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Laser Spike Annealing (LSA), a non-melt thermal process in the sub-millisecond

time regime, has demonstrated significant advantages for ultra-shallow junction

formation at the 32 nm and later nodes. A comprehensive approach for modeling

multiple physical processes during laser spike annealing is presented in this work.

A physics-based model for optical coupling of IR and visible laser sources is devel-

oped. This model incorporates complex interplay of temperature and wavelength

dependent material properties on the optical absorption of laser radiation into

the substrate. An efficient finite difference simulation framework for solving the

heat transport is presented. Characteristic behavior of temperature profiles during

laser spike annealing in 2D (infinite beam) and 3D (finite sized beam) is illustrated.

Cornell Laser Annealing Simulation Package (CLASP), the simulation framework

developed and used in this work is documented with examples. The tempera-

ture profiles obtained from the 3D simulations were validated using experimental

measurements. Thin film platinum resistors were used to directly measure temper-

ature profiles during laser spike annealing (LSA) with high spatial and temporal

resolution. Observed resistance changes were calibrated to absolute temperatures

using the melting points of the substrate silicon and thin gold films. Both the

time-dependent temperature experienced by the sample during passage of the fo-

cused laser beam, and profiles across the spatially dependent laser intensity, were

obtained with sub-millisecond time resolution and 50 micron spatial resolution.

Full 3D simulations incorporating both optical and thermal variations of material



parameters were compared with these results. Accounting properly for the spe-

cific material parameters, good agreement between experiments and simulations

were achieved. The undesirable effect of the high temperatures thermal stresses

and dopant diffusion were studied in this work with the aim of mitigating their

effects. Calibrated temperature profiles were used as inputs to in Finite Element

Method (FEM) simulations to calculate thermal stresses during laser spike anneal-

ing. The effect of anisotropic material properties on thermal stress was discussed,

and the optimal crystallographic orientations for laser spike annealing were identi-

fied. Haasens law, a macroscopic yield stress condition, was used to predict upper

limits on thermal stress. It was found that a phenomenological model based on

isothermal experimental observations is not valid in the dynamic temperature fields

during laser spike annealing. A mesoscopic dislocation dynamics based model was

thus developed to model yield point in the context of laser spike annealing. This

model was used to predict the optimal temperature range of operation. Continuum

models for studying dopant diffusion are no longer sufficient in the spatio-temporal

scales in laser spike annealing, and the effect of noise and variability inherent in

diffusion needs to be captured. An accelerated stochastic simulation method was

developed for studying the effect of noise in dopant diffusion and dynamics in par-

ticular and reaction diffusion systems in general. This accelerated method was

compared to others presented in literature and its strengths were highlighted.
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CHAPTER 1

INTRODUCTION

The consumer demand in the market for next generation electronic devices

has kept the electronics industry on the Moore’s law trend for decades. This has

been achieved by reducing the size of integrated circuits (ICs), and the individ-

ual components that form the core of the ICs. The complementary metal oxide

semiconductor (CMOS) transistors, that form the heart of the ICs, have also con-

tinuously reduced in size. One of the key issues in achieving this size reduction is

the creation of ultra-shallow and abrupt source drain regions.

Historically, these source-drain regions were created by dopant implantation.

This was followed by Rapid Thermal Annealing (RTA) which activated the dopant

atoms and repaired the damage created by the implantation process. However, the

high temperatures encountered during RTA resulted in the diffusion of the dopant

atoms that were implanted into the junction. This widening of the junction due

to thermal processing is no longer under acceptable limits, especially in the recent

technology nodes.

To solve this problem, many new technologies like flash lamp annealing (FLA)

and laser thermal process (LTP) have been invented as an alternative to RTA.

These techniques all operate within very short time scales (on the order of mil-

liseconds) and at very high temperatures to achieve maximum dopant activation

with minimal dopant diffusion.

Flash lamp annealing (FLA) uses high intensity visible light pulses for ultra-

shallow junction formation. However, the use of multiple wavelengths during ther-

mal processing results in differences in light absorption due to thin-film interference
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at the surface of the wafer. This problem is further aggravated in FLA due to the

short time scales that cause non-uniform heating during thermal processing.

In laser thermal processing, melt and non-melt techniques have been developed

for achieving dopant activation in ultra-shallow junctions. The single wavelength

light used in lasers allow the tailoring of the thin film stack on the wafer for optimal

absorption characteristics. Furthermore, laser as a source of high energy light is

ideal because high power and high efficiency sources are well developed and readily

available commercially.

In the melt process, laser energy (typically pulses) melts a thin layer of silicon

surface and then cools it down causing recrystallization. In the liquid phase, the

diffusivity of the dopant atoms is much higher, resulting in a uniform distribution of

dopants in the recrystallized region, with excellent junction definitions. However,

the melting of silicon at the surface raises other integration problems which makes

it tough for replacing the RTA process during semiconductor processing.

As an alternative, a non-melt technique, laser spike annealing (LSA) has been

developed. During laser spike annealing, the wafer is annealed by scanning the high

power laser beam at a constant velocity across the wafer surface. Figure 1.1 shows a

focussed laser beam moving along the scan direction on the wafer surface. In LSA,

the annealing time can be controlled from milliseconds to µs, and temperatures of

upto 90% of melting point can be achieved by varying laser power and scanning

velocity.
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Figure 1.1: Schematic of Laser Spike Annealing. The x axis is the scan di-

rection (narrow axis of the laser beam), the y-axis is the lateral
direction (long axis of the laser beam) and the z-axis is through
the depth of the wafer. The laser beam (in red) has dimensions
Lx and Ly in the scan and lateral directions respectively and is
scanning along x-axis with a constant velocity v.
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In this time regime, the laser provides sufficient energy to help remove intrinsic

defects, dissolve dopant-defect clusters, and allow dopants caught in interstitial

positions to move to lattice sites in order to improve the activation of the material.

Furthermore, as the temperature and annealing times can be easily controlled,

this process can be easily incorporated in the manufacturing process flow thereby

replacing RTA completely in the 32 nm and smaller nodes [1, 2].

In order to achieve the greatest benefit from the non-melt annealing strategies

in a fabrication setting, it is becoming more evident that having the ability to

quantitatively model the optical coupling and thermal transport will be critical

for accurate control over device processing. These quantitative models are critical

for predicting the spot temperatures, dopant activation and diffusion due to spot

temperatures as well as thermal stress due to the temperature profiles within the

substrate. The creation of such models is the main goal of the research described

in this thesis.

All aspects of this temperature profile are of interest for understanding and

controlling aspects of laser spike annealing. For these reasons, the temperature

distribution due to laser annealing has been studied analytically [3, 4, 5, 6] as well

as using numerical simulations [7, 8, 9, 10, 11]. While the approaches used by

these authors are sufficient to predict approximate temperatures and trends, there

remains a critical need for models that account for all the physical processes during

during laser spike annealing.

Chapter 2 presents a unified model for laser spike annealing that incorporates

all physical processes that affect thermal absorption and diffusion during the mil-

lisecond time scales associated with laser spike annealing. This model is solved

using an efficient finite difference method that captures the effect of the dynamic,
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temperature sensitive material properties during thermal transport.

These simulations were done using the Cornell Laser Annealing Simulation

Package (CLASP), a software package documented in Chapter 4. CLASP consists

of a core engine and a GUI frontend. The core engine addresses both CO2 and

diode laser based absorption in complex thin film stacks. The simulation output

includes thermal history of near surface and full 3D temperature profiles through

wafer.

During laser spike annealing, the beam size is typically on the order of 100 µm

(narrow axis) by 1000-7000 µm (long axis). Given that the aspect ratio is large

along the lateral direction, a first approximation is to treat the the laser beam

as infinite in the lateral direction. This reduces the system to a 2D heat transfer

problem, which is solved by the 2D version of the code. However, in 3D, lateral heat

transfer causes a lowering of peak temperature as compared to the 2D “infinite”

beam case. It also qualitatively changes the shape of the beam profile. These

effects are captured using the 3D version of CLASP. As the computational costs

of running a full 3D simulation are prohibitively high, a parallelized version of

CLASP is developed such that the 3D code runs efficiently on a multi core shared

memory (SMP) machine.

Beyond modeling, little work has been done to directly measure temperatures in

this millisecond regime. Such measurements are equally essential if simulations are

to be believed quantitatively. In order to validate the simulation results, and to es-

tablish values for critical parameters in the millisecond regime, direct experimental

measurements of the time-resolved temperature during laser spike annealing were

undertaken.
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Measuring temperatures during laser spike annealing is the central challenge

addressed in Chapter 3. The temperature of the substrate as it passes under the

laser can be measured using either contact-based or non-contact-based methods.

Potential contact-based methods include resistance temperature detectors (RTDs)

[12, 13] and thin film thermocouples [14, 15]. Non-contact methods include infrared

detectors and optical pyrometers [16] that measure temperature using emitted

radiation from the surface [17].

Both classes of temperature detectors have advantages and disadvantages. Non-

contact methods are useful because they do not affect the sample and can be used

in conjunction with normal processing procedures. But, because they measure

optical emissions, rather than temperatures directly, they are averaged over the

temperature distributions and are severely limited in terms of their spatial and

temporal resolutions. Contact- based methods, like thin film thermocouples and

RTDs, are highly accurate and give good spatio-temporal resolutions for tempera-

ture measurements. However, as they require specialized samples, they are difficult

to use during regular thermal processing.

In the specific case of sub-millisecond laser spike annealing, our aim is to mea-

sure the local temperature distributions under the laser beam with spatial reso-

lutions on the scale of microns and temporal resolution on the order of 100 µs.

This necessitates the use of contact-based methods like thin-film thermocouples

and RTDs. Among these two, Pt resistance temperature detectors are favored as

they provide better measurement bandwidth and noise immunity. These experi-

mentally measured temperature profiles were then quantitatively compared with

simulations of laser spike annealing thus confirming the validity of the choice of

material parameters and simulation models.
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During laser spike annealing, the peak temperatures reach near silicon melting

point to achieve the highest possible dopant activation during the post-implant

stage [18]. However, the peak temperature achievable is limited by thermal damage

to the substrate, primarily by slip induced plastic deformation [19]. The spatial

and temporal variations in the temperature profile result in differential thermal

expansions in the sample regions, which give rise to, and aggravate the problem

due to thermal stresses [20]. High levels of this thermal stress causes irreversible

deformation in the wafer. The upper limit of laser spike annealing temperature

window is thus dictated by thermal stress and its affect on wafer deformation [21].

These thermal stresses can cause either elastic [22], plastic or viscoelastic de-

formation [18] depending on the material properties. In the elastic regime, the

transformation observed during thermal expansion is perfectly reversible and no

net effect is caused due to laser spike annealing. However, at high enough stresses,

a macroscopic transition point - the yield point - is reached, at which plastic

deformation takes place in the material. In this case, the applied force is large

enough that the crystallographic lattice attains a new equilibrium state and de-

forms permanently [23, 24]. The mechanism of obtaining this new equilibrium

state is through the formation of defects in the crystallographic lattice [25, 26].

The point at which these defects (dislocations) are observed macroscopically is

referred to as yield point.

The effect of thermal stress during laser spike annealing is captured in simula-

tions presented in Chapter 5. Elastic thermal stress are analyzed and the effect of

material properties is illustrated with different virtual experiments. This analysis

is extended to develop a mesoscopic model for dislocation dynamics that captures

both the plastic deformation and the yield point of silicon in time and spatial scales
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present in laser annealing.

In addition to thermal stresses, the thermal budget forms another critical com-

ponent in our understanding of laser spike annealing. The thermal budget, related

to the effective time spent at a temperature, is important as it affects the diffusion

of dopant atoms activated during peak temperature in laser spike annealing. This

diffusion, though minimized due to the short time scales, is still not negligible

especially given the scales appropriate for devices today.

To date, continuum models for dopant diffusion have been used to capture the

effect of thermal budget. However, with shrinking device dimensions, these contin-

uum models are no longer sufficient, and new models and techniques are required to

capture the behavior of systems at increasingly small scales. In particular, the im-

portance of random fluctuations, or noise, is becoming increasingly apparent. The

phenomenon is the subject of great interest in a variety of diverse fields, including

cellular biology [27, 28, 29, 30, 31, 32, 33], semiconductor processing [34, 35] and

heterogeneous catalysis [36].

From a computational perspective, incorporating the effects of stochasticity

into models of physical processes requires moving beyond traditional continuum-

deterministic approaches, such as ordinary differential equations (ODEs), and us-

ing one of a variety of stochastic methods. Chapter 6, presents a spatial imple-

mentation of an in-house develop stochastic method - the Partitioned Leaping

Algorithm (PLA) [37]. Special care is taken with regards to the calculation of

time steps and the effect of some conceptual errors that were made in other algo-

rithms [38, 39] is demonstrated through numerical examples. It is shown that, in

some cases, the Spatial Partitioned Leaping Algorithm (SPLA) is faster than these

methods and at least as accurate. In other cases, SPLA is slower but significantly
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more accurate. In yet other cases there is little difference. The origins of this

differential behavior is explained with its consequences for practical applications

of the methods.

Finally, Chapter 7 summarizes the key results of this thesis. Direction for future

work are suggested that should further improve our understating of the complete

range of processes that occur during laser spike annealing.
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CHAPTER 2

THERMAL MODELING OF LASER ANNEALING

2.1 Overview

In this chapter, a detailed model for simulating the temperature profile during

Laser Spike Annealing is presented. In Sec. 2.2, the model for Laser Spike An-

nealing is outlined, with a detailed description of the optical to thermal coupling

model provided in Sections 2.2.2 and 2.2.3. In Section 2.3, results for an “infinite”

beam using 2D simulations are presented and the effect of various anneal parame-

ters on temperature is illustrated. This analysis is extended to 3D in Section 2.4

addressing the effects of lateral heat transfer. Situations when these effects become

significant are discussed in subsequent sections.

2.2 Model for Laser Spike Annealing

2.2.1 Thermal transport equations

The heat transfer problem into the substrate is solved in the reference frame of

the moving laser. As the laser scans with a constant velocity v along the x-axis,

it introduces an additional convective term into the heat conduction equation.

Kirchhoff’s transform [3] is used to linearize the heat equation, simultaneously

incorporating the effect of temperature-dependent thermal conductivity. The tem-

perature transformation-defining scaled temperature, θ, and the resulting transient

10



heat equation are given by:

θ(T ) = θ(T0) +
1

κ0

∫ T

T0

κ(T
′
)dT

′
(2.1)

∂θ

∂t
=

κ

ρCp
∇2θ + v

∂θ

∂x
+

κ

κ0

J

ρCp
(2.2)

where θ(T0) is arbitrarily set to the reference temperature T0, ρ is the density,

Cp and κ are the temperature-dependent heat capacity and thermal conductivity,

respectively (see Sec. 2.2.5), and κ0 is the thermal conductivity at T0. In Equation

2.2, the first term is the linearized heat conduction equation, the second term is

the convective derivative due to the moving reference frame, and the third term is

the spatially and temporally varying source term.

During laser spike annealing, a fraction of the incident energy is reflected and

the rest is transmitted or absorbed through the substrate. The absorbed energy is

coupled into the heat equation in the form of the source term, J(~r, T ), which varies

spatially (due to the laser profile) and with temperature (due to temperature-

dependent optical properties). This optical-thermal coupling, representing the

power absorbed per unit volume is given by

J(~r, T ) = α(~r, T )I(~r) (2.3)

where ~r is the domain (x, y, z), z is the direction of propagation of light, T is

the temperature, I(~r) is the laser power density and α(~r, T ) is the absorption

coefficient. The laser power density, derived from Beer’s law, is determined by the

reflectance and absorption characteristics of the medium. For a substrate with

varying material properties, I(~r) is given by

I(~r) = Is(~r) [1−R(~r, T )] exp

[
−
∫
α(~r, T )dz

]
(2.4)

where Is(~r) is the intensity on wafer surface and R(~r, T ) is the surface reflectivity

(See 2.B for derivation). The main sources of nonlinearities in the heat equation are
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the temperature-dependent material properties: thermal conductivity and specific

heat (Sec. 2.2.5), the spatially varying absorption coefficient (below) and the

spatially varying reflectivity (Sec. 2.2.4).

Optical absorption in silicon takes place due to multiple mechanisms, each of

which are dominant in particular wavelength regimes. These include: band gap

absorption, lattice absorption and free carrier absorption. The total absorption is

given by the sum total of these absorption mechanisms. Band gap absorption takes

place due to the transition of electrons from the valence band to the conduction

band, and is present only when incident photons have energy greater than the

band gap energy. At room temperature, the band gap of silicon corresponds to the

energy of a photon of wavelength 1.15 µm, and band gap absorption is significant

for wavelengths below this value, which correspond to the range of visible (diode)

and near-IR lasers. The energy/wavelength at which bandgap absorption ceases is

called the absorption edge. At wavelengths greater than the absorption edge, free

carrier absorption and lattice absorption play a dominant role. These absorption

mechanisms are particularly relevant for CO2 lasers. Thus, the central challenge in

modeling laser spike annealing lies in identifying the correct mechanisms for optical

absorption, as well as choosing a theoretically sound functional form for absorption

that closely fits experimental data. This process becomes even more complex due

to uncertainties in absorption mechanisms and the lack of extensive experimental

data over the full range of material parameters. Given these considerations, we

present the optical absorption models for visible (diode) lasers in Sec. 2.2.2 and

far-IR (CO2) lasers in Sec. 2.2.3.
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2.2.2 Optical absorption model for visible and near IR

sources

Since silicon is an indirect band gap semiconductor, absorption of photon takes

place due to the transition of an electron from the valance band to the conduction

band, together with an emission/absorption of a phonon. Absorption takes place

only if the energy of incoming photon is greater than the band gap, otherwise the

photon is transmitted through the substrate. Also, as absorption is primarily due

to phonon-assisted transitions, the effect of multiple phonons needs to be consid-

ered. The expression for optical absorption as proposed by Macfarlane [40] and

modified by Jellison [41] and fitted to experimental data for wavelengths between

0.7-1.05 µm is given by

αBG(λ, T ) =
2∑
i=1

2∑
l=1

(−1)l
αi[hc/λ− Eg(T ) + (−1)lkθi]

exp[(−1)lθi/T ]− 1
(2.5)

where i = 1 and 2 represent the transverse acoustical and transverse optical phonon

processes, respectively, and l = 1 and 2 represent phonon emission and absorption,

respectively, hc/λ is the energy of the photon in eV, and Eg(T) is the band gap of

silicon. θ1 = 212K and θ2 = 670K are transverse acoustical and transverse optical

phonon energies in degrees K, respectively. The contribution αi(E) from the types

of phonons is given by [42]

α1(E) =


0.504

√
E + 392(E − 0.0055)2, E ≥ 0.0055

0.504
√
E, 0 < E < 0.0055

0, E ≤ 0

α2(E) =


18.08

√
E + 5760(E − 0.0055)2, E ≥ 0.0055

18.08
√
E, 0 < E < 0.0055

0, E ≤ 0

(2.6)
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where E is the available energy calculated from (hc/λ−Eg(T ) + (−1)lkθi). These

equations take into account the energy of the photon and its capacity to affect

band to band transition. The effect of temperature on absorption is mainly due

to the significant narrowing of the band gap [43, 44]

EG(T ) = 1.1255− 4.73× 10−4T 2

636 + T
(2.7)

It is empirically observed that the net effect of temperature on absorption length

follows an exponential relation [45]. Figure 2.1 shows the absorption length as a

function of wavelength and temperature. For a 980 µm laser, the absorption length

at room temperature is ≈ 100 µm and decreases to 10 µm at high temperatures.

Thus, a silicon wafer will absorb reasonably well even at room temperature. How-

ever, the absorption length shrinks considerably with wavelength, and at 780 µm,

absorption length is on the order of 10 µm.
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Figure 2.1: Variation of absorption coefficient as a function of wavelength
of incident light λ for temperatures between 25 ◦C and 1200 ◦C
according to Jellison’s model in Equation 2.5. High resolution
data from Green [46] at room temperature is shown by the tri-
angle symbols. The dashed vertical line (blue) indicates the ab-
sorption length for a 980 µm laser as a function of temperature,
which varies as α0e

T/T0 .
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Sturm and Reaves [42] have studied the effect of doping on absorption length.

Near the absorption edge, free carrier absorption becomes significant at room tem-

peratures and thus the effect of doping needs to be factored into the absorption

model. However, in the wavelength range relevant to diode lasers, this effect is not

significant and is ignored in calculating the absorption coefficient. Additionally,

doping concentrations above 1018 cm−1 result in further narrowing of the band

gap [47] on the order of 0.1 eV at 300 K [48] and vary as N1/3 [49]. Experimental

data for doping-induced band gap narrowing at high temperatures do not exist.

Overall, the effect of doping on band gap narrowing is not considered significant

and is ignored in our simulations.

2.2.3 Optical absorption model for CO2 lasers

Absorption coefficient

At the CO2 laser wavelength of 10.6 µm, absorption in Si occurs only by free carrier

intraband excitations. As the density of carriers varies spatially and is exponen-

tially dependent on temperature, this absorption varies extensively. Furthermore,

the rapidly changing absorption characteristics, in turn, affect the surface reflec-

tivity. But, on millisecond timescales, local equilibrium is established with the

electronic carrier density and, reflectivity and absorption coefficient are coupled to

the local temperature as R(T (~r)) and α(T (~r)).

The absorption coefficient, α, depends upon the free carrier concentrations,

with both electrons and holes contributing to the total absorption coefficient. The

free carrier absorption, in turn, is dependent on mobility of electrons and holes.

While the basic elements of the free carrier absorption model are well developed,
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there remains some uncertainty with regard to the parameters - particularly as a

function of temperature. The absorption coefficient (in cm−1) is given by[50]:

α = αl + αe + αh (2.8)

ae =
5.27× 10−17

nµe (m∗e)
2 neλ

2 (2.9)

ah =
5.27× 10−17

nµh (m∗h)
2 nhλ

2 (2.10)

where ne and nh are electron and hole concentrations, m∗e and m∗h are their effective

masses, µe and µh are the electron and hole mobilities, λ is the wavelength in

microns, and n is the real part of the index (taken to be constant n = 3.412 over

the range 4 µm - 12 µm). At temperatures near the melting point, application of

Equations 2.8-2.10 leads to absorption coefficients that imply completely reflecting

silicon. As this is not observed experimentally, α is arbitrarily capped at 300 nm,

giving a reflectance near Brewster’s angle of 10-11%. The variation of α with

temperature and electron and hole concentrations (doping) is shown in Figures 2.2

and 2.3.
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Free carrier concentration

The absorption of CO2 laser in silicon at room temperature is negligible due to

the combination of wavelength and the (small) number of free carriers at low tem-

peratures. However, this changes either with increasing substrate temperature

or with substrate doping. The electron and hole concentrations as a function of

temperature are determined by both the extrinsic doping and the intrinsic thermal

generation. At low temperatures, carrier densities are set by extrinsic doping levels

for donor and acceptor, ND, and NA, respectively. As the temperature increases,

thermal generation becomes dominant and the material approaches intrinsic be-

havior. In the material, the intrinsic carrier concentration ni is given by

n2
i = NC(T )NV (T )e

−Eg(T )

kBT = nhne (2.11)

where NC(T ) and NV (T ) are the effective densities of states in the conduction

and valance band, respectively, EG(T ) is the band gap energy as a function of

temperature (Equation 2.7), and kB is the Boltzmann constant. The density of

states (in cm−3) increase as T 3/2 and are approximated by

NC(T ) = 2.8× 1019
(
T

300

)3/2
and NV (T ) = 1.04× 1019

(
T

300

)3/2 (2.12)

For a doped substrate, given ND (donor) and NA (acceptor) concentrations (as-

sumed to be fully activated at all temperatures of interest), the electron and hole

concentrations, ne and nh are calculated such that charge is balanced according to

ne − nh = ND −NA.

The absorption characteristics of the CO2 laser can be modified in a “dual-

beam” configuration, with the diode laser aiding thermal free carrier generation.

For the diode laser, if the energy of the incident (visible) radiation is greater than

the band gap, then every photon of absorbed radiation will generate a pair of
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electron and hole free carriers. The generation rate G (s−1) and number of free

carriers pairs ng (cm−3) are given by [56]

G = I(~r)/

(
hc

λ

)
(2.13)

dng
dt

= G− ng
τ

= 0 =⇒ ng = Gτ (2.14)

where h and c are Planck’s constant and the speed of light, respectively, λ is the

wavelength of visible light and τ is the free carrier lifetime (in s). These generated

free carriers are added to ne and nh in Equations 2.31 and 2.32.

Electron and hole mobilities

The mobility of electrons and holes is a complex function of thermal and impurity

scattering. The Klaassen model was used for the mobility [57, 58], as outlined

by Reggiani et al. [59]. The bulk mobility, µb, as a function of temperature, and

donor and acceptor concentrations is given by

µb(ND, NA, T ) = µ0(ND, NA, T )

+
µL(T )− µ0(ND, NA, T )

1 +
(

ND
Cr1(T )

)α1

+
(

NA
Cr2(T )

)α2
− µ1(ND, NA, T )

1 +
(

ND
Cs1(T )

+ NA
Cs2(T )

)−2 (2.15)

where µL is the lattice mobility and µ0 and µ1 represent mobility due to donors and

acceptors, respectively. The second term in Equation 2.15 represents the plateau

in mobility around a doping concentration of 1020 and the third term models the

decrease in mobility at very high doping concentrations. Lattice mobility, µL, that

models the effect of temperature, and µ0, µ1 that models the effect of dopants, are
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given by

µL(T ) = µmax

(
T

300

)−γ+c(T/300)

(2.16)

µ0(ND, NA, T ) =
µ0dND + µ0aNA

ND +NA

(2.17)

µ1(ND, NA, T ) =
µ1dND + µ1aNA

ND +NA

(2.18)

where µ0d, µ1d give limiting values of mobility for donors and µ0a, µ1a give limit-

ing values of mobility for acceptors. Arsenic and boron mobilities, together with

associated parameters and data taken from Reggiani et al. [59] are shown in Table

2.1 and Figures 2.4.

Effective mass

A key challenge is to determine the appropriate effective mass to be used in Equa-

tions 2.9 and 2.10. The silicon valence band is degenerate, split into a heavy hole

(m∗ = 0.50) band and a light hole (m∗ = 0.16) band, both located at the Γ point

with a degeneracy of 4 for the heavy holes and 2 for the light holes. In contrast, the

electrons are ellipsoidal bands with a longitudinal effective mass of 0.19 (degener-

acy of 4) and a transverse effective mass of 0.98 (degeneracy of 2). For electrical

conductivity, the weighted average effective masses are 0.50 for holes and 0.26 for

electrons. For electrons, the effective mass is obtained as an inverse weighted aver-

age of the transverse and longitudinal masses. However, the free carrier absorption

scales as (1/m∗)2, and the equivalent scaling would be with an inverse weighted

average of the square mass.

m∗e =

√
6

4/ (m∗l )
2 + 2/ (m∗t )

2 = 0.2305 (2.19)

For the holes, the situation is more complex. Unlike electrons, holes have two

distinct but degenerate bands. In occupying states, the shallow heavy hole band
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Table 2.1: Parameters used for calculating the mobility of electrons and
holes in doped silicon. Reduced temperature Tn is given by (Tn =
T/300).

Parameters As P B Units

µmax 1441 1441 470.5 (cm2/Vsec)

c 0.07 0.07 0

γ 2.45 2.45 2.16

µ0d 55.0 · T−0.6
n 62.2 · T−0.7

n 90 · T−1.3
n (cm2/Vsec)

µ0a 132.0 · T−1.3
n 132 · T−1.3

n 44 · T−0.7
n (cm2/Vsec)

µ1d 42.4 · T−0.5
n 48.6 · T−0.7

n 28.2 · T−2
n (cm2/Vsec)

µ1a 73.5 · T−1.25
n 73.5 · T−1.25

n 28.2 · T−0.8
n (cm2/Vsec)

Cr1 8.90 · 1016 · T 3.65
n 8.5 · 1016 · T 3.65

n 1.3 · 1018 · T 2.2
n (cm−3)

Cr2 1.22 · 1017 · T 2.65
n 1.22 · 1017 · T 2.65

n 2.45 · 1017 · T 3.1
n (cm−3)

Cs1 2.9 · 1020 · T 0.0
n 4 · 1020 · T 0

n 1.1 · 1018 · T 6.2
n (cm−3)

Cs2 7.0 · 1020 · T 0
n 7 · 1020 · T 0

n 6.1 · 1020 · T 0
n (cm−3)

α1 0.68 0.68 0.77

α2 0.72 0.72 0.719

with its higher degeneracy will contain the majority of the holes in the system,

thus suggesting an effective mass of 0.50 (of just heavy holes). Experimental data

suggests that this value is too high, with an mh = 0.5 causing p-doped substrates

to have essentially no predicted process window with 400◦C substrate heating,

whereas in reality it is readily achieved. Thus, similar to the effective mass for

electrons, an effective mass for holes in absorption of approximately 0.25 would

seem to be indicated.
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2.2.4 Surface reflectivity and propagation through multi-

ple layers

In real materials, the index of refraction is defined as a complex number ñ = n+iκ,

with the real part of the index representing the change in velocity of electromag-

netic wave (w.r.t vacuum) and the complex part representing the absorption loss

of the wave as it propagates through the medium. Both the real and complex part

of the refractive index vary with frequency. The imaginary part of the refractive

index, also called the extinction coefficient, is related to the absorption coefficient

as κ = λα/4π, where λ is the wavelength of incident radiation.

Consider an interface of two materials i and j with (complex) refractive indices

ni and nj respectively. Snell’s law relates the angles of incidence and transmittance

at this interface as ni sin θi = nj sin θj. Fresnel’s equations give the reflectance and

transmittance of light at this interface. The incident laser wave is polarized as

either Transverse Electric (TE) or Transverse Magnetic (TM). The reflectance and

transmittance at the interface for these two polarizations is given by

rTEij =
ni cos θi − nj cos θj
ni cos θi + nj cos θj

tTEij =
2ni cos θi

ni cos θi + nj cos θj

 p-polarized (2.20)

rTMij =
ni cos θj − nj cos θi
ni cos θj + nj cos θi

tTMij =
2ni cos θi

ni cos θj + nj cos θi

 s-polarized (2.21)

In the case of multiple layers, the electric field at the first interface (in the direction

of propagation) depends on the first reflection, but also on subsequent reflections

from the second interface of the layer. Furthermore, every component of the wave

that is transmitted and reflected back from the second interface undergoes a phase

change given by δi = ni cos θi
(

2π
λ

)
z. Thus, at a particular layer, xi, yi and xj, yj,
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the components of electric and magnetic fields in ith and jth layer are related by:xi
yi

 = Ci

xj
yj

 (2.22)

where Ci is the transfer matrix for the ith layer given by

Cij =
1

tij

 1 rij

rij 1


e−iδi 0

0 eiδi

 (2.23)

where rij and tij are reflectance and transmittance values calculated from Equa-

tions 2.20 and 2.21. For a stack of thin films, the total transfer matrix CT is given

by multiplying the individual transfer matrices of each layer. Starting with CT = I

where, I is the identity matrix, Cij for each layer is calculated. At the end interface

(of the substrate layer), there is no phase change due to secondary reflection. Thus

the transfer matrix for the substrate Csub is given by

Csub =
1

tij

 1 rij

rij 1

 (2.24)

The total transfer matrix of the stack is then given by

CT =

(
i=n−1,j=n∏
i=1,j=2

Cij

)
Csub (2.25)

Based on this transfer matrix, the reflectivity and transmittance through the stack

is given by

R =

∣∣∣∣CT21

CT11

∣∣∣∣2 (2.26)

T =

∣∣∣∣ 1

Ct11

∣∣∣∣2 ns cos θs
n0 cos θ0

(2.27)

where n0, cos θ0 and ns, cos θs are the refractive index and angle of incidences

for the first and the last layers in the stack. For a more detailed analysis, we refer

the reader to [60].
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2.2.5 Material properties

The thermal conductivity of silicon varies significantly with temperature, from 1.4

to 0.2 W/cm-K in the temperature range between 25-1410 ◦C. This drives the non-

linear thermal response during laser spike annealing. As temperatures during laser

spike annealing cover the full range of temperatures in the space of a few microns,

an accurate model for the material properties is critical for quantitative confidence

in the simulations. Values for the thermal conductivity and thermal diffusivity of

pure silicon are well known. Figures 2.5 and 2.6 compare the model for thermal

conductivity and diffusivity of pure silicon implemented in our simulations with

experimental data from Glassbrenner [61] and Shanks [62]. The equations used to

fit experimental data for thermal conductivity κ and specific heat Cp are given by

κ =


1582.357 T−1.229 for T < 1200

14.28 T−0.565 for 1200 ≤ T < 1600

0.221 for T ≥ 1600

(2.28)

and

Cp = 22.81719 + 3.89951 Tn − 0.082885 T 2
n + 0.042111 T 3

n − 0.354063/T 2
n (2.29)

where Tn = T/1000 with κ and Cp given in W/cm-K and J/mol-K respectively.

The thermal conductivity for highly doped substrates is lower than that of pure

silicon. Experimental data for highly doped p-type and n-type substrates at low

temperatures, shown in Figure 2.5, indicate that thermal conductivity for highly

doped p-type substrates can be up to 50% lower than pure silicon. n-type doping

appears to have less effect on thermal conductivity. However, similar experimental

data for temperatures between 25-400 ◦C is entirely absent in the literature.

In our simulations, based on given experimental data, we have capped the
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thermal conductivity of highly doped p-type substrates at 0.6 W/cm-K (the value

at 325 ◦C). This only a crude approximation for expected thermal conductivity, but

is found to match experimental data reasonably well. However, more experimental

data for thermal conductivity of highly doped (p-type and n-type)substrates up

400 ◦C are clearly needed to provide greater accuracy in the thermal modeling of

laser spike annealing.
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Figure 2.5: (a) Thermal conductivity of silicon as a function of temperature.
The model for pure silicon, with parameters given in Table ??(a),
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strates (Slack [63]) are overlaid (symbols as defined in the inset.
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2.3 2D Simulations

In laser spike annealing, an elliptical beam scans across the wafer surface with

a constant velocity. Beam size is typically on the order of 100 µm in the scan

direction (narrow axis) by 1000-7000 µm in the lateral direction (long axis). The

dwell time is defined as the ratio of the FWHM of the beam in the scan direction to

the scan velocity. The intensity of laser power along the scan direction, in W/cm,

is calculated by the ratio of incident laser power and the beam length in the lateral

direction. Given the aspect ratio of the beams used in laser spike annealing, this

power density measure is a more useful metric, and is used henceforth for describing

and comparing effects due to laser power.

Given that the aspect ratio is large along the lateral direction, the laser beam

can be treated as infinite in the lateral direction, as a first approximation, which

reduces the system to a 2D heat transfer problem. For an incident Gaussian beam

with peak intensity I0, the laser intensity on the wafer surface is given by:

Is = I0
1√

2πσ2
exp

[
−(x− x0)2

2σ2

]
(2.30)
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Figure 2.7: Typical steady-state temperature profile during Laser Spike An-
nealing. The x-axis is along the scan direction. The z-axis is
along the depth of the wafer, with z=0 being the wafer surface.
Laser power is 800 W/cm, dwell is 1000 µs, with a 100 µm beam
size along the scan direction. The substrate is 750 µm thick,
highly doped (1 × 1019 cm−2), and is clamped to 25 ◦C at the
back surface. Surface reflectivity is 30% and absorption length is
10 µm−1. Peak temperature is 1273 ◦C.
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An implicit-explicit finite difference scheme is used to solve Equation 2.2. This

scheme permits a higher spatial resolution without undue computational overhead.

Figure 2.7 shows the temperature profile in the frame of the moving laser. In this

coordinate reference frame, the position of the laser is fixed at the origin, with

the leading edge and trailing edge being the material ahead and behind the laser,

respectively. The temperature profile in the leading edge ramps up to the peak

temperature in 1-2 milliseconds, with the ramp-up reaching a step function with

decreasing dwell times. The position of the temperature peak lags that of the

laser depending on absorption characteristics. The trailing edge sees a smooth

decline to a final baseline temperature. Along the wafer depth, the temperature

profile decays exponentially, reaching a base temperature depending on boundary

conditions.
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Figure 2.8: Peak temperature for different laser power and dwell times.
The substrate is 750 µm thick, highly doped (1E19 cm−2) and
clamped at 25 ◦C. The curves are capped at 1410 ◦C, the melting
point of silicon.
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Penetration of heat into the substrate increases with diffusion length, approxi-

mately as the square root of dwell time. The diffusion length Ld is given by
√

4Dτ ,

where D is the thermal diffusivity (see Sec 2.2.5) and τ is the dwell time. The

diffusion length for a 1000 µs dwell scan ranges from ≈600 µm at room temper-

ature to ≈200 µm at melting point, corresponding to thermal diffusivity of 0.85

and 0.091. As temperatures during a single laser scan can vary over the whole

range (25-1410 ◦C), the smaller diffusion length is relevant for studying thermal

properties near the surface and the longer diffusion length is relevant for dealing

with boundary effects of a finitely thick wafer.

The peak temperature (on the wafer surface) increases with both laser power

and dwell time, but saturates near a dwell value of about 1000 µs (see Figure 2.8).

At this dwell, heat penetrates through the wafer and flows out of the clamped

backside. The peak temperature scaling is linear at low temperatures, but becomes

non-linear at higher temperatures due to the decrease in thermal conductivity.

Above ≈500 ◦C, the reduction in thermal conductivity “bottles-up” heat, resulting

in a deviation from linearity. In theory, we expect the curves shown in Figure 2.8

to be self-similar when scaled by the thermal diffusion length. However, as the

thermal diffusion length is ill-defined due to varying thermal conductivity, the

self-similarity is hard to visualize or confirm.

Figure 2.8 shows that boundary conditions strongly affect the peak tempera-

tures due to the interplay between thermal diffusion length and finite wafer thick-

ness. Figure 2.9 shows peak temperature as a function of the dwell time at a

fixed power for different backside boundary conditions and wafer thickness. For a

clamped substrate, the peak temperature for a 450 µm wafer saturates at shorter

dwells as compared to a 750 µm wafer. This is because the heat penetrates through
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the thickness of the wafer and flows out at shorter dwells for thinner wafers. In

the case of an unclamped substrate, there is no net heat flow out of the substrate,

and the peak temperatures are thus higher. Additionally, the peak temperature

for a thin unclamped wafer is higher as the volume of material to be heated is

smaller compared to a thick wafer. Peak temperature as a function of dwell time

at a constant power should follow a
√
τ trend. However, this is not the case for

finite thickness substrates. The inset in Figure 2.9 shows the ratio of peak tem-

perature and diffusion length Ld as a function of dwell time (≈1/√x). For clamped

substrates, this ratio exhibits a peak, indicating that temperature rise actually

decreases at higher dwell times. The dwell time required to penetrate through the

wafer thickness can be approximately calculated by using Lz = Ld, where Lz is

the wafer thickness. For unclamped substrates, the retention of heat in the wafer

results in a deviation from the
√
τ scaling behavior. Thermal diffusion length stops

affecting peak temperatures in the case of an “infinitely thick” wafer, which oc-

curs at approximately 3000 µm (∼ Lz = 5Ld). At this thickness, there is enough

material to absorb heat and the boundary is far enough not to affect heat transfer.
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Figure 2.9: Peak temperature for different dwell times and boundary condi-
tions. Beam size is 100 µm, power is 800 W/cm and the substrate
is highly doped. Dirichlet (clamped) and Neumann (unclamped)
boundary conditions are applied to 450 µm, 750 µm and 3 mm
thick wafers. Inset shows the ratio of peak temperature and dif-
fusion length Ld at 1000 ◦C as a function of dwell time. Legend
of the inset is the same as for the main figure.
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Laser power, dwell time and boundary conditions are the primary factors af-

fecting the characteristics of the temperature profile. In the remaining part of this

section, we delve into the effects of the optical absorption model and its (some-

times) non-intuitive characteristics.

Silicon is transparent at CO2 laser wavelengths and negligible absorption is

observed for pure silicon at room temperature. In a doped or a heated substrate,

the presence of some free carriers results in absorption of some laser power, which

increases the temperature of the substrate. When the rate of heat absorption

becomes greater than the rate of dissipation (into the substrate), every unit of

energy absorbed from the laser increases the number of free carriers and this, in

turn, increases the rate of absorption of laser power. This results in a cascading

“thermal runaway” effect which dramatically changes the amount of energy ab-

sorbed by the wafer. We see little or no absorption for a lightly doped substrate at

room temperature. A critical doping concentration provides enough free carriers

causing the thermal runaway effect as shown in Figure 2.10. This critical doping

concentration decreases with substrate heating as intrinsic carriers aid power ab-

sorption in addition to the extrinsic ones. A similar trend is observed until the

substrate temperature reaches around 400 ◦C, at which point enough free carriers

become active and can participate in absorption. The results shown in Figure 2.10

are representative of a clamped substrate. For an unclamped substrate, we expect

the thermal runaway transition to be smoother due to intrinsic carriers generated

from the retained thermal energy.
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Figure 2.10: Peak temperature for different substrate doping and substrate
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temperature.
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The effect of thermal runaway behavior due to free carrier absorption is further

illustrated in Figure 2.11. When the laser is incident on a substrate at room

temperature, the optical energy increases generates free carriers with increasing

power until a critical point where all the energy is absorbed by the substrate.

We term this as the “heating-up” case. Another scenario occurs when the laser is

incident on a wafer that is already at a high temperature. The boundary conditions

are such that the laser power is unable to maintain the temperature and thus the

wafer “cools down” to a steady-state temperature. The number of free carriers in

the “cooling-down” case is higher than for the “heating-up” case, which results in

a higher steady-state temperature.

This difference in the number of free carriers, and the steady state temper-

ature achieved due to them, gives rise to a hysteresis in the peak temperature

curve. This effect, prominent at low substrate doping, decreases with increasing

doping concentrations. At high doping levels of 1× 1018 cm−2, the amount of free

carriers is high enough for absorption to take place even at room temperature. Ad-

ditionally, this hysteresis behavior is observed for substrates that are clamped at

room temperature. With increasing temperature, the intrinsic carrier concentra-

tion increases, resulting in sufficient optical coupling even at lower powers, with the

peak temperature hysteresis completely disappearing for a substrate temperature

of 300 ◦C.
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Figure 2.11: Hysteresis due to free carrier absorption characteristics at dop-
ing levels of 1015, 1017 and 1018 cm−3. Dwell time is constant
at 1000 µs. Substrate thickness is 450 µm and is clamped at
125 ◦C. The solid lines are peak temperatures when the sub-
strate is heated from room temperature (“heating up” case).
The dashed lines are peak temperatures achieved when the
wafer is “cooling down” from a high temperature. The hys-
teresis curves shown above the melting point are for illustrative
purposes only.
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2.4 3D Simulations

The temperature profiles obtained from the 2D simulations are informative and

are able to predict trends observed experimentally. However, the assumption of an

infinite beam size leads to inaccuracies that preclude a quantitative comparison of

simulation and experimental results. Beam widths occur on the order of 750 µm

(research scale) to 7,500 µm (production). This scale must be considered relative

to both the beam length (in the scan direction) of 75-150 µm, and the thermal

diffusion distance during the dwell. In this section we quantify the effect of lateral

heat transfer and beam size on temperature profiles and present situations where

this effect can lead to significant deviations from the results of 2D simulations.

2.4.1 Computational aspects

We solve the heat conduction equation by dividing the domain into 2D “slabs” that

are loosely coupled in the lateral direction. This configuration is valid only because

the temperature gradients along the lateral direction are much lower than those

through the depth of the wafer or along the scan direction. Each slab is solved

using the 2D implicit-explicit scheme with lateral heat transfer implemented with

a 1D explicit scheme. A key advantage of this implementation is that it can be

easily parallelized as each slab is simulated almost independently. We use a multi-

threading framework to achieve nearly ideal scaling on multicore SMP machines

and observe a speed-up of 7.2 on 8 core machines. The domain is split into ∼100

slabs along the lateral direction, with typical grid dimensions on the order of

dx = 20µm, dy = 50µm and dz = 10µm. Typical 3D simulations take ∼ 1 hour

on an 8 core, 2.93 GHz Intel Xeon Linux machine. The Cornell Laser Annealing
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Simulation Package (CLASP), used for these simulations (see Chapter 4), is freely

available for download online [64].

2.4.2 Effects of finite beam size

The shape of the temperature profile changes due lateral heat flow. Along the

scan direction, the temperature profile remains identical to a 2D profile near peak

temperature, but exhibits steeper gradients in the trailing edge. This is because

the time spent at peak temperatures is not sufficient for any significant heat trans-

port to occur. Along the wafer depth, lateral heat transport reduces the absolute

temperature, but without changing the characteristics of the temperature profile.

Along the lateral direction, temperature profiles change qualitatively as shown

in Figure 2.12. For a flat-top (ideal) beam, the temperature profile exhibits an

error-function type shape, the curvature of which depends on dwell time and the

associated diffusion length. For a gaussian beam, at low peak temperatures, the

temperature profile broadens out due to thermal diffusion. However, at higher peak

temperatures, reduction in thermal conductivity bottles up heat and results in a

temperature profile that is more “peaked” than the power profile. The transition

of FWHM from broad to thin (when compared to the power profile) occurs around

a peak temperature of 600 ◦C.
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Figure 2.12: Normalized laser intensity profile (dashed lines) and tempera-
ture profiles (solid lines) along the lateral direction for a 1000 µm
wide “flat-top” beam (black) and a 1000 µm FWHM Gaussian
beam (red).

44



0 1 2 3 4 5 6

Beam width (mm)

50

60

70

80

90

100

T
3

D
/T

2
D

(%
)

500 µs dwell, 75 µm xfwhm
500 µs dwell, 100 µm xfwhm
500 µs dwell, 150 µm xfwhm
1000 µs dwell, 75 µm xfwhm
1000 µs dwell, 100 µm xfwhm
1000 µs dwell, 150 µm xfwhm
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Lateral heat transfer reduces the peak temperature at the center of the beam.

This reduction depends on the distance of the beam center from the edge (beam

size) as well as the dwell time (diffusion length). Figure 2.13 shows the effect

of beam size on the peak temperature where, for small beam sizes, temperatures

can be up to 50% of the “infinite” beam (2D) case. Our simulations show that

the beam size should be approximately 10 times the thermal diffusion length (∼

2 mm) for the beam to be considered “infinite”. The characteristics of convergence

changes with dwell time and larger beam sizes are required at higher dwell times.

2.4.3 Laser power fluctuations

We investigated the effect on the temperature profiles of power fluctuations along

the lateral beam axis. Thermal diffusion washes out power fluctuations over short

distances, resulting in temperature fluctuations that are dependent on the spatial

frequency of the power fluctuations.

The incident laser intensity profile was modeled with a 10% sinusoidal fluctua-

tion of spatial wavelengths between 50-4000 µm. Figure 2.14 plots the RMS mag-

nitude of the temperature fluctuations as a function of the spatial frequency (wave-

length) for 500 and 1000 µs dwell times. At low spatial frequencies (λ ≈ 10×DL),

the fluctuations in temperature as high as the power fluctuations. But as the

frequency increases (λ ≈ DL), thermal transport washes out the noise in laser

power and result in temperature fluctuations that are 1% of the peak observed

temperature.
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pares the temperature profile of a flat beam and beam with
(top) low frequency [λ = 3000 µm] and (bottom) high frequency
[λ = 240 µm] fluctuations.

47



2.A Calculation of carrier concentration

The exact procedure for calculating the electron and hole concentrations, ne and

nh and hole are given below. If ND and NA are donor and acceptor concentrations

respectively, application of charge balance ne − nh = ND −NA gives us

nh = NA + ne

ne = n2
i /nh

nh =
NA±
√
N2
A+4n2

i

2

 p-type (2.31)

ne = ND + nh

nh = n2
i /ne

ne =
ND±
√
N2
D+4n2

i

2

 n-type (2.32)

The number of free carriers both intrinsic and due to doping are shown in Figure

2.15.
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2.B Derivation of source term in heat equation

When incident light falls on the wafer surface, a fraction of incident energy is

reflected and the rest is transmitted through the substrate. If z is the direction of

propagation of light through the substrate, the intensity of optical energy I(z) is

given by Beer’s law as

I(z) = I0(1−R)e−αz (2.33)

where I0 is the incident energy, α is the absorption coefficient and R is the re-

flectance. Due to the temperature dependence of absorption coefficient, α varies

continuously through the depth. Consider a differential layer of the material at

z with thickness dz. Equation 2.33 states that Ize
−α(z)dz is the intensity of light

transmitted through this layer. Thus the intensity of light at z in terms of the

incident energy is given by

I(z) = I0(1−R)
z∏
0

e−α(z′)dz′ = I0(1−R)e−
∫ z
0 α(z′)dz′ (2.34)

This integral representation of Beer’s law is more appropriate to describe the in-

tensity of optical energy at a particular depth. Now, the energy absorbed per unit

length in a layer of material between z2 and z1, with dz = z2 − z1 is given by

dI

dz

∣∣∣∣
z=z2

=
I(z2)− I(z1)

(z2 − z1)
= I(z2)

(1− e−α(z2)dz)

dz
(2.35)

This absorbed energy is coupled into the heat equation as the source term J(z).

Combining Equations 2.34 and 2.35, the power absorbed at z is given by

J(z) = I0e
−

∫ z
0 α(z′)dz′ (1− e−α(z)dz)

dz
(2.36)
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CHAPTER 3

EXPERIMENTAL MEASUREMENTS OF TEMPERATURE

DURING LASER ANNEALING

3.1 Overview

In this chapter, an experimental technique to measure temperatures with high

spatial and temporal resolution during laser spike annealing is presented. Sec-

tion 3.2 gives details about the experimental setup used for laser spike annealing.

Section 3.3 describes the micron-scale device and the resistance measurements of

the device as it passes under the laser beam. These resistance measurements are

calibrated to a temperature scale in Section 3.4. In Section 3.5 the experimentally

determined temperature profiles are compared with full 3D simulation profiles ob-

tained from the laser spike annealing model presented in Chapter 2, and simulated

using the software package documented in Chapter 4.

3.2 Experimental setup

The Laser Spike Anneal system shown in Figure 3.1 was used for measuring the

temperature during continuous-wave (cw) non-melt laser spike annealing. The

laser beam originates from the 110 W CO2 laser source and follows the path shown

by the red line in the figure. The laser spike annealing process is controlled by two

shutters: Shutter 1 (safety shutter) and Shutter 2 (process shutter). When the

shutters are “off”, the beam is directed into water-cooled power dumps mounted

on the optical bench. Samples to be annealed are mounted on the chuck, which is

fixed over a x-y moving stage.
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Figure 3.1: (a) The continuous-wave CO2 Laser Spike Anneal system at Cor-
nell. (b) Beam profile of the incident laser power on the chuck.
The incident energy was measured using a diode detector with
a 25 µm resolution. A gaussian fit to the beam profile gives
the beam FWHM to be ∼100 µm along the scan direction and
∼700µm along the lateral direction.
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The beam is originally circularly symmetric, but optics mounted on the bench

change it into an elliptical shape, as shown in Figure 3.1(b). The resulting incident

beam is Gaussian with a beam size of 100 µm in the scan direction, and 700 µm

in the lateral direction. The short axis is also the scan direction, and points into

the plane of the paper in Figure 3.1(a).

The intensity of the laser is controlled by the rotation angle of an attenuator.

The laser power incident on the surface of the chuck follows a sin2(θ) relationship

and is calibrated with the attenuator angle. The attenuator angle θ to laser power

P conversion function is given by

P (θ) = Pmin + (Pmax − Pmin) |sin(θ − φ0)|2 (3.1)

where Pmin, Pmax and φ0 are fitting parameters with values 3.38, 82.61 and 84.12,

respectively, in the following experiments. The attenuator power conversion func-

tion drifts is routinely calibrated.
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Figure 3.2: (a) Photographic image of the 4-terminal device used for mea-
surements. (b) Schematic of the thin film layers on the silicon
wafer surface.
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Figure 3.3: (a) Circuit diagram of the setup used for 4-terminal measure-
ments. The thermistor’s resistance is shown as R. The current
and voltage across the thermistor are measured using a two-
channel (100 MHz) oscilloscope. (b) Output from Channel 1
and Channel 2 of oscilloscope. Channel 1 (left) shows the change
in voltage across the resistor and Channel 2 shows the voltage
across the 50 Ω standard resistor, which gives the current.
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3.3 Resistance temperature measurement

Resistance temperature detectors operate by measuring the resistance of the sam-

ple as it passes under the laser beam. A thin-film Pt RTD (also called a thermis-

tor), fabricated to be thermally small on the scale of the incident beam, is used

to measure the resistance. A 4-terminal (Kelvin) resistance measurement set-up

is used to accurately measure resistance of the thermistor. Figure 3.2 shows the

thermistor layout with a line width of 2 µm on the “force leads” of the thermistor.

The “sense leads” are 50 µm apart. Data with high spatial resolution were ob-

tained due to this small footprint of the thermistor (2x50 µm). Use of 4-terminal

resistance measurements resulted in low experimental errors. Furthermore, the

effect of thermistor reflectivity on absorption was considered to be only a small

perturbation compared to the incident laser source used for these measurements.

Devices were fabricated on thermally oxidized (100 nm) heavily doped (0.01-

0.05 Ω-cm) substrates (450 µm thick) to achieve sufficient absorption from the CO2

laser at room temperature. The Pt film (20-50 nm thick) was laid on a 2 nm Cr

film to adhere to the oxide, and strapped by a 250 nm Ni film to reduce resistance

at the contacts. The contact pads were placed 10 mm away from the thermistor

to avoid heat transfer through the large metallic contacts. Using epoxy glue, the

fabricated devices were packaged in the 1 inch square cavity of a 28-pin ceramic

DIP, thus ensuring good thermal contact at the back interface.

During a typical laser scan, the moving stage enters a “fire window” causing

the process shutter to open. The laser beam, now incident on the chuck, passes

over the thermistor as it scans through the specified window. Direct heating of

the silicon wafer due to the incident laser beam raises the temperature of the

thermistor, which, in turn, changes its resistance. This change in resistance during
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passage of the laser beam is measured, and directly related to the time-resolved

temperature.

Figure 3.3 shows the electrical setup for measuring resistance, and typical data

from a single laser scan. The pulser is triggered when the moving stage enters the

“fire window” and biases the system to +1 V for about 200 ms around the laser

scan (to limit joule heating from the measurement itself). The voltage drop across

the thermistor Vth was amplified 10 times using a Textronics AM502 differential

amplifier, with a low pass filter at 3 Mhz used to reduce noise. The output from

the differential amplifier is seen on Channel 1 of the oscilloscope. The current

passing through the circuit measured by the voltage drop across a 50 Ω resistor

was captured on Channel 2 of the oscilloscope. Noise observed in the current

measurements were ameliorated by smoothening during post-processing.

The spatial resolution of these data is high due to the small physical size of the

device. Transverse to the scan direction, the sample has a width of 50 µm and is

much smaller than the FWHM of the beam (700 µm). In the scan direction, the

device is 2 µm wide and the temporal resolution is approximately this dimension

divided by the scan velocity.
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(blue) dwell scans.
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The curves in Figure 3.3(b) show the change in voltage as a function of time

for a single scan. Given VCH1(t) and VCH2(t), and the gain, G, of the differential

amplifier, the resistance of the thermistor as a function of time is given by:

R(t) =

(
VCH1(t)

G

)
/

(
VCH2(t)

50

)
(3.2)

This resistance is directly related to the temperature field, T , experienced by the

thermistor as it passes under the laser beam. The resistance of the device is related

to the temperature field by:

R(t) = R0(1 + α(T (t)− T0)) (3.3)

where R0 is the resistance at room temperature T0 (25 ◦C), and α is the temper-

ature coefficient of resistance (TCR) of platinum. The ratio ∆R/R0, signifying

change in resistance, is directly related to the temperature at the surface.

Figure 3.4 shows the change in resistance ∆R/R0, for 500 and 1000 µs dwell

scans, corresponding to scan velocities of 200 mm/s and 100 mm/s, respectively.

These resistance profiles, taken near the center (peak) of the lateral laser profile,

are representative of scan direction temperature profiles. Using the TCR α for

Pt, the temperature field due to the laser scan can be inferred. However, the

standard TCR value for Pt thin films varies significantly from the bulk standard of

3.9×10−3 [65]. The TCR of Pt thin films can vary significantly with film thickness,

morphology, stress and grain structure [66, 13]. As the resistance to temperature

conversion is very sensitive to the exact value of α, the resistance measurements

need to be calibrated with temperature (to determine α) for each sample.
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3.4 Temperature calibration

3.4.1 Silicon melt calibration

Figure 3.5 shows peak change in resistance as a function of laser power for 500 µs

and 1000 µs dwell scans for two different samples. In the case of Sample 2, mea-

surements were taken with power ramping up from 0 to 62 W (500 µs) and to

50 W (1000 µs) and, subsequently, ramping down back to 0 W. No hysteresis was

observed in the measurements, indicating the stability of the Pt thin film. For

Sample 3, laser spike annealing was performed with power ramping up from 0 W

until device failure. These data show a monotonic increase in peak resistance,

which levels-off at around 55 W.

This change in slope corresponds to the melting point of silicon since, at this

point, the surface of silicon becomes nearly reflective and does not absorb any

further energy from the CO2 laser beam. The value of ∆R/R0 at this critical

point (1.2137) is calibrated with the silicon melt temperature of 1410 ◦C to obtain

a thin-film Pt TCR of α = 8.67× 10−4 ◦C−1.
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Figure 3.5: Peak change in resistance as a function of laser power at 500 µs
and 1000 µs dwell. In case of 1000 µs dwells, laser power was
increased until the silicon melted (∼ 55 W), indicated by a flat-
tening of the peak resistance curve.
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3.4.2 Hot plate calibration

The TCR obtained from the silicon melt calibration only ≈ 1/4 the value for bulk

platinum TCR, and about 1/2 the value given for thin films. Hot plate calibration

was undertaken to obtain a second calibration point. The sample was placed on

a hot plate and the resistance was measured as a function of temperature. Both

2-point and 4-point resistance measurements were taken using an Agilent 34401A

digital multimeter. Temperature was recorded using a k-type thermocouple at-

tached to the hotplate sample holder housing.

Figure 3.6 shows resistance as a function of temperature for 2-point and 4-point

resistance measurements done on Sample 2. The resistance across the “force leads”

of the device at room temperature is 2100 Ω, and it rises linearly with a TCR of

1.8 × 10−3 ◦C−1. Although the 2-point measurement TCR is reasonable for a Pt

thin-film, it includes the contact resistance of the device, which is large is compar-

ison to the resistance of the 2x50 µm thermistor. Thus a 4-point measurement is

required to accurately determine the TCR of the thermistor. Figure 3.6(b) shows

that the thermistor has a TCR of 1.3× 10−3, with a room temperature resistance

of 72 Ω. This TCR, however, is still 1.5 times higher than the TCR value obtained

from the silicon melting point, and can not be used to calibrate the resistance

measurements obtained during laser spike annealing.
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Figure 3.6: Hot plate calibration curve showing resistance as a function of
temperature for (a) 2-point resistance measurement and (b) 4-
point resistance measurement. The TCR was obtained from a
linear fit to the hot plate data.
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3.4.3 Gold melt calibration

The melting point of gold was used as an additional calibration point for determin-

ing the TCR of the Pt thermistor during laser spike annealing. Gold dots of size

5 µm2, deposited 10 µm apart on a pure silicon wafer, were annealed till melting of

the gold was observed. Figure 3.7(a) show dark field images of a gold dot annealed

at the center (peak) of the laser beam, at 500 µs dwell, with powers between 38-

55 W. Gold melting was observed at 55 W. Similarly, the power required to achieve

gold melting temperature were obtained for dwell times ranging from 500 µs to

9 ms (data and dark field image courtesy of Byungki Jung).

The peak resistance measurements from scans performed at power and dwell

times required for gold melting were used to calculate the TCR. Figure 3.7(b) shows

that the TCR calculated from the gold melt data is around 8.4× 10−4, which is in

good agreement with the TCR calibrated from the silicon melting point. However,

despite this good agreement, the gold calibration data has large errors bars (of at

least +/- 1 W) and does not appear to be a reliable calibration technique as yet.

However, the silicon-melt and gold-melt calibration methods are complemen-

tary in nature. The silicon melting point calibrates temperature with change in

resistance, whereas the gold melting point calibrates temperature and laser power.

In essence, only the silicon melting point calibration is required to infer tempera-

ture from resistance data. However, the gold melting point calibration is critical for

compensating for experimental uncertainties in laser power, the removal of which

is important for comparison with simulations.
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Figure 3.7: (a) Dark field images of gold dots after annealing at 500 µs dwell
for various power levels. Gold melt is observed at ∼54 W. (b)
The temperature coefficient of resistance (TCR) calculated by
calibrating the resistance measured at powers and dwell times
required for gold melting to 1064 ◦C.
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3.5 Temperature profiles and comparison with simulations

In this section, experimentally measured temperature profiles along the scan and

lateral direction were compared with 3D simulation results of laser spike annealing.

An in-house built software package - CLASP [64] (see Chapter 4) was used to run

the 3D simulations. Simulations were run for a 100x700 µm beam scanning over

a 450 µm thick, highly doped p-type (1019 cm−3) substrate with free (unclamped)

backside boundary conditions. The simulation domain of size 6 mm (scan direc-

tion) by 5 mm (lateral direction) by 450 µm (wafer depth) was discretized and

solved using a parallelized finite different method. A full temperature-dependent

optical-thermal coupling model (see Chapter 2) was used with the reflectivity of

silicon set to a constant 30% [67].

3.5.1 Scan direction profiles

Temperature profiles as a function of time along the scan direction of the beam are

shown in Figure 3.8. As the beam approaches, temperature begins to rise 5-10 ms

prior to the peak laser intensity. As the beam passes, the sample cools to a final

baseline level corresponding to the residual heating from the beam. The regions

before and after the peak temperature are termed as the leading and trailing edges

of the profile, respectively. Experimental data (shown as points) are compared

with simulations (solid lines) between 8-55 W power.
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Figure 3.8: Peak temperature as a function of time along the scan direction
at powers between 8 and 55 W. Both experimental (triangular
points) and simulation results (solid lines) are shown. The ex-
perimental measurements are taken near the peak of the lateral
profile (Figure 3.10). The experimental and simulation profiles
are shifted such that the peak of the temperature profile occurs
at time 0. The peak of the temperature profile lags that of the
laser beam by a distance that is dependent on thermal diffusion.
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Figure 3.9: Normalized experimental temperature profiles as a function of
time at 1000 µs dwell for laser power between 8 and 55 W. The
normalized scan direction temperature profiles become steeper at
higher temperatures. Each profile is averaged over five scans to
eliminate noise. However, profiles for 8 and 12 W power scans
are not smooth due to low signal to noise ratio.
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Characteristics of the leading and the trailing edges of the temperature profile

depend on the themral diffusion distance in the system, defined approximately

by
√

4Dτ , where D is thermal diffusivity of silicon and τ is the dwell time. Fig-

ure 3.4 illustrates the difference between temperature (resistance) profiles of 500

and 1000 µs dwell scans. The leading edge of the 500 µs profile is steeper and

approaches that of a step function with decreasing dwell time. Conversely, with

increasing dwell time, the temperature profile broadens and approaches a Gaus-

sian shape. The normalized scan direction profiles shown in Figure 3.9 are nearly

self-similar, with profiles becoming sharper with increasing power/temperature.

Good agreement is observed between experimental and simulation scan direc-

tion temperature profiles. Simulations, however, overestimate the slope near the

temperature peak and underestimate the residual heating after the laser scan, pos-

sibly because they do not account for multiple (oxide, Cr, Pt, Ni) layers on the

wafer surface.
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Figure 3.10: Peak temperature as a function of position along the lateral
direction of the beam between 17 and 55 W laser power. Each
point corresponds to the peak temperature of a scan profile as
shown in Figure 3.8. Both experimental data (triangular points)
and simulation (solid lines) are shown.
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Figure 3.11: FWHM calculated from fitting a Gaussian curve to experimental
and simulation profiles. Error bars represent fitting error for
experimental (black) and simulation (red) curves. The peak
simulation temperatures at 20, 32 and 52 W are shown.
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3.5.2 Lateral direction profiles

Temperature profiles along the lateral direction of the beam are shown in Fig-

ure 3.10. Experimental data (triangular points) and simulations (solid lines) are

shown for values of the power ranging between 17-55 W. Each experimental data

point is spaced 50 µm apart and corresponds to the peak temperature from a laser

scan at that position. Overall, the agreement is very good, however, significant

deviations between experimental and simulations profiles are observed in the tail

regions, particularly at high power values. This is primarily due to the non-ideal

gaussian shape of the laser beam along the lateral direction.

The FWHM of the experimental and simulation profiles, calculated from fit-

ting a Gaussian to the data, are shown in Figure 3.11. Both experimental and

simulation data show that lateral profiles are not self-similar, and the FWHM of

the lateral temperature profile decreases with power. The FWHM at low power is

larger than the beam width due to thermal spreading. However, with increasing

power/temperature, the temperature profiles become steeper as well as lose their

Gaussian shape (as seen from the error bars).

This is mainly caused due to the decrease in thermal conductivity of silicon with

temperature [61]. As seen from scan and lateral direction temperature profiles,

a “hot-spot” arises on the wafer surface due to the laser beam. The thermal

conductivity of material in this hot spot is lower, which prevents heat from diffusing

away as fast as the heat in the peripheral regions. This “bottling-up” of heat

occurs only at higher laser powers, where temperatures are high enough to cause

significant decrease in thermal conductivity.
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Figure 3.12: Peak temperature as a function of laser power (W) for Sample
2 and 3 at 500 and 1000 µs dwells. The curves for Sample 2
were generated by ramping up laser power to 50 W (in the case
of a 1000 µs dwell) and then decreasing to 2 W. In the case of
Sample 3, a single measurement was taken at each power, and
the laser power was increased until visible cracks were observed
on the sample. A TCR value of 8.67× 10−4, calibrated to both
the silicon and gold melting points, was used to convert both
the 500 and 1000 µs dwell resistance data. Peak temperature
curves as predicted by simulation are also shown for 500 and
1000 µs scans. The melting point of silicon (1410 ◦C) is shown
as a dashed cyan line.
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The rapidly changing material properties (thermal conductivity primarily) are

responsible for the non-linearities in heat transfer observed during laser spike an-

nealing. Thus, capturing the variations in material properties of silicon accurately

is critical for calculating simulation temperature profiles. With regard to thermal

conductivity, additional complexities arise because the thermal conductivity of

highly doped silicon is lower than that of pure silicon [63, 68], with no experimen-

tal data characterizing this effect in the temperature range of interest. A modified

form for thermal conductivity (capped at constant value below 325 ◦C), based on

experimental data obtained at low temperatures, is used to model heat transfer in

the simulations (for details, see Chapter 2). Comparison with experimental data

indicates that this modified form of thermal conductivity works well.

3.5.3 Peak temperatures

Figure 3.12 shows the peak temperature as a function of incident laser power for

500 and 1000 µs dwell scans. Good agreement is observed between the samples

when the TCR obtained from Sample 3 data is used to infer temperature from

Sample 2 data. Peak temperatures for a 1000 µs dwell are significantly higher,

indicating a thermally free backside boundary condition (more heat is retained

within the substrate at higher dwell times). The peak temperature curve is linear

below ∼350 ◦C (20 W at 1000 µs, 25 W at 500 µs), above which it becomes non-

linear (due to decreasing thermal conductivity). This is strong evidence that the

thermal conductivity is constant below ∼350 ◦C and validates the model used in

simulations. The parameters in material properties present the greatest challenge;

correct values of these parameters are critical not only for quantitative, but also

for qualitative, comparison with experimental results. The simulations curves in
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Figure 3.12 are in excellent agreement qualitatively (shape of curve) and well as

quantitatively (absolute temperature), thereby increasing confidence in the array

of material properties parameters used in the simulations (see Chapter 2).
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CHAPTER 4

CORNELL LASER ANNEALING SIMULATION PACKAGE

(CLASP)

4.1 Overview

In this chapter we provide documentation for the Cornell Laser Annealing Simu-

lation Package (CLASP), that was used to simulate the laser spike annealing in

Chapter 2. The software package consists of a 2D and 3D core engine that takes

either command line arguments or arguments visa a scripted input file. It also

consists of a GUI frontend for running 2D simulations of laser spike annealing.

Section 4.2 provides instructions for obtaining and installing CLASP on multiple

operating systems. Section 4.3 is a quick start guide for running 2D and 3D CLASP

simulations. The format of the output files is discussed in Section 4.4. Section 4.5

provides the full command reference for the 2D and 3D simulation engines and

Section 4.7 is a user guide for the 2D GUI frontend for CLASP.

Features of CLASP (2D and 3D core engine)

1. Full thermal property simulation in 2D and 3D.

2. Parallel 3D simulation with near linear performance scaling.

3. CO2 absorption model with thermal carrier generation.

4. Laser diode absorption model with dual beam coupling.

5. Optical coupling with complex thin-film geometries (uniform blanket films).

6. Database for material optical coupling properties.

7. Database for material thermal properties.
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Features of CLASP (GUI)

1. Editors for problem definition and simulation run.

2. Simulation progress view and output views.

3. Facility for plotting and saving temperature profiles.

4. Ability to save and load model definitions.

4.2 Installation

CLASP binaries are available for Windows (32-bit), Linux (64-bit) and Mac OSX

(64-bit). For all other platforms, the source code can be downloaded and compiled

as explained below. The source code and binaries can be obtained from

http://www.clasp.engr.cornell.edu.

Instructions for loading either the binaries directly, or for building the code,

are included on this site.

4.3 Quick start guide

CLASP executables are hard coded with default parameters, and you can run a test

simulation without any inputs. To run a 2D simulation with default parameters

on windows, open the command prompt and type

> clasp2d.exe
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On Linux and Mac OSX, type

> ./clasp2d

Configuration options for the LSA simulation can be either entered on the

command line as switches, or as key/value pairs in a configuration file. Command

line switches should be reserved for modifying parameters on a per-run basis as

shown

> clasp2d.exe [-options] [-input <file>] [-options]

> clasp3d.exe [-options] [-input <file>] [-options]

Options are processed in the order specified on the command line. Conflicting

parameters normally use the last value specified allowing configuration file pa-

rameters to be overridden. Use of the configuration file is recommended. All the

configuration commands and their command line switches are listed in Section 4.5.

Sample configuration files “sim 2d.config” and “sim3d config” are provided in

<path>/CLASP SRC/config example for running a 2D and 3D simulation respec-

tively. The sample configuration files are explained in Sections 4.6.1 and 4.6.2.

To run a 2D simulation with input from the configuration file, type on the

command line

> ./clasp2d -input sim_2d.config

Typical 2D simulation times are in the range of 15-20 mins. This allows the

user to run quick simulations using either the core-engine or the GUI frontend. To

run a 3D simulation, type on the command line
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> ./clasp3d -input sim_3d.config -np 2

Here, “-np 2” is a command line switch that specifies that 2 processors will be

used on a SMP multicore machine. 3D simulations take anywhere between 8-24

hours of simulation time (about 1-3 hours on a fully dedicated 8-core machine).

The performance of 3D code is nearly linear with increasing number of cores, so in

general, the more cores the better! No GUI frontend is available for the 3D code

as yet.

4.4 Output files types

Output from the simulation is written to a series of data files, which use

<basename> as the prefix. The executable outputs the data file into the same

directory where it is running.

4.4.1 2D simulations

The simulation output data is contained in two files <basename>.2d and

<basename>.3d. <basename>.2d contains the temperature profile, reflectance

and transmittance on the wafer surface. <basename>.3d contains temperature in

the x-z plane (x along scan direction, z along wafer depth). Other files include

<basename>.info which contains a information about simulation parameters and

coarse output of peak temperatures during the simulation run. <basename>.log

contains values of peak temperature at every time step and is consequently a much

bigger file. The Matlab code to read the temperature profile from <basename>.3d

files is given in Section 4.4.3.

79



	
  
Figure 4.1: Schematic of laser spike annealing as modeled in CLASP. The

x axis is the scan direction (narrow axis of the laser beam), the
y-axis is the lateral direction (long axis of the laser beam) and
the z-axis is through the depth of the wafer. The laser beam (in
red) has dimensions Lx and Ly in the scan and lateral directions
respectively and is scanning along x-axis with a constant velocity
v. We model the temperature profiles in a moving reference frame
centered on the laser beam.
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4.4.2 3D simulations

The simulation output is contained in <basename> T3D.txt file, which contains

gridded values for temperature throughout the 3D domain. This file contains data

for temperature in (x,y,z) domain in the following format:

line 1 - % Grid
line 2 - x axis grid
line 3 - y axis grid
line 4 - z axis grid
line 5 - % Data
line 6 onwards - temperature data in (x,y) blocks.

The Matlab code to read the full 3D temperature profile is given in Section 4.4.3.

<basename>.info3d includes information about the 3D simulation parameters.

4.4.3 Matlab scripts

2D - Read Temperature from *.3d file

%******************************************************
% Loads grid data and temperature from CLASP 2D output.
%
% Format of datafile:
%
% X is along scan direction (x-axis)
% Y is along wafer depth (z-axis)
%
% Grid is defined using
% COLS = nx, XSCALE = dx, XORIGIN
% ROWS = nz, YSCALE = dz, YORIGIN
% Rest of the file has temperature data -
% column wise increasing in x,
% row wise increase in z
%
% Returns:
% xt - grid along x (scan direction)
% zt - grid along z (wafer depth)
% T2D - Temperature in x-z plane
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%
% Author: Krishna Iyengar
% Version: 1.1
% Date: 7/15/10
%******************************************************

function [xt,zt,T2D] = load_T2Dfilename)

fid = fopen(filename);
if fid < 0

error(’Temperature datafile not found’);
end

while (1)
line = fgetl(fid);
if strcmp(line,’@end’)

break
end
if strfind(line,’COLS’)

[token,remain] = strtok(line);
nx = str2num(remain);

end
if strfind(line,’ROWS’)

[token,remain] = strtok(line);
nz = str2num(remain);

end
if strfind(line,’XSCALE’)

[token,remain] = strtok(line);
dx = str2num(remain);

end
if strfind(line,’XORIGIN’)

[token,remain] = strtok(line);
x0 = str2num(remain);

end
if strfind(line,’YSCALE’)

[token,remain] = strtok(line);
dz = str2num(remain);

end
if strfind(line,’YORIGIN’)

[token,remain] = strtok(line);
z0 = str2num(remain);

end
end

xt = x0:dx:x0+(nx-1)*dx;
xt = xt.*1E-6;
zt = z0:dz:z0+(nz-1)*dz;
zt = zt.*1E-6;

T2D = reshape(fscanf(fid,’%f’),[nx nz]);

end
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3D - Read Temperature from * T3D.txt file

%******************************************************
% Loads grid data and temperature from CLASP 3D output.
%
% Format:
% The first line has string "% Grid"
% The next three lines have the x,y,z grids
% The fifth line has string "% Data"
% Rest of the file has temperature data -
% column wise increasing in x,
% row wise increase in y,
% block wise increasing in z
%
% Returns:
% xt - grid along x (scan direction)
% yt - grid along y (lateral direction)
% zt - grid along z (wafer depth)
% T3D - Temperature in x-y-z domain
%
% Author: Krishna Iyengar
% Version: 1.1
% Date: 7/15/10
%******************************************************
function [xt,yt,zt,T3D] = load_T3D(filename)

% open file
fid = fopen(filename);
if fid < 0

error(’Temperature datafile not found’);
end

% read Grid data
fgetl(fid);
xt = sscanf(fgetl(fid),’%f’);
yt = sscanf(fgetl(fid),’%f’);
zt = sscanf(fgetl(fid),’%f’);

% read Temperature data
fgetl(fid);
s = [length(xt), length(yt), length(zt)];
T3D = reshape(fscanf(fid,’%f’),s);
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4.5 Command reference

Configuration commands fall into groups for simulation control, IR laser character-

istics, visible (diode) and laser characteristics. Optical characteristics are included

for each.

The format of lines in the config file is normally

Key [=] value1 [value2 ]

The equal sign is optional and some options do not require any values (backside

illumination for example). All real number values permit exponent format <nr3>.

Integer values are restricted to <nri> format. Boolean values are integers with 0

and 1 representing False and True respectively.

Entries in italics have not been implemented in the config file settings code,

but are generally not necessary.

4.5.1 base

Format Units Default

base = <string>

All simulation output files will be generated with basename as prefix.
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Grid parameters

These parameters control the setup and precision of the grid. Generally, it is much

cheaper to run with a reasonable dx and dz initially and use refine to obtain a

denser grid. The default values for grid parameters are reasonable starting points

for typical simulations.

An implicit explicit finite difference scheme is used to solve the heat equation

given below

∂θ

∂t
=

κ

ρCp

∂2θ

∂x2
+

κ

ρCp

∂2θ

∂y2
+

κ

ρCp

∂2θ

∂z2
+ v

∂θ

∂x
+

κ

κ0

J

ρCp

This scheme allows the user to specify different grid dimensions along different

axes, allowing finer resolution along fast changing direction without undue com-

putational overload. Also using an implicit scheme to solve the direction with

smallest grid (usually z-axis), we end up choosing a time step larger than a purely

explicit scheme. The finite difference discretization is outlined below:

Let D =
κ(T nx,y,z)

ρCp(T nx,y,z)
, kx =

∆t

∆x2
, ky =

∆t

∆y2
, kz =

∆t

∆z2

When the z-axis grid size is the smallest, the z-implicit method, detailed below

is used. Along the x-axis, explicit central difference for ∂2θ/∂x2 and ∂θ/∂x is used.

Along y-axis, explicit central difference for ∂2θ/∂y2 and ∂θ/∂y is used. Along z-axis,

the Crank-Nicholson form for ∂2θ/∂z2 and ∂θ/∂z is used.
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θn+1
x,y,z −

Dkz
2

(θn+1
x,y,z+1 − 2θn+1

x,y,z + θn+1
x,y,z−1) = θnx,y,z+

Dkx(θ
n
x+1,y,z − 2θnx,y,z + θnx−1,y,z)+

Dky(θ
n
x,y+1,z − 2θnx,y,z + θnx,y−1,z)+

Dkz
2

(θnx,y,z+1 − 2θnx,y,z + θnx,y,z−1)+

v∆t

2∆x
(θnx+1,y,z − θnx−1,y,z) +

κ(T nx,y,z)

κ0

J∆t

ρCp(T nx,y,z)

During grid refinement, it may happen that the grid size along x-axis becomes

smaller than z-axis. In such cases, the simulation switches to an x-implicit scheme

to preserve computational advantage. In this x-implicit scheme, along the x-axis,

the Crank-Nicholson form for ∂2θ/∂x2 and ∂θ/∂x is used. Along y-axis, explicit central

difference for ∂2θ/∂y2 and ∂θ/∂y is used. Along z-axis, explicit central difference for

∂2θ/∂z2 and ∂θ/∂z is used.

No implicit scheme along y-axis is implemented as the thermal gradients along

y-axis are not large enough to deem a finer grid. Due to this, the grid size along

y-axis must be greater than both x and z axes.

4.5.2 grid.dx

Format Units Default

grid.dx = <nr3> µm 20

Initial grid size along scan direction of the sample.
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4.5.3 grid.xrange

Format Units Default

grid.xrange = <nr3> <nr3> µm -4000 1000

Extent of simulation domain behind and ahead of the laser. Heat equation is

solved in the moving frame of the laser. The position of the laser is taken to be

at X = 0. Range is specified for leading and trailing part of the beam. The first

value is for negative X, behind the position of the laser and thus trailing. This

generally must be many times the thermal diffusion distance. The second value

is for positive X and is typically the beam FWHM plus a few diffusion distances.

The first parameter will be forced to be negative independent of the given sign.

Also see grid.nx, grid.nx0

4.5.4 grid.nx

Format Units Default

grid.nx = <nri>

Number of grid points along X.

4.5.5 grid.nx0

Format Units Default

grid.nx0 = <nri> grid.nx/2

Point along grid where X=0.
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4.5.6 grid.dz

Format Units Default

grid.dz = <nr3> µm 10

Initial grid size through wafer.

4.5.7 grid.thickness

Format Units Default

grid.thickness = <nr3> µm 750

Specifies thickness of the wafer.

Alternative equivalent command: grid.zmax

4.5.8 grid.nz

Format Units Default

grid.nz = <nri> 75

Number of grid elements in Z. grid.thickness and grid.nz are mutually exclusive.

Use of grid.thickness is recommended.

4.5.9 grid.dy

Format Units Default

grid.dy = <nr3> µm 50
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Grid size along lateral beam direction.

4.5.10 grid.ny

Format Units Default

grid.ny = <nri> 51

Number of slabs along y-axis. The 3D code is parallelized in such a way that one

coupled-2D simulation runs on each slab. It is recommended that the number of

slabs (ny) remain between 50-200. Simulations with grid.ny = 800 are known to

work, but take a very long time to complete. Use large values for ny only if you

have 8 or more cores available for computation. Also, ny*dy specify the simulation

domain along lateral (Y) axis. To avoid boundary effects, the simulation domain

should be at least 2 times the lateral beam width, i.e grid.ny×grid.dy > IR.yfwhm.

4.5.11 grid.ny0

Format Units Default

grid.ny0 = <nri> 25

Point along the grid where Y=0.
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Sample parameters

4.5.12 sample.RT

Format Units Default

sample.RT = <nr3> K 300

Room (chuck) temperature. Relevant for evaluating boundary conditions. Also

the initial temperature of the wafer.

4.5.13 sample.doping

Format Units Default

sample.doping = <nr3> cm−3 -1E18

Background substrate doping (p+, n-). Positive doping are for p-type and negative

are for n-type doping.

4.5.14 sample.velocity

Format Units Default

sample.velocity = <nr3> m/s 0.1

Linear velocity of the scanning laser along the X.

Also see sample.dwell, sample.y vel.
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4.5.15 sample.dwell

Format Units Default

sample.dwell = <nr3> µs ??

Dwell time of the scanning laser. For a Gaussian beam, the dwell time is defined

as FWHM/velocity. Thus, the commands sample.velocity and sample.dwell are

mutually exclusive. As dwell time is poorly defined, except for a Gaussian beam,

it is strongly recommended that only the velocity be specified.

Also see sample.velocity

4.5.16 sample.y vel

Format Units Default

sample.y vel = <nr3> m/s 0

Linear velocity of scanning laser along Y. Can be combined with sample.velocity

for angular scans.

4.5.17 sample.X0 Clamp

Format Units Default

sample.X0 Clamp = <nri> False (0)

Clamps X = Xmin (trailing edge) at Room temperature. The trailing edge of the

sample can be clamped to substrate temperature or treated as a zero heat-flux.

TRUE clamps the interface at the substrate, FALSE enforces no heat flux.
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4.5.18 sample.Z BC

Format Units Default

sample.Z BC = <nr3> 1

Backside clamping boundary condition. Can take the following values:

• 0 = Substrate unclamped (no flux boundary condition).

• 1 = Substrate clamped to room temperature.

• 2 = Mixed BC with specified thermal resistance. See sample.Z R T

4.5.19 sample.Z R T

Format Units Default

sample.Z R T = <nr3> W/cm2-K 35

Specifies thermal resistance at backside boundary when sample.Z BC = 2.

Simulation parameters

4.5.20 sim.X Refine

Format Units Default

sim.X Refine = <nri> <nri>

Runs N grid refinements in X and stabilizes the solution for L iterations on the

refined grid. Results in a grid that is (dx/2N). Running a coarse simulation (large
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dx) is fast and converges to a close solution. Each of the N refinements in X halves

the value of dx. This is much faster than starting with a smaller dx. For example,

starting from dx = 20 µm, the command

sim.X_Refine = 2 100

will result in a grid with dx = 5µm. This can also be used in combination with

sim.Z Refine to achieve the required grid resolution.

Known Bug: Broken as of now for 3D simulations.

4.5.21 sim.Z Refine

Format Units Default

sim.Z Refine = <nri> <nri>

Runs N grid refinements in Z and stabilizes the solution for L iterations on the

refined grid. Results in a grid that is (dz/2N). Running a coarse simulation (large

dz) is fast and converges to a close solution. Each of the N refinements in Z halves

the value of dz. This is much faster than starting with a smaller dz. For example,

starting from dz = 10 µm, the command

sim.X_Refine = 3 100

will result in a grid with dz = 1.25µm. This can also be used in combination with

sim.X Refine to achieve the required grid resolution.

Known Bug: Broken as of now for 3D simulations.
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4.5.22 sim.min run

Format Units Default

sim.min run = <nr3> ms 0.0

Minimum number of ms to run simulation. Based on the thermal diffusion distance

and the scanning velocity, the code automatically calculates the time required to

simulate to a steady state thermal profile. This command can be used to increase

simulation time in case steady state temperature has not been achieved.

4.5.23 sim.max run

Format Units Default

sim.max run = <nr3> ms 0.0

Maximum number of ms to run simulation. Based on the thermal diffusion distance

and the scanning velocity, the code automatically calculates the time required to

simulate the stead state thermal profile. However, at high dwells, the in-built safety

factor used to calculate simulation time results in a very expensive calculation.

This command can be used to limit computational costs in such cases.

4.5.24 sim.stability

Format Units Default

sim.stability = <nr3> 1.0

Simulation stability factor. The stability factor is multiplied to the explicit time

step calculated based on thermal conductivity variations. A value above 2.0 is
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almost certainly going to be unstable. Values below 1.0 can be tried if there are

wide variations in thermal conductivity, and if the simulations are going unstable.

4.5.25 sim.database

Format Units Default

sim.database = <filename> C:/database.nk

Thin Film Optical Coupling (TFOC) database path containing optical properties

of various materials as a function of wavelength. Only important if TFOC is used

for calculation of the dynamics reflectivity of a complex stack. The default location

of the TFOC database in “C:/database.nk”. The database files may also be placed

elsewhere if this parameter specified.

Also see IR.TFOC

4.5.26 sim.holebands

Format Units Default

sim.holebands = <string> All

Model to use for hole bands in the Si p-type free carrier absorption. Options are a)

Heavy and b) All. The proper handling of the degenerate hole band for Si remains

unclear. The two limiting cases of using all bands (default) or only the heavy hole

band can be selected. Closest match with experimental results seems to be with

the all mode. It is recommended that this parameter not be changed.
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Infrared/CO2 laser parameters

The IR laser is typically the CO2 beam focused to a line with an aspect ratio greater

than 5. In this case, the profile of the incident laser beam simulated by specifying

the profile along the scan (short) axis and the perpendicular lateral (long) axis. In

the simulation, the scan direction is along X axis and the lateral direction is along

Y axis. The beam profile along X axis can be either a Gaussian, an Asymmetric

Gaussian or Arbitrary and along Y axis, the profile can be Gaussian, a Flat-top

(square wave) or Arbitrary. However, due to the current setup, the incident laser

beam has necessarily two axes of symmetry. The optical coupling of the CO2

laser is defined by its absorption length and the reflectance at the wafer surface.

Parameters below define the characteristics of the beam and how the coupling to

the Si substrate should be handled.

4.5.27 IR.power

Format Units Default

IR.power = <nr3> W/cm 100

Incident CO2 laser power. This is one of the main parameters in the simulation.

The peak temperature is determined primarily by the dwell time and the integrated

power of the IR laser across the X (scan/narrow) axis. Hence, the power is specified

as W/cm along the length of the beam.
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4.5.28 IR.wavelength

Format Units Default

IR.wavelength = <nr3> µm 10.6

Wavelength of the infrared radiation. Model is valid for the wavelengths between

4 µm - 12 µm. Alternative equivalent command: IR.lambda

4.5.29 IR.fwhm

Format Units Default

IR.fwhm = <nr3> µm 100

FWHM of the Gaussian beam profile along the X (scan) axis, centered at 0.0. The

peak of the Gaussian profile can be set using IR.x0. IR.fwhm, IR.asym fwhm and

IR.profile are mutually exclusive with each other. Setting any one will cancel all

previous settings.

4.5.30 IR.x0

Format Units Default

IR.x0 = <nr3> µm 0.0

For the Gaussians, the peak of the profile will occur at X = x0 in the simulation.

For the arbitrary profile, the position X = 0 in the given profile file will occur at

X = x0 in the simulation.
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4.5.31 IR.asym fwhm

Format Units Default

IR.asym fwhm = <nr3> <nr3> µm 100 100

Beam width in leading and trailing directions. IR.fwhm, IR.asym fwhm and

IR.profile are mutually exclusive with each other. Setting any one will cancel

all previous settings.

4.5.32 IR.profile

Format Units Default

IR.profile = <filename>

Uses data in <filename> as spatial profile on X axis. The profile is established

by a X/Y data file with first column being position along scan axis (X) (in µm)

and second column being arbitrary amplitude. Range of X should contain X = 0,

otherwise profile is shifted such that X = 0 lies at the center of the given data range

(Also see IR.x0). The amplitude is normalized and multiplied with IR.power to

get the actual beam profile. IR.fwhm, IR.asym fwhm and IR.profile are mutually

exclusive with each other. Setting any one will cancel all previous settings.

4.5.33 IR.yfwhm

Format Units Default

IR.yfwhm = <nr3> µm 750
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FWHM of Gaussian beam profile along Y (lateral) axis, centered at 0.0. The peak

of the Gaussian profile can be set using IR.lasery0. IR.yfwhm, IR.ystepwidth and

IR.y profile file are mutually exclusive with each other. Setting any one will cancel

all previous settings.

4.5.34 IR.lasery0

Format Units Default

IR.lasery0 = <nr3> µm 0.0

Sets the origin for the laser profile in the case of Gaussian and Step profiles. See

IR.yfwhm, IR.ystepwidth.

4.5.35 IR.ystepwidth

Format Units Default

IR.ystepwidth = <nr3>

Width of the flat top beam profile along Y (lateral) axis, centered at 0.0. The

midpoint of the flat-top beam can be set using IR.lasery0. IR.yfwhm, IR.ystepwidth

and IR.y profile file are mutually exclusive with each other. Setting any one will

cancel all previous settings.
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4.5.36 IR.y profile file

Format Units Default

IR.y profile file = <filename>

Uses data in <filename> as spatial profile on Y axis.

The profile is established by a X/Y data file with first column being position

along lateral axis (Y) (in µm) and second column being arbitrary amplitude. Range

of Y contain Y = 0, otherwise profile is shifted such that Y = 0 lies at the center

of the given data range (Also see IR.lasery0). The amplitude is normalized and

multiplied with the beam profile along scan direction (X axis) to obtain the 3D

laser profile on the wafer surface. IR.yfwhm, IR.ystepwidth and IR.y profile file

are mutually exclusive with each other. Setting any one will cancel all previous

settings.

4.5.37 IR.reflect

Format Units Default

IR.reflect = <nr3> % 30

Fixed reflectivity of surface. The surface reflectance is either fixed or calculated us-

ing TFOC simulation, which calculates the full temperature dependent reflectance

on the wafer surface (see IR.TFOC). The commands IR.reflect and IR.TFOC are

otherwise incompatible with each other.

Alternative equivalent command: IR.refl
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4.5.38 IR.optical

Format Units Default

IR.optical = <string> Klaassen

Absorption model for optical-thermal coupling of Infrared radiation. The optical

model determines how the absorption coefficient is calculated. The options are:

• Fixed: Uses fixed absorption coefficient as specified in the IR.absorb param-

eter.

• Klaassen: Recommended full free carrier model with best estimates for mo-

bility as a function of temperature and doping.

• Simple: A simplified model for temperature and concentration dependent

mobility.

• Spline: Mobility from spline fit of room temperature concentration dependent

mobility data (extracted from Avante TSUPREM manual)

4.5.39 IR.absorb

Format Units Default

IR.absorb = <nr3> µm 10

Fixed absorption length for the IR beam.
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4.5.40 IR.frontside

Format Units Default

IR.frontside = <nri> 1 (True)

IR incident from the front of the wafer. IR.frontside and IR.backside are mutually

exclusive options. The keys have no parameters, though IR.frontside = TRUE is

permitted for readability. IR.frontside = FALSE is however a not operational and

is NOT equivalent to IR.backside = TRUE.

4.5.41 IR.backside

Format Units Default

IR.backsize = <nri> 0 (False)

IR incident from backside of the wafer. IR.frontside and IR.backside are mutually

exclusive options. The keys have no parameters, though IR.frontside = TRUE is

permitted for readability. IR.frontside = FALSE is however a not operational and

is NOT equivalent to IR.backside = TRUE.

Diode laser parameters

The VIS (visible/diode) laser is typically a focused diode laser again in line profile

with an aspect ratio greater than 5. The visible laser is currently treated as an

above-bandgap absorber with a fixed absorption depth and fixed surface reflectiv-

ity.
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4.5.42 vis.power

Format Units Default

vis.power = <nr3> W/cm 40.0

Incident visible laser power. For consistency, the power is specified in W/cm.

However, carrier generation is dependent on the absolute intensity in W/cm2.

4.5.43 vis.wavelength

Format Units Default

vis.wavelength = <nr3> nm 980.0

Wavelength Alternative equivalent command: vis.lambda

4.5.44 vis.fwhm

Format Units Default

vis.fwhm = <nr3> µm 100

FWHM of the Gaussian beam profile Also see vis.x0

4.5.45 vis.x0

Format Units Default

vis.x0 = <nr3> µm 0.0

Center of the Gaussian beam profile
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4.5.46 vis.asym fwhm

Format Units Default

vis.asym fwhm = <nr3> <nr3> µm 100 100

Beam width in leading and trailing directions

4.5.47 vis.profile

Format Units Default

vis.profile = <filename>

Uses data in <filename>as spatial profile on fast axis

4.5.48 vis.reflect

Format Units Default

vis.reflect = <nr3> % 30

Fixed reflectivity of surface Alternative equivalent command: vis.refl

4.5.49 vis.absorb

Format Units Default

vis.absorb = <nr3> µm 100.0

Fixed absorption length for the diode beam
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4.5.50 vis.tau

Format Units Default

vis.tau = <nr3> sec 10× 10−6

Carrier lifetime. Determines the density of free carriers generated by the incident

laser diode radiation. Implemented only as a constant.

4.5.51 vis.frontside

Format Units Default

vis.frontside = <nri> 1 (True)

Diode incident from the front of the wafer. vis.frontside and vis.backside are

mutually exclusive options. The keys have no parameters, though vis.frontside

= TRUE is permitted for readability. vis.frontside = FALSE is however a not

operational and is NOT equivalent to vis.backside = TRUE.

4.5.52 vis.backside

Format Units Default

vis.backsize = <nri> 0 (False)

Diode incident from backside of the wafer. vis.frontside and vis.backside are mutu-

ally exclusive options. The keys have no parameters, though vis.frontside = TRUE

is permitted for readability. vis.frontside = FALSE is however a not operational

and is NOT equivalent to vis.backside = TRUE.
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Thin Film Optical Coupling

4.5.53 IR.TFOC

Format Units Default

IR.TFOC = <filename>

Specify sample structure for accurate calculation of reflectance. The surface re-

flectance is either calculated using TFOC simulation or a constant reflectance. The

two options are otherwise incompatible.

4.5.54 IR. AOI

Format Units Default

IR.AOI = <nr3> deg 0.0

Incident angle from the surface normal. Values are only necessary (or useful) if a

TFOC structure file is specified.

4.5.55 IR.polarization

Format Units Default

IR.polarization = <string> TM

Polarization of the beam. Options are transverse electric (TE) and traverse mag-

netic (TM). Values are only necessary (or useful) if a TFOC structure file is spec-

ified.
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4.6 Tutorials

4.6.1 Sample 2D simulation

The following script simulates in 2D, a 10.6 µm CO2 laser, having a 100 µm

Gaussian FWHM profile, scanning with a velocity 0.1 m/s. The power density

of the beam is 500 W/cm. The substrate is 750 µm thick, highly doped (p-

type 1E19), and is clamped at the bottom interface to room temperature (300K).

Full temperature dependence of optical-thermal coupling is incorporated using the

Klaassen model. Reflectivity is fixed at 30%. There is no backside illumination on

this substrate.

# Saved as file sim_2d.config
# Comments can be include in the config file

# Base name prefixed to simulation output
base = sim_2d

# Typical grid in 2D. Recommend dz to be smaller
grid.dx = 20.0
grid.dz = 10.0
grid.xrange = -4000.0 2000.0
grid.thickness = 750

# Sample parameters
sample.RT = 300
sample.doping = 1e+19

# Boundary conditions
sample.X0_Clamp = 0
sample.Z_BC = 1

# Laser scan velocity
sample.velocity = 0.1

# Laser parameters
IR.power = 500
IR.fwhm = 100
IR.wavelength = 10.6
IR.x0 = 0.0
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# Optical model and parameters (recommend using Klaassen)
IR.optical = Klaassen
IR.reflect = 30

# Standard parameters (usually same for all sims)
IR.frontside = 1
IR.backside = 0

4.6.2 Sample 3D simulation

The following script simulates in 3D, a 10.6 µm CO2 laser, having a 100 µm

Gaussian FWHM profile in the scan direction (X axis) and a 1000 µm Gaussian

FWHM profile in the lateral direction (Y axis). The laser is scanning with a

velocity 0.1 m/s. The incident laser power on the wafer surface is 50 W which, for

a 1000 µ m wide beam, results in a power density of 500 W/cm. The substrate is

750 µm thick, highly doped (p-type 1E19), and is clamped at the bottom and side

interfaces to room temperature (300K). Full temperature dependence of optical-

thermal coupling is incorporated using the Klaassen model. Reflectivity is fixed at

30%. There is no backside illumination on this substrate.

# Saved as file sim_3d.config
# Comments can be include in the config file

# Base name prefixed to simulation output
base = sim_3d

# Typical grid in 3D. Recommend dz to be smaller
grid.dx = 20.0
grid.dz = 10.0
grid.xrange = -4000.0 2000.0
grid.thickness = 750
grid.dy = 50.0
grid.ny = 51

# Sample parameters
sample.RT = 300
sample.doping = 1e+19

# Boundary conditions
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sample.X0_Clamp = 0
sample.Z_BC = 1
sample.YBC = 1

# Laser scan velocity
sample.velocity = 0.1

# Laser parameters
IR.power = 500
IR.fwhm = 100
IR.wavelength = 10.6
IR.x0 = 0.0
IR.yfwhm = 1000
IR.y0 = 0.0

# Optical model and parameters (recommend using Klaassen)
IR.optical = Klaassen
IR.reflect = 30

# Standard parameters (usually same for all sims)
IR.frontside = 1
IR.backside = 0

4.6.3 Dual beam configuration

A test file used to verify the behavior of front and backside incident IR and visible

beams is given below. The four tests then use simple modification of one or two

parameters via the command line.

# Saved as file tmp.config

# Grid parameters
grid.dx = 20
grid.dz = 10
grid.thickness = 750
grid.xrange = -4000 2000

# Sample parameters
sample.RT = 373
sample.doping = 1E15
sample.vel = 0.60
sample.Z_BC = 1
sample.X0_Clamp = TRUE
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# Laser parameters
IR.power = 567
IR.wavelength = 10.6
IR.fwhm = 120
IR.reflect = 10
IR.optical = Klaassen

vis.power = 40
vis.backside = TRUE
vis.fwhm = 750
vis.tau = 7E-3
vis.absorb = 5

# Simulation parameters
sim.X_Refine 2 100
sim.Z_Refine 3 100

These were then run from command line as:

> clasp2d -base "a" -config tmp.config -vis.frontside -IR.frontside
> clasp2d -base "b" -config tmp.config -vis.backside -IR.frontside
> clasp2d -base "c" -config tmp.config -vis.frontside -IR.backside
> clasp2d -base "d" -config tmp.config -vis.backside -IR.backside

4.7 GUI Frontend for CLASP 2D

4.7.1 Binary Installation

CLASP GUI works on the following platforms:

• Windows XP/ Vista (32 bit) x86

• Mac OSX (32 bit) Intel x86

• Linux (32 bit) x86

Minimum system requirements are: Java Runtime Environment (JRE) 1.5.

Download an appropriate version of CLASP GUI from http://www.clasp.engr.
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cornell.edu. Unzip the file into a folder of your choice and click on CLASP (.exe

on Windows) to run the program. Note: On Mac OSX and Linux, ensure that

CLASP is installed in a location that doesnt have a space character in its path.

This limitation will be addressed in future releases.

4.7.2 CLASP GUI components and files

CLASP consists of a GUI frontend and a core engine that does the actual sim-

ulation. The GUI is can be used to input the simulation parameters, run and

monitor the output and visualize the final results. The main executable for

the GUI is present at the <root> of the installation and is named CLASP.exe

(on Windows) and CLASP (on Mac and Linux). The core engine is located at

<root>/lsacorebin/lsacore <platform>. The optical coupling database is located

at <root>/database.nk. The core engine executable and the optical coupling

database can be used independent of the GUI.

4.7.3 CLASP GUI User Guide

Running CLASP opens the workflow view shown in Figure 4.2. It provides a struc-

tured interface to control and vary simulation parameters. The CLASP workflow

consists of entering simulation parameters by using “editors”, running a simu-

lation, monitoring the simulation using the “console view”, and visualizing the

temperature profile.

The editors that define the simulation parameters are:
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1. Sample Editor

2. Grid Editor

3. Laser Editor

4. IR Laser Editor

5. Diode Laser Editor

6. Simulate Editor

These editors can be opened either by double-clicking the workflow column

on the left or from the main menu by clicking Model → Open Editor → <editor

name>. CLASP opens with an example set of parameters, which can be run from

the Simulate editor.

Simulate Editor

The Simulate editor, as shown in Figure 4.3, defines the parameters responsible

for running the laser spike annealing simulation. The Working directory defines

the directory where the simulation is run, and where the output files are dumped.

The output files are prefixed by a basename (“example” as shown below). The

simulation can be started by clicking the button Run Simulation in the simulate

editor or from the main menu by Menu→ Simulate→ Run Simulation. The Grid

refinement section controls the refinement of the spatial grid during the course of

the simulation. See the Grid Editor 4.7.3 documentation for further details.

The stability factor should be ignored (generally). A value of 1.0 selects the

programs recommended value. Any other value scales this recommendation. The

program should be stable under all values less than 2.0, but experience shows
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this to be invalid with the full temperature dependence and moving boundary

conditions. If the simulation goes unstable (either by direct observation or the

programs own determination), smaller values can be chosen to try to improve the

stability. Problems are likely to occur primarily at extremely high velocities.

Console

Once a simulation starts running, the Console view and Progress view open up

automatically, as shown in Figure 4.4. They show the output from the simulation

in the console and a progress bar showing the configuration file being run. The

simulation can be then run in the background if preferred. You can also cancel the

simulation by clicking the Cancel button shown in the dialog box or by clicking

the red square in the Progress view.

Visualize

When the simulation successfully completes, the 2-D temperature profile can be

visualized within the GUI by clicking the Temperature node in the workflow view.

It can also be opened from the main menu by Visualize→ 2D Temperature profile.

You can zoom in/out the image using the mouse, edit the figure properties and

even save the image as a PNG.

Grid editor

The simulation is on a simple 2D rectangular grid representing the wafer. X direc-

tion represents the scan direction of the laser beam. The grid in the Z direction

is constrained by the absorption length of the laser and thermal diffusion distance
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over the dwell time. A value of 10 µm is reasonable for CO2 irradiation, though

smaller values may be necessary for the diode bars. The total thickness will proba-

bly be the full wafer (750 µm) since, after several milliseconds, the thermal diffusion

will reach the back interface. These parameters can be set using the Grid editor

shown in Figure 4.6.

Under most conditions, the total simulation time will be linearly proportional

to the number of grid elements. The laser absorption is handled such that little

precision is lost even if the grid spacing is comparable to the absorption length.

The grid selection has a much stronger influence on the simulation time goes as the

inverse cube of the grid length. Again, the Gaussian profile is handled properly

even if only a few grid points encompass the incident beam. The forward lateral

extent must be at least the beam width plus a few thermal diffusion lengths. 500

microns leaves a nice flat area for making pretty pictures. The back extent can

go as far as you are willing to wait. We have been using 5000 microns as working

values. The required distance depends on whether one is interested in the peak

temperature, or the ultimate cooling after the scan has passed.

In order to get better spatial resolution, the CLASP has a refinement capability

to take an accurate simulation on one grid and increase the resolution by a factor of

two. The Grid Refinement options in the Simulate Editor control this refinement.

Each iteration halves the lateral grid spacing so starting from 5 µm and including

two refinements gives a final resolution of 1.25 µm. However, if the first simulation

is too coarse and invalid, the refinements will not clear all of the errors (though

will remove some). The automatic refine operation is equivalent to the control in

the simulation section with only the X selected and 100 for the iteration count.

The recommendation is to start with something on the order of 1/3 to 1/5 the
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beam width, and simulate backwards to 20 times the beam width. This keeps

things to reasonable times. Include 2 or 3 automatic refinements to get the final

X resolution as desired.

Sample editor

The boundary conditions must be selected using the Sample editor as shown in

Figure 4.7. The leading edge (ahead of the laser) is automatically clamped to room

temperature (as is the entire sample at the start). The front surface is thermally

isolated a reasonable assumption for most conditions. However, the back edge

can be set to either clamped or be left as isolated. Within the time required to

establish steady state, thermal diffusion reaches the back interface (L2/4D ≈ 1 ms).

The trailing edge retains significant temperature much further behind the laser line

even if the back is clamped. The recommendation is to thermally clamp the back

of the wafer to the ambient temperature. This corresponds to an extremely well

heat-sunk sample.

Laser editors

The Laser Editor (Figure 4.8) can be used to choose the number and type of lasers

in the simulation. At present, a combination of two lasers (one Infrared and one

Diode) can be selected. The individual parameters for the lasers can be set in the

IR Laser Editor (Figure 4.9 and Diode Laser Editor (Figure 4.10).
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Figure 4.2: Workflow window that open with CLASP.

116



Figure 4.3: Simulate editor window showing default options.
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Figure 4.4: Console view in CLASP showing a typical simulation in progress.
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Figure 4.5: Visualization window showing a typical temperature profile.
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Figure 4.6: Grid editor with default parameters.
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Figure 4.7: Sample editor with typical parameters.
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Figure 4.8: Laser editor showing choice between using either diode or CO2

lasers or combination.
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Figure 4.9: CO2 laser editor with default parameters.

123



Figure 4.10: Diode/visible laser editor with default parameters.
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CHAPTER 5

THERMAL STRESS AND DISLOCATION DYNAMICS

5.1 Overview

The main challenge in this chapter is to capture various aspects of mechanical

deformation that arise from the thermal stresses created during laser spike anneal-

ing processes, and to quantify the resulting elastic and plastic deformations in the

system. In Section 5.2, we calculate elastic stresses during laser spike annealing

by identifying the most relevant material properties for single crystal silicon. In

Section 5.3, we extend this analysis to predict plastic deformation concluding that

existing models are insufficient for studying mechanical deformation during laser

spike annealing. In Section 5.4, we develop a new mesoscopic model for disloca-

tion dynamics, which we adapt in order to accurately predict plastic deformation

in Section 5.5.

5.2 Thermal stresses during Laser Spike Annealing

The 3D temperature profiles obtained using simulations with optical-thermal cou-

pling presented in Chapter 2 permit the determination of thermal stresses during

Laser Spike Annealing. The steady- state temperature profile was obtained in the

moving frame of the laser, and was used as input to the FEM (Finite Element

Method) solver. The thermal stress response in the material occurs at a much

faster time scale than heat transfer. Thus a quasi-static assumption was consid-

ered adequate for the Finite Element simulations [69]. The COMSOL Multiphysics
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[70] software package was used to calculate the thermal stresses due to laser spike

annealing.

As a first approximation, only elastic stresses were incorporated in the Finite

Element simulation. The temperature profiles were obtained from a 3D simulation

of a 500W/cm CO2 laser scanning with a velocity of 0.1 m/s, corresponding to

a dwell time of 1000 µs. The beam profile was a 100 µm Gaussian along the

x-axis and a 1000 µm wide flat beam along the y-axis, with a peak temperature

of 1600 K. The scan direction (x-axis) was taken as the [110] crystallographic

direction. Displacement boundary conditions were applied such that the top (z=0)

and bottom (z=700 µm) surfaces are were and the side surfaces were fixed (with

zero displacements).

Full anisotropic material properties for single crystal silicon was incorporated

into the FEM solver. The elastic modulus of silicon was taken to be [71, 72, 73, 74]

C11 = 165.7 GPa (5.1)

C12 = 63.9 GPa (5.2)

C44 = 79.6 GPa (5.3)

with the temperature dependent elastic modulus given by [75, 76]

1

C11

(
dC11

dT

)
= −9.4× 10−5K−1 (5.4)

1

C12

(
dC12

dT

)
= −9.8× 10−5K−1 (5.5)

1

C44

(
dC44

dT

)
= −1.0× 10−4K−1 (5.6)

The elastic constant also varies due to amorphous surface layers [77] and doping

concentration [78, 79, 80], both of which are present during laser spike annealing.

However, these are considered to be second-order effects and are not included in
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these FEM simulations. The temperature-dependent variations of the coefficient

of thermal expansion was modeled as [67]

α(T ) =
[
3.725(1− exp {−5.88× 10−3(T − 124)}) + 5.548× 10−3T

]
× 10−3 (5.7)

5.2.1 Von Mises stress

The localized temperature profile combined with the anisotropic material proper-

ties results in a 3D state of stress in the wafer. This 3D state of stress is, in general,

hard to interpret by looking at the individual components and a convenient repre-

sentation of the multi-axial stress conditions is the von Mises stress [81], defined

by

σvms =

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

2
(5.8)

where σ1, σ2 and σ3 are the three principal stress quantities. Figure 5.1(a) and

(b) show the von Mises stress on the surface and along the depth of the wafer,

respectively. The stress profiles are qualitatively similar to the temperature profile

near the high-temperature regions, but begin to differ away from the beam center

due to the anisotropy in the material parameters of single crystal silicon.

A second advantage of considering von Mises stress is that it is directly related

to the macroscopic yield criterion - which dictates that yielding occurs when the

von Mises stress becomes more than the yield stress. This yield stress, however, is

determined phenomenologically and is a macroscopic outcome of the microscopic

deformation mechanisms. At the microscopic level, the thermal stresses act as a

driving force for dislocation (defect) nucleation and propagation. These disloca-

tion, under the effect of stress and temperature fields, “glide” and multiply through

various mechanisms. The stresses at which this process becomes observable macro-
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Table 5.1: Maximum resolved shear stress (RSS) in MPa for the 12 slip sys-
tems in silicon.

No Slip system RSS No Slip system RSS

1 (111), [110] 121 7 (111), [110] 119

2 (111), [101] 151 8 (111), [101] 286

3 (111), [011] 149 9 (111), [011] 288

4 (111), [110] 111 10 (111), [110] 111

5 (111), [101] 145 11 (111), [101] 287

6 (111), [011] 144 12 (111), [011] 290

scopically is defined as the yield stress.
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Figure 5.1: Contour plot of von Mises stress on the wafer (a) surface and (b)
depth calculated from the 3D temperature profile for a 500W/cm
CO2 laser scanning with a velocity of 0.1 m/s.
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5.2.2 Resolved Shear Stresses

Dislocations created by thermal stresses exist on certain crystallographic planes

(slip planes) and move/glide in certain crystallographic directions (slip direction).

The combination of these slip planes and directions are termed as the “slip system.”

The projections of 3D stress components on the slip plane and the slip direction are

the driving forces behind dislocation motion. The sum of these stress components

is calculated by projecting the components of stress on the slip system, and is

called the Resolved Shear Stress (RSS). [82]

In single crystal silicon, as shown in Table 5.1, there are 12 crystallographic

plane-direction pairs (slip systems) on which dislocation glide takes place. The

Resolved Shear Stress profiles depend on the orientation of the slip planes with

respect to the coordinate system. These profiles, obtained by projecting the ther-

mal stress profiles during laser spike annealing, are shown in Figure 5.2. This

figure, which maps the Resolved Shear stresses, highlights the complex effect of

crystallographic orientations and the anisotropic material properties in silicon.

The Resolved Shear Stress profiles vary both in their qualitative shape and

their absolute magnitude. As expected, points of maximum stress occur either at

the beam center (temperature peak) or at the beam edges (multiaxial effects). One

outcome of the stress projections is that four slip systems (8, 9, 11 and 12) have

the highest resolved stresses, this highlights the vale of these maps in identifying

these particular slip systems as being critical for failure analysis. There is a small

variation in the maximum shear stress among these slip systems, but that can

probably be attributed to numerical errors in the Finite Element simulations.
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Figure 5.2: Contour plots of resolved shear stresses on 12 slip systems of
silicon on the wafer surface. The color scale ranges from 0 MPa
(blue) to 300 MPa (red), as shown in Figure 5.3.
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Figure 5.3: Contour plot of the resolved shear stress for the (111), [011] slip
system on the surface of the wafer. The rainbow color scale on
the right defines the color key for the figure. Contour plots of
the surface temperature are superimposed (gray contours).
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The Resolved Shear Stress profile of slip system number 12, having a peak shear

stress of 300 MPa is shown in Figure 5.3. The shear stresses reach a maximum

near the peak of the temperature profile (gray contours) and follow the temperature

profile closely. However, near the beam edges, the effect of orientation can be seen

by the tilting of the stress profiles with respect to the temperature profile. This

effect is also observed in the 3D shear stress profiles, where shear stresses penetrate

deeper into the substrate at one beam edge.

5.2.3 Orientation dependence of stress

The Resolved Shear Stresses are asymmetric due to the anisotropy in single crystal

silicon and are dependent on the crystallographic orientation of the slip system.

This effect of crystallographic orientation, given by the Schmid factor [83], is the

reason for the different shear stress values on various slip systems. This strong

orientation-dependence has the potential to change the effect of thermal stress, and

can be used as a parameter to optimize performance during laser spike annealing.

It is typical in laser spike annealing for the wafer to be oriented such that the

[001] crystallographic direction is normal to the surface, and the [110] direction

is used as the direction for scanning the laser on the surface. Taking the [100]

direction to be at 0◦, the scan angle was changed from 0-90◦, with the [110] direction

being at 45◦. Figure 5.4 shows the Resolved Shear Stress of the 12 slip systems as a

function of scan angles for the same annealing parameters and peak temperature.

The effect of changing scan direction is clearly seen with the maximum shear stress

for a scan along [100] direction being 10% less than that along the [110] direction.
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Figure 5.4: Resolved Shear Stress on 12 slip systems as a function of scan
angle. 0◦ corresponds to the [100] direction and 45◦ corresponds
to the [110] scan direction.
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As thermal stresses are the limiting factor in achieving the maximum tem-

perature, this reduction in stresses implies that a higher peak temperature can be

achieved by simply changing the scan angle during laser spike annealing. Figure 5.5

shows the orientation of the slip systems for the [100] and [110] scan directions.

In the case of the [110] scan direction, the slip plane is exactly along path of the

laser. This could result in a situation where the temperature and stress fields be-

low a laser result in a situation where dislocations trail the exact path of the laser,

thereby creating a “worst case” scenario for avoiding dislocation growth. This sit-

uation could possibly be avoided by scanning along the [100] direction. However,

determining the exact processing conditions that would prevent this situation will

require a deeper understanding of dislocation dynamics; this will be presented in

Section 5.4.

135



Figure 5.5: Slip systems (planes and direction) with the highest resolved
shear stress for laser scans along the (a) [110] direction and (b)
[100] direction.
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5.3 The Haasen model for yielding

The Resolved Shear Stress is an indication of the driving force available in a slip

system. However, it is not sufficient to predict dislocation and slip damage. Dislo-

cations glide when the Resolved Shear Stress on a slip plane becomes greater than

a critical stress - termed the yield strength of the material. The yield strength

of silicon is a function of both temperature and strain rate. Experimental data

have been used to develop many phenomenological models for yielding, the most

popular of which is the Haasen model, [84] given by

τy = Hε̇1/n exp(U/nkT ) (5.9)

where τy is the yield stress, H is a material constant, ε̇ is the strain rate, U is

the activation energy required for dislocation glide and T is temperature. This

expression predicts that the yield stress decreases with temperature and increases

with strain rate of deformation as shown in Figure 5.6(a). This implies that, even

at high temperatures, if the strain rate is high enough, then the material will not

fail during processing. This phenomenon is solely responsible for preventing failure

of the wafer even at near-melting temperatures, and is central to the viability of

laser spike annealing.
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During laser spike annealing, thermal expansion is the source of strain in the

substrate. Thus, the strain rate due to a laser moving with a velocity v is given by

ε̇ = vα(T )
dT

dx
(5.10)

where α(T ) is the temperature-dependent coefficient of the thermal expansion of

silicon. This strain rate can be used in Equation 5.9 to calculate the yield stress

in the material. Figure 5.6(b) shows the temperature profile on the wafer surface

at the center of the beam. The strain rate calculated from the temperature profile

is also overlaid. This strain rate peaks just before and after the temperature peak

and goes to zero at the position of peak temperature. This means that the yield

stress, τy, goes from a very high value to zero at the temperature peak, thereby

implying that the material will always fail during laser spike annealing.

This incorrect conclusion indicates that we can not use Haasen’s model for pre-

dicting yielding during laser spike annealing. Haasen’s model is based on isother-

mal conditions, and a small, constant strain rate deformation. These conditions are

inconsistent with a wafer under laser spike annealing conditions, which experiences

high dynamic strain rates under large temperature-time gradients. Extrapolations

of Haasen’s model to predict yielding at these temperature and strain rate condi-

tions are thus invalid. The regime thus calls for a more fundamental approach for

predicting dislocation glide and yielding; this will be developed in Section 5.4.

5.4 Mesoscopic model for yielding

The Haasen model for yield stress, as described in Equation 5.9, is based on funda-

mental phenomenological models for dislocation dynamics. In silicon, dislocations

experience stress which causes them to move with a velocity on different slip sys-
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tems. This movement, or “glide”, arises as a result of various mechanisms and

causes the dislocations to multiply within the material. The dislocation movement

is the fundamental mechanism by which plastic strain is accommodated within the

material. In this section, we build a mesoscopic model for dislocation dynamics

based on empirically measured relations for dislocation velocity and dislocation

multiplication.

5.4.1 Effective stress on dislocation

Dislocations are line defects within a material and are, at the most basic level, due

to presence of extra planes of atoms within the crystal. This extra plane of atoms

results in a stress region around the dislocation. Dislocations, under the influence

of external stress, glide on the slip planes and multiply. However their motion

is also affected by the stress fields of other dislocations. This effect is called the

“back-stress” due to dislocations, and is modeled by

τa = τeff + τi (5.11)

where τeff , τa and τi are, respectively, the effective stress on the dislocation, the

applied external stress, and the interaction stress due to presence of other disloca-

tions. The interaction stress is given by

τi =
Gb

β

√
N (5.12)

where G is the shear modulus, b is the Burgers vector, β is a constant in the range

3 − 4, and N is the density of dislocations [85]. Thus, the effective stress on the

dislocation is given by

τeff = τa −
Gb

β

√
N (5.13)

140



5.4.2 Dislocation velocity

Dislocations glide with an average velocity in the material under the influence of

stress. This velocity is phenomenologically modeled in cubic crystals like silicon

as [86, 87, 88]

v = v0 ∗
(
τ

τ0

)m
exp

(
− Q

kT

)
(5.14)

where, τ is stress, τ0 and v0 are constants and Q is the activation energy for dis-

location motion. When τ = τeff , then v becomes the average dislocation velocity,

v̄. Thus,

v̄ = v0 ∗
(
τeff
τ0

)m
exp

(
− Q

kT

)
(5.15)

This dislocation velocity is responsible for the strain rate dependence of yielding.

At high strain rates, deformation takes place fast enough that dislocation motion

cannot accommodate all the strain. This results high stresses in the material, which

in the absence of a relaxation mechanism like dislocation glide, gives rise to brittle

fracture. However, this effect is reduced at higher temperatures as the dislocations

move and multiply fast enough to accommodate strain through plastic deformation,

thus preventing brittle fracture. The same strain rate at higher temperatures give

rises to ductile deformation due to the effect of increased dislocation velocities.

This effect is known as the brittle-to-ductile transition in silicon, and is dependent

both on temperature as well as strain rate of deformation [89].

5.4.3 Multiplication law

In silicon, dislocations multiply during glide according to the law proposed by

Alexander and Haasen [84, 90]

dNm

dt
= KτeffNmv̄ (5.16)
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where Nm is the density of mobile dislocations in m−2, v̄ is the average dislocation

velocity obtained when τeff is used in Equation 5.14. K is taken to be a constant,

though it has been shown to vary with temperature [91]. This multiplication law is

a first-approximation to the experimentally observed data. Though more complex

mechanisms have been developed and validated experimentally [92, 93, 94], they

are not included in this work for the sake of simplicity.

Substituting Equations 5.13 and 5.15 into Equation 5.16, the rate of change of

dislocation density with time is then given by

dNm

dt
=
Kv0

τm0
exp

(
− Q

kT

)[
τa −

(
Gb

β

√
Nm

)]m+1

Nm (5.17)

5.4.4 Macroscopic deformation

The change in dislocation density due to glide and multiplication allows for plastic

deformation in the material. During mechanical deformation, the total strain, ε,

is given by

ε = εel + εpl (5.18)

where εel and εpl correspond to elastic and plastic strain components, respectively.

The elastic strain is proportional to the applied stress and is given by

τa = ξεel (5.19)

where ξ is the elastic modulus. Substituting Equation 5.18 into Equation 5.19,

and taking its derivative with respect to time, we get

dτa
dt

= ξ (ε̇− ˙εpl) (5.20)

where ε̇ and εpl are the macroscopic and plastic strain rates respectively. The

plastic strain rate is related to the dislocation motion by the Orowan equation
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Table 5.2: Parameters used in the dislocation dynamics model.

Parameter Value Units Reference

K 3.1× 10−4 Maroudas and Brown [96]

v0 3.5× 105 m/s Sumino [85]

τ0 10 MPa Alexander [88]

Q 2.35 eV Sumino [85]

m 2.1 Sumino [85]

G 79 GPa

b 3.84× 10−10 m Maroudas and Brown [96]

β 3− 4 Sumino [85]

ξ G Pa

N0 2× 108 m−2

[95], which describes the strain rate in terms of the dislocation density and glide

velocity. The plastic strain rate is thus given by

˙εpl = Nmbv̄ (5.21)

Thus, by substituting Equation 5.21 into Equation 5.20, we can relate the rate of

change of stress in the system with the dislocation density in the material.

dτa
dt

= ξ

[
ε̇− bv0

τm0
exp

(
− Q

kT

)(
τa −

Gb

β

√
Nm

)m
Nm

]
(5.22)
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5.4.5 Stress-strain curve

The rate of change of stress with deformation can be used to predict the isothermal,

constant strain rate response of the material. Strain at a constant strain rate is

given by the relation ε = ε̇t. Substituting this into Equations 5.17 and 5.22, we

obtain a system of Ordinary Differential Equations (ODEs) given by

dNm

dε
=
Kv0

ε̇τm0
exp

(
− Q

kT

)[
τa −

(
Gb

β

√
Nm

)]m+1

Nm (5.23)

dτa
dε

= ξ

[
1− bv0

ε̇τm0
exp

(
− Q

kT

)(
τa −

Gb

β

√
Nm

)m
Nm

]
(5.24)

Solving the above set of ODEs with parameters given in Table 5.2 and with initial

conditions Nm = N0 and τa = Gb
β

√
N0 at ε = 0 gives the stress-strain response

of silicon, as shown in Figure 5.7(a). At low strains, both dislocation density and

stress increase linearly with strain. This models the elastic response of the ma-

terial. At higher strains, the stress-strain curve becomes non-linear [97, 98], and

peaks at a point known as the upper yield point of the material. The non-linearity

is due to the back-stress from the multiplying dislocations, which starts becoming

significant at a density of ∼ 1× 108 m−2. The dislocation density increases mono-

tonically with strain till the yield point at ∼ 1 × 1012 m−2. At the upper yield

point, the density of dislocations is high enough for all plastic deformation to take

place due to dislocation motion, and the dislocation density saturates, as shown

in Figure 5.7(b).
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Figure 5.7: (a) Stress and (b) Dislocation density as a function of strain,
calculated by solving the ODEs given in Equations 5.23 and 5.24,
for a strain rate ε̇ = 1 s−1 and temperature T = 1125◦C. All
other parameters are given in Table 5.2.
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This model using the mesoscopic dislocation dynamics concepts of average ve-

locity and multiplication law is able to capture, qualitatively, the stress-strain re-

sponse of silicon. It is also able to capture the transition between elastic and plastic

regimes purely on the basic of dislocation density. This transition, also known as

the yield point, occurs when the solution of the stress-strain ODEs peaks, and is

captured mathematically, as shown below.

5.4.6 Derivation of the Haasen model

Haasen’s model predicts the yield stress for silicon under constant strain rate con-

ditions. This yield stress can be found from Equation 5.24 by equating it to zero.

The derivative of the stress-strain curve becomes zero at both the upper yield point

and the lower yield point. However, near the upper yield point, the back stress

from the dislocations is negligible. So, by ignoring τi in Equation 5.11 and setting

Equation 5.24 to zero, we get the stress at the upper yield point τuy as

τuy = Hε̇1/m exp

(
Q

mkT

)
(5.25)

where H is a constant given by

(
τm0

Nmbv0

)1/m

. This model is known as the Haasen

model for yielding in silicon.

5.5 Dislocation dynamics model for laser spike annealing

The Haasen model cannot be used directly to predict yielding in the context of

laser spike annealing. However, the concepts of dislocation velocity and dislocation

multiplication, on which Haasen’s model is based, remain valid even in the high

temperature and short time scale regimes during laser spike annealing.
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In previous sections, a mesoscopic dislocation dynamics model was developed

that used dislocation density as a fundamental parameter for extracting mechan-

ical behavior. In Section 5.4.5, this dislocation density was related to the elastic

deformation, yield point and plastic deformation of silicon, and was used in Sec-

tion 5.4 to derive the macroscopic Haasen model from mesoscopic concepts. In this

section, we adapt the model developed above to predict dislocation density during

laser spike annealing. This is then combined with the expected dislocation density

at yield point to predict thermal stress levels for wafer damage and failure.

The temperature and stress fields are simulated in the moving frame of the

laser beam. By performing a reference frame transformation on Equation 5.23, we

obtain the relation for the change in dislocation density due to laser spike annealing

as a function of position as

1

Nm

dNm

dx
=

1

v

(
Kv0

τm0

)
exp

(
− Q

kT

)[
τa −

(
Gb

β

√
Nm

)]m+1

(5.26)

where v is the velocity of the scanning laser beam. Starting with an initial dis-

location density of N0, this equation captures the effect of temperature (T) and

stress τa fields on the dislocation density at a particular point. When integrated

along the length of the temperature profile, it gives the net change in dislocation

density due to the scanning laser.

Figure 5.8 shows the effect of peak annealing temperatures on the dislocation

density for initial dislocation densities varying between 102-108 m−2. It is seen

that the dislocation density does not change for laser scans with peak temper-

atures below 700 ◦C. Beyond this temperature, the dislocation density increases

exponentially. At lower temperatures, the change in dislocation density varies

linearly with initial conditions, and the curve in Figure 5.8 are parallel to each

other. However, at higher temperatures, the effect of dislocation back-stresses be-
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comes important, resulting in non-linearities in the dislocation dynamics model.

This becomes especially significant at high temperatures and dislocation densities,

with initial dislocation densities becoming irrelevant due to the dominant back-

stress components. The dislocation density required for yielding (calculated to be

1012 m−2 from Section 5.4.5) is reached between 1000 and 1200◦C, depending upon

the initial conditions. However, this temperature range is critically dependent on

the determination of the “yield condition” from the strain-strain ODE model, and

needs to be calibrated against experimental data.

Figure 5.9 shows dislocation density as a function of position on the wafer

surface. The dislocation density remains low at the leading edge of the beam, but

increases exponentially near the beam center and saturates in the trailing edge

region. However, this exponential increase in dislocation density occurs mainly on

the surface (Figure 5.9(b)) and becomes negligible beyond 50 µm into the wafer.
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laser spike annealing for initial dislocation densities ranging from
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thus capturing the brittle-to-ductile transition in silicon.

149



scan direction (mm)

la
te

ra
l d

ire
ct

io
n 

(m
m

)

!2 0 2

!1

!0.5

0

0.5

1

de
pt

h(
µ 

m
)

lateral direction (mm)

 

 

!0.5 0 0.5

0

50

100

2

4

6

8

10

12

14

Figure 5.9: Dislocation density as a function of position on (a) the wafer
surface and (b) along the depth in the moving frame of the laser.

150



CHAPTER 6

AN ACCELERATED KMC ALGORITHM FOR SPATIALLY

DISTRIBUTED SYSTEMS

6.1 Overview

In our attempts to understand the behavior of systems at increasingly small scales,

the importance of random fluctuations, or noise, is becoming increasingly apparent.

Indeed, the phenomenon is the subject of great interest in a variety of diverse fields,

including cellular biology [27, 28, 29, 30, 31, 32, 33], semiconductor processing

[34, 35] and heterogeneous catalysis [36].

From a computational perspective, incorporating the effects of stochasticity

into models of physical processes requires moving beyond traditional continuum-

deterministic approaches, such as ordinary differential equations (ODEs), and us-

ing one of a variety of stochastic methods. Within the purview of chemical ki-

netics, a popular technique is Gillespie’s stochastic simulation algorithm (SSA)

[99, 100, 101]. The method is extremely accurate, easy to implement and has

found widespread use in computational systems biology. Its downside however, is

speed, and the algorithm can become prohibitively slow due to its one-reaction-at-

a-time nature [102, 103].

This fact has spawned considerable effort, from a variety of directions, to

develop methods for overcoming this inherent limitation of exact-stochastic ap-

proaches. A particularly popular type of accelerated-stochastic approach is “τ -

leaping”, originally devised by Gillespie [103] and expanded upon by numerous in-

vestigators [104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118],
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including ourselves [37]. In general, leaping methods have proved quite success-

ful in overcoming some, but not all, of the problems plaguing exact-stochastic

simulation methods [101].

All of the methods cited above operate under the assumption that the volume

within which the reactions are “firing” is “well mixed.” In more precise terms,

the assumption is that the time scale of diffusion is fast enough so that all entities

(e.g., molecules) of the same species have equal probability of reacting at any given

point in time. However, it is not hard to imagine situations where this assumption

breaks down. In solid-state systems, for example, diffusion is much slower than in

fluids and the local environment seen by a dopant atom, say, plays a much larger

role in its dynamics [35]. In biology, both eukaryotic [119] and prokaryotic [120]

cells have intricate internal structures that act to localize certain interactions and

processes. The sheer size of cellular components also leads to a highly crowded

and definitively non-well-mixed intracellular environment [121, 122].

In situations such as these, methods that account for spatial inhomogeneity and

diffusion are needed. In the extreme case, it may be necessary to track the fates of

individual entities, or “agents” [123, 124]. However, a more common situation is

one where the system of interest can be partitioned into multiple smaller domains,

or “subvolumes.” Each subvolume is assumed to be well-mixed and coupled to

neighboring subvolumes via a jump-diffusion processes. Various extensions of the

SSA have been successfully implemented along these lines [125, 126, 127, 128,

129]. General overviews of both agent- and subvolume-based spatial-stochastic

simulation approaches applied in biology and materials science can be found in

Refs. [130, 131, 132, 133, 134].

In spatially inhomogeneous systems, the shortcomings of the exact-stochastic
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approach are intensified. In general, each subvolume is given local copies of each

reaction and diffusion event. Thus, the number of possible events in the system

increases significantly with increasing number of subvolumes, often making SSA-

like methods infeasible. A partial solution to this problem lies with the leaping

methods. While the number of events in the system remains unchanged (and

hence still a potential problem), spatial leaping methods achieve accelerations

by allowing all reaction and diffusion events to fire multiple times at each sim-

ulation step. We are aware of two implementations of leaping algorithms along

these lines, those of Marquez-Lago and Burrage [38] and Rossinelli et al. [39].

Marquez-Lago and Burrage propose a method that is a leaping analogue to the

well-known “next-subvolume method” (NSM) [127, 128], an efficient spatial SSA

variant. Rossinelli et al. present a more straightforward extension of leaping in

space that considers reaction and diffusion events separately.

We present a spatial implementation of our own method, the partitioned-leaping

algorithm (PLA) [37]. Our implementation is similar in spirit to the methods of

Marquez-Lago, and of Rossinelli, but differs in some important ways. In particu-

lar, we take special care with regards to the calculation of time steps. We point

out some conceptual errors that were made in this regard in refs. [38] and [39] and

demonstrate, through numerical examples, how these errors may affect accuracy

and efficiency. We show that, in some cases, the spatial partitioned-leaping algo-

rithm (SPLA) is faster than these methods and at least as accurate. In other cases,

SPLA is slower but significantly more accurate. In yet other cases there is little

difference. We explain the origins of this differential behavior and its consequences

for practical applications of the methods. Finally, we discuss the fundamental dif-

ficulties associated with incorporating exact-stochastic approaches like the NSM

into a spatial-leaping framework and suggest possible strategies for overcoming
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them.

In this Chapter, we develop an accelerated stochastic algorithm for capturing

noise inherent in reaction diffusion systems. In Section 6.2, we present an overview

of relevant exact- and accelerated-stochastic simulation methods for both homo-

geneous (well-mixed) and inhomogeneous systems that set the stage for the new

SPLA approach in Section 6.3. Section 6.4 shows results from three simple exam-

ple systems that exemplify the gains in accuracy and efficiency achieved by the

method. Finally, we conclude in Section 6.5 with a discussion of these results and

their implications for future extensions of leaping methods.

6.2 Background

We consider a chemically reactive system of fixed volume ΩV and constant tem-

perature that is partitioned into L well-mixed subvolumes V={V1, . . . , VL}. Each

subvolume Vl has a fixed volume ωl (
∑L

l′=1 ωl′=ΩV ) and is adjacent to Γl (≤L−1)

neighboring subvolumes Cl={Cl1, . . . , ClΓl}. In principle, each Vl contains a unique

set of Nl molecular species Sl={Sl1, . . . , SlNl} that participate in Ml unique reac-

tions Rl={Rl1, . . . , RlMl
}. We assume that all Nl species can diffuse into and out

of all Γl neighboring subvolumes. Thus, each Vl has NlΓl outgoing diffusion events

Dl={Dl1, . . . , DlNlΓl} associated with it as well as NlΓl incoming diffusion events

D̃l={D̃l1, . . . , D̃lNlΓl}. It is important to recognize that each D̃lµ is a reference to

an outgoing diffusion event from an adjacent subvolume. All together, there are a

total of Ml+2NlΓl reaction and diffusion events associated with each Vl. We thus

define, without loss of generality, the event vector El=Rl+Dl+D̃l.

The state of the system is represented by the vector X(t)=
∑L

l′=1 Xl′(t), where
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Xli(t) is the population of species Si in subvolume Vl at time t, i ∈ {1, . . . , Nl}.

Each event channel Elµ is associated with a propensity function alµ(X(t)) (the

stochastic analogue to the deterministic reaction rate) and a stoichiometry vector

zlµ={zlµ1, . . . , zlµNl}, µ∈{1, . . . ,Ml+2NlΓl} (see [135]).

6.2.1 Exact-stochastic methods

Well-mixed systems

Gillespie’s SSA operates within a fully well-mixed system (i.e., L=1) [99, 100]. The

approach determines when the next reaction will fire in the system and of which

type it will be. Two mathematically equivalent approaches were presented for

accomplishing this: the direct method (see [101] for details) and the first-reaction

method. The first-reaction method determines when each reaction in the system

would fire if it were the only reaction present in the system and then chooses τ as

the smallest of these values and µ as the corresponding reaction. Such “tentative”

next-reaction times are calculated via

τ exact
µ = − ln(rµ)/aµ(t), (6.1)

where rµ is a unit-uniform random number. As originally formulated, the first-

reaction method requires M unit-uniform random number generations at each

simulation step, M−1 of which are discarded before proceeding on to the next step.

An improvement upon this approach is Gibson and Bruck’s next-reaction method

(NRM) [136]. The next-reaction method basically uses a rigorous random-variable

transformation formula to reuse the generated random numbers in the next time

step. This reduces the number of random number generations per time step to
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exactly one, along with M ′−1 calculations of

τ exact
µ =

(
a′µ(t)/aµ(t)

)
(τ exact′

µ − τ ′), (6.2)

where the unprimed and primed quantities signify new and old values, respectively.

Inhomogeneous systems

The direct method and first-reaction method essentially constitute two ends of

a spectrum with regards to the grouping of reactions. In the direct method, the

entire system of reactions is basically considered to be one large group. In the first-

reaction method (and NRM by extension), each reaction is considered individually,

i.e., as a group of one. Thus any method intermediate between these two is also a

theoretically sound approach [101]. From a practical point of view, this means we

are free to group reactions into subgroups as we see fit. We can then choose among

those subgroups using the direct method or first-reaction method (or NRM or any

other equivalent method, e.g., [137, 138]) and then choose within the subgroup in

the same way. Moreover, we can nest the subgroups into as many levels as we like

if we find it convenient to do so.

Such a procedure has the effect of parsing out the computational load into

multiple stages and can, in many cases, significantly improve the efficiency of

the method. A well-known such approach is Elf and Ehrenberg’s next-subvolume

method (NSM) [127, 128], a spatial SSA variant that discretizes space into subvol-

umes and groups events (reaction and diffusion) based on the subvolume within

which they reside. The NSM operates by calculating the summed propensities

al0(t)≡
∑Ml+NlΓl

ν=1 alν(t) for all subvolumes l ∈ {1, . . . , L}. The subvolume within

which the next reaction will fire is then identified using a heap search as in the
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NRM [136] and the identity of the firing reaction within the subvolume using a

linear search as in the direct method [99]. This two-level approach significantly

reduces the computational effort relative to a straightforward heap or linear search

over all events in the domain.

6.2.2 Leaping approaches

τ leaping

As mentioned previously, the primary shortcoming of exact-stochastic simulation

methods, whether applied to well-mixed systems or otherwise, is that every event

firing is simulated explicitly. This imposes a tremendous computational burden on

the algorithm, particularly if one or more species have large populations.

To address this problem, Gillespie proposed the τ -leaping approach, which

proceeds by firing multiple reaction events at each simulation step [103]. In the

well-mixed case, we first define the random variable Kµ(τ) as the number of times

reaction channel Rµ fires during the time interval [t, t+τ). The time evolution of

the system can be formally written in terms of this variable as

X(t+ τ) = X(t) +
M∑
ν=1

zνKν(τ). (6.3)

The idea then is to calculate some τ over which all reaction propensities remain

“essentially constant”. In such a case, the reaction dynamics can be assumed to

obey Poisson statistics and

Kµ(τ) ≈ P(aµ(t)τ), (6.4)

where P(aµ(t)τ) is a Poisson random variable with mean and variance aµ(t)τ . Note

that the dependence in Eq. (6.4) on the value of aµ at the beginning of the step,
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i.e., at the initial time t, makes this an “explicit” approach, analogous to explicit

methods used in the numerical integration of ODEs [105].

Equations (6.3) and (6.4) constitute the essence of the (explicit) τ -leaping

method. At each step of a simulation, a time step τ is calculated (see Sec. 6.2.2

below) and the system state updated by generating M Poisson random deviates

{kν(τ)} in keeping with Eq. (6.4). Added to this is a proviso that if the total

number of expected firings, a0(t)τ , is “small” (∼10) then some variant of the SSA

is used instead [103].

Since its inception, modifications to the τ -leaping approach have been proposed

by various investigators [104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,

116, 117, 118, 37]. There are recent reviews by Gillespie [101] and Pahle [139].

Though differing in various aspects, all of these methods are based on the same

basic principles encapsulated in Eqs. (6.3) and (6.4).

Partitioned leaping

In Refs. [103] and [140], Gillespie went beyond Eq. (6.4) and noted a well-known

property of the Poisson distribution that it can be approximated by a normal , or

Gaussian, distribution if the mean is “large.” This allows us to write

Kµ(τ) ≈ P(aµ(t)τ) ≈ N (aµ(t)τ, aµ(t)τ)

= aµ(t)τ +
√
aµ(t)τ ×N (0, 1) (6.5)

where N (0, 1) is a normal random variable with mean zero and unit variance

[140, 103]. Written this way, Eq. (6.5) is equivalent to the chemical Langevin

equation [140], a stochastic differential equation comprised of a “deterministic”

term and a fluctuating “noise” term. Gillespie then noted that as aµ(t)τ→∞ the
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noise term becomes negligible relative to the deterministic term, giving

Kµ(τ) ≈ aµ(t)τ, (6.6)

which is equivalent to the forward-Euler method for solving deterministic ODEs

[140, 103].

In Ref. [37], we introduced the partitioned-leaping algorithm, a τ -leaping vari-

ant that utilizes the entire theoretical framework encompassed by Eqs. (6.4)–(6.6).

The partitioned-leaping algorithm considers reactions individually in a way remi-

niscent of the NRM. After calculating a time step τ (Sec. 6.2.2), each reaction is

classified into one of four categories: exact-stochastic, Poisson, Langevin and de-

terministic. Reactions classified at the three coarsest levels (Poisson, Langevin,

deterministic) utilize Eqs. (6.4)–(6.6), respectively. Reactions classified at the

exact-stochastic level are handled as in the NRM [Eqs. (6.1) and (6.2)]. Incorpo-

rating the SSA into the multiscale framework of the partitioned-leaping algorithm

is thus seamless and simple. Details of the algorithm can be found in ref. [37], with

a demonstration of its utility in ref. [141].

τ selection

The central task in leaping algorithms is the manner in which the time step τ is

determined. Indeed, the entire method hinges on the validity of the Poisson ap-

proximation Eq. (6.4), which requires that the propensities of all reactions change

negligibly during τ . To quantify this requirement, Gillespie defined the “leap con-

dition” [103, 140],

|aµ(t+ τ)− aµ(t)| /ξ ≤ ε, (0 < ε� 1) (6.7)

where ξ is an appropriate scaling factor (see below).
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Three main classes of τ -selection procedure have been proposed: (i) a pre-leap

reaction-based (RB) approach that uses Eq. (6.7) directly [103, 104, 107, 37], (ii)

a pre-leap species-based (SB) approach where changes in the species populations

are constrained such that Eq. (6.7) is satisfied for all reactions [107, 37], and (iii) a

post-leap checking procedure that explicitly ensures that Eq. (6.7) is satisfied at all

simulation steps [116]. Gillespie’s initial τ -selection strategy was an reaction-based

approach with ξ≡a0(t) [103, 104], which we will refer to as RB-a0. More recently,

Cao et al. [107] proposed an improved reaction-based approach with ξ ≡ aµ(t),

which we will refer to as RB-aµ, as well as a species-based approach, which we will

refer to as SB-aµ. The central task in this article involves modifying these formulas

for use in spatial simulations (see Sec. 6.3.2).

Spatial τ-leaping

Spatial leaping approaches involve grouping events (reaction and diffusion) by

subvolume, calculating a characteristic time interval τ leap
l for each subvolume and

then choosing the global time step

τ = min
l′∈{1...L}

{τ leap
l′ }. (6.8)

Every reaction and diffusion event can then fire multiple times within τ .

Marquez-Lago and Burrage [38] attempted to generalize the NSM within the

framework of such a leaping algorithm. The local time intervals τ leap
l are calculated

using the RB-a0 τ -selection procedure of Gillespie and Petzold [104], modified

accordingly to apply to each subvolume. A binomial τ -leaping variant [109] is

used for calculating event firings and provisions are made to segue to the NSM

when the species populations are small.
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Rossinelli et al. [39] presented a similar implementation of spatial τ -leaping

with the primary difference being that they considered reaction and diffusion events

independently of each other. Interestingly, they did not provide provisions to segue

to a SSA method in the limit of small populations.

There are, however, some conceptual errors with both Marquez-Lago’s and

Rossinelli’s spatial τ -leaping methods. We aim address these concerns in Sec. 6.3

in our development of the SPLA and outline the differences between the three

spatial leaping algorithms in Sec. 6.3.5.

An important aspect of the spatial τ -leaping algorithms is that, contrary to the

exact-stochastic case (Sec. 6.2.1), grouping events by subvolume does not reduce

the total number of calculations required in τ selection. In the NSM, a characteris-

tic time interval τ exact
l can be obtained for a given subvolume via a single evaluation

of Eq. (6.1) with aµ(t) replaced by al0(t). Thus, L total calculations are required to

determine τ . In the spatial τ -leaping case, however, each τ leap
l requires performing

τ -selection calculations for each reaction (RB-a0/RB-aµ) or species (SB-aµ) in Vl.

The total number of calculations required to determine τ in this context thus far

exceeds L.

This is a fundamental difference between the approaches that complicates

the incorporation of spatial SSA methods like the NSM into a spatial leaping

framework. In Sec. 6.3.2, we present optimized pre-leap τ -selection formulas for

subvolume-based spatial τ -leaping methods that minimize computational effort by

only considering those events that directly affect each reaction or species in Vl. In

Sec. 6.5, we speculate on alternative approaches that can fundamentally reduce

the cost of τ selection by allowing a single calculation to be performed for a group

of events, analogous to the procedure employed in the NSM.
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6.3 The spatial partitioned-leaping algorithm (SPLA)

6.3.1 Motivation

A major concern with the Marquez-Lago and Burrage method is the exclusion

of incoming diffusion events in the τ -selection process. In the NSM, incoming

diffusion can be ignored when selecting values of τ because events outside of the

subvolume have no bearing on when the next event within the subvolume will

fire. In leaping methods, however, this is no longer the case: the relationships

between events are of central importance in selecting values of τ . Ignoring incoming

diffusion in τ selection is thus an error that may impact the accuracy and/or

efficiency of the method to an a priori indeterminable extent. In Sec. 6.4, we

will show cases where this leads to inappropriately large values of τ and, hence,

increased error, and cases where it results in unnecessarily small values of τ and

decreased efficiency. Another concern in Marquez-Lago’s method is the use of the

RB-a0 τ -selection procedure which is not as theoretically sound as (and has been

shown to be less accurate than) the RB-aµ and SB-aµ procedures [107]. It appears

that the RB-a0 method was chosen to emulate the NSM.

In the case of Rossinelli’s method, the primary concern is the independent

consideration of reactions and diffusion events during τ selection. In principle, this

is inappropriate because the firings of reactions are intimately related to the rates

at which entities diffuse into and out of subvolumes, and vice versa. Ignoring this

fact can introduce error and/or affect the efficiency of the method. Furthermore,

the exclusion of a mechanism for transitioning to a exact-stochastic method in the

limit of small populations introduces additional error, as shown in Sec. 6.4.
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6.3.2 Spatial τ selection

In SPLA, we address each of the above issues: (i) both incoming and outgoing

diffusion are taken into account in the τ -selection process, (ii) reactions and diffu-

sion events are considered together when selecting time steps, (iii) appropriately

modified formulations of the RB-aµ and SB-aµ τ -selection procedures are used,

and (iv) the method automatically segues to an exact-stochastic method (NRM)

at low populations.

In general, the SPLA can be seen as an accurate, straightforward implementa-

tion of spatial leaping against which future enhancements can be compared. The

method was not intended to be faster than other spatial τ -leaping methods, though

this is a worthy goal, and, as we shall see, it often is not faster. In such cases, the

advantage of using SPLA should be measured in terms of accuracy. Sometimes

SPLA is faster than other methods because it produces larger time steps. This is

particularly true for systems close to equilibrium where neglecting incoming dif-

fusion can cause the algorithm to determine that the leap condition Eq. (6.7) has

been violated sooner than it actually has.

As in previous implementations of spatial τ -leaping, we select time steps by

calculating leap time intervals τ leap
l for each subvolume Vl and then setting τ equal

to the smallest of these [Eq. (6.8)]. In Table 6.1, we present a spatial version of

the RB-aµ τ -selection procedure used in this article. In Table 6.2, we present the

equations for the spatial SB-aµ procedure. We pay special attention to the ranges

over which minimizations and summations are performed in these equations. In

the RB-aµ case, one value of τ leap
lµ is calculated for each of the Ml+NlΓl reaction

and outgoing diffusion events in Vl. In the SB-aµ procedure, one T leap
li calculation

is required for each of the Nl species in Vl. In Eqs. (6.13), (6.14), (6.19) and
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(6.20), summations are taken over all Ml+2NlΓl events associated with Vl. This

is necessary to take into account the effect of incoming diffusion and is critical for

implementing an accurate spatial leaping algorithm.
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Table 6.1: Spatial versions of the RB-aµ τ -selection formulas of
Cao et al. [107], as modified in Harris and Clancy [37].
One τ leap

lµ calculation is required for each reaction and outgoing

diffusion event in Vl. Note that in Eq. (6.12), amin
lµ is the smallest

possible non-zero value of alµ (amin
lµ =clµ for elementary reactions).

Spatial RB-aµ

τ leap
l = min

ν∈{1...Ml+NlΓl}
{τ leap
lν } (6.9)

τ leap
lµ = min

{
εlµ(t)

|mlµ(t)|
,
ε2lµ(t)

σ2
lµ(t)

}
(6.10)

εlµ(t) ≡ max {εalµ(t), βlµ(t)} (6.11)

βlµ(t) =


amin
lµ if all

{
∂alµ(t)

∂Xlj

}
= 0

min
j∈{1...Nl}

{
∂alµ(t)

∂Xlj

}
otherwise

(6.12)

mlµ(t) ≡
Ml+2NlΓl∑

ν=1

flµν(t)alν(t) (6.13)

σ2
lµ(t) ≡

Ml+2NlΓl∑
ν=1

f 2
lµν(t)alν(t) (6.14)

flµν(t) ≡
Nl∑
j=1

zlνj
∂alµ(t)

∂Xlj

(6.15)
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Table 6.2: Spatial versions of the SB-aµ τ -selection formulas of

Cao et al. [107]. One T leap
li calculation is required for each

species in Vl. Note that in Eq. (6.18), the parameter gli depends
on the types of events species Sli participates in. See [107] for
formulas applicable to elementary event types, [37] for simplified
versions of these, and [141] for extensions to select non-elementary
events.

Spatial SB-aµ

τ leap
l = min

j∈{1...Nl}
{T leap

lj } (6.16)

T leap
li = min

{
eli(t)

|m̂li(t)|
,
e2
li(t)

σ̂2
li(t)

}
(6.17)

eli(t) ≡ max {εXli(t)/gli, 1} (6.18)

(0 < gli <∞)

m̂li(t) ≡
Ml+2NlΓl∑

ν=1

zlνialν(t) (6.19)

σ̂2
li(t) ≡

Ml+2NlΓl∑
ν=1

z2
lνialν(t) (6.20)
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6.3.3 The algorithm

We define a domain of constant volume and divide it into L (not necessarily equal-

sized) subvolumes, each of volume ωl, using a finite difference type discretization.

A connectivity matrix C = {C1, . . . ,CL} is used to specify the neighboring sub-

volumes and the geometry of the domain. Boundary conditions are applied (e.g.,

periodic, reflecting) by appropriately defining C. The SPLA then proceeds as

follows:

1. Initialization:

(i) For each subvolume, Vl: Set initial populations Xl(0) for all Nl local

species and define Ml reactions in which these species participate. Cal-

culate initial values of the propensities {alν(0)}, ν ∈ {1. . .Ml+NlΓl} for

all reactions and outgoing diffusion events. Set the time variable t= tinit.

(ii) Define global parameters ε (�1), ‘≈1’ and ‘�1’ used in τ selection and

event classification (typical values are 0.01–0.05, 3 and 100, respectively

[37]).

2. Calculate an initial (global) time step τ [Eq. (6.8)] using either the RB-aµ

τ -selection procedure of Table 6.1 or the SB-aµ procedure of Table 6.2.

3. Classify all Ml +NlΓl reaction and outgoing diffusion events within each

Vl based on the values of alµ(t)τ (see Sec. 6.2.2). Prevent classification of

diffusion events as exact-stochastic if the population of the diffusing species

Xli(t)>100 (see Sec. 6.3.4).

4. For all events (newly) classified as exact-stochastic, generate values of τ exact
lµ

using Eqs. (6.1) and/or (6.2).
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5. (i) If min{τ exact
l′ν } < τ , l′ ∈ {1. . .L}, ν ∈ {all exact-stochastic events}, set

τ=min{τ exact
l′ν } and return to step 3 (this may require multiple iterations;

see [37]).

(ii) Else, if min{τ exact
l′ν }> τ and all events are classified as exact-stochastic,

set τ=min{τ exact
l′ν } (no iterations required).

(iii) Else, retain τ .

6. Determine the numbers of event firings {kl′ν(τ)}, l′ ∈ {1. . .L}, ν ∈ {1. . .Ml+

NlΓl}, based on the classifications. For the three coarsest descriptions,

Eqs. (6.4)–(6.6) are used, respectively [142]. For exact-stochastic events,

if τ exact
lµ =τ then klµ(τ)=1, otherwise zero.

7. Fire all events and update populations.

8. If any Xli(t+τ)<0, revert all populations to their previous values, determine

the numbers of event firings within the shorter time interval [t+ τ/2) as

{kl′ν(τ/2)=B(kl′ν(τ), 1/2)}, l′ ∈ {1. . .L}, ν ∈ {1. . .Ml+NlΓl}, where B(n, p)

is a binomial random deviate with n attempts and a success probability of p

(post-leap checking [116]; see Sec. 6.3.4) and set τ=τ/2. Return to step 7.

9. Advance the time to t+τ and return to step 2 unless stopping criterion has

been satisfied.

6.3.4 Technical issues

In step 3 of the SPLA, we include a provision that diffusion events should not be

classified as exact-stochastic if the populations of the diffusing species are greater

than 100. This is a somewhat arbitrary restriction that deserves explanation.
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In our initial trials, we often obtained time steps much smaller than expected,

significantly diminishing the efficiency of the method, sometimes to a level close to

that of the NRM. We identified the source of this problem as diffusion events at the

leading edge of diffusing fronts. In these regions, the numbers of diffusing molecules

are small and, as such, diffusion events obtain exact-stochastic classifications. In

many instances, the values of τ exact
lµ generated for these events were smaller than τ ,

requiring a reduction in the time step and a reclassification of all events [step 5(i)

above]. This often led to events in subvolumes away from the leading edge being

classified as exact-stochastic that previously were not, which would then produce

an even smaller time step, and so. This “classification cascade” ultimately resulted

in values of τ much smaller than necessary. The same behavior was observed in a

previous application of the PLA to a model biological system [141, note 80].

The provision in step 3 of the SPLA was included in order to overcome this

problem. It prevents the cascade from penetrating too deep into the interior of the

domain and significantly speeds the simulations with negligible loss in accuracy.

Our choice of 100 as the threshold is based on the fact that diffusion is usually

modeled as a first-order process and, hence, if the population is 100 then one firing

will result in a 1% change in the propensity. 1% is a reasonable value for ε and

is at the lower end of the typical values that we use. Nevertheless, this approach

is clearly ad hoc and it would be preferable to have a more general strategy that

applies globally to all event types, not just diffusion events. In the future, we hope

to develop such an approach. For the sake of demonstration, however, we believe

that this simple strategy suffices.

In step 8 of the SPLA, we employ the post-leap checking procedure of Anderson

[116], which is theoretically stronger than the “try again” approach employed in
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(step 8 of) the original PLA [37] and in τ -leaping [106, 107]. However, would

like to emphasize that in the SPLA, we make minimal use post-leap checking and

only to handle those rare occasions in which negative populations arise. Post-leap

checking has much broader potential as an alternative τ -selection approach that

can improve the efficiency of the SPLA, either on its own or coupled with the

reaction-based or species-based procedures of Tables 6.1 and 6.2.

6.3.5 Marquez-Lago, Rossinelli and some SPLA variants

In order to assess the performance of the SPLA, we implemented Marquez-Lago’s

and Rossinelli’s spatial τ -leaping methods for comparison, as well as variants of

the SPLA that incorporate select features of those methods for diagnostic pur-

poses. Marquez-Lago’s method differs from the SPLA in two important ways: (i)

it calculates values of τ leap
lµ using the RB-a0 τ -selection procedure

τ leap
lµ = min

{
εal0(t)

|mlµ(t)|
,
ε2a2

l0(t)

σ2
lµ(t)

}
, (6.21)

where al0(t)≡
∑Ml+NlΓl

ν=1 alν(t), and (ii) incoming diffusion is ignored in these cal-

culations. The latter means that mlµ(t) and σ2
lµ(t) are calculated as in Eqs. (6.13)

and (6.14) of Table 6.1 but with the summations running over ν∈{1. . .Ml+NlΓl}

only. Values of τ leap
l are calculated using Eq. (6.9) of Table 6.1 and τ is selected

as in Eq. (6.8).

Marquez-Lago’s method also transitions to using an exact-stochastic method

in Vl if al0(t)τ.10. This amounts to classifying the subvolume as exact-stochastic

which, in turn, experiences either one event firing within τ or none at all. If one

event fires, then event selection is performed as in the direct method. Consequently,

if all subvolumes are classified as exact-stochastic, then the algorithm becomes the
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NSM [127, 128]. The numbers of firings within non-exact-stochastic subvolumes

are determined using a binomial τ -leaping variant [109]. Importantly, the method

does not use the continuum descriptions Eqs. (6.5) and (6.6) that are used in the

SPLA. Note that, instead of binomial τ -leaping, we use standard Poisson τ -leaping

coupled with the negative population check of step 8 of the SPLA. We consider

this difference to be inconsequential in comparing the methods.

The primary differences between the SPLA and the Rossinelli’s spatial τ -leaping

method are: (i) they apply the SB-aµ τ -selection procedure of Table 6.2 separately

to reaction and diffusion events and, (ii) they do not provide a mechanism for

segueing to a exact-stochastic method in the limit of small populations. For each

subvolume Vl, τ
leap
l values are calculated by

τ leap
l = min{τ rxn

l , τdiff
l }. (6.22)

with τ rxn
l and τdiff

l being time steps for reactions and diffusion events respectively.

They are obtained using modified forms of Eq. (6.16) in Table 6.2. Basically, for

each Sli, two values of T leap
li are calculated, one considering only reactions and

the other only diffusion events (outgoing and incoming). These are obtained via

Eq. (6.17) of Table 6.2 with m̂li(t) and σ̂2
li(t) calculated using Eqs. (6.19) and

(6.20), respectively, but with the summations running only over ν ∈ {1. . .Ml}

for τ rxn
l and ν ∈ {Ml+1. . .Ml+2NlΓl} for τdiff

l . Thus, in our implementation of

Rossinelli’s method, we replace step 2 of the SPLA with this τ -selection procedure.

We also eliminate steps 3–5 of the SPLA and use only Eq. (6.4) in step 6 (i.e., no

exact-stochastic, Langevin or deterministic classifications).

Finally, we also implement three variants of the SPLA: (i) a “one-way diffusion”

variant that sums only over ν∈{1. . .Ml+NlΓl} in Eqs. (6.13) and (6.14) of Table 6.1

and Eqs. (6.19) and (6.20) of Table 6.2 during τ selection [step 2 of the SPLA],
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(ii) a “no ES reactions” variant that prevents reaction events from being classified

as exact-stochastic in step 3 of the SPLA, and (iii) a “no ES events” variant that

prevents all events (reaction and diffusion) from being classified as exact-stochastic.

The first variant allows us to quantify the effects of ignoring incoming diffusion

in τ selection. The last variant gives us insight into the importance or tradeoff of

transitioning to a exact-stochastic method in the limit of small populations. The

second variant is used to exemplify the need for a more general strategy to address

the classification cascade problem discussed in Sec. 6.3.4. These variants provided

us with insight into the operation of the SPLA and allowed us to make connections

to Marquez-Lago’s and Rossinelli’s methods.

6.4 Numerical Examples

In order to demonstrate the utility of the SPLA, we apply the method to three

classical spatial systems: pure diffusion in one dimension (Sec. 6.4.1), the one-

component reaction-diffusion system described by Fisher’s equation [143, 144] in

one dimension (Sec. 6.4.2), and the two-component reaction-diffusion system de-

scribed by the Gray-Scott equations [145] in two dimensions (Sec. 6.4.3). In all

cases, we consider the domain partitioned into L equally-sized subvolumes. Diffu-

sion is modeled as a first-order elementary process

Sli
di−→ Sl′i, (6.23)

where Vl′ is an adjacent subvolume (i.e., Vl′ ∈Cl) and the microscopic diffusivity

di is constant throughout the domain. Propensities for diffusion events are thus of

the form

alµ(t) = diXli(t), µ ∈ {Ml + 1. . .Ml +NlΓl}. (6.24)
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Microscopic diffusivities are obtained from macroscopic diffusion coefficients Di via

the relation [129]

di = Di/h
2, (6.25)

where h is the side length of the regular subvolumes. We choose h such that the size

of the subvolume is less than the diffusion length of the system, given by
√

4Dτ

(where D is diffusivity and τ is the time step). However, the time step τ can

vary significantly during the course of the simulation. It is affected by the rate of

diffusion, which in turn is affected by the subvolume size (Ref. Eq. (6.25)). Hence

this formula can only be used approximately. This circular dependency can be

partially addressed by running a sample simulation, taking the most-frequent time

step and then using that to calculate the subvolume size such that the well-mixed

assumption is maintained. All SPLA simulations are performed with ε = 0.01,

‘≈1’=3 and ‘�1’=100.

6.4.1 Pure diffusion

The first system we considered was pure diffusion of a δ function in one dimension.

Apart from being the simplest example of a diffusing front, this system is ideal

for study because analytical solutions are well known and the stochastic mean

corresponds to the deterministic solution.

We define a one-dimensional domain of width 0.4 m (in say, the y-direction)

and cross-sectional area A and divide it into L=40 equally-sized subvolumes, each

of width 0.01 m (ωl=0.01A m3). We populate one subvolume at the center of the

domain [see Fig. 6.1] with between X(0)=1 and 5×107 particles of species S and

then vary A in order to maintain a constant concentration of 0.04 M over the whole
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domain. We apply Neumann (no flux) boundary conditions at each end of the

domain, and define a constant (y-directional) diffusion coefficient D=10−3 cm2/s.

The system can then be represented by the set of transformations

Sl
d−⇀↽−
d
Sl+1, l ∈ {1. . .L− 1}, (6.26)

where d is obtained from Eq. (6.25). The partial differential equation that describes

this system in the deterministic limit is

∂X(y, t)

∂t
= D

∂2X(y, t)

∂y2
. (6.27)

In Fig. 6.1, we compare particle distributions at t = 2 s for an initial δ spike

of 1000 particles obtained from a representative SPLA simulation of (6.26) and

from Eq. (6.27). The results coincide well, although the effects of stochasticity are

clearly visible.

174



1000

900

800

700

0.40.30.20.10.0

Position (m)

80

60

40

20

0

N
o
. 
o
f 

p
ar

ti
cl

es

 Deterministic

 SPLA-SB

Figure 6.1: Particle distributions at t=2 s for pure diffusion of a 1000 particle
δ spike obtained using the SPLA and Eq. (6.27). The initial delta
function is shown as a dashed line. The cross-sectional area A is
set such that the total concentration over the domain is 0.04 M .
The SPLA simulation was performed using the SB-aµ τ -selection
procedure of Table 6.2 (SPLA-SB).
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In Fig. 6.2, we present a computational cost analysis comparing the SPLA

to the NSM. In Fig. 6.2(a), we see that the SPLA, using both the reaction-based

(SPLA-RB) and species-based (SPLA-SB) τ -selection procedures of Tables 6.1 and

6.2, requires almost exactly the same number of simulation steps as the NSM up

to about 1000 total particles. Beyond that, we see a significant difference between

the methods, with the cost of the SPLA decreasing with increasing number of

particles and that of the NSM continuing to increase linearly. The reason why

the two SPLA methods coincide exactly is because we model diffusion as a first-

order elementary process [Eq. (6.23)]. Thus, the constraint on |∆alµ(t)| used in

reaction-based τ selection is identical to that on |∆Xli(t)| used in species-based

τ selection.

In Fig. 6.2(b), we compare the CPU times for each of the three methods. Here,

we see that up to about 1000 total particles the NSM is actually the least expensive

of the methods. The SPLA-SB is close behind, however, being slightly less efficient

because of the computational overhead associated with τ selection. Beyond 1000

total particles, we see that the SPLA decreases in computational cost while the cost

of the NSM continues to increase linearly. Interestingly, SPLA-RB is significantly

less efficient than the SPLA-SB, despite the fact that both methods take the exact

same number of steps on average. This is due to two factors: (i) the total number of

τ leap calculations required in reaction-based τ -selection (Ml+NlΓl=78) as compared

to species-based (Nl = 40), and (ii) the extra expense associated with calculating

rate derivatives in RB τ -selection [Eqn. 6.15]. Since Nl will often be much less

than Ml+NlΓl, we see that there is a distinct advantage to using SB τ -selection in

spatial leaping simulations.
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Figure 6.2: (a) Average numbers of simulation steps and (b) average CPU
times vs. total particle number for pure diffusion of a δ function
till t=2 s using the SPLA-RB, SPLA-SB and NSM. In each case,
the particle number was changed by varying the cross-sectional
area A, while maintaining a constant concentration of 0.04 M
over the domain. All results are averaged over 500 simulation
runs performed on an Intel Core 2 Duo, 2.13 GHz machine with
2 GB of RAM.
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In Fig. 6.3, we compare the accuracy of the SPLA-SB to the NSM for an initial

δ spike of 104 particles. We omit the SPLA-RB since the results are identical to the

SPLA-SB. We see that, although the SPLA requires about an order of magnitude

fewer steps [Fig. 6.2(a)], there is essentially no difference between the means and

standard deviations obtained from both methods over the entirety of the domain.

We make sense of this by referring to the works of Cao et al. [146] and Rathinam

et al. [147], both of which show that in explicit τ -leaping methods (like SPLA), for

sufficiently small τ , the histograms generated using a τ -leaping method should be

virtually indistinguishable from those obtained using an exact-stochastic method.

Our results in Fig. 6.3 thus simply indicate that we are using a small enough error

control parameter (ε=0.01) in τ selection and thus avoiding any noticeable errors.
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Figure 6.3: Means and standard deviations of the particle number over the
entire domain at t = 2 s for pure diffusion of a 104 particle δ
function using the SPLA-SB and the NSM. In both cases, results
are from 500 simulation runs. The dotted lines constitute an
envelope of twice the standard deviation about the SPLA-SB
mean.
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6.4.2 Fisher’s equation

Fisher’s equation (also known as the Fisher-Kolmogorov-Petrovskii-Piscounov

equation) [143, 144] is a deterministic partial differential equation that has been

used to describe the propagation of an advantageous gene in a population [143] and

the spatio-temporal evolution of a species under the combined effects of diffusion

and logistical growth [144]. In one dimension, the equation is of the form

∂u

∂t
= Ku(c̄− u) +D

∂2u

∂y2
, (6.28)

where u is a species concentration, K is a second-order reaction rate constant, c̄

is the “carrying capacity” or “saturation value” of the system and D is a diffusion

coefficient.

We again consider a one-dimensional domain of width 0.4 m and cross-sectional

area A and divide it into L= 40 equally-sized subvolumes (ωl = 0.01A m3) with

Neumann (no flux) boundary conditions applied at each end. On this domain, we

consider the reaction-diffusion system

Sl1 + Sl2
k−→ 2Sl1, l ∈ {1. . .L},

Sl1
d−⇀↽−
d
S(l+1)1, l ∈ {1. . .L− 1}, (6.29)

Sl2
d−⇀↽−
d
S(l+1)2, l ∈ {1. . .L− 1}.

Because S1 and S2 have equal diffusivities throughout the domain, in the deter-

ministic limit the total population within each subvolume XlT =Xl1(t)+Xl2(t) is

constant. The spatio-temporal evolution of S1 can thus be described by Fisher’s

equation (6.28) with d=D/h2, u=X1(y, t)/Ω, K=kΩ, c̄=XlT/Ω, where Ω=NAωl

and NA is Avogadro’s number.

Initially, we take the first compartment to be saturated with S1 [i.e, X11(0)= c̄Ω;
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see Fig. 6.4] and all other compartments to be saturated with S2. The saturation

value c̄ is taken be 10−4 M and we choose D=10−4 m2/s and K=7×104 M−1 s−1.

To investigate the effects of stochasticity, we hold c̄ constant and vary the particle

number XlT by varying the cross-sectional area A. In Fig. 6.4, we show a snapshot

of the traveling wave of S1 obtained by solving Fisher’s equation (6.28) and the

corresponding reaction-diffusion system (6.29).
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trajectory (blue) is shown at t=3.73 s, the time at which the so-
lution reaches half its saturation value at y=0.2 m. A stochastic
trajectory (red) is shown at t=5.0 s
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In Fig. 6.5, we show a computational cost analysis comparing different variants

of the SPLA-SB to the NSM and Marquez-Lago’s and Rossinelli’s spatial τ -leaping

methods. [We do not consider the SPLA-RB since it is significantly less efficient

than the SPLA-SB]. Simulations are run until t=25 s, and the results are averaged

over 500 runs. In Fig. 6.5(a), we see that, at low populations, the numbers of sim-

ulation steps for all methods scale linearly with the number of particles, although

the Rossinelli method and SPLA-(no ES events) take an order of magnitude fewer

steps. This indicates that these methods are firing multiple events even when the

populations are small. Above about XlT =100, however, we see a divergence from

the linear trend for all of the leaping methods. The cost of the Marquez-Lago and

Rossinelli methods are independent of system size above this point, while that for

the full SPLA drops initially, but then continues to increase linearly beyond about

XlT = 500. However, when we selectively disable the exact-stochastic classifica-

tion for reactions only in the SPLA we see that the cost decreases significantly,

approaching those of Marquez-Lago and Rossinelli. This indicates that, for this

system, reaction events are causing a classification cascade at large populations

just as diffusion events did in our initial studies. This exemplifies the need to de-

velop a more generalized approach for handling the classification cascade problem

(see Sec. 6.3.4). In Fig. 6.5(b), we see similar trends for the CPU times, although

Marquez-Lago’s method and the SPLA are somewhat more costly than the NSM

at small populations because of the added overhead associated with τ selection.
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Figure 6.5: (a) Average numbers of simulation steps and (b) average CPU
times vs. XlT for simulations till t=25 s of the reaction-diffusion
system (6.29) using various methods. In each case, the particle
number is changed by varying the cross-sectional area A while
maintaining a constant concentration of c̄ within each Vl. All
results are averaged over 500 simulation runs performed on an
Intel Core 2 Duo, 2.13 GHz machine with 2 GB of RAM.
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The results in Fig. 6.5 would seem to indicate that the SPLA is always slower

than both the Marquez-Lago and Rossinelli methods. However, this is not entirely

true. In Fig. 6.6, we show the time steps taken during representative simulation

runs with XlT = 104 for the various methods. We see that during the first ∼ 7 s,

when the wave is propagating across the domain, the time steps for the SPLA

are small. Rossinelli’s method takes slightly larger time steps during this period

while Marquez-Lago’s time steps are significantly larger. The scatter of particu-

larly small time steps for the full SPLA exemplifies the classification cascade effect

evident in Fig. 6.5. We also see how forbidding the exact-stochastic classifica-

tion for reactions prevents this from occurring. At ∼ 7 s, however, the situation

changes dramatically. The system approaches equilibrium and the time steps for

all leaping methods increase significantly, with Rossinelli’s method experiencing

the largest jump, followed by the SPLA and then Marquez-Lago. Also note how

the classification cascade problem ceases in the SPLA.

185



10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

T
im

e 
st

ep
 (

s)

2520151050

Time (s)

 NSM

 SPLA-SB

 SPLA-SB (one-way)

 SPLA-SB (no ES events)
 Marquez-Lago

 Rossinelli
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We make sense of these results by considering the one-way diffusion variant

of the SPLA (Sec. 6.3.5), where incoming diffusion is ignored in τ selection. We

see in Fig. 6.6 that this results in significantly smaller time steps for t&7 s. The

time period after ∼7 s corresponds to the equilibrium state of the system, i.e., it

takes ∼ 7 s for the wave to travel across the domain. At equilibrium, incoming

diffusion replenishes the numbers of particles in subvolumes. Ignoring this causes

the algorithm to underestimate the time at which the leap condition Eq. (6.7)

will be violated. This explains why the time steps for Marquez-Lago’s method are

smaller during this phase than other leaping methods and, if we were to run the

simulations longer than 25 s, SPLA would become more efficient. The remaining

disparity between Marquez-Lago and the one-way SPLA is due to differences in

τ -selection procedure. The larger time steps for Rossinelli during this phase are

due to their separate consideration of reaction and diffusion events.

We find that the different time steps obtained by various methods give rise to

different traveling wave velocities V , which we can use to compare the accuracies

of the various methods. We measure the velocity as the time taken for S1 to

reach half its saturation value at y = 0.2 m. For the Heaviside initial condition,

the analytical expression for the wave velocity is V = 2
√
DKc̄ [148]. However,

stochastic effects give rise to a distribution of wave velocities for the same initial

condition. Recent authors have shown that, depending on the values of c̄ and

K, the mean of the velocity distribution can differ from the analytical velocity

[149, 150, 151], particularly at low populations. Thus, instead of the analytical

solution, we use the mean velocity 〈V〉NSM obtained from 500 NSM simulations as

the standard for comparison. In Fig. 6.7, we show percent deviations between the

mean wave velocities obtained from the various leaping methods and 〈V〉NSM as a

function of XlT . In the inset, we show the convergence of 〈V〉NSM to the analytical
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solution with increasing number of particles.
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Fig. 6.7 shows that, for small populations, Rossinelli’s method has large errors

in its wave velocity. The error decreases with increasing population and becomes

negligible at the largest system sizes considered. Marquez-Lago’s method, on the

other hand, shows the opposite trend: the error is negligible at small populations

and increases with increasing population. We can explain these observations by

referring back to Figs. 6.5 and 6.6. The error in Rossinelli at small populations is

mainly due to the fact that the method lacks a mechanism for transitioning to a

SSA method. Thus, the increase in efficiency seen in Fig. 6.5 comes at the cost of

accuracy. The error in Marquez-Lago’s method is due to the combined effect of the

τ -selection procedure and neglecting incoming diffusion. At small populations, the

method transitions to NSM, thus reducing error. At large populations, however,

the method takes larger time steps than the other leaping methods during the

wave-propagation phase (Fig. 6.6), resulting in the increased error seen in Fig. 6.7.

Furthermore, in the equilibrium phase (after ∼7 s), the method takes smaller steps

than SPLA and the error then changes from one of accuracy to one of efficiency.

SPLA addresses each of these issues and shows negligible error over the entire

population range. SPLA-(one way) tries to capture just the effect of neglecting

incoming diffusion. However, we do not observe any significant error because

the method transitions to an exact-stochastic method at small populations and,

calculates leap time steps that are fairly near the accurate SPLA time steps at

higher populations.
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While the means of velocities are instructive in providing general insight into

the accuracies of the methods, they do not give complete information about the

particle distributions over the entire domain. Thus, for a more accurate analy-

sis, we use the Kolmogorov-Smirnov test [152], a statistical test used to compare

two given distributions. If the particle number distribution for S1 within a given

subvolume Vl at time t is P (Xl1(t)) for a leaping method and P̃ (Xl1(t)) for the

NSM, then the Kolmogorov distance between the two distributions is defined as

K(Xl1(t)) ≡max |F (Xl1(t))− F̃ (Xl1(t))|, where F (x) ≡
∫ x
−∞ P (x)dx is the cumu-

lative distribution function of P (x). The reference distribution P̃ (Xl1(t)) is also

associated with a “self distance” S(Xl1(t)) [152], which is a measure of the un-

certainty associated with building the distribution from a finite set of realizations.

Only if K(Xl1(t))>S(Xl1(t)) can we say that the two distributions are statistically

distinct.

In Fig. 6.8, we plot the differences K(Xl1(5))−S(Xl1(5)) over the entire domain

l∈ {1. . .L} obtained using the full SPLA and the methods of Marquez-Lago and

Rossinelli for various values of XlT . A positive value of this difference indicates

regions where the solution obtained from the various leaping methods differs, in a

statistically significant sense, from the NSM. These plots reinforce the observations

made above: (i) errors arise in Marquez-Lago at large populations, (ii) errors arise

in Rossinelli at small populations, and (iii) the full SPLA is accurate over the

entire domain for all system sizes considered. Moreover, we see that the errors in

Figs. 6.8(a)–(c) arise mainly at the propagating wavefront.
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6.4.3 Gray-Scott equations

First studied by Pearson [145], the Gray-Scott equations

∂u

∂t
= −uv2 + F (1− u) +Du∇2u,

∂v

∂t
= uv2 − (F + k)v +Dv∇2v, (6.30)

describe the spatio-temporal behavior of a two-component reaction-diffusion sys-

tem. The equations are of particular interest because they produce a rich variety

of spatio-temporal patterns based on the values of F and k. Here, we set F =0.035,

k=0.060, Du=2×10−5 m2/s and Dv=10−5 m2/s.
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(d)

(a) (b)

(c)

I II

III

Figure 6.9: Snapshots of the Gray-Scott reaction-diffusion system (6.31) at
t= 1500 s obtained using (a) Marquez-Lago, (b) Rossinelli, (c)
the full SPLA-SB, and (d) Eqs. (6.30). The concentration of S1

(plotted above) ranges from 0 (blue) to 1 (red) M . The features
present in regions I, II and III are compared for different simula-
tion methods. All simulations are performed with the parameters
F =0.035, k=0.060, Du=2×10−5 m2/s and Dv=10−5 m2/s.
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We consider a two-dimensional domain of width 0.5 m and length 0.5 m (in

say, the y-z plane) and height H and divide it into a regular 50×50 grid (L=2500;

ωl=0.25H m3, Ω=NAωl) with periodic boundary conditions. On this domain, we

consider the two-component reaction-diffusion system

Sl1 + 2Sl2
k1−→ 3Sl2, l ∈ {1. . .L},

Sl1
k2−−⇀↽−−
k−2

∅, l ∈ {1. . .L},

Sl2
k3−→ ∅, l ∈ {1. . .L}, (6.31)

Sl1
d1−⇀↽−
d1
Sl′1, l ∈ {1. . .L}, l′ ∈ Cl,

Sl2
d2−⇀↽−
d2
Sl′2, l ∈ {1. . .L}, l′ ∈ Cl.

If we set the parameters k1 = 1/Ω2 s−1, k2 = F s−1, k−2 = FΩ s−1 and k3 =

F +k s−1, then in the deterministic limit the spatio-temporal evolutions of S1

and S2 are described by the Gray-Scott equations (6.30) with u = X1(y, z, t)/Ω,

v=X2(y, z, t)/Ω, d1 =Du/h
2 and d2 =Dv/h

2.

In the deterministic case, a unique pattern is obtained from Eqs. (6.30) for a

given set of parameters {F, k,Du, Dv} and initial conditions [145]. However, the

pattern formation behavior can change significantly in the presence of noise [153],

to the extent that large amounts of internal noise can prevent pattern formation al-

together [154]. We investigate the effects of noise in the Gray-Scott system by per-

forming stochastic simulations using the SPLA-SB, Marquez-Lago and Rossinelli

methods, but we consciously choose conditions that minimize stochastic effects so

that direct comparisons can be made to the deterministic solution.

Initially, we set the concentration of S1 and S2 in each subvolume to 1 M

and 0.1 M respectively and choose H such that 1 M corresponds to to 5000

particles. We then apply a perturbation that triggers pattern formation in the
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reaction diffusion system. In Fig. 6.9, we show snapshots of the patterns obtained

from the different simulations methods and from the solution of Eqs. (6.30) at

t=1500 s.

By comparing Figs. 6.9(a)–(c) to Fig. 6.9(d), the effects of noise are visually

evident. Rather than the smooth pattern produced in the deterministic case, those

obtained from the leaping methods have clear fluctuations. The effects are small,

however, and all of the patterns are superficially similar, although close inspection

reveals perceptible differences. We highlight three regions (I, II and III) in the

deterministic solution of Fig. 6.9 to make visual comparison of the patterns easier.

The pitchfork-type pattern in region II is present in SPLA and to some extent in

Rossinelli’s method. That feature is barely recognizable Marquez-Lago’s method.

Similarly in region I, SPLA’s pattern is the closer to the deterministic solution than

other methods. However, the patterns present in region III are similar in all the

simulation methods. From this we argue that the SPLA pattern in Fig. 6.9(c) is

most similar to the deterministic solution in Fig. 6.9(d) and that the Marquez-Lago

pattern in Fig. 6.9(a) is most dissimilar. Since we consciously aimed to minimize

the effects of stochasticity in the pattern formation, these results imply that the

most faithful description of the system dynamics is given by the SPLA.

In order to ascertain why this is, we compare the time steps taken by the SPLA

to those for the Marquez-Lago and Rossinelli methods. The main result (plot not

shown) is that the full SPLA generally takes smaller time steps than the other

methods, explaining why it gives more accurate results.

It is important to note that our analysis of the Gray-Scott system is limited

due to the large number of total events in the system. With 2500 subvolumes, each

with four nearest neighbors, there are a total of 104 reactions and 2×104 diffusion
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events that must be taken into account. As such, a single SPLA simulation of

1500 s took 1.43 h to complete. Marquez-Lago and Rossinelli simulations took a

comparable amount of time (0.36 h and, 0.92 h respectively). This is an important

result because it exemplifies a serious shortcoming of the spatial τ -leaping approach

in general. Although leaping is beneficial in allowing multiple event firings at each

simulation step, the high cost of τ selection severely limits the applicability of the

approach in the face of large event numbers, as is common in spatially-discretized

systems. Thus, in order to make the approach practicable, improving the efficiency

of the method is of paramount importance. We discuss this issue in more detail in

Sec. 6.5.

6.5 Discussion

We have presented the spatial partitioned-leaping algorithm as an accurate formu-

lation of the leaping approach for reaction-diffusion systems on discretized grids.

Our primary contributions have been to correctly enumerate all of the events that

must be considered during the time-step calculation process and to recast the

reaction-based and species-based τ -selection formulas [107, 37] within a spatial

context (Tables 6.1 and 6.2). The main differences between these formulas and

those used in prior implementations of spatial τ -leaping [38, 39] are that reaction

and diffusion events are considered together and the effects of incoming diffusion

are properly taken into account. Both aspects are crucial for an accurate spa-

tial leaping implementation and we have shown, through numerical examples, how

improper consideration can lead to the introduction of error or a reduction in ef-

ficiency, depending on the specifics of the system being studied. We have also

shown the implications, in terms of accuracy, of not providing a mechanism for
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transitioning to a exact-stochastic method in the limit of small populations.

Furthermore, we have shown that the species-based τ -selection procedure, be-

sides being inherently less costly per calculation than the reaction-based procedure

(because of the lack of rate derivatives [107]), will generally require far fewer total

calculations for spatial systems than the reaction-based approach. This is because

the total number of events in a discretized system will often far exceed the total

number of species. Species-based τ -selection will thus be the preferred choice in

most situations. Exceptions include cases where rate constants are time depen-

dent, e.g., if environmental quantities such as temperature and volume vary in time

(species-based τ -selection assumes time-invariant rate constants). In such situa-

tions, modified forms of the reaction-based τ -selection formulas will be required.

Inclusion of the exact-stochastic classification in the algorithm brings along

problems of classification cascade, induced by events at the edge of diffusing fronts,

which eventually results in an unnecessarily small time step and, hence, a signif-

icant reduction in efficiency. This phenomenon has been observed previously for

a well-mixed biochemical system involving binding of transcription factors to in-

dividual genes [141] and is a shortcoming of the PLA in general. Here, we have

attenuated this problem to an extent by restricting the classification of diffusion

events as exact-stochastic when the population of the diffusing species exceeds a

pre-specified threshold (i.e., 100). This approach is ad hoc, however, and we have

demonstrated the need to develop a more general approach that can handle all

cases. Work is currently underway in this direction.

A shortcoming of the SPLA, and other spatial leaping methods in general, is the

strong dependence of the computational cost on the total number of events in the

system. This is a well-known problem for stochastic simulation algorithms [155]
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and is exemplified by the large amount of time taken to analyze the moderately

complex Gray-Scott system (involving 3×104 unique events involving 5000 unique

species). These methods remain constrained by the fact that one τ -selection cal-

culation must ultimately be performed for each event (reaction-based) or species

(species-based) present in the system. In order to make the approach practicable,

a solution to this problem is clearly required. A computational approach can be

to parallelize the algorithm, parsing out the computational effort across multiple

machines. Many aspects of the SPLA are indeed parallel in nature, such as τ se-

lection, event classification and event update. From an algorithmic perspective,

Anderson’s post-leap checking procedure [116] may provide some relief in that it

obviates the need to perform the expensive pre-leap calculations. Pettigrew and

Resat [113] have proposed an approximate post-leap checking procedure that might

prove useful as well.

Another possibility is to fundamentally reduce the number of τ selection cal-

culations by performing them on groups of events rather than on individual events

or species. The challenge, however, is that in contrast to the exact-stochastic case

(Sec. 6.2.1), it is not permissible within the context of a leaping algorithm to group

arbitrary sets of events and then perform τ selection on the group. This is because

the leap condition Eq. (6.7) applies at the level of individual events, not groups.

Basically, there is no guarantee that a given change in the summed propensity of

the group will translate into equivalent changes in the propensities of the events

that comprise the group. However, it may be possible to identify special types of

groups in which this is, in fact, the case. This type of grouping, based on event

type rather than on location, is fundamentally different from that used in typical

spatial simulation methods. It also differs from the type of grouping used in the

multinomial τ -leaping method of Pettigrew and Resat [113], a well-known binomial
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τ -leaping variant. We are actively pursuing this avenue of research.

Compounding the problem of exact-stochastic event classifications is that SPLA

transitions to NRM, which is an inefficient exact-stochastic method for spatial sim-

ulations. Ideally, the method would segue to an efficient spatial SSA formulation

such as the NSM. However, the NSM, which is based on grouping events by subvol-

ume, does not fit naturally into the framework of the SPLA for the reasons cited

above, i.e., τ selection cannot be applied at the level of groups. Marquez-Lago

incorporate the NSM into their spatial τ -leaping method by classifying subvol-

umes as exact-stochastic if al0(t). 10 (Sec. 6.3.5), emulating the approach taken

by Gillespie, Petzold and co-workers [103, 104, 107]. We could employ a similar

approach in the SPLA. However, it is our hope that a more natural method of

transition will arise from our attempts to incorporate grouping generally into the

leaping methodology.

Our development of the SPLA is significant in that it represents a “gold stan-

dard” in terms of accuracy against which future enhancements and extensions

to the spatial τ -leaping approach can be compared. As a straightforward imple-

mentation of spatial leaping, the method is not maximally optimized in terms of

efficiency nor is it meant to be. However, it does achieve the maximum possible

gains in efficiency for a method that accurately employs pre-leap τ selection at the

level of individual events by considering only those events that are of consequence

to the calculation. These include local reactions and outgoing and incoming diffu-

sion events to and from neighboring subvolumes. We hope that future innovations

addressing the challenges highlighted here will help to further improve the leaping

methodology and make stochastic simulations of complex systems practicable.
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CHAPTER 7

SUMMMARY AND FUTURE WORK

In this thesis, an overall framework for modeling processes during sub-

millisecond laser spike annealing was developed. The first few chapters outlined

the effort towards accurately capturing the temperature profile during laser spike

annealing. These temperature profiles were then used to address two effects of

laser spike annealing - thermal stress due to non-uniform thermal expansion and

dopant diffusion due to thermal budget in the later chapters.

In Chapter 2, a full 3D model for efficiently solving the heat transport equations

was developed. This heat transport model was designed to offer the best efficiency

achievable for solving the highly dynamic time-temperature problem present during

laser spike annealing.

A physics-based absorption model for diode lasers between 400-1000 nm wave-

length was incorporated to capture accurately the wavelength and temperature

dependence of diode laser absorption. Although the absorption models were well

known, this is the first time that these have been incorporated seamlessly into

a laser spike annealing model. Similarly, a complete physics-based approach for

optical-thermal coupling of the CO2 laser was incorporated. This model included

components from free carrier absorption, mobility of electrons and holes and effec-

tive mass of the charge carriers in silicon. The latest developments in these models

with the relevant material parameters were used for these components, thereby in-

creasing the robustness of the model. Finally, both the diode laser and CO2 laser

absorption models were compared with experimental data for increased confidence

in the simulations.
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The material property parameters used in the simulations to capture this

optical-to-thermal coupling proved to be the greatest challenge. In particular,

the variation of thermal conductivity of silicon with temperature is different for

lightly doped and high doped substrates. Incorporating this into the simulation

model proved to be essential for getting qualitative, and quantitative, agreement

with experimental data, presented in Chapter 3.

The scaling characteristics during laser spike annealing were discussed in detail

using 2D simulations (i.e., considering an infinitely long beam). The effect of laser

power, dwell time and the interplay of these parameters with boundary conditions

(effect of wafer thickness) was presented. Furthermore, the non-intuitive effects

of parameters like substrate doping and substrate preheating were presented in

the context of peak temperatures during laser spike annealing. The effects of heat

transfer (finite beam size) on these characteristics was studied.

Lateral heat transfer causes a reduction in peak temperature and qualitatively

changes the shape of the temperature profile. These effects were quantified and

rule-of-thumb figures were provided for situations where 3D effects become signif-

icant.

Future priorities for the development of the simulation model include identify-

ing better material properties for simulations of highly doped substrates at near

melting temperatures. Refining the underlying models and material parameters for

optical absorption will be critical for producing a quantitative level of confidence

in a wide variety of simulation regimes.

These 3D results were compared to experimental results in Chapter 3. A resis-

tance temperature detector (RTD) was developed to measure temperature during
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laser spike annealing in the millisecond regime. Resistance from a micron- scale

Pt thermistor was measured as it passed under the laser beam and was converted

to a temperature scale.

The small thermistor footprint gave high spatial and temporal resolution of

around 50 µm and 20 µs, which is not possible to achieve by other methods.

Change in resistance was calibrated to temperature by using both silicon and

gold melting temperatures as reference points. This calibration procedure ensured

that the calibration points are valid in the time- and length- scales relevant to

millisecond laser spike annealing. Furthermore, use of multiple calibration points

was critical for compensating experimental errors.

Good agreement was found between the experimentally measured and simu-

lated temperature profiles along the scan direction (short axis) and the lateral

direction (long axis) of the laser beam. The profiles along both directions were

observed to be not self-similar due to the temperature dependence of the material

properties (thermal conductivity being primarily responsible).

The effect of beam non-uniformities and non-ideal Gaussian shape was com-

pared with simulations. Overall, the excellent qualitative and good quantitative

agreement between simulations and experimental data sets validated the choice of

material parameters used in the simulations.

Future improvements in temperature measurements during laser spike anneal-

ing lie in capturing the effect of 1D (thin film stack) and 2D (lithography) patterns

on the wafer surface. Moving forward, validating models for optical-thermal cou-

pling through a complex stack of materials varying under the laser beam, and

solving for multiscale heat transfer between surface layers and substrate remain
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the two most pressing challenges.

Chapter 4, the simulation framework used to calculate 2D and 3D tempera-

ture profiles was provided. This simulation framework, which incorporates details

models for optical-absorption and efficient implementations for solving heat trans-

fer, has reached maturity. Future development involves adding more features like

multi-gridding and additional features that will make the simulation software pack-

age more user-friendly.

Thermal stress due to non-uniform thermal expansion poses a challenge for

optimization of benefits from laser spike annealing. In Chapter 5, the calibrated

temperature profiles obtained from Chapters 2-4 were incorporated into Finite

Element simulation of thermal stress. These stress simulations used full anisotropic

material properties of silicon. A significant effect of this anisotropy was observed

when changing the direction of laser spike annealing was found to give up to 10%

decrease in thermal stresses thereby permitting much higher peak temperatures

during laser spike annealing.

The discussion of thermal stress in the chapter was augmented by a model

for yield stress valid in the time scales relevant to laser spike annealing. The

macroscopic model for yielding used in literature was found to be insufficient and

led to contradictory results. Based on more fundamental, phenomenological models

for dislocation dynamics, a mesoscopic equation for yield stress was derived. This

equation, relating temperature, stress and material parameters was modified to

predict dislocation density at yield point of silicon during laser spike annealing.

This combined analysis of thermal stress and dislocation dynamics model was then

used to predict the laser spike annealing parameters (power, dwell) that gave rise

to plastic deformation.
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However, this model is just a first step towards understanding the effect of

stress and plastic deformation. In many cases, in the time scales relevant for

laser spike annealing, materials have viscoelastic properties, i.e., the deformation

characteristics have an associated time constant, and depend on the history of the

stress and strain fields. This mechanism was not addressed in this work, and forms

the basis of future investigations.

The model used for dislocation dynamics was based on phenomenologically ob-

served behavior and did not incorporate the effect of multiple slip systems and

the complex interactions between them. A plethora of models exist that describe

the behavior of dislocations as they glide and multiply in a material. These mod-

els form the starting point for incorporating complexity into the current models

wherever relevant.

As mentioned previously, dopant diffusion forms another critical component in

our understanding of laser spike annealing. To date, continuum models for dopant

diffusion have been used to capture the effect of thermal budget. However, with

shrinking device dimensions, these continuum models are no longer sufficient, and

new models and techniques are required to capture the effect of dopant diffusion

in small volumes. The first step towards a new model was the development of an

accelerated stochastic technique that would be able to capture the noise and fluc-

tuation due to the diffusing dopants during millisecond time frames. In Chapter 6,

we develop such a technique that is able to model any generic reaction-diffusion

system with great efficiency. The major strength of this method is that it is able to

handle the different time scales present in a typical model and capture the stochas-

tic behavior without simulation time penalties. However, this technique, though

capable of capturing concentration gradients and fluctuations in them, is limited
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by the assumption of a “well-mixed sub-volume”. This limitation was not of con-

cern for chemical kinetics-type systems, but will be a major limitation while trying

to study certain problems in material science; this includes studies of dopant dif-

fusion during laser spike annealing. The next step in this process is to extend this

learning to develop an off-lattice version of the accelerated stochastic algorithm.

This off-lattice algorithm will be well positioned to handle individual atomistic lo-

cations and the reaction and diffusion transitions within a given volume. However,

development of this algorithm poses many challenges especially in the accelerated

stochastic simulation context. Overcoming these challenges and making a robust

and useful simulation framework to handle these kind of problems should be the

focus going forward.
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[48] Joachim Wagner and Jesús A. del Alamo. Band-gap narrowing in heavily
doped silicon: A comparison of optical and electrical data. Journal of Applied
Physics, 63(2):425–429, 1988.

[49] S E Aw, H S Tan, and C K Ong. Optical absorption measurements of band-
gap shrinkage in moderately and heavily doped silicon. Journal of Physics:
Condensed Matter, 3(42):8213, 1991.

[50] K. S. Dieter. Semiconductor material and device characterization. Wiley &
Sons Inc, 245:83, 1990.

[51] H. Rogne, P. J. Timans, and H. Ahmed. Infrared absorption in silicon at
elevated temperatures. Applied Physics Letters, 69(15):2190–2192, 1996.

[52] I. W. Boyd, T. D. Binnie, J. I. B. Wilson, and M. J. Colles. Absorption of
infrared radiation in silicon. Journal of Applied Physics, 55(8):3061–3063,
1984.
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self-replicating patterns. Phys. Rev. Lett., 91(23):238301, Dec 2003.

[154] H. Wang, Z. Fu, X. Xu, and Q. Ouyang. Pattern formation induced by
internal microscopic fluctuations. J. Phys. Chem. A, 111(7):1265–1270, 2007.

[155] Michel F. Pettigrew and Haluk Resat. Modeling signal transduction net-
works: A comparison of two stochastic kinetic simulation algorithms. The
Journal of Chemical Physics, 123(11):114707, 2005.

220


	Introduction
	Thermal modeling of Laser Annealing
	Overview
	Model for Laser Spike Annealing
	Thermal transport equations
	Optical absorption model for visible and near IR sources
	Optical absorption model for CO2 lasers
	Surface reflectivity and propagation through multiple layers
	Material properties

	2D Simulations
	3D Simulations
	Computational aspects
	Effects of finite beam size
	Laser power fluctuations

	Calculation of carrier concentration
	Derivation of source term in heat equation

	Experimental measurements of temperature during Laser Annealing
	Overview
	Experimental setup
	Resistance temperature measurement
	Temperature calibration
	Silicon melt calibration
	Hot plate calibration
	Gold melt calibration

	Temperature profiles and comparison with simulations
	Scan direction profiles
	Lateral direction profiles
	Peak temperatures


	Cornell Laser Annealing Simulation Package (CLASP)
	Overview
	Installation
	Quick start guide
	Output files types
	2D simulations
	3D simulations
	Matlab scripts

	Command reference
	base
	grid.dx
	grid.xrange
	grid.nx
	grid.nx0
	grid.dz
	grid.thickness
	grid.nz
	grid.dy
	grid.ny
	grid.ny0
	sample.RT
	sample.doping
	sample.velocity
	sample.dwell
	sample.y_vel
	sample.X0_Clamp
	sample.Z_BC
	sample.Z_R_T
	sim.X_Refine
	sim.Z_Refine
	sim.min_run
	sim.max_run
	sim.stability
	sim.database
	sim.holebands
	IR.power
	IR.wavelength
	IR.fwhm
	IR.x0
	IR.asym_fwhm
	IR.profile
	IR.yfwhm
	IR.lasery0
	IR.ystepwidth
	IR.y_profile_file
	IR.reflect
	IR.optical
	IR.absorb
	IR.frontside
	IR.backside
	vis.power
	vis.wavelength
	vis.fwhm
	vis.x0
	vis.asym_fwhm
	vis.profile
	vis.reflect
	vis.absorb
	vis.tau
	vis.frontside
	vis.backside
	IR.TFOC
	IR. AOI
	IR.polarization

	Tutorials
	Sample 2D simulation
	Sample 3D simulation
	Dual beam configuration

	GUI Frontend for CLASP 2D
	Binary Installation
	CLASP GUI components and files
	CLASP GUI User Guide


	Thermal stress and dislocation dynamics
	Overview
	Thermal stresses during Laser Spike Annealing
	Von Mises stress
	Resolved Shear Stresses
	Orientation dependence of stress

	The Haasen model for yielding
	Mesoscopic model for yielding
	Effective stress on dislocation
	Dislocation velocity
	Multiplication law
	Macroscopic deformation
	Stress-strain curve
	Derivation of the Haasen model

	Dislocation dynamics model for laser spike annealing

	An accelerated KMC algorithm for spatially distributed systems
	Overview
	Background
	Exact-stochastic methods
	Leaping approaches

	The spatial partitioned-leaping algorithm (SPLA)
	Motivation
	Spatial  selection
	The algorithm
	Technical issues
	Marquez-Lago, Rossinelli and some SPLA variants

	Numerical Examples
	Pure diffusion
	Fisher's equation
	Gray-Scott equations

	Discussion

	Summmary and Future work
	Bibliography

