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Dynamical systems techniques are used to examines three biological ques-

tions including macrophage activation, coupled oscillators and decision making

in fish schools.

Macrophages are fundamental cells of the innate immune system. Their

activation is essential for such distinct immune functions as inflammation

(pathogen-killing) and tissue repair (wound-healing). An open question has

been the functional stability of an individual macrophage cell: whether it can

change its functional profile between different immune responses such as be-

tween the repair pathway and the inflammatory pathway. We studied this ques-

tion theoretically by constructing a rate equation model for the key substrate,

enzymes and products of the pathways; we then tested the model experimen-

tally. Both our model and experiments show that individual macrophages can

switch from the repair pathway to the inflammation pathway but that the re-

verse switch does not occur.

We analyzed the periodically forced Kuramoto model. This system consists

of an infinite population of phase oscillators with random intrinsic frequencies,

global sinusoidal coupling, and external sinusoidal forcing. It represents an

idealization of many phenomena in physics, chemistry and biology in which

mutual synchronization competes with forced synchronization. In other words,

the oscillators in the population try to synchronize with one another while also



trying to lock onto an external drive. Previous work on the forced Kuramoto

model uncovered two main types of attractors, called forced entrainment and

mutual entrainment, but the details of the bifurcations between them were un-

clear. Here we present a complete bifurcation analysis of the model for a special

case in which the infinite-dimensional dynamics collapse to a two-dimensional

system. Exact results are obtained for the locations of Hopf, saddle-node, and

Takens-Bogdanov bifurcations. The resulting stability diagram bears a striking

resemblance to that for the weakly nonlinear forced van der Pol oscillator.

Many types of fish travel in schools where they cooperate on activities such

as foraging for food and avoiding predators. In the past, it was believed that

such group actions were dictated by a small number of informed leaders but

recent evidence has shown that strictly local interactions can be responsible for

cohesive group dynamics. Using an ODE model, we investigated the ability of

a group of fish to make an accurate decision when portions of the group have

conflicting information. Beyond the disparity of information, it is not known

which individuals have which information. We modeled fish schools where

a portion of the school believed food was in one location and another equal-

sized portion of the school believed the food was in another location. We found

that the ability to make an accurate decision (locate food) required that some

individuals ”forget” or ignore their information. Without the loss of information

by some individuals there was no ability to make a consensus decision.
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CHAPTER 1

INTRODUCTION

Macrophages, oscillators and fish, the main title of this work, references the

three projects I have worked on throughout my graduate career. These are

macrophage cell functional pathway activation, the forced Kuramoto model of

coupled oscillators, and consensus decision making among fish. Each of these

projects has allowed me to work with and learn from different scientists, explore

different biological applications and each originated for a different reason.

Using dynamical systems to examine biological problems, the subtitle of this

work, may seem too general to many readers, and it is general, but my research

has been a series of at first seemingly unrelated questions. The binding thread

is the use of the mathematics of dynamical systems to understand applied ques-

tions in biology. The nature of the applications to biology have ranged from a

data driven problem about immune cell activation to an abstract problem on

oscillators and finally to an examination of information transfer in populations

of fish.

1.1 Immune Cell Activation

The immune system and, in particular, inflammation appears in popular news

articles almost daily. In an effort to perform research on a practically applied

biological question, I turned to immunology to find a problem as it is a field rich

with many open questions and a plethora of data. Principally, I was interested

in a project where I could involve experimental data with a model. With the

guidance of Dr. Matthias Hesse, I began work on the question of activation in
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macrophages, an innate immune cell. Part of this work involved performing

actual biological experiments in Dr. Hesse’s lab.

Chapter 2 is my paper From inflammation to wound healing: using a simple model

to understand the functional versatility of murine macrophages, in preparation for

publication. This paper presents a mathematical and experimental examination

of macrophage activation along inflammation and repair pathways.

1.2 Forced Kuramoto Model

Coupled oscillators are a quintessential example used in the study of dynami-

cal and the Kuramoto oscillator formulation of coupled oscillators is one many

great scientists have examined in a variety of forms. Until recently there re-

mained several interesting problems where little forward progress was being

made.

In 2008, Dr. Edward Ott and Dr. Thomas Antonsen of Maryland Univer-

sity presented a breakthrough in the field of coupled oscillators, by proving the

existence of an inertial manifold of order parameter dynamics under particular

analytical conditions. This work renewed interest in many questions in the field

of coupled oscillators. Dr. Ott and Dr. Antonsen were generous enough to share

their pre-print with Dr. Strogatz and myself. From this paper I became inter-

ested in previous work by Dr. Ott and Dr. Antonsen on the forced Kuramoto

oscillator that had attempted to analytically determine the complete bifurcation

diagram of this model.

Chapter 3 is my paper Stability Diagram of the Forced Kuramoto Model, pub-
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lished in Chaos in December 2008. This paper presents a complete bifurcation

analysis of the forced Kuramoto model for a special case when the dynamics

collapse to two-dimensions.

1.3 Consensus Decision Making in Fish Schools

The coordinated motion of organisms such as flocks of birds and schools of fish

has long fascinated many. After hearing a lecture by Dr. Iain Couzin, describing

the mathematics he used to study information in fish schools, I contemplated

the potential of dynamical systems to such studies. After speaking with Dr.

Couzin I began exploring the use of coupled oscillator models and dynamical

systems analysis in collaboration with the ongoing mathematical and experi-

mental research in the Couzin lab at Princeton University.

Chapter 4 discusses my ongoing research into consensus decision making in

schools of fish. This chapter presents a mathematical exploration of the essential

aspects of consensus decision making in the presence of conflicting information

in fish schools.
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CHAPTER 2

FROM INFLAMMATION TO WOUND HEALING: USING A SIMPLE

MODEL TO UNDERSTAND THE FUNCTIONAL VERSATILITY OF

MURINE MACROPHAGES

2.1 Introduction

The mammalian immune system is responsible for maintaining homeostatic

conditions within the body and survival of the host. A tightly controlled syner-

gism between the two branches - innate and adaptive - of the mammalian im-

mune system protects the host, while failure to establish or maintain homeosta-

sis causes disease. Every successful immune response includes the detection of

potential threats to the host, such as invading pathogenic organisms, induction

of a sufficient inflammatory response to control or eliminate the threat, subse-

quent down regulation of the inflammatory response and finally repair of tissue

damaged by the pathogen and the immune response.

Recent data demonstrate that populations of murine macrophages follow

different activation pathways which elicit different physiological functions [1].

However, the central questions of how individual macrophages initiate along

these different pathways remains unanswered. Can individual cells switch from

a pathway that involves inflammation – killing invading pathogens and protect-

ing the host – to a repair pathway – aiding wound healing [1], [2], [3]? Addi-

tionally, are there distinct macrophages within the population that are activated

uniquely along one pathway or the other? Or does a change in functional direc-

tion require the exchange of local macrophage populations? In other words, the

functional stability of individual macrophages is still largely unknown.

4



In this paper, we investigate through a simple mathematical model and bio-

logical experimentation the flexibility of individual macrophages activated un-

der inflammatory and repair conditions.

2.1.1 Inflammation

Activation of the immune system initiates an inflammatory response, character-

ized by redness, swelling, heat and pain [4], [5]. Any inflammatory response

has to be flexible. While it is necessary to eradicate or control the invading

pathogen, excessive damage to host tissue must be avoided. The immune re-

sponse has to adapt to changing conditions in the inflamed tissue; failure to do

so will cause severe disease [6], [7]. The regulatory mechanisms, which control

and adjust immune responses, are still not well understood and are the object

of intensive research efforts.

While most activated adaptive immune cells such as T-cells develop a rel-

ative stable functional profile, which leads to the generation of immunological

memory [8], the stability or flexibility of activated macrophages has not been

sufficiently investigated. The fact that macrophages do not generate an im-

munological memory response in contrast to T-cells suggests that these cells

are rather flexible in their functional determination upon activation.

Macrophages are intimately involved in inflammation. They are essential

for detecting invading pathogens and tissue destruction. They attract and acti-

vate other immune cells, both innate and adaptive, by releasing small circulat-

ing proteins, cytokines and chemokines, and by presenting pathogen-derived

antigens. They also actively destroy pathogens by phagocytosis. Even without
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pathogens, macrophages clear tissue debris and dying immune cells. In addi-

tion to their role in the initial inflammatory response, they actively participate

in the clearance of inflammation through repair. They heal wounds with the aid

of collagen production [9].

2.1.2 Macrophage Biological Background

Two main types of macrophages, tissue-residing and circulating, exist. Before

macrophages can perform any of their functions, they must be activated. Acti-

vation is induced by a variety of receptor-derived signals. Some of these recep-

tors recognize commonly found signature molecules derived from pathogens

(PAMP) or from tissue damage (DAMP), while others bind to specific cytokines,

small circulating signaling proteins. Although there is a variety of types of

macrophage activation, the two functional patterns of macrophages which have

received the most extensive study and which we will consider in this paper

are microbial-pathogen induced inflammation, known as classical activation

(caMa), and helminth-induced inflammation or tissue repair, known as alter-

native activation (aaMa). These two functional patterns have traditionally been

thought to be mutually exclusive: a macrophage is either activated along the

classical pathway or the alternative pathway, but not both [10], similar to the

dichotomy in the profiles of T-helper-1 and T-helper-2 effector T cells.

The proper course of macrophage activation is essential for host survival.

Dramatic changes in the outcome of an immune response due to macrophage

activation were demonstrated in murine models of Schistosomiasis, a chronic

inflammatory disease of humans in the tropics and subtropics, caused be persis-

6



tent infections with trematode parasites. The invading parasite causes a mod-

erate cytotoxic (T-helper-1 cytokine) dominated immune response. When the

mature female worm lays eggs there is a dramatic switch to humoral (T-helper-

2 cytokine) inflammation in the infected host. Disease progression into the

chronic stage is characterized by reduction of the inflammatory response [11].

These changes are reflected in the activation pattern of macrophages. While

initially most macrophages are activated along the inflammatory pathway, the

ensuing change in cytokine response causes a dominant repair phenotype in the

macrophage population at the site of original inflammation [12], [13]. Failure to

change the functional phenotype of macrophages in the tissue from inflamma-

tory to repair leads to massive tissue damage and subsequent death of the host

[14]. A change in macrophage activation has also been reported during the in-

flammatory response against other parasites and in wound healing models [15].

The dichotomy of L-arginine metabolism is one of the hallmarks of classi-

cal versus alternative macrophage activation [16], [10]. Both pathways involve

competition for the same substrate, L-arginine (Figure 2.1). Inducible Nitric Ox-

ide Synthase (NOS-2) is the enzyme of the classical pathway and Arginase-1 is

the enzyme of the alternative pathway. The propensity towards either classi-

cal activation or alternative activation depends not only on the amount of each

enzyme present in the cell but also on each enzyme’s ability to bind sufficient

substrate and the presence of inhibitors.

Classical Activation

Classical activation was discovered first, and for many years thereafter, was

thought to be the only functional phenotype of macrophages during inflamma-
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Figure 2.1: Diagram of Biological Interactions of Macrophage Activation

The top box represents the Inflammatory or Classical Activation pathway. The

bottom box represents the Repair or Alternative Activation pathway. The sub-

strate, L-arginine, is used by both pathways. NOS-2 (EC) is the enzyme of the

inflammatory pathway. Arginase-1 (EA) is the enzyme of the repair pathway.

The product of the inflammatory pathway is Nitric Oxide (PC) while the prod-

uct of the repair pathway is Urea (PA).
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tion [17]. Classical activation is induced by exposure to the cytokines Interferon-

γ (IFN-γ) and Tumor Necrosis Factor-α (TNF-α) [18]. Recognition of PAMPs,

such as Lipopolysaccharide (LPS) or unmethylated cytosine and guanine (CpG)

rich oligonucleotides, also induces classical activation of macrophages [19], [20],

[21]. Ligation of IFN-γ activates the Signal Transducers and Activation of Tran-

scription (STAT) -1 signal transduction pathway [20] and thereby induces the

expression of NOS-2. Substrate binding of L-arginine stabilizes the NOS-2

complex [22] and subsequently leads to the production of an intermediate, N-

omegahydroxy-L-arginine (L-NOHA). This intermediate is ultimately metabo-

lized into Nitric Oxide (NO) and L-citrulline [18]. NO is a free radical that has

high toxicity to pathogens but also to host cells. Although most NO is utilized

for the intracellular destruction of phagocytized microbes, caMa can release NO

into the extracellular environment where it can harm not only pathogens but

also neighboring cells. When it damages self cells this is known as immune-

mediated pathology [23].

Interaction between classical and alternative activation occurs with the inter-

mediate, L-NOHA, formed during the production of NO [24]. L-NOHA pref-

erentially binds the enzyme of the alternative pathway, Arginase-1, and pre-

vents the binding of Arginase-1 to the substrate, L-arginine [25], [15], [26]. This

interaction establishes a relative dominance of the classical pathway over the

alternative pathway because the intermediate of the classical pathway actively

inhibits the enzyme of the alternative pathway (Figure 2.1). We expect that once

the classical pathway has been initiated it is difficult to alter the activation state

of a macrophage.
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Alternative Activation

Although alternative activation of macrophages was discovered 15 years ago

[28], its importance was not immediately recognized. Today there is no doubt

that aaMa have a central role in many aspects of inflammatory responses, such

as chronic inflammation, atopies, fibrosis, maternal tolerance and immunity

against infections, among others [29]. Alternative activation is induced by ex-

posure to cytokines Interleukin-4 (IL-4), Interleukin-13 (IL-13) and a small mes-

senger molecule, cyclic adenosine monophosphate (cAMP) [16]. The cytokines

Interleukin-10 (IL-10) and Interleukin-21 (IL-21) enhance alternative activation

induced by IL-4 or IL-13 [30]. IL-4 and IL-13 induce the STAT-6 signal trans-

duction pathway leading to the upregulation of Arginase-1 expression. Once

Arginase-1 is upregulated, it is a functionally stable molecule, regardless of

the presence or absence of its substrate, L-arginine. Arginase-1 hydrolyzes L-

arginine into L-ornithine and Urea. In hepatocytes Arginase-1 is an essential

enzyme of the urea cycle, which detoxifies ammonia in mammals [26].

As mentioned previously, the presence of L-NOHA binds Arginase-1 and

blocks the substrate accessibility of Arginase-1, effectively halting alternative ac-

tivation. However, in the absence of L-NOHA, Arginase-1 can access L-arginine,

even at very low concentrations, because of its functional stability. This is in con-

trast to NOS-2 which requires the presence of L-arginine for stability; there is a

minimum level of L-arginine needed for NOS-2 to be effective [22]. We spec-

ulate that a strong induction of NOS-2 expression will be sufficient to induce

some minimum production of L-NOHA, which will increasingly block the abil-

ity of Arginase-1 to bind and metabolize L-arginine. This will enable individual

macrophages to change from alternative to classical activation.
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As macrophages play an essential role in inflammation and tissue repair, un-

derstanding if individual macrophages can switch between the two pathways

will significantly improve our understanding of immune responses and could

help to design new therapeutic strategies for a number of immune-mediated

diseases.

2.2 Model Formulation

We designed a model of the intracellular interactions of the substrate

and enzymes involved with the L-arginine dichotomy within an individual

macrophage. In the formulation of the model, an individual macrophage can

enter both alternative and classical pathways, dependent on the presence or ab-

sence of particular cytokines.

2.2.1 Simplifying Assumptions

This model is not meant to be a completely accurate description of macrophage

activation, but rather an incorporation of the key components of macrophage

activation. There are five necessary simplifying assumptions we make during

the formulation of the model, described below.

First, we assume that there is perfect signal transduction within the

macrophage. In other words, given a particular cytokine signal, we assume

that the corresponding enzymes are upregulated to the full extent. Thus, the

concentration of IFN-γ directly determines the concentration of NOS-2 in the

model and the concentration of IL-4 directly determines the concentration of
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Arginase-1 in the model.

Second, we assume that Arginase-1 and NOS-2 act as standard enzymes in

enzyme kinetics when they interact with L-arginine. That is, they reversibly

form a substrate-enzyme complex before that complex irreversibly forms a

product and releases the enzyme. This assumption allows us to write an ODE

model of the system using Law of Mass Action kinetics.

Third, we assume none of the substances degrade appreciably on the time

scale we are modeling. Thus, our equations do not include terms for degrada-

tion and all of the terms in our equations come directly from the Law of Mass

Action description of our biological system.

Fourth, our model is completely deterministic. All of the substances consid-

ered appear in picomolar quantities or larger within an individual cell, so there

are at least 1010 molecules per cell. This is a sufficient amount to assure that in

a well-mixed environment, which we assume here, chance does not affect the

level of interactions.

Fifth, we assume a large, fixed amount of substrate, L-arginine, is available

within the cell initially. This amount of substrate is used during the reactions

and is not replenished. Thus, we are not involving the cationic transporter sys-

tem, which is responsible for transporting the store of L-arginine from the ex-

tracellular matrix into the cell.
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2.2.2 Mathematical Formulation

The biology of the system can be written as four chemical kinetic equations as

in Equation (2.1). The subscripts C and A refer to molecules associated with

the classical and alternative pathways, respectively. As the first three equations

follow standard enzyme kinetics, substrate-enzyme complexes (denoted with a

colon between the substrate and the enzyme) are formed reversibly and are irre-

versibly turned into product, releasing the enzyme. The first equation, denoted

C1, describes the formation of the classical intermediate, IC, from the interaction

of the substrate, S , with the classical enzyme, EC. The second equation, denoted

C2, describes the formation of the classical product, PC, from the interaction of

the classical intermediate, IC, with the classical enzyme, EC. C1 and C2 delin-

eate the full classical pathway. The third equation, denoted A1, describes the

formation of the alternative product, PA, from the interaction of the substrate,

S , with the alternative enzyme, EA. The final equation, denoted A2, models the

reversible inhibition of the alternative enzyme, EA through interaction with the

classical intermediate, IC. The rate constants are denoted by the equation num-

ber and the direction: forward (F), reverse (R), or irreversible (IR). The biological

name of the compounds described here are found in Table 2.1.

C1 : S + EC

kC1−F

�
kC1−R

S : EC
kC1−IR
−→ EC + IC

C2 : IC + EC

kC2−F

�
kC2−R

IC : EC
kC2−IR
−→ EC + PC

A1 : S + EA

kA1−F

�
kA1−R

S : EA
kA1−IR
−→ EA + PA

A2 : IC + EA

kA2−F

�
kA2−R

IC : EA (2.1)
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Table 2.1: Molecular Components of Macrophage Activation

Type Variable Substance Pathway

substrate S L-arginine Both

enzyme EC NOS-2 Classical

intermediate S : EC L-arginine:NOS-2 Complex Classical

intermediate IC L-NOHA Classical

intermediate IC : EC L-NOHA:NOS-2 Complex Classical

product PC NO Classical

enzyme EA Arginase-1 Alternative

intermediate S : EA L-arginine:NOS-2 Complex Alternative

product PA L-ornithine Alternative

inhibited enzyme IC : EA Inhibited Arginase-1 Both

cytokine N/A IFN-γ Classical

danger signal N/A CpG Classical

cytokine N/A IL-4 Alternative

adjuvant N/A cAMP Alternative

Classical activation indicates the presence of the enzyme, EC, the complexes,

S : EC and IC : EC, the intermediate IC, and the product PC. Alternative activa-

tion indicates the presence of the enzymes, EA and IC : EA, the complex S : EA,

and the product PA. These chemical equations were then written as a system of

ten ODEs using Law of Mass Action kinetics.
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Substrate:

d
dt

S = − kC1−F S EC + kC1−R S : EC (2.2)

− kA1−F S EA + kA1−R S : EA

Classical:

d
dt

EC = − kC1−F S EC + (kC2−R + kC2−IR) IC : EC (2.3)

+ (kC1−R + kC1−IR) S : EC − kC2−F ECIC

d
dt

S : EC = kC1−F S EC − (kC1−R + kC1−IR) S : EC (2.4)

d
dt

IC = kC1−IR S : EC − kC2−F EC IC + kC2−R IC : EC (2.5)

− kA2−F IC EA + kA2−R IC : EA

d
dt

IC : EC = kC2−F ECIC − (kC2−R + kC2−IR) IC : EC (2.6)

d
dt

PC = kC2IR IC : EC (2.7)

Alternative:

d
dt

EA = − kA1−F S EA + (kA1−R + kA1−IR) S : EA (2.8)

− kA2−F IC EA + kA2−R IC : EA

d
dt

S : EA = kA1−F S EA − (kA1−R + kA1−IR) S : EA (2.9)

d
dt

PA = kA1−IR S : EA (2.10)

d
dt

IC : EA = kA2−F ICEA − kA2−R IC : EA (2.11)

2.2.3 Reducing the System

After examining the equations, it was clear that the full ten equations were not

needed to describe our system. Equations (2.3), (2.4), and (2.6) sum to zero, as
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well as Equations (2.8), (2.9), and (2.11) also sum to zero:

d
dt

EC +
d
dt

S : EC +
d
dt

IC : EC = 0 (2.12)

d
dt

EA +
d
dt

S : EA +
d
dt

IC : EA = 0 (2.13)

Considering only biologically relevant parameter sets, we know that all in-

termediates and products have initial values of zero and both enzymes have

initial values related to the level of cytokines introduced to the system. Thus,

EC(0) = constant, S : EC(0) = 0, IC : EC(0) = 0, EA(0) = constant, S : EA(0) = 0,

and IC : EA(0) = 0. Thus, we integrate the above Equations (2.12) and (2.13)

using our known initial conditions to get the following equalities:

EC + S : EC + IC : EC = EC(0) (2.14)

EA + S : EA + IC : EA = EA(0) (2.15)

By substituting for IC : EC = EC(0) − EC − S : EC and IC : EA = EA(0) − EA − S :

EA into our original system of equations the number of equations is reduced by

two. For the remainder of our analysis, we will work with the reduced eight-

equation system.

A more careful examination of our equations allows us to temporarily ignore

the rate equations (2.7) and (2.10), for PC and PA respectively, because the rest of

the system of does not depend on PC or PA. Once we determine the time course

of IC : EC, S : EA, and IC : EA we can then determine the behavior of PC and PA,

respectively.
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2.2.4 Rate Constants

There are 11 rate constants in the model. Unfortunately, none of these constants

are precisely measurable through experimentation. There exists, however, infor-

mation from the literature (calculated through experimentation by others) about

ratios of various rate constants [31], [32]. More information is known about the

ratio of Michaelis-Menten constants, which are constants that denote particular

relationships between rate constants based on an assumption of quasi-steady

state of the intermediate. Michaelis-Menten constants have the standard form

kR+kIR
kF

. Through the literature we know that the Michaelis-Menten constant of

classical activation for the formation of NO from L-arginine via NOS-2 is much

smaller than the Michaelis-Menten constant of alternative activation for the for-

mation of L-ornithine from L-arginine via Arginase-1 [32], [33]. Since the forma-

tion of NO (PC) is a two step process and has a smaller Michaelis-Menten con-

stant than the formation of L-ornithine (PA), then the Michaelis-Menten constant

of both steps to form NO (PC), multiplied together, is less than the Michaelis-

Menten constant of the formation of Urea (PA):

kA1−R + kA1−IR

kA1−F
>>

(kC1−R + kC1−IR

kC1−F

)(kC2−R + kC2−IR

kC2−F

)

Information on the relative size of rate constants can be inferred by the sta-

bility of compounds. For example, it is inferred that kA1−F > kC1−F because

Arginase-1 (EA)does not require auxiliary molecules for stable formation while

NOS-2 (EC) does require the presence of L-arginine to become fully functional

and avoid rapid degradation [34]. Furthermore, we know that L-NOHA binds

preferentially to Arginase-1 over NOS-2 so kA2−F > kC2−F [27].
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Using these constraints and approximate values from the literature, initial

guesses of the parameters were determined. The parameters were then opti-

mized using S loppyCell, a program that selects parameters by comparison to

experimental time series data [35]. The idea behind the program is that the

eigendirections where a wide range of parameter values are consistent with

data are called sloppy while the eigendirections which are considerably more

restricted are called stiff. The goal is set the stiff parameters in the center of their

appropriate regimes by altering the sloppy parameters still within their valid

regimes. This is possible because the sloppy parameters can be moved over a

large range. The time series data from our most basic experiments was used as

the experimental time series data. The precise values of rate constants used are

in Table 2.2.

2.3 Simulations

Using the optimized rate constants, we tested our mathematical model with

simulations. We varied the initial level of enzyme to determine how the level of

product depends on the level of enzyme in the system.

In our basic simulations, we introduced varying initial levels of one enzyme,

either NOS-2 (EC)or Arginase-1 (EA), and allowed the simulation to run for the

equivalent of fifty hours. These results (data not shown) were analogous to

our single stimulation experimental results. An increased level of NOS-2 (EC)

produced NO (PC) but no Urea (PA), while an increased level of Arginase-1 (EA)

produced Urea (PA) but no NO (PC).
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Table 2.2: Rate Constants of Macrophage Activation

Equation Rate Symbol Value

C1 synthesis of S : EC kC1−F 106 sec−1mol−1

C1 decomposition of S : EC kC1−R 10 sec−1

C1 synthesis of IC kC1−IR 104 sec−1

C2 synthesis of IC : EC kC2−F 108 sec−1mol−1

C2 decomposition of IC : EC kC2−R 10 sec−1

C2 synthesis of PC kC2−IR 103 sec−1

A1 synthesis of S : EA kA1−F 108 sec−1mol−1

A1 decomposition of S : EA kA1−R 104 sec−1

A1 synthesis of PA kA1−IR 104 sec−1

A2 synthesis of IC : EA kA2−F 109 sec−1mol−1

A2 decomposition of IC : EA kA2−R 102 sec−1

In subsequent simulations, we introduced both enzymes simultaneously.

When both enzymes were introduced together, only a substantial level of NO

(PC) and not of Urea (PA), was produced (data not shown) as the classical acti-

vation overpowered alternative activation. This is analogous to data from the

literature [37, 38].

In our final simulations, we introduced both enzymes at separate time points

during the fifty hour time course to examine how the products change in re-

sponse to changes in the environment. In the first simulation, we initially intro-

duced only Arginase-1 (EA) indicative of alternative activation. After 25 hours,

we reset the level of Arginase-1 (EA) and all associated intermediates to zero

and elevated the level of NOS-2 (EC), indicative of classical activation. We let
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the simulation continue to run for another 25 hours (total of 50 hours). During

the first 25 hours, the level of Urea (PA) become elevated. However, the amount

of NO (PC) produced in the final 25 hours after the introduction of NOS-2 (EC)

eclipsed the level of Urea (PA) (Figure 2.2(a)).

In the second simulation, we first introduced only NOS-2 (EC). After 25

hours we reset the level of NOS-2 (EC) and all associated intermediates to zero

and elevated the level of Arginase-1 (EA). We then let the simulation continue to

run for another 25 hours (total of 50 hours). During the first 25 hours, the level

of NO (PC) was significantly elevated. Although the level of Urea (PA) became

elevated during the final 25 hours, it was negligible compared to the level of NO

(PC) already created (Figure 2.2(b)).

Our simulations indicated that it was possible to switch from alternative acti-

vation to classical activation (Figure 2.2(a)). However, the opposite switch, from

classical activation to alternative activation, was not possible (Figure 2.2(b)).

2.4 Analysis of the Mathematical Model

Although we saw consistent results with our simulations, we wanted to exam-

ine the model analytically to fully understand the dynamics. We examined the

asymptotic behavior of the system under a biologically relevant choices of pa-

rameters.
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Figure 2.2: Mathematical Simulations of 10 ODE System

Simulation results of our 10 ODE system run in Matlab using ode45 with a vari-

able step-size.

(a) At the onset of the simulation the alternative enzyme (EA) was upregulated,

analogous to the addition of IL-4 and cAMP in an experimental system. After 25

hours, the alternative enzyme is removed along with the associated alternative

intermediates. Then, the classical enzyme (EC), analogous to the addition of

IFN-γ and CpG experimentally, was upregulated. The level of Nitric Oxide (PC)

is shown in a dashed line and the level of Urea (PA) is shown in a solid line.

(b) At the onset of the simulation the classical enzyme (EC) was upregulated,

analogous to the addition of IFN-γ and CpG in an experimental system. After

25 hours, the classical enzyme is removed along with the associated classical

intermediates. Then, the alternative enzyme (EA), analogous to the addition of

IL-4 and cAMP, was upregulated. The level of Nitric Oxide (PC) is shown in a

dashed line and the level of Urea (PA) is shown in a solid line.
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2.4.1 Fixed Points of the 8 ODE System

We began by looking for long term solution or fixed point of our equations. To

solve for fixed points, we look for solutions when all eight ODEs are equal to

zero. To determine the stability of the fixed points we examine the eigenvalues

of the Jacobian evaluated at our fixed point. Solving for the fixed points of the

system, we find there is only one:

S = 0 PC = unconstrained
EC = EC(0) EA = EA(0)
S : EC = 0 PA = unconstrained
IC = 0 IC : EA = 0

The equilibrium value of the products PC and PA depends on the time course

of intermediates, IC and S : EA, IC : EA, respectively.

This fixed point is stable because the eigenvalues all have negative real parts

except two which are zero. These two zero eigenvalues corresponding to the

PC and PA directions we can ignore, because they do not affect the system. The

remaining six eigenvalues are roots of cubic polynomials with positive coeffi-

cients, which satisfy the Routh-Hurwitz criterion. This indicates all roots have

negative real parts. Thus the eigenvalues of the Jacobian lie in the left half

plane indicating stability of our fixed point. The coefficients examined under

the Routh-Hurwitz criterion stay negative for all positive values of the rate con-

stants, which constitutes the biologically relevant regime of parameters.
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2.4.2 Analysis within Particular Parameter Regimes

No further analysis can be performed on the full system because of the quadratic

non-linearities. Thus, we examine the particular case of solely alternative acti-

vation.

Alternative Activation

If we assume that we only stimulate with the cytokine IL-4 and the associated

messenger cAMP, then only Arginase-1 (EA) is upregulated. Thus, we assume

there is no initial NOS-2 (EC(0) = 0) and there never is NOS-2 (EC) in the system.

Since there is no NOS-2 (EC), or any other classically associated intermediates

or products initially and no EC appears, then EC = 0 remains for all time. For

the same reasons, all of the classically associated intermediates and products

are zero for all time: S : EC = 0, IC = 0, IC : EC = 0, PC = 0. Since the classical

intermediate (IC) is zero for all time and as well as inhibited Arginase (IC : EA) is

zero, the Equation (2.11) for d
dt IC : EA, also equals zero for all time. The amount

of inhibited Arginase-1 (IC : EA) always remains zero. Arginase-1 (IC : EA) is

never inhibited, because the intermediate of the classical pathway (IC : EC) is

never present.

With these restrictions, the system reduces to:

d
dt

S = −kA1−FS EA + kA1−R(EA(0) − EA) (2.16)

d
dt

EA = −kA1−FS EA + (kA1−R + kA1−IR)(EA(0) − EA) (2.17)

d
dt

PA = kA1−IR(EA(0) − EA) (2.18)

We notice that S and EA do not depend on PA, so we can study the two-
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dimensional S − EA system.

We begin by non-dimensionalizing the alternative activation sub-system by

making the following substitutions:

τ = tkA1−IR β = kA1−R
kA1−IR

∼ 1

Ŝ = S
S (0) ε1 =

kA1−FS (0)
kA1−IR

∼ 1
10000

ÊA = EA
EA(0) ε2 =

EA(0)
S (0) ∼ 1

100

Note that β is O(1) but ε1 and ε2 are very small, in fact, ε1 � ε2 � 1. Our two-

dimensional system becomes:

d
dτ

Ŝ = ε2(−ε1Ŝ ÊA + β(1 − ÊA)) (2.19)

d
dτ

ÊA = −ε1Ŝ ÊA + (1 + β)(1 − ÊA) (2.20)

Since ε1 � 1, we use matched asymptotics to follow the behavior of the

system. Matched asymptotics is a useful method when there are multiple time

scales, as we have here. There exists a small parameter, ε1, which cannot be

assumed to be zero. We break the problem into two regions, one where we can

ignore ε1, our outer layer, and one where we must consider it, our inner layer.

We then strive to make the solutions ”match” at the boundary between the two

layers.

We begin by finding the long time or outer solution when ε1 << τ. We let

ε1 = 0 in this region. Then, we solve Equation (2.20) explicitly. The long time

solution for ÊA(τ) is:

ÊA(τ) = 1 − e−(1+β)τ

Plugging this into Equation (2.19), we find our complete long-time or outer so-
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lution:

Ŝ (τ) = e−(1+β)τ

ÊA(τ) = 1 − e−(1+β)τ

Next we want to consider the region were ε1 is important. To find this short-

time or inner solution, we assume the slowly evolving equation (2.19) is fixed:

d
dτ Ŝ = 0. Thus with Ŝ (τ) = S (0) we can solve for ÊA(τ):

Ŝ (τ) = S (0)

ÊA(τ) =
1 + β − (ε1a0 + 2(1 + β))e−(ε1a0+1+β)τ

−(ε1a0 + 1 + β)

We combine the inner and outer solutions to find the complete or composite

solution.

Ŝ (0) = 1

ÊA(0) = 1

Ŝ (τ) = e
−ε1τ
1+β

ÊA(τ) =
1 + β + ε1 e

−(1+β+ε1)τ
ε2

1 + β + ε1
−

ε1

1 + β + ε1
e
−ε1τ
1+β +

ε1

1 + β + ε1

This gives us a closed form solution to a particular subset of our full system.

Under conditions corresponding to alternative activation we can fully follow

all the dynamics of the system. Unfortunately, we are not able to repeat this for

classical activation conditions or the full model.
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2.5 Experimental Results

We tested our mathematical model in biological experiments at the population

and single cell level using the RAW 264.7 murine macrophage-like cell line. We

exposed these cells to various stimuli. See Appendix for protocol.

In our experiments, we considered the presence of the classical product, NO,

in the supernatant to be representative of the activation of the classical pathway.

To stimulate the classical pathway, we exposed the macrophages to the cytokine

IFN-γ and enhanced the stimulation with an immunostimulatory CpG oligonu-

cleotide [36]. Alternative activation was determined by Urea production after

stimulation with IL-4 and cAMP.

This initial approach did not allow detection of the activation profile of sin-

gle cells. Therefore we employed transfected RAW 264.7 cells with the gene

for green fluorescing protein (GFP) under control of the Arginase-1 promotor.

Whenever a signaling event activated the Arginase-1 promotor the cells upreg-

ulated the expression of Arginase-1 and GFP. Hence, aaMa became GFP+. The

expression of GFP in individual cells could be detected by flow cytometry after

excitation with laser light at 488 nm. By flow cytometry sorting we were able to

isolate viable GFP+ and GFP- cells. Our approach allowed for the first time to

investigate the activation profile of macrophages at the single cell level.

2.5.1 Functional stability at the cell population level

First, we investigated the functional stability of RAW 264.7 cells at the popula-

tion level. Previous data indicated that caMa populations cannot be switched
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into aaMa but the reverse switch might be possible [37]. Our mathematical

model made similar predications.

Initially we only stimulated one pathway at a time. IFN-γ and CpG were

used together as the classical stimulus. IL-4 and cAMP were used together as the

alternative stimulus. As expected, IFN-γ and CpG induced only production of

NO (Figure 2.3(a)), but no Urea (Figure 2.3 (b)). In contrast, stimulation with the

IL-4 and cAMP generated Urea production (Figure 2.3 (b)), but no NO (Figure

2.3 (a)).

We then considered the stimulation of both pathways at the same time, in-

cluding both cytokines, IFN-γ and IL-4, as well as CpG, and cAMP to enhance

the signals. As predicted, the classical stimulus dominated, and only NO (Fig-

ure 2.4 (a)), not Urea (Figure 2.4 (b)) was detected.

Next, we investigated whether stimulation with one cytokine profile and the

subsequent restimulation with the opposite cytokine profile could change the

activation status of RAW 264.7 cells. We exposed cells to the classical stimulus,

IFN-γ and CpG, and after twenty-four hours washed them and exposed them to

the alternative stimulus, IL-4 and cAMP. These cells produced the classical prod-

uct, NO, within the first twenty-four hours but only produced low amounts of

NO (Figure 2.5 (a)) and no Urea (Figure 2.5 (b)) upon restimulation along alter-

native activation. Additionally we performed the opposite switch and exposed

cells to the alternative stimulus, IL-4 and cAMP, and after twenty-four hours

washed them and exposed them to the classical stimulus, IFN-γ and CpG. After

the initial twenty-four hours, neither NO nor Urea was detected (Figure 2.5 (a)

and (b)), similar to the small amount of Urea seen after 24 hours with the sin-

gle stimulus experiments (Figure 2.3(b)). However, after restimulation with the
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Figure 2.3: Population Level Experimental Data, Single Stimulation

(a) Nitric Oxide concentration and (b) Urea concentration after exposure of

RAW 264.7 murine macrophages at time 0 to only medium (far left) indicating

no stimulus, IL-4 + cAMP (middle) indicating alternative stimulus and IFN-

gamma + CpG (far right) indicating classical stimulus. Concentrations were

determined from ELISA of the supernatant. Gray bars represent measurements

at 24 hours. Black bars represent measurements at 48 hours. The values of p

between bars represents the level of confidence at which the two means are dif-

ferent, using a t-test. The error bars show one standard deviation above the

mean.
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Figure 2.4: Population Level Experimental Data, Double Stimulation

(a) Nitric Oxide concentration and (b) Urea concentration after exposure of

RAW 264.7 murine macrophages at time 0 to only medium (left) indicating

no stimulus, IL-4 + cAMP + IFN-gamma + CpG (right) indicating alternative

stimulus and classical stimulus together. Concentrations were determined from

ELISA of the supernatant. Gray bars represent measurements at 24 hours. Black

bars represent measurements at 48 hours. The values of p between bars repre-

sents the level of confidence at which the two means are different, using a t-test.

The error bars show one standard deviation above the mean.
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classical stimulus, the cells produced NO (Figure 2.5(a)). These results indicate

the ability of the population to switch from alternative activation to classical

activation but not the reverse.

2.5.2 Functional stability at the single cell level

Although our previous results appear to support our mathematical model, the

experimental approach could not exclude that the change in functionality re-

sulted from the stimulation of different subpopulations rather than the switch

of individual cells, as predicted in our model. We employed Arginase-1-GFP

reporter macrophages to investigate the functional flexibility of single cells.

As Arginase-1 expression is associated with the alternative pathway of

macrophage activation, we expected a significant upregulation of GFP with the

alternative stimulus, IL-4 and cAMP. As expected, there was a clear population-

wide increase of GFP-mediated fluorescence (Figure 2.6), concomitant with in-

creased Urea production (data not shown). Next, we sorted the cells 24 hours

after the stimulation with IL-4 and cAMP into GFP-low and GFP-high express-

ing cells (Figure 2.6(b)). Both populations were restimulated with IFN-g and

CpG for 24 hours. Subsequently, both populations released NO into the super-

natant, with a higher production by the GFP+ cells (Figure 2.7). The NO pro-

duction by GFP+ cells demonstrates that individual macrophages can change

from alternative to classical activation.
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Figure 2.5: Population Level Experimental Data, Sequential Stimulation

(a) Nitric Oxide concentration and (b) Urea concentration after exposure of

RAW 264.7 murine macrophages to medium (far left) indicating no stimulus,

IL-4 + CAMP (middle) indicating alternative stimulus at 0 hours followed by

IFN-γ + CpG indicating classical stimulus at 24 hours, and IFN-γ + CpG (far

right) indicating classical stimulus at 0 hours followed by IL-4 + cAMP indi-

cating alternative stimulus at 24 hours. Cells were washed after 24 hours and

before restimulation. Concentrations were determined from ELISA of the su-

pernatant. Gray bars represent measurements at 24 hours. Black bars represent

measurements at 48 hours. The values of p between bars represents the level of

confidence at which the two means are different, using a t-test. The error bars

show one standard deviation above the mean.
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Figure 2.6: Upregulation of Arginase-1 GFP After Alternative Stimulation

RAW 264.7 macrophages were stimulated alternatively with IL-4 + cAMP. After

24 hours their fluorescence was measured on a FACS machine.

(a) The x-axis represents GFP fluorescence from activation of the Arginase-1

promotor and the y-axis represents the percentage of maximum fluorescence.

(b) The x-axis represents GFP fluorescence from activation of the Arginase-1

promotor and the y-axis measures PE CD40, a marker of inflammation. The

boxes how how we gated for GFP+ and GFP- populations.

36



Figure 2.7: Single Cell Level Experimental Data, GFP + vs. GFP -

RAW 264.7 macrophages were stimulated alternatively with IL-4 + cAMP. After

24 hours they were sorted using a FACS machine based upon their expression

of GFP, a marker for Arginase-1 promotor, as GFP + (left) or GFP - (right). The

sorted cells were washed and restimulated with medium or IFN-γ + CpG. The

level of Nitric Oxide in the supernatant was measured after an additional 24

hours. White bars represent restimulation with medium. Black bars represent

restimulation with IFN-γ + CPG. The values of p between bars represents the

level of confidence at which the two means are different, using a t-test. The

error bars show one standard deviation above the mean.
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2.6 Discussion

Macrophages are highly versatile cells of the innate immune system [15, 39]. Yet

we still do not know how they adapt to different functional demands. Whether

individual macrophages can change their functional profile or whether the ex-

change of cells in tissue leads to functional changes at the population level

has not been understood. In the past, populations of cells were shown to

change their functional phenotypes, both in vivo and in vitro [39]. It was never

unequivocally determined whether individual cells were able to perform this

switch.

We developed a 10 ODE mathematical model to make predictions regard-

ing the functional flexibility of individual macrophages based on the L-arginine

metabolism in classically versus alternatively activated macrophages.

Due to the non-linearities of the model, we were only able to find a closed-

form solution for a subset of conditions involving only alternative activation.

However, analysis of our mathematical model revealed one stable fixed point

for all biologically relevant parameter values. The exact value of this fixed point

is dependent upon the particular values of the initial conditions.

As we were interested in the short term dynamics of the model, on the

same time scale as experiments, we examined simulations of our mathematical

model. Our simulations predicted the ability of an individual macrophage to

switch from alternative activation to classical activation when the environmen-

tal conditions switched from alternative to classical. The reverse switch from

classical activation to alternative activation was not observed.
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Then we tested our mathematical predictions using RAW 264.7 cells. These

cells were stimulated in vitro to induce classical or alternative activation of

macrophages. We used the metabolic products of NO from NOS-2 and Urea

from Arginase as indication of each activation pathway. We found that classi-

cal activation was dominant over alternative activation at the population level.

Simultaneous or consecutive stimulation caused NO production but did not re-

sult in significant Urea production. These data are in accordance with previous

results [37, 38] and they are consistent with our mathematical predictions.

Next, we investigated the functional flexibility of individual aaMA using our

GFP-reporter cell line. Our results demonstrate the ability of individual aaMa

to develop a classical phenotype and to produce NO. It argues against a model

where the phenotypic switch at the population level is mediated by a response

of different subpopulations to the various stimuli. In support of this finding,

a recent study in an atherosclerosis model concluded that a local switch from

alternative to classical macrophage activation in the inflammatory lesions is due

to the conversion of cells already present and does not require the infiltration of

new macrophages [40]. However, this report did not exclude the possibility of

switching local macrophages with different phenotypes.

2.6.1 Pathway Priming

To ensure an in-vivo-like model, a danger signal, CpG, was included in classi-

cal activation. When macrophages were stimulated with both IFN-γ and CpG,

the classical stimulus, the cells upregulated NO production as expected, but

surprisingly, many also started to express GFP an indication of the presence of
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Arginase-1 (data not shown), the enzyme of the alternative pathway.

It seems the co-stimulation of cells by the classical stimulus, IFN-γ and CpG,

changes the phenotype of these macrophages. The upregulation of the alterna-

tive enzyme, Arginase-1, in these cells, a process we refer to as ”priming” the al-

ternative pathway, may prove important. The presence of Arginase-1, involved

with wound healing, may be a control mechanism that limits the inflammatory

response exhibited by classically activated macrophages. The initial upregu-

lation of Arginase-1 may allow the cells to be restimulated and converted to

alternatively activated macrophages, which are less harmful to the body.

The finding that the classical stimulus upregulates the alternative enzyme

but not the alternative product was not consistent with our mathematical model.

This is expected however because the stimulus was not explicitly included in the

model. Instead the stimulus was directly linked to the amount of enzyme in the

model. In future work we plan to explore the model without this enforced link

between cytokines and enzymes by including the signaling pathways between

exposure to cytokines and the upregulation of the enzyme.

This novel finding of the “priming” of the alternative pathway by the clas-

sical pathway leads to many questions. What signaling pathway causes the

unexpected upregulation of Arginase-1 in classical activation? Does this up-

regulation of Arginase-1 occur in the same manner as in alternative activation?

What is the functional significance of the upregulation of Arginase-1 by the clas-

sical pathway?
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CHAPTER 3

STABILITY DIAGRAM FOR THE FORCED KURAMOTO MODEL

The study of synchronization is a classic topic in nonlinear science. Sometimes

the concern is with mutual synchronization, as in Huygens’s 1665 discovery of

the sympathy of pendulum clocks. In other situations, one is more interested in

forced synchronization, as in the injection locking of a laser or the entrainment

of circadian rhythms by the daily light-dark cycle. Here we consider a simple

mathematical model in which both types of synchronization are present simul-

taneously, creating a conflict between them. What happens when a network of

dissimilar but mutually coupled oscillators is also driven by an external peri-

odic force? For a natural generalization of the Kuramoto model, the interaction

of forcing, coupling, and randomness leads to a rich set of collective states and

bifurcations. We explain all of these phenomena analytically, using an ansatz

recently introduced by Ott and Antonsen.

3.1 Introduction

In 1975 Kuramoto proposed an elegant model for an enormous population of

coupled biological oscillators [41, 42]. Each oscillator was described solely by

its phase, with amplitude variations neglected; the oscillators were coupled all-

to-all, with equal strength; the interaction between them was purely sinusoidal,

with no higher harmonics; and their intrinsic frequencies were randomly dis-

tributed across the population according to a symmetric bell-shaped distribu-

tion. All of these simplifying assumptions helped Kuramoto make headway on

what would otherwise have been a hopelessly intractable many-body, nonlin-
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ear dynamical system. By means of an ingenious self-consistency argument, he

was able to show analytically that the system could undergo a phase transition

to mutual synchronization, once the coupling between the oscillators exceeded

a certain threshold.

Over the past three decades, many researchers have shed light on the math-

ematical aspects of collective synchronization by studying Kuramoto’s model

and its close relatives [43, 44]. And, somewhat surprisingly in view of its sim-

plicity, the model has also been shown to be relevant to a variety of physical

systems [45, 46]. Examples range from electrochemical oscillators [47, 48] and

Josephson junction arrays [49] to coupled metronomes [50], collective atomic

recoil lasing [51], and neutrino flavor oscillations [52].

One way to extend the model is to allow for the effects of external forcing.

This generalization is theoretically natural, but it is also motivated in part by

experimentally observed phenomena [48]. For example, consider the way that

the daily cycle of light and darkness helps to entrain our sleep, body temper-

ature, and other circadian rhythms to the world around us [53, 54, 55] . Like

all mammals, each of us has a circadian pacemaker, a network of thousands

of specialized clock cells located in the region of the hypothalamus known as

the suprachiasmatic nuclei, just above where the optic nerves criss-cross as they

make their way back to the brain. These cells have been shown experimentally

to be intrinsically oscillatory [56] and their distribution of natural frequencies

has been measured [57]. The pacemaker cells are also known to be mutually

coupled, though their precise connectivity remains unclear. Thus, qualitatively

at least, one could try to model the pacemaker cell network with the Kuramoto

model. Now consider how this network might respond to an imposed cycle of
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light and dark (information of this sort is known to be conveyed from the eyes to

the pacemaker through a specialized neural pathway). If the light-dark cycle is

24 hours long, we expect the electrical rhythms of many individual pacemaker

cells to successfully entrain to it. But what if we alter the period or strength of

the external forcing, as has been done in countless experiments on mice, ham-

sters, primates, and human volunteers [53]? Or what happens if the experiment

is conducted on mutant organisms [58, 59] whose intrinsic periods are a few

hours longer or shorter than normal, or which may be intrinsically arrhythmic,

having almost no free-running circadian rhythm at all?

Questions like this can be addressed, in mathematically idealized form,

within the framework of the periodically forced Kuramoto model [60, 61, 62].

Its governing equations are given by

dϑi

dt
= ωi +

K
N

N∑
j=1

sin(ϑ j − ϑi) + F sin(σt − ϑi), (3.1)

for i = 1, . . . ,N. Here ϑi is the phase of oscillator i, ωi is its natural frequency,

K is the coupling strength, F is the forcing strength, σ is the forcing frequency,

and N � 1 is the number of oscillators. The natural frequencies are randomly

distributed with a density g(ω), assumed unimodal and symmetric about its

mean value ω0.

This system is capable of rich dynamics because of its interplay among ran-

domness, coupling, and forcing. The randomness comes from the variance of

the natural frequencies. This effect tends to desynchronize the oscillators and

scatter their phases. The coupling, on the other hand, tends to align the oscilla-

tors to the same phase, although it does not favor any particular frequency for
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the collective oscillation. In contrast, the forcing does favor a specific frequency,

namely that of the external drive. Depending on the relative magnitudes of

these competing effects, we expect to see various kinds of cooperative behavior

and transitions between them.

Before continuing, it proves useful to simplify the governing equations in

two ways. First, if we view the dynamics in a frame co-rotating with the drive,

the explicit time dependence in (3.1) disappears. To achieve this, let

θi = ϑi − σt. (3.2)

Then (3.1) yields

dθi

dt
= (ωi − σ) +

K
N

N∑
j=1

sin(θ j − θi) − F sin θi, (3.3)

for i = 1, . . . ,N. Second, as Kuramoto originally pointed out, it is helpful to

introduce a complex order parameter z, given by

z(t) =
1
N

N∑
j=1

eiθ j(t). (3.4)

Then the sum in (3.3) reduces to Im(Kze−iθi), an identity which will prove useful

later.

The order parameter also has a nice physical interpretation. Its amplitude |z|

quantifies the phase coherence of the population: an incoherent state has z = 0;

a perfectly coherent state has |z| = 1. Furthermore, the argument of z can be

interpreted as the average phase of all the oscillators. So in a sense, the single

complex number z(t) serves as a proxy for the state of the population as a whole.

Sakaguchi [60] was the first to study the periodically forced Kuramoto

model. He derived a self-consistent equation for steady-state values of |z|, under
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the assumption that z(t) was entrained by the external force (meaning that z(t)

appeared motionless in the rotating frame). In numerical simulations of Equa-

tion (3.3), however, Sakaguchi found that this state of “forced entrainment” was

not always attained. For some values of the parameters, the system could settle

instead into a state of “mutual entrainment.” In this case a macroscopic fraction

of the system self-synchronized at a different frequency from that of the drive,

indicating that this sub-population had broken away and established its own

collective rhythm. (For circadian rhythms, this would mean that the animal’s

internal clock was drifting relative to the outside world.) Sakaguchi’s numerics

further indicated how forced entrainment could be lost and give way to mutual

entrainment. Such transitions were found to occur via two different mecha-

nisms, corresponding to a pair of distinct bifurcation curves in parameter space.

These curves appeared to join at a point, but Sakaguchi was unable to resolve

the details of the cross-over region numerically.

More recently, Antonsen et al. [61] gave an improved analytical treatment

of the model. Their linear stability analysis and numerical simulations also re-

vealed an intriguing set of bifurcation curves, but the way the various curves

join together still remained unclear. The overall layout of the stability dia-

gram suggested that an underlying two-dimensional system was controlling

the dynamics—a remarkable finding, given that the model (3.3) is essentially

infinite-dimensional (recall N � 1).

This tantalizing clue led Ott and Antonsen to an important discovery [62].

They found that the Kuramoto model possesses an invariant manifold, a special

family of states for which the macroscopic dynamics becomes low-dimensional.

In particular they showed that on this invariant manifold, the order param-
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eter for the forced Kuramoto model (3.3) exactly satisfies a two-dimensional

dynamical system, for the special case where the frequency distribution g(ω)

is Lorentzian and the initial state satisfies certain strong analyticity properties

with respect to ω.

In this paper we analyze the two-dimensional system derived from the anal-

ysis of Ott and Antonsen [62]. Our results give the first complete picture of the

bifurcation structure for the forced Kuramoto model. We obtain explicit for-

mulas for the system’s saddle-node and Hopf bifurcation curves, as well as the

codimension-2 Takens-Bogdanov point from which they emanate. Bifurcation

theory predicts that a curve of homoclinic bifurcations should also emerge from

the Takens-Bogdanov point; we compute this homoclinic curve numerically.

The rest of the paper is organized as follows. Section 2 reviews the approach

of Ott and Antonsen [62], leading up to their derivation of the reduced equa-

tions for the order parameter dynamics. Section 3 presents new results about

the bifurcations in this system and resolves the issue of how all the transition

curves fit together. The final section discusses the implications of the results,

their relation to prior work, the limitations of the approach used here, and some

of the questions that remain.

3.2 Derivation of the reduced equations

The analysis of (3.3) is carried out in the continuum limit N → ∞. Then the state

of the system is described by a density function f (θ, ω, t). Here f is defined such

that at time t, the fraction of oscillators with phases between θ and θ + dθ and
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natural frequencies between ω and ω + dω is given by f (θ, ω, t) dθ dω. Thus∫ ∞

−∞

∫ 2π

0
f (θ, ω, t) dθ dω = 1 (3.5)

and ∫ 2π

0
f (ω, θ, t) dθ = g(ω), (3.6)

by definition of g(ω).

The evolution of f is given by the continuity equation

∂ f
∂t

+
∂

∂θ
( f v) = 0, (3.7)

which expresses the conservation of oscillators of frequency ω. Here v(θ, ω, t) is

the velocity field on the circle corresponding to (3.3) as N → ∞:

v(θ, ω, t) = (ω − σ) + K
∫ ∞

−∞

∫ 2π

0
sin(θ′ − θ) f (θ′, ω′, t) dθ′ dω′ − F sin θ. (3.8)

This expression can be written more compactly in terms of the complex order

parameter z, which in the continuum limit becomes

z(t) =

∫ ∞

−∞

∫ 2π

0
eiθ f (θ, ω, t) dθ dω. (3.9)

Using the identity mentioned in the Introduction (Section 3.1), we note that the

double integral in (3.8) simplifies to Im(Kze−iθ). Hence the continuity equation

becomes

∂ f
∂t

+
∂

∂θ

(
f
[
(ω − σ) +

1
2i

{
(Kz + F)e−iθ − (Kz + F)∗eiθ

}])
= 0, (3.10)

where the asterisk denotes complex conjugation.

Normally one would try to solve (3.10) by expanding f as a Fourier series in

θ:

f (θ, ω, t) =
g(ω)
2π

1 +

∞∑
n=1

fn(ω, t)einθ + c.c.

 , (3.11)
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where c.c. denotes complex conjugate. Substitution of (3.11) into (3.9) and (3.10)

would generate an infinite set of coupled nonlinear ordinary differential equa-

tions for the amplitudes fn(ω, t). Unfortunately the dynamics of this infinite-

dimensional system would likely be difficult to analyze further.

It was at this point that Ott and Antonsen [62] noticed something wonderful.

They restricted attention to the special family of densities f for which

fn(ω, t) = [α(ω, t)]n , (3.12)

for all n ≥ 1. In other words, they assumed that all the amplitudes fn are nth pow-

ers of the same function α(ω, t). Amazingly, this ansatz satisfies the amplitude

equations for all n, so long as α evolves according to

dα
dt

=
1
2

(Kz + F)∗ − i(ω − σ)α −
1
2

(Kz + F)α2 (3.13)

and z satisfies

z(t) =

∫ ∞

−∞

α∗(ω, t) g(ω) dω. (3.14)

Then, by further assuming that g(ω) is a Lorentzian,

g(ω) =
∆

π
{
(ω − ω0)2 + ∆2} , (3.15)

and that α(ω, t) satisfies certain analyticity conditions in the complex ω-plane,

Ott and Antonsen [62] evaluated (3.14) by contour integration and thereby de-

rived the following exact evolution equation for the order parameter z:

dz
dt

=
1
2

[
(Kz + F) − (Kz + F)∗z2

]
− [∆ + i(σ − ω0)] z. (3.16)

The conditions required were that α(ω, t) can be analytically continued from

the real ω-axis into the lower half of the complex ω-plane for all t ≥ 0; that

|α(ω, t)| → 0 as Im(ω)→ −∞; and that |α(ω, 0)| ≤ 1 for real ω.
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3.3 Analysis of the reduced equations

3.3.1 Scaling the equations

We turn now to the analysis of the two-dimensional system (3.16). The first step

is to reduce the number of parameters by nondimensionalizing the system. Let

t̂ = ∆t, F̂ = F/∆, K̂ = K/∆, σ̂ = σ/∆ and ω̂0 = ω0/∆. Then the form of (3.16) stays

the same except that ∆ no longer appears (in effect, ∆ has been set to 1 without

loss of generality) and all the other parameters now have hats over them. For

ease of notation we drop the hats in what follows, remembering that all the

parameters are now dimensionless. Also, let

Ω = σ − ω0 (3.17)

denote the (dimensionless) detuning between the drive frequency and the pop-

ulation’s mean natural frequency. Then if we introduce polar coordinates

z = ρeiφ (3.18)

and separate (3.16) into real and imaginary parts, we obtain the dimensionless

evolution equations for ρ and φ:

ρ′ =
K
2
ρ(1 − ρ2) − ρ +

F
2

(1 − ρ2) cos φ (3.19)

φ′ = −

[
Ω +

F
2

(
ρ +

1
ρ

)
sin φ

]
(3.20)

where the prime denotes differentiation with respect to dimensionless time.
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3.3.2 Stability diagram and phase portraits

Our next goal is to obtain the stability diagram for Equations (3.19)-(3.20). Be-

fore delving into the details, which can become intricate at times, we jump to

the final result. Figure 3.1 shows the stability diagram for the representative

case where K = 5. Here the various stability regions labeled A-E correspond to

the phase portraits shown in Figure 3.2.

We realize that these figures appear complicated at first glance, so let us be-

gin by offering a few general remarks about them. Figure 3.1 is divided into five

regions, A-E, by the bifurcation curves labeled saddle-node, Hopf, homoclinic,

and SNIPER. In the places where two or more of these curves nearly coincide,

Figure 3.1(a) becomes especially confusing. To clarify what is going on in such

regions, Figures 3.1(b) and 3.1(c) zoom in near two codimension-2 points of in-

terest (to be discussed in detail later). Since even these figures can be hard to

interpret, we have tried to make everything as clear as possible by presenting

a schematic Figure 3.1(d). Unlike Figures 3.1(a)-(c), which are numerically ac-

curate, Figure 3.1(d) is only topologically correct. We have distorted some of

stability regions and pulled certain curves apart to make the layout of the dia-

gram transparent, and to highlight the three different codimension-2 points that

will later be seen to organize the entire diagram.

A similar but incomplete version of Figure 3.1 was obtained previously by

Antonsen et al. [61]; see Figure 3 in their paper. Those authors generated their

results based on direct simulations of Equation (3.3) for N = 1000 oscillators.

They also compared their numerics to analytical results they derived for the

existence and stability of equilibrium points for (3.3), which correspond to en-

trained states in the original frame. Our approach, in contrast, is to analyze the
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reduced system Equations (3.19)-(3.20). We do not present numerical results for

the full system (3.3) because in every case we have checked, our results match

those reported already by Antonsen et al. [61], except in cases where the previ-

ous methods were inconclusive.

3.3.3 Saddle-node and SNIPER bifurcations

It is algebraically awkward to solve for the fixed points of Equations (3.19)-(3.20)

in terms of the parameters. Fortunately, we do not need to solve for them. Since

we are mainly interested in the bifurcation curves, we can make headway more

easily by imposing an appropriate bifurcation condition and then solving for the

parameters in terms of the fixed point, rather than the other way around. This is

a standard trick in bifurcation theory, and it allows us to derive the bifurcation

curves in closed form, either explicitly or as parametric equations.

For example, at a saddle-node bifurcation, one of the eigenvalues equals 0

and hence the determinant of the Jacobian vanishes there. (The same would

be true at transcritical or pitchfork bifurcations, but given the absence of the

constraints or symmetries associated with these types of bifurcations, there’s no

reason to expect either of them to occur here.)

Hence to find the locus of saddle-node bifurcations, we solve ρ′ = 0, φ′ = 0

and δ = 0 simultaneously, where δ denotes the determinant of the Jacobian. The

trick is to regard the unknown values of the variables ρ and φ on equal footing

with the parameters K,Ω and F. Then the resulting system of 3 equations in 5

unknowns can be solved explicitly to yield a parametrization of the saddle-node

bifurcation surface. Various parameterizations are possible. One convenient
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Figure 3.1: Bifurcation Diagram of Forced Kuramoto Model

Stability diagram for the forced Kuramoto model. Bifurcation curves are shown

with respect to the strength F and detuning Ω of the external forcing, both of

which have been non-dimensionalized by the width ∆ of the distribution of the

oscillators’ natural frequencies. The dimensionless coupling strength is fixed at

K = 5.

(a) Regions A-E correspond to qualitatively different phase portraits; see text

and Figure 3.2 for explanations. Four types of bifurcations occur: supercritical

Hopf bifurcation; homoclinic bifurcation; and two types of saddle-node bifur-

cations. The saddle-node bifurcations on the upper branch, and also those on

the lower branch between the cusp and the saddle-node-loop point, are purely

local. In contrast, those on the portion of the lower branch extending from the

origin to the saddle-node-loop point have global consequences; they are saddle-

node infinite-period bifurcations, or SNIPERs, which create or destroy limit cy-

cles. The filled circle marks a codimension-2 Takens-Bogdanov point, at which

the Hopf, homoclinic, and upper saddle-node curve intersect tangentially.

(b) Enlargement of the cross-over region, just to the right of the Takens-

Bogdanov point, where all four bifurcation curves run nearly parallel to one

another. Three of them (Hopf, SNIPER, and the lower branch of saddle-node bi-

furcations) meet at a codimension-2 saddle-node-loop point, marked by a filled

diamond.

(c) Enlargement of the region near the codimension-2 cusp point (filled square),

where the upper and lower branches of saddle-node bifurcations meet tangen-

tially. The two branches are almost indistinguishable in this image.

(d) Schematic version of the stability diagram, intended to show how the bifur-

cation curves connect in the confusing cross-over region. Tangential intersec-

tions have been opened up for clarity.
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Figure 3.2: Phase Portraits

Phase portraits for the two-dimensional dynamics of the complex order param-

eter z, or equivalently, for the variables ρ, φ regarded as polar coordinates. Open

dots, unstable fixed points. Closed dots, stable fixed points. Asterisk, origin of

the z-plane. Dashed curves, stable and unstable manifolds of the saddle point.

The panels are not all shown at the same scale; the regions shown in (b) and (c)

are small and have been blown up here for clarity.
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choice is to express the parameters in terms of the fixed-point values of ρ and φ.

We find that the saddle-node surface is then given by

K =
2
(
ρ4 + 2ρ2 cos 2φ + 1

)
(
1 − ρ2)2 (

1 + ρ2 cos 2φ
) (3.21)

Ω =

(
ρ3 + ρ

)2
sin 2φ(

1 − ρ2)2 (
1 + ρ2 cos 2φ

) (3.22)

F = −
4ρ3

(
ρ2 + 1

)
cos φ(

1 − ρ2)2 (
1 + ρ2 cos 2φ

) (3.23)

where we allow ρ and φ to sweep over their full ranges 0 ≤ ρ ≤ 1, −π ≤ φ ≤ π.

This parametrization provides some interesting information. For instance, it

shows that K increases monotonically with ρ, for each fixed value of φ. Hence

K ≥ 2 everywhere on the saddle-node surface, with the minimum value K = 2

being attained when ρ = 0 and hence F = 0, or in other words, when there is

no forcing. This result makes sense. In the absence of forcing, the system is

just the traditional Kuramoto model with a Lorentzian g(ω), and K = 2∆ (or in

dimensionless terms, K = 2) is the well-known formula for the critical coupling

at the onset of mutual synchronization [41, 42].

To compare our results with those obtained numerically by Antonsen et al.

[61], it is more illuminating to slice through the saddle-node surface at a fixed

value of K > 2 and then plot the resulting saddle-node curves in the (Ω, F) plane.

To find these curves we solve ρ′ = 0, φ′ = 0 and δ = 0 for Ω, sin φ and cos φ, and

then use sin2 φ + cos2 φ = 1 to solve for F, now regarding K and ρ as parameters.

The result is the following parametrization of the saddle-node curve:

ΩSN =

(
ρ2 + 1

)3/2
√

K
(
ρ2 − 1

) (
K

(
ρ2 − 1

)2
− 4

)
− 4

(
ρ2 + 1

)
2
(
ρ2 − 1

)2 (3.24)

F SN =

√
2ρ2

√
K2 (

ρ2 − 1
)3

+ 2K
(
ρ4 − 4ρ2 + 3

)
− 8(

ρ2 − 1
)2 . (3.25)
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Figure 3.1 plots this saddle-node curve for the case K = 5, as previously stud-

ied by Antonsen et al. [62]. We compute the curve for all values 0 < ρ < 1,

disregarding any values that yield non-real results for Ω or F.

The two branches of the saddle-node curve intersect tangentially at a

codimension-2 cusp point, as highlighted in Figure 3.1(c) and marked schemat-

ically in Figure 3.1(d) by the solid square . For K = 5, the parameter values at

the cusp are Ω ≈ 3.5445 and F ≈ 3.4164.

Along with local saddle-node bifurcations, the lower branch of the saddle-

node curve(where F ≈ Ω) also includes a large section consisting of saddle-

node infinite-period (SNIPER) bifurcations. These have important global im-

plications, because they create or destroy limit cycles in the phase portrait of

Equations(3.19)-(3.20).

3.3.4 Hopf bifurcation

Next we calculate the locus of parameter values at which Hopf bifurcations oc-

cur. We impose the fixed point conditions φ′ = 0, ρ′ = 0 as before, but now re-

quire that the Jacobian has zero trace and positive determinant—the latter two

conditions are equivalent to requiring that the eigenvalues be pure imaginary.

Solving simultaneously for φ′ = 0, ρ′ = 0 and trace = 0, we find

sin φ = −

(
K2 − 4

)
Ω

F
√

K − 2K
√

K + 2
(3.26)

cos φ = −
(K − 2)3/2

2F
√

K + 2
(3.27)

ρ =

√
K − 2
K + 2

. (3.28)
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Because ρ depends only on K, we can go a bit further than we did in the

saddle-node case. Using sin2 φ + cos2 φ = 1 as before, F can now be obtained

explicitly in terms of K and Ω:

F Hopf =
1

2K

√
(K − 2)

(
K4 − 4K3 + 4

(
Ω2 + 1

)
K2 + 16Ω2K + 16Ω2)

K + 2
(3.29)

For the special case K = 5 studied by Antonsen et al. [62], Equation (3.29) be-

comes

F Hopf =
1
10

√
3
7

√
225 + 196Ω2 (3.30)

Figure 3.1 plots the graph of F Hopf(Ω). Notice how straight it is, and that it nearly

lines up with the lower branch of the saddle-node curve.

3.3.5 Takens-Bogdanov point

As mentioned above, for Equation (3.29) to truly signify a Hopf bifurcation, the

Jacobian determinant must be positive at the corresponding parameter values

(Ω, F) . This will be the case if Ω and F are sufficiently large. Specifically, their

values must exceed those at the Takens-Bogdanov point

ΩTB =
(K − 2)K2

4(K + 2)
(3.31)

F TB =
1
4

(K − 2)

√
K3 − 2K2 + 4K − 8

K + 2
(3.32)

obtained by solving four simultaneous equations: φ′ = 0, ρ′ = 0, trace = 0, and

determinant = 0.

The Takens-Bogdanov point is marked with a filled circle on Figures 3.1(a)

and 3.1(d). In addition to serving as the endpoint of the Hopf curve, it splits the

upper branch of the saddle-node curve into two sections of different dynamical
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character. On the lower section (below the Takens-Bogartian point), an unstable

node collides with a saddle along the saddle-node bifurcation curve; this can

be seen by comparing regions D and A, as shown in Figures 3.2(d) and 3.2(a).

The opposite situation occurs on the upper section of the saddle-node curve,

above the Takens-Bogartian point. Here a stable node collides with a saddle,

corresponding to the transition between regions B and A; see Figures 3.2(b) and

3.2(a).

3.3.6 Homoclinic bifurcation

The theory of the Takens-Bogdanov bifurcation implies that a curve of homo-

clinic bifurcations must also emerge from the codimension-2 point, tangential

to the saddle-node and Hopf curves. For the case K = 5 shown in Figure 3.1,

ΩTB = 75
28 and F TB = 3

4

√
87
7 . The curve shown in the diagram was computed nu-

merically. It is almost indistinguishable from the Hopf curve and thus produces

a very small region between them, as shown in Figure 3.1(b).

A striking feature of the homoclinic curve is that after moving parallel to

the Hopf curve for a while, it makes a sharp backward turn and then joins onto

the lower branch of the saddle-node/SNIPER curve, meeting that curve tangen-

tially at a codimension-2 “saddle-node-loop” point [63, 64] marked by a filled

diamond in Figures 3.1(b) and 3.1(d).
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3.3.7 Phase portraits and bifurcation scenarios

As we have seen, the bifurcation curves in Figure 3.1 partition the stability di-

agram into five regions, labeled A-E. We now give a fuller treatment of the dy-

namics associated with each region and the transitions from one to another.

Region A: Forced entrainment

Here the order parameter z approaches a stable fixed point for all initial condi-

tions, as shown in Figure 3.2(a). To interpret what this means, recall that all our

analysis has assumed a frame co-rotating with the drive. Hence this stable fixed

point represents a state in which the order parameter is moving periodically

while staying phase-locked to the drive. Therefore, back in the original frame,

a macroscopic fraction of the oscillator population must also be moving in rigid

synchrony, locked to the same frequency as the drive signal.

Region B: Bistability between two states of forced entrainment

Now suppose we weaken the forcing. Imagine moving down along a vertical

line in Figure 3.1(b), decreasing F while holding Ω fixed. As we do so, we first

pass from region A into the extremely narrow region B by crossing through the

upper branch of the saddle-node curve (3.24). At this bifurcation, a stable node

is born out of the vacuum, along with a saddle point. Meanwhile, the stable

fixed point that we encountered in Region A still exists; it lies in the lower right

part of Figure 3.2(b).

Thus Region B depicts a form of bistability. Depending on the initial con-
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ditions, the system chooses one of two possible states of forced entrainment,

differing in their phase coherence (the magnitude of z) and their phase relation-

ship to the drive signal (the argument of z).

Region C: Bistability between forced entrainment and phase trapping

Continuing our vertical descent through Figure 3.1(b), we next cross from B into

C by passing through the curve of Hopf bifurcations, Equation (3.29). The sta-

ble fixed point created in Region B now loses stability and gives birth to a tiny

attracting limit cycle (Figure 3.2(c)). On this cycle the order parameter still runs

at the same average frequency as the drive but its relative phase and amplitude

now wobble slightly. Because these variations remain trapped within tight lim-

its, one says the system is phase trapped (as opposed to phase locked) to the

drive. Back in the original non-rotating frame, the macroscopic dynamics for

this state would be quasiperiodic with two frequencies. This is not the only

attractor, of course; the state of forced entrainment seen earlier in A and B per-

sists, so we still have bistability, but now between phase trapping and forced

entrainment.

Region D: Forced entrainment

Passing from Region C to D carries us across a curve of homoclinic bifurcations.

As we approach this curve from above, the tiny limit cycle in Figure 3.2(c) ex-

pands. At the bifurcation it touches the saddle point and forms a homoclinic

orbit. Beyond the bifurcation the phase portrait looks like that shown in Figure

3.2(d). An invariant loop has been created, in which the saddle and the original
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stable node are now connected by both branches of the saddle’s unstable mani-

fold. The stable node is the unique attractor. Hence the system again falls into a

state of forced entrainment.

Region E: Mutual entrainment

Forced entrainment is finally lost when we pass from Region D to E. When cross-

ing the lower branch of the saddle-node curve, we need to be careful to specify

exactly where the crossing occurs. Specifically, do we cross to the left or right of

the codimension-2 saddle-node-loop point (filled diamond in Figure 3.1(b)) at

which the homoclinic curve meets the saddle-node curve?

Suppose first that we cross below and to the left of the saddle-node-loop

point. Then in Figure 3.2(d) the saddle and node would slide toward each other

along the invariant loop, coalesce, and disappear, leaving a stable limit cycle

in their wake. Thus, this saddle-node bifurcation is actually a SNIPER (saddle-

node infinite-period) bifurcation.

The limit cycle created by the bifurcation is globally attracting. Hence the

order parameter always settles into periodic motion in the rotating frame. But

unlike the limit cycle of Figure 3.2(b) this cycle winds around the origin of the

z-plane, marked by an asterisk in Figure 3.2(d). This is an important distinction,

because it implies that the phase of z now increases monotonically relative to

that of the drive. Consequently the order parameter z(t) oscillates at a different

average frequency from the drive signal, implying that a macroscopic fraction

of the oscillator population has broken loose from the drive. In other words,

the system has spontaneously mutually entrained itself, at least in part. This is
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therefore one mechanism by which forced entrainment can give way to mutual

entrainment.

But there are other possible mechanisms as well. For example, consider Fig-

ure 3.1(b) again, and now direct your attention to the upper right corner. By

moving down along the right side of the picture, we can cross directly from

C to E, without ever going through D. This happens when we cross through

the portion of the lower saddle-node curve lying above and to the right of the

saddle-node-loop point. In this case the bifurcation is not a SNIPER; it’s just

an ordinary saddle-node bifurcation. To visualize this scenario, imagine sliding

the saddle in the middle of Figure 3.2(c) to the right along its unstable manifold

until it collides with the node and annihilates it. During this process the limit

cycle in Figure 3.2(c) grows. And so the phase portrait now resembles the one

shown in Figure 3.2(e).

A third scenario is much simpler. Suppose Ω > Ω cusp, so that we’re well

to the right of the cusp in Figures 3.1(c) and 3.1(d). Then as we decrease F, we

move directly from A to E. Forced entrainment gives way to mutual entrainment

through a supercritical Hopf bifurcation.

3.4 Discussion

3.4.1 Stability diagram

The main result of the paper is the stability diagram shown in Figure 3.1. We

have focused on the analytical derivation of several of the curves in this picture
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and tried to clarify how they fit together and what they imply about the system’s

overall dynamics. Having immersed ourselves in the details, it is worthwhile to

step back and try to understand the broader lessons that this picture holds.

Figure 3.1 essentially divides into two big regions. One represents forced

entrainment, wherein a macroscopic fraction of the population is phase-locked

to the drive. The rest of the population consists of oscillators belonging to the

infinite tails of the frequency distribution; these remain unlocked. Thus it would

be more accurate to speak of “partial forced entrainment,” though we hope the

intended meaning of the shorter name is clear.

The other main region represents (partial) mutual entrainment. Now there

are three qualitatively different groups of oscillators: (1) the unlocked oscillators

in the tails; (2) the oscillators entrained by the forcing; and (3) a self-organizing

group of oscillators that entrain one another at a frequency different from that

of the drive. The existence of this third group causes the order parameter to

wobble or drift periodically relative to the drive, as manifested by a stable limit

cycle in the phase portraits (Figures 3.2 (c) and 3.2(e)).

3.4.2 Comparison to Adler equation

The boundary between forced and mutual entrainment is complicated when

viewed at a fine scale, as shown in Figure 3.1(b). But from a bird’s-eye view, it

looks very much like the straight line F = Ω. Here’s why: this is the result one

would expect from the Adler equation

φ′ = −Ω − F sin φ, (3.33)
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which has been used to model the entrainment dynamics of phase-locked loops

[65], lasers [66, 67], and fireflies [68], among many other systems. The two-

dimensional system (3.19)-(3.20) reduces to Adler’s equation as K → ∞, in the

sense that ρ approaches 1 on a fast time scale, while φ obeys (3.33) on a slow

time scale.

The intuitive explanation is that in this limit, the coupling between oscilla-

tors is so strong that the population acts like one giant oscillator, with nearly

all the microscopic oscillators at the same phase. Hence the order parameter

amplitude remains close to ρ = 1 at all times, so the system behaves as if it had

a very strongly attracting limit cycle. This explains why the dynamics of the

forced Kuramoto model mimic the Adler equation in this limit.

For a more analytical route to the same conclusion, look at the large-K be-

havior of the Takens-Bogdanov point, which essentially lies on the dividing line

behind the two big regions. The formulas (3.31)-(3.32) imply that

FTB

ΩTB
∼ 1 − 8K−4 (3.34)

as K → ∞. Thus F ≈ Ω for large and even moderate values of K.

3.4.3 Comparison to forced van der Pol equation

For weaker coupling, but still large enough that the system can partially self-

synchronize (2 < K < ∞), the population again acts like a single limit cycle

oscillator, but now with a limit cycle that is only weakly attracting. As before,

the complex order parameter plays the role of this effective limit-cycle oscillator.

So when forcing is applied, we expect the overall dynamics to be like those
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of a forced, weakly nonlinear oscillator. And indeed, the stability diagram bears

a striking resemblance to that of a forced van der Pol oscillator, in the limit of

weak nonlinearity, weak detuning, and weak forcing. As in the problem studied

here, the stability diagram for this well-studied system [69] is also organized

around a Takens-Bogdanov bifurcation and a saddle-node-loop bifurcation.

Likewise, some of the regions in the van der Pol diagram are unusually thin

and small. This helps to explain why they were overlooked for decades, until

the theory of the Takens-Bogdanov bifurcation was developed and guided later

researchers to the missing transitions that, on topological grounds, had to be

there.

One always expects small regions in systems with Takens-Bogdanov bifur-

cations because, according to normal form theory, the saddle-node, Hopf, and

homoclinic curves have to intersect tangentially at the Takens-Bogdanov point.

But here, as in the van der Pol problem, the regions are even smaller still, be-

cause they must also hug the line F ≈ Ω, for the reasons given above.

3.4.4 Caveats

It is important to understand what has—and has not—been shown by the anal-

ysis presented in this paper. Following Ott and Antonsen [62], we made a num-

ber of very particular choices in the course of reducing an infinite-dimensional

problem to a two-dimensional one. We chose a special family of initial states

(see Equation (3.12)) and showed that they formed an invariant manifold. In

other words, if the condition (3.12) is satisfied initially, it is automatically sat-

isfied for all time. Then we chose a special distribution of natural frequencies
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(see Equation (3.15)), and required further that the initial state satisfies certain

strong analyticity properties with respect to its dependence on these frequen-

cies. Taken together, these choices then implied that the system’s order param-

eter evolves according to the two-dimensional dynamical system (3.16).

If the conclusions that followed were sensitive to these choices, we would

not have accomplished much. But there is reason to believe that the results

are robust, and largely independent of these choices. The strongest evidence is

numerical. Every time we have run simulations of the forced Kuramoto model

(3.1) for hundreds or thousands of oscillators, we have seen all the attractors

and bifurcations predicted by the analysis, where they are supposed to be. Ott

and Antonsen [62] found similar agreement when they studied other variants

of the Kuramoto model.

This suggests that the flow on the invariant manifold faithfully captures the

macroscopic dynamics of the full system, at least in some sense. Unfortunately,

we do not know how to make this statement precise. The issue is probably sub-

tle. We do not believe, for example, that the invariant manifold is everywhere

transversely attracting—it certainly isn’t in other problems we have studied. For

example, applying the method of Ott and Antonsen [62] to the Kuramoto model

with a bimodal frequency distribution, we found that the invariant manifold in

that case could be transversely repelling at certain points [70].

Nor are we sure whether all the attractors for the full system lie within the

invariant manifold. If they did, that would explain why this manifold controls

the system’s long-term macroscopic dynamics. But we have no proof of this

weaker statement either.
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Now regarding the choice of a Lorentzian frequency distribution: this was

crucial to the analysis, but not, we suspect, to the results. Sakaguchi [60] used

a Gaussian g(ω) and found the same attractors and bifurcations as we did. Our

own simulations for the Gaussian case (unpublished) show that the stability di-

agram is different in numerical details, of course, but its topology is unaffected.

On the other hand, the algebraic form of the forced Kuramoto model, with

its purely sinusoidal coupling and driving, probably is crucial. The ansatz (3.12)

no longer works if the model contains higher harmonics. Indeed, the bifurca-

tion behavior of the classical (unforced) Kuramoto model is known to be altered

when generic periodic functions are used in place of a pure sine function in the

coupling [71, 72]. So we expect new phenomena to arise in the forced Kuramoto

model as well, when one departs from pure sinusoids in the driving and cou-

pling terms.
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CHAPTER 4

UNDERSTANDING CONSENSUS DECISION MAKING IN ANIMAL

GROUPS

4.1 Introduction

Collective behavior is seen all around us – from flocks of birds flying in the sky,

to herds of wildebeests migrating across the plains of Africa to ants trailing food

from picnics. For many years it was thought that coherent motion exhibited by

these groups was the result of individuals following a knowledgeable leader.

Recent computational and experimental studies, however, have shown that col-

lective behavior can emerge from purely local interactions among individuals

[73, 74, 75].

4.1.1 Collective Behavior in Animal Groups

There are many benefits for individuals to be associated with a group including

avoidance of predation, increased access to food, increased efficiency of move-

ment and increased social interaction [75, 76].

Association with a group allows individuals to avoid predation. For animals

in large groups, the movement of many individuals can make it difficult for the

predator to focus on any particular individual. Often such animals are covered

with patterns. For example the stripes on zebras make it difficult for a lion to

identify and attack an individual zebra. Additionally, being part of a group

creates more ways for an individual to avoid an approaching predator. Individ-
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uals in fish schools escape from predators simply by following the movement

of neighbors and not because they know of the existence of a predator [77, 78].

Groups are better able to find food sources because many individuals can

contribute to searching. Thus, even if some individuals fail to find food, the

group does not starve. Ant colonies send out many individuals to search for

food and the ones that are successful start pheromone trails to lead other ants to

the same food source [73, 74, 78, 76].

Being part of a group can make movement easier, particularly in times

when the fluid through which the group is moving creates significant resistance.

Geese flying in V formation is a common sight and one that allows a drafting

of sorts for the animals behind. Similarly fish in the back of schools feel less

resistance moving through the water [75, 76].

Finally, there are social benefits to individuals in groups. With a large collec-

tion of individuals together, finding a mate is easier. Additionally, it has been

shown that being part of a group can reduce the load of stress on any one indi-

vidual [75, 76].

Although animals clearly get some benefit to being part of a group, the evo-

lution of collective behaviors through natural selection is puzzling. It is gener-

ally accepted that evolutionarily speaking individuals maximize their fitness at

the expense of other individuals. This is in direct contradiction to their involve-

ment in groups which often lowers their individual fitness [75, 76].
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4.1.2 Modeling Collective Animal Behavior

The modeling of collective behavior in animal groups has been approached with

a variety of mathematical techniques including PDEs, equation-free models and

self-propelled particle models.

PDEs

In PDE models of swarms, the group is typically described by a continuum

density ρ(~x, t) where x refers to the ”individuals”. The PDE takes the form

ρt + (ρv)x = 0 where v refers to the convolution term [79, 80, 81]. A common

assumption is the interactions between individuals take place in a pairwise fash-

ion. In groups, individuals are interacting with many individuals, and the as-

sumption is that the pairwise interactions can be combined by a superposition.

With such assumptions social forces can be modeled as:

v =

∫
fs(~x − ~y)ρ(~y, t)d~y

where fs is a kernel describing the social influence on ~x from ~y. The dynamics

of the model are determined not only by social forces included but also by the

form of the kernel [82].

Self-propelled Particle Models

Many existing models of collective behavior consist of a group of individuals

governed by rules of interaction [83, 84, 85, 86, 87, 88]. In such models, individ-

uals move towards the perception of where the group is (attraction) but move
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away from other individuals whom are too close (repulsion) to avoid collision.

More sophisticated models incorporate alignment of individuals with the ori-

entation of nearby individuals [89].

One seminal model of this type was proposed by Couzin, Krause, Franks

and Levin [90]. In this model, each individual was surrounded by three cir-

cular zones of different radii. The zone with the smallest radius corresponded

to repulsion where individuals moved away to avoid collision. The intermedi-

ate zone corresponded to a zone of alignment where individuals attempted to

display coordinated motion with nearby individuals. The largest zone corre-

sponded to one of attraction to nearby individuals.

These rules were transcribed into a simple model as follows:

di(t + ∆t) =
∑
j,i

c j(t + ∆t) − ci(t)
|c j(t + ∆t) − ci(t)|

+
∑

j

v j(t)
|v j(t)|

(4.1)

where ci(t) denotes the individual’s location in space, vi(t) denotes the indi-

vidual’s velocity and di(t)
|di(t)|

denotes the individual’s desired direction. This

model solely describes social interactions of repulsion, attraction and alignment

amongst individuals. This simple mathematical model was shown to reproduce

various behaviors of groups of individuals that have been observed in nature,

such as polarized group motion (all individuals moving together in the same di-

rection) and rotational group states (all individuals swirling in a torus) [91, 92].

Conflicting Information within Groups

The model described in Equation (4.1) assumes that all individuals have

identical intrinsic properties and act identically to the same information. This is
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not the case in the real world. Different individuals are privy to varying levels

of information. For example, considering foraging strategies, some individuals

may know the location of food, while others have no such knowledge. Within

the group, however, it is not clear to individuals who has information and who

does not.

An extension of the model described in Equation (4.1) added a preferred

direction to a subset of individuals [90].

d̂i(t + ∆t) =
∑
j,i

c j(t + ∆t) − ci(t)
|c j(t + ∆t) − ci(t)|

+
∑

j

v j(t)
|v j(t)|

di(t + ∆t) =
d̂i(t + ∆t) + ωgi

|d̂i(t + ∆t) + ωgi|
(4.2)

where ci(t) denotes the individual’s location in space, vi(t) denotes the individ-

ual’s velocity and di(t)
|di(t)|

denotes the individual’s desired direction just as in Equa-

tion (4.1). In Equation (4.2), ω is a weighting term balancing the importance of

social interactions with the influence of the preferred direction, gi(t). Only in-

formed individuals have a non-zero preferred direction; uninformed individu-

als have a preferred direction vector equal to zero. We refer to these uninformed

individuals as naive.

From the Couzin et al. [90] model, it was found that only a small proportion

of individuals (5–10% depending on total group size) was needed to effectively

move the population in a desired direction. Further, the group obtained directed

collective motion without directly transferring information between individu-

als. Naive individuals did not gain any information.
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Role of Naive Individuals

This work was extended by Couzin et al. [90] by examining populations with

multiple subpopulations exhibiting different and potentially conflicting infor-

mation. Assuming the group preferred to stay together, as is often the case bio-

logically, it was found that if the two informed subpopulations each comprised

half the population, the group would go to the average of the two opinions and

go to neither preferred direction [90, 93, 94]. Clearly this is unproductive for the

group, as well as biologically unrealistic. For example, when two groups of fish

know two different locations for food, in reality the group ends up going to one

of those two location, not to neither location as the model predicts. This would

be equivalent to everyone losing out.

If naive individuals with no desired direction of travel, however, are added

to the group, the group no longer always goes to the average of the opinions

of the informed individuals. Instead, if the difference of opinion between in-

formed subpopulations is large enough, the population chooses to go to one of

the desired directions with equal probability, assuming equally sized informed

subpopulations. That is, with a large difference in preferred direction and in the

presence of naives, the fish make it to one of the food locations. Further, it has

been shown that an increased number of naive individuals makes this group

”decision” occur earlier and with more accuracy up to some limit [90]. In other

words, a group with a significant percentage of uninformed individuals is ac-

tually more effective, both in accuracy and expediency, at reaching the desired

location.
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Trap-lining

For certain values of ω the relation between attraction to the desired direc-

tion and attraction to the group yielded results where the groups oscillated

between the two desired locations [95]. This phenomenon is known as trap-

lining because the individuals continually revisit various locations of interest,

just as trappers repeatedly check their traps. In this example the individuals are

trapped on a line between two positions or food sources.

Trap-lining occurs when a group with a subset of individuals attracted to a

particular location reach that location. Because they are at their desired location,

the desire of that subset to move in any particular direction is zero. However,

the other subset that is far from their desired location strongly wants to return

there, overpowering the now complacent subset. Thus, the entire group begins

to move towards the opposite desired location and the process is repeated.

As the dynamics of trap lining are occurring in one spatial dimension, we

reduce the system from two to one spatial dimensions and examine the dynam-

ics.

4.1.3 Organization

In this chapter, we investigate several models to describe a population of or-

ganisms with subgroups containing conflicting information. Biologically, the

goal is for the group to make a productive consensus decision. A ’productive’

decision is one that gets the individuals to one of the desired directions. Here
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a desired direction can be thought to lead to a food source. A ’consensus’ de-

cision means the group does not split apart. Recall, we are assuming we are

dealing with organisms that need to stay as a single large group to survive. Our

results show the importance of flexible information, particularly by those who

have information a priori, to achieve a helpful consensus decision by the group.

We describe this through analysis of simple models and simulations of more

complex models.

The rest of the chapter is organized as follows: We begin with a proposed

coupled oscillator model based on the Couzin et al. [90] agent based model.

Then we take a step backwards and consider a model with two groups in one

spatial dimension that we model as a mass spring system. We look at the anal-

ysis and simulation of a variety of models in one spatial dimension with both

linear and non-linear components that describe the conflict of two subgroups

of differing information. Next we extend our one-spatial-dimension models to

two spatial dimensions and repeat the analysis and simulations. Finally we

conclude with a discussion of the importance of forgetfulness into the ability to

make a productive consensus decision.

4.2 Coupled Oscillator Model

We begin by examining a continuous-time coupled oscillator model of collective

behavior among individuals with conflicting information.
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4.2.1 Nabet Model

A coupled oscillator model of such a scenario was introduced by Nabet et al.

[96]:

θ̇i = sin(θ1 − θi) +
K
N

N∑
j=1

sin(θ j − θi) (4.3)

θ̇i = sin(θ2 − θi) +
K
N

N∑
j=1

sin(θ j − θi) (4.4)

θ̇i =
K
N

N∑
j=1

sin(θ j − θi) (4.5)

where θi denotes the direction of an individual, K denotes the cohesiveness of

the group, and N denotes the total number of individuals. Equation (4.3) repre-

sents informed individuals with desired direction θ1. Equation (4.4) represents

informed individuals with desired direction θ2. Equation (4.5) represents naive

individuals. Nabet et al. [96], however, immediately neglect the naive individ-

uals and assume all individuals in a subgroup have identical dynamics. This

reduces the system to two ODEs.

By examining the fixed points of the two ODE system, it is known that either

the groups end precisely at the average of the two desired directions or the

groups split apart and each approaches their desired direction. With the model

in its current instantiation, there is no opportunity for the groups to reach a

productive consensus decision; they can only average.

Nabet et al. [96] forced productive consensus decision making by including

a ”forgetfulness” term in the form of a Gaussian (e
− sin(θ1−θi)

2

0.2 ) multiplying their

desired direction function. Due to the exponential in this term, at distances

away from the desired direction the attraction to the desired direction decays
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rapidly to zero. Under such conditions they find productive consensus decision

making occurs for a sufficient separation of angles. This idea agrees with the

simulation results obtained by Couzin et al. [90], who alter their value of ω, a

parameter that adjusts the importance of the desired direction.

With the inclusion of only informed individuals with conflicting informa-

tion, it is impossible to get productive consensus decision making without the

aid of forgetting.

4.3 Modeling Two Populations in One Spatial Dimension

As the self-propelled particle models with two spatial dimension introduced by

Couzin et al. [90] were impossible to analyze, and interesting behavior was ex-

hibited in a one-dimensional space (i.e. during trap-lining), we decided to start

by taking a step backward and considered a model with one spatial dimension.

We considered a population of two informed groups moving along a line. As in

the self-propelled particle models in two spatial dimensions, the movement of

each group was determined by the interplay of desire to go to a certain location

and desire to stay with the group. As in some of the models by Couzin et al.

[95] we consider a desired location here rather than a desired direction.

4.3.1 Basic Mass-Spring Model

Our initial model involved considering the groups as masses and their intercon-

nections as springs to apply the wealth of prior research that has been done into

mass-spring systems.
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Spring Background

Standard theory into mass-spring dynamics states that when a spring is moved

from equilibrium there is a restoring force. This force is commonly applied lin-

early using Hooke’s Law: F = −kx where k is the spring constant with units

mass∗distance
time2 . Additionally, there can be a frictional damping force in such systems:

F = −cv where c is the damping constant with units mass
time and v is the velocity.

This elicits a traditional mass spring system with a single mass and spring:

F = −cv − kx

mx′′ = −cx′ − kx

This system can, of course, be modified to include multiple interconnected

springs and masses, as we will do below.

As noted above, Hooke’s Law implies a linear restoring force by springs.

However, we find a non-linear restoring force to be more appropriate to describe

the biology of fish schools. Instead of standard linear relations, we are interested

in a model of the form:

mx′′ + cp(x′) + kq(x) = 0

where p(x′) and q(x) may be non-linear functions.
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4.3.2 Variations on the Function of Position

We begin by considering models with only two groups, both informed, but in

opposite directions. This gives us the system of equations:

mx′′1 + cx′1 + kq1(x1, x2) = 0

mx′′2 + cx′2 + kq2(x1, x2) = 0 (4.6)

Here we have chosen a linear function of the first derivatives and a non-linear

function of the variables.

Position Function

We consider four cases of the function of the position, q(x1, x2). See Figure 4.1. In

all four cases, there are two parts to each function of the position: one part that

determines the attraction to a certain location and the other part determines the

attraction to the group. The first terms of each equation below determine the

attraction to a particular location, either Ψ for x1 or −Ψ for x2. The last terms

of each equation determine the attraction to the centroid of the group. The con-

stant, α, determines the relative strength of the attraction to a location in relation

to attraction to the group. x̄ is the average of x1 and x2

Increasing Attraction: Case A

In this, the simplest of cases, each group has linearly increasing attraction to

return to a particular location or to return to the group (Figure 4.1). The further

from the desired the location, the stronger the pull back to it. Similar with the
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Figure 4.1: Functional Forms of Attraction

This graph shows the functional form governing attraction, either to a desired

location or to the group centroid. Case A (solid black line) is linearly increasing

attraction. Case B (dot-dash black line) is long-range decay of attraction where

the function increases to a maximum and then decays to zero. Case C is long-

range asymptote of attraction where the function increases to an asymptotic

maximum. Case C is expressed by two functional forms: absolute value (dotted

black line) and inverse tangent (red x markers). Case D is long-range decay

of attraction to an asymptote where the function increases to a maximum and

then decays to a non-zero constant. Case D is also expressed by two functional

forms: absolute value (dashed gray line) and inverse tangent (red + markers).

The exact functional form of each case is described in the text. The values of

constants in these functions are the same as those used in simulations: A = 1,

B = 1
10 , C = 1

2 , D = 1
10 , F = 10.
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group: the further from the group, the stronger the attraction.

qA1(x1, x2) = α [(Ψ − x1)] + (x̄ − x1)

qA2(x1, x2) = α [(−Ψ − x2)] + (x̄ − x2)

Long-range Decay of Attraction: Case B

In this case, the attraction to a particular location initially increases as an

individual moves away from that location (Figure 4.1). As it increases further

the attraction to return is maximized and ultimately, as the individual continues

to move further from the location of interest, the attraction decays to zero. There

is similar behavior regarding attraction to the group: at short distances from the

group centroid the attraction to the group increases but at long distances the

attraction decays to zero.

qB1(x1, x2) = α

[
A(Ψ − x1)

B + (Ψ − x1)2

]
+

A(x̄ − x1)
B + (x̄ − x1)2

qB2(x1, x2) = α

[
A(−Ψ − x2)

B + (−Ψ − x2)2

]
+

A(x̄ − x2)
B + (x̄ − x2)2

The specifics of the function governing the attraction of the individual to the

location and the group are specified by the constants A and B, both of which

have units of distance2. With the above functional form, the individual will feel

the maximum attraction ( A
2
√

B
) to return to the desired location (or group cen-

troid) when
√

B from the desired location (or group centroid).
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Long-range Asymptote of Attraction: Case C

In this case, the attraction to a particular location increases as you move

away from that location and ultimately plateaus at a constant value (Figure 4.1).

There is similar behavior regarding attraction to the group: at short distances

attraction increases until leveling off at a maximum value.

qC1(x1, x2) = α

[
C(Ψ − x1)

D + |(Ψ − x1)|

]
+

C(x̄ − x1)
D + |(x̄ − x1)|

qC2(x1, x2) = α

[
C(−Ψ − x2)

D + |(−Ψ − x2)|

]
+

C(x̄ − x2)
D + |(x̄ − x2)|

The specifics of the function governing the attraction of the individual to

the location or the group are specified by the constants C and D, both of which

have units distance. With such a functional form, the individual will feel a max-

imum attraction (C) to return when sufficiently far from the desired location (or

group centroid). However, because of the presence of the absolute value, this

is a piecewise continuous function which has the ability to create complicated

dynamics at the boundaries, as described later (Section 4.3.3). We avoid this by

using inverse tangent (tan−1) which is continuous.

qC1(x1, x2) =
2C
π

(
α
[
tan−1(F(Ψ − x1))

]
+ tan−1(F(x̄ − x1))

)
qC2(x1, x2) =

2C
π

(
α
[
tan−1(F(−Ψ − x2))

]
+ tan−1(F(x̄ − x2))

)

The specifics of the function governing the attraction of the individual to the

location or the group are specified by the constants C and F. The constant C

has units of distance, and the individual feels the maximum attraction C when

sufficiently far from the desired location (or group centroid). Since tan−1 has

the range (−π2 ,π2 ), we choose the constant to be 2C
π

so the function asymptotes
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at C which is analogous to the previous piecewise equations for Case C. The

constant F has units distance and determines how steeply the tan−1 approaches

its maximum. We choose F = 10 so that both functions for Case C are almost

identical (Figure 4.1).

Long-range Partial Decay of Attraction: Case D

The final case incorporates the previous two cases (long-range decay and

long-range asymptote of attraction) and involves an initial increase to a maxi-

mum followed by decay of attraction to a lower than maximum but non-zero

value (Figure 4.1). At short distances from the desired location, the attraction

initially increases until a maximum and then begins to decay but ultimately

plateaus at a non-zero value. Analogous behavior is seen with the attraction to

the group centroid.

qD1(x1, x2) = α

[
A(Ψ − x1)

B + (Ψ − x1)2 +
C(Ψ − x1)

D + |(Ψ − x1)|

]
+

A(x̄ − x1)
B + (x̄ − x1)2 +

C(x̄ − x1)
D + |(x̄ − x1)|

qD2(x1, x2) = α

[
A(−Ψ − x2)

B + (−Ψ − x2)2 +
C(−Ψ − x2)

D + |(−Ψ − x2)|

]
+

A(x̄ − x2)
B + (x̄ − x2)2 +

C(x̄ − x2)
D + |(x̄ − x2)|

The specifics of the function of the attraction of the individual are specified

by the constants A and B with units distance2 as well as C and D with units

distance. The individual will feel a an attraction (C) to return when sufficiently

far from the desired location (or group centroid). Again to avoid a piecewise
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function, we replace the absolute value terms with inverse tangent.

qD1(x1, x2) = α

[
A(Ψ − x1)

B + (Ψ − x1)2 +
2C
π

tan−1(F(Ψ − x1))
]

+
A(x̄ − x1)

B + (x̄ − x1)2 +
2C
π

tan−1(F(x̄ − x1))

qD2(x1, x2) = α

[
A(−Ψ − x2)

B + (−Ψ − x2)2 +
2C
π

tan−1(F(−Ψ − x2))
]

+
A(x̄ − x2)

B + (x̄ − x2)2 +
2C
π

tan−1(F(x̄ − x2)

The constant C has units of distance, and the individual feels the attraction C

when sufficiently far from the desired location (or group centroid). Since tan−1

has the range (−π2 ,π2 ), we choose the constant to be 2C
π

so the function asymptotes

at C which is analogous to the previous piecewise equations for Case D. The

constant F has units distance and determines how steeply the tan−1 approaches

its maximum. We choose F = 10 so that all functions for Case D are almost

identical (Figure 4.1).

Non-dimensionalization

In order to continue, we needed to non-dimensionalize our equations. For il-

lustrative purposes, let us focus on the Case B from above. By noting that the

second derivative of position is the first derivative of velocity, we reformulate

this into an four-dimensional ODE system:

x′1 = v1

v′1 =
1
τ2

{
α

[
A(Ψ − x1)

B + (Ψ − x1)2

]
+

A(x̄ − x1)
B + (x̄ − x1)2

}
− rv1

x′2 = v2

v′2 =
1
τ2

{
α

[
A(−Ψ − x2)

B + (−Ψ − x2)2

]
+

A(x̄ − x2)
B + (x̄ − x2)2

}
− rv2
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Here 1
τ2 is our spring constant corresponding to k in Equation (4.6) with units

1
time2 and r is our damping constant corresponding to c in Equation (4.6) with

units 1
time . We have removed mass from our equations by assuming that the

mass of each group is one.

By letting t = τT , x = ΨX, v = Ψ
τ

V , A = Ψ2a, and B = Ψ2b where X, T , V , a and

b are non-dimensional, we obtain a non-dimensionalized system:

X′1 = V1

V ′1 = α

[
a(1 − X1)

b + (1 − X1)2

]
+

a(X̄ − X1)
b + (X̄ − X1)2

− σV1

X′2 = V2

V ′2 = α

[
a(−1 − X2)

b + (−1 − X2)2

]
+

a(X̄ − X2)
b + (X̄ − X2)2

− σV2 (4.7)

The constants a and b determine the shape of our functions. Additionally, α and

σ = rτ are parameters in our system.

Following similar conventions, we can find the non-dimensionalization for

Cases A, C and D as well.

For Case A we us t = τT , x = ΨX, and v = Ψ
τ

V where X, T , and V are non-

dimensional, to obtain a non-dimensionalized system:

X′1 = V1

V ′1 = α(1 − X1) + (X̄ − X1) − σV1

X′2 = V2

V ′2 = α(−1 − X2) + (X̄ − X2) − σV2

For Case C we us t = τT , x = ΨX, v = Ψ
τ

V , C = Ψc, and F = Ψ f where X, T , V ,
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c and f are non-dimensional, to obtain a non-dimensionalized system:

X′1 = V1

V ′1 =
2c
π

(
α
[
tan−1( f (1 − X1))

]
+ tan−1( f (X̄ − X1))

)
− σV1

X′2 = V2

V ′2 =
2c
π

(
α
[
tan−1( f (−1 − X2))

]
+ tan−1( f (X̄ − X2))

)
− σV2

For Case D, we use t = τT , x = ΨX, v = Ψ
τ

V , A = Ψ2a, B = Ψ2b C = Ψc,

and F = Ψ f where X, T , V , a, b, c and f are non-dimensional, to obtain a non-

dimensionalized system:

X′1 = V1

V ′1 = α

[
a(1 − X1)

b + (1 − X1)2 +
2c
π

tan−1( f (1 − X1))
]

+

[
a(X̄ − X1)

b + (X̄ − X1)2
+

2c
π

tan−1( f (X̄ − X1))
]
− σV1

X′2 = V2

V ′2 = α

[
a(−1 − X2)

b + (−1 − X2)2 +
2c
π

tan−1( f (−1 − X2))
]

+

[
a(X̄ − X2)

b + (X̄ − X2)2
+

2c
π

tan−1( f (X̄ − X2))
]
− σV2

Fixed Point Analysis

To solve for fixed points, we look for solutions when all our four ODEs are equal

to zero. Because of the form of our system, V1 and V2 are always zero for any

fixed point. To determine the stability of our fixed points we examine the eigen-

values of the Jacobian evaluated at our fixed point. Although we have a four

dimensional system the eigenvalues associated with the X′1 = X′2 = 0 directions

always have negative real parts. Since for all fixed points, the velocity is zero
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(V1 = V2 = 0, the eigenvalues with associated eigendirections are always nega-

tive, indicating the dynamics in the X1 − X2 plane are attracting. Thus, we only

need to consider the eigenvalues associated with the other two eigendirections

to establish stability of our fixed points.

We can solve Case A analytically for all positive values of α and σ. There

is one fixed point, ( α
1+α

, −α1+α
) which is stable for all parameter values. In other

words, all parameters lead to splitting around the average of zero. This Case

does not exhibit interesting dynamics.

We can solve Case B analytically for fixed points of the system when α =

1. In that case there are seven fixed points, three of which are stable (Table

4.1). All the fixed points depend on the value of b which is always positive, by

construction.

Table 4.1: Fixed points and Stability of One-Spatial-Dimension Model
when α = 1

X1 X2 V1 V2 Stability

1
2

1
2 0 0 Unstable

1
2 (1 −

√
1 − 4b) 1

2 (−1 +
√

1 − 4b) 0 0 Unstable

1
2 (1 +

√
1 − 4b) 1

2 (−1 −
√

1 − 4b) 0 0 Stable

1
3 (2 −

√
1 − 3b) −

√
1 − 3b 0 0 Unstable

1
3 (2 +

√
1 − 3b)

√
1 − 3b 0 0 Stable

1
3 (−2 −

√
1 − 3b) −

√
1 − 3b 0 0 Stable

√
1 − 3b 1

3 (−2 +
√

1 − 3b) 0 0 Unstable

Although we cannot analytically solve for the fixed points when α , 1 we

can numerically solve for the fixed points, as we will see in the next section.
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We can also solve Case C analytically for fixed points of the system when α =

1. To solve we must take the tangent of the simplified equations. Conveniently

tan(a + b) =
tan(a)+tan(b)

1−tan(a) tan(b) . Thus, when α = 1 all the inverse tangents fall out because

of the tangents and there is a single stable fixed point ( 1
2 ,−

1
2 ). Although this trick

does not work unless α = 1, we can still solve numerically for the fixed point for

other values of α. We find that Case C always has one stable fixed point.

We can only solve for Case D numerically. Like Case B, there are multiple

fixed points which we explore more in the next section.

Bifurcation Analysis

Here we again use Case B as an illustration. In Case B, there are four parameters

in the non-dimensionalized model: a, b, α and σ. The parameters σ and a do not

appear in the fixed point equations. σ does not affect the fixed point, because V1

and V2 always equal zero for our fixed points and σ only appears multiplying

V1 and V2. Additionally, a is in all terms left after V1 and V2 are set to zero so it

can be divided out without altering the fixed points. This leaves two possible

parameters to consider: b and α. We fix b at the particular value of 1
10 to have

the shape of the function of position we desire.

This leaves α as the parameter to vary. Recall, α represents the relative

strength of attraction to a fixed location over attraction to the centroid of the

group. We consider varying α over positive numbers. We solve the equations

for all positive α and find a varying number of fixed points, between one and

seven.

For small, positive α, there are three fixed points, two stable sinks and one
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unstable saddle. As alpha is increased, there are five saddle node bifurcations.

The first saddle node, denoted A in Figure 4.2, is encountered at α ≈ 0.735 cre-

ating a stable sink and an unstable source, for a total of five fixed points: two

unstable, three stable. The second saddle node, denoted B in Figure 4.2, is en-

countered at α ≈ 0.762 creating two unstable saddles, for a total of seven fixed

points: three stable, four unstable. It is in this region where we encounter α = 1.

The third saddle node, denoted C in Figure 4.2, is encountered at α ≈ 1.351

where an unstable source and an unstable saddle collide, for a total of five fixed

points: three stable and two unstable. The fourth and fifth saddle nodes, de-

noted D+ and D− in Figure 4.2, both occur at α ≈ 2.32 and both entail an unstable

saddle colliding with a stable sink. The reason these two fixed points occur at

the same point is described below. This results in one stable fixed point which

exists and approaches 1 for X1 and -1 for X2 as α increases.

The set up of the equations of this model dictate the presence of a symmetry:

X1 = −X2. This symmetry occurs because X1 is attracted to 1 and X2 is attracted

to -1 and all other aspects of the equations are reciprocal. All of the fixed points

in this system either lie on the X1 = −X2 line or are mirrored across the X1 = −X2

line. Initially of the three fixed points one is of the form (X1,−X1), lying on the

X1 = −X2 line, and two are (X1, X2) = −(X2, X1), mirrored across the X1 = −X2

line. The latter two fixed points are stable. The first bifurcation encountered

introduces two more fixed points, one stable and one unstable, both of the form

(X1,−X1), and both lying on the X1 = −X2 line. The next bifurcation introduces

two unstable fixed points of the form (X1, X2) = −(X2, X1) born from and mirrored

across the X1 = −X2 line. The third bifurcation eliminates two unstable fixed

points lying on the X1 = −X2 line. This leave five fixed points, only one of

which is on the X1 = −X2 line of symmetry. The other four appear in pairs

91



Figure 4.2: Bifurcation Diagram of Model in One Spatial Dimension

Bifurcation diagram for the long-range decay of attraction (Case B) model in

one spatial dimension. Curves in red denote stable fixed points while curves in

blue denote unstable fixed points. Each bifurcation is denoted by a letter, A-D,

as described in the text.

(a) The left panel shows the bifurcation curves with x1 as a function of α.

(b) The right panel shows the bifurcation curves with x2 as a function of α.
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moving towards each other as α increases. They are mirrored across the X1 =

−X2 line. When two of the fixed points meet in a saddle node bifurcation, due

to the symmetry, the other two must meet as well in a saddle node bifurcation.

Thus, the final two bifurcations occur at the same value of α. Afterwards, there

remains one stable fixed point lying on the X1 = −X2 line.

We chose to examine Case B because the bifurcations in Case B and Case D

are similar in nature, they just occur at slightly different values for α (results not

shown for Case D). Cases A and C only have a single stable fixed point and no

bifurcations.

Simulation Results

Next we wanted to understand, how the system behaves over a variety of initial

conditions when there are multiple stable fixed points as in Cases B and D. This

will determine the basins of attraction for our stable fixed points. Again we

use Case B as illustrative where multiple stable fixed points occur when .735 <

α < 2.32. We consider three values of α: 0.75, 1.2, 2.25 (Figure 4.3). At these

values of α, we examine the long time behavior over variety of initial conditions:

−5 ≤ X1 ≤ 5, −5 ≤ X2 ≤ 5. Initial conditions were gridded over this region with

a step-size of 0.05. X1 is attracted to 1 and X2 is attracted to -1 and they are both

attracted to stay together as a group.

At α = 0.75 there are five fixed points, three of which are stable. Since α <

1 we expect the individuals to stay together preferentially over going to their

desired location. This is exhibited in Figure 4.3(a). Immediately following the

first bifurcation, most of the initial conditions go towards consensus decision
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making at either of the two directions. The initial conditions where X1 is near

1, go to positive consensus decision making and the initial conditions where X2

is near -1 go to negative consensus decision making. The only area of splitting

occurs along the X1 = −X2 line as both individuals are approximately equally far

from their desired location.

As α increases, we have passed through a bifurcation that created two un-

stable fixed points, which does not affect the basins of attraction. However, as

α grows the tendency to split around the average of zero increases and we see

in Figure 4.3(b) where the splitting region has enlarged. However, along the

X1 = 1 line there remains overwhelming preference to go to positive consensus

and along the X2 = −1 line preference to go to negative consensus.

As α increases further we go through a third bifurcation that eliminates two

unstable fixed points. Again this has no bearing on the basins of attractions.

However, large α means significant bias to the preferred location over staying

as a group. Thus, the majority of the initial conditions end in splitting of the

population around the average of zero.

4.3.3 Piecewise Linear Model

Although the four cases above are illustrative, due to the non-linearities, we

cannot generally find the fixed points to cases B, C and D. We attempted to

reformulate the above models, extracting the essential aspects of the functions

and representing them via piecewise linear functions, which are in some ways
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Figure 4.3: Basins of Attraction of Stable Fixed Points

The long term behavior of the Case B (long-range decay of attraction) system

over a variety of initial conditions where −5 ≤ X1 ≤ 5, −5 ≤ X2 ≤ 5. Initial

conditions were gridded over this region with a step-size of 0.05. X1 is attracted

to 1 and X2 is attracted to -1; they are both attracted to the group centroid.

(a) The top panel shows the basins of attraction of the three stable fixed point

when α = 0.75. Gray denotes splitting of the population around the average of

0 such that x1 = 0.792 and x2 = −0.792. Red denotes consensus decision making

to the positive side with x1 = 0.946 and x2 = 0.867. Blue denotes consensus

decision making to the negative side with x1 = −0.867 and x2 = −0.946.

(b) The middle panel shows the basins of attraction of the three stable fixed point

when α = 1.2. Gray denotes splitting of the population around the average of 0

such that x1 = 0.912 and x2 = −0.912. Red denotes consensus decision making

to the positive side with x1 = 0.945 and x2 = 0.810. Blue denotes consensus

decision making to the negative side with x1 = −0.810 and x2 = −0.945.

(c) The bottom panel shows the basins of attraction of the three stable fixed point

when α = 2.3. Gray denotes splitting of the population around the average of 0

such that x1 = 0.958 and x2 = −0.958. Red denotes consensus decision making

to the positive side with x1 = 0.934 and x2 = 0.518. Blue denotes consensus

decision making to the negative side with x1 = −0.518 and x2 = −0.934.
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easier to analyze.

x′1 = v1

v′1 = −rv1 +
1
τ2


α



−k1 Ψ − x1 < −κ

Ψ − x1 −κ ≤ Ψ − x1 ≤ κ

k1 Ψ − x1 > κ

+



−kg x̄ − x1 < −κ

x̄ − x1 −κ ≤ x̄ − x1 ≤ κ

kg x̄ − x1 > κ


x′2 = v2

v′2 = −rv2 +
1
τ2


α



−k2 −Ψ − x2 < −κ

−Ψ − x2 −κ ≤ −Ψ − x2 ≤ κ

k2 −Ψ − x2 > κ

+



−kg x̄ − x2 < −κ

x̄ − x2 −κ ≤ x̄ − x2 ≤ κ

kg x̄ − x2 > κ


(4.8)

Here 1
τ2 is our spring constant corresponding to k with units 1

time2 , r is our damp-

ing constant corresponding to c with units 1
time , and Ψ (−Ψ) is the desired di-

rection of x1 (x2). The constant k1 (k2) is the asymptotic value of the function

describing the attraction of x1 (x2) to its desired location. The constant kg is the

asymptotic value of the function describing the attraction of the individual to

the group centroid. The constant κ determines the size of the regions of each

part of the piecewise functions. Further, it is important to notice that the second

piecewise function in both v′i equations is equal to the negative of the other.

Since there are three parts to each of three piecewise functions that compose

are four ODE system, there are 27 separate functions to consider, each depen-

dent on the relationship of x1 and x2. Although the boundaries of the regions are

specified such that the boundary points lie in the middle function of each piece-

wise function, in terms of the analysis it does not matter which regions contain

these boundary points.
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Relationship of Piecewise Function to Cases in Section 4.3.2

All of the previous cases are illustrated with this piecewise model, depending

on the choice of the ki’s and κ. Case A in its original formulation is already linear,

but not terribly interesting. To associate Equation (4.8) with Case A, take κ = ∞

and the functions are no longer piecewise but always linear. For our piecewise

system, Equation (4.8), to be analogous to Case B, we take k1 = k2 = kg = 0.

All functions immediately become zero after they reach their maximum. For

Equation (4.8) to be analogous to Case C, we take k1 = k2 = kg = κ. All functions

rise linearly to a maximum of κ. Finally, for Equation (4.8) to be analogous to

Case D, we take k1 = k2 = kg = κ
constant where the constant depends upon on how

far down the function decays.

Non-dimensionalization of Piecewise System

As in our original model, we want to work with the non-dimensionalized sys-

tem. By letting t = τT , x = ΨX, and v = Ψ
τ

V where X, T , and V are non-
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dimensional, we obtain a non-dimensionalized system:

X′1 = V1

V ′1 = −σV1 +


α



−k1 1 − X1 < −κ

1 − X1 −κ ≤ 1 − X1 ≤ κ

k1 1 − X1 > κ

+



−kg X̄ − X1 < −κ

X̄ − X1 −κ ≤ X̄ − X1 ≤ κ

kg X̄ − X1 > κ


X′2 = V2

V ′2 = −σV2 +


α



−k2 −1 − X2 < −κ

−1 − X2 −κ ≤ −1 − X2 ≤ κ

k2 −1 − X2 > κ

+



−kg X̄ − X2 < −κ

X̄ − X2 −κ ≤ X̄ − X2 ≤ κ

kg X̄ − X2 > κ


(4.9)

The ki’s and κ remain exactly as in the non-dimensionalized system. As in the

non-piecewise system, α and σ = rτ are parameters in our system.

Fixed Point Analysis

There is a large body of literature about the analysis of traditional dynamical

systems. However, many physical systems are left out because they are charac-

terized by a period of smooth dynamics separated by events that on the slow

time scale appear instantaneous. These instantaneous events cause non-smooth

jumps in the governing equations. The non-smoothness can be at several lev-

els: discontinuities in the function itself, in the first derivative or in higher order

derivatives. The dynamics of each of these types of systems have been ana-

lyzed but the non-smoothness leads to many unexpected dynamics [97]. It is

not enough to only consider dynamics within each region, but boundary dy-

namics must be considered as well. The dynamics on the boundary can become

quite complicated [97].
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Most of our piecewise system falls under what is known as a Filippov flow

[97]. Filippov flows are ones where there is a jump in the value of the derivative

as is seen in Equation 4.9 when ki , κ. Because the derivatives have jumps we

generically do not find simple codimension one bifurcations [97]. There is the

possibility of sliding motion and equilibria there. Unfortunately, a complete

understanding of the dynamics when the system is more than two dimensions

remains unknown [97].

Fixed Points

We first search for fixed points within our regions. This is done as in stan-

dard dynamical systems analysis by searching for places where the equations

equal zero simultaneously. As we noted previously, the piecewise version of

Case A is actually equivalent to Case A and has the same single stable fixed

point, ( α
1+α

, −α1+α
).

The piecewise system, Equation 4.9, represents Cases B-D dependent upon

the choice for the ki’s. For general values of our constants, there are seven fixed

points within regions (Table 4.2). All of the seven fixed points are stable. How-

ever, not all seven fixed points exist for any given choices of α, ki’s and κ.

We examine the system when κ = 1. We do not yet pick values for the ki’s.

For this particular choice of κ, only three of the fixed points listed in Table 4.2 fall

within existent regions: (1− k2, 1− (1 + 2α)k2), ( α
1+α

, −α1+α
), (−1 + (1 + 2α)k1,−1 + k1).

A fourth fixed point, (α−kg

α
,
−α+kg

α
), lies on the boundary of two regions. The re-

maining three fixed points lie within regions which do not exist with our choice
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Table 4.2: Fixed points and Stability of Piecewise Linear Model

X1 X2 V1 V2 Region Stability

−1 − (1 + 2α)k1 −1 − k1 0 0



1 − x1 < −κ

−κ ≤ −1 − x2 ≤ −κ

−κ ≤ x1−x2
2 ≤ κ

Stable

1 − k2 1 − (1 + 2α)k2 0 0



−κ ≤ 1 − x1 ≤ κ

−1 − x2 < −κ

−κ ≤ x2−x1
2 ≤ κ

Stable

α−kg
α

−α+kg
α 0 0



−κ ≤ 1 − x1 ≤ κ

−κ ≤ −1 − x2 ≤ κ

x2−x1
2 < −κ

Stable

α
1+α

−α
1+α 0 0



−κ ≤ 1 − x1 ≤ κ

−κ ≤ −1 − x2 ≤ κ

−κ ≤ x2−x1
2 ≤ κ

Stable

α+kg
α

−α−kg
α 0 0



−κ ≤ 1 − x1 ≤ κ

−κ ≤ −1 − x2 ≤ −κ

x1−x2
2 < −κ

Stable

1 + k2 1 + (1 + 2α)k2 0 0



−κ ≤ 1 − x1 ≤ κ

−1 − x2 > κ

−κ ≤ x2−x1
2 ≤ κ

Stable

−1 + (1 + 2α)k1 −1 + k1 0 0



1 − x1 > κ

−κ ≤ −1 − x2 ≤ κ

−κ ≤ x2−x1
2 ≤ κ

Stable

101



of parameters.

Because our system is four dimensional, no complete understanding of the

piecewise dynamics exists. We cannot confidently say anything more about the

fixed points, analytically. However, we can examine our equilibrium points

with simulation. We find that the three equilibrium points within valid regions

but not the one in the boundary are stable in simulations (not shown).

4.4 Model in Two Spatial Dimensions

Next we extend our equations to two spatial dimensions by adding a y-

component to each of the equations. Since Case A and Case C do not give inter-

esting dynamics and Case B and Case D give similar dynamics (although Case

B is much easier to deal with mathematically since it lacks an inverse tangent),

we choose to use Case B as an illustrative example. Here, we skip straight to

the non-dimensionalized version using the reduction (t = τT , x = ΨX, V = Ψ
τ

V ,

a = Ψ2A, b = Ψ2B). Group X1 is attracted to (1, 1) and X2 to (−1−, 1). In or-

der to relate the x- and y-components of each group, we take the Case B func-

tion applied to the distance to a point and multiple by the direction towards

that point. For example, the term examining movement of X1 towards its de-

sired location X1 = 1 is governed by the function of the distance to the de-

sired location of (1, 1) multiplied by the unit vector in the direction of 1 − X1:
a∗
√

(1−X1)2+(1−Y1)2

b+(
√

(1−X1)2+(1−Y1)2)2

1−X1√
(1−X1)2+(1−Y1)2

. This simplifies to a(1−X1)
b+(1−X1)2+(1−Y1)2 which includes

the square of the distance in the denominator. Analogous terms are included
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for X2, Y1, and Y2 and this results in an eight equation system:

X′1 = Vx1

V ′x1
= α

[
a(1 − X1)

b + (1 − X1)2 + (1 − Y1)2

]
+

a(X̄ − X1)
b + (X̄ − X1)2 + (Ȳ − Y1)2

− σVx1

Y ′1 = Vy1

V ′y1
= α

[
a(1 − Y1)

b + (1 − X1)2 + (1 − Y1)2

]
+

a(Ȳ − Y1)
b + (X̄ − X1)2 + (Ȳ − Y1)2

− σVy1

X′2 = Vx2

V ′x2
= α

[
a(−1 − X2)

b + (−1 − X2)2 + (−1 − Y2)2

]
+

a(X̄ − X2)
b + (X̄ − X2)2 + (Ȳ − Y2)2

− σVx2

Y ′2 = Vy2

V ′y2
= α

[
a(−1 − Y2)

b + (−1 − X2)2 + (−1 − Y2)2

]
+

a(Ȳ − Y2)
b + (X̄ − X2)2 + (Ȳ − Y2)2

− σVy2 (4.10)

4.4.1 Fixed Points and Bifurcations

To solve for the fixed points in our two-spatial-dimension model we search for

solutions when all eight Equations (4.10) are equal to zero. For any fixed point,

Vx1 = Vy1 = Vx2 = Vy2 = 0. We find that the system, similar to our models in one

spatial dimension, can only be solved analytically under special conditions but

we can easily solve for our fixed points numerically.

Again, we use α, representing the relative strength of attraction to a fixed

location over attraction to the group centroid, as our bifurcation parameter. As

we vary α over positive numbers there are between one and seven fixed points

as in the model in one spatial dimension. In fact, the bifurcation diagrams for

the model in two spatial dimensions are almost identical to those for the model

in one spatial dimensions, except the bifurcations in two spatial dimensions
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occur at slightly smaller values of α (Figure 4.4).

For small, positive α, there are three fixed points: two stable sinks and one

unstable saddle. As alpha is increased, there are five saddle node bifurcations.

The first saddle node bifurcation creates a stable sink and an unstable source, for

a total of five fixed points: two unstable, three stable. The second saddle node

bifurcation creates two unstable saddles, for a total of seven fixed points: three

stable, four unstable. The third saddle node bifurcation is where an unstable

source and an unstable saddle collide, for a total of five fixed points: three stable

and two unstable. The fourth and fifth saddle node bifurcations both entail an

unstable saddle colliding with a stable sink and occur for the same value of

α. This occurs similarly to the model in one spatial dimension because of the

X1 = −X2 (Y1 = −Y2) symmetry. This results in one stable fixed point which

exists and approaches 1 for X1 and Y1 and -1 for X2 and Y2 as α increases.

4.4.2 Transient Oscillations

We do not see persistent oscillations in any of our systems either in one or two

spatial dimensions. There are only stable and unstable fixed points, no limit

cycles. However, there are damped oscillations exhibited in some cases prior to

reaching a fixed point. The length of oscillations depends on value of our non-

dimensionalized damping constant, σ, as well as the initial conditions. Smaller

values of σ lead to longer oscillations.

In Figure 4.5, there are two examples of long-time transient oscillations.

These appear to be trap-lining behavior. The groups, both positively and neg-

atively informed, oscillate between the two target locations before settling to a
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Figure 4.4: Bifurcation Diagram of Model in Two Spatial Dimensions

Bifurcation diagram for long-range decay of attraction (Case B) model in two

spatial dimensions. Curves in red denote stable fixed points while curves in

blue denote unstable fixed points.

(a) The far left panel shows the bifurcation curves with x1 as a function of α.

(b) The central left panel shows the bifurcation curves with x2 as a function of α.

(c) The central right panel shows the bifurcation curves with y1 as a function of

α.

(d) The far right panel shows the bifurcation curves with y2 as a function of α.
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Figure 4.5: Transient Trap-lining Behavior in Two Spatial Dimensions

Trajectories of the two populations in the x-y plane over 100 time intervals. Black

x’s mark the desired location of each informed population: (1, 1) and (−1,−1).

The x-axis is the x-position, the y-axis is the y-position of the groups and σ is

0.01 for both simulations.

(a) Trajectories with initial conditions x1 = −0.4618, y1 = −0.1543, x2 = 0.0957,

y2 = 0.8855, vx1 = vy1 = vx2 = vy2 = 0 lead after a long time to a consensus decision

near (1, 1).

(b) Trajectories with initial conditions x1 = −0.8624, y1 = −0.3608, x2 = 0.0617,

y2 = 0.3089, vx1 = vy1 = vx2 = vy2 = 0 lead after a long time to a consensus decision

near (1, 1).
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fixed point near one of the preferred locations. In both examples, the motion is

restricted to a region near the line between (1, 1) and (−1,−1). As σ is increased

the length of oscillations decreases.

4.5 Discussion

In this chapter, we have examined several mass-spring inspired models of

groups composed of two equal-sized subgroups with conflicting information.

The difference in the models involves the number of spatial dimensions as well

as the functional forms governing how long the individual holds onto pref-

erences. In all models we consider α, which governs the relative strength of

attraction to the desired location versus the attraction to the group, to be our

bifurcation parameter.

We obtain similar results in both one and two spatial dimensions. In both

cases the number of stable fixed points depends on the particular functional

form as well as the value of alpha. When there is only one fixed point, only

averaging is observed. When there is more than one stable fixed point, both

averaging and consensus decision making are observed.

The other parameter σ determines how quickly the population settles to its

long term behavior. By reducing σ the population oscillates between the de-

sired locations for a short amount of time before settling to either averaging or

consensus decision making. This is considered to be transient trap-lining.
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4.5.1 Role of forgetfulness

In this paper, we have shown that productive consensus decision making does

not occur in globally coupled systems with two groups of equal size without

the presence of forgetfulness. This was also observed by Nabet et al. [96].

We find for all models with functional forms that involve forgetfulness, the

reduction of attraction to a particular location as one moves away from it, (Case

B and Case D) there are multiple stable solutions for a wide range of the bifur-

cation parameter, α. Some of these stable fixed points equated to averaging and

some to productive consensus decision making. When multiple stable points

exist, the resultant fixed point reached is dependent upon the initial conditions.

At large values of α there is only one fixed point for splitting around the average

of zero which is expected since large αmeans a strong preference for the desired

location over the group.

Further, it is not necessary for the animal to forget completely, analogous to a

functional form that decays to zero (Case B). As long as there is some reduction

from the maximum (Case D), which we term forgetfulness, there is the ability to

have some level of consensus decision making. The closer the asymptotic value

is to zero, the closer the two populations will be to each other in a consensus

decision. Although, as long as the asymptotic value is less than the maximum

value, multiple stable fixed points can occur.

For models which do not include forgetfulness there is only a single stable

fixed point of averaging. Such Cases A and C do not allow for productive con-

sensus decision making.
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4.5.2 Role of naives

Couzin et al. [90] have shown that naive individuals are essential for productive

consensus decision making even without forgetfulness. In addition, they have

shown that naive individuals help the group make the decision faster and more

accurately. Similar results showing the benefit of naive individuals are seen

experimentally [95].

In this paper, we do not include naive populations in our models. With

global coupling, a naive population merely averages the distance between the

informed population, and thus does not contribute to the dynamics. With a

naive population exact values of the fixed points would be altered but not the

number and stability of the fixed points. Thus naives can not aid productive

consensus decision making in this framework. It is our intention to further

examine the role of naive individuals which may entail breaking the all-to-all

coupling that has been included thus far.

110



APPENDIX A

MACROPHAGE ACTIVATION EXPERIMENTAL PROCEDURE

Stimulation experiments:

Using the RAW Arginase-1/GFP cell clone D8, a number of stimulation

experiments were performed. IL-4 from Cell Sciences (Canton, MA) and

cAMP from Sigma-Aldrich (St. Louis, MO) in concentrations of 5ng/mL and

0.5mM respectively were used to induce alternative activation. IFN-γ from

Cell Sciences at 100units/mL or CpG ODN 1826 class B with the sequence 5’

- TCCATGACGTTCCTGACGTT- 3’ from Sigma-Genosys (The Woodlands, TX)

at 1µg/mL, which is an immunostimulatory oligonucleotide (23) that activates

TLR9, and a combination of CpG and IFN-γ were used to induce classical acti-

vation. Stimulations were performed either in 24-well culture plates containing

1mL of medium with 2 million cells per well or in 96-well culture plates con-

taining 200µL of medium with 400,000 cells per well.

Production of RAW cells with a GFP transgene:

Dr. Sidney Morris of the University of Pittsburgh produced a reporter

murine macrophage-like RAW cell line (RAW 246.7) for this project by trans-

fecting the cells with a Green Fluorescence Protein (GFP) transgene containing

a promotor for Arginase-1 cloned into the vector pZsGreen-1-DR. The vector

also contains a neomycin-resistance cassette, which allows the cells to be se-

lected using G418. With this cell line, any time that the Arginase-1 promotor is

activated, GFP is also expressed. GFP, when struck by laser light, fluoresces and

enables classification via flow cytometry. Once the cell line was received, the

cells were stimulated and were sorted into GFP positive and negative cells and
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then selected for individual cell clones by limiting dilution. Cells were grown

in DMEM high glucose without glutamine from BioWhittaker, Inc (Walkersville,

MD) supplemented with 10mL penicillin-streptomycin solution from GIBCO R©,

10mL 200mM glutamine from BioWhittaker, Inc. (4mM final), 5mL 1M HEPES

from GIBCO R©(15mM final), 5mL sodium pyruvate from GIBCO R© and 50mL

defined Fetal Calf Serum (FCS) from HyClone (Logan, Utah; 10% final). All

amounts are based upon 500 mL of DMEM. Additionally G418 from A.G. Sci-

entific, Inc. (San Diego, CA) at a concentration of 0.5mg/mL was consistently

added to the cells to select for those containing the transgene. The cells were

incubated at 37◦C in a 5% CO2 and humidified environment.

Cell staining in preparation for flow cytometry analysis:

The stimulated cells were incubated at 37◦C for about one day. Supernatants

were saved in a 96-well titer plate and kept frozen at -20◦C until they were tested

for the presence of Nitric Oxide or Urea. Cells were taken up in 1mL of chilled

phosphate buffer solution (PBS) from Mediatech, Inc. (Herndon, VA) and were

incubated at 4◦C for 10 minutes. Cells were then mixed with the PBS and trans-

ferred to separate FACS tubes. The tubes were centrifuged at 1200rpm for 5

minutes., supernatants were discarded and 100µL of a 1/200 dilution of PE-

labeled anti-CD40 from eBioscience, Inc. (San Diego, CA); final 0.02mg/mL) in

FACS buffer consisting of PBS, 5mg/mL Bovine Serum Albumin (BSA) form Fis-

cher Scientific (Pittsburgh, PA) and 10% sodium azide was added to each tube.

CD40 is a surface protein, which functions as a co-stimulatory molecule for T-

and B-cell activation. This protein is commonly used as a general marker for

macrophage activation. Again the tubes were placed in 4◦C to incubate for 15

minutes. 1mL of FACS buffer was added to each tube and the tubes were then
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placed back in the centrifuge for another 5-minute spin. The supernatants were

discarded and the cells were brought up in 300µL of FACS buffer and were ana-

lyzed by flow cytometry on a FACS machine, FACSCalibur , from BD (Franklin

Lakes, NJ). The FACS machine was used to determine if there was an upregula-

tion of Arginase-1/GFP in the stimulated cells,. Analysis was performed using

FlowJo version 4.6.2 and dead cells were excluded from the analysis by stain-

ing with 1µL of 10µg/mL stock solution of Propidium Iodide (PI) form Sigma-

Aldrich, which invades only the leaky membranes of dead cells.

Analysis of supernatants for the production of Nitric Oxide by the Griess

Reaction:

Nitric oxide tests were performed using the supernatants that were removed

from the activated cells and were then frozen. 50µL of each sample were plated

into a new 96-well titer plate with duplicates of each sample. Two rows were al-

located for standards. 75µL of the cell medium went into the first two wells and

only 50µL into the remaining. 25µL of a 10mM stock solution of sodium nitrite

from Mallinckrodt Baker, Inc. (Paris, KY) was added to the first two wells and

a serial dilution was performed down the row, leaving the last two wells alone

as blanks; the extra 50µL in the pipet was discarded. An equal amount of ’So-

lution A’ consisting of sulfanilamide from Mallinckrodt Baker, Inc. at 1mg/mL

in 2.5% H3PO4 and ’Solution B’ consisting of naphthylethylenediamine from

Sigma-Aldrich at 3µg/mL in 2.5% H3PO4 were mixed and 50µL of the mixture

was added to each well. The plate was then read on a PowerWave XS Microplate

Scanning Spectrophotometer by Bio-Tek R© Instruments, Inc. (Winooski, VT) us-

ing a protocol measuring the presence of nitric oxide. The results were tabulated

in Prism 4.0c by GraphPad Software, Inc. (San Diego, CA).

113



Analysis of supernatants for production of Urea:

Urea tests were performed using the supernatants that were removed from

the activated cells and were then frozen. 50µL of each sample were transferred

into 200µL eppendorf tubes. 50µL of 50mM MnCl2-Tris solution - 5 mL of MnCl2

(0.989g MnCl2 in 50mL water) plus 2.5mL 1M Tris plus 42.5mL water - was

added to each eppendorf tube. The tubes were heated for 10 minutes in a 55◦C

water bath. 50muL of each eppendorf tube was transferred to a new 2mL ep-

pendorf tube and placed on ice. 50µL of 0.5M arginine solution (0.871g in 10mL

water) was quickly added to each tube. These tubes were incubated at 37◦C for

1 hour. Urea standards were set up in 2mL eppendorf tubes. 1M Urea (0.6g

Urea in 10mL water) was diluted into 50µL samples from 10mM to 0.078125

mM in serial dilutions. There was 1 50µL blank. 800µL of Stop Solution (10

mL 96% acid H2SO4 plus 30 mL 85% acid H3PO4 plus 70mL water) was added

to each tube. 50µL of 9% ISPF (α-Isonitrosopropiophenone) was added to each

tube. Tubes were vortexed for 10 seconds. Holes were punch in the lids. The

tubes were heated for 30 minutes at 95◦C. Tubes were cooled for 10 minutes on

ice. 100µL of each sample were plated into a new 96-well titer plate with du-

plicates of each sample. Two rows were allocated for standards. 100µL of the

standards and blanks went into the standard row. The plate was then read on

a PowerWave XS Microplate Scanning Spectrophotometer by Bio-Tek R© Instru-

ments, Inc. (Winooski, VT) using a protocol measuring the presence of nitric

oxide. The results were tabulated in Prism 4.0c by GraphPad Software, Inc.

(San Diego, CA).
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