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Abstract

This paper presents a novel approach to deal with the computation of an implied volatility
surface of American options written on a risky asset. The approach is based on the simple obser-
vation that this computational problem is the inverse of the forward pricing problem of American
options. As detailed in [17], the latter forward problem can be modeled by a discretized partial
differential linear complementarity system. As such, the inverse problem, i.e., the implied volatil-
ity problem, becomes an instance of a Mathematical Program with Equilibrium Constraints,
which is a class of constrained optimization problem with a finite-dimensional parametric lin-
ear complementarity system as part of its constraints. Two methods for solving an MPEC are
described and applied to the problem of computing an implied volatility surface of American
options. Some computational results on experimental data are reported.

1 Introduction

The Black-Scholes analysis of option pricing is well known. An important input to this analysis is
the volatility parameter of the underlying risky asset on which options of various kinds are written.
In their pioneering work [5], Black and Scholes assumed this parameter to be a constant and derived
their famous formula for the theoretical price of a vanilla European call option:

C(S,t) = SN(dy) — Ee """ N(d,), (1)

where the notation is fairly standard; see [29] for instance. The two constants d; and dy contain the
volatility parameter o. As it is well known, this parameter is in general not a constant; indeed it
is a highly complicated function of several deterministic and random factors. Previous approaches
for dealing with this difficult problem of unknown volatility are plenty and include (i) statistical
estimation methods based on historical data (see e.g. [18, Section 10.4] and [16, Section 1.E]),
(ii) mathematical models of stochastic volatilities (such as those in [19, 21, 31]), and (iii) implied
volatilities based on observed option prices (suggested originally by Latané and Rendleman [24]
and empirically tested by Beckers [4]).



In the case of American options, that is, options with an early exercise feature, the above formula
(1) and its analogs are no longer valid. In fact, as shown in [20], a rigorous mathematical model
for pricing an American option is an infinite-dimensional free boundary problem. As such, there
is in general no explicit formula or finite procedure for computing the exact price of an American
option. Upon a suitable discretization of the partial differential operator defining the free boundary
problem, we obtain a finite-dimensional variational inequality that is in turn equivalent to a linear
complementarity problem (LCP). With the discretization parameters properly chosen, the solution
of the LCP can provide an arbitrarily close approximation to the exact American option prices.
Expanding the preliminary work done by various authors including [29, 11, 12], the paper [17]
presents an in-depth treatment of pricing American options of various kinds by the LCP approach
and reports extensive computational results that support the effectiveness of this approach. A
related paper is [28].

The problem of computing an implied volatility surface of (European or American) options is
an instance of an inverse problem that is the counterpart of the forward problem of pricing these
options; see [7]. Specifically, in the forward option pricing problem, a constant volatility parameter
(along with other constants, such as the interest rate and asset dividend) is taken as an input to
a mathematical model that produces the (theoretical) option prices. Ideally, it is most desirable
for the computed option prices to agree with the option prices observed on the trading floors.
Unfortunately, this is hardly the case in practice. One possible factor that causes the discrepancy
in the computed and observed option prices is that the volatility constant is being used incorrectly.
Borrowing a well-known idea from applied mathematics, we attempt to build an inverse model to
infer the volatility parameter that takes into account the observed values of the unknown option
prices. Thus, in the inverse model, the asset volatility and the option prices are both unknowns to
be determined.

The main objective of this paper is to present the MPEC approach to the implied volatility
problem of American options, where MPEC stands for Mathematical Program with Equilibrium
Constraints [25]. A brief general discussion of this class of constrained optimization problem is
presented in Section 3. For now, we attempt to motivate the need for such an advanced optimization
methodology by briefly reviewing a common approach for computing implied volatility of European
options. Basically, in the latter approach, one equates the theoretical option value predicted by
the Black-Scholes formula with an observed value and numerically solves for the unknown volatility
parameter in the resulting equation, with the remaining parameters fixed. This simplistic approach
has several drawbacks and deficiencies. From a mathematical point of view, the approach lacks a
sound basis due to the following reasons.

A. Although the Black-Scholes partial differential equation remains valid when the volatility is a
function of asset price and time, the explicit formula (1) for the (call) option value is derived
under the assumption that volatility is a fixed constant. Indeed, as detailed in Exercise 5
in Chapter 5 of [29], when the volatility is a known function of time, the actual formula
for the option value is much more complicated than (1). Thus using (1) as the basis for the
computation of volatilities does not seem mathematically sound unless one accepts the premise
that volatility is a constant independent of asset price and option duration. Unfortunately,
studies have shown that this premise is not consistent with observations. Indeed, volatility
is highly dependent on the maturity and the strike of the option (known as the volatility
smile)[15].



B. Even if one accepts an explicit formula such as (1) for an option price, there are still several
practical deficiencies associated with solving the equation

VBS(Sat) = Vobs (2)

to compute the implied volatility, where the left-hand quantity is the theoretically computed
option price and the right-hand quantity is the observed option value corresponding to the
asset price S and time ¢. First, this equation is not guaranteed to have a solution in the
unknown volatility . We refer the reader to the paper [7] where a uniqueness result for a local
volatility function was established using the theory of inverse problems in partial differential
equations. Second, even if an (approximate) solution of the equation can be obtained (usually
by an iterative scheme such as the Newton-Raphson method), the computed value of o may
not be useful for predictive purposes because it is not practically meaningful. Third, solving
one single equation will produce only one value of the volatility ¢(S,t). In order to obtain
the entire volatility surface, we need to solve such an equation for all pairs (S,t) of interest.
Fourth, the numerical solution of (2), which is a high complex nonlinear equation, could be
very time consuming for the calibration of the entire volatility surface, especially if many
equations of this kind have to be solved repeatedly that correspond to a portfolio of different
observed option values.

The equation approach to computing implied volatility lacks the flexibility in handling restric-
tions that one may wish to impose on this quantity. For instance, in addition to (approximately)
satisfying (2), one may want the volatility parameter (perhaps after a suitable aggregation or weigh-
ing) to lie within a certain range. Restrictions like this one often appear in the form of inequalities
that are not captured by the single equation (2). The advantage of imposing additional restric-
tions is clear: for one thing, they allow us to exclude quantities that are deemed not suitable for
practical use. These considerations are important factors for the use of an optimization approach
to computing implied volatilities.

As mentioned above and noted by various authors (see references cited below), the implied
volatility problem is essentially an inverse problem. We adopt an optimization framework by
introducing an objective function that captures the goal of the inverse problem, which is to compute
the unknown volatilities and option prices according to a prescribed minimization principle. The
optimization approach has the additional advantage in that constraints on the unknowns can easily
be included and dealt with. The idea of using an optimization approach to deal with uncertain
volatilities is not new. Within the context of the binomial tree method, Rubinstein [27] proposed an
optimization problem as a way to calculate implied posterior risk-neutral probabilities. Avellaneda,
Friedman, Holmes and Sampeir [2] and Avellaneda [1] introduced a relative entropy minimization
problem to calibrate volatility surfaces for European options. Lagnado and Osher [22, 23] used a
gradient descent method to solve a nonlinear optimization problem in which the partial differential
equation governing the European option price is part of the constraint. Most recently, Coleman,
Li, and Verma [9] used a 2-D spline approximation coupled with finite-dimensional constrained
nonlinear optimization to reconstruct a smooth local volatility surface. All these prior works deal
with volatilities implied by European options. Expanding on the work of Rubinstein [27] and
Derman and Kani [14], two papers [3, 8] discuss heuristic tree methods for evaluating implied
volatilities of European and American options. No optimization is attempted in the latter two
papers. The recent paper [6] discusses an optimization-based inverse problem for the nonparametric
estimation of an implied volatility surface of European options.



Unlike the previous works, we proposed an optimization approach to directly deal with the
problem of computing an implied volatility surface by constraining the computed option values to
be of the American type. In turn, the basis of this approach is a discretized model for American
options; namely, the LCP. We do not treat European options in this paper because the resulting
(discretized) model is a straightforward optimization problem that can be solved by well-known
methods. In contrast, the resulting optimization problem derived from the inverse problem of
American options is an unusual optimization problem that needs advanced treatment, as we will
see subsequently.

2 The Optimization Formulation

This section presents the formulation of the computational problem of an implied volatility surface
of American options as an MPEC. We begin with the review of the forward pricing problem of
an American option formulated as a discretized linear complementarity problem (LCP). Although
this formulation is well explained in several references (e.g. [17]), it is useful for us to repeat the
derivation so that we can fix the notation and set up the basic framework. Moreover, the review
will facilitate the discussion of multiple options and the promised presentation of the MPEC.
Throughout this paper, we treat only vanilla American options for simplicity. The same general
approach can be applied to computing volatilities implied by exotic American options and/or
American options with transaction costs as well as the inverse pricing of other financial derivatives.

2.1 Forward option pricing

The basic framework is that of Black and Scholes [5]; that is, the price of a risky asset is assumed
to satisfy the following stochastic differential equation:

dS = (u— Do) Sdt+ o(S,t) SdW

where S denotes the asset price that is a function of the time ¢ € [0,T], with 7' > 0 being the
duration of a vanilla European option written on the asset, p is the drift of the stochastic price
process of the asset, Dy is the constant dividend rate of the asset, W is a standard Wiener process,
and o(S,1) is the volatility that we take to be an unknown function of the pair (.5,t), which defines
the volatility surface. (In Black-Scholes original analysis, this function is a constant.) Our goal is
compute a discretization of the volatility surface so that a prescribed objective function is minimized
subject to given constraints on the unknown volatilities and option prices. Examples of such an
objective function and constraints will be presented later.

It is known that the value V(S,t) of an American option must satisfy the following partial
differential linear complementarity problem (PDLCP): for ¢ in [0,7) and S in [0, c0),

0 < V(S,t)—A(S,0),
0 > Las(V), (3)

0 = [V(S,t) — A(S,t)] Lrs(V),

where 5 o 5
Lps = —+%0252W+(T—D0)S%—r,
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is the Black-Scholes partial differential operator, with r being the constant interest rate of a risk-free
asset and A(S,t) being the payoff function when early exercise occurs. To complete the description
of the above model, there must be given boundary values of V(S,t) at S = 0 and S = oo and
terminal values of V(S,%) at ¢t = T, the expiration time.

Since no explicit formula exists for the solution to the above PDLCP, we resort to a finite
difference scheme for approximating the partial differential equation (3). Specifically, we truncate
the state variable S to a finite range [0, N6S], where N is a positive integer and §S > 0 is the step
size that will be used for discretizing the partial differentiation with respect to S. Similarly, we
choose a time step ot > 0 for which M = T'/§t is an integer for discretizing the partial differentiation
with respect to ¢t. The following approximations are employed:

OV o o V(S48 —V(S,1)
E(sa t) ~ 5t ,
82V V(S +45,t) —2V(S,t) + V(S — 95,1
(1-0) V(S +68S,t+ 6t) —2V(S,t+ 6t) + V(S — 6S,t + 6t)
(5S)2 )
ov L V(S+65,t) — V(S — 85,1

V(S +8S,t+6t) — V(S — 68, + 6t)

where 6 € [0,1] is a given parameter whose specializations yield the explicit approximation (6 = 0),
the implicit approximation (6 = 1), and the Crank-Nicolson approximation (§ = 1/2). Based on the
above finite difference scheme and the initial and boundary values of V (S, t), we wish to compute
the unknown option and volatility values at the grid points (ndS, mét), forn =1,2,..., N — 1 and
m=20,1,2,... M — 1, in the (state, time)-product space. Let

Vinn = V(ndS,mdt) and opy = o(ndS, mot)
denote these unknown values. The boundary values
Vino = V(0,mét), Vpn = V(NIS,mét), Vyn = V(ndS,T),
form=0,...,M —1landn=1,...,N —1 are all given. We also let
Apn = A(néS, mdt)

denote the payoff function evaluated at the grid point (ndS, mdt). For each m, let V,,, o, and A,
denote, respectively, the (N — 1)-vectors (an)flv:]l, (amn)g:}l and (Amn)f:];ll. Along with suitable

boundary conditions, the PDLCP (3) is approximated by the following (M —1) LCPs, each of order
(N —1): at each time t =mdt for m=M —1,M —2,...,1,0,

0<Vpu—Ap Lbplon)+Qon) Vi + N(om) Vimsr >0 (4)



where L is the notation for “perpendicular to” and for an arbitrary (N — 1)-vector w,
Qw) = (6t " +7)In_1 + Ly(w), N(o)= -6t Iy_1+ Li_g(w),

%[QVmO‘*‘(l—@)WmH)o](T—DO—wl)wl
0

0

—5[0Vin + (1= 0)Vimynyn | (r — Do+ wy 1) wy-1,

with I'nx_; being the identity matrix of order N — 1 and L,(w) being the (N — 1) x (N — 1)
tridiagonal matrix whose entries are given by: for 4,5 =1,2,...,N — 1,
( 212w2+§z(r—D0) ifj=i—1
ai?w? if j =14
(La(w))ij =
«
—512w2— Ez(r—Do) ifj=i+1
[ 0 otherwise.
Provided that 1
E"FTZN'T_DOL (5)

the matrix L,(w), and hence Q(o,), is strictly diagonally dominant, thus positive definite, for all
vectors w and scalars a € [0, 1]. Throughout the rest of this paper, we assume the condition (5) on
0t is satisfied.

To solve the forward pricing problem where the volatilities o,y,, are all given, we time step the
LCPs (4), starting with m = M —1; since V 5y is known, by solving the LCP at time ¢t = (M —1)dt,
we can obtain a unique solution Vj;_;. Proceeding backward in time, we can compute a set of
discrete option prices V,,, that depends on the input volatilities o,,,. In order to understand the
details of this dependence, it would be convenient to write the M LCPs (4) as an aggregate LCP
of size M(N — 1). Indeed, define the M(N — 1) x M(N — 1) matrix:

Q(oo) N(oo)




and the M (N — 1)-vector

bi(o1)
b(o) =
by (o)
where o is the M (N —1)-vector whose entries are the discretized volatilities oy, form =0,..., M—1
andn=1,...,N—1:
o0
o=
OM-1

Similarly, we define the aggregate M (N — 1)-vectors of option prices and payoffs:
V() A0
VvV = : and A =

V- An—q

The above time-stepping scheme for computing the forward prices of a vanilla American option can
be summarized as the following LCP of size M (N — 1):

0<V—-ALbo)+A()V > 0. (6)

Under the condition (5), A(o), being a block upper triangular matrix with positive definitive diag-
onal blocks, is a P-matrix, albeit A(o) is not symmetric or positive definite. For a comprehensive
treatment of P-matrices and the LCP, we refer the reader to the text [10]. Observe that A(o)
depends on the finite-difference scheme being used to discretize the Black-Scholes partial differ-
ential operator Lgs and is independent of the option—i.e. the payoff function and the expiration.
Presumably, if we use a different discretization of this operator, we obtain a different matrix. The
general methodology presented below applies to other discretization schemes as well, provided that
the resulting A(o) is a P-matrix. In contrast to A(o), the vectors A and b(o) are both dependent
on the option.

Multiple options

In the case where there are multiple options written on the same underlying asset, the LCP (6) can
easily be embedded in a larger system. Specifically, suppose that there are K American options
each being characterized by its payoff function A¥(S,t) at exercise. The prices of these options are
all calculated under the same volatility function o(S,t) of the asset. Thus for each k = 1,..., K,
we solve the LCP:

0 < VF_A* L b))+ A(c) VF > 0,

to obtain the discretized option prices V¥, of type k. Notice that all these LCPs are defined by
the same matrix A(e). Concatenating these K LCPs, we arrive at the final LCP formulation for
the forward pricing problem of multiple American options on a single asset:

0<z—plqlo)+M(o)z > 0, (7)



where
x= (V)L p=(A)E,

are, respectively, the K M (N — 1)-dimensional vectors of unknown option prices and known payoffs
at the discretized grid points,

a(o) = (b*(a) )i,

is the KM (N — 1)-dimensional vector that contains the given initial and boundary values of the
options, and M (o) is the KM (N —1) x KM (N — 1) block diagonal matrix all of whose K diagonal
blocks are equal to the M (N — 1) x M(N — 1) matrix A(o).

In summary, we have formulated the forward option pricing problem as the LCP (7), which we
call the forward option LCP. This LCP requires the discretized volatility matrix o as an input;
the output from this LCP yields the discrete option prices V*(ndS, mét) of K options. By the
P-property of the matrix M (o), the forward option LCP has a unique solution (o) that depends
on the input volatilities. This option function (o) is only implicitly known; for any given o, x(o)
can be evaluated by solving the forward option LCP. We will address some basic properties of this
option function subsequently; see Theorem 1.

2.2 The implied volatility problem

We may now introduce the optimization problem for the joint computation of the volatility matrix
o and the option price vector (o), under a set of prescribed criteria that is the result of some
practical market considerations. The constraints on the unknown volatilities are modeled by the
set T' C RM(N-1) Examples of these constraints include upper and lower bounds on o and other
practical restrictions that are deemed necessary. The objective is described by the function 6(o, x).
Examples of this function include a standard least-squares deviation from observed option prices
and historical volatilities. More precisely, suppose that a subset of option prices V,%E’f’k with (k,m,n)
belonging to a subset O of {1,..., K} x{0,...,M —1} x{1,..., N —1} and a subset of volatilities
o8 with (m,n) belonging to a subset S of {0,..., M —1}x{1,..., N—1} are given (e.g. these could
be the observed market prices and historical volatilities). An objective would be to seek (o, x) so
that the computed values would be least deviated from these given values. Mathematically, the
objective function is then:

0o, 2) = Y (Vmu Vo) + D (omn—omn)’
(k,m,n)€0 (m,n)eS

where V,’,fm is the theoretical option price (collectively, these prices are the components of x).
Another example of # would be a function similar to the one used in [9] that includes a measure
of the smoothness of the discretized volatility surface. Variations of these functions and/or other
realistic objective functions are amenable to the same general methodology.

In general, with the set I' and the objective function 8 given, the implied volatility problem of
American options is defined as the following constrained optimization problem: compute (o, ) to

minimize 6(o,x)
subject to o € T (8)
and 0<z—p Ll glo)+M(o)x > 0.



In terms of the option function (o), we may rewrite this optimization problem as an implicit
program in the variable o alone:

minimize (o) = 0(z(o), o) (©)
subject to o € T
The rest of the paper is devoted to the numerical solution of these two equivalent optimization
problems.

3 Mathematical Programs with Equilibrium Constraints

The optimization problem (8) is an instance of an MPEC. A comprehensive study of this class of
constrained optimization problems, including a historical account and an extensive bibliography,
is documented in the monograph [25]. There are various major reasons why an MPEC cannot be
treated as a standard optimization problem. We briefly mention several of these reasons and refer
the reader to the cited reference for details. Although the constraints of an MPEC are in the form of
equations and inequalities (just like those in a nonlinear program), the presence of the complemen-
tarity constraint (cf. the second constraint in (8)) invalidates the well-known Karush-Kuhn-Tucker
(KKT) optimality theory in traditional nonlinear programming (NLP). In fact, KKT multipliers
do not generally exist for an MPEC. The complementarity condition introduces a disjunction into
the constraints of an MPEC. This is another important feature of the MPEC that distinguishes it
from being a smooth nonlinear optimization problem. As we shall see from the results in the next
subsection, the implicit option function (o) is a nonsmooth function of its argument; hence so
is the objective function ¢(o) in the equivalent formulation (9). The disjunctive and nonsmooth
nature of the MPEC necessitates the development of a new theory and methodology for treating
this class of optimization problems. Such a development is the contribution of the monograph [25].

3.1 Properties of the implicit option function

Clearly, understanding the properties of the implicit option function (o) is essential for the design
of efficient numerical methods for solving the implied volatility problem. In essence, x(o) is the
solution function of a family of LCPs parameterized by the discretized volatilities o. As such,
known results from parametric LCP theory can be applied; see [10, Chapter 7]. In order to present
the key result for our use, we first introduce some notation.

To begin, it would be useful to consider o and & as vectors in the Euclidean spaces RM
and REMN-1) yegpectively. Let

(N-1)

F(o,z) = q(o) + M(o)x

be the function defining the option LCP (7). The partial Jacobian matrix of F(o,x) with respect
to o is denoted J,F(o,x); since F(o,x) is linear in x, the partial Jacobian matrix of F (o, x)
with respect to x is equal to the matrix M (o). For an arbitrary o, we define three index sets
associated with the solution x(o):

afe) ={i: (z(o)—p)i > 0= (q(0) + M(o)z);}
Blo) ={i: (x(o)—p)i = 0= (q(o)+ M(o)x); }
(o) = {i: (z(e) —p)i = 0 < (g(o) + M(o)z); }.



These index sets play an important role in the local properties of (o) when o undergoes small
perturbations. The particular case where (o), called the degenerate set, is the empty set is
particularly noteworthy. This case corresponds to the solution z(o) being nondegenerate. As we
see from the theorem below, @(-) is then locally smooth around this value o. Similar to the “big
O” notation, we write f(x) = o(g(x)) if

/(=)

lim —= = 0.
g()—0 g(z)
The following result summarizes the key properties of the option function (o). See [10, Section 7.4]
for a detailed discussion. In a nutshell, the validity of this result is due to the “P-property”
of the matrix M (o), which is ensured by condition (5). This result belongs to the domain of
sensitivity analysis of parametric complementarity problems, a subject that has been well researched
in mathematical programming.

Theorem 1 Suppose that the condition (5) holds. The option function x(o) is Lipschitz contin-
uous and directionally differentiable in its argument o € RMWN -1 The directional derivative of
z(o) at any o € RMN=D qlong any direction do € RMN=1) | denoted x'(o;do), is the unique
solution de € REMN=1) ¢4 the following mized LCP:

(JoF(0,(0))do + M(o)da); = 0, Vi€ a(o),
0 < (de); L (J,F(o,a(0))do +M(o)dz), > 0, Vi€ f(o), (10)
(de); = 0, Vi €y(o).
Furthermore, it holds that
x(o +do) = x(0) +z'(0;do) + o(|| do ). (11)
Finally, if B(o) is empty, then x is Fréchet differentiable at o.

The theorem has several important consequences. The first consequence is that the implied
volatility problem as formulated as either (8) or (9) always has a solution if the objective function
0(o,x) is continuous and the feasible volatility region I' is compact.

Corollary 1 Suppose that the objective function 6(o,x) is continuous. If T' is compact, then an
optimal solution to (8) exists.

Another consequence of Theorem 1 is that it provides a computationally effective way of approx-
imately updating a set of option values when the volatilities undergo small perturbations, without
recomputing the exact values from scratch. Indeed, the formula (11) yields

z(o') = z(o) + z'(0;do), where do = o' —o,

provided that o' is a sufficiently small perturbation of o. Thus, we can compute an approximation
to (') very easily from x(o) by simply computing the directional derivative '(o,do). In
general, the computation of this derivative involves the solution of a mixed LCP of reduced size.
The reason why the latter problem is of reduced size is because the last equation in (10) allows

10



the y-components of dz to be fixed at zero. A noteworthy instance of (10) is when z(o) is a
nondegenerate solution, that is, when (o) is empty. In this case, the mixed LCP (10) reduces to a
single system of linear equations involving only the variables dz; for i € a(o). In the general case,
the mixed LCP (10) can either be solved as stated or be converted into a standard LCP involving
only the variables da; for i € §(o), by using the first equation in (10) to eliminate the variables
dz; for all i € a(o). See [10, Section 1.5] for details.

Since the option function z(o) is not a smooth function, (9) is a nonsmooth optimization
problem in general. Nevertheless, if the original objective function 6(o,x) is smooth, then the
composite objective function (o) is “B(ouligand)-smooth”, meaning that it is locally Lipschitz
continuous and directionally differentiable. As such, we can attempt to apply a descent method
for solving the problem (9). Such an approach was first discussed in [26] and later expanded in
[25, Section 6.3]. Details are given in the next section. Furthermore, we can use the “B-derivative”
of ¢ to describe the stationarity conditions of the program (9). We refer the reader to [25] for a
comprehensive theory of the MPEC, which includes a full coverage of such stationarity conditions
and many references on this class of optimization problem.

4 Two Solution Algorithms

We present two solution algorithms for solving the implied volatility problem. We call them,
respectively, IMplicit Programming Algorithm (IMPA) and Penalty Interior Point Algorithm
(PIPA). IMPA solves the implied volatility problem based on the optimization formulation (9);
PIPA is based on the former formulation (8). Details of these algorithms and their convergence
for general MPECs can be found in [25]. Here, we present the algorithms and briefly discuss
some simplifications in the linear algebraic calculations when the algorithms are specialized to the
implied volatility problem. For practical purposes, the feasible volatility region I is assumed to be
a relatively simple set such as a polyhedron; as a result, the directional subprograms in both IMPA
and PIPA (see descriptions in the respective subsections) can be easily solved.

4.1 An implicit programming algorithm

If not for the non-smoothness of (o), (9) is a fairly standard constrained optimization problem.
With ¢(o) being directionally differentiable, we may apply an iterative descent algorithm of the
sequential quadratic programming kind to minimize this function; the resulting procedure is the
essence of IMPA. Before describing the details of this iterative algorithm, we motivate a key step
therein. Let o” € T be a given volatility vector that is not stationary for (9). Write ¥ = x(o")
and

a, = a(a”), B, = pB(e”), and -, = (o).

We can generate a descent direction of the objective function (o) at o¥ by solving the following
minimization problem: for any symmetric positive definite matrix Q, € RMN-DxM(N-1)

minimize ¢'(0¥;do) + 3 doTQ,do
subject to o¥ +do € T.
Since

¢'(0%;do) = Vep(a¥,x")Tdo + Vep(a”, ") Tz (0; do),
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the above directional minimization problem is equivalent to:
minimize Vyp(o¥, ") Tdo + Vyp(o”, @) Tde + 5 doTQ,do
subject to o”+do € T
(JoF(o¥,z")do+ M(c")dx ), = 0, Vi€ o, (12)
0< (de); L (J,F(co",x")do+ M(c")dx), > 0, Viep[,
(de); =0, Vi€,

where we have used Theorem 1 to substitute for the directional derivative &'(¢”;do). The latter
optimization problem turns out to be another MPEC whose solution is not trivial. There are
various strategies that one can use to modify (12) in order to obtain a practically efficient method.
One such modification, whose goal is to simplify the directional computation, is included in the
IMPA described below. In presenting this algorithm, we use the following additional notation:

v = p(a”,x”), dp; = Vep(a”,x"), dp; = Vep(a”,z"),
and J,F" = J,F(o",z").
IMPA for implied volatilities

Step 0. (Initialization) Let p, v € (0,1) be given scalars and let Qy be a given symmetric
positive definite matrix of order M (N — 1). Let a° € T be given. Set v = 0.

Step 1. (Direction generation) Let 8’ be an arbitrary subset of 8,. Solve the convex quadratic
program
minimize  (d@%)Tdo + (de%)Tde + 5 doTQ,do

subject to o”+do € T
(JoF'do+ MVdx), =0, Vi€ a, Uf,

(dz); =0, Vieyn U(B\B'),

to obtain the search direction do and the auxiliary vector da, both of which must necessarily be
unique.

Step 2. (Termination test) If
|ldo || < prescribed tolerance,

stop; we take the pair (6”, ") to be a desired approximate solution of (9).

Step 3. (Step size determination) With
o’(r) = 0"+ 7do and z"(r) = z(o¥(7)), V7 € [0,1],

set
7, = max(0.01, p%) (14)

12



where £, is the smallest nonnegative integer £ such that with 7 = p?,
oo (1), 2" (7)) — v < y7[(dpy) T do + (dyiy) T de].

Set o¥*! = 0¥(1,). Choose a symmetric positive definite matrix @, .1 and replace v by v + 1.
Return to Step 1.

The choice of the matrices {Q,} could presumably affect the practical performance of the
algorithm. Ideally, this should be chosen to reflect some second-order information of the objective
function 0(o,x). Nevertheless, this issue is not well studied in the MPEC literature, due to the
nonconvexity of such problems. In our experiments, the choice of the identity matrix for each @,
yields fairly satisfactory results. The rule (14) imposes a lower bound of 0.01 on the step size. The
rationale for this is that with the modification of the direction search as described in Step 1, the
search direction do obtained from this step is no longer guaranteed to be a descent direction for
the function ¢(o) at o”. Thus we use the lower bound to prevent the iteration to take too small
a step. Other than this precaution, the step size determination is the well-known Armijo inexact
line search rule in standard unconstrained optimization algorithms. A convergence analysis of the
algorithm without the modification of the directional step can be found in [25]. At this time, there
is no convergence proof of the algorithm as described above (with the directional modification).
Nevertheless, the computational results reported in the next section suggests that the algorithm
performs quite well on the test problems.

4.2 A penalty interior point algorithm

Unlike IMPA that originates from an iterative descent algorithm for solving smooth nonlinear
programs, PIPA originates from a penalty method coupled with an interior point routine to deal
with complementarity constraint in the other formulation (8) of the implied volatility problem. For
background on such an interior point method, the reader is referred to [30] and the many references
therein.
PIPA operates on the following obvious reformulation of (8):
minimize (o, x)
subject to o € T
w—q(o)—M(o)x =0
wo(zx—p) =20
where o denotes the Hadamard operator on two vectors; that is, w o & is the vector whose i-th

component is equal to the product of the i-th components of w and . Before presenting the details
of PIPA, we introduce some notation and explain the key ideas behind the algorithm. Let

Glo,z,w) = w—gq(oc) —M(oc)x = w— F(o,x)
and define the residual function of the complementarity conditions:

rlo,z,w) = (Go,z,w)) 'G(o,z,w) + (z —p)Tw.

13



Also define a penalized objective function
Pe(o,z,w) = 0(o,z) +cr(o,z,w),

where ¢ > 0 is a penalty scalar to be adjusted. For a given vector «, let diag(x) be the diagonal
matrix whose diagonal entries are the components of this vector.

PIPA is an iterative algorithm that generates a sequence of iterates {(o”,z", w")} satisfying
the following conditions for all v:

a. (feasible volatilities) o” € T;
b. (positivity of state variables) ¥ — p > 0 and w” > 0; and

c. (centrality condition) (z” — p) o w” > ng,1pr(n—1), Where n € (0,1) is a given scalar, 137nv_1)
is the M (N — 1)-vector of all ones, and

_ (=¥ -p)"(w")
W ="TTMIN )

is the average “complementary gap” between x” and w".

While maintaining these conditions, PIPA attempts to decrease the objective function 6(o, ) by
reducing the penalty function P.(o,z,w) via an Armijo inexact line search using a properly defined
search direction and a proper choice of the penalty scalar c. The ultimate goal of PTPA is twofold:
one, to drive the residual (o, z,w) toward zero, thereby achieving feasibility to the MPEC, and
two, to obtain a satisfactory “minimum” value of the objective 6(o, ). For the detailed convergence
theory of this algorithm, we refer the reader to the text [25].

At the beginning of each iteration v, a triple (o, z", w") satisfying the above conditions is
given. Consistent with the notation used so far, we write

G’ = G(o",2",w") and r, = r(e’,z",w").
At this triple, a Newton linearization step is applied to the equation:
w—q(oc)—M(o)z =0
and also to the following perturbed complementarity equation:

wo(x—p) = rg lyw 1),

where x is a given constant in the interval (0,1). The resulting linear equations are used to
define a directional quadratic program whose solution yields a search direction along which the

aforementioned line search is carried out. The following is a detailed step-by-step description of
PIPA.

PIPA for implied volatilities

Step 0. (Initialization) Let p, v, ko, and 1 be given scalars in the interval (0,1). Let c_; > 1
and ¢ > 0 be given scalars. Let Hy be a given symmetric positive (semi)definite matrix of order
2M (N —1). Let (6, 2%, wP) be a given triple satisfying the three conditions (a, b, ¢). In particular,
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for a given o € T, 20 is the set of American option prices calculated using o°. w°

positive vector. Set v = 0.

is any arbitrary

Step 1. (Direction generation) Solve the convex quadratic program

minimize (dyp%)Tdo + (de4 ) Tdx + 3 ( do )TH,, ( do )
dx dx
subject to o +do € T
G' +dw — J,F'do — M"dx = 0
(¥ —p) ow” + diag(z” — p)dw + diag(w”)dz = Ky g» Lar(n-1)
ldo[leo < Ty
to obtain the search triple (do, dz, dw).
Step 2. (Termination test) If
|| (do, de, dw) || +r, < prescribed tolerance,
stop; we take (0¥, &") to be a desired approximate solution of (8).
Step 3. (Penalty update) Let s, > 1 be the smallest integer s > 1 such that
(dgy)"do + (dgy) Tdw — iy [2(6") TG + (1= m)(2") T’ | < .

Sy

Set ¢, =¢;” ;.

Step 4. (Step size determination: centrality) With

o’ (1) oV do
z'(r) | =| = |+7| de |,
w” (1) w” dw

determine the largest 7 € (0, 1] such that

z(7) o w” (1) > ngu(7) Lyg(v-1);

where
(z"(1) —p) T (w"(7))
M(N —1)

gv(T) =
Set 7, = 0.99997.

Step 5. (Step size determination: Armijo line search) Set

— !
v =T, pe"
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where £, is the smallest nonnegative integer £ such that with 7 = 7,/p°,
Pe,(0"(1),2"(1), w"(7)) = Fe, (0", 2", w") <
v [(dgy)Tdo + () Tdz — ¢y (2(G*)TG" +(1-r,) (=) w")].

Set (a1, zv T w’t) = (o¥(1,), 2" (1), w” (7). Choose a scalar k,11 € (0, x,] and a symmetric
positive (semi)definite matrix H, ;. Return to Step 1 with v replaced by v + 1.

IMPA and PIPA share much resemblance in the computational steps; they also have substantial
differences in the underlying design philosophy, numerical implementation, and convergence anal-
ysis. There is also much fine tuning that one can apply to the algorithms. We have presented the
essence of both algorithms. The implementation reported in the next section has adopted some of
the most basic numerical techniques in dealing with the linear algebraic calculations; the computer
codes that we have written for the experimentation are far from being a final product of commercial
quality.

5 A Numerical Study

We have written two experimental computer codes in MATLAB to evaluate the numerical perfor-
mance of IMPA and PIPA. We consider the inverse pricing of K € {2,11,14} American put options
in order to determine the discretized volatilities implied by certain given option values. Thus for
k=1,..., K, the payoff function of option k is given by

A¥(S,t) = max(S — Ej,0)

where Fj, is the strike price of the option at its expiration date 7j. For each option k, a set
of discretized American option prices V2% = Vb (n55 0), representing the set of currently
observable option prices, is generated by solving the single-option LCP (4) using a constant volatility
of o9 = 0.4 and the following parameters: N = 16, 65 = 1, T = T, 6t = 0.125, r = 0.05, and
Do = 0.02.

The constant o is not known to IMPA or PIPA; instead, we use the values V;bs’k to define the
following least-squares objective function:

o(z) = % sz S (VE(18S,0) — Voo )2,

k=1 neN}

The index set Nj is a singleton in all the rums; it consists of {n'} such that n'dS = Sy =
the current asset price. With the objective of minimizing 6(x), our goal in this set of experi-
ments is to investigate whether IMPA or PIPA is able to obtain an objective value of 6 close to
zero. Ideally, we would like the algorithms to reproduce the constant volatility og. In reality, since
the inverse MPEC (8) does not necessarily have a unique optimal solution, we do not expect a
constant volatility to be produced by the algorithms; instead, we will be satisfied if the algorithms
can produce a small 8 value. We further take I' to be a rectangular box, meaning that the unknown
volatility vector o is subject to simple upper and lower bounds. In particular, we set an upper
bound of 1.0 and a lower bound of 0.0.
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Before presenting the computational results, we give some details involved in the implementation
of the two algorithms. In IMPA, the major computations in each iteration are (i) the direction
generation step which involves solving the convex quadratic program (13), and (ii) the evaluation
of «¥(7) for various step sizes 7 = p. By using the equality constraints in (13), we can solve for
the variables dz; for i € o, U S’ in terms of do, thereby converting (13) into a strictly convex
quadratic program in the variable do alone. In the experiments below, we have chosen each @,
to be the identity matrix. This choice greatly simplifies the resulting quadratic program. In fact,
with the feasible set I" being a rectangular box, the solution of the latter program becomes trivial.

The evaluation of x”(7) involves solving the forward option LCP (7) corresponding to o”(7).
This LCP decomposes into K independent linear complementarity subproblems each corresponding
to a given option. In turn, as mentioned before, each single-option LCP can be solved backward in
time. Thus, the evaluation of ¥ (7) amounts to solving K M time-stepped LCPs each of the form
(4). In principle, there are many methods applicable for solving the latter LCP (4); see [10, 17].
In a separate experiment, we have compared several of these methods and concluded that when NV
(the number of discretized asset prices) is large, an interior point algorithm [30] is the preferred
method for solving the LCP (4). Thus, this interior point algorithm is chosen as the principal tool
for evaluating " (7).

The main computation in each iteration of PIPA is the solution of the convex quadratic program
(15). Unlike IMPA, there is no need to solve any forward option LCP. As in IMPA, the program
(15) can be converted into one in the variable do alone. In both cases, the highly special structure
of the matrices involved is exploited to facilitate the computations.

The termination test for IMPA is

min( || do ||, 6(x*, o)) < 1075, (16)

A maximum number of 80 iterations is also imposed. Since IMPA maintains the feasibility of the
pair (o¥,z") to the MPEC (8), if IMPA terminates after 80 iterations without satisfying (16),
we obtain an implied volatility vector o € I' and associated American option prices " that are
deemed satisfactory. As we shall see, the objective values (x”) at termination of IMPA in all runs
are invariably very small.

The termination test for PIPA is

| (do, de, dw) || +r, < 1075 (17)

At termination, the iterate (o, z") produced by PIPA is an approximate feasible solution to the
MPEC (8) with the feasibility accuracy being less than 10~8. The objective value 6(x") is reported
in each run.

5.1 Example 1

Two observed put option values are given (K = 2):

k (Ek, Tk) VObS’k
1 (8,0.5) 0.8003
2 (8,1.0) 1.1217
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The current asset price is Sp = 8. We use an initial value 6° = o, = 0.255 to start both
algorithms. For PIPA, this initial value 0 induces an initial pair (2% w®) that is obtained by
slightly perturbing (@ (oinit), w(oinit)) in order to satisfy the positivity condition (b); in turn, a
scalar 7 is then defined so that the condition (c) is also satisfied. The discretized volatility surfaces
computed by IMPA and PIPA are shown in Figures 1 and 2, respectively.

The outputs from the two algorithms are summarized in the table below. Note that the objective
value obtained by PIPA is larger than that obtained by IMPA even though the residual is quite
small. The two surfaces in Figure 1 and Figure 2 have similar shape, but are not identical.

# iter residual ||deo|| 0
PIPA 31  3.0995e-09 1.2694e-11 1.0832e-02
# iter ||de|| 0
IMPA 73 4.7601e-04  8.7225e-07

Since PIPA and IMPA did not produce identical surfaces and neither recovered the original
constant volatility surface used to generate the observed option data, as a test to determine how
close the option prices calculated from given volatility are being reproduced, we use the volatility
surfaces obtained by PIPA and IMPA now as parameters in the forward problem to re-calculate
the option values. For given strike prices £ = 8 and £ = 9, we plot the three set of option
values computed using: 1) o(S,t) = 0.4, 2) o(S,t) = oppa(S,t), and 3) o(S,t) = ompal(S,t)-
See Figures 3—4 where we use “V obs” to mean the option values calculated using o (S,t) = 0.4.
i From these figures, we see that IMPA reproduces the option prices V ,s rather closely when the
asset price is close to the strike price.

5.2 Example 2

Eleven observed put option values are given (K = 11):

k(B Ty) Vot k (ByTp) VO*
1 (3,1.0) 0.0041 7 (9,1.0) 1.7287
2 (4,1.0) 0.0288 8 (10,1.0) 2.4339
3 (5,1.0) 0.1156 9 (11,1.0) 3.2277
4 (6,1.0) 0.3131 10 (12,1.0) 4.0994
5 (7,1.0) 0.6497 11 (13,1.0) 5.0117
6 (8,1.0) 11217

The corresponding parameters are the same as those given in Example 1. Following the analysis of
Example 1, we give the results below.

PIPA # iter residual llde || 0
73 7.0148e-09 6.8803e-15 2.2206e-03

# iter ||deo|| 0

IMPA 80 1.2632e-03  1.8398e-04
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PIPA: 2 options

Figure 1: Example 1, volatility surface produced by PIPA, 2 observed options

IMPA: 2 options

Figure 2: Example 1, volatility surface produced by IMPA, 2 observed options
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Option values, E=8, T=1
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Figure 3: Example 1, options values calculated using constant/PIPA /IMPA volatility surfaces, E
=38

Option values, E=8, T=1
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Figure 4: Example 1, options values calculated using constant/PIPA /IMPA volatility surfaces, E
=9
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PIPA: 11 options

Figure 5: Example 2, volatility surface produced by PIPA, 11 observed options

IMPA: 11 options

Figure 6: Example 2, volatility surface produced by IMPA, 11 observed options
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Again, we plot the re-calculated option values for strike prices E = 8 and E = 9, see Figures
7-8. In this case, both IMPA and PIPA reproduce the observed option curve closely when the asset
price is close to the strike price.

5.3 Example 3

Fourteen observed put option values are given (K = 14):

k (Eg,Tp) Vebsk k (B, T) VOobsk
1 (5,0.5) 0.0279 8 (5,1.0) 0.1156
2 (6,05) 0.1240 9 (6,1.0) 0.3131
3 (7,0.5) 0.3884 10 (7,1.0) 0.6497
4 (8,05) 0.8003 11 (8,1.0) 11217
5 (9,05) 1.4496 12 (9,1.0) 1.7287
6 (10,0.5) 2.1913 13 (10,1.0) 2.4339
7 (11,0.5) 3.0533 14 (11,1.0) 3.2277

We give the results below. For detailed explanation, the reader is referred to the discussion in
Example 1.

PIPA # iter residual ||der|| 0
66 2.0231e-09 1.3517e-15 2.6059e-03

# iter llde || 0

IMPA 80 1.7086e-03 1.5764e-04

The re-calculated option values for strike prices £ = 8 and E = 9 are plotted in Figures 11-12.

It is interesting to note that in all three examples, the volatility surface calculated by PIPA is
lower than that calculated by IMPA. This is also reflected in the plots of the option values: the
option values calculated from opipa (S,t) are below those calculated from oy = 0.4 and ovpa-

5.4 Example 4

Again taking the option values calculated from the constant volatility (oo = 0.4) to be the observed
values, we now perturb each observed values by a small amount; i.e.

yobsk = yobsk 4 00707
Thus, the new objective function is given by
K . 2
o) =13 > (VF(nss,0) - Vobok)

k=1neN}
K

=33 > (VH(nds,0) — vtk — 0.0707)2
k=1neN;
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Figure 7: Example 2, options values calculated using constant/PIPA /IMPA volatility surfaces, E

=8

Figure 8: Example 2, options values

=9
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PIPA: 14 options

Figure 9: Example 3, volatility surface produced by PIPA, 14 observed options

IMPA: 14 options

Figure 10: Example 3, volatility surface produced by IMPA, 14 observed options
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Figure 11: Example 3, options values calculated using constant/PIPA/IMPA volatility surfaces, E

=8

Figure 12: Example 3, options values calculated using constant/PIPA/IMPA volatility surfaces, E

=9
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Clearly, o(S,t) = o for all (S,1) is a feasible solution to the optimization problem (9). This gives
an upper bound on the optimal objective value:

Boptimal < K (0.0707)* = UB.

We repeat Examples 1-3 using this new objective function. Our goal is to investigate how well
IMPA and PIPA perform in relation to this upper bound value U B, starting at o, = 0.255. The
results are summarized below. With the exception of PIPA on the 2-option example, in each case
the algorithm is able to produce an objective value that is lower that the corresponding upper
bound, in some cases much lower.

PIPA IMPA® UB
2 options 2.5859e-02 8.8725e-07 4.9985e-03

11 options 1.5442e-02  4.3301e-03  2.7492e-02
14 options 1.0045e-02  6.9930e-04  3.4989e-02

“Maximum 80 iterations

5.5 On the issue of a smooth volatility surface

We emphasize that the above four sets of experiments are selected to demonstrate the viability of
the PIPA and IMPA algorithms. The general methodology is applicable to any objective function
O(o,xz) and any realistic constraint set I'. For computational simplicity, we have chosen some
straightforward objective functions that do not contain any smoothing terms. Adding a smoothing

term such as ) )
Jdo do
2 _ _
||V || _/l(as) +(8t) ]dsclt

to the objective function will not compromise the validity of the method. Indeed, only the linear
algebra, involved need to be modified. The roughness of the surfaces plotted in Figures 1-10 is
also partly due to the coarseness of the grid: dS = 1 and dt = 0.125. In addition, these plots
are generated by the built-in MATLAB graphics routine, which we believe does not perform any
type of high-order interpolation/smoothing on the data points. Obviously, if we refine the grid and
employ some improved graphics routines, then the resulting surfaces can be expected to become
“smoother”. In what follows, we report the results of some attempts to obtain a smoother volatility
surface by a straightforward modification of the PIPA and IMPA computer codes.

In running the above four examples, we have required the volatility to lie in a unit hypercube,
ie.

0<o<1.

These bounds may prove to be too loose. Indeed, if we tighten the bounds so that instead

0.001 < & < 0.5,

we expect the spikes on the surfaces will be less prominent. To verify, we re-run Example 3 using
the same starting point ojnir = 0.255 but with the tightened bounds on o. The surfaces are plotted
in Figures 13 and 14.
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PIPA: 14 options, tightened bounds

Figure 13: Example 3, volatility surface produced by PIPA with tightened bounds

IMPA: 14 options, tightened bounds

Figure 14: Example 3, volatility surface produced by IMPA with tightened bounds
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PIPA # iter residual llde || 0
82 7.4863e-10 4.0431e-15 1.0476e-02

# iter ||der|| 0

IMPA 80 2.1531e-03  1.3280e-03

In addition, suppose it becomes reasonable to require the computed volatility surface to be
close to a set of historical volatility data, we may incorporate this requirement into the objective
function as well. Again, we re-run Example 3 using the same starting point as before but with the
modified objective function

1 K
O(x) = 5 3 3 (VE(n6S,0) — VPsk )2 4
k=1 neN}

N =

K .
Z Z (Omn — 022)2’
k=1 (m,n)eS

where S = {1,...,M — 1} x {1,..., N — 1} and o"® = 0.35. The results are plotted in Figures 15
and 16.

# iter residual ||de|| 0
PIPA 82 1.0941e-10 1.1360e-14 7.8159e-02
# iter llde || 0
IMPA 80 5.4872e-01  1.8489e-01

;From the above set of tests, we see that the volatility surface has much less fluctuation if
we impose more stringent conditions either by restricting the feasible region I' or by including
additional terms to the objective function. This also gives a good indication that should a smoothing
term be included into the objective function, the volatility surface can be expected to be much less

spiky.

6 Conclusion

We have introduced a new, mathematically sound approach to compute an implied volatility surface
of American options. An inverse optimization problem that is an instance of an MPEC is formulated
for computing this surface. Two different algorithms for solving the MPEC, namely PIPA and
IMPA, are presented and tested. Numerical results demonstrate that these algorithms are able to
reproduce the observed option values and meet the prescribed objectives closely.

A Computing the American option prices

The discretized American option pricing problem is a series of time-stepped LCPs. Many algorithms
are available for solving linear complementarity problems. The algorithms fall into two general
classes: iterative algorithms and pivotal algorithms. The former algorithms include the projected
successive over-relaxation (PSOR) method and interior-point (IP) methods. Algorithms such as
Lemke’s and parametric principal pivoting are pivotal in nature. Because the matrix Q in LCP (4)
may be of large order but sparse-it is typically tri-diagonal, we choose to use iterative algorithms
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obs

PIPA: 14 options, witho

=0.35

Figure 15: Example 3, volatility surface produced by PIPA with o™ = 0.35

IMPA: 14 options, withc®®S = 0.35

Figure 16: Example 3, volatility surface produced by IMPA with o™® = 0.35
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over pivotal algorithms as the former can take advantage of the sparsity more effectively. As an
experiment, both the PSOR algorithm and the interior point algorithm are implemented on the
same set of test problems so that we can compare their relative performance. The implementations
are done in MATLAB and are run on a SPARC ULTRA 1/140. Table 1 summarizes the results.
The parameters used for the tests are: S = 1, 6t = 0.25, M = 4(T = 1), r = 0.05, Dy = 0.02.
Crank-Nicolson finite-difference is used with # = 0.5. We run both PSOR and IP for various sizes of
the matrix M, which is of order (N —1). For IP, a termination criterion similar to (17) is imposed.
For PSOR, the termination rule is

Either || min(V”,q + QV")||so <1078, or max iteration > 900.

The performance of the PSOR algorithm depends on the relaxation parameter w. To further
illustrate this, we run the PSOR algorithm for all test problems first with w being fixed at 1.1 and
then with a “best” w value. (For simplicity, we run each problem for different values of w € (1, 2]
at an increment of 0.1 and choose the best value from the set.) For PSOR, we report the average
number of iterations required for each time step. As noted before, the option values produced by
both algorithms agree almost exactly. Using the best w, we report the “max diff” defined as

max diff = ||V — VIP||.

i From the test results, we notice that when the size of the matrix is small, PSOR algorithm tends
to work faster than the interior point algorithm; however, as the size of the matrix increases, the
interior point algorithm is more robust than the PSOR algorithm. In particular, the interior point
algorithm is more user friendly in the sense that it is not parameter dependent.

Acknowledgement. The authors are grateful to the Co-Editor Mark Broadie for helpful discus-
sions on the topic of this paper and for several related references.
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IP PSOR (w = 1.1) PSOR (best w)

N FE iter CPU iter CPU w iter CPU max diff
16 8 30 1.83 10 0.1 1.1 10  0.11 7.8353e-10
32 16 36 2.77 40  0.63 1.3 21 0.33 4.1985e-10
50 25 43 4.13 99  2.13 1.5 35  0.77  3.4150e-10
60 30 47  5.08 144 3.72 1.5 42 1.08 2.6963e-09
80 40 55  7.54 263 9.41 1.6 56 1.93 2.6029e-09
90 45 51  7.55 336 13.44 1.7 68 2.62 3.5666e-10
100 50 53  8.30 417 18.11 1.7 70  3.04 3.0367e-10
140 70 62 12.63 838 49.12 1.8 109 6.32 5.8987e-10
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