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ABSTRACT

Solar energy resources are poised as the biggest renewable competitor of fos-

sil fuels. Solar perovskite thin films are an emerging technology with efficiencies

close to established photovoltaic technologies. However, structural and thermal

instability and an exponentially large number of possible compositions and pro-

cessing parameters have led to reproducibility and scalability issues even at the

lab scale. A DOE-funded collaboration across universities and national labs is

creating a multi-scale statistical machine learning (ML) model to optimize the en-

tire process from perovskite synthesis to device performance. The collaboration

is called SPIRALs, which stands for Science and Processing Informed by Ratio-

nal Algorithmic Learning (SPIRALs). A key challenge is integrating data from

diverse data sources, such as experimental data and SEM images, as inputs to the

ML algorithms. This work reports the Python code developed to reduce SEM im-

ages using spatial functions such as power spectral densities and autocorrelation

functions. Quantitative analysis of these functions is done to derive spatial pa-

rameters such as the correlation length, grain size, fractal dimension, and Hurst

exponent that describe the surface morphology of thin films. These parameters

can tie synthesis methods to device performance and act as a check for ML frame-

work predictions. The developed coding methodology and subsequent analysis

can be applied to any thin film image and extended to different instruments to

facilitate the SPIRALs project.
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Chapter 1

Introduction and Background

Photovoltaic (PV) technologies are poised as the biggest competitor to fossil fu-

els for meeting global energy demand since they rely on an abundant renewable

resource, solar energy. In comparison to current PV technology, metal halide per-

ovskite (MHP) solar cells promise to be a cost-effective and highly efficient energy

resource. They can be utilized at a TW-scale if they overcome the limitations of

efficiency, scalability, sustainability, and stability [1].

1.1 Perovskite Crystal Structure and Material Properties

Perovskites, named after Russian mineralogist Lev Perovski, are part of a fam-

ily of ABX3 materials that share the same crystal structure as CaTiO3. They have

shared corner octahedra that extend in 3 dimensions as shown in Fig. 1.1. An

MHP’s typically contain an A-site cation like cesium, methylammonium, or for-

mamidinium; a B-site cation like lead; and an X-site halide anion (I�;Br�; or Cl�)

[2]. Fig. 1.1 illustrates the general cubic perovskite crystal structure configuration.

In the early 1920s, Goldschmidt proposed a “tolerance factor” T to study the

stability of oxide perovskites. Geometrically, for an ideal ABO3 perovskite, the ra-

tio of the bond length of the A � O bond to the bond length of B � O bond is 2 : 1.
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Assuming that the bond length is roughly the sum of two ionic radii, the toler-

ance factor T value of an ideal perovskite should be equal to 1.0. However, Gold-

schmidt found that, as an experimental fact, T values of most cubic perovskites are

in the range of 0.8–0.9, and distorted perovskites occur outside this range [3]. This

observation led to the following definition of the Goldschmidt tolerance factor for

an ABX3 perovskite [4].

T =
Ra + Rb
p

2(Rb + Rx)
(1.1)

In equation 1.1 the radius of the A cation is Ra, the radius of the B cation is Rb,

and the radius of the X cation is Rx. Depending on T , perovskites form and phase

changes occur and the ABX3 structure can either be orthorhombic or cubic [5]. If

T is less than 0.70, perovskites do not form, and if T is greater than 1, large cubic

phase distortions are observed. If T lies in the narrower range 0.89–1.0, the cubic

structure shown in Fig. 1.1 is likely, with lower T values giving less symmetric

tetragonal or orthorhombic structures [6].

In the 1950s Muller and Roy developed plots of the ionic radii Ra versus Rb,

termed ’structural maps’ to study ternary oxide stability [7]. Li et al. built on this

understanding and developed the octahedral factor, �, that measures the ratio of

the ionic radii of the cation and anion [5].

� =
Rb

Rx
(1.2)

Equations 1.1 and 1.2 form the criterion for perovskite formability. For halide per-

ovskites (X=F, Cl, Br, I), 0:81 < T < 1:11 and 0:44 < � < 0:90. Fig. 1.1 shows the

structural map for 12 stable methylammonium (MA) and ethylammonium (EA;

2



Figure 1.1: Cubic metal halide perovskite structure and structural map for per-
ovskite formation. (a) 3-D cubic metal halide perovskite structure with A and B
site cations and X site anions. (b) Calculated T and � factors for 12 halide per-
ovskites. Fig. 1.1 adapted from [9].

CH3CH2NH3) halide perovskites developed from these equations. The correspond-

ing formamidinium (NH2CH=NH2) based halides are expected to have intermedi-

ate values between those shown in Fig. 1.1. This formability space provides the

option for many perovskites. More than 500,000 options for MHPs are possible,

even if the M-site cation is restricted to Pb2+ alone [8]. In some cases, an interme-

diate tetragonal phase may also be present. T and u factor rules do not predict the

temperature at which the cubic phase forms, and so heating is often required to

reach the cubic phase with good photo absorption [9].

1.2 Advantages of Metal Halide Perovskites

Perovskite solar cells have high efficiencies that have been attributed to excep-

tional material properties such as remarkably high absorption over the visible

spectrum, low exciton binding energy, charge carrier diffusion lengths in the

3
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Figure 1.2: Efficiencies of research solar cells, comparison of single junction Si
photovoltaic cells (at 26.7%) with perovskites (at 26.0%). 1

millimeter range, a sharp optical band edge, and a tunable band gap from 1.1

to 2.3 eV by interchanging the above cations, metals and/or halides [10]. Fig.

1.2 compares the growth of perovskite solar cells (PSCs) with other photovoltaic

cell types, such as those made from Si, copper, indium gallium selenide/sulfide,

etc. Single-junction perovskite systems achieved 26.0% efficiency in 2023, while

perovskite-silicon tandem systems achieved 33.7% efficiency. In comparison, Si

hetero-structure cells have currently demonstrated 26.7% power conversion effi-

ciency. These power conversion efficiencies have yet to plateau and are increas-

ingly close to the Shockley-Queisser limit, which provides a theoretical maximum

efficiency of 33 % for a single-junction solar cell [11].

1This plot is courtesy of the National Renewable Energy Laboratory, Golden, CO.
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Moreover, perovskites can be easily processed using techniques such as spin

coating, blade coating slot-dye coating, and atomic layer deposition, at room tem-

perature making them one of the most versatile PV technologies [10].

1.3 Limitations of Metal Halide Perovskites

1.3.1 Thermal and Structural Instability

The biggest impediments to perovskite success are thermal and structural instabil-

ities in pure perovskite compounds. External factors such as light, moisture, and

oxygen cause chemical- and photo-oxidation degradation of perovskites [12]. Ad-

ditionally, they undergo phase transitions, crystallizing to their non-cubic, non-

conductive �-phases at room temperature while the photoactive �-phase is stable

at high temperatures. For example, CsPbI3 has a band gap of 1.73 eV and good

emissivity, but its photo-active �-phase is only stable at temperatures above 300°C

and it crystallizes to an orthorhombic �-phase structure at room temperature [13].

To address this issue, compositional engineering techniques have become a

key design principle for perovskites [14]. This is because a reduction of band

gap leads to an increase in electronic conductivity [13]. Moreover, modulating

cation and halide compositions reduce the lattice strain making it harder to form

vacancies, which in turn offers greater moisture stability. Furthermore, various

film synthetic methods contribute to the development of stable inorganic PSCs.
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For example, mixing additives with perovskite precursors minimizes defect traps

by introducing an intermediate phase, and reduces lattice strain [12]. These ap-

proaches, while improving stability, increase the synthetic and processing com-

plexity of perovskites.

1.3.2 Microscopic Grain Properties

Halide perovskites are a type of semiconductor that have unique optoelectronic

properties. They are more tolerant to defects than conventional semiconduc-

tors, which has led to their use in the development of efficient photovoltaic

devices[15, 16]. Early development of PSCs attributed the progress in efficiency to

these unique defect structures in the bulk and benign grain boundaries [17]. How-

ever, recent research has shown conflicting reports on the role of grain boundaries.

Studies have revealed that increasing grain size from nanometers to micrometers

leads to improved device performance and elongated charge-carrier lifetimes, in-

dicating a possible non-benign role of grain boundaries [18, 19, 20, 21, 22]. Other

research suggests that grain boundaries contribute to non-radiative recombination

and reduce device performance [15, 23]. Additionally, a recent theoretical study

pointed out that GBs may even be the major recombination sites in the standard

iodide-based perovskites, which seems to be consistent with the recent experi-

mental efforts [24].

Even though it has been established that grain boundaries play a key role in the

6



performance of thin-film optoelectronic devices, their effect on halide perovskite

materials is still not understood. The biggest factor limiting progress is the inabil-

ity to identify grain boundaries. Microscopic image analysis techniques and soft-

wares can misidentify grain boundaries, leading to conflicting literature reports

about their influence. Electron backscatter diffraction (EBSD) is the most widely

used method to identify grain boundaries but it destroys halide perovskite thin

films [15, 25]. The spatially-resolved autocorrelation functions and radial power

spectral densities developed in my research project are used to identify grain sizes

and correlation lengths in perovskite thin films as explained in Sections 2 and 3.

This analysis can be extended further to isolate grain boundaries.

Additionally, defects are primarily found either on the film surface, the bulk of

the grain, or the boundary between neighboring grains. Increasing the grain size

can also affect bulk and surface properties such as increasing crystallinity, reduc-

ing defect density at the surface and in the bulk, and reducing structural defects

associated with pinhole formation in addition to possible changes in grain bound-

ary properties. So, It is crucial to study the impact of these different microscopic

factors on the electro-optical properties of polycrystalline perovskite thin films.

Moreover, another challenge in terms of material stability is understanding

where degradation starts. Grain boundaries or the surface of perovskite films or

both are considered to be the weakest points where the degradation starts[26, 27].

However, the degradation process is not yet understood fully. Additionally, ion

migration in perovskite layers can also impact device stability, and controlling

7



grain size has been explored to mitigate this effect. Larger grain sizes have been

shown to increase the activation energy for ion migration, potentially reducing

degradation [28]. Thus, various microscopic factors affect device performance,

posing a monumental experimental and computational challenge.

1.3.3 Processing Conditions

Metal halide perovskite device performance is also affected by factors such as

the solvent, precursor chemicals, annealing temperatures, and different annealing

profiles. These factors alter the crystallization pathway of the perovskite, which

can lead to phase transformations. These properties impact the device’s grain

boundaries, impurity phases, and electrical conductivity which all affect perfor-

mance [29].

This vast parameter and compositional space surrounding MHP device design

have created scalability and reproducibility issues within and amongst labs. To

tackle these challenges both on the microscopic and macroscopic scale, there is a

need for statistical machine learning (ML) guidance.

1.3.4 Machine Learning Use in Literature

Machine learning techniques include computer algorithms that automatically

evolve and adapt to the environment via experience, to make decisions and extract

8



knowledge [30]. Combining density functional theory data and statistical analy-

sis, Park et al. suggested that the effective atomic radii and number of the lone

pairs in the A-site are adequate to predict the perovskite stability [31]. Within the

compositional engineering space, Yang et al. employed a machine learning pro-

cess that identified the relationships between the octahedral structures and the an-

harmonicity of the halogen species [32]. Jacobs et al. computationally identified 15

out of 1845 halide perovskites that are comprised of nontoxic elements, stable in a

humid operating environment, and have an optimal bandgap for single-junction

cell applications [33]. Saidi et al. employed a hierarchical convolutional neural

network to investigate the electronic properties of the halide perovskite materials,

using neutral network element to calculate the proper structural and electronic

features, obtained root-mean-square errors for the lattice constants, octahedral

angle, and bandgap for the MHPs [34]. Bayesian optimization is employed by

Clancy et al. to design the halide perovskite materials with the optimal combina-

tion of cations, halides, and solvents [35].

Based on published papers, Odabasi et al. employed machine learning to ana-

lyze the experimental details and device performance of perovskite solar cells that

were reported in the literature from 2013 to 2018 and confirmed that the machine

learning techniques could not only help develop new halide perovskite materials

but could also facilitate the design of compatible neighboring materials and fabri-

cation routes. This finding facilitates the selection of suitable hole transport layer

(HTL), electron transport layer (ETL), solvents, anti-solvents, and spinning times

[36].
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Suitable processing conditions of the perovskite solar cells can also be opti-

mized via the machine learning model. Ren et al. linked material parameters at

certain conditions to illumination-dependent current-voltage (JV) measurements

to get final device efficiency. Their model provided physical insights about the

location of the best performing and robust processing conditions in solar cell de-

vices [37].

Machine learning has also been combined with various experimental tech-

niques to evaluate halide perovskite functionality. Ali et al. employed machine

learningto evaluate X-ray diffraction, and scanning electron microscopy data to

investigate the double-cation perovskites recovery in the cubic phase when <10

mol % cesium is added [38]. Theoretical simulations were also run to understand

process kinetics such as anion exchange in halide perovskite nanoplates [39].

Machine learning methods have employed image recognition to analyze the

size distributions of perovskite crystals and find boundaries of the perovskite

crystal grains in SEM images [40]. Using a blind-source separation technique

on SEM energy dispersive x-ray (EDX) spectral images, Jany et al. successfully

extracted the nanostructures’ pure X-ray signal to determine the chemical compo-

sition of the perovskite structures [41]. Madsen et al. developed a deep learning-

based algorithm for the recognition of local atomic structures in TEM images,

which is stable to microscope parameters and noise [42]. Liu et al. have devel-

oped a resolution-enhancement method for post-processing images from atomic

force microscopy (AFM) using a deep convolution neural network to derive high-
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resolution topography information from low-resolution topography images [43].

There is still an opportunity to retrieve a large number of data from images of

experimental work since there are extensive text and figure-based content in the

halide perovskite and materials science literature [30].

These papers showcase the application of machine learning techniques in pre-

dicting various perovskite parameters, such as solar cell performance, band gap,

material properties, and thermo-electric behavior. However, there is still a vac-

uum for a combined work of high-throughput calculation, machine learning, data

mining, and experiments that encompasses the comprehensive structural, me-

chanical, electronic, and optical properties of the halide perovskite materials [30].

1.3.5 SPIRALs Collaboration

The DOE-funded Science and Processing Informed by Rational Algorithmic

Learning (SPIRAL) collaboration between groups at Cornell, Johns Hopkins, the

University of Virginia (UVA), the Pacific Northwest National Laboratory (PNNL),

and the National Renewable Energy Laboratory (NREL) is tackling this challenge

by applying new statistical machine learning (ML) tools for the predictive formu-

lation engineering of solution-processed, solid-state perovskites all the way from

individual reagents in solution to functional devices. This is done by develop-

ing a convergent machine-learning framework that takes data input derived from

first-principles simulations and detailed experimental characterization [8].
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One of the main hurdles faced by the collaboration lies in handling the multi-

dimensional, multi-scale combinatorial aspects of the perovskite formulation sys-

tems, starting with data sources. To address this, the BayesOpt algorithm devel-

oped by Clancy et al. is used to run through multi-scale data inputs from vari-

ous experimental sources [35]. However, integrating data from disparate sources,

such as experimental data and images, presents challenges. In particular, SEM

images contain large volumes of metadata that add noise to the algorithm and

hinder data optimization. Another challenge is the lack of information on the role

of defects in perovskite degradation [8].

In this work, I have developed a Python code to reduce SEM images into their

power spectra and autocorrelation functions. These functions are analyzed to

identify surface morphology parameters specific to each image. The grain size and

correlation length of the thin film are also identified which can facilitate the de-

fect analysis work being done by the Clancy group. Instead of using equipment-

specific image analysis tools such as ImageJ, the developed Python code can easily

be integrated into the broader machine-learning workflow. When combined with

information on processing conditions, the code will serve as a check on film pa-

rameters extracted during the experiment and through computation.
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Chapter 2

SEM Image Reduction Using Spatial
Functions

2.1 SEM Image Analysis Application for Thin Films

Scanning electron microscopy (SEM) imaging is a technique used to examine the

surface morphology and microstructure of perovskite thin films at high resolu-

tion. It involves scanning a focused electron beam over a sample’s surface and

detecting the backscattered electrons to create an image. SEM imaging provides

valuable information about the topography and spatial features of a surface [44].

Images analyzed in this thesis were taken on the Zeiss Gemini 500 scanning

electron microscope at Cornell.1 The code to derive the image pixel size from an

image has been optimized to extract the metadata from images taken with this

particular equipment. The code needs to be modified slightly based on the model

of SEM used since the pixel size reference in the metadata varies. This modifi-

cation was successfully made to analyze SEM images taken with the FEI Quanta

650 Scanning Electron Microscope sent over by the Choi group at the University

of Virginia.

In the context of thin film imaging, SEM is particularly useful for characteriz-

1The author acknowledges the use of facilities and instrumentation supported by NSF through
the Cornell University Materials Research Science and Engineering Center DMR-1719875.
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ing the morphology and quality of thin film structures, such as perovskite films.

It has been used to identify voids in the films [45] as well as identify defects and

changes in surface morphology such as grain size which are shown to affect de-

vice performance and reproducibility [46].

Overall, SEM image analysis plays a vital role in the characterization and un-

derstanding of perovskite materials. SEM images provide valuable insights into

the microstructure, morphology, and composition of perovskite-based devices

such as solar cells, LEDs, and photodetectors [44].

2.1.1 Challenges in SEM Image Analysis

A cursory qualitative analysis of SEM images can be done visually; however,

height information is not available just by looking at the image; getting addi-

tional surface morphology factors such as grain size requires further analysis.

This is usually done with image analysis software such as ImageJ which is time-

consuming and performed on individual images. Additionally, to employ ma-

chine learning to make predictions with image analysis, a large body of images

need to be compared. This brings in the issues of instrument resolution, noise,

and other instrument settings which hinder image comparison [47].

Conventionally, the deviation of a surface from its mean plane is assumed to

be a random process for which statistical parameters such as the variances of the

height, slope, and curvature are used for characterization [48]. The most com-
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mon descriptor for surface morphology is the root mean square (RMS) roughness

that reduces the whole information content of the image to one single RMS value.

Surfaces with very different morphology may have the same RMS value of sur-

face roughness and for many surfaces, the RMS roughness depends on the length

scale used for the measurement. The precise description of surface morphology,

therefore, calls for more sophisticated tools [49].

To address these challenges, spatial functions such as the power spectral den-

sity function (PSDF) and auto-covariance (or autocorrelation) function (ACF) are

used to represent properties of all wavelengths or spatial sizes within the image

[47, 50]. Spatial functions, in contrast to conventional statistical analysis such as

RMS values, break down the surface image into its frequency domain and acquire

detailed roughness data to describe surface features[51]. Additionally, obtaining

roughness values by integrating the area under the different PSD curves in the

same range removes the problem of each instrument having different upper and

lower band limits on the spatial function curves [52].

Furthermore, these spatial functions are analyzed using methods of fractal ge-

ometry (explained in Chapter 3) to obtain topographical parameters (fractal di-

mension, correlation length, and Hurst exponent), which are relatively indepen-

dent of the resolution of the instrument and scale invariant [52]. Using these pa-

rameters, we can easily compare SEM images taken on different instruments and

feed this data as inputs into the machine learning algorithm to get informed out-

puts. This fractal analysis is explained with examples in the next chapter.
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2.2 Mathematical Equations for Spatial Functions

In literature, power spectral density functions used for profiling data differ due

to different normalization procedures [53]. This creates reproducibility issues and

hinders the comparison of results. Hence, I derived the normalization factors for

spatial functions prior to coding.

2.2.1 Fourier Transform and PSD Equations for SEM Images

For the general case, suppose the topography of a surface within a Cartesian space

S (x; y) is described by a continuous function S (kx; ky), where kx and ky are wave

vectors (spatial frequencies) and Lx and Ly are the lengths in x and y directions

respectively. The integration is computed over the full area LxLy of the entire peri-

odic surface from negative to positive infinity. This gives the continuous Fourier

transform S (kx; ky) equation 2.1.

Ŝ (kx; ky) =

Z 1

�1

dx
Z 1

�1

dy S (x; y) e2�i(xkx+yky) [a:u:nm2] (2.1)

The units for equation 2.1 depend on the units of the scan, which usually has

units of length.

In the case of an SEM image, spatial functions exist as discrete points on a grid

with Nx and Ny representing the total number of pixels in the x and y direction of

the global coordinate system. Nx and Ny are set to be equal so that the computation
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of the radial average of the power spectrum can be simplified.

S k;‘ represents the discrete data obtained by sampling at discrete spatial grid

points (k�x; ‘�y) where �x and �y represent the image pixels size with units of

length, the total spatial length is given by Lx = �x N and Ly = �y N, and the fre-

quency step is given by �kx = 1=Lx and �ky = 1=Ly in the x and y directions respec-

tively. The discrete Fourier transformation Ŝ m;n with indices m = 0; 1; 2; : : : ;N � 1

and n = 0; 1; 2; : : : ;N � 1 in the frequency domain is

Ŝ m;n = �x�y
Nx�1X
k=0

Ny�1X
‘=0

S k;‘ e2�i
�

k m
Nx

+ ‘ n
Ny

�
[a:u:nm2]� (2.2)

We find the magnitude squared of the Fourier transform to get the 2-D power

spectral density P̂m;n in the frequency domain as shown.

P̂m;n =
1

LxLy
jŜ m;nj

2 [a:u:2nm2] (2.3)

or

P̂m;n = �kx�ky jŜ m;nj
2 [a:u:2nm2] (2.4)

The units are determined by the normalization factors found in the above equa-

tions which account for the finite number of measured values. The analysis of the

2-D and 1-D radial PSD is discussed in Chapter 3.
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2.2.2 Autocorrelation Function Equations

The autocorrelation function represents the correlation between different points

in the measured values [54, 55]. For the discrete function, S k;‘, data is displaced

by indices k0 and ‘0. The autocorrelation function Ck0;‘0 is defined as [48].

Ck0;‘0 =
1

NxNy

Nx�1X
k=0

Ny�1X
‘=0

S �k;‘ � S k+k0;l+‘0 [a:u:2] (2.5)

where S �k;‘ is the complex conjugate of S k;‘.

The autocorrelation function is also found using the Fast Fourier transform

(FFT) technique. Since the height information is not shown on the SEM Image, I

use the FFT technique to find the autocorrelation function. The Fourier transform

of the autocorrelation function is related to the PSD function through the Wiener-

Khinchin theorem such that the inverse FFT of the PSD function is taken to get the

ACF [54].

C = F �1(P̂) ! F (C) = P̂ (2.6)

where F denotes the Fourier transform operator. Using the PSD function equa-

tions 2.3, the discrete ACF for an SEM image is given by

Ck0;‘0 =
1

LxLy

Nx�1X
m=0

Ny�1X
n=0

P̂m;n e�2�i
�

k0m
Nx

+ ‘0n
Ny

�
[a:u:2]: (2.7)
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2.2.3 Parseval’s Theorem

Parseval’s theorem relates the ”energy” of a function in the time domain to the

”energy” of its Fourier transform in the frequency domain. It states that the total

”energy” of a function is equal to the sum of the squared magnitudes of its Fourier

coefficients. For the case where the displacement is 0 (at the origin), and infinity,

such that k0 = ‘0 = 0, the autocorrelation function simplifies to the summation of

the squared function S k;‘ as shown in equation 2.8.

C0;0 =
1

NxNy

Nx�1X
k=0

Ny�1X
‘=0

jS k;‘j
2 [a:u:2] (2.8)

If the reference is taken as the mean plane of the surface, the displacement val-

ues will correspond to the mean of the function and the autocorrelation function

corresponds to the mean squared value of the function [48, 56]. In the case of SEM

images, this corresponds to the mean squared value of the original surface.

Similarly, for C(0;0), k0 and ‘0 in equation 2.7 become 0 and the ACF simplifies to

the summation of the PSD function which corresponds to the area under the PSD

function curve as shown.

C(0;0) =
1

LxLy

Nx�1X
m=0

Ny�1X
n=0

P̂m;n [a:u:2] (2.9)

Equation 2.8 and 2.9 are equal since the magnitude squared of the FFT is equal

to the PSD as shown above in equation 2.3, and 2.4.

Hence, we have shown that the mean squared value of the image is equal to
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the area under the PSD function, which verifies Parseval’s theorem. Using this

proof, I have validated the normalization factors derived from these equations in

my code.

2.3 Image Reduction Code Methodology

The developed code is broken down into two steps. The first step consists of com-

puting the 2-D power spectral density, 2-D autocorrelation function, 1-D radial

power spectral density, and 1-D radial autocorrelation plots. In the second step,

these plots are fit and analyzed with fitting methods used in the literature. This

step-by-step coding methodology for image reduction is explained in this section

and in the subsequent image analysis is discussed in Chapter 3 of this thesis.

2.3.1 Image Metadata Extraction

To start, a library of SEM images was created that was used to extract images in

Python. By creating a path to this image library, the images can be accessed us-

ing the Python Imaging Library (PIL). Then, image metadata was retrieved and

stored as a string. The basic metadata tags don’t store the image pixel size in terms

of length explicitly, so regular expressions re.search() were used to search for

a pattern in the metadata string. For the Zeiss Gemini 500 scanning electron

microscope, this pattern is identified and matched as the phrase Image Pixel

20



Size =, and the units are matched as either nm or microns. The numeric value

after the Image Pixel Size = was extracted and stored in the dx and dy vari-

ables and used throughout the code. The function to generalize this process is

shown.

1 def get_image_pixel_size(image_path):

2 image = Image.open(image_path)

3 metadata = str(image.tag_v2)

4 match = re.search(r’Image Pixel Size =

([0-9]{1,4}(?:\.[0-9]*)) (nm|microns)’, metadata)

5 if match:

6 image_pixel_size = float(match.group(1))

7 unit = match.group(2)

8 print(f"Image Pixel Size: {image_pixel_size} {unit}")

9 dx, dy = image_pixel_size

10 width, height = image.size

11 total_image_size = image_pixel_size * width,

image_pixel_size* height

12 return total_image_size, dx, dy, unit

The code can be applied to images from any SEM, but the regular expression

will need to be edited based on how the image pixel size is stored in the metadata

while the rest of the code can be used as is.
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2.3.2 2-D FFT and PSD Plots

The next step was to crop the image, such that the total pixel size Nx and Ny is

the same in the x and y direction. The variable npts, set by the user via trail-and-

error, is used to remove the scale-bar from the image. The new value of N =

Nx = Ny was calculated such that a new value N is the nearest power of 2 that is

less than the total number of pixels that are set as the function argument. This

allowed the efficient use of the discrete FFT algorithm, cut down on processing

time for big SEM images, and obtain a symmetric image for further reduction.

For consistency and symmetry, the image was cropped from the center outwards.

This symmetrization procedure was followed by subtracting the mean value of

the image for baseline correction, to reduce any systematic biases or variations in

the image data, ensuring accurate analysis later. The new values of the total pixel

size Nx, Ny and total length Lx, Ly after cropping were stored and used in the next

steps as shown in the function below.

1 def crop_image(img_plotted, img, npts):

2 Nx, Ny = img[0:npts, :].shape

3 N = 2 ** (math.ceil(math.log2(npts)) - 1)

4 img_cropped = img[0:npts, :][

5 int(Nx / 2 - N / 2):int(Nx / 2 + N / 2),

6 int(Ny / 2 - N / 2):int(Ny / 2 + N / 2)]

7 img_cropped = img_cropped - img_cropped.mean()

8 Nx, Ny = N
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9 Lx= Nx*dx

10 Ly = Nx*dy

Next, a 2-D Fourier transform was applied to the image, converting the image

to the frequency domain. To keep the code simple and reproducible, the NumPy

library was used instead of the Scipy library to run the FFT algorithm. The re-

sulting Fourier transform is cyclicly shifted so that the zero-frequency point is

located in the center of the Fourier-transformed data. The real and complex con-

jugate parts of the Fourier transform were multiplied together and divided by

LxLy to get the 2-D power spectral density (PSD). The resulting 2-D FFT and PSD

plots were used to examine the frequency components present in the image and

gain insights into its spatial characteristics. The normalization factors for the FFT

and PSD steps were derived from the mathematical calculations done in section

2.2.1 and used in the code. The logarithmic values of the FFT and PSD data were

plotted so that intensity variations are more visible. The relevant code from the

function to compute the FFT and PSD is shown below.

1 def compute_psd(img_cropped):

2 FT = dx * dy * np.fft.fftshift(np.fft.fft2(img_cropped))

3 img_psd = np.real(FT * np.conj(FT)) / (Lx*Ly)

4 #code to plot the FFT and PSD

5 return img_psd
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2.3.3 Parsevals Proof

The code was validated by applying the Parseval theorem outlined in section 2.2.3.

Confirming that the mean square value of the image equals the sum of the power

spectral density (equivalently, area under the power spectral density curve). Test-

ing this equality confirms that the normalization factors and code for the FFT and

PSD plots are correctly derived and coded.

1 def rms_squared(img_cropped):

2 img_rms_squared = np.var(img_cropped)

3 rounded_rms_squared = round(img_rms_squared, 2)

4 print(f"RMS squared value of the image:{

rounded_rms_squared}(a.u.ˆ2)")

5 return img_rms_squared

6 def psd_sum(img_psd):

7 dkx = 1/Lx

8 dky = 1/Ly

9 psd_sum = dkx*dky*np.sum(img_psd)

10 rounded_psd_sum = round(psd_sum, 2)

11 print(f"Total Sum of the area under the PSD: {

rounded_psd_sum}(a.u.ˆ2)")

12 return psd_sum
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2.3.4 1-D Radial PSD Plot

Since the 2-D FFT and PSD plots are not easy to analyze, the 1-D radial power

spectral density were plotted to get further insights into the frequency distribu-

tion of the image. First, 1-D arrays for the total length and the corresponding

spatial frequency in the x and y direction were created. Then a 2-D grid was cre-

ated from the spatial frequencies and the radial frequency K[nm�1] values at each

point of the grid were calculated using the Euclidean distance formula. The radial

frequency was indexed by sorting its elements in ascending order and this was

used to reorder the flattened K and 2-D PSD arrays. Then, a moving filter was ap-

plied to the sorted PSD array using the np.convolve() function with the mode

set to same which convolves the array with a window of the same size as the total

pixel size N. This windowing corrupts data points at the corners so a small num-

ber of points away from each end of the arrays are sliced away as shown in the

code.

1 def compute_K_freq(img_psd_freq):

2 kx = dkx*np.arange(-Lx / 2 , Lx / 2, Lx/512)

3 ky = dky*np.arange(-Ly / 2, Ly / 2, Ly/512)

4 kx_freq = np.fft.fftshift(np.fft.fftfreq(kx.size))

5 ky_freq = np.fft.fftshift(np.fft.fftfreq(ky.size))

6 kX, kY = np.meshgrid(kx_freq, ky_freq)

7 K = np.sqrt(kX ** 2 + kY ** 2)

8 return K

25



9 K = compute_K_freq(img_psd)

10 def compute_psd_radial(K, npts):

11 K_index = K.flatten().argsort()

12 K_sorted = K.flatten()[K_index]

13 img_sorted = img_psd.flatten()[K_index]

14 img_sorted_avg = np.convolve(

15 img_sorted,

16 np.ones(npts) / npts,

17 mode='same')

18 kr = K_sorted[npts:-npts]

19 psdr = img_sorted_avg[npts:-npts]

20 return kr, psdr

Finally, the 1-D radial power spectral density was plotted versus the radial

frequency as shown in Fig. 2.1 (e). The log-log radial PSD is plotted to cover a

larger spatial range [54].

2.3.5 2-D and 1-D Autocorrelation Plots

As explained mathematically in Section 2.2.2, the inverse Fourier transform

of the power spectral density is the autocorrelation function. Consequently,

the 2-D autocorrelation function was computed from the 2-D PSD plots. The

np.fft.ifftshift() function was used to shift the zero frequency component
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to its original position to undo the shift from the PSD computation. The autocor-

relation function was normalized and then cyclicly shifted again to center it at

zero.

Next, 1-D arrays of the spatial distance in the x and y direction were created

and their 2-D grid was created. The radial distance R[nm] was calculated from the

origin for each point in the 2-D grid using the Euclidean distance, equation 2.10.

R =
p

x2 + y2: (2.10)

A 1-D array is created to store the R values corresponding to the maximum value

of the �attened 2-D autocorrelation array for a given bin size using a for loop.

The 1-D radial autocorrelation is created and plotted using a binning method. This

procedure sorts the data by radial distance and made the plot easier to visualize

and analyze to get the grain size.

The average grain size is determined as the radius at which the �rst maximum

in the radial autocorrelation function occurs. This average grain size value serves

as an indicator of the characteristic size of structures present in the image.

1 def autcorr_2dpsd(img_psd_freq, Lx, Ly):

2 autocorr = np.fft.ifft2(np.fft.ifftshift(img_psd_freq))

3 autocorr = np.real(autocorr/autocorr[0,0])

4 autocorr = np.fft.ifftshift(autocorr)

5 x=np.arange(start=-Lx/2, stop=Lx/2, step=Ly/512)

6 y=np.arange(start=-Ly/2, stop=Ly/2, step=Ly/512)
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7 xo, yo = np.meshgrid(x,y)

8 R = np.sqrt(xo ** 2 + yo ** 2).flatten()

9 R_bins = np.linspace(0, np.max(R), 200)

10 autocorr_radial = np.zeros(len(R_bins) - 1)

11 for i in range(len(R_bins) - 1):

12 indices = np.where((R >= R_bins[i]) & (R < R_bins[i+1]))

13 autocorr_radial[i] = np.max(autocorr.flatten()[indices])

The code described above was used to reduce and transform an SEM image of

a PbCsBr3 thin �lm as shown in Fig. 2.1. This code was run on a simple image with

one circle, an image containing concentric circles, and a simple sinusoidal grating

image. These served as test cases to verify the code and extract the grain size from

the autocorrelation function. These results can be compared to the actual SEM

image PSD and autocorrelation plots for further analysis as discussed in Section

3.2.4.
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Figure 2.1: PbCsBr3 thin �lm SEM image reduction into 2-D FFT, 2-D PSD, and 1-
D RPSD functions. (a) Original SEM image of PbCsBr3 thin �lm; (b) cropped and
baseline corrected image; (c) 2-D FFT of image; (d) 2-D PSDF of image; (e) 1-D
radial PSD plot; and (f) log-log radial PSD plot.
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