j 6= o′i such that ũi(j, o
′
−i) > ũi(~o′). By the

weighting algorithm we have that ûi(~o′) ≥ ûi(j, o
′
−i). To see this, assume player

172



i was assigned in stage c. If c < c∗, then o′i = oi and oi was one of the projects

maximizing the marginal contribution to social welfare; if c = c∗, then by the

definition of ~o, the project o′i must have been one of the projects maximizing this

marginal contribution. So in either case we have

wo′i

∏
l∈Ko′

i
( ~ac)

(1− plqo′i)qo′i ≥ wj
∏

l∈Kj( ~ac)

(1− plqj)qj.

By multiplying both sides with pi we have that ûi(~o′) ≥ ûi(j, o
′
−i). We now distin-

guish between two cases:

1. ûi(~o′) > ûi(j, o
′
−i) – this means that player i was assigned at a different stage

than all the players working on project j were. Hence, player i has a unique

weight on project j. Since every player always has a unique weight on the

project she is allocated to by using the assumption of the claim, we get that:

ûi(j, o
′
−i) +

1

4dn+1
≥ ũi(j, o

′
−i) > ũi(~o′) ≥ ûi(~o′)−

1

4dn+1

This implies that ûi(~o′) − ûi(j, o
′
−i) <

1

2dn+1
. But by the definition of d,

since ûi(~o′) and ûi(j, o
′
−i) are not equal, they must differ by at least

1

dn+1
, a

contradiction.

2. ûi(~o′) = ûi(j, o
′
−i) – let c be the stage in which player i was assigned. The

fact that ûi(~o′) = ûi(j, o
′
−i) implies that j ∈ Xc. Now, Lemma 5.3.19 below

guarantees that if c < c∗ then there is another player l of the same stage as

i’s (zi = zl) that is allocated to project j (ol = j). Similarly, for c = c∗, by

the construction of ~o′ player i there has to be a player l of the same weight as

i’s such that o′j = l. Since player i can only improve her utility by switching

to one of the “top” projects in Xc∗ . On each of these projects there is already

a player working with the same weight as player i.
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By the definition of the marginal utility we have that ûi(~o′) = ûi(j, o
′
−i) =

ûi(j, o
′
−i,l). In Lemma 5.3.20 below, we show that ũi(j, o

′
−i) ≤ ûi(j, o

′
−i,l) −

1

2dn+1
= ûi(~o′) −

1

2dn+1
. This contradicts with the assumption that

ũi(j, o
′
−i) > ũi(~o′) since we have that ũi(~o) ≥ ûi(~o

′)− 1

4dn+1
.

Lemma 5.3.19 In every stage c < c∗ of the algorithm, for every project j ∈ Xc

there exists an unassigned player i such that oi = j.

Proof: Assume towards a contradiction that in some stage c there exists a

project j ∈ Xc for which all the players working on it in ~o have already been

assigned. Let player l be a player left unassigned after stage c then u(l, o−l) > u(~o).

This is because in each stage the projects in the set Xc maximize the marginal

contribution. Since the utility is submodular, the marginal contribution of the

projects can only decrease in every stage. Hence, player l’s marginal contribution

to project j is greater than her contribution to project ol. Also, by removing player

l from project ol the marginal contribution of the rest of the players working on ol

can only increase. From this we conclude that u(l, o−l) > u(~o), in contradiction to

~o being an optimal assignment.

Lemma 5.3.20 For every two players i and l that have the same weight,

ũi(o
′
l, o
′
−i) ≤ ûi(o

′
l, o
′
−i,l)− 1

2dn+1 .
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Proof: Let zi = zl = z∗. We have

ũi(o
′
l, o
′
−i) = (1− plqo′l) · wolpiqo′l

∑
S⊆{Ko′

l
(o′−i,l)}

z∗

(
∑

h∈S zh) + z∗
· Io′l(S,Ko′l

(o′−i,l))

+ plqo′l · wo′lpiqo′l
∑

S⊆{Ko′
l
(o′−i,l)}

z∗

(
∑

h∈S zh) + 2z∗
· Io′l(S,Ko′l

(o′−i,l)).

By rearranging the terms we have that ũi(o
′
l, o
′
−i) = ũi(o

′
l, o
′
−i,l)−

wo′lplqo′lpiqo′l

∑
S⊆{Ko′

l
(o′−i,l}

(
z∗

(
∑

h∈S zh) + z∗
− z∗

(
∑

h∈S zh) + 2z∗

)
· Io′l(S,Ko′l

(o′−i,l)).

By only considering the empty set in the summation we get that:

ũi(ol, o−i) ≤ ũi(ol, o−i,l)−
1

2
wolplqolpiqol

∏
{h∈Kol (o−i,l)}

(1− phqol)

= ũi(ol, o−i,l)−
1

2
plqol · ûi(ol, o−i,l)

By the definition of the common denominator we have that 1
2
plqol · ûi(ol, o−i,l) ≥

1

dn+1
and hence ũi(ol, o−i) ≤ ũi(ol, o−i,l)− 1

2dn+1 as required.

The proof of Theorem 5.3.16 is completed by observing that a very similar

proof to the one we provided for identical players (Lemma 5.2.18) shows how for

ε < the bounds for Claim 5.3.18 hold, That is: for every player i and project j:

ûi(j, o
′
−i)−

1

4dn+1
≤ ũi(j, o

′
−i) ≤ ûi(j, o

′
−i) +

1

4dn+1
. We omit the proof since it is

very similar to the case of identical players. To see this, we present the adjusted

definition for ψi(j;S;~a):

Definition 5.3.21 ψi(j;S;~a) =
zi

zi +
∑

l∈S zl
piqj

∏
l∈S plqj

∏
l∈{Kj(a−i)−S}(1−plqj)

Using this definition it is easy to derive a proof similar to the proof of Lemma

??. The lemma follows by using Lemma 5.2.18 as is.
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5.4 A Further Generalization: Arbitrary Success Proba-

bilities

Finally, we consider a further generalization of the model, in which player i has

an arbitrary success probability pij when working on project j. The strategies

and payoffs remain the same as before, subject to this modification. Also, this

generalization is a monotone valid-utility game and congestion game; however, we

omit the proofs since they are very similar to the proofs for the case from the

previous section.

An interesting feature of this generalization is that one can no longer always

make the social optimum a Nash equilibrium by re-weighting projects. To see why,

consider an example in which there are two players 1 and 2, and two projects a and

b. We have wa = wb = 1 and success probabilities p1a = 1, p1b = 0.5, p2a = 0.5,

and p2b = 0.1. Now, the social optimum is achieved if player 1 is assigned to a

and player 2 is assigned to b. But this gives too little utility to player 2, and in

order to keep player 2 on b, we need to re-weight the projects so that w′b ≥ 2.5w′a.

In this case, however, player 1 also has an incentive to move to b, proving that no

re-weighting can enforce the social optimum.

The case of re-weighting players is an open question. In Sections 5.2 and 5.3,

we used the re-weighting of players in a limited way, to simulate an ordering. It

is possible that a similar tactic can also be used in the general model — that is,

there may always exist a partial ordering on the players yielding a socially optimal

Nash equilibrium. If this is not the case, one can potentially make use of weights

on the players in more complex ways.

As one interesting partial result on the re-weighting of players in this model,
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we can show the following.

Theorem 5.4.1 If there exists a social optimum ~o that assigns each player to a

distinct project, then it is possible to re-weight the players so that ~o is a Nash

equilibrium.

Proof: The proof, uses an analysis of the alternating-cycle structure of a bi-

partite graph on players and projects, combined with ideas from the proof of

Theorem 5.3.16. As in other results on re-weighting players, we use the weights

to simulate an ordering on the players. That is, we arrange the players in some

specific order, and then we announce that all the credit on a project will be al-

located to the first player in the order to succeed at it. We first describe how to

construct such an ordering for which every Nash equilibrium in the resulting game

is socially optimal, and then we show how to approximately simulate this order

using weights.

Let ~o be an optimal assignment of players to projects in which there is at most

one player working on each project. The following lemma establishes that there

must be some player i who would choose her own project oi if he were placed first

in the order.

Lemma 5.4.2 If in the optimal assignment there is at most one player working

on each project then there exists a player i such that maxj wjpi,j ≤ woipi,oi.

Proof: Assume towards a contradiction that such a player does not exist. Then

for every player i there exists a project gi such that wgipi,gi > woipi,oi . Since in

the optimal assignment there is at most one player working on each project, we
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can picture the assignment as a matching between the projects and the players.

Consider the bipartite graph which has the players on the left side, the projects on

the right side and both the edges of the optimal matching {(i, oi)} and edges from

each player to her preferred project {(i, gi)}. We color the edges in the first of

these sets blue and the edges in the second of these sets red. This bipartite graph

has 2n nodes and 2n edges, and it therefore contains a cycle C. The cycle C has

interleaving red and blue edges, because each player on C has exactly one incident

blue edge and one incident red edge. Hence, we can form a new perfect matching

between players and projects by re-matching each player on C with the project to

which he is matched using her red edge rather than her blue edge. Since all the

players strictly prefer the projects to which they are connected by red edges, the

social welfare of this new matching is greater than the social welfare of the blue

matching, which contradicts the optimality of the blue matching.

Given this lemma, we can construct the desired ordering by induction. We

identify a player i with the property specified in Lemma 5.4.2 and place him first

in the order. Since he knows he will receive all the credit from any project he

succeeds at, he will choose her own project in the optimal solution oi. We now

remove i and oi from consideration and proceed inductively; the structure of the

optimum on the remaining players is unchanged, so we can apply Lemma 5.4.2 on

this smaller instance and continue in this way, thus producing an ordering.

The remainder of the proof is similar to the analysis for the case of identical

players: we simulate the ordering i1, i2, . . . , in using weights by choosing a suffi-

ciently small ε > 0 and assigning player ic (the cth player in the order) a weight of

zic = εc.

It is interesting to note that once we are in the regime of this more general
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model we can construct instances in which a Braess’s paradox appears – adding

an additional player reduces the welfare of the best Nash equilibrium. Consider

the following 2-player (1 and 2) and 2-project (a and b) instance as an example.

The weights of the projects are wa = 1, wb = 3/8 and the success probabilities

are: p1a = p2a = 0.5, p1b = p2b = 1. For this 2-player instance the social welfare

of the best Nash equilibrium, in which each player works on a different project is

7/8. If we add another player,3, such that p3a = 0, p3b = ε. We get that in any

Nash equilibrium player 3 works on project b. However if player 3 is working on

project b then both players 1 and 2 prefer to work on project a which leads to a

social welfare of 3/4 of the best Nash equilibrium instead of social welfare of 7/8

without player 3.
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CHAPTER 6

DYNAMIC MODELS OF REPUTATION AND COMPETITION

6.1 Introduction

In the previous chapter we considered how to allocate credit when players are

myopic and only care about maximizing their current utility. However, sometimes

players’ reasoning process is more complex and also takes into account the effects

of their current actions on the future. In this chapter we present a model capturing

the effects of this long-range reasoning. We study this question in the context of

markets for employment.

Markets for employment have been the subject of several large bodies of re-

search, including the long and celebrated line of work on bipartite matching of

employers to job applicants [88], sociological and economic approches to the pro-

cess of finding a job [53, 74, 86], and many other frameworks. Recent work in

theoretical computer science has modeled issues such as the competition among

employers for applicants [57, 58] and hiring policies that take a firm’s reputation

into account [25].

Despite this history of research, there remain a number of fundamental issues

in job-market matching that have gone largely unmodeled. One of these, familiar

to anyone who has dealt with job markets in academia or related professions, is

the feedback loop over multiple hiring cycles between the job candidates that a

firm (or academic department) pursues and the evolution of its overall reputation.

In particular, there is a basic trade-off at work: successfully recruiting higher-

quality candidates can raise a firm’s reputation, which in turn can make it more
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attractive to candidates in future hiring cycles; on the other hand, competing for

these higher-quality candidates comes with a greater risk of emerging from a given

hiring cycle empty-handed.

Here we formulate and study a strategic model that captures these issues; the

firms in our model make recruiting decisions in a way that takes into account the

probabilistic effect of these decisions on their reputations and hence their effective-

ness at recruiting in future periods. We ask what effect these types of long-range

strategies have, in the model, on outcomes for job candidates — do more or fewer

people get employed when firms make use of this long-range reasoning? As the

model demonstrates, there are two natural opposing forces at work here:

(i) A firm’s desire to increase its reputation for the sake of future periods may

cause it to compete for a stronger candidate and lose, when it could instead

have hired a weaker candidate who now goes unemployed.

(ii) As one firm’s reputation evolves, it may choose to stop competing with an-

other firm of higher reputation, leading to implicit coordination that results

in job offers to a larger set of people.

A firm’s utility is the total quality of all the candidates it hires, and so our measure

of social welfare — the sum of the firms’ utilities — is simply the total quality of all

candidates hired by any of them. We consider the natural performance guarantee

question in this model: how does the social welfare under multi-period strategic

behavior compare to the maximum social welfare attainable, where the maximum

corresponds to a central authority that is able to impose a matching of candidates

to firms? Essentially, this is a measure of how much talent the system is collectively

able to employ, when it is governed by competition.
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Our model, based on competition between two firms, is simple to state but leads

to complex phenomena based on the trade-off between forces (i) and (ii) above.

We obtain a tight bound of
2

1 +
√

1.5
≈ 0.898 on the ratio of the social welfare

under the canonical Nash equilibrium to the optimal social welfare in this model,

as the number of periods goes to infinity. Studying this performance ratio1 as a

function of the number of periods, we find that for some settings of the parameters,

the performance ratio is worse for instances with a “medium” number of periods,

rather than those with very few (where force (i) does not have enough time to

generate unemployment) or those with very many (where force (ii) takes over and

ensures a high level of employment). The analysis develops interesting connections

between multi-step strategic interaction with competition and Polya urn processes

[84].

Formulating the Model

The subtleties discussed above emerge already in a very simple model of multi-

period competition; we therefore focus on a highly reduced formulation that cap-

tures these issues yet permits a tight analysis. In particular, we study these effects

in the case of just two players, and with a candidate pool that has the same struc-

ture in each time period. Our model can clearly be extended in ways that add

complexity in a number of dimensions, and this suggests natural directions for fur-

ther work on multi-period matching games with this structure. We discuss some

of these directions briefly in the conclusions section (Section 6.6).

We set up the model as a game with two players over k rounds. We can think

1We use the neutral term “performance ratio” rather than price of anarchy or price of stability
because — as we will see — our game has a natural equilibrium, and we are interested in the
relative performance of this natural equilibrium, rather than necessarily focusing on the best or
worst equilibrium.
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of each player as representing an academic department that is able to try hiring

one new faculty candidate in each of the next k hiring seasons. In each round

t ∈ {1, 2, . . . , k}, the players are presented with a set of job candidates with fixed

numerical qualities. Since we have only two firms in our model, we will assume

that the firms’ hiring will only involve considering the two strongest candidates;

we therefore assume that there are only two candidates available. Normalizing the

quality of the stronger candidate, we define the qualities of the two candidates to

be 1 and q < 1 respectively.

We want to be able to talk separately about a department’s utility — the total

quality of all candidates it has hired — and its reputation — its ability to attract

new candidates based on the quality of the people it has hired. A number of studies

of academic rankings have emphasized that departments are judged in large part

by their strongest members; intuitively, this is why a smaller department with

several “star” members can easily rank higher than a much larger department,

and ranking schemas often include measures that focus on this distinction.

Given this, a natural way to define reputation in our model is to say that the

reputation of firm i in round t, denoted xi(t), is equal to the number of higher-

quality candidates (i.e. those of quality 1 rather than q) that it has hired so far.

This is distinct from the utility of firm i in round t, denoted ui(t), which is simply

the sum of the qualities of all the candidates it has hired.

We assume that a firm is seeking to maximize its utility over the full k rounds;

however, note that since this is a multi-period game, and reputation determines

success in future rounds of hiring, a firm’s equilibrium strategy will in fact involve

actions that are effectively seeking to increase reputation even at the expense

of short-term sacrifices to expected utility. This, indeed, is exactly the type of

183



behavior we hope to see in a model of recruiting.

Building on this discussion, we therefore structure the game as follows.

• Each player i has a numerical reputation xi(t) and utility ui(t) in round t.

We will focus mainly on the case in which the two players each start with

reputation equal to 1, though in places we will consider variations on this

initial condition.

• In each round t ∈ {1, 2, . . . , k}, player i chooses one of the candidates j to

try recruiting; this choice of j constitutes the player’s strategy in round t.

• If player i is the only one to try recruiting j, then j accepts the offer. If both

players compete for the same candidate j, then j accepts player i’s offer with

probability proportional to player i’s reputation. This follows the Tullock

contest function that is standard in economic theory for modeling competi-

tion [94, 103], thus we have : player 1 hires j with probability
x1(t)

x1(t) + x2(t)

and player 2 hires j with probability
x2(t)

x1(t) + x2(t)
. The player who loses this

competition for candidate j hires no one in this round.

• Finally, each player receives a payoff in round t equal to the quality of the

candidate hired in the round (if any). The player’s utility is increased by

the quality of the candidate it has hired; the player’s reputation is increased

by 1 if it has hired the stronger candidate in round t, and remains the same

otherwise.

Thus the model captures the basic trade-off inherent in recruiting over multiple

rounds — by competing for a stronger candidate, a player has the opportunity to

increase its reputation by a larger amount, but it also risks hiring no one. The

model is designed to arrive at this trade-off using very few underlying parameters;
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but we believe that the techniques developed for the analysis suggest approaches

to more complex variants, and we discuss some of these in the conclusions section

(Section 6.6).

The maximum possible social welfare is achieved if the two players hire the

top two candidates respectively in each round, achieving a social welfare of k(1 +

q). The key question we consider here is what social welfare can be achieved in

equilibrium for this k-round game, and how it compares to the welfare of the social

optimum. In effect, how much does the struggle for reputation leave candidates

unemployed?

The subgame perfect equilibria in this multi-round game are determined by

backward induction — essentially, in a given round t, a player evaluates the possi-

ble values its utility and reputation can take in round t+ 1, after the (potentially

probabilistic) outcome of its recruiting in round t. There are multiple equilibria,

but there is a single natural class of canonical equilibria for the model, in which the

higher-reputation player always goes after the stronger candidate, and — predi-

cated on the equilibrium having this form in future rounds — the lower-reputation

player makes an optimal decision to either compete for the stronger candidate or

make an offer to the weaker candidate. (When the lower-reputation player is in-

different between these two options, we break the symmetry using the assumption

that the lower player hires the weaker candidate.) Proving that this structure in

fact produces an equilibrium is non-trivial; in part this is because reasoning about

subgame perfect equilibria always involves some complexity due to the underly-

ing tree of possibilities, but the present model adds to this complexity because the

randomization involved in the outcome causes the possible trajectories of the game

to “explore” most of this tree.
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We study the behavior of this canonical equilibrium, and we define the perfor-

mance ratio of an instance to be the ratio of total welfare between the canonical

equilibrium and the social optimum.

Overview of Results

We first consider the performance ratio as a function of the number of rounds

k. As an initial question, which choice of k yields the worst performance ratio?

When q < 1
2
, the answer is simple: for k = 1, the players necessarily compete in

the one round they have available, and this yields a performance ratio of 1/(1 + q)

— as small as possible. When q > 1
2
, however, the situation becomes more subtle.

For k = 1, the players do not compete in the canonical equilibrium, and so the

performance ratio for k = 1 is 1. At the other end of the spectrum, when q ≥ 1
2
, the

two players will eventually stop competing with probability 1 and the performance

ratio converges up to 1 when k becomes large. But in between, the performance

ratio can be larger than at both extremes; in particular, when the quantity
q

1− q
approaches an integer value k from below, we show that the performance ratio is

maximized when the number of rounds takes this intermediate value k.

We then turn to the main result of the chapter, which is to analyze the per-

formance ratio in the limit as the number of rounds k goes to infinity. When

q ≥ 1
2
, as just noted, we show that the two players will eventually stop competing

with probability 1 and the performance ratio converges to 1. But when q < 1
2
,

something more complex happens: there is a positive probability, strictly between

0 and 1, that the players compete forever. This has a natural interpretation —

as reputations evolve, the two players can settle into relative levels of reputation

under which it is worthwhile for the lower player to compete for the stronger can-
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didate; but it may also happen that after a finite number of rounds, one player

decides that it is too weak to continue competing for the stronger candidate, and

it begins to act on its second-tier status. What is interesting is that each of these

outcomes has a positive probability of occurring.

The possibility of indefinite competition leads to a non-trivial performance

ratio; we show that the worst case occurs when q =
√

1.5 − 1 ≈ .2247, with

a performance ratio of
2

1 +
√

1.5
≈ 0.898. We also show that the performance

ratio converges to 1 as q goes either to 0 or to 1. Our analysis proceeds by

defining an urn process that tracks the evolution of the players’ reputations; this is

a natural connection to develop, since urn processes are based on models in which

probabilities of outcomes in a given step — the result of draws from an urn —

are affected by the realized outcomes of draws in earlier steps. We provide more

background about urn processes in the next section. Informally speaking, the fact

that a player might compete for a while and then permanently give up in favor

of an alternative option is also reminiscent of strategies in the multi-armed bandit

problem, where an agent may experiment with a risky option for a while before

permanently giving up and using a safer option; later in the chapter, we make

this analogy more precise as well. To make use of these connections, we study a

sequence of games that begins with players who are constrained to follow a set

sequence of decisions for a long prefix of rounds, and we then successively relax

this constraint until we end up with the original game in which players are allowed

to make strategic decisions from the very beginning.

In Section 6.5, we also consider variants of the model in which one changes

the function used for the success probabilities in the competition between the two

players for a candidate. Note that the way in which competition is handled is
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an implicit reflection of the way candidates form preferences over firms based on

their reputations, and hence varying this aspect of the model allows us to explore

different ways in which candidates can behave in this dimension. In particular, we

consider a variation on the model in which — when the two players compete for a

candidate — the lower-reputation player succeeds with a fixed probability p < 1
2

and the higher-reputation player succeeds with probability 1− p. This model thus

captures the long-range competition to become the higher-reputation player using

an extremely simple model of competition within each round. The main result

here is that for all p < q, the performance ratio converges to 1; the analysis makes

use of biased random walks in place of urn processes to analyze the long-term

competition between the players.

Further Related Work

As noted above, there has been recent theoretical work studying the effect of rep-

utation and competition in job markets. Broder et al. consider hiring strategies

designed to increase the average quality of a firm’s employees [25]. Our focus here

is different, due to the feedback effects from future rounds that our model of com-

petition generates: a few weak initial hires can make it very difficult for a player to

raise its quality later, while a few strong initial hires can make the process corre-

spondingly much easier. Immorlica et al. consider competition between employers,

though in a quite different model where candidates are presented one at a time as

in the secretary problem [57, 58], and each player’s goal is to hire a candidate that

is stronger than the competitor’s. They do not incorporate the spillover of this

competition into future rounds.

Our work can also be viewed as developing techniques for analyzing the per-
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formance ratio and/or price of anarchy in settings that involve dynamic matchings

— when nodes on one side of a bipartite graph must make strategic decisions

about matchings to nodes that arrive dynamically to the other side of the graph.

In the context of job matching, Shimer and Smith consider a dynamic matching

model of a labor market in which the central constraint is the cost of searching for

potential partners [93]. Haeringer and Wooders apply dynamic matching to the

problem of sequential job offers over time [54], but in a setting that considers the

sequencing of offers in a single hiring cycle; this leads to different questions, since

the consequence for reputation in future hiring cycles is not in the scope of their

investigation. Dynamic matchings have also been appearing in a number of other

recent application contexts (e.g. [37, 105]), and there are clearly many unresolved

questions here about the cost of strategic behavior.

Finally, our model can be abstracted beyond the setting of job-market matching

to capture essentially any context in which two firms must decide over multiple

rounds whether to compete or to make use of a private outside option. There are

many domains that exhibit this general structure, and it would be interesting to

see whether our techniques can be adapted to some of these other situations. For

example, this issue has been explored — by different means — in the context of

product compatibility [28]. The issue of whether a weaker competitor decides to

directly compete or give up in favor of an alternative option is also implicit in

studies of the branding and advertising decisions firms make — including whether

to explicitly acknowledge a second-place status, as for example the Avis car rental

company did in its “We Try Harder” campaign [75].
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6.2 Preliminaries

An instance of the recruiting game, as described in the introduction, is defined

by the initial reputations x1 and x2 of the two players; the relative quality q of

the weaker candidate compared to the stronger one; and the number of rounds k.

Accordingly, we denote an instance of the game by Gk,q(x1, x2). Generally q will be

clear from context, and so we will also refer to this game as simply Gk(x1, x2). We

will refer to the player of higher reputation as the higher player, and the player of

lower reputation as the lower player. In case the players have the same reputation

we will refer to player 1 as the higher player.

The game as defined is an extensive-form game, and as such it can admit

many subgame perfect equilibria. For example, it is easy to construct a single-

round game in which it is an equilibrium for the lower player to try to recruit

the stronger candidate and for the higher player to go after the weaker candidate.

This equilibrium clearly has a less natural structure than one in which the higher

player goes after the stronger option; to avoid such pathologies, as noted in the

introduction, we will study multi-round strategies sk(x1, x2) that are defined as

follows:

Definition 6.2.1 Denote by sk(x1, x2) the following strategies for the players over

the k rounds: in every round the higher player goes for the stronger candidate

and the lower player best-responds by choosing the candidate that maximizes its

utility, taking into account the current round and all later rounds by induction.

For sk(x1, x2) to be well-defined we make the following two assumptions: (1) If the

lower player is indifferent between going for the stronger candidate and the weaker

candidate we assume it chooses to go for the weaker candidate. (2) If the two
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players have the same reputations we break ties in favor of player 1.

The strategies sk(x1, x2) can be summarized essentially by saying that in every

round of the game, first the higher player gets to make an offer to its preferred

candidate, and given this decision the lower player makes the choice maximizing its

utility. To show that the strategies sk(x1, x2) form a sub-game perfect equilibrium

we will show inductively that in every round it is in the higher player’s best interest

to make an offer to the stronger candidate. More formally we denote the strategy

of making an offer to the stronger candidate in some round by + and to the weaker

candidate by −. We define f(sk(x1, x2)) to be the pair of strategies that the players

use in the first round of sk(x1, x2).

We denote player i’s utility when the two players play the strategies prescribed

by sk(x1, x2) by ui(sk(x1, x2)). We now formally write down the utility of the

players in sk(x1, x2) based on the value of f(sk(x1, x2)):

• If f(sk(x1, x2)) = 〈+,+〉 then

u1(sk(x1, x2)) =
x1

x1 + x2

(1 + u1(sk−1(x1 + 1, x2))) +
x2

x1 + x2

u1(sk−1(x1, x2 + 1))

u2(sk(x1, x2)) =
x1

x1 + x2

u2(sk−1(x1 + 1, x2)) +
x2

x1 + x2

(1 + u2(sk−1(x1, x2 + 1)))

• If f(sk(x1, x2)) = 〈+,−〉 then

u1(sk(x1, x2)) = 1 + u1(sk−1(x1 + 1, x2))

u2(sk(x1, x2)) = q + u2(sk−1(x1 + 1, x2))

• If f(sk(x1, x2)) = 〈−,+〉 then

u1(sk(x1, x2) = q + u1(sk−1(x1, x2 + 1))

u2(sk(x1, x2)) = 1 + u2(sk−1(x1, x2 + 1))
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We denote the social welfare when the players are using strategies sk(x1, x2) by

u(sk(x1, x2)) = u1(sk(x1, x2)) + u2(sk(x1, x2)).

Even though it is natural to suspect that the strategies sk(x1, x2) are indeed

a sub-game perfect equilibrium, proving that this is the case is not such a simple

task. The first step in showing that the strategies sk(x1, x2) are a sub-game perfect

equilibrium, and a useful fact by itself, is the monotonicity of the players’ utilities

ui(sk(x1, x2)). More formally, in Section 6.7 of the appendix we show that:

Claim 6.2.2 For any x1, x2, and ε > 0:

1. u1(sk(x1 + ε, x2)) ≥ u1(sk(x1, x2)) ≥ u1(sk(x1, x2 + ε)).

2. u2(sk(x1, x2 + ε)) ≥ u2(sk(x1, x2)) ≥ u2(sk(x1 + ε, x2)).

Next, we prove that the three following statements hold.

Proposition 6.2.3 For any integers x1, x2 and k the following holds for the strate-

gies sk(x1, x2).

1. sk(x1, x2) is a sub-game perfect equilibrium in the game Gk(x1, x2).

2. If a player does not compete in the first round of the game Gk(x1, x2), then

it does not compete in all subsequent rounds.

3. The utility of the higher player in the game Gk(x1, x2) is at least as large as

the utility of the lower player.
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Essentially, we prove all three properties simultaneously by induction on the num-

ber of rounds of the game; to make the inductive argument easier to follow, we

prove each of the statements separately in the Appendix.

Let us mention two more claims that we will make use of later on and are

proven in the Appendix:

Claim 6.2.4 If ui(sk(x1, x2)) = kq, for some player i, then player i never com-

petes in the game Gk(x1, x2).

Claim 6.2.5 If player i competes in the first round of the game Gk(x1, x2) and

wins, then in the next round of the game it also makes an offer to the stronger

candidate.

Connections to Urn Processes

Note that since each player’s reputation is equal to the number of stronger candi-

dates it has hired, the reputations are always integers (assuming they start from

integer values). These integer values evolve while the players are competing; and

once they stop competing, we know by statement (2) of Proposition 6.2.3 the ex-

act outcome of the game. This brings us to the close resemblance between our

recruiting game and a Polya Urn process [84].

First, let us define what the Polya Urn process is:

Definition 6.2.6 (Polya Urn process) Consider an urn containing b blue balls

and r red balls. The process is defined over discrete rounds. In each round a ball is

sampled uniformly at random from the urn; hence the probability of drawing a blue
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ball is b
b+r

and the probability of drawing a red ball is r
b+r

. Then, the ball together

with another ball of the same color are returned to the urn.

There is a clear resemblance between our recruiting game and the urn model.

As long as the players compete, their reputations evolve in the same way as the

number of blue and red balls in the urn, since the probabilistic rule for a candidate

to select which firm to join is the same as the rule for choosing which color to add

to the urn, and by assumption the reputation of the winning player is increased

by the stronger candidate’s quality, which is 1.

A striking fact about urn models is that the fraction of the blue (or red) balls

converges in distribution as the number of rounds goes to infinity. More specifi-

cally, if initially the urn contains a single red ball and a single blue ball then the

fraction of blue balls converges to a uniform distribution on [0, 1] as the number

of rounds goes to infinity. More generally, the fraction of blue balls converges to

the β distribution β(b, r). Understanding urn processes is useful for understanding

our proofs; however we should stress that our model and its analysis have added

complexity due to the fact that players stop competing at a point in time that is

strategically determined.

Connections to Bandit Problems

It is interesting to note that as long as the lower player stays lower our equilibrium

selection rule makes this effectively a one-player game. In a sense, the lower player’s

strategy in this phase resembles the optimal strategy in a mulit-armed bandit

problem [45], and more specifically in a one-armed bandit problem [16]. In a one-

armed bandit a single player is repeatedly faced with two options (known as “arms”
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following the terminology of slot machines): the player can pull arm 1, which gives

a reward sampled from some unknown distribution, or pull arm 2 which gives

him a reward from a known distribution. Informally speaking, by pulling arm 1

the player gets both a reward and some information about the distribution from

which the reward is drawn. The player’s goal is to maximize its expected reward

possibly under some discounting of future rounds. A celebrated result establishes

that for some types of discounting (for example geometric) one can compute a

number called the Gittins index for each arm (based on one’s observations and the

prior) and the strategy maximizing the player’s expected reward is to pull the arm

with the highest Gittins index in each round [45]. Since by definition the Gittins

index of the fixed arm is fixed, this implies that once the Gittins index of the

unknown arm drops below the one of the known arm, the player should only pull

the known arm. This also means that the player stops collecting information on

the distribution of the unknown arm and hence from this round onwards it always

chooses the fixed arm.

There are analogies as well as differences between our game and the one-armed

bandit problem. In our game, the lower player is also faced with a choice between

a risky option (competing) and a safe option (going for the weaker candidate). On

the other hand, an important difference between our model and the one-armed

bandit problem is that our game is in fact a two-player game and at any point the

lower-reputation player can become the higher-reputation one; this property con-

tributes additional sources of complexity to the analysis of our game. Moreover, it

is important to note that for many distributions and discount sequences (including

the ones most similar to our game) a closed-form expression of the Gittins index

is unknown.
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6.3 Analyzing the Game with a Fixed Number of Rounds

We begin by analyzing the game played over a fixed number of rounds k and study

the dependence of the performance ratio on k. In the next section, we turn to the

main result of the chapter, which is to analyze the limit of the performance ratio

as the number of rounds k goes to infinity.

Our first result is a simple but powerful bound of 2q
1+q

on the performance ratio,

which holds for all k. This is done by relating the performance ratio to players’

decision whether to compete in the first round. The argument underlying this

relationship is quite robust, in that it is essentially based only on the reasoning that

the players can always decide to stop competing and go for the weaker candidate.

Note that this bound also implies that as q goes to 1 the performance ratio also

goes to 1.

Claim 6.3.1 The performance ratio of any game Gk,q(x1, x2) is at least 2q
1+q

.

Proof: We begin with the simple observation that the expected social welfare

equals the sum of the expected utilities of the two players in the beginning of the

game. To get a lower bound on the performance ratio it is enough to compute

an upper bound on the expected social welfare. This is done by observing that

ui(sk(x1, x2)) ≥ kq, since a player can always secure a utility of kq by always

making an offer to the weaker candidate. Hence, the following is a bound on the

performance ratio:
u1(sk(x1, x2)) + u2(sk(x1, x2))

k(1 + q)
≥ 2kq

k(1 + q)
=

2q

1 + q
.

Corollary 6.3.2 The performance ratio of any game Gk,q(x1, x2) is at least 2/3.

This holds for q > 1/2 since
2q

1 + q
> 2/3 and for q ≤ 1/2 since the performance

ratio is trivially lower-bounded by 1/(1 + q) ≥ 2/3.

196



Next, we ask what is the length of a game for which the worst performance

ratio is achieved. For q < 1/2, this is simply a single-round game. However, for

q > 1/2 the answer is not so simple. We show that when q
1−q + ε is an integer for

an arbitrarily small ε > 0, a game of kq = q
1−q + ε rounds exhibits a performance

ratio arbitrarily close to 2q
1+q

. It is interesting that the players’ strategies in the

games achieving this maximum performance ratio have a very specific structure –

the players compete just for the first round and then the player who lost goes for

the weaker candidate for the rest of the game.

Proposition 6.3.3 Let ε = d q
1−qe −

q
1−q and kq = q

1−q + ε. Then, as ε ap-

proaches 0 from above (remaining strictly positive), the performance ratio of the

game Gkq ,q(x, x) converges to 2q
1+q

.

Proof: Observe that by Claim 6.3.4 below the players in the game Gkq ,q(x, x)

compete for the first round (since ε > 0) and then completely stop competing.

Thus the expected social welfare of the canonical equilibrium is k + (k − 1)q and

its performance ratio is:

1 + (k − 1)(1 + q)

k(1 + q)
=

1 + (( q
1−q + ε)− 1)(1 + q)

( q
1−q + ε)(1 + q)

=
2q2 + ε− εq2

q + q2 + ε− εq2
.

It is not hard to see now that as ε approaches 0 the performance ratio approaches

2q

1 + q
.

We now prove for the kq’s discussed in the previous proposition the players

indeed compete only for the first round and then stop competing. More formally

we prove:

Claim 6.3.4 In the game Gk,q(x, x) for q
1−q < k ≤ 1

1−q the players compete in the

first round and then completely stop competing.
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Proof: Player 2 (which is the lower player in the game) competes in the game

Gk,q(x, x) if:

1

2
(1 + u2(sk−1(x, x+ 1))) +

1

2
u2(sk−1(x+ 1, x)) > q + u2(sk−1(x+ 1, x)).

After some rearranging we get that this implies that player 2 competes if:

1 + u2(sk−1(x, x+ 1)) > 2q + u2(sk−1(x+ 1, x)).

Note that k ≤ 1
1−q =⇒ q ≥ k−1

k
. Thus, by Claim 6.3.5 below we have that for any

x1, x2 the players in the game Gk−1,q(x1, x2) do not compete. This implies that

u2(sk−1(x, x+ 1)) = k − 1 and u2(sk−1(x+ 1, x)) = (k − 1)q. Thus, the players in

the game Gk,q(x, x) compete if k > (k + 1)q implying q
1−q < k as required.

Finally we prove:

Claim 6.3.5 If q ≥ k
k+1

then the players in the game Gk,q(x1, x2) never compete.

Proof: Let x2 ≤ x1. Player 2 competes in the game Gk,q(x1, x2) if:

x2

x1 + x2

(1 + u2(sk−1(x1, x2 + 1))) +
x1

x1 + x2

u2(sk−1(x1 + 1, x2)) > q + u2(sk−1(x1 + 1, x2)).

After some rearranging we get that player 2 competes if:

1 + u2(sk−1(x1, x2 + 1)) >
x1 + x2

x2

q + u2(sk−1(x1 + 1, x2)).

Observe that u2(sk−1(x1, x2 + 1)) ≤ k − 1 as this is the maximum utility a player

can get in a (k− 1)-round game. Also observe that u2(sk−1(x1 + 1, x2)) ≥ (k− 1)q

and that by assumption x1+x2
x2
≥ 2. Thus, we have that a necessary condition for

player 2 to compete is that k > (k + 1)q. This implies that for q ≥ k
k+1

player

2 does not compete in the first round of the game Gk,q(x1, x2). By part (2) of

Proposition 6.2.3 we have that if a player does not compete in the first round of

the game it also does not compete in all subsequent rounds which completes the

proof. A very similar proof works for the case that player 1 is the lower player.
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6.4 Analyzing the Long-Game Limit

We now turn to the main question in the chapter, which is the behavior of the

performance ratio in the limit as the number of rounds goes to infinity.

Our main result here is that as k goes to infinity the performance ratio of the

game Gk(1, 1) goes to
1 + 2qr

1 + q
, where r = min{q, 1

2
}. In particular for q < 1/2

this implies that as k goes to infinity the performance ratio goes to
1 + 2q2

1 + q
. This

function attains its minimum when q =
√

1.5− 1 ≈ .2247 and at this point it has

a value of 2
1+
√

1.5
≈ 0.898. For q ≥ 1/2, on the other hand, this simply implies that

as k goes to infinity the performance ratio of the game Gk(1, 1) goes to 1. Defining

r = min{q, 1
2
} helps us to present a single unified proof both for q < 1/2 and for

q ≥ 1/2.

The proof of this theorem becomes somewhat involved even though its main

idea is quite natural. Intuitively speaking, we know that as long as the players

compete, our game proceeds the way an urn process does. This means that the

probability that player 2, for example, is the one to hire the stronger candidate

converges to a uniform distribution as the number of rounds k the players compete

goes to infinity. Henceforth, we will also refer to this probability as player’s 2

relative reputation. We show that if the relative reputation of one of the players

converges to a number smaller than r, then after a fairly small number of rounds –

specifically θ(ln(k)) – the players stop competing. The probability that the relative

reputation of one of the players converges to something less than r is simply 2r.

Therefore, the expected social welfare of our canonical equilibrium converges to

k + 2qr(k − θ(ln(k))) and the performance ratio converges to 1+2qr
1+q

.

We divide the proof to four subsections. In Subsection 6.4.1 we introduce t-
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binding games, which give us a formal way to study games in which the two players

compete for at least the first t rounds. By showing that the utilities of the players

in our game are at least as large as their utilities in the t-binding game we reduce

our problem to showing that the expected utility in a t-binding game is “large

enough”. This is done in Subsection 6.4.3. The proof relies on Subsection 6.4.2

which, loosely speaking, shows that if after t rounds of competition the relative

reputation of the lower player is non-trivially smaller than r then the lower player

stops competing. Finally, in Subsection 6.4.4 we state the formal theorem and

wrap up the proof.

6.4.1 t-Binding Games

A recruiting game is t-binding if in the first t rounds the two players are required to

compete for the stronger candidate. We denote a t-binding game by Gt
k(x1, x2). We

also denote by stk(x1, x2) the canonical equilibrium of the game Gt
k(x1, x2) in which

the players compete for the first t rounds and then follow the strategies sk−t(x
′
1, x
′
2)

in the resulting game. Denote by u(stk(x1, x2)) the expected social welfare of the

canonical equilibrium in the game Gt
k(x1, x2). It is intuitive to suspect that making

the players compete for the first t rounds can only decrease their utility. In the

next lemma we prove that this intuition is indeed correct:

Lemma 6.4.1 The expected social welfare of the game Gk(1, 1) is greater than

or equal to the expected social welfare of the game Gt
k(1, 1); that is, u(sk(1, 1)) ≥

u(stk(1, 1)).

Proof: We prove the lemma by proving a stronger claim:
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Claim 6.4.2 The expected utility of each of the players in the game Gt
k(1, 1) for

0 ≤ t < k is greater than or equal to their expected utility in the game Gt+1
k (1, 1).

Proof: For simplicity we prove the claim for player 2; however the claim holds for

both players. By definition, in the game Gt
k(1, 1) the players compete for at least

the first t rounds. During this phase of competition, the two players’ reputations

evolve according to the update rule for a standard Polya urn process, as described

in Section 6.2. A standard result on that process implies that at the end of these

t rounds with probability 1
t+1

player 1 has a reputation of 1 + t − i and player 2

has a reputation of 1 + i for 0 ≤ i ≤ t. Thus, we have that:

u2(stk(1, 1)) =
1

t+ 1

t∑
i=0

u2(sk−t(1 + t− i, 1 + i))

Let Iδ = {i|f(sk−t(1 + t − i, 1 + i)) = δ} for δ ∈ {〈+,+〉, 〈+,−〉, 〈−,+〉}. For

example, I〈+,+〉 is the set of all indices i for which the players compete in the first

round of the game Gk−t(1 + t− i, 1 + i).

We can now write the sum, usefully, as

u2(stk(1, 1)) =
1

t+ 1

∑
i∈I〈+,+〉

u2(sk−t(1 + t− i, 1 + i)) +
1

t+ 1

∑
i∈I〈+,−〉

u2(sk−t(1 + t− i, 1 + i))

+
1

t+ 1

∑
i∈I〈−,+〉

u2(sk−t(1 + t− i, 1 + i))

By this partition:

• For i ∈ I〈+,+〉, we have u2(sk−t(1 + t− i, 1 + i)) = u2(s1
k−t(1 + t− i, 1 + i)) –

since in both of these games the two players compete in the first round.
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• For i ∈ I〈+,−〉, we have u2(sk−t(1 + t − i, 1 + i)) ≥ u2(s1
k−t(1 + t − i, 1 + i))

– since u2(s
〈+,−〉
k−t (1 + t − i, 1 + i)) ≥ u2(s

〈+,+〉
k−t (1 + t − i, 1 + i)). (in the first

round of the game player 2 prefers going after the weaker candidate over

competing).

• For i ∈ I〈−,+〉, we have u2(sk−t(1 + t− i, 1 + i)) > u2(s1
k−t(1 + t− i, 1 + i)) –

since u2(s
〈−,+〉
k−t (1 + t− i, 1 + i)) > u2(s

〈+,+〉
k−t (1 + t− i, 1 + i)) by monotonicity.

Thus, we have u2(stk(1, 1)) ≥ 1
t+1

∑t
i=0 u2(s1

k−t(1 + t− i, 1 + i)) = u2(st+1
k (1, 1)).

6.4.2 When does the lower player stop competing?

This next phase of our analysis is composed of two parts: in the first part we

show that the utility of the lower player in a k-round game is upper bounded by

max{bq(k, t, x), kq} for some function b to be later defined. In the second part we

compute the conditions under which bq(k, t, x) < kq which implies that under the

same conditions the lower player in the game stops competing.

For this subsection we denote player 1’s reputation by t − x and player 2’s

reputation by x. Both statements below also hold for player 1 and the game

Gk(x, t− x).

The following notation will be useful for our proofs:

• fq(i, t) =
(
t
i

)
qi(1 − q)t−i – probability mass function for the binomial distri-

bution with t trials.
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• Fq(x, t) =
∑x

i=0

(
t
i

)
qi(1 − q)t−i – cumulative distribution function for an in-

teger x.

To understand the intuition behind the upper bound function bq(k, t, x) it is

useful to look at an alternative description of the urn process. Under this descrip-

tion, we have a coin whose bias is sampled from a uniform distribution on [0, 1];

then in each round the coin is tossed. If the coin turns up heads a blue ball is

added to the urn; otherwise a red ball is added to the urn. Under this alternative

description we can think of our lower player as trying to toss this coin (i.e. com-

peting) in the hope that its bias is greater than r (recall that r = min{q, 1
2
}).

We refer to the event in which the bias of the coin is greater than r as a good

event, and the event it is not a bad event. To upper-bound the player’s utility we

assume that if the good event happens the player wins the stronger candidate for

all subsequent rounds and hence its utility is k. If the bad event happens then the

player completely stops competing and thus its utility is (k − 1)q.

Hence, the function that we use to upper bound the player’s utility is:

bq(k, t, x) =
x

t
+ 3Fr(x, t)k + (1− 3Fr(x, t))(k − 1)q

=
x

t
+ (k − 1)q + 3Fr(x, t) ·

(
(k − 1)(1− q) + 1

)
We show that max{bq(k, t, x), kq} is indeed an upper bound on the players’

utility as the previous intuition suggests.

Lemma 6.4.3 For any k, x and t > 4 ln(1/12)
ln(1−r) , we have u2(sk(t − x, x)) ≤

max{bq(k, t, x), kq}.

Proof: We divide the proof into two cases. When, r ≤ x+ 1

t+ 1
the bound we need

to prove is very loose and hence we can prove it directly. However, for r >
x+ 1

t+ 1
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proving this bound is more tricky and for this we use an induction that some times

relies on the first case. Next we provide proofs for these two cases:

Claim 6.4.4 For any k, x and t > 4 ln(1/12)
ln(1−r) such that r ≤ x+ 1

t+ 1
, u2(sk(t−x, x)) ≤

max{bq(k, t, x), kq}

Proof: We actually prove a stronger claim, which is that for t > 4 ln(1/12)
ln(1−r) ,

bq(k, t, x) ≥ k. The utility of any player in a game of k rounds is at most k and

hence this will be enough to complete the proof. To do this we need to show that

3Fr(x, t) ≥ 1 for t > 4 ln(1/12)
ln(1−r) . By [55] we have that the median of a binomial

distribution is at distance of at most ln(2) from its mean. Thus, if x ≥ rt + ln(2)

we are done, as in this case 3Fr(x, t) ≥ 3
2
. Else, rt + r − 1 ≤ x < rt + ln(2).

This implies that x + 2 ≥ rt + ln(2), which in turn implies that Fr(x + 2, t) ≥ 1
2
.

Since Fr(x + 2, t) = Fr(x, t) + fr(x + 1, t) + fr(x + 2, t), what left to show is that

fr(x+ 1, t) + fr(x+ 2, t) < 1
6
:

fr(x+ i, t) =

(
t

x+ i

)
rx+i(1− r)t−(x+i) ≤

(x+ i

t

)−(x+i)
rx+i(1− r)t−x−i

≤ r−(x+i)rx+i(1− r)t−x−i = (1− r)t−x−i ≤ (1− r)
1
2
t−3

The last transition is due to the fact that x < rt+ln(2), r ≤ 1/2 and i ≤ 2. Thus we

have that fr(x+1, t)+fr(x+2, t) ≤ 2(1−r) 1
2
t−3. To compute when 2(1−r) 1

2
t−3 < 1

6

we take a natural logarithm and get that: (1
2
t− 3) · ln(1− r) < ln( 1

12
), hence it is

not hard to see that the claim holds for t > 4 ln(1/12)
ln(1−r) .

Claim 6.4.5 For any k, x and t > 4 ln(1/12)
ln(1−r) such that r >

x+ 1

t+ 1
, u2(sk(t−x, x)) ≤

max{bq(k, t, x), kq}

Proof: Recall that bq(k, t, x) = x
t

+ (k − 1)q + 3Fr(x, t) ·
(
(k − 1)(1 − q) + 1

)
.

We prove the claim by induction. We first observe that the claim holds for k = 1.
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Notice that by the assumption that x+1
t+1

< r ≤ 1
2

we have that player 2 is the

lower player. Thus, u2(s1(t − x, x)) ≤ max
{
x
t
, q
}

and the claim holds. Next, we

assume correctness for k − 1 rounds and prove for k. If u2(sk(t − x, x)) = kq,

then the induction hypothesis holds and we are done. Otherwise, we have that

u2(sk(t− x, x)) > kq, this immediately implies that f(sk(t− x, x)) = 〈+,+〉.

By Claim 6.2.5 this implies that u2(sk−1(t−x, x+1)) > (k−1)q. Hence, either

by the induction hypothesis (if r > x+2
t+2

) or by Claim 6.4.4 (if r ≤ x+2
t+2

) we have that

u2(sk−1(t− x, x+ 1)) ≤ bq(k − 1, t+ 1, x+ 1). Since x+1
t+2

< r. We can also use the

induction hypothesis to get that u2(sk−1(t−x+1, x)) ≤ max{bq(k−1, t+1, x), kq}.

To show that u2(sk(t−x, x)) ≤ max{bq(k, t, x), kq} we now distinguish between

two cases:

1. u2(sk−1(t− x+ 1, x)) ≤ bq(k − 1, t+ 1, x):

u2(sk(t− x, x)) ≤ x

t
(1 + bq(k − 1, t+ 1, x+ 1)) +

t− x
t

bq(k − 1, t+ 1, x)

=
x

t
+
x

t
· x+ 1

t+ 1
+
t− x
t
· x

t+ 1
+ (k − 2)q + 3Fr(x, t+ 1) ·

(
(k − 2)(1− q) + 1

)
+ 3

x

t
· fr(x+ 1, t+ 1) ·

(
(k − 2)(1− q) + 1

)
≤(1) 2x

t
+ (k − 2)q + 3Fr(x, t) ·

(
(k − 2)(1− q) + 1

)
≤(2) x

t
+ (k − 1)q + 3Fr(x, t) ·

(
(k − 1)(1− q) + 1

)
= bq(k, t, x)

Transition (1) is obtained by applying Claim 6.4.6 (below) and some rear-

ranging. For transition (2) we use the fact that x
t
< x+1

t+1
< r ≤ q.
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2. u2(sk−1(t− x+ 1, x)) = (k − 1)q:

u2(sk(t− x, x)) ≤ x

t
(1 + bq(k − 1, t+ 1, x+ 1)) +

t− x
t

(k − 1)q

=
x

t
+
x

t
· x+ 1

t+ 1
+
x

t
(k − 2)q

+
x

t
· 3Fr(x+ 1, t+ 1) ·

(
(k − 2)(1− q) + 1

)
+
t− x
t

(k − 1)q

=
x

t
+
x

t
· x+ 1

t+ 1
+
t− x
t

q + (k − 2)q +
x

t
· 3Fr(x+ 1, t+ 1) ·

(
(k − 2)(1− q) + 1

)
≤ x

t
+ (k − 1)q +

x

t
· 3Fr(x+ 1, t+ 1) ·

(
(k − 2)(1− q) + 1

)
For the last transition we use the fact that x

t
· x+1
t+1

< x
t
·q since by assumption

we have that x+1
t+1

< r ≤ q.

Notice that x
t
Fr(x + 1, t + 1) < Fr(x, t + 1) + x

t
fr(x + 1, t + 1). Hence by

applying Claim 6.4.6 (below) we get that x
t
Fr(x + 1, t + 1) < Fr(x, t) which

completes the proof.

Claim 6.4.6 If x < t then, Fq(x, t+ 1) + x
t
fq(x+ 1, t+ 1) ≤ Fq(x, t)
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Proof:

Fr(x, t+ 1) =
x∑
i=0

(
t+ 1

i

)
qi(1− q)t+1−i

= (1− q)
x∑
i=0

t+ 1

t+ 1− i

(
t

i

)
qi(1− q)t−i

= (1− q)
x∑
i=0

(1 +
i

t+ 1− i
)

(
t

i

)
qi(1− q)t−i

= (1− q)Fq(x, t) + (1− q)
x∑
i=1

i

t+ 1− i
· t!

i!(t− i)!
qi(1− q)t−i

= (1− q)Fq(x, t) + (1− q)
x∑
i=1

t!

(i− 1)!(t+ 1− i)!
qi(1− q)t−i

= (1− q)Fq(x, t) + (1− q)
x∑
i=1

(
t

i− 1

)
qi(1− q)t−i

= (1− q)Fq(x, t) + q
x∑
i=1

(
t

i− 1

)
qi−1(1− q)t−i+1

= (1− q)Fq(x, t) + q
x−1∑
i=0

(
t

i

)
qi(1− q)t−i

= (1− q)Fq(x, t) + q · Fq(x− 1, t)

= Fq(x, t)− q · fq(x, t)

It remains to show that qfq(x, t) >
x
t
qfq(x + 1, t + 1) which is done by noticing

that since x < t then:

x

t
fq(x+ 1, t+ 1) =

x

t

(
t+ 1

x+ 1

)
qx+1(1− q)t−x

=
x

t
· t+ 1

x+ 1
· q ·

(
t

x

)
qx(1− q)t−x

=
x

t
· t+ 1

x+ 1
· q · fq(x, t)

< q · fq(x, t)
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We can now use the previous bound to compute the conditions under which

the lower player prefers to stop competing.

Theorem 6.4.7 In the game Gk(t − p · t, p · t) for p = r − ε, ε > 0 and t =

max{4 ln(1/12)
ln(1−r) ,

3 ln(k)−ln(q−p)
(r−p)2 } player 2 does not compete at all.

Proof: By Lemma 6.4.3 we have that u2(sk(t−p·t, p·t)) ≤ max
{
bq(k, t, p·t), kq

}
for t > 4 ln(1/12)

ln(1−r) . Since we have that u2(sk(t − p · t, p · t)) ≥ kq, if we show that

bq(k, t, p · t) ≤ kq, then we will have u2(sk(t− p · t, p · t)) = kq. It will then follow

from Claim 6.2.4 that the lower player (player 2) does not compete at all. The

theorem will thus follow if we show that for t = max{4 ln(1/12)
ln(1−r) ,

3 ln(k)−ln(q−p)
(r−p)2 }, we

have bq(k, t, p · t) ≤ kq.

By Hoeffding’s inequality with ε = r − p, we get that Fr(p · t, t) ≤ e−2t(r−p)2 .

Now, to compute the value of t for which u2(sk(t− p · t, p · t)) = kq, we simply find

the value of t for which the following inequality holds:

p+ (k − 1)q + 3e−2t(r−p)2((k − 1)(1− q) + 1
)
≤ kq

After some rearranging we get that:

3e−2t(r−p)2((k − 1)(1− q) + 1
)
≤ q − p

3(k − 1)(1− q) + 1 ≤ e2t(r−p)2(q − p)

Taking natural logarithms we get:

ln(3(k − 1)(1− q) + 1) ≤ 2t(r − p)2 + ln(q − p)
ln(3(k − 1)(1− q) + 1)− ln(q − p)

2(r − p)2
≤ t

In particular this implies that the claim holds for t ≥ 3 ln(k)−ln(q−p)
(r−p)2 .
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6.4.3 The Expected Social Welfare of a t-Binding Game

We show that for large enough k the social welfare of the t-binding game Gt
k(1, 1)

is relatively high. This is done by showing that there exists some t, such that after

competing for t rounds, with probability 2(r − ε) − 4
t+1

the players reach a game

in which the lower player (either player 1 or player 2) does not want to compete

any more.

Lemma 6.4.8 For every ε > 0 and k ≥ e
8(r−ε)
ε3 + e

4 ln(1/12)
ln(1−r) , there exists t

such that the expected social welfare of the t-binding game Gt
k(1, 1) is at least

k · (1 + 2q(r − 3ε− ε2)) .

Proof: By the assumption that the game is t-binding we have that both players

compete over the stronger candidate for the first t rounds. This implies that at

the end of these t rounds with probability 1
t+1

player 1 has a reputation of 1 + t− i

and player 2 has a reputation of 1+ i for 0 ≤ i ≤ t. Or, in other words, the relative

reputation of player 2 is 1+i
t+2

with probability 1
t+1

.

Notice that for any 0 ≤ i ≤ b(r− ε)(t+ 2)c− 2 it holds that 1+i
t+2

< r− ε. Thus,

the probability that the relative reputation of player 2 is smaller than (r − ε) is

1

t+ 1
· (b(r − ε)(t+ 2)c − 2 + 1) ≥ 1

t+ 1
· ((r − ε)(t+ 2)− 2) ≥ (r − ε)− 2

t+ 1

This implies that with probability of at least (r − ε) − 2
t+1

after t rounds the

current game is Gk−t ((t+ 2)(1− p), p · (t+ 2)) for p < r − ε. Notice that by

symmetry the same holds for player 1. By choosing t that obeys the requirements

of Theorem 6.4.7 we get that the lower player in this game does not compete.

Therefore, the probability that one of the players stops competing after t rounds
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is at least 2(r − ε) − 4
t+1

. To bound the expected social welfare we make the

conservative assumption that with probability 1 − (2(r − ε) − 4
t+1

) the players

compete till the end of the game and get that:

u(stk(1, 1)) ≥ k + 2q

(
(r − ε)− 2

t+ 1

)
(k − t) ≥ k + 2q(r − ε)k − 2q(r − ε)t− 4kq

t

Next, we show that for k ≥ e
8(r−ε)
ε3 + e

4 ln(1/12)
ln(1−r) and t = 4 ln(k)−ln(ε)

ε2
the con-

ditions for both Theorem 6.4.7 and this Lemma hold. Indeed, if Theorem

6.4.7 holds, we have that for every 0 < p < r − ε the players in the game

Gk−t ((t+ 2)(1− p), p · (t+ 2)) for p < r − ε do not compete, as required. Re-

call that Theorem 6.4.7 requires t + 2 to be at least max{4 ln(1/12)
ln(1−r) ,

3 ln(k)−ln(q−p)
(r−p)2 }.

Observe that 4 ln(k)−ln(ε)
ε2

≥ 3 ln(k)−ln(q−p)
(r−p)2 as by definition q−p ≥ r−p > ε; and that

since ln(k) > 4 ln(1/12)
ln(1−r) we also have that t ≥ 4 ln(1/12)

ln(1−r) .

Next, we show that u(stk(1, 1)) ≥ k·(1 + 2q(r − 3ε− ε2)). We begin by plugging

in t = 4 ln(k)−ln(ε)
ε2

:

u(stk(1, 1)) ≥ k + 2kq(r − ε)− 2q(r − ε) · 4 ln(k)− ln(ε)

ε2
− 4kq

4 ln(k)−ln(ε)
ε2

> k + 2kq(r − ε)− 2q(r − ε) · 4 ln(k)− ln(ε)

ε2
− kqε2

ln(k)

≥ k + 2kq(r − ε− ε2)− 2q(r − ε) · 4 ln(k)

ε2
+ 2q(r − ε) ln(ε)

ε2

To prove the Lemma we show that for k ≥ e
8(r−ε)
ε3 + e

4 ln(1/12)
ln(1−r) the following two

inequalities hold:

1. (r−ε)· 8 ln(k)
kε2

< ε: For this we do a variable substitution and denote ln(k) = z,

so that k = ez. Now we find z such that 4(r − ε)z < ε3 · ez. By Taylor

expansion we have that ez > z2

2
. Thus, we can instead compute when 4(r −
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ε)z < ε3 · z2
2

and get that the inequality holds for z > 8(r−ε)
ε3

. This implies

that the inequality holds for k > e
8(r−ε)
ε3 .

2. |(r − ε) ln(ε)
kε2
| < ε: This condition also holds for k > e

8(r−ε)
ε3 since if k > e

8(r−ε)
ε3

by Taylor expansion we have that k > ((8(r−ε)
ε3

)2)/2 = 16(r−ε)2
ε6

> r−ε
ε3
· | ln(ε)|

and therefore |(r − ε) ln(ε)
kε2
| < ε.

Thus, for k ≥ e
8(r−ε)
ε3 + e

4 ln(1/12)
ln(1−r) and t = 4 ln(k)−ln(ε)

ε2
we have that u(stk(1, 1)) ≥

k · (1 + 2q(r − 3ε− ε2)) as required.

6.4.4 Wrapping up the Proof

Theorem 6.4.9 For ε > 0 and k ≥ e
8(r−ε)
ε3 +e

4 ln(1/12)
ln(1−r) , the performance ratio of the

game Gk(1, 1) is at least 1+2q(r−3ε−ε2)
1+q

.

Proof: By Lemma 6.4.1 we have that for any t, u(sk(1, 1)) ≥ u(stk(1, 1)).

By Lemma 6.4.8 we have that there exists a t such that u(stk(1, 1)) ≥

k (1 + 2q(r − 3ε− ε2)). By combining the two we get that u(sk(1, 1)) ≥

k (1 + 2q(r − 3ε− ε2)). This means that the performance ratio of the gameGk(1, 1)

is at least
k(1+2q(r−3ε−ε2))

k(1+q)
= 1+2q(r−3ε−ε2)

1+q
.

Corollary 6.4.10 As k goes to infinity, the performance ratio of the game

Gk(1, 1, ) goes to 1+2rq
1+q

.
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6.5 Other Competition Functions: Fixed Probability

One of the key components of our model is the underlying competition function:

when players of reputation x1 and x2 respectively compete for the same candidate

in a given round, the competition function specifies the probability that the can-

didate selects each player, in terms of x1 and x2. In this section we explore the

effect that using other competition functions has on the performance ratio. An

extreme example is when the higher player deterministically wins the competition

(and if both players have the same reputation, then each wins with probability

1/2). Using this competition rule in the game Gk(x, x) the players only compete

for the first round to “discover” who is the higher player and then stop competing.

Thus the performance ratio of this game is very close to 1. In this section we study

a natural generalization of this function.

Consider a competition function specifying that the lower player wins with a

fixed probability p < 1/2, and the higher player wins with probability (1− p). In

case the two players have the same reputations, ties are broken in favor of player 1.

Clearly if p > q, then the players compete forever, since the lower player gains more

from competing than from going for the weaker candidate. Therefore, we assume

from now on that p < q. We observe that this competition function belongs to the

set of competition functions defined in the Appendix and hence we can make use

of all claims specified there. For example, we have that the strategies sk(x1, x2)

form a subgame perfect Nash equilibrium in this game (Proposition 6.7.6 ), the

players’ utilities are monotone (Claim 6.7.3) and that once a player decides to go

after the lower candidate it will do so in all subsequent rounds (Claim 6.7.7).

We first show that once the absolute value of the difference between the play-

ers’ reputations reaches θ(log(k)), the lower player stops competing (Claim 6.5.1
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and Lemma 6.5.2). Then, in Lemma 6.5.3 we show that the expected number of

rounds it takes the players to reach such a difference in reputations, starting from

equal reputations, is also θ(log(k)). This implies that as k goes to infinity the

performance ratio goes to 1, as we prove in Theorem 6.5.4.

Our first step is similar in spirit to the proof for the Tullock competition func-

tion; we show that the utility of the lower player is bounded by max{bpq(k, d), kq},

where

bpq(k, d) = p+ (
p

1− p
)dk + (1− (

p

1− p
)d)(k − 1)q

= p+ (
p

1− p
)d
(
(k − 1)(1− q) + 1

)
+ (k − 1)q

This is obtained by induction over the difference in the reputations of the two

players. The intuition for the upper bound function is also similar. In the good

event, the lower player becomes the higher player and wins all subsequent rounds;

hence its utility is k. In the bad event the lower player stays the lower player and

loses the reward for competing this round; hence its utility is at most (k− 1)q. To

compute the probability of the good event, we can imagine that d (the difference

between the players’ reputations) is the initial location of a particle performing a

biased random walk that goes left with probability p and right with probability

1 − p. Under this view, the probability that this particle ever reaches 0 — and

hence that the difference d ever reaches 0 — is p
1−p [40]. We formalize this intuition

in the next claim. The claim is stated and proved for player 2 but a similar claim

also holds for player 1.

Claim 6.5.1 For any d ≥ 0 and any k: u2(sk(x, x− d)) ≤ max{bpq(k, d), kq}.

Proof: First observe that the claim clearly holds for any k and d = 0, since for
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this case bpq(k, d) ≥ k and by definition we have that u2(sk(x, x)) ≤ k. We now

prove by induction on the number of rounds k that the claim holds for d ≥ 1. Note

that the claim holds for the base case, k = 1, since u2(s1(x1, x2 − d)) ≤ max{p, q}

for every d ≥ 1. We assume the claim holds for any 0 < k′ ≤ k − 1 and prove it

for k. If u2(sk(x, x− d)) = kq we are done. Else,

u2(sk(x, x− d)) = p(1 + u2(sk−1(x, x− d+ 1))) + (1− p)(u2(sk−1(x+ 1, x− d)))

By the assumption that u2(sk(x, x − d)) > kq and using Claim 6.7.15 we have

that u2(sk−1(x, x− d+ 1)) > (k − 1)q. Thus, by the induction hypothesis (or our

observation for d = 0 in case d was 1), we have that u2(sk−1(x, x−d+1)) ≤ bpq(k−

1, d− 1). By the induction hypothesis we also have that u2(sk−1(x + 1, x− d)) ≤

max{bpq(k − 1, d + 1), (k − 1)q}. We distinguish between two cases depending on

the two possible upper bounds on u2(sk−1(x+ 1, x− d)):

If u2(sk−1(x+ 1, x− d)) ≤ bpq(k − 1, d+ 1):

u2(sk(x, x− d)) ≤ p
(
1 + bpq(k − 1, d− 1)

)
+ (1− p) · bpq(k − 1, d+ 1)

= 2p+ (k − 2)q + (
p

1− p
)d−1 ·

(
p+

p2

1− p

)
·
(
(k − 2)(1− q) + 1

)
= 2p+ (

p

1− p
)d
(
(k − 2)(1− q) + 1

)
+ (k − 2)q

< p+ (
p

1− p
)d
(
(k − 1)(1− q) + 1

)
+ (k − 1)q = bpq(k, d)

Else, u2(sk−1(x+ 1, x− d)) = (k − 1)q:

u2(sk(x, x− d)) ≤ p
(
1 + bpq(k − 1, d− 1)

)
+ (1− p)(k − 1)q

< p+ p2 − pq + (k − 1)q + p(
p

1− p
)d−1

(
(k − 1)(1− q) + 1

)
< p+ (

p

1− p
)d
(
(k − 1)(1− q) + 1

)
+ (k − 1)q = bpq(k, d)
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We can now use the previous claim to identify the magnitude of the difference

between the players’ reputations for which they stop competing. We state the

claim for player 2 but a similar claim also holds for player 1.

Lemma 6.5.2 If d >
log(k)− log(p− q)

log(1−p
p

)
= dpq(k) then the lower player in the

games Gk(x, x− d), Gk(x− d, x) does not compete.

Proof: Claim 6.5.1 reduces the problem of finding when does the lower player

quits to solving for d such that bpq(k, d) < kq. This would be enough to con-

clude that player 2 stops competing as we know by Claim 6.7.14 that once

u2(sk(x1, x1)) = kq player 2 does not compete at all. After some rearranging

of bpq(k, d) < kq we have that:

( p

1− p
)d
(
(k − 1)(1− q) + 1

)
< q − p

We now take logarithms and get that:

d · log(
p

1− p
) + log((k − 1)(1− q) + 1) < log(q − p)

Therefore, d >
log((k − 1)(1− q) + 1))− log(p− q)

log(1−p
p

)
and the claim follows.

Next, we compute for how long the players are expected to compete until the

absolute value of the difference between their reputations becomes greater than the

previously computed bound. To do this, we study this difference as it performs a

biased random with a reflecting barrier at 0:

Lemma 6.5.3 In the game Gk(x1, x2), the expected number of rounds the players

compete until the absolute value of the difference between their reputations is at

least d is at most d
1−2p

.
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Proof: We consider a particle undergoing a biased random walk in which the

probability of moving to the left is p and the probability of moving to the right

is 1 − p, as before. Since this particle tracks the absolute value of the difference

between the players’ reputations, the walk we are studying has a reflecting barrier

on 0. This implies that when the particle reaches 0, in the next step it always goes

to 1.

Our analysis will thus be based on studying the expected time it takes for

the particle to reach the value d, starting from a value below d. Clearly this

expected time is maximized when the particle starts at 0, corresponding to an

initial reputation difference of 0. Thus, we compute a bound on the expected

number of rounds it takes players with identical reputations to reach a difference

of d in their reputations.

The expected time it takes the particle to reach d starting at 0 when there

is a reflective barrier is upper bounded by the expected time it takes it to reach

d starting at 0 when there is no such barrier. To see why, we invoke a standard

argument in which we imagine both walks being governed by the random flips of

a coin with bias p, and we compare between the trajectory of the particle in these

two walks for the same random sequence of coin-flip outcomes. We note that if

the particle reaches d in the walk without the barrier it has to be the case that

it also reached d using a prefix of the same sequence of coin-flip outcomes in the

walk with the barrier.

Finally, we use the fact that the expected number of rounds required for a

particle performing this walk to reach d starting from 0, without a barrier at 0, is

d

1− 2p
([40]). To see why this is the case, let Ei be the expected time for the walk

to reach i. If E1 is well defined, then Ei = i ·E1. Also, E1 = 1+(1−p) ·0+p ·E2 =
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1 + 2p · E1. Therefore, E1 =
1

1− 2p
and Ed =

d

1− 2p
.

We are now ready to prove the following theorem.

Theorem 6.5.4 For fixed p < q the performance ratio of the game Gk(x1, x2) is

at least 1− θ( log(k)

k
).

Proof: Let R be a random variable equals to the number of rounds for which

the players compete in the game Gk(x1, x2). We can use it to compute the social

welfare as follows:

u(sk(x1, x2)) =
k∑
r=1

Pr(R = r)(k + (k − r)q) = k(1 + q)− q
∑
r

Pr(R = r) · r

Now, to compute a lower bound on the social welfare, we should compute an

upper bound on
∑k

r=1 Pr(R = r) · r. We claim that
∑k

r=1 Pr(R = r) · r <
dpq(k)

1− 2p
.

The reason is that either the lower player quits when the difference between the

players’ reputation is dpq(k), as we proved in Claim 6.5.1, or the lower player might

decide to quit earlier in the game. In any case, the expected number of rounds the

players compete until the lower player drops is at most
dpq(k)

1− 2p
, by Lemma 6.5.3.

Therefore, the performance ratio is at least

k(1 + q)−
dpq(k)

1− 2p
q

k(1 + q)
= 1 − θ( log(k)

k
).

6.6 Conclusions

When firms compete for job applicants over many hiring cycles, there is a ba-

sic strategic tension inherent in the process: trying to recruit highly sought-after
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job candidates can build up a firm’s reputation, but it comes with the risk that

firm will fail to hire anyone at all. In this chapter, we have shown how this ten-

sion can arise in a simple dynamic model of job-market matching. Although our

model is highly stylized, it contains a number of interesting effects that we analyze,

including the way in which competition can lead to inefficiency through underem-

ployment (quantified in our analysis of the performance ratio at equilibrium) and

the possibility of different modes of behavior, in which a weaker firm may end up

competing forever, or it may give up at some point and accept its second-place

status.

The model and analysis also suggest a number of directions for further inves-

tigation. One direction is to vary the competition function that determines the

outcome of a competition between the two firms when they make offers to the

same candidate. As noted above, this can be viewed as varying the way in which

candidates make decisions between firms based on their reputations. In Section

6.5 of the appendix, we explore this issue by considering an alternate rule for com-

petition in which the lower-reputation player wins with a fixed probability p < 1
2

(independent of the difference in reputation) and the higher-reputation player wins

with probability 1− p.

This fixed-probability competition function is simpler in structure than the

Tullock function, and it is illuminating in that it cleanly separates two different

aspects of the strategic decision being made about future rounds. With the Tullock

function, when the lower player competes, it has the potential for a short-term gain

in its success probability even in the next round (since the ratio of reputations will

change), and it also has the potential for a long-term gain by becoming the higher

player. With the fixed-probability competition function, the short-term aspect is
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effectively eliminated, since as long as a player remains the lower party, it has the

same probability of success; we are thus able to study strategic behavior about

competing when the only upside is the long-range prospect of becoming the higher

player. We show that the performance is generally much better with this fixed-

probability rule than with the Tullock function, providing us with further insight

into the specific way in which competition leads to inefficiency through a reduced

performance ratio.

Other directions that lead quickly to interesting questions are to consider the

case of more than two firms, and to consider models in which the candidates

have different characteristics in different time periods. For both of these general

directions, our initial investigations suggest that the techniques developed here will

be useful for shedding light on the properties of more complex models that take

these issues into account.

6.7 Appendix: The Canonical Equilibrium and its Proper-

ties

Our main goal in this section is to prove that the strategies sk(x1, x2) form a

subgame perfect equilibrium in the game Gk(x1, x2), and to present the proofs of

some useful properties of this equilibrium. The arguments can be carried out in a

setting more general than that of the Tullock competition function, and we present

them for a broader class of competition functions, specifying the probability that a

candidate chooses each firm in the event of competition between them. We work at

this greater level of generality for two reasons. First, it makes clear what properties

of the competition function are necessary for the equilibrium results. Second, and
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more concretely, we study a variant of the model in Section 6.5 that involves a

different competition function, in which a candidate picks the lower-reputation

firm with a fixed probability p < 1
2

regardless of the actual numerical values of the

reputations. This fixed-probability competition function satisfies our more general

assumptions, and thus we can apply all the results of this section to it.

For ease of exposition, the results in Section 6.2 of the main text are presented

specifically for the Tullock competition function; as a result, to complete the link

back to this section, we state which claims here generalize each claim from Section

6.2.

Our results hold for the following general definition of a competition function

c : R × R → (0, 1), capturing the intuitive notion that c(x1, x2) should represent

the probability that player 1 wins a competition when the two players’ strengths

are x1 and x2 respectively.

Definition 6.7.1 A function c : R× R→ (0, 1) is a competition function if:

• c(x1, x2 + ε) ≤ c(x1, x2) ≤ c(x1 + ε, x2).

• For every x1 6= x2: c(x1, x2) = (1− c(x2, x1)).

• c(x, x) ≥ (1− c(x, x)).

With this notation in mind the utility of player 2 for competing is now:

(1− c(x1, x2)) · (1 + u2(sk−1(x1, x2 + 1))) + c(x1, x2) · u2(sk−1(x1 + 1, x2)).

Observe that the following two properties hold for any competition function.

These will be useful for later proofs:
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• Let ε > 0. (1− c(x1, x2 + ε)) ≥ c(x2, x1).

• Let ε > 0. (1− c(x2, x1)) ≥ c(x1, x2 + ε).

To see why the first statement holds, observe that if x2 6= x1 + ε we have that:

(1− c(x1, x2 + ε)) = c(x2 + ε, x1) ≥ c(x2, x1).

Else, we have that x2 6= x1 and in this case we have that:

(1− c(x1, x2 + ε)) ≥ (1− c(x1, x2)) = c(x2, x1).

The second statement also holds for similar reasons.

We begin by showing that since the lower player in sk(x1, x2) chooses the strat-

egy maximizing its utility it can always guarantee itself a utility of at least kq by

always going for the weaker candidate.

Claim 6.7.2 Let player i be the lower player in the game Gk(x1, x2). Then

ui(sk(x1, x2)) ≥ kq:

Proof: We prove the claim for the case that x2 ≤ x1 but a similar proof can

be easily devised for the case that x1 < x2. We prove the claim by induction on

the number of rounds k. For the base case k = 1, it is easy to see that the utility

of player 2 is max{(1 − c(x1, x2)), q}, and therefore the claim holds. We assume

correctness for (k − 1)-round games and prove for k-round games. Observe that:

u2(sk(x1, x2)) = max{u2(s
〈+,+〉
k (x1, x2)), q + u2(sk−1(x1 + 1, x2))}. Since player 2

is also the lower player in the game Gk−1(x1 + 1, x2) we can use the induction

hypothesis and get that u2(sk−1(x1 + 1, x2)) ≥ (k− 1)q which completes the proof.
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Next we show that the utilities ui(sk(x1, x2)) are monotone increasing in player

i’s reputation and monotone decreasing in its opponent’s reputation.

Claim 6.7.3 (generalizes Claim 6.2.2) For any x1, x2, and ε > 0:

1. u1(sk(x1 + ε, x2)) ≥ u1(sk(x1, x2)) and u2(sk(x1 + ε, x2)) ≤ u2(sk(x1, x2))

2. u1(sk(x1, x2 − ε)) ≥ u1(sk(x1, x2)) and u2(sk(x1, x2 − ε)) ≤ u2(sk(x1, x2)).

Proof: We prove both properties concurrently by induction over k, the number

of rounds in the game. Since the proofs for both properties are very similar, we

only present here the proof for the first property. For the base case, k = 1, we

distinguish between the following cases cases:

1. s1(x1, x2) = s1(x1 + ε, x2) : if they compete in in both s1(x1, x2) and s1(x1 +

ε, x2), then the claim holds simply because c(x1 + ε, x2) ≥ c(x1, x2) and

(1− c(x1 + ε, x2)) ≤ (1− c(x1, x2)). Else, in both games the players have the

exact same utility (either 1 or q).

2. s1(x1, x2) 6= s1(x1 + ε, x2), s1(x1, x2) 6= 〈+,+〉 and s1(x1 + ε, x2) 6= 〈+,+〉 :

observe that this is only possible if x1 < x2 ≤ x1 + ε and in this case we have

that s1(x1, x2) = 〈−,+〉 and s1(x1 + ε, x2) = 〈+,−〉 so it is not hard to see

that the claim holds.

3. s1(x1, x2) = 〈+,+〉 and s1(x1 + ε, x2) 6= 〈+,+〉: this implies that x1 ≥ x2

since the utility player 1 can get for competing in G1(x1+ε, x2) is greater than

the utility it can get for competing in G1(x1, x2): c(x1 + ε, x2) ≥ c(x1, x2) >

q. Therefore, u1(s1(x1 + ε, x2)) ≥ u1(s1(x1, x2)). For player 2, u2(sk(x1 +

ε, x2)) ≤ u2(sk(x1, x2)), since we have that q < (1− c(x1, x2)).
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4. s1(x1, x2) 6= 〈+,+〉 and s1(x1 + ε, x2) = 〈+,+〉: this implies that x2 > x1. As

for player 2 its not hard to see that: u2(s
〈+,+〉
1 (x1, x2)) ≥ u2(s

〈+,+〉
1 (x1+ε, x2)).

Thus the only reason that the players do not compete in s1(x1, x2) is that

player 1 prefers to go for the weaker candidate and it is entitled to make this

choice in s1(x1, x2) only is x1 < x2. It is not hard to see that the claim holds

for this case as well.

We now assume that both statements 1 and 2 hold for (k−1)-round games and

prove they also hold for k-round games. The proof takes a very similar structure

to the proof for the base case, except now we shall use the induction hypothesis

instead of first principles. The following observation will be useful for the proof:

Observation 6.7.4 By applying the induction hypothesis we get that the following

two statements hold for any δ ∈ {〈+,+〉, 〈+,−〉, 〈−,+〉}:

1. u1(sδk(x1 + ε, x2)) ≥ u1(sδk(x1, x2))

2. u2(sδk(x1, x2)) ≥ u2(sδk(x1 + ε, x2))

Take for example the first statement and consider δ = 〈+,+〉. To see why it

is indeed the case that u1(s
〈+,+〉
k (x1 + ε, x2)) ≥ u1(s

〈+,+〉
k (x1, x2)), observe that by

the induction hypothesis we have that: u1(sk−1(x1 + 1 + ε, x2)) ≥ u1(sk−1(x1 +

1, x2)), u1(sk−1(x1 + ε, x2 + 1)) ≥ u1(sk−1(x1, x2 + 1)), u1(sk−1(x1 + ε + 1, x2)) ≥

u1(sk−1(x1 + ε, x2 + 1)) and that c(x1 + ε, x2) ≥ c(x1, x2). Similarly, we can use

the induction hypothesis to prove that the two statements are correct for any δ ∈

{〈+,+〉, 〈+,−〉, 〈−,+〉}.

Just as in the base case, we now distinguish between the following cases:
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1. f(sk(x1, x2))) = f(sk(x1 + ε, x2)) : the claim holds by Observation 6.7.4.

2. f(sk(x1, x2)) 6= f(sk(x1 + ε, x2)), f(sk(x1, x2)) 6= 〈+,+〉 and f(sk(x1 +

ε, x2)) 6= 〈+,+〉: observe that this is only possible if x1 < x2 ≤ x1 + ε and in

this case we have that f(sk(x1, x2)) = 〈−,+〉 and f(sk(x1 + ε, x2)) = 〈+,−〉

so it is not hard to see that the claim holds.

3. f(sk(x1, x2)) = 〈+,+〉 and f(sk(x1 + ε, x2)) 6= 〈+,+〉: Similar to the cor-

responding case for k = 1, observe that this implies that x1 ≥ x2. As by

Observation 6.7.4 we have that u1(s
〈+,+〉
k (x1 + ε, x2)) ≥ u1(s

〈+,+〉
k (x1, x2)).

Thus, if the players do not compete in sk(x1 + ε, x2) it can only be be-

cause the lower player prefers not to compete and this lower player has to

be player 2. Now, by applying the induction hypothesis for player 1 we get

that u1(sk−1(x1 + ε + 1, x2)) ≥ u1(sk−1(x1 + 1, x2)) ≥ u1(sk−1(x1, x2 + 1)).

Thus, it is not hard to see that u1(sk(x1 +ε, x2)) ≥ u1(sk(x1, x2)). For player

2, since as the lower player it chooses to compete in f(sk(x1, x2)) but not in

f(sk(x1 + ε, x2)) we have that:

u2(sk(x1, x2) = u2(s
〈+,+〉
k (x1, x2)) > u2(s

〈+,−〉
k (x1, x2)) ≥ u2(s

〈+,−〉
k (x1 + ε, x2))

= u2(sk(x1 + ε, x2)

where the last transition is by Observation 6.7.4.

4. f(sk(x1, x2)) 6= 〈+,+〉 and f(sk(x1 + ε, x2)) = 〈+,+〉: this is similar to the

previous case only now we have that x1 < x2. The reason is that by Observa-

tion 6.7.4 we have that u2(s
〈+,+〉
k (x1, x2)) ≥ u2(s

〈+,+〉
k (x1 + ε, x2)). Therefore

the lower player in the game Gk(x1, x2) is player 1. After establishing this,

it is easy to verify that the claim holds by applying the induction hypothesis

in a very similar manner to the previous case.
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6.7.1 Subgame Perfection of the Strategies sk(x1, x2)

We prove the following three statements simultaneously by induction on the num-

ber of rounds in the game:

Proposition 6.7.5 (generalizes Claim 6.2.3) For any integers x1, x2 and k the

following holds for the strategies sk(x1, x2).

1. sk(x1, x2) is a sub-game perfect equilibrium in the game Gk(x1, x2).

2. If a player does not compete in the first round of the game Gk(x1, x2), then

it does not compete in all subsequent rounds.

3. The utility of the higher player in the game Gk(x1, x2) is at least as large as

the utility of the lower player.

We separate the simultaneous induction into three numbered statements above.

Proving these three statements by simultaneous induction on k means that in

studying properties of sk(x1, x2) and Gk(x1, x2), we can assume that all three parts

hold for sk′(x1, x2) and Gk′(x1, x2) for every 0 < k′ ≤ k − 1.

We begin by presenting the proof for part 1 of the proposition showing that

sk(x1, x2) is a sub-game perfect equilibrium. As part of the induction the proof

relies on the correctness of parts 2 and 3 for games of less than k rounds. Next, we

prove parts 2 and 3 in Claim 6.7.7 and Proposition 6.7.9 respectively. Both proofs

assume that sk′(x1, x2) is a subgame perfect equilibrium for every 0 < k′ ≤ k − 1.

Proposition 6.7.6 The strategies described by sk(x1, x2) are a subgame perfect

equilibrium in the game Gk(x1, x2) for every two integers x1, x2.
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Proof: We prove the claim by induction on k the number of rounds. We only

present the proof for x1 ≥ x2 as the proof for the case that x1 < x2 is very similar.

For the base case k = 1, if c(x1, x2) > q, then it is clearly the case that player

1 competes. Else, since x1 ≥ x2 we have that (1 − c(x1, x2)) ≤ c(x1, x2) ≤ q,

therefore player 2 does not want to compete as well. As clearly player 1 cannot

benefit from competing over the weaker candidate, this implies that there exists

an equilibrium in which player 1 goes for the stronger candidate.

Next, we assume correctness for k′-round games for any 0 < k′ ≤ k − 1 and

prove for k-round games. This means we can apply Corollary 6.7.8 and get that

once the lower player prefers to go for the weaker candidate it completely stops

competing and Proposition 6.7.9 to get that the higher player always has greater

utility than the lower player.

Assume towards contradiction that in the unique equilibrium for the first round

of the game Gk(x1, x2) player 1 goes after the weaker candidate and player 2

goes after the stronger candidate. Thus, player 1’s utility is u1(s
〈−,+〉
k (x1, x2)) =

q + u1(sk−1(x1, x2 + 1)).

We first observe that by monotonicity if player 1 prefers to go for the weaker

candidate over competing, it has to be the case that c(x1, x2) < q. We also observe

that it has to be the case that f(sk(x1, x2)) = 〈+,+〉. As it is easy to see that in

the case of f(sk(x1, x2)) = 〈+,−〉 player 1 prefers to go for the stronger candidate

over competing for the weaker candidate.2

We now distinguish between 3 possible scenarios in sk−1(x1, x2 + 1) which is by

the induction hypothesis a subgame perfect equilibrium in Gk−1(x1, x2 + 1):

2Observe that this holds since q + u1(sk−1(x1 + q, x2)) < 1 + u1(sk−1(x1 + 1, x2)) by mono-
tonicity. This is a well defined use of Claim 6.7.3 since it does not assume the players’ reputations
to be integers.

226



1. f(sk−1(x1, x2 + 1)) = 〈+,+〉: observe that in this case player 1 prefers to

compete in the first round of the game Gk(x1, x2) since by monotonicity

u1(sk−2(x1 + 1, x2 + 1)) ≥ u1(sk−2(x1, x2 + 2))3; by the induction hypothesis

we have that sk−1(x1, x2 + 1) and sk−1(x1 + 1, x2) are subgame perfect equi-

libria we have that u1(sk−1(x1 + 1, x2)) ≥ q + u1(sk−2(x1 + 1, x2 + 1)) and

u1(sk−1(x1, x2 + 1)) ≥ q + u1(sk−2(x1, x2 + 2)); and c(x1, x2) ≥ c(x1, x2 + 1).

Thus, we have that:

u1(s
〈+,+〉
k (x1, x2)) = c(x1, x2) · (1 + u1(sk−1(x1 + 1, x2)))

+ (1− c(x1, x2)) · u1(sk−1(x1, x2 + 1))

≥ c(x1, x2) · (1 + (q + u1(sk−2(x1 + 1, x2 + 1))))

+ (1− c(x1, x2)) · (q + u1(sk−2(x1, x2 + 2)))

≥ q + c(x1, x2 + 1) · (1 + u1(sk−2(x1 + 1, x2 + 1)))

+ (1− c(x1, x2 + 1)) · u1(sk−2(x1, x2 + 2))

= q + u1(s
〈+,+〉
k−1 (x1, x2 + 1))

= u1(s
〈−,+〉
k (x1, x2)).

Therefore 〈−,+〉 is not an equilibrium for the first round of the game

Gk(x1, x2).

2. f(sk−1(x1, x2 + 1)) = 〈+,−〉: this implies that x1 ≥ x2 + 1. We can apply

Corollary 6.7.8 and get that for player 2, u2(sk−1(x1, x2+1)) = (k−1)q. Since

by monotonicity we have that (k− 1)q = u2(sk−1(x1, x2 + 1)) ≥ u2(sk−1(x1 +

1, x2)) we get that:

u2(s
〈+,+〉
k (x1, x2)) ≤ (1− c(x1, x2)) + (k − 1)q < kq

Where the last transition is due to the fact that (1−c(x1, x2)) ≤ c(x1, x2) < q.

Hence, by Claim 6.7.2 the lower player (player 2) does not want to compete

3To handle the case of k = 2 we define ui(s0(x1, x2)) = 0.
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in the game Gk(x1, x2). Therefore 〈−,+〉 is not the unique equilibrium for

the first round of the game Gk(x1, x2).

3. f(sk−1(x1, x2 + 1)) = 〈−,+〉: This implies that x1 = x2 therefore we can

apply Corollary 6.7.8 for player 1 in the game Gk−1(x1, x2 + 1) and get that

u1(s
〈−,+〉
k (x1, x2)) = q+u1(sk−1(x1, x2 + 1)) = kq. We now have the following

chain of inequalities, by applying Proposition 6.7.9:

u1(s
〈−,+〉
k (x1, x2)) > u1(s

〈+,+〉
k (x1, x2)) = u1(sk(x1, x2)) ≥ u2(sk(x1, x2)) ≥ kq

The last transition is due to the fact that player 2 is the lower player in

the game Gk(x1, x2) and thus we can use Claim 6.7.2. This is of course in

contradiction to the fact that u1(s
〈−,+〉
k (x1, x2)) = kq.

Proof of Part (2) of Proposition 6.7.5

We show that if a player prefers not compete in the first round of the game

Gk(x1, x2), then it does not compete in all subsequent rounds. This is done by

showing that if a player does not compete in the first round of a game, then it

does not compete in the second round. The proof assumes that sk−1(x1, x2) is a

subgame perfect equilibrium as it used as part of the induction.

Formally we show:

Claim 6.7.7 If sk−1(x1, x2) is a subgame perfect equilibrium for every x1 and x2,

then

• f(sk(x1, x2)) = 〈+,−〉 =⇒ f(sk−1(x1 + 1, x2)) = 〈+,−〉.
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• f(sk(x1, x2)) = 〈−,+〉 =⇒ f(sk−1(x1, x2 + 1)) = 〈−,+〉.

Proof: We prove the first statement of the claim as the proof of the second

statement is very similar. Assume towards a contradiction that f(sk(x1, x2)) =

〈+,−〉 but f(sk−1(x1 + 1, x2)) 6= 〈+,−〉. The fact that f(sk(x1, x2)) = 〈+,−〉

implies that x2 ≤ x1; thus if f(sk−1(x1 + 1, x2)) 6= 〈+,−〉 it has to be the case that

f(sk−1(x1 + 1, x2)) = 〈+,+〉. Therefore, player 2’s utility is:

u2(sk(x1, x2)) = q + (1− c(x1 + 1, x2)) · (1 + u2(sk−2(x1 + 1, x2 + 1)))

+ c(x1 + 1, x2) · u2(sk−2(x1 + 2, x2)).

Observe that the following holds:

1. f(sk−1(x1 + 1, x2)) = 〈+,+〉 =⇒ u2(sk−1(x1 + 1, x2)) > q + u2(sk−2(x1 +

2, x2)).

2. u2(sk−1(x1, x2 + 1)) ≥ q + u2(sk−2(x1 + 1, x2 + 1)).

The first of these statements holds since player 2 is the lower player in the game

Gk−1(x1 +1, x2), and the second statement holds since by assumption sk−1(x1, x2 +

1) is a subgame perfect equilibrium. Thus, we have that:

u2(s
〈+,+〉
k (x1, x2)) > q + (1− c(x1, x2)) · (1 + u2(sk−2(x1 + 1, x2 + 1)))

+ c(x1, x2) · u2(sk−2(x1 + 2, x2)).

This implies that u2(s
〈+,+〉
k (x1, x2)) > u2(sk(x1, x2)) in contradiction to the as-

sumption that player 2 maximizes its utility by first going for the weaker candidate

(f(sk(x1, x2)) = 〈+,−〉).

229



Corollary 6.7.8 For x2 ≤ x1, if sk′(x1, x2) is a subgame perfect equilibrium for

every 0 < k′ ≤ k−1, x1 and x2, then, f(sk(x1, x2)) = 〈+,−〉 =⇒ u2(sk(x1, x2)) =

kq.

Proof of Part (3) of Proposition 6.7.5

We show that the utility of the higher player in the game Gk(x1, x2) is at least as

large as the utility of the lower player. This is based on Claim 6.7.10 and Claim

6.7.11 below.

Proposition 6.7.9 If sk−1(x1, x2) is a subgame perfect equilibrium for every two

integers x1 and x2 then:

• For x1 ≥ x2: u1(sk(x1, x2)) ≥ u2(sk(x1, x2)).

• For x2 > x1: u2(sk(x1, x2)) ≥ u1(sk(x1, x2)).

Proof:

• For x1 ≥ x2. By Claim 6.7.10 we have that u1(sk(x1, x2)) ≥ u2(sk(x2, x1)).

Now, by monotonicity we have that u2(sk(x2, x1)) ≥ u2(sk(x2, x2)) ≥

u2(sk(x1, x2)).

• For x2 > x1. By Claim 6.7.11 we have that u2(sk(x1, x2)) ≥ u1(x2 − 1, x1).

Now, by monotonicity we have that u1(x2 − 1, x1) ≥ u1(x1, x1) since be-

cause x1 and x2 are integers we have that x2 − 1 ≥ x1. Then we have that

u1(x1, x1) ≥ u1(x1, x2) which completes the proof.
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The two following claims allow us to show that the utility of the higher player

is always greater by relating between the utilities of player 1 and player 2.

Claim 6.7.10 If for every integers y′, z′ and 0 < k′ ≤ k−1 sk′(y
′, z′) is a subgame

perfect equilibrium then: u1(sk(y, z)) ≥ u2(sk(z, y)) for every y and z.

Proof: We prove the claim by induction on k the number of rounds. For the

base case k = 1, observe that if y = z then clearly u1(s1(y, z)) ≥ u2(s1(z, y));

either because the players compete and c(y, y) ≥ (1 − c(y, y)) or because the

players do not compete and u1(s1(y, z)) = 1 > q = u2(s1(z, y)). Else, y 6= z, now if

min{c(y, z), (1−c(y, z))} > q, then in both s1(y, z) and s1(z, y) the players compete

and since y 6= z we have that c(y, z) = (1−c(y, z)), thus u1(s1(y, z)) = u2(s1(z, y)).

Else, each of the players goes after a different candidate. If for example y > z, then

in both games the player with reputation y goes after the stronger candidate and

the player with reputation z goes after the weaker candidate. Thus, u1(sk(y, z)) =

u2(sk(z, y)).

Next, we assume the correctness for (k−1)-round games and prove for k-round

games. We distinguish between the following cases:

1. f(sk(y, z)) = f(sk(z, y)) = 〈+,+〉: by using the induction hypothesis we

get that that u1(sk−1(y+ 1, z)) ≥ u2(sk−1(z, y+ 1)) and u1(sk−1(y, z + 1)) ≥

u2(sk−1(z+1, y)). Since c(y, z) ≥ (1−c(y, z)) this is sufficient for showing that

u1(sk(y, z)) ≥ u2(sk(z, y)). More generally this shows that u1(s
〈+,+〉
k (y, z)) ≥

u2(s
〈+,+〉
k (z, y)).

2. f(sk(y, z)) 6= 〈+,+〉 and f(sk(z, y)) 6= 〈+,+〉: by the definition of sk we have

three possible subcases:
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• y < z: f(sk(y, z)) = 〈−,+〉 and f(sk(z, y)) = 〈+,−〉.

• y = z: f(sk(y, y)) = 〈+,−〉.

• y > z: f(sk(y, z)) = 〈+,−〉 and f(sk(z, y)) = 〈−,+〉.

It is not hard to see that for each one of these subcases we can use the

induction hypothesis to show that the claim holds.

3. f(sk(y, z)) = 〈+,+〉 and f(sk(z, y)) 6= 〈+,+〉: if z > y, then:

u1(sk(z, y)) = 1 + u1(sk−1(z + 1, y))

u2(sk(y, z)) = (1− c(y, z)) · (1 + u2(sk−1(y, z + 1))) + c(y, z) · u2(sk−1(y + 1, z))

By using monotonicity and applying the induction hypothesis we get that:

u2(sk−1(y + 1, z)) ≤ u2(sk−1(y, z + 1)) ≤ u1(sk−1(z + 1, y))

Thus, the claim holds.

Else, we have that y > z. We show that this case is not possible by a

locking argument. First we observe that this implies that player 1 is the

lower player in the game Gk(z, y) and in the first round of the game it prefers

to go for the weaker candidate. Since we assume that for any y′,z′ and

0 < k′ ≤ k − 1, sk′(y
′, z′) is a subgame perfect equilibrium the requirements

of Corollary 6.7.8 hold and thus we have that: u1(sk−1(z, y + 1)) = (k −

1)q. By applying the induction hypothesis we get that u2(sk−1(y + 1, z)) ≤

u1(sk−1(z, y + 1)) = (k − 1)q. Now, since player 2 is the lower player in the

game Gk(y + 1, z) we can apply Claim 6.7.2 and conclude that u2(sk−1(y +

1, z)) = (k−1)q = u1(sk−1(z, y+1)). Now, the following chain of inequalities

provides a contradiction for the assumption that in the game Gk(z, y) the

players do not compete as it shows that the lower player (player 1) actually
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prefers competing over going for the weaker candidate:

u1(s
〈+,+〉
k (z, y)) ≥ u2(s

〈+,+〉
k (y, z)) > q + u2(sk(y + 1, z)) = q + u1(sk−1(z, y + 1))

= u1(s
〈−,+〉
k (z, y)).

The claim is completed since we already treated the case in which y = z as

part of the first two cases.

We now prove that a claim similar in spirit to the previous one also holds for

player 2:

Claim 6.7.11 If for every integers y′, z′ and 0 < k′ ≤ k − 1 sk′(y
′, z′) is a sub-

game perfect equilibrium, then, u2(sk(y, z + 1)) ≥ u1(sk(z, y)) and u2(sk(z, y)) ≥

u1(sk(y, z + 1)) for every two integers y and z.

Proof: We prove the two inequalities by induction on k simultaneously. We

begin with the base case k = 1 and distinguish between the following cases:

1. s1(y, z+1) = s1(z, y) = 〈+,+〉: in this case u2(s1(y, z+1)) = (1−c(y, z+1)),

u1(s1(z, y)) = c(z, y), u2(s1(z, y)) = (1 − c(z, y)) and u1(s1(y, z + 1)) =

c(y, z + 1), thus the claim holds.

2. s1(y, z + 1) 6= 〈+,+〉 and s1(z, y) 6= 〈+,+〉: if y ≤ z then u2(s1(y, z + 1)) =

u1(s1(z, y)) = 1 and u1(s1(y, z+ 1)) = u2(s1(z, y)) = q, thus the claim holds.

Else, y ≥ z+1, then u2(s1(y, z+1)) = u1(s1(z, y)) = q and u1(s1(y, z+1)) =

u2(s1(z, y)) = 1.

3. The players compete in one of s1(y, z+1), s1(z, y) and do not compete in the

other: Observe that the following hold:
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• If y ≤ z then s1(y, z + 1) = 〈+,+〉 =⇒ s1(z, y) = 〈+,+〉. Observe

that (1 − c(z, y)) ≥ c(y, z + 1). This implies that u2(s
〈+,+〉
1 (z, y)) ≥

u1(s
〈+,+〉
1 (y, z + 1)) > q. Now since in both cases the lower player is the

player with reputation y the claim follows.

• If y ≥ z + 1 then s1(z, y) = 〈+,+〉 =⇒ s1(y, z + 1) = 〈+,+〉. Observe

that (1− c(y, z + 1)) ≥ c(z, y). This implies that u2(s
〈+,+〉
1 (y, z + 1)) ≥

u1(s
〈+,+〉
1 (z, y)) > q. Now since in both cases the lower player is the

player with reputation z or z + 1 the claim follows.

Thus, we are left with the following two sub-cases:

(a) s1(y, z + 1) = 〈+,+〉 and s1(z, y) = 〈−,+〉: in this case: u2(s1(y, z +

1)) = (1− c(y, z+1)), u1(s1(z, y)) = q, u2(s1(z, y)) = 1 and u1(s1(y, z+

1)) = c(y, z + 1) and the claim holds.

(b) s1(y, z + 1) = 〈−,+〉 and s1(z, y) = 〈+,+〉: in this case: u2(s1(y, z +

1)) = 1, u1(s1(z, y)) = c(z, y), u2(s1(z, y)) = (1 − c(z, y)) and

u1(s1(y, z + 1)) = q and the claim holds.

Next, we assume correctness for (k − 1)-round games and prove for k-round

games. We distinguish between the same cases as we did for the base case:
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1. f(sk(y, z + 1)) = f(sk(z, y)) = 〈+,+〉: the players’ utilities are:

u2(sk(y, z + 1)) = (1− c(y, z + 1)) · (1 + u2(sk−1(y, z + 2)))

+ c(y, z + 1) · u2(sk−1(y + 1, z + 1))

u1(sk(z, y)) = c(z, y) · (1 + u1(sk−1(z + 1, y))) + (1− c(z, y)) · u1(sk−1(z, y + 1))

u2(sk(z, y)) = (1− c(z, y)) · (1 + u1(sk−1(z, y + 1))) + c(z, y) · u1(sk−1(z + 1, y))

u1(sk(y, z + 1)) = c(y, z + 1) · (1 + u2(sk−1(y + 1, z + 1)))

+ (1− c(y, z + 1)) · u2(sk−1(y, z + 2))

It is not hard to see that by applying the induction hypothesis plus using

monotonicity and the facts that (1− c(y, z+ 1)) ≥ c(z, y) and (1− c(z, y)) ≥

c(y, z + 1) the claim holds. By this we have actually shown that a stronger

statement holds: u2(s
〈+,+〉
k (y, z+ 1)) ≥ u1(s

〈+,+〉
k (z, y)) and u2(s

〈+,+〉
k (z, y)) ≥

u1(s
〈+,+〉
k (y, z + 1)).

2. f(sk(y, z + 1)) 6= 〈+,+〉 and f(sk(z, y)) 6= 〈+,+〉: if y ≤ z then

u2(sk(y, z + 1)) = 1 + u2(sk−1(y, z + 2)) ; u1(sk(z, y)) = 1 + u1(sk−1(z + 1, y))

u2(sk(z, y)) = q + u2(sk−1(z + 1, y)) ; u1(sk(y, z + 1)) = q + u1(sk−1(y, z + 2)).

Thus we can use the induction hypothesis and get that the claim holds. Else,

y ≥ z + 1, and we can again write down the players’ utilities and apply the

induction hypothesis to get that the claim holds.

3. The players compete in one of f(sk(y, z+1)), f(sk(z, y)) and do not compete

in the other: we will show that the following two lemmas hold:

Lemma 6.7.12 For y ≤ z, f(sk(y, z + 1)) = 〈+,+〉 =⇒ f(sk(z, y)) =

〈+,+〉.

Proof: We prove this by using a locking argument very similar to the one

we used for Claim 6.7.10. Observe that in both games the lower player is the
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player with reputation y. Assume towards a contradiction that in f(sk(z, y))

player 2 does not compete. Since player 2 is the lower player, we can use

Corollary 6.7.8 to get that u2(sk−1(z + 1, y)) = (k − 1)q. By applying the

induction hypothesis we get that (k−1)q = u2(sk−1(z+1, y)) ≥ u1(sk−1(y, z+

2)). Now, since player 1 is the lower player in the game Gk−1(y, z + 2) we

can apply Claim 6.7.2 and conclude that u1(sk−1(y, z + 2)) = (k − 1)q =

u2(sk−1(z+1, y)). The following chain of inequalities provides a contradiction

that in the game Gk(z, y) player 2 prefers to go for the weaker candidate over

competing:

u2(s
〈+,+〉
k (z, y)) ≥ u1(s

〈+,+〉
k (y, z + 1)) > q + u1(sk(y, z + 2))

= q + u2(sk−1(z + 1, y)).

Lemma 6.7.13 For y ≥ z + 1, f(sk(z, y)) = 〈+,+〉 =⇒ f(sk(y, z + 1)) =

〈+,+〉.

Proof: The proof is very similar to the previous lemma. Observe that in

both games the lower player is the player with reputation z or z+1. Assume

towards a contradiction that in f(sk(y, z + 1)) player 2 does not compete.

Since player 2 is the lower player, we can use Corollary 6.7.8 to get that

u2(sk−1(y + 1, z + 1)) = (k − 1)q. By applying the induction hypothesis we

get that (k − 1)q = u2(sk−1(y + 1, z + 1)) ≥ u1(sk−1(z, y + 1)). Now, since

player 1 is the lower player in the game Gk−1(z, y + 1) we can apply Claim

6.7.2 and conclude that u1(sk−1(z, y+ 1)) = (k−1)q = u2(sk−1(y+ 1, z+ 1)).

The following chain of inequalities provide a contradiction that in the game
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Gk(y, z + 1) player 2 prefers to go for the weaker candidate over competing:

u2(s
〈+,+〉
k (y, z + 1)) ≥ u1(s

〈+,+〉
k (z, y)) > q + u1(sk(z, y + 1))

= q + u2(sk−1(y + 1, z + 1)).

Thus, we are left with the following two sub-cases:

(a) f(sk(y, z+1)) = 〈+,+〉 and f(sk(z, y)) = 〈−,+〉: observe that by using

the induction hypothesis and monotonicity it is not hard to see that the

claim holds since:

u2(sk(y, z + 1)) = u2(s
〈+,+〉
k (y, z + 1) > u2(s

〈−,+〉
k (y, z + 1)

≥ u1(s
〈+,−〉
k (z, y) = u1(sk(z, y))

u2(sk(z, y)) = u2(s
〈+,−〉
k (z, y)) ≥ u2(s

〈+,+〉
k (z, y))

≥ u1(s
〈+,+〉
k (y, z + 1)) = u1(sk(y, z + 1))

(b) f(sk(z, y)) = 〈+,+〉 and f(sk(y, z+1)) = 〈−,+〉: observe that by using

the induction hypothesis and monotonicity it is not hard to see that the

claim holds since:

u2(sk(z, y)) = u2(s
〈+,+〉
k (z, y)) > u2(s

〈+,−〉
k (z, y))

≥ u1(s
〈−,+〉
k (y, z + 1)) = u1(sk(y, z + 1))

u2(sk(y, z + 1)) = u2(s
〈+,−〉
k (y, z + 1) ≥ u2(s

〈+,+〉
k (y, z + 1)

≥ u1(s
〈+,+〉
k (z, y) = u1(sk(z, y))
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6.7.2 Additional Properties of the Canonical Equilibrium

We first show that if ui(sk(x1, x2)) = kq then player i goes for the weaker candidate

in f(sk(x1, x2)). This immediately implies that if ui(sk(x1, x2)) = kq then player i

in sk(x1, x2) goes for the weaker candidate in every round.

Claim 6.7.14 (generalization of Claim 6.2.4) The following two statements

hold:

• u1(sk(x1, x2)) = kq =⇒ f(sk(x1, x2)) = 〈−,+〉.

• u2(sk(x1, x2)) = kq =⇒ f(sk(x1, x2)) = 〈+,−〉.

Proof: We prove the claim for player 1 but a similar proof also works

for player 2. Assume towards a contradiction that u1(sk(x1, x2)) = kq but

f(sk(x1, x2)) = 〈+,+〉. By Proposition 6.7.5 we have that sk(x1, x2) is a sub-

game perfect equilibrium, thus, if player 1 prefers to compete it has to be the case

that u1(s
〈+,+〉
k (x1, x2)) > u1(s

〈−,+〉
k (x1, x2)). Observe that u1(s

〈−,+〉
k (x1, x2)) ≥ kq as

a player can always guarantee itself a utility of at least kq in equilibrium. This is

in contradiction to the assumption that f(sk(x1, x2)) = 〈+,+〉.

Next, based on Claim 6.7.7 we can show that if a player competes and wins

then in the next round it prefers competing over going for the weaker candidate.

Claim 6.7.15 (generalization of Claim 6.2.5) If f(sk(x1, x2)) = 〈+,+〉 then:

• f(sk−1(x1 + 1, x2)) ∈ {〈+,+〉, 〈+,−〉}

• f(sk−1(x1, x2 + 1)) ∈ {〈+,+〉, 〈−,+〉}
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Proof: We first show that f(sk−1(x1+1, x2)) ∈ {〈+,+〉, 〈+,−〉}. Assume towards

contradiction that f(sk−1(x1 + 1, x2)) = 〈−,+〉. First observe that if c(x1, x2) > q

then c(x1 + 1, x2) > q thus player 1 maximizes its utility by competing in the

next round as well. It also has to be the case that x1 + 1 < x2 since otherwise as

the higher player in the game Gk(x1 + 1, x2) player 1 should go for the stronger

candidate. By Corollary 6.7.8 we have that u1(sk−1(x1 + 1, x2)) = (k − 1)q. By

monotonicity we have that u1(sk−1(x1, x2 + 1)) ≤ u1(sk−1(x1 + 1, x2)) = (k − 1)q.

Thus, we have that u1(sk(x1, x2)) ≤ c(x1, x2) + (k − 1)q ≤ kq. This implies by

Claim 6.7.14 that player 1 does not compete in f(sk(x1, x2)) in contradiction to the

assumption. The proof of the second statement regarding player 2 is very similar

and hence omitted.
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