
 

 

 

EVALUATION OF THE MICROBIOMETER® MOBILE SOIL TEST AS AN 

INDICATOR OF SOIL MICROBIAL BIOMASS AND SOIL HEALTH 

 

 

 

 

 

 

 

A Thesis 

Presented to the Faculty of the Graduate School 

of Cornell University 

in Partial Fulfillment of the Requirements for the Degree of 

Master of Professional Studies in Agriculture and Life Sciences 

Field of International Agriculture and Rural Development 

 

 

 

by 

Eric Benjamin Gordon 

December 2021 



 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 Eric Benjamin Gordon 

 



 

 

iii 

ABSTRACT 

Increased interest in holistic soil management is driving a demand for analytical approaches to 

assessing soil health that integrate biological and physical assessment of soils with chemical 

analyses. In the Global North, there is an expanding interest among farmers to engage in 

measuring and evaluating soil nutrient status and soil health. There is also a need for on-site soil 

testing in developing regions of the Global South, where access to quality soil testing services is 

often limited. Here, I report research results on measuring soil biological activity, specifically, 

assessing soil microbial biomass carbon (SMB-C) using a recently developed, rapid, on-site 

testing tool called microBIOMETER® (Prolific Earth Sciences, Inc., Montgomery, NY, USA).  

Soil samples were taken from cover crop trials established at two sites in New York, the Hudson 

Valley Farm Hub (Farm Hub) and Cornell Musgrave Research Farm (Musgrave). Results of 

SMB-C from use of the microBIOMETER® were compared to the following soil health assays:   

chloroform fumigation-extraction (CFE), chloroform fumigation-incubation (CFI), soil 

respiration, permanganate oxidizable carbon (active carbon), and autoclaved citrate extractable 

soil protein (soil protein). For each location, a Pearson’s correlation analysis was used to explore 

linear relationships between the laboratory soil health assays and the microBIOMETER®. 

Multivariate linear regression was used to compare the microBIOMETER® results to the other 

soil health assays to account for effects of cover crop treatments and location.  

Active carbon and soil respiration were significantly correlated at both the Farm Hub, r=0.73 

(p<0.0001) and at Musgrave, r=0.55 (p=0.0055). At the Farm Hub, active carbon was also 

significantly correlated with soil protein (r=0.64, p=0.0008) and the microBIOMETER® 
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(r=0.43, p=0.0343). As anticipated, there was a significant correlation between CFE and CFI at 

the Farm Hub (r=0.65, p=0.0048).  

In the multivariate modeling, location was significant, but treatment (cover crops planted) and 

the treatment-location interaction were not significant in all models. Multivariate models with 

microBIOMETER® as the response variable and location with one soil health assay as 

explanatory variables were fit. Of the five soil health assays tested, soil protein was significantly 

related to microBIOMETER® (p=0.0453) and active carbon was significant at p=0.0829. There 

was no evidence of a significant relationship between microBIOMETER® and the other three 

soil biological assays. 

The results of this study indicate that the microBIOMETER® tool is reflecting some aspects of 

soil biological health, but that further research is needed to understand more precisely how useful 

this tool will be as a soil health indicator. While the microBIOMETER® is easy to use and 

affordable, its use as a soil health test for agroecosystem management is unclear. 
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Introduction 

Soil testing is a fundamental component of agroecosystem management. Often used as an 

agronomic indicator for yield, standard soil nutrient testing allows farmers to evaluate the soil’s 

ability to promote plant growth and health in horticultural, row crop, and pasture-livestock 

systems. Moreover, soil testing allows land managers to implement site-specific nutrient 

management (SSNM) to reduce costs, pollution, and environmental degradation associated with 

excessive fertilizer application beyond plant requirements for growth (Dimkpa et al., 2017). 

Soil testing and SSNM have focused historically on providing farmers a fertilizer 

recommendation based on analysis of soil chemical-nutrient contents, generally the 

macronutrients nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), 

and sulfur (S), and eight micronutrients. Farmers collect soil samples representative of their 

fields and send them off-site for analysis of the chemical-nutrient constituents in a laboratory. 

Recently, however, there has been an increasing interest among farmers in assessing soil health 

(Carlisle, 2016; Lobry de Bruyn & Andrews, 2016) in a manner that integrates biological and 

physical assessment of a soil with the chemical components for a more holistic management 

approach (USDA-NRCS, 2020). Among other benefits, managing soils to promote biological 

activity may reduce reliance on and increase efficiency of agrochemical inputs and fertilizers 

(Franzluebbers, 2016; Zhao et al., 2016). Considering the importance of soil biological activity 

and managing agroecosystems to promote soil health, I examined and compared laboratory 

measurements of soil microbial biomass carbon (SMB-C) with use of the microBIOMETER®, a 

relatively new, rapid, and mobile test designed to be used in the field by farmers and members of 

the general public.  
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The research reported here contributes to the literature in two ways. First, I compared the 

microBIOMETER® with established, laboratory measurements of SMB-C and other well-

established assays of soil biological health. Five assays in total were used in comparison with 

microBIOMETER®, including two that measure SMB-C, chloroform fumigation-extraction 

(CFE) and chloroform fumigation-incubation (CFI). The other assays performed were soil 

respiration (burst of CO2), active carbon (permanganate oxidizable carbon), and autoclaved 

citrate extractable protein (soil protein) (Moebius-Clune et al., 2016). Currently, to my 

knowledge, there are no studies published in peer-reviewed scientific journals that benchmark 

the microBIOMETER® test in this way.  

Second, I discuss expanding the use and access to soil nutrient and biological testing for the 

development of agriculture in both the highly industrialized Global North and for resource-poor 

farmers of the Global South. Specifically, I consider the implications of improving SSNM and 

agroecosystem management with mobile, non-laboratory based soil analysis such as the 

microBIOMETER®. 

Soil Testing and International Agriculture Development 

In contrast to farmers in high-income and industrialized nations of the Global North (the North), 

farmers of the Global South (the South) – most of them smallholder and resource-poor – do not 

typically evaluate the nutrient levels of their soils (Chambers & Jiggins, 1987b; Dimkpa et al., 

2017). Although research has indicated that soil testing in the North is also relatively low on 

average (Lobry de Bruyn & Andrews, 2016), biophysical and socioeconomic factors are more 

limiting to soil testing in the South (Dimkpa et al., 2017; Kokoye et al., 2018; Stewart et al., 

2020). Affordable and accessible mobile soil testing that is scientifically verified and comparable 
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to laboratory standards can help increase widespread soil analysis based SSNM in both the North 

and South. 

Here, I identify four main obstacles to soil analysis based SSNM, biophysical and socioeconomic 

in nature, that include, but are not limited to: (1) direct financial costs, (2) heterogeneity and 

variation of soils; (3) location and systemic inaccessibility; and (4) farmer awareness, perception, 

and knowledge. Increasing farmer access to and use of mobile soil testing kits that are user-

friendly and affordable can help overcome these obstacles. Mobile soil testing should also 

include soil health parameters that incorporate management recommendations beyond chemical 

fertilizer recommendations typically given by standard chemical analysis of nutrients.  

The upfront, direct cost of laboratory soil analysis is the most apparent obstacle that falls under 

the socioeconomic category. In sub-Saharan Africa (SSA), though the prices of various soil test 

packages are ostensibly lower than in U.S. laboratories (see pricing tables in Dimkpa et al., 

2017), the costs are generally not affordable for most smallholder farmers in SSA compared to 

wages and income for the average farmer (Dimkpa et al., 2017; Kenya National Bureau of 

Statistics, 2017). Outside of SSA, Kokoye et al. (2018) also found that farmers most often cited 

the high financial burden of soil analysis in Haiti as an obstacle to its use. The four factors listed 

above each have their own influence, but are also interconnected in their effect on a farmer’s 

ability or likelihood to utilize soil analysis services for SSNM. For example, hyper-variation 

within a farmer’s field of soil type or topography (obstacle 2) could require a higher sampling 

density and incur greater financial burden for the analysis of multiple samples (obstacle 1). Thus, 

there is an inherent link between these obstacles that adds to the complexity of trying to 

overcome them. 
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Spatial heterogeneity of soils – specifically, the spatial variation of soil characteristics and 

quality – is a primary influence on agricultural yield. Indigenous communities (Pawluk et al., 

1992; Barrios & Trejo, 2003) and pre-industrial peasant-feudal societies (Baveye & Laba, 2015) 

have historically confronted the realities of farming in highly varied landscapes. A major shift 

occurred with the industrial revolution of the late 19th and early 20th century that prompted high 

agricultural mechanization, altering the agricultural landscape and the perception of the spatial 

variation of soils due to increases in tillage intensity. The biotechnological engineering and 

increased agrochemical use of the Green Revolution later in the mid-20th century also enabled 

farmers in the North to overcome and, to a limited extent, homogenize heterogeneous soil-

landscapes; meanwhile, much of the South, particularly SSA, did not see these advancements 

(Pingali, 2012). A study of nutrient heterogeneity in southern U.S. Appalachian soils found that 

past land use homogenized the spatial density of soil C, K, and P, and retained its uniformity 60 

years after abandonment, indicating that land use has persistent, multi-decadal effects on the 

spatial heterogeneity of soil resources (Fraterrigo et al., 2005).  

While modern practices may have allowed some homogenization to occur, farmers were 

encouraged to consolidate small fields into drastically larger units, where landscapes were 

treated as expansive, uniform units whose treatment as a unit was more economical and time-

efficient (Baveye & Laba, 2015). The result has been a low modern sampling density, with the 

average in the U.S. of one sample per 67 ha, ranging from 1 in 9 ha in Georgia and 1 in 1214 ha 

in Wyoming (Fixen, 2002). Such a low sampling density does not allow for practical accuracy in 

SSNM, so fields are often over-fertilized in the U.S. regardless of nutrient levels (Lobry de 

Bruyn & Andrews, 2016). 
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In contrast, fields of resource-poor farmers in the South often do not receive enough fertilizer. 

Many studies have recently documented the hyper-local heterogeneity of soil fertility and the 

obstacles farmers of SSA face in SSNM (Vanlauwe & Giller, 2006; Tittonell et al., 2008; 

Vanlauwe et al., 2015). The higher variation observed in the South most often relates to the 

presence of highly weathered soils with varying contents of soil organic matter typical of tropical 

climates, as organic matter affects most nutrient cycles (Vanlauwe et al., 2015). Spatial variation 

in soil makes SSNM difficult at the local level because variation of soil type and quality can 

occur within less than one hectare of land, either within one farmer’s field or between these and 

the farm fields of their neighbors.  

Studies of nutrient response trials in Zimbabwe (Zingore et al., 2007), Kenya (Tittonell et al., 

2008), and Togo (Wopereis et al., 2006), for Southern, East, and West Africa respectively, have 

confirmed such field-to-field variation. Harou et al. (2018) analyzed 1,007 different soil samples 

from farmers’ primary maize fields from 50 different villages in Tanzania, East Africa. They 

found that only 55% of farmers shared similar soil test results and recommendations with those 

of their closest neighbor. Their study also suggested that the government’s blanket fertilization 

recommendation did not correlate with recommendations from their hyper-local soil testing 

regime. As mentioned previously, the hyper-local heterogeneity of tropical soils requires a higher 

sampling density, incurring greater cost for laboratory soil testing, even within a small farm of 2-

5 ha or less. 

While soil testing laboratories are available across the globe where crops are produced, the 

access to laboratories is limited more in the South compared to the North. In a survey of various 

agriculture stakeholder groups across SSA, access to quality soil testing was determined the top-
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ranked limiting biophysical factor for soil management (Stewart et al., 2020). The number of 

public and private soil testing service providers in SSA is low due to limited infrastructure 

development. This is in stark contrast to the plethora of both private and public soil and plant 

testing facilities across the United States, where state and federally funded agencies or Land-

Grant universities often provide soil testing services in each state (Dimkpa et al., 2017). 

High farmer-to-extensionist ratio is an increasingly common trend in the South (Fisher et al., 

2018), and the result is a decrease in assistance to farmers with tasks including soil testing and 

SSNM (Stewart et al., 2020). The access to trained extension providers as part of the knowledge-

transfer value chain (KTVC) is critical in driving the process of implementing soil analysis and a 

SSNM plan (Stewart et al., 2020). Soil sampling protocols, for instance, are not straightforward 

for an untrained practitioner due to zoning delineation, topographical change, and soil type 

identification within a heterogeneous soil-landscape. As such, the lack of direct involvement in 

sampling by an extensionist will often hinder the implementation of SSNM from inception 

(Middendorf et al., 2017). 

Mobile soil testing can improve the KTVC by bridging the gap between scientific or technical 

indicators of soil quality (TISQ) and local indicators of soil quality (LISQ) in the South (Barrios 

& Trejo, 2003; Barrios et al., 2006). Farmer knowledge of soils in the North is more closely 

aligned with Western scientific principles and TISQ largely due to greater literacy rates, formal 

education levels, and trust of and reliance on crop advisors and the scientific community (Barrios 

et al., 2006; Lobry de Bruyn & Andrews, 2016). Using observable features of the soil and 

surrounding agroecosystem, farmers in the South largely rely on LISQ and often have little 

understanding and greater mistrust of TISQ (Barrios et al., 2006; Dawoe et al., 2012). The 
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potential to incorporate mobile soil testing into participatory research and extension activities 

may therefore help to integrate LISQ and TISQ for farmers. 

Though not without caveats, the advancements in soil testing technologies that make soil 

analysis more accessible outside of the laboratory have shown promise in overcoming some 

biophysical and socioeconomic obstacles. Strategies that have increased soil testing access in 

SSA include the use of a soil testing truck in Uganda (Nakkazi, 2014) and the SoilDoc portable 

kit (see Dimkpa et al., 2017) for use by an extension agent or trained technician in the field. 

Mobile soil testing, however, should continue to be developed beyond top-down, “transfer-of-

technology” (TOT) approaches, which focus less on learning and capacity building for small-

holder farmers compared to participatory approaches (Chambers & Jiggins, 1987a; Testen et al., 

2018). The soil testing truck and SoilDoc kit are examples of TOT because they depend on the 

technical knowledge of an extensionist to carry out the test and explain the recommendations. 

Nonetheless, these approaches do increase access for SSNM in highly heterogenous landscapes, 

are affordable, and improve farmer perceptions of standard soil analysis. Approaches that are 

developed to directly involve the farmer and their unique socio-cultural environment (i.e., LISQ) 

may improve the effectiveness of the KTVC for farmer learning and motivation in soil 

management (Pawluk et al., 1992; Testen et al., 2018). 

Farmers’ use of soil biota as local and technical indicators of soil quality may be limited in scope 

and utility and are currently lacking in the farmer-extension KTVC. Surveys in Latin America 

and SSA showed that many farmers in the South understood, for example, the basic role soil 

macrofauna (such as earthworms) play in nutrient cycling through litter/residue decomposition 

and how these processes affect soil physical and fertility properties (Grossman, 2003; Barrios et 
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al., 2006; Dawoe et al., 2012). However, farmers had limited to no awareness of soil 

microorganisms or of the roles microorganisms have in decomposing plant and animal residues 

(Grossman, 2003; Dawoe et al., 2012). Since management practices, such as the use of tillage 

and pesticides, have a strong effect on the soil microbial community, farmer awareness of 

critical, microbial-mediated processes (e.g., mycorrhizal colonization) is of great importance.  

Due to the focus often given to wet-chemistry nutrient analysis as a baseline or bare minimum 

for soil testing, the importance of soil biological testing is more likely to be overlooked by 

farmers in both the North and South. Increasing awareness of integrated soil testing with a soil 

health approach, that includes biological and chemical testing, is vital to the KTVC. The use of 

an in-field testing tool, such as the microBIOMETER®, could act as a biological metric and, 

along with standard soil testing, could allow more integration of soil health into the KTVC. 

Thus, it is important that the scientific community evaluates the effectiveness of 

microBIOMETER® as a soil health test. 

Soil Health and Measurements of Soil Biological Activity 

The concept of soil health, derived from its predecessor, soil quality, is defined as “the continued 

capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans,” 

(USDA-NRCS, 2020). It is distinguished from “soil fertility,” which focuses on the management 

of soil to produce harvestable crops. Soil health emphasizes a greater sustainability of soils to 

provide ecosystem services beyond crop needs, such as water regulation, habitat for plant and 

animal wildlife, atmospheric regulation, and maintenance of biodiversity (Kihara et al., 2020; 

USDA-NRCS, 2020). For a more concise and applied understanding, soil health is often seen as 

the integration of biological, physical, and chemical aspects of soil functioning, with chemical 
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aspects generally referring to standard laboratory testing of nutrient contents. The biological 

component is the lynchpin of the soil health paradigm, which emphasizes the living organisms – 

bacteria, fungi, earthworms, arthropods, etc. – as the term “health” can be only used to describe 

something with life (Franzluebbers, 2016).  

Laboratory soil testing services have focused historically on soil chemical indicators of inorganic 

nutrients and soil acidity (pH), to assess whether the soil has the nutritive capacity to support a 

certain level of crop growth and yield. While critically important, inorganic nutrient availability 

alone does not offer a complete assessment of soil properties and processes that determine crop 

yield and influence environmental quality. Soil testing could achieve more holistic outcomes 

with the adoption of tests for soil biological activity.  

For instance, Franzluebbers (2016) suggested that the flush of carbon dioxide test (soil 

respiration), which measures the level of microbial respiratory activity, could be used to evaluate 

basic agronomic performance indicators such as nutrient cycling and the decomposition of 

organic residues. Haney et al. (2001) and Franzluebbers & Stuedemann (2003) showed that the 

flush of CO2 measured in the soil respiration test correlated well with nitrogen mineralization, 

the process in which organic N in the forms of residues and microbial biomass is converted to 

plant-available, inorganic N. Soil respiration is generally the least labor and equipment intensive 

(Moebius-Clune et al., 2016) of the laboratory soil health tests, making its availability more 

widespread, including in the South (Dimkpa et al., 2017). 

The active carbon (C) assay measures the soil organic C (SOC) of organic matter in the soil that 

correlates to the carbon fraction readily available as a substrate for soil microbial 

consumption/decomposition and biomass incorporation. The distinction of this pool of SOC as 
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“active” is to differentiate it from the bulk of SOC that is more passive, recalcitrant, and more 

slowly affected by microbes (Weil et al., 2003). The active C of a soil is closely related to the 

particulate organic matter (POM) of soils (Moebius-Clune et al., 2016), which is the a fraction of 

partially decomposed organic matter from plant and animal residues (Witzgall et al., 2021). 

Measuring POM, however, is a more labor-intensive assay compared to active C.  Total soil 

organic matter often changes very slowly in soils, whereas, active C represents the more readily 

decomposable fraction of organic matter that responds to management much faster and acts as a 

“leading indicator” of management influence for farmers who seek to build organic matter 

(Moebius-Clune et al., 2016).  

The ACE protein (soil protein) assay has replaced potentially mineralizable N in some soil health 

frameworks as an indicator of how much organic nitrogen may be present in soil. The soil 

protein test can indicate the capacity of organic matter to provide N, with higher quality organic 

matter having a low carbon-to-nitrogen ratio. Moebius-Clune et al. (2016) suggested that soil 

protein is a better indicator of overall soil health due to the importance of N in controlling 

microbial population growth (biological) and as the most limiting nutrient for plants (chemical). 

Unfortunately, like the microbial biomass assays discussed below, measuring soil protein is a 

relatively long and labor-intensive process that precludes it from being an affordable test. 

Finally, both historical and contemporary studies of soil health have cited soil microbial biomass 

(SMB) as a strong indicator of soil health (Pankhurst et al., 1995; Toor et al., 2021). The soil 

microbial population undergoes various changes over a cropping season, such fluctuations in 

overall population numbers and community composition (Lauber et al., 2013). Moisture, 

temperature, and nutrient availability are some factors that can affect soil microbial population 
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dynamics (Castro et al., 2010), along with soil management practices. Tracking changes in SMB 

over time can reflect changes in soil health that may occur when new farm management practices 

are implemented, such as before or after fertilizer additions or in response to the use of cover 

crop rotations (Zimmerman, 2021). Apart from its use as an agronomic indicator, Dynarski et al. 

(2020) suggested SMB as an important biological indicator to consider for assessing carbon 

flows and for understanding the permanence of soil C sequestration, one of the more popular and 

important endeavors of payment for ecosystem service (PES) projects.  

Measurement of SMB-C is accomplished with a variety of methods such as chloroform 

fumigation-extraction (CFE) or fumigation-incubation (CFI), substrate-induced respiration 

(SIR), and direct counts of microbial cells and biomass under a microscope after vital staining. 

The CFE and CFI methods are currently the most common and both were used in this study to 

compare with the SMB results from the microBIOMETER®. Like the soil protein assay, the 

CFE and CFI methods require specialized equipment and chemicals and can take a longer time to 

complete, making them impractical and expensive for farmers. 

 

Materials and Methods 

Soil Sampling & Experimental Design 

Soils were sampled in 2020 (Time 1, T1) and in 2021 (Time 2, T2) from cover crop trials in two 

locations in New York State, USA. The cover crop trials were part of an ongoing study being 

undertaken by the Sustainable Cropping Systems Laboratory of Cornell University. The trials 

were located at:  

• the Hudson Valley Farm Hub (Farm Hub), Hurley, NY (41°55’24.9” N, 74°04’46.0” W). 
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• and the Cornell University Musgrave Research Farm (Musgrave), Aurora, NY 

(42°44’10.1” N, 76°39’08.1” W). 

 

 
 

Figure 1.  Layout of blocks and treatments at the Musgrave location (courtesy of the Cornell 

Sustainable Cropping Systems Laboratory). 
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Figure 2. Layout of blocks and treatments at the Farm Hub location (Courtesy of the Cornell 

Sustainable Cropping Systems Laboratory). 

 

Both experimental locations consisted of four blocks measuring 30.48 m (100 ft) by 60.96 m 

(200 ft) before cover crops were planted. At the Musgrave farm, blocks were placed to account 

for spatial variation across the entire field (i.e., no slope or significantly uneven ground, Figure 

1). Blocks were placed to account for an elevational gradient at the Farm Hub, where block 1 

was at the highest elevation and block 4 at the lowest (Figure 2). Cover crops were planted in 

September 2020 coinciding with soil sampling for this study. Before seedbed preparation, the 

field at Musgrave was an unfertilized oat monoculture. Prior to the termination of the oats, the 

experimental area was fertilized with 1120 kg ha-1 of 5-4-3 (N:P:K). Oats were harvested and 

terminated with a moldboard plow in Mid-July 2020. At the Farm Hub, the field had been a 

spring wheat monoculture before the experiment began and was fertilized with 1120 kg ha-1 of 5-
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4-3 (N:P:K) at planting. The wheat was harvested and terminated with a high-speed disc in mid-

July 2020. The soil from the Farm Hub was classified as an Unadilla series silt loam, and at 

Musgrave was a Lima series loam. 

Forty-eight samples (4 for T1 and 20 for T2 at both locations) were composited from 25 soil 

cores taken from the entire block for T1 and each treatment plot (1-20) for T2 (Figures 1 and 2) 

using a standard 2.3 cm (0.9 inch) diameter soil probe to a depth of 15.2 cm (6.0 inches). The 

samples were kept on ice until stored in a cooler at 4°C between use for testing and analysis. 

Soils were homogenized and sieved to 2 mm before all assays.  

Baseline Soil Samples (T1) 

The cover crop experiments were installed at the two locations in a randomized complete block 

design with four blocks (Figures 1 and 2). One composite soil sample was taken in each block, 

after tillage, but before the cover crops were planted. These baseline samples enabled examining 

any changes in soil biological health after one year of cover cropping. One composite sample for 

each of the four blocks at both the Farm Hub and Musgrave provided four samples per location 

and an n=8 sample size for T1. 

Cover Crop Treatment Soil Samples (T2) 

After tillage and the T1 soil sampling, the blocks were subdivided into five treatment plots and 

planted with cover crops as shown in Figures 1 and 2. The list of treatments and controls 

between the T1 baseline (0) and T2 (1 - 5) treatments are as follows: 

0.   Tilled – baseline control after tillage 

1. Fallow – a fallow control after initial tillage eventually growing weedy biomass 

2. CAN - canola (Brassica napus, L.), 
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3. CR - cereal rye, (Secale cereale, L.),  

4. HV - hairy vetch (Vicia villosa, Roth) 

5. and HV x CR - hairy vetch with cereal rye 

T2 samples were taken 11 months after T1 samples in July 2021 after cover crops were 

terminated using a roller-crimper. Composite samples were taken in each treatment plot yielding 

five samples in each of the four blocks, thus providing 20 samples for each location and an n=40 

sample size for T2. 

Soil Biological Health Assays 

The five laboratory assays used to measure soil biological health and compare to the 

microBIOMETER® microbial biomass readings were:  

1. Chloroform Fumigation-Extraction (CFE) Microbial Biomass 

2. Chloroform Fumigation-Incubation (CFI) Microbial Biomass 

3. Soil Respiration (CO2 burst test) 

4. Active Carbon (Permanganate Oxidizable Carbon-POxC) 

5. Soil Protein (Autoclaved Citrate Extractable Protein-ACE) 

Unless otherwise noted, the author performed the procedures and analyses for the assays. 

microBIOMETER®  

Soil microbes secrete exopolysaccharides and other metabolites that bind non-living soil 

particles to each other and to themselves. In the microBIOMETER® assay (Prolific Earth 

Sciences, Inc., Montgomery, NY, USA), a small soil sample is placed in a test tube with a 

reagent salt and blended with a whisker. This releases microbes bound to or within soil particles 

and suspends them in solution, while soil particles settle to the bottom of the tube. The microbes 
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that remain suspended in the salt solution are sampled by placing drops of the solution on a test 

card, which is then scanned using a smartphone camera application. The application measures 

the color intensity of the spot where sampled drops were placed, and the resulting color is 

compared to a color background surrounding the sample area on the test card. The color 

generated by the sampled drops is thought to measure the density of microbial cells in the sample 

by virtue of the chroma taken on by the cells themselves when living in the soil (Prolific Earth 

Sciences, Inc., 2020). 

 
Figure 3. Applying the soil-solution extract to the 

microBIOMETER® test card before analysis with 

the app (Prolific Earth Sciences, Inc.). 

 

 
Figure 4. The microBIOMETER® kit and its 

components (Prolific Earth Sciences, Inc.). 

For each test, approximately 1.4 g of sodium chloride and calcium chloride (NaCl, CaCl2, a 

proprietary blend provided pre-packaged with the microBIOMETER® soil test kit) was 

combined with 9.5 mL of water in a small test tube. Approximately 1 mL of sieved, field-moist 
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soil was packed into a soil sampler syringe and compressed to 0.5 mL. Any excess soil was 

removed, and the sample placed into the test tube with the salt solution. The soil was broken up 

manually using a metal spatula and then mixed with the solution for 30 seconds using a battery-

operated whisking device (provided with the kit) in the test tube. After mixing, the solution was 

allowed to settle for 15 minutes before the solution suspension was sampled approximately 1.3 

cm below the solution surface with a plastic bulb pipet. Three drops from the pipet were placed 

onto the sample-area center of the microBIOMETER® test card (Figure 3) and analyzed for 

SMB-C in µg C g-1 soil using the microBIOMETER® mobile app (available for download on 

iOS and Android devices). 

Chloroform Fumigation-Extraction (CFE) Microbial Biomass 

The SMB-C can be estimated by measuring the concentration of dissolved organic carbon 

(DOC) extracted before and after exposure to chloroform in a slurry of soil sample. One set of 

soil samples is treated with chloroform and a control set is left untreated. Exposure to chloroform 

in solution solubilizes microbial cell membranes and releases the cell contents into the soil-

extract solution, mostly cellular carbon. A potassium sulfate (K2SO4) salt-solution is then used to 

extract the microbial C as DOC from the soil particles. The difference in DOC content of soil 

extracts with and without chloroform exposure is used to estimate the SMB-C content of the soil. 

Carbon from the surrounding environment of air, material surfaces, and containers is measured 

using reagent blanks and factored into the biomass calculation. Included in the final calculation 

is an efficiency factor (Kec) to account for the proportion of C that is extracted. The direct 

extraction method used here, suggested by Gregorich et al. (1990) and adapted from the original 

method by Vance et al. (1987), was used with a lower concentration of K2SO4 extractant (0.05 

M) than was originally published in both CFE methods (0.5 M) cited. The rationale for reducing 
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the salt concentration was to allow CFE-C to be measured in a Shimadzu Total Organic Carbon 

analyzer (TOC-LSH; Shimadzu Corporation, Kyoto, Japan), without endangering the integrity of 

the column.  

Gravimetric moisture content of the soil samples was determined. Then, two, 10 g oven-dry 

weight equivalent sub-samples of field-moist soil of each sample were placed into individual 50 

mL centrifuge tubes. One sample was treated with chloroform and the other was not. Each sub-

sample was combined with 40 mL of 0.05 M K2SO4, where one set of sub-samples received 0.5 

mL of ethanol-free chloroform. Two reagent blanks were also created for each set using the same 

procedures but without soil added. Both sets of soil extracts were shaken for 1.5 hrs on a 

platform shaker at 200 rpm and then centrifuged at 4,000 rpm for 5 min. Clarified aliquots were 

then filtered through Whatman #1 filter paper into clean centrifuge tubes. Samples that did not 

contain chloroform were frozen. Chloroform-treated samples remained in a fume hood for 16 

hours before freezing and storage to allow the chloroform to evaporate. Frozen samples were 

mailed on ice to the University of New Hampshire Water Quality Analysis Laboratory. There, 

the samples were thawed and analyzed for DOC concentration by high temperature catalytic 

oxidation and NDIR detection with a Shimadzu Total Organic Carbon analyzer (TOC-LSH; 

Shimadzu Corporation, Kyoto, Japan). SMB-C was then calculated from the DOC concentration 

and reported in µg C g-1 soil. A Kec of 0.45 was used in the final calculation (Joergensen, 1996).  

Chloroform Fumigation-Incubation (CFI) Microbial Biomass 

Like the CFE method, the CFI method employs chloroform fumigation to rupture microbial cells 

and release SMB-C into the soil solution as mineralizable DOC. Similarly, a non-fumigated 

sample may be used as a control for subtraction of non-SMB-C organic C, but the CFI assay may 
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also be conducted without subtraction of the untreated control (Franzluebbers et al., 1999). 

Instead of calculating SMB-C from analysis of TOC, the CFI method allows for a microbial 

population to re-colonize the soil under aerobic incubation for ten days. Carbon respired by the 

recolonizing microbes (CO2-C, captured by an alkali trap) post-chloroform fumigation represents 

the SMB-C likely present in the soil prior to chloroform fumigation.  Like the CFE method, 

reagent blanks were also used. Included in the final calculation is an efficiency factor (Kc) to 

account for the proportion of mineralizable C (Voroney & Paul, 1984).  

CFI biomass protocols were adapted from Franzluebbers et al. (2021) based on the original 

method by Jenkinson & Powlson (1976). Briefly, average gravimetric moisture content of the 

soil samples was determined, and 20.00 g oven-dry weight equivalent of each soil sample was 

moistened to achieve 50% water-filled pore space (50% saturation) and incubated for ten days at 

25°C in 60 mL glass jars placed within larger 0.9 L canning jars. Ethanol-free chloroform 

(CHCl3) was placed in a beaker and then placed into a desiccator, along with the glass jars 

containing the soil samples. A vacuum was applied to the desiccator to vaporize the chloroform 

and was kept under vacuum for one day. After the chloroform vapors were removed, the samples 

were replaced in the 0.9 L jars to incubate for another ten days at 25°C with a vial containing 10 

mL of an alkali trap of 1 M sodium hydroxide (NaOH) and a vial of water to maintain humidity. 

The subtraction of a non-fumigated control was not used. SMB-C was determined from the flush 

of CO2 captured in the alkali trap, with CO2-C, as µg C g-1 soil, determined by titration with 1 M 

hydrogen chloride (HCl) with vigorous stirring in the presence of barium chloride (BaCl2, 

forming barium carbonate [BaCO3] precipitate) to a phenolphthalein endpoint. A Kc of 0.41 was 

used in the final SMB-C calculation (Anderson & Domsch, 1978). 
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Soil Respiration 

Soil microbial respiration rate can be estimated by measuring the amount of CO2 released from 

soil after a defined incubation period. After soils are air-dried and rewetted, the inert microbial 

population will begin metabolic and respiratory activity, resulting in a burst of CO2 release. In a 

sealed container, an alkali solution trap captures the CO2 respired by the microbial community 

over a 4-day period. Electrical conductivity (EC) of the alkali trap is measured before and after 

incubation and the resulting data used to calculate respiration (Moebius-Clune et al., 2016). 

Here, 20.00 g of air-dried and sieved soil were placed in a perforated tin container set on top of 

cellulose filter papers in a pint-sized canning jar. An alkali trap assembly containing 9 mL of 0.5 

M KOH was suspended above the soil. Then, 7 mL of deionized water was pipetted to the 

bottom of the jar so that the soil was moistened via the filter paper by capillary action. The jar 

was sealed immediately and incubated for 4 days at room temperature. The EC of the KOH 

solution was measured before and after incubation using an Orion Versa Star Pro meter and 

probe (Thermo Fisher Scientific, Waltham, MA USA) and used to calculate respiration in mg 

CO2 g-1 soil d-1 by microbes. The Cornell Soil Health Laboratory conducted all procedures and 

analyses. 

Active Carbon 

Oxidized soil organic carbon is measured with spectrophotometry after mixing the soil with a 

potassium permanganate (KMnO4) solution. Active carbon was determined following the 

protocols of Weil et al. (2003) and Moebius-Clune et al. (2016). 

A 2.50 g sample of air-dried soil was shaken in a 0.2 M solution of potassium permanganate 

(KMnO4) solution for two minutes on a platform shaker at 120 rpm and allowed to settle for 8 
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minutes. A 202 µL aliquot of the soil-KMnO4 solution was then transferred to 18 mL of 

deionized water in a centrifuge tube to achieve a 0.02 M KMnO4 concentration, which was then 

read for absorbance at 550 nm with a Hach Pocket Colorimeter II (Hach Company, Loveland, 

CO USA). Active carbon, reported in mg C kg-1 of soil, was calculated by comparing the 

absorbance values to a standard curve of known KMnO4 concentrations. Two repetitions were 

produced from these procedures and the active carbon values were averaged (Moebius-Clune et 

al., 2016). Procedures and analysis were performed by the Cornell Soil Health Laboratory. 

ACE Soil Protein 

Soil protein is a measure of the organically bonded amino N readily available for microbial 

mineralization in soil and serves in place of the potentially mineralizable N assay. The results 

from this assay indicate the quantity of N present in organic matter that can potentially be turned 

over through mineralization into inorganic N for plant uptake and growth. Organic N is extracted 

under high pressure and temperature combined with a citrate buffer and analyzed by colorimetry 

with a spectrophotometer. Soil protein was determined using the protocols of Moebius-Clune et 

al. (2016). 

A 3.00 g sample of sieved, air-dried soil was weighed into autoclavable glass tubes containing 24 

mL of sodium citrate buffer (20 mM, pH 7.0) and sealed. The mixture was shaken to disperse 

aggregates for five minutes on a rotary shaker set at 180 rpm and subsequently autoclaved for 30 

minutes at 121°C and 15 psi. Once cooled, 2 mL of the slurry mixture was centrifuged at 

10,000x gravity to precipitate out the soil particles. A 1 mL sub-sample of the centrifuged aliquot 

was then analyzed for protein concentration by a Pierce BCA Protein Assay kit (Thermo Fisher 

Scientific) at 60°C. Quantification of protein concentration was determined colorimetrically by 
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use of a BioTek Synergy HT spectrophotometric microplate reader (BioTek Instruments, Inc., 

Winooski, VT USA) at 562 nm and compared against a bovine serum albumin (BSA) standard 

curve using a Pierce Pre-Diluted Protein Assay Standard Set (Thermo Fisher Scientific). 

Extractable protein content of the soil was calculated by multiplying the protein concentration of 

the extract by the volume of extractant used and dividing by number of grams of soil used and 

calculated in mg amino N g-1 soil. The Cornell Soil Health Laboratory carried out all soil protein 

procedures and analyses. 

Statistical Methods 

Descriptive statistics were means and standard deviations for continuous variables and counts 

and percentages for categorical variables. Analysis of variance was used to determine significant 

differences in soil health assays across locations, treatments, and including the location-treatment 

interaction for T1 and T2 data separately. Pearson correlations were used to evaluate bivariate 

relationships between soil health assays.  

For the microBIOMETER®, multivariate linear regression models were fit to assess the impact 

of treatment and location in the microBIOMETER® relationship with each of the other assays. 

For each of these models, the response variable was the microBIOMETER®, and the 

explanatory variables were one laboratory soil health assay, location, indicators for treatment, 

and the location-treatment interaction. The interaction was removed first if not significant. 

Subsequently, the treatment indicators were removed if not significant. Significance was 

determined at the 5% level. All statistical analysis was done using JMP Pro (Version 16, SAS 

Institute Inc., Cary, NC, USA). 
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Results 

Soil sampling proceeded as anticipated, and 48 samples were collected. However, three problems 

were encountered with the soil health assays. First, the initial readings from the 

microBIOMETER® assay were discarded due to operator error. Subsequently, two more 

readings were taken, and their average values were used in this analysis. Second, some samples 

had duplicate CFE biomass readings taken due to questionable values in the initial reading; for 

those samples, their average was used in this analysis. Three of the CFE biomass readings that 

were out of range were omitted because the sample was unintentionally destroyed and not 

available for duplicate measurements, and thus the CFE biomass assay had the analysis sample 

size of n=45. Finally, the CFI biomass assay was the final assay performed and there was not 

enough soil left from 22 of 48 samples, leaving a sample size of n=26 from T2 soils only, with 

n=19 from T2 Farm Hub (1 missing) and n=7 from T2 Musgrave (13 missing). 

Descriptive Analysis 

Table 1 (T1) and Table 2 (T2) display the means of the soil health assays over the four blocks at 

each location. Block 4 at the Farm Hub, the block placed at the lowest end of an elevation 

gradient, demonstrated lower values for all assays except CFE and CFI biomass (Table A1). 

Table 1. Means of soil health assays at T1 by location (n=4) 

Test  Treatment Farm Hub Musgrave 

microBIOMETER® (µg C g-1 soil) Tilled 359.4  A 190.8  B 

CFE Microbial Biomass (µg C g-1 soil) Tilled      83  B 198.5  A 

CFI Microbial Biomass (µg C g-1 soil) Tilled . . 

Soil Respiration (mg CO2 g-1 soil day-1) Tilled 0.051  B 0.162  A 

Active Carbon (mg C kg-1 soil) Tilled 355.2  B 503.8  A 

ACE Protein (mg amino N g-1 soil) Tilled   4.28  A   4.67  A 
Notes. CFI biommas test was not performed for T1 due to insufficient sample. Letters between the Farm Hub and Musgrave 

columns indicate significant differences between locations, where A indicates that mean is significantly larger than B (p<0.05). 
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Table 2. Means of soil health assays at T2 by location and cover crop treatment  (n=4, except where 

indicated), with grand means of all treatments at each location. 

Test Cover Crop Treatment Farm Hub Musgrave 

microBIOMETER®  ----(µg C g-1 soil)----  
Fallow  339.1 226.6  

CAN  312.4 231.5  
CR  353.7 201.0  
HV  371.0 207.2  

HV x CR 384.3 223.1  
Mean     352.1  A     217.9  B 

CFE Microbial Biomass  ----(µg C g-1 soil)----  
Fallow  77.8 122.4  

CAN  170.71 156.8  
CR  141.21 132.0  
HV  84.7 147.3  

HV x CR 103.5  173.61 
 

Mean      115.6  B      146.4  A 

CFI Microbial Biomass  ----(µg C g-1 soil)----  
Fallow  405.0 608.01 

 
CAN   451.01 650.03 

 
CR  454.5 708.52 

 
HV  429.0 686.03 

 
HV x CR 510.0 .  

Mean     449.9  B    663.1  A 

Soil Respiration  ----(mg CO2 g-1 soil day-1)----  
Fallow  0.574 0.741  

CAN  0.551 0.775  
CR  0.541 0.627  
HV  0.564 0.807  

HV x CR 0.565 0.798  
Mean      0.559  B     0.750  A 

Active Carbon  ----(mg C kg-1 soil)---  
Fallow  388.4 557.8  

CAN  395.1 582.5  
CR  421.6 564.1  
HV  405.5 574.8  

HV x CR 420.3 578.5  
Mean     406.2  B     571.5  A 

ACE Soil Protein 
 

----(mg amino N g-1 soil)---  
Fallow  3.98 4.43  

CAN  4.03 4.68  
CR  4.65 4.13  
HV  4.63 4.50  

HV x CR 4.40 4.63  
Mean     4.34  A      4.47   A 

Notes. 1. n=3 due to missing data; 2. n=2 due to missing data; 3. n=1 due to missing data.  Letters between the Farm Hub and 

Musgrave columns indicate significant differences between locations, where A indicates that mean is significantly larger than B 

at p<0.05. 
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microBIOMETER®  

Biomass estimated by the microBIOMETER® were dissimilar to the laboratory tests of CFE and 

CFI biomass. Biomass estimated by the microBIOMETER® was higher compared to use of the 

CFE method (Tables 1 and 2) and lower compared to use of the CFI method (Table 2). For T1 

(Table 1), the mean biomass based on the microBIOMETER® at Farm Hub (359.4 µg C g-1 soil) 

was almost twice that of the Musgrave (190.8 µg C g-1 soil) samples. The microBIOMETER® 

was the only soil health assay that produced higher mean values at the Farm Hub location 

compared to Musgrave for both T1 and T2 samples. Among the five cover crop treatments at T2 

(Table 2), average biomass based on the microBIOMETER® ranged from 312.4 (CAN) to 384.3 

µg C g-1 soil (HV X CR) at the Farm Hub, and 201.0 (CR) to 231.5 µg C g-1 soil (CAN) at 

Musgrave. The microBIOMETER® biomass estimates were significantly higher at the Farm 

Hub site, whereas, most other soil health metrics, including CFE biomass, Respiration, and 

active carbon were significantly higher at the Musgrave site. 

CFE Microbial Biomass 

CFE biomass resulted in overall lower biomass estimates than those of the microBIOMETER® 

assay (Tables 1 and 2). As with most of the other soil health assays, average CFE biomass was 

higher at the Musgrave site. This contrasts with the higher values at the Farm Hub measured 

using the microBIOMETER®.  For the T1 measurements, Musgrave soils (198.5 µg C g-1 soil) 

had higher biomass than Farm Hub soils (83.0 µg C g-1 soil). At T2, average CFE biomass 

ranged from 84.7 (HV) to 170.7 µg C g-1 soil (CAN) at the Farm Hub, and 122.4 (Fallow) to 

173.6 µg C g-1 soil (HV x CR) at Musgrave. All T2 treatments had higher CFE biomass at 

Musgrave, except for CAN and CR, where the Farm Hub values of those treatments were higher. 
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CFI Microbial Biomass 

Microbial biomass measured by use of the CFI assay was higher overall than either the 

microBIOMETER® or CFE biomass assays. Although several data points are missing from the 

Musgrave location, Tables 2, A1, and A2 suggest that biomass was higher at Musgrave 

compared to the Farm Hub site. For T2, average CFI biomass ranged from 405.0 (Fallow) to 

510.0 µg C g-1 soil (HV x CR) at the Farm Hub, and 608.0 (Fallow) to 708.5 (CR) µg C g-1 soil. 

There was no CFI biomass data for T1. 

Soil Respiration 

Soil respiration was lower in the T1 soil samples from the Farm Hub than at the Musgrave site, 

where respiration was approximately three times higher (0.161 mg CO2 g-1 soil d-1) than at the 

Farm Hub (0.051 mg CO2 g-1 soil d-1). Like T1 soils, mean respiration at Musgrave was also 

higher than at the Farm Hub at T2, which was 0.750 and 0.559 mg CO2 g-1 soil d-1, respectively. 

Respiration at T2 ranged from 0.63 (CR) to 0.81 mg CO2 g-1 soil d-1 (HV) at Musgrave and 0.54 

(CR) to 0.57 mg CO2 g-1 soil day-1 (HV x CR) at the Farm Hub site. 

Active Carbon 

Musgrave soils had higher active carbon than soils at the Farm Hub in both the T1 and T2 soils 

which, like the respiration and soil protein assays, differed from the microBIOMETER® that had 

higher biomass at the Farm Hub. Mean active carbon at T1 for Musgrave (503.8 mg C kg-1 soil) 

was greater than at the Farm Hub site (355.2 mg C kg-1 soil). All T2 treatments for both locations 

had higher average carbon than their respective T1 values. T2 Musgrave ranged from 557.8 

(Fallow) to 582.5 mg C kg-1 soil (CAN), and T2 Farm Hub ranged from 388.4 (Fallow) to 421.6 
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mg C kg-1 soil (CR). The Fallow treatment had the lowest average values among all T2 

treatments at both locations. 

ACE Soil Protein  

Unlike the results of the other soil health assays and the microBIOMETER®, there was no 

location nor time that consistently contained higher soil protein. While mean soil protein for T1 

Musgrave (4.67 mg amino N g-1 soil) was greater than at the Farm Hub (4.28 mg amino N g-1 

soil), T2 treatments varied in which location had greater soil protein (Tables 1 and 2).T2 

treatment average values ranged from 3.98 (Fallow) to 4.65 mg amino N g-1 soil (CR) at the 

Farm Hub, and 4.13 (CR) to 4.68 mg amino N g-1 soil (CAN) at Musgrave. Accordingly, not all 

T2 treatments had greater protein than T1 samples at both locations, which was the case for both 

the active carbon and soil respiration assays. 

Relationships Between microBIOMETER® and Soil Health Metrics 

To better understand how biomass data generated by use of the microBIOMETER® was related 

to other metrics of soil biological health, scatterplots and associated correlation analyses were 

employed. The strength of the relationship between biomass estimated by the 

microBIOMETER® and biomass estimated by the CFE is shown in Figure 5. Visual inspection 

indicates no significant relationship between these two metrics. In fact, a slight negative 

relationship between these two variables for both locations (r = -0.05, n = 22 at the Farm Hub 

and -0.19, n = 23 at Musgrave) is evident. An inverse relationship was not anticipated as the 

microBIOMETER® and CFE biomass assays ostensibly both measure SMB-C in µg C g-1 soil. 

The significant difference in between sites in both metrics is also evident in Figure 5. 
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Figure 5. Relationship between biomass estimated by microBIOMETER® and CFE biomass.  

The relationship between the microBIOMETER® and biomass estimated by the CFI assay is 

shown in Figure 6.  As previously mentioned, CFI biomass was the last assay undertaken and 

there was insufficient soil to complete this assay for all samples. Thus, the correlation between 

these two variables could not be explored fully, particularly at the Musgrave location. Like the 

results for the CFE biomass, there was no apparent positive relationship between CFI biomass 

and the microBIOMETER®. The correlation coefficients were r = -0.08 (n =19) at the Farm Hub 

and r = -0.02 (n=7) at the Musgrave site. 

The relationship between biomass measured using the microBIOMETER® and soil respiration at 

the two sites is shown in Figure 7. The slope of both lines of best fit are positive. The correlation 

coefficient was r = 0.16 at the Farm Hub but was r = 0.40 at the Musgrave site.  

 



 

 

 

29 

 

Figure 6. Relationship between biomass estimated by microBIOMETER® and CFI biomass. 

 

Figure 7. Relationship between biomass estimated by microBIOMETER® and soil respiration. 
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Figure 8. Relationship between biomass estimated by microBIOMETER® and active carbon. 

The relationship between biomass measured by the microBIOMETER® and active carbon is 

shown in Figure 8. Correlation coefficients were positive at both locations, with r = 0.43 at the 

Farm Hub and r = 0.38 at the Musgrave site.  

Figure 9 shows the relationship between biomass measured by the microBIOMETER® and ACE 

soil protein, where the correlation coefficients were positive at both locations, with r = 0.57 at 

the Farm Hub, but only r = 0.18 at the Musgrave site. 

The strong differences between sites for all metrics can be seen clearly in Figures 5-9. 



 

 

 

31 

 

Figure 9. Relationship between biomass estimated by microBIOMETER® and ACE soil protein. 

Relationships Between CFE Microbial Biomass and Soil Health Metrics 

The relationship between CFE microbial biomass and CFI microbial biomass is shown in Figure 

10. The correlation coefficient at the Farm Hub location was r = 0.65 (n = 19) and was r = -0.09 

(n = 7) at the Musgrave site. Note that Figure 10 does not include T1 observations for either 

location, and lacks many observations at the Musgrave location as explained above.  

The relationship between CFE microbial biomass and soil respiration is shown in Figure 11. The 

correlation coefficient was r = 0.24 (n = 22) at the Farm Hub. Whereas, an inverse relationship 

was observed at the Musgrave site, where the correlation coefficient was r = -0.44 (n = 23). 

The relationship between CFE microbial biomass and active carbon is shown in Figure 12. The 

correlation coefficient was r = 0.39 (n = 22) at the Farm Hub and, as seen for respiration, was 

inversely related at the Musgrave site, where the correlation coefficient was r = -0.11 (n = 23). 
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Figure 10. Relationship between biomass estimated by CFE and biomass estimated by CFI. 

 

Figure 11. Relationship between biomass estimated by CFE and soil respiration. 
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Figure 12. Relationship between biomass estimated by CFE and active carbon. 

 
Figure 13. Relationship between biomass estimated by CFE and ACE soil protein. 

The relationship between CFE biomass and soil protein is shown in Figure 13. The correlation 

coefficients were r = 0.19 (n=22) at the Farm Hub and r = 0.47 (n=23) at the Musgrave site. 
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Excluding the CFI assay which was lacking a substantial number of observations at the 

Musgrave location, soil protein was the only laboratory soil health assay that showed a positive 

relationship with CFE biomass at the Musgrave site. 

Inferential Statistics 

Tests of Correlations 

Tables 1 and 2 list the Pearson correlation coefficients mentioned above together with the 

associated p-values under a null hypothesis that there is no correlation between any of the tested 

variables.  

At the Farm Hub location, two assays were significantly correlated with the 

microBIOMETER®: active carbon (r=0.4336, p=0.0343) and soil protein (r = 0.5687, p = 

0.0037). At the same location, a further two variables were significantly correlated with active 

carbon: soil respiration and soil protein. Note that all correlations that were significant showed a 

positive relationship between the variables. 

 At the Musgrave location, no soil health assays were significantly correlated to biomass 

estimated by the microBIOMETER®. At this site, only three correlations were significant. 

Active carbon was significantly correlated with respiration (r = 0.7346, p < 0.0001), CFE 

biomass was significantly related to soil protein (r = 0.5080, p = 0.0158), and CFE biomass was 

inversely related to soil respiration (r = -0.4404, p = 0.0357) at this location. Visual inspection of 

Figure 5 reveals four observations with low respiration. These four observations have high 

leverage and are driving this inverse relationship. 
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Table 3. Pearson correlations, count, and (p-value) for the Farm Hub location. 

 
micro 

BIOMETER 
CFE 

Biomass 
CFI 

Biomass 
Respiration 

Active 
Carbon 

Soil 
Protein 

CFE Biomass 
- 0.0451  

n=22 
(0.8420) 

1     

CFI Biomass 
- 0.0763 

n=19 
(0.0763) 

0.6491 
n=17 

(0.0048) 
1    

Respiration 
0.1603 
n=24 

(0.4543) 

0.2419 
n=22 

(0.2781) 

0.1112 
n=19 

(0.6503) 
1   

Active Carbon 
0.4336 
n=24 

(0.0343) 

0.3864 
n=22 

(0.0757) 

0.4390 
n=19 

(0.0601) 

0.5487 
n=24 

(0.0055) 
1  

ACE Soil Protein 
0.5687 
n=24 

(0.0037) 

0.1883 
n=22 

(0.4014) 

0.3080 
n=19 

(0.1996) 

0.1079 
n=24 

(0.6158) 

0.6400 
n=24 

(0.0008) 
1 

Notes: p-value is for the test with null hypothesis that the correlation is zero. 

 

 

Table 4. Pearson correlations, count, and (p-value) for the Musgrave location. 

 
micro 

BIOMETER 
CFE 

Biomass 
CFI 

Biomass 
Respiration 

Active 
Carbon 

Soil 
Protein 

CFE Biomass 
- 0.1889 

n=23 
(0.3881) 

1     

CFI Biomass 
- 0.0167 

n=7 
(0.9717) 

- 0.0914 
n=7 

(0.8455) 
1    

Respiration 
0.3966 
n=24 

(0.0550) 

- 0.4404 
n=23 

(0.0357) 

- 0.6082 
n=7 

(0.1473) 
1   

Active Carbon 
0.3773 
n=24 

(0.0691) 

- 0.1129 
n=23 

(0.6081) 

0.7142 
n=7 

(0.0714) 

0.7346  
n=24 

(<0.0001) 
1  

ACE Soil Protein 
0.1831 
n=24 

(0.3919) 

0.4658 
n=23 

(0.0251) 

0.1576 
n=7 

(0.7357) 

0.0439 
n=24 

(0.8387) 

0.3822 
n=24 

(0.0653) 
1 

Notes: p-value is for the test with null hypothesis that the correlation is zero. 
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Whilst various correlations are significant at the two sites, the only significant correlation across 

both sites that between active carbon and respiration. At the Farm hub, the correlation coefficient 

was r = 0.5487, and at Musgrave it was r = 0.7346. Unfortunately, there were no correlations 

with the microBIOMETER® that were significant at both sites. 

Multivariate Models of microBIOMETER®  

The relationships between microBIOMETER® readings and the other soil health assays may 

have been influenced by location, treatment, and block. Multivariate linear models were used to 

assess the relationship between microBIOMETER® and each of the other assays while 

accounting for these effects. Table 4 lists the p-values and indication of significance for the tests 

of effects of these factors. 

Table 5. P-values for multivariate models of microBIOMETER® and each of the laboratory soil health 
assays. Explanatory variables are the treatment-location interaction (Trt*Loc), treatment, location, and 

the assay. Significant p-values at the 5% level are indicated by bold text. 

Model Trt*Loc Treatment Location Assay 

microBIOMETER® by CFE 0.2870 0.7849 0.0038 0.3495 

microBIOMETER® by CFI - 0.0924 0.0288 0.4795 

microBIOMETER® by Respiration 0.1359 0.6009 0.0016 0.2181 

microBIOMETER® by Active Carbon 0.1940 0.6953 < 0.0001 0.0829 

microBIOMETER® by Soil Protein 0.2491 0.6856 0.0011 0.0453 

Note. The treatment-location interaction could not be fit in the model with CFI due to a lack in degrees of freedom. 

 

 

In the model of microBIOMETER® and CFE, the treatment-location interaction was not 

significant (p = 0.2870). After removing the interaction, the treatment was also not significant (p 

= 0.7849). After removing treatment from the model, location was significant (p = 0.0038) and 

CFE was not (p = 0.3495). Figure A1 displays the average microBIOMETER® reading 
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predicted by this model. The difference between the locations is evident, as is the lack of 

relationship between the microBIOMETER® and CFE results. 

In the model of microBIOMETER® with CFI, it was not possible to include the interaction 

between treatment and location due to insufficient degrees-of-freedom. This occurred in this 

model but not others because the CFI was missing 13 samples from the Musgrave location. After 

removing the interaction, the treatment was not significant (p = 0.0924). After removing 

treatment from the model, location was significant (p = 0.0288), but CFI was not (p = 0.4795). 

Figure A2 displays the average microBIOMETER® readings predicted by this model. Like the 

model with the CFE assay, there is a significant difference between the two locations in the CFI 

assay, as well as a lack of relationship between the microBIOMETER® and CFI. 

In the model of microBIOMETER® with soil respiration, the treatment-location interaction was 

not significant (p=0.1359). After removing the interaction, the treatment was also not significant 

(p = 0.6009). After removing treatment from the model, location was significant (p = 0.0016) 

and respiration was not (p = 0.2181). Figure A3 displays the average microBIOMETER® 

reading predicted by this model with respiration. Again, the difference between the locations is 

evident, and the model shows a lack of relationship between the microBIOMETER® and soil 

respiration. 

In the model of microBIOMETER® with active carbon, the treatment-location interaction was 

not significant (p = 0.1940). After removing the interaction, the treatment was also not 

significant (p = 0.6953). After removing treatment from the model, location was significant (p < 

0.0001) and active carbon was not (p = 0.0829). Figure A4 displays the average 

microBIOMETER® reading predicted by this model with active carbon. Again, the difference 
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between the locations is evident, and the model shows a lack of relationship between the 

microBIOMETER® and soil respiration. 

In the model of microBIOMETER® with soil protein, the treatment-location interaction was as 

not significant (p = 0.2491). After removing the interaction, the treatment was also not 

significant (p = 0.6856). After removing treatment from the model, location was significant (p = 

0.0011) and, unlike the other soil health assays, the microBIOMETER® relationship with soil 

protein was significant (p = 0.0453). Figure A5 displays the average microBIOMETER® reading 

predicted by the model with soil protein. The difference between the locations is evident as well 

as a clear relationship with the soil protein assay. 
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Discussion 

microBIOMETER® as a Soil Health Metric 

In this paper, I report results from research on soil biological activity, specifically, the 

assessment of SMB-C using the microBIOMETER® assay. Using soil samples from two NYS 

cover crop trials, one at the Farm Hub and the other at the Musgrave site, results of SMB-C from 

the microBIOMETER® were compared to results from the established laboratory assays CFE 

and CFI microbial biomass, soil respiration, active carbon, and soil protein.  

The intention of this experimental study was to benchmark the microBIOMETER® test as a soil 

biological health metric and to understand its usefulness to land managers for holistic SSNM and 

agroecosystem management. Soil health testing facilitates recommendations, such as tillage 

strategies and organic matter management, that go beyond the typical mineral fertilizer 

recommendations given by standard nutrient testing (Testen et al., 2018; Kihara et al., 2020). 

Additionally, easy-to-use soil tests that have simple and inexpensive protocols, such as the 

microBIOMETER®, can allow for expanded use by farmers in the Global North and South. The 

microBIOMETER® kit, for instance, is smaller than a laptop, takes about 30 minutes to 

complete, and does not have expensive, dangerous, or unstable reagents required by many of the 

laboratory soil biological tests. This allows farmers to better understand and integrate 

quantitative biological health monitoring with largely qualitative monitoring practices 

(Grossman, 2003; Barrios et al., 2006; Dawoe et al., 2012), while taking into account the unique 

biophysical and socioeconomic aspects of their agroecological environment largely ignored by 

top-down and TOT approaches (Testen et al., 2018; Stewart et al., 2020). There is a greater need 

for this type of mobile soil health testing for resource-poor farmers of the Global South, who 
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have less access to soil testing laboratories and extension advisors (Dimkpa et al., 2017; Stewart 

et al., 2020). 

Although the microBIOMETER® does not appear to measure microbial biomass (Tables 3, 4, 

and 5), the results from this study still indicate that microBIOMETER® does correlate with 

some aspects of soil health. This was demonstrated by the significant, positive relationships 

found between the microBIOMETER® and active carbon and with soil protein at the Farm Hub 

(Table 3). The relationship between the microBIOMETER® and soil protein was additionally 

supported by the multivariate modeling that isolated its relationship to soil protein as an 

explanatory variable by accounting for any influences of the cover crop treatments and locations 

(Table 5 and Figures A1-A5) that affected the microBIOMETER® readings. 

Based on my results, the microBIOMETER® should be used for soil health testing by farmers 

and land managers seeking to monitor their soils and supplement recommendations from 

standard nutrient testing. The relationship to highly labile C and N, as measured by active carbon 

and soil protein, respectively, means that farmers can likely use the microBIOMETER® to 

monitor readily available microbial substrates and potential N released from the organic fractions 

of their soils. The implications of the significant soil protein relationship with the 

microBIOMETER® may mean farmers can use it as tool to reduce expensive N inputs that also 

contribute to greenhouse gas emissions and climate change. Small-holder farmers of the South 

could use the microBIOMETER® to make such assessments. The portable and widely-used 

SoilDoc kit does include an on-site version of the active carbon assay, but requires a laboratory-

trained technician (Dimkpa et al., 2017; Harou et al., 2018), whereas the microBIOMETER® is 

potentially usable by untrained farmers. 
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Effects of Cover Crop Treatments and Location on Soil Health Assays 

There was a significant correlation between active carbon and soil respiration at both locations 

(Farm Hub, r = 0.74; Musgrave, r = 0.55). At the Farm Hub, active carbon was also significantly 

correlated to soil protein (r=0.64) and the microBIOMETER® (r = 0.43). As anticipated, there 

was a significant correlation and CFE and CFI at the Farm Hub (r = 0.65), which both measure 

SMB-C.  

The average values of the soil health assays indicated statistically significant differences in soil 

health between the two locations for all assays except for soil protein (Tables 1 and 2) that was 

further evidenced by the multivariate models that demonstrated location as the main influence on 

the microBIOMETER® readings (Table 5 and Figures A1-A5). 

Differences in soil texture between the two sites may help to explain the higher laboratory soil 

health values observed for the Musgrave location. Amsili et al. (2021) found that soil protein and 

active carbon were 84% and 24% higher in coarse-textured compared to fine-textured soils, 

respectively, and found these two assays were inversely related to clay content (r= -0.49 and r = -

0.21, respectively). Although both locations’ soils are generally classified as medium-textured, 

the loam soil at Musgrave is slightly coarser than the silt loam at the Farm Hub site. Similarly,  

Franzluebbers et al. (1996) found that soil respiration was often higher in coarser-textured soils.  

While likely to have a strong influence, textural analysis would be needed to confirm the specific 

proportions of particle sizes, thus differences in soil health due to higher content of colloidal 

fractions cannot be confirmed.   

Cropping system and management, however, are also factors in outcomes of soil health 

indicators (Nunes et al., 2018; Amsili et al., 2021). The soil at the Farm Hub, while in use as 
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research plots for organic no-till during this study, has historically been under cultivation for 

commercial production. Conversely, the Musgrave location has been exclusively a research site 

for agricultural experimentation for many decades. As such, we can expect a history of more 

frequent soil disturbance and higher nutrient export at the Farm Hub. Conversely, lower values 

might have been expected at the Musgrave location due to the use of moldboard plowing for 

seedbed preparation of the experimental plots. High-speed discing was used at the Farm Hub, 

which involves less soil inversion and overall disturbance. 

In comparing different physical management systems, respiration was found to be lower where 

moldboard plowing was used compared to discing (Roper et al., 2017), which created less soil 

inversion and overall disturbance. Similarly, active carbon and soil protein were also higher in 

chisel and discing systems compared to moldboard plowing (van Es & Karlen, 2019). Amsili et 

al. (2021), however, found that soil texture had a greater effect than cropping system or 

management in soil health indicator outcomes, which supports the interpretation that slightly 

higher values in soil health metrics observed at the Musgrave site were due to a coarser-texture 

soil. 

One confounding issue in the results was that the microBIOMETER® averages were higher at 

the Farm Hub than at Musgrave, while the CFE, CFI, active carbon, and respiration assays were 

all higher at the Musgrave site. The results, however, demonstrated relatively low soil health at 

both locations overall, compared to results reported in other studies (see Roper et al., 2017; 

Caudle et al., 2020; Amsili et al., 2021). Therefore, a study with similar methods, but using 

samples of both low and high SMB-C and soil health, may be warranted to examine the capacity 

of the microBIOMETER® assay to detect such differences. The use of soils from varying 
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textural classes (i.e., clay loam vs. sandy loam), production systems, and tillage intensities 

should also be studied for the correlation of soil health indicators with the microBIOMETER®. 

Relationships between Laboratory Soil Health Tests 

In addition to the comparison with microBIOMETER®, the correlation analysis was used to 

benchmark the relationship of the soil health assays to each other, essentially to establish that soil 

health was in fact being measured. There have been more studies in the recent decade that have 

similarly established the relationship between the soil health assays used here. 

Active carbon has been a widely tested and used as a soil health metric due to the simplicity of 

the protocol, the ability to do the assay directly in the field and demonstrated sensitivity to 

management changes (Moebius-Clune et al., 2016; Bongiorno et al., 2019). Compared to the 

Farm Hub correlation (r = 0.64, Table 3) , Caudle et al. (2020) found a slightly stronger, but 

significant and comparable relationship between soil protein and active carbon  (r = 0.74) in a 

sandy loam soil, and Bongiorno et al. (2019) found active carbon to be significantly related to 

respiration (r = 0.46). Although I found stronger correlations between other soil health metrics in 

the literature, I could not find any report of a stronger, positive relationship between active 

carbon and respiration than what was observed at the Farm Hub site. A possible reason why 

there are no reports of stronger correlations may be because active carbon differs from soil 

respiration in that active C measures highly labile and readily available quantities of C, while 

respiration is a measurement of the microbial activity that results from this available C (Roper et 

al., 2017). 

Although active carbon was significantly correlated with the microBIOMETER® assay at the 

Farm Hub, it did not meet the 5% significance level when accounting for location and treatment 
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in the multivariate linear model. Active carbon, however, was the only assay of the five 

laboratory soil health tests to be positively correlated, with coefficients ranging from r = 0.37–

0.73, with p < 0.08. Meanwhile, the other laboratory soil health assays that were not significant 

generally had weaker correlations (r < 0.30) and considerably higher p-values. Thus, the 

correlation results here support the idea of active carbon beings a “leading indicator” of soil 

health and management evaluation (Moebius-Clune et al., 2016). 

The significant correlation of soil protein and CFE at the Musgrave and not at the Farm Hub 

location is surprising, considering the Musgrave location resulted in overall weaker and fewer 

significant relationships. Decker (2021) found a similar correlation of soil protein and SMB-C 

(r= 0.40), but used the CFI method, which did not correlate with soil protein in the assays 

performed here. I could not find these assays used together in a correlation analysis in the 

literature, so the relationship is still unclear. Nonetheless, after available C, microbial biomass 

accretion is most limited by available soil N, so the potentially available organic N (as measured 

by soil protein) can influence C fluxes to the SMB-C pool (Blagodatsky & Richter, 1998; Chen 

et al., 2014). 

A few correlation pairs resulted in inverse relationships between the soil health tests, which was 

unexpected. Aside from marginally negative correlations with microBIOMETER®, which were 

found at both locations, the only negative correlations with laboratory soil health tests were in 

the Musgrave soils. Soil respiration, as a burst of CO2 following re-wetting of dried soil as used 

in this study, has been well correlated to SMB-C (Franzluebbers, 2018), so the negative 

correlation found here is surprising. However, for basal respiration assays, in which soils are 

incubated for longer periods of time (2-3 weeks), weak positive or sometimes negative 
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relationships with SMB-C have been observed (Wang et al., 2003; Traoré et al., 2007). 

Respiration, whether as a basal measurement or as a CO2 burst, depends on substrate availability 

rather than the size of the SMB pool under favorable conditions of moisture and temperature 

(Wang et al., 2003). The makeup of the microbial community may have been dominated by 

certain microbes with a high metabolic quotient (qCO2), which is the amount of basal respiration 

per unit of microbial biomass (Insam & Haselwandter, 1989). The moldboard plowing at 

Musgrave could have influenced the establishment of a microbial community with higher qCO2, 

meaning the higher C substrate needs to produce CO2 in respiration for a given biomass, which 

has been previously demonstrated (Heinze et al., 2010). Although still unclear, a higher qCO2 

may have affected the soil respiration burst of CO2 at Musgrave in this study. 

CFE and CFI Soil Microbial Biomass Carbon  

The CFE and CFI biomass assays, while having a moderately strong and significant correlation, 

were notably less well-correlated than what has been found in previous reports. Both Vance et al. 

(1987) and Wu et al. (1990) compared the CFE and CFI methods and both found very strong 

correlations of r = 0.99, much stronger than the correlation in this study, r = 0.65. 

A few distinctions should be noted in the CFE methods used by Wu et al. (1990) and Vance et al. 

(1987) compared to the methods employed here which may help explain the discrepancies in our 

CFE-CFI correlation. First, both published studies used a 0.5 M K2SO4 extracting solution for 

the CFE, a concentration that has traditionally been used and a tenfold greater concentration than 

the 0.05 M extractant in this study. Using the higher concentration of extractant is a problem for 

contemporary studies employing the CFE method due to the difficulty the high salt concentration 

imposes on modern analytical machinery for total organic carbon (see Qian & Mopper, 1996). 
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Several studies have examined use of various K2SO4 concentrations lower than the original 0.5 

M concentration used by Vance et al. (1987), finding differences in solubility of organic 

compounds and microbial carbon based on different soil properties, such as pH (Haney et al., 

2001) or content of reactive and stable carbon compounds (Durenkamp et al., 2010). Outside of 

these specific factors though, other research has suggested there may not be a substantial 

difference between the extraction efficiency of the 0.05 and 0.5 M concentrations (Makarov et 

al., 2013). Ultimately, the literature is unclear as to the effect of lower extractant concentrations 

on SMB-C results, and researchers should continue to examine and resolve this issue. 

Apart from the extractant concentration differences, the CFE method I used in this study was the 

direct chloroform method proposed by Gregorich et al. (1990). In the original method by Vance 

et al. (1987), soil is exposed to chloroform vapors under vacuum for 24 h to lyse microbial cells, 

and the K2SO4 extractant is added to the samples after the vapors are removed. The direct 

method combines these two steps by directly adding chloroform as a liquid to the K2SO4 with the 

soil to achieve the same effect after shaking the solutions for at least half an hour. Thus, the 

direct method is quicker and reduces the complications and equipment needs of fumigating the 

soils under vacuum. Although Setia et al. (2012) confirmed a strong correlation (r = 0.87) 

between the direct and original CFE methods, few studies have used the direct method (Witt et 

al., 2000; Fierer & Schimel, 2003). Furthermore, I could not find any publication that has used 

the direct method in combination with a 0.05 M extractant. Jordan & Beare (1991) compared the 

direct CFE method with CFI and found strong correlation (r=0.92), but only using the original 

0.5 M extractant concentration. 
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Although the microBIOMETER® did not appear to measure SMB-C by correlation to the CFE 

or CFI assays, the relationship between these three assays should still be investigated further. 

Particularly, the use of the appropriate CFE methods using the direct or traditional method 

should be established before comparison with the microBIOMETER® and CFI.  
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Conclusions 

Soil health testing should be considered more frequently for monitoring agronomic and 

ecosystem services in both the Global North and Global South. Site-specific nutrient and soil 

health management is a great need, particularly for resource-poor farmers of the Global South 

where a multitude of biophysical and socioeconomic factors limit soil testing traditionally 

accomplished in a laboratory. Here, I used the most common laboratory assays of soil biological 

health to benchmark the microBIOMETER® mobile soil health test, which is marketed as an 

affordable and easy-to-use test specifically for measuring soil microbial biomass carbon.  

The microBIOMETER®, however, did not appear to measure soil microbial biomass carbon as 

there was no significant relationship with either the CFE or CFI assays of SMB-C. Rather, the 

microBIOMETER® had a stronger relationship to measures of soil protein and active carbon. 

Therefore, while there was no evidence that the microBIOMETER® measures SMB-C, the 

results in this study suggest that the microBIOMETER® does measure some aspect of soil 

health. Soil protein is a soil health assay that can be used in place of potentially mineralizable 

nitrogen as a measure of how much nitrogen might be made available from organic matter to 

support plant growth during a growing season. Active carbon is a widely used soil health test that 

measures the organic carbon fraction of total organic matter that is readily available for microbial 

consumption. It is also considered a leading indicator and particularly sensitive to management 

changes, while soil protein quantifies the soil’s ability to provide the most limiting nutrient to 

plant growth, nitrogen. Based on the relationships established with these two assays, the 

microBIOMETER® should be used to monitor soil health in both the North and South. 
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Although positive relationships between the laboratory soil health metrics were observed, some 

of the correlations between the tests resulted in unexpectedly weak relationships, particularly at 

the Musgrave location. The cover crop treatments in this study, in place for just a single season, 

did not influence the soil health results or the overall assessment of soil health at the Musgrave 

and Farm Hub locations. Additionally, the correlation between the CFE and CFI assays, while 

moderately strong, was weaker than what has been established by previous studies, possibly due 

to lower molarity of the extractant used in the CFE assay. Future research should be conducted to 

benchmark the microBIOMETER® by using samples with a larger variation in soil health and 

microbial biomass. 
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APPENDIX 

Table A1. Values of soil health assays and microBIOMETER® at the Farm Hub by treatment and block. 

Treatment Block 1 Block 2 Block 3 Block 4 

microBIOMETER®  (µg C g-1 soil) 
Tilled (T1) 373 340 433 292 
Fallow (T2) 397 358 323 279 
CAN (T2) 343 303 307 297 
CR (T2) 428 312 353 322 
HV (T2) 459 334 452 239 
HV x CR (T2) 443 367 436 292 

CFE Microbial Biomass (µg C g-1 soil) 
Tilled (T1) 68 62 68 133 
Fallow (T2) 129 74 51 57 
CAN (T2) 156 250 . 106 
CR (T2) 128 185 . 110 
HV (T2) 34 180 90 35 
HV x CR (T2) 175 126 69 44 

CFI Microbial Biomass (µg C g-1 soil) 
Tilled (T1) . . . . 
Fallow (T2) 444 392 392 392 
CAN (T2) 444 . 517 392 
CR (T2) 451 591 399 377 
HV (T2) 370 569 385 392 
HV x CR (T2) 525 532 444 539 

Soil Respiration (mg CO2 g-1 soil day-1) 
Tilled (T1) 0.050 0.057 0.052 0.045 
Fallow (T2) 0.760 0.640 0.590 0.306 
CAN (T2) 0.782 0.462 0.448 0.512 
CR (T2) 0.590 0.583 0.448 0.541 
HV (T2) 0.597 0.576 0.626 0.455 
HV x CR (T2) 0.569 0.597 0.541 0.555 

Active Carbon (mg C kg-1 soil) 
Tilled (T1) 360.7 388.6 355.2 316.2 
Fallow (T2) 396.9 389.7 438.2 328.6 
CAN (T2) 402.3 373.5 387.9 416.7 
CR (T2) 479.6 422.1 396.9 387.9 
HV (T2) 411.3 486.8 396.9 326.8 
HV x CR (T2) 477.8 438.2 396.9 368.1 

ACE Soil Protein (mg amino N g-1 soil) 
Tilled (T1) 4.73 4.01 4.85 3.53 
Fallow (T2) 3.68 3.88 5.13 3.18 
CAN (T2) 3.77 4.16 4.23 3.91 
CR (T2) 4.80 5.04 4.99 3.81 
HV (T2) 4.71 5.49 5.24 3.09 
HV x CR (T2) 4.75 4.23 4.66 3.92 
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Table A2. Values of soil health assays and microBIOMETER® at Musgrave by treatment and block. 

Test and Treatment Block 1 Block 2 Block 3 Block 4 

microBIOMETER®  (µg C g-1 soil) 
Tilled (T1) 203 191 188 182 

Fallow (T2) 248 267 159 232 
CAN (T2) 190 252 242 243 

CR (T2) 184 194 186 241 
HV (T2) 138 249 215 227 

HV x CR (T2) 225 224 218 226 
CFE Microbial Biomass (µg C g-1 soil) 

Tilled (T1) 162 191 224 217 
Fallow (T2) 103 114 130 142 

CAN (T2) 162 172 153 140 
CR (T2) 162 137 120 110 
HV (T2) 120 165 192 112 

HV x CR (T2) . 201 180 140 
CFI Microbial Biomass (µg C g-1 soil) 

Tilled (T1) . . . . 
Fallow (T2) 650 . 598 576 

CAN (T2) . . 650 . 
CR (T2) . 775 642 . 
HV (T2) . . . 686 

HV x CR (T2) . . . . 
Soil Respiration (mg CO2 g-1 soil day-1) 

Tilled (T1) 0.16 0.16 0.16 0.16 
Fallow (T2) 0.63 0.94 0.68 0.71 

CAN (T2) 0.65 1.09 0.71 0.65 
CR (T2) 0.65 0.51 0.64 0.72 
HV (T2) 0.92 0.79 0.74 0.77 

HV x CR (T2) 0.80 0.90 0.77 0.72 
Active Carbon (mg C kg-1 soil) 

Tilled (T1) 449.9 526.0 514.9 524.2 
Fallow (T2) 553.3 601.8 533.5 542.5 

CAN (T2) 580.2 630.6 531.7 587.4 
CR (T2) 565.9 578.4 520.9 591.0 
HV (T2) 567.6 547.9 607.2 576.6 

HV x CR (T2) 549.7 628.8 560.5 574.8 
ACE Soil Protein (mg amino N g-1 soil) 

Tilled (T1) 4.38 4.83 4.59 4.89 
Fallow (T2) 4.42 4.91 3.95 4.50 

CAN (T2) 4.82 4.92 4.67 4.29 
CR (T2) 4.22 4.32 3.76 4.24 
HV (T2) 4.61 4.18 4.65 4.57 

HV x CR (T2) 3.94 5.12 4.70 4.76 
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Table A3. T1 ANOVA tables: test of soil health assay by location and treatment, including the interaction 

treatment-location. Statistically significant effects are indicated by a bolded p-value. 

Response Variable Explanatory Variable Sum of Squares DF F-Statistic P-Value 

microBIOMETER® Location 56902.5 1 31.46 0.0014 
      

CFE Microbial Biomass Location 26680.5 1 27.73 0.0019 
      

Soil Respiration Location 0.024 1 1450.72 <0.0001 
      

Active Carbon Location 44149.1 1 40.11 0.0007 
      

ACE Soil Protein Location 0.313 1 1.41 0.2802 
Note. CFI was not included because no T1 samples were tested for CFI. 

 

 

Table A4. T2 ANOVA tables: test of soil health assay by location and treatment, including the interaction 

treatment-location. Statistically significant effects are indicated by a bolded p-value. 

Response Variable Explanatory Variables Sum of Squares DF F-Statistic P-Value 

microBIOMETER Location 180136.7 1 64.61 <0.0001 
 Treatment 4792.5 4 0.43 0.7860 
 Trt*Loc 10523.2 4 0.94 0.4524 
      

CFE Microbial Biomass Location 8658.6 1 4.54 0.0423 
 Treatment 17336.2 4 2.27 0.0874 
 Trt*Loc 11224.2 4 1.47 0.2382 
      

CFI Microbial Biomass* Location 235938.9 1 55.56 <0.0001 
 Treatment 34409.5 4 2.03 0.1294 
      

Soil Respiration Location 0.363 1 23.26 <0.0001 
 Treatment 0.054 4 0.86 0.4982 
 Trt*Loc 0.034 4 0.54 0.7065 
      

Active Carbon Location 273439.3 1 170.49 <0.0001 
 Treatment 3016.5 4 0.47 0.7571 
 Trt*Loc 2189.2 4 0.34 0.8479 
      

ACE Soil Protein Location 0.206 1 0.69 0.4118 
 Treatment 0.643 4 0.54 0.7064 

  Trt*Loc 1.809 4 1.52 0.2208 
*Interaction could not be fit due to a lack of degrees of freedom. 
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Figure A1. Predicted microBIOMETER® by CFE biomass and location with a 95% confidence interval. 

 

 

Figure A2. Predicted microBIOMETER® by CFI biomass and location with a 95% confidence interval. 
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Figure A3.Predicted microBIOMETER® by soil respiration and location with a 95% confidence interval. 

 

 

Figure A4. Predicted microBIOMETER® by active carbon and location with a 95% confidence interval. 
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Figure A5. Predicted microBIOMETER® by soil protein and location with a 95% confidence interval. 
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