PROOFS AS PROGRANS

Joseph L. Bates
Robert L. Constable

TR 82-530
February 1983

Department of Computer Science
Cornell University
Ithaca, NY 14853

This research was supported in part by National Science Foundation Grant MCS-
81-04018






PROOFS AS PROGRAMS

Joseph L. Bates

Robert L. Constable

Cornell University

Ithaca, N.Y. 14853

Abstract

The significant intellectual cost of programming is for problem solving and explaining and not
for coding. Yet, programming systems offer mechanical assistance exclusively with the coding pro-
cess. Here we describe an implemented program development system, called PRL (‘“pearl”), that
provides automated assistance with the hard part. The program and its explanation are seen as for-
mal objects in a constructive logic of the data domains. These formal explanations can be executed
at various stages of completion. The most incomplete explanations resemble applicative programs,

the most complete are formal proofs.

This research was supported in part by National Science Foundation Grant MCS-81-04018.



-2-
I. The Nature of Programming

The Setting

What is the difference between programming and mathematical problem solving? To explore

the question, consider this simple but real programming problem.t Given an integer sequence of

r+e
length =, [a,,...,8,], write a program to find the sum, X a;, of a consecutive subsequence,
i=p

[8,,8y4+ 1,--,8p+ ¢] that is maximum among all sums of consecutive subsequences, (85184 150, 8i v &)
Call such consecutive subsequences segments. For example, given [-3, 2, -5, 3, -1, 2] the maximum
segment sum is 4, achieved by segment [3, -1, 2]. When a problem description refers to ordinary
mathematical concepts such as integers, sequences, and sums, we recognize it as a certain kind of
mathematical problem, one requiring an algorithmic solution. But there is at least one major differ-
ence between programming and algorithmic mathematics.tt The solution to a programming problem
is a concrete program, a piece of code that can be executed by some computer. So there is an ele-
ment of formality in the result. As in good mathematics, the problem must be solved exactly and
rigorously, but in addition the solution must conform to methods of expression completely deter-

mined in advance by the programming language.

What is the intellectually difficult part of programming? Certainly, a great deal of effort might
be invested in learning a formal coding language in which to code the problem, e.g. FORTRAN or
Algol, etc. A good deal of effort might be invested in getting the particular piece of code to execute
on a specific machine, e.g. typing, editing, submitting, etc. The task may even require mechanical
assistance, e.g. diagnostic compilers, smart editors, etc. Nevertheless, in all but the most routine
problems, the significant effort in programming is problem solving, i.e. in understanding the problem,
analyzing it, exploring possible solutions, writing notes about partial results, reading about relevant
methods, solving the subproblems, checking results and eventually assembling the final solution.

During this process, almost no mechanical help is available. Moreover, only a small part of the final

+This problem came to us from Jon Bently via David Gries. Jon encountered it while consulting.

t1Some programming problems have a more explicit computational flavor which distinguishes them even more
from ordinary mathematics, e.g. find a maximum segment sum using at most 0(n) steps or using n processors
concurrently. Other programming problems are distinguished by mention of data types such as payroll files
which are not common to mathematical discourse



-3-

assembly of notes and explanations ever becomes part of the formal code.

How is the solution to a mathematical problem presented? It is often in the form of a proof,
which may be a sequence of equations or a sequence of lemmas and previously proved theorems
involving elaborate nonequational reasoning such as induction, case analysis and the like. The solu-
tion displays the result of the problem solving process in such a way that the difficult steps are

explained and exposed to public scrutiny.

How is the solution to a programming problem presented? In extreme cases of inadequate
documentation the program may be presented raw, without explanation. In that case, there is no
trace in the final product of the intellectual effort that went into producing it. More typically the
solution is presented as a program plus imprecise documentation written in natural language (usually
produced in haste after the program has been written). This is especially bad because a good expla-
nation may be more important than the program, especially if the program must later be modified or
if it becomes critical to know its correctness. Yet, the task of reconstructing an explanation from the

formal code or from the informal comments is very difficult compared to the reverse process.

We are interested in finding ways to help the programmer carry out the most difficult and
important part of his task: solving the problem and explaining the solution. We are interested in
finding ways for computers to help produce and subsequently use good explanations. To see how this

might be done, let us examine the sample problem further.

The first task is to make the problem specification precise. We introduce necessary definitions.
Given a sequence of integers of length n, say [a,,4,,...,6,], We say that a subsequence of the form
[8;,8i4 1,---,8i4 »] i3 & 8egment, i.e. a sublist of adjacent elements. A segment can be specified by giv-
ing the index of its first member and then either the length or the index of its last member. The

i+
task before us is to find a sum I a;, which is maximum among all segment sums.
j=i

We can now write the problem specification precisely in mathematical notation: find M such

that

‘
M = max(1<k<q<n: _E.aj)
J:



-4-

Since the set over which we are computing the maximum is finite (otherwise the maximum is not
even a well-defined operation), the value M can be computed by brute force, i.e. just list all seg-
ments, compute their sums and take the largest. In noncomputational mathematics one might

proceed in this inefficient way, but the essence of computer science is to compute well.

Confronted with a problem of the structure "for all n find a p such that A(p,n)” there are really
only a few tactics for solving it. One possibility is that the construction of p and proof of A(p,n) is
uniform in n, as in the example ”for all n find p such that p is not divisible by any y < n.” Here we
take p=n!+ 1 and prove the proposition without regard for the structure of n. The possibilities for
such a uniform analysis depend heavily on which functions are available for building p and the proof

of A(p,n) directly.

Another possibility is that we proceed by induction of one form or another on n. This is sug-
gested whenever the answer p must be built in stages. Another possibility in problems of this sort is
that some property of A(n,p) can be generalized to add an extra parameter, say A(m,n,p), and then
we can use induction on m. This technique is called weakening in Dijkstra [12] and Gries [15].

Notice that the formal specification of the problem has suggested the methods of solving it.
Induction is suggested from among them because the problem can be solved trivially for sequences of
length one, and it seems likely that we can decide uniformly how to solve it after adding one new ele-

ment.t So suppose it has been solved for sequences of length n, yielding sum M on the segment at i

of length p. We present the induction hypothesis graphically in figure 1.

Figure 1

{In the context of a programming logic we can consider the technique of while-induction and its loop invariant
as just another proof technique. See [11] for a treatment of this rule in the style of this article.



a, g | ... | a a, | a,41

Figure 2

Suppose now that we add a new element a,,,. Then the following possibilities are exhaustive.
1. The new maximum sum does not include a,, .
2. The new maximum sum does include a,, ;.

How can we tell whether 1. or 2. holds? We can’t simply compare M with M+ a,, , because M
may be the sum of a segment no longer contiguous with n+ 1. We really must know how large a
sum is possible from a segment ending at n+ 1, i.e. how large a sum can be found by moving back
into the sequence to form [a;,...,8,,,]. Call the maximum such sum L,,,. Knowing L,,, we can

take the new maximum sum to be maz(M,L, ., ,).

Suppose we try to compute L,.,. Since we are proceeding inductively, we will know L,.
(Clearly L, will be a;,.) How to compute L., from L,? The value L, will include L, unless
Lo+ 6441 < 6441 It 641> Ly + 844 then we know that the maximum segment sum including
8a+1 i8 Simply [6441]- So the computation of Ly, is maz(ass1, Ls + 6441). This analysis tells us
precisely how to solve the problem.

Insight was necessary to introduce the concept of L, ,, but the structure of the problem led us
to realize that L, would be available. Moreover the structure focused our attention on a relatively
simple subproblem of finding M for a sequence of length n+ 1 (called M, ,,) given the sum for a
sequence of length n (say M,).

These observations can be more compactly described in terms of properties of the maximum
operation. Notice that taking the maximum of a two argument function is equivalent to iterating

the maximum operation on one argument functions as follows:
1. max(1<k<q<n: f(k,q)) = max(1<q<n: max(1<k <q: f(k)q)))

To extend the range of the sum from n to n+ 1, we have



-6-

2. max(1<k<q<n+ I: f(k,q)) = max {max(1<q<n: max(1<k<q: f(k,q)),

max(1<k<n+ 1: f(k,q))}

'
Notice that max(1<q<n: max(1<k<gq: .Eka_,‘)) = M,
J=

s+1
and max(1<k<n+ 1: ,Eka,-) = L,,;. Thus the second equation says that M,,, = max{M,,L,, }.
J=

In addition since we know
s+1 L]

3. max(1<k<n+1: .Ekaj) = max{max(1<k<n: .Eba,- + 8g41)) Gas1)}
1= =

» L ]
and max(1<k<n: .Ekaj-i- 6e+1) = max(1<k<n: .Ekaj)+ 6441, it follows that L,,, =
j= j=

max(Ly+ 644 1,054+ 1). Thus the entire body of the inductive proof can be described as algebraic

transformations of the maximum function.



-7-

II. Patterns of Explanation

Experience in Mathematics

How can we explain the solution to a programming problem? If we look to recent common
practice we see how not to explain it, namely by comments attached to the code written in pidgin
English. On the other hand, if we look to mathematics where the issue has been of concern for hun-
dreds of generations, then we see successful paradigms. In particular the concept of a proof has been
developed to convey complex and detailed explanations. A proof serves to organize all the informa-

tion needed to solve a problem. Moreover a proof introduces information according to specific needs.

The notion of a proof serves not only to organize information, but it can be used to direct the
analysis of a problem and produce the necessary insights. It is as much an analytical tool as it is a

final product. It is this feature of proofs that our system will exploit to aid the programmer.

Some of the methodology of mathematics has been codified in the style of its presentation, the
heart of which is the proof. The pattern of definition, theorem, remark, definition, lemma, example,
etc. carries with it a tradition of explanation. The mathematician is taught to decompose theorems
into sequences of lemmas, to build abstraction upon abstraction using definitions to hide details in
these abstractions, and to illustrate delicate cases or blind alleys by examples. In the context of
mathematical investigations, many great minds, such as Descartes, Leibniz, Poincaré¢, and Polya have
addressed the problem of method, of how we know and how we explain. They have discussed ‘“‘rules’
for discovery of proofs and ‘“‘guidelines” for writing them. It is in this context that we can explore
various means of solving programming problems. We can encourage proof presentation by successive
refinement. We can compare various ways of filling in detail, e.g. “top down” and ‘“bottom up.” We

can even provide “rules of programming’’ to help people learn how to solve algorithmic problems.
Formality

For programming problems, such as our example, which deal with elementary (first order) pro-
perties of numbers and finite sequences, we know how to be precise about the notion of a problem, a
solution and an ezplanation. A ‘“problem” is a formula in a logical theory, the “‘solution’ is some

computable function and the “explanation” is a formal proof. A typical 1970’s conceptualization of



-8-

programming requires only that the computable function description be formal. But in fact it

appears that there are substantial reasons to formalize the explanations as well.

The principal reason to formalize the explanation is that it becomes a real data object. We can
obtain mechanical assistance in generating it, checking it, modifying it and using it in other unfor-
seen ways. It becomes then a mathematical object in its own right, like an integer, and we can learn

to compute with it.

To illustrate the role of explanations, let us consider a proof of the existence of a maximum
segment-sum of a list of integers. We will convert the analysis of section I into a careful proof.
Anticipating an interest in formalizing this proof, we will use the notation of symbolic logic to
describe the problem. The connectives ‘“‘and’’, “or’, “implies” and ‘“‘not” will be represented by &,
V, = and ~ respectively, and the quantifiers “for all integers x”, “for all lists A”, “for some
natural number y’’ will be represented as “all x:int”, “all A:list”, and ‘‘some y:nat” respectively. We
use len(A) to denote the length of a list, and A(i) to denote the i-th element of a list provided 0 < i
< len(A).

One proof results from defining the maximum operation and proving the properties used in sec-
tion I. The definition of max(1<q<k<n: f(q,k)) can be given in terms of max(1<k<gq: h(k)) which
can in turn be defined recursively as:

max(1<k<1: h(k)) = h(1)

max(1<k< q+ 1: h(k)) = max{max(1<k<q: h(k)), h(q+ 1)}
Notice that the parameter q has the type of the natural numbers, nat, and the type of h is that of a
function from nat to integers. Thus max is a “second order operation.” This rather natural
occurrence of so called higher-level operations explains why we are interested in a very expressive

type theory in PRL (see [2]). However, the core PRL theory to be described in section III does not
include second order operations.
A proof which follows the first method of analysis of section I can be directly formalized in the

core PRL language described later. This proof does not appeal to general properties of the max-

imum operation but deals instead entirely with integers and lists. Here is a presentation of the



problem and its solution in that language.

all n:nat . all A:list . some (M,L):int .
some (a,b,s):nat . all (p,q):nat .

) [
1<p<g<n&len(A)=n)=> M= T A(i)&M > L A(j)&
i=e i=»
L=ZLA()&L > LA
i=e =

If we prove this statement ‘‘constructively”, then we will find the values M and L. So let us

begin a proof and see how to keep it constructive.
Proof by induction on n, the length of the list.
Base Case: n=1
If len(A)=1, then the only segment is the entire list, M =L = a,.
Induction Case:

Suppose that the result is true for all lists of length n. Then consider the statement of the
theorem for n+ 1 and any list A. The length of A is either n+ 1 or not. If not then pick M and L to
be anything. If len(A) = n+ 1, then look at the list A’ of length n obtained by removing the head

element. This list A’ satisfies the induction hypothesis so there exist numbers M,, L,.

1. Wemustfind L,,,.

Claim: L.,, = maz(A(n+1), Ly + A(n+1))

We must show that

s+1

(i) Le+1 > T A(s) for any p and
i=»

s+1
(ii) Ly+1 = T A(i) for somes.
=8

s+1 L

By definition £ A(:)= I A(i) + A(n+1)and we know
i=p i=p

»
Ly, > L A(i) hence for p < n by simple arithmetic we know
=p



Qed

-10-

L+ A(n+1)> ‘é’A(s)Jf A(n+1)

For p = n+ 1, since £ A(i) = 0 by definition of L we know
i=p

i=s+1
L]
An+1)> T A(G)+ A(n+1)
i=p
Hence for all p < n+1
s+ 1
maz(A(n+1), Ly + A(n+1)) > T A(3), showing (i).
=p
To show (ii) notice that if L,., = A(n+1), them s=n+1, and if

n
Leysy= L, + A(n+1)then since Ly, = X A(i) we take s = r.
i=r

We must also find M,, ,

Claim: M,,, = maz(M,, L,,,). We must show

'

() Myyr > L A(s)forallpqwherel < p < ¢ < n+l
=p

and

(i) Mas = 5 AG)

To show (j) we know that

Qed

‘
M, > T A(i)forallpqwherel1 < p < g<n
=p

r+1
The only new elements considered in (j) are of the form ¥ A(:) for all r where
1=r

n+1

1<r<n+l But for these we know L,.;> T A(i). Thus
=r

‘
maz(Lasy, M) > L A(i) where 1< p < ¢ < n+1. To show (jj) notice that if
=p

s+1

)
Myy1 = M,, then M,y = T A(i) otherwise M,,, = £ A(i).



-11-

Intuitively it is plausible that this proof is also a procedure for finding M and L. We know how
to execute every step. That is, whenever the existence of a number is claimed, the proof shows how
to calculate it from other numbers; these other numbers are found by applying the proof procedure
to a smaller list. Whenever the proof proceeds by a case analysis on P vV Q, there is a method of

computing which of P or Q holds, e.g. len(A) = n+ 1 or not.
Executing Proofs

The example has shown us more than we might have expected. It began as an example of an
explanation, but the possibility arises that it can also become the complete solution because the proof
itself, if formalized, can be executed. To see how this is possible in general, let us consider the mean-

ing of various constructive statements.

A constructive proof of some y:nat . R(x,y), will build a witness y for the assertion R(x,y). For
instance a proof that some y:nat . (y>x) will give an expression for y such as (x+ 1) or (2x+ 1) etc.
The particular value chosen depends on the proof used. A proof that somey nat. (y>x & prime(y))

will result in a method for finding a prime number greater than x.

A proof by induction of an existential statement such as some y:nat R(x,y) has the following

pattern.

all x:nat . some y:nat . R(x,y)
Proof (by induction on x).
Base: construct some value y, where R(0,y,)
Induction: assume some y:nat . R(x,y).
Show some y:nat . R(x+ 1,y)
The proof builds a particular term t for y using
x+ 1 and the value y, assumed to exist for
x. So t can be denoted t(x+ 1,y,).
Qed
Qed



-12-

The part of the proof building the value y is a recursive procedure of the form p(x) = if x=0
then y, else t(x,p(x-1)) fi. As long as the expressions y, and t(x,y) are computable, so is the pro-

cedure. Indeed we observe that p is an example of a primitive recursive procedure, [18].

A constructive formal system has the property that every proof step can be interpreted as a
construction. This is explained in [17] and is applied to programming in [6,1]. So it in fact makes
sense to ezecute constructive formal proofs. In the case of a proof of all x:nat . some y:nat . R(x,y),

the proof is a function p such that R(x,p(x)).

Although constructive proofs can be executed in principle, it is not yet known how efficiently
this can be done. So it might be necessary to pursue the solution further in the direction of known
mechanisms for efficient computation such as those available in high level languages like Algol. But
it is possible to go in this direction within the context that regards proof as explanation and explana-
tion as the most important product of programming. This can be done by treating commands such
as assignment as part of the logical system, as was done in [10] and in [1] for example. But in the
course of the work reported in [1], it became increasingly plausible that the commands were not
necessary either for efficient execution or for cogent explanation. Indeed, the language without com-
mands was far simpler to explain and appeared tractable to implement. So the goal of our program
refinement research became that of building and testing an implementation of a constructive theory
of mathematics. The key new ingredients would include a component to extract code from construc-
tive proofs, called an eztractor, and an interactive proof-generating environment to help the user
build formal proofs. This proof synthesizer would encourage a top-down refinement style of proof
construction as described in [1,19]. It would also employ the technology of modern programming
environments, especially the Cornell Program Synthesizer [24]. The work of Dean Krafft in building
a synthesizer environment for PL/CV2, called AVID [19], provided encouraging evidence that such
systems would make the task of formal proof-generation tolerable for a logic sufficiently close to

PL/CV2.

In the next section we describe some aspects of the logic and system resulting from achieving

these goals.



-13-

III. The PRL Logic

Background

The method of treating a proof as a program is applicable in a variety of constructive theories
from those about numbers to those about sets. A considerable part of our effort on the “PRL pro-
ject” has been spent in defining a very general theory in which these methods work; this is a type
theory in the sense of Martin-Lof [20] and the related work of Constable [7,8]. Some of our ideas are
presented in [2]. Considerable effort was also spent designing a system with which to use this very
general theory. The system will provide a modern environment for interactive proving and problem
solving. It will be based on the notion of a library of results organized into books, chapters, sections,
etc. The user will have help in generating material for publication in the library and will have a
“smart”’ editor for viewing and modifying results in the library. There will also be means of invok-
ing formal metareasoning to extend the system safely, building for example guaranteed proof tactics
[8,14].

There are many difficult technical problems associated with building a system of this general-
ity. These will be discussed elsewhere. This complexity led us to an incremental development of the
system and its logic. We began with a core logic of integers and lists of integers and a core system
supporting a simple library, a structure editor similar to the Cornell Program Synthesizer [24] and
AVID [19], a proof extractor based on Bates’ thesis [1], and a metareasoning facility obtained by
embedding PRL in Edinburgh LCF as an object theory [14]. This is the core version of PRL which

is implemented and which we briefly describe in this section.
Syntax and Proof Rules

The atomic types of the theory are integer and integer list, which are abbreviated int and list

respectively.

The terms of the theory are constants, variables, applications of the form f(e,,...,e,) or €; op e,

where e are terms, and op is an operator, and listings [e,,...,¢,] where ¢; are integer terms.

The constants include nonnegative decimal numerals, 0, 1, 2, ... . They include the unary



-14-

function -, the infix binary operators: +, -, *, /, and various atomic functions: mod, Ad, ¢/, and -.

The list constants are [ ], [n},...,n,] for n; integers.

The function constants mod, hd, tl and - have these types:

mod: int X int — int
hd : list — int
tl: list — list

: int X list — list

The atomic formulas of the theory are e; = e, for arbitrary terms ¢; of the same type and
e; < e, for ¢; of type integer.

Compound formulas are ~A, A&B, AVB, A=>B for A and B formulas. The usual precedence
holds among these connectives: ~, &, |, = and => is right associative. In addition, compound for-

mulas include

all z,,...,z,: type . A
some 2,,...,2,: type . A

where A is a formula and z; are variables. Quantifiers bind more weakly than connectives so they
have a wide scope.

An environment env is a list of variables and their types. A goal has the form

[env] Assm |- conc

where Assm is a list of formulas called the assumptions and conc is a single formula called the con-
clusion.

A proofis an expression of the form

goal by rulename
) 1

Dsa
where p; are proofs. The rule names are certain constants such as those listed below. It is con-
venient to think of the proof expression in the form f(py,...,ps) where f is the rule name and "goal”

is the range type of f viewed as a function.

The proof rules fall into five categories: (1) predicate calculus rules, (2) arithmetic rules (taken



-15-

from PL/CV2 [9]), (3) list rules, (4) rules to reference the library and defined objects and, (5) rules to
invoke tactics built in the metalanguage ML of Edinburgh LCF. Here we illustrate some of these.
All rules are presented in refinement style; that is the conclusion is listed first, thought of as a goal,
and the hypotheses are listed under it, as subgoals. The rule name is listed after the goal. Environ-
ments are not shown if they do not change from goal to subgoals. Let S; denote sets of hypotheses.

S',S'! are subsets of S.

S - A & B by andin S, A & B}~ C by andel
S A S,ABEC
SII }_ B
S AVBbyorinl S AVBbyorinr S,AVBLE C by orel
S A S'+—B S,AEC
S, B—C
S+ A = B by impin S, A = B |- C by impel
S,AB SHA
S,A,BE-C
S - 3x:T.A by ezistin, t le] S, 3x:T.A |- C by ezistel
S I A(t/x) [ex:T]S,AC
le] S ¥x:T.A by allin S,vx:T.A |~ C by allelt
[ex:T] S - A(x) SVx:T.A, A(t)- C

In addition we use a rule for combining subproofs called the cut or consequence rule.
S+ G by conseqC

SFC
S,C I G.

The PRL system helps the user generate a library of results. It also allows users certain opera~

tions on the members of the library. The results can be of four kinds.

(1) named proofs of theorems, the syntax is: name thm proof. The proof can be used subsequently

by mentioning the name in the lemma reference rule.



)

®3)

(4)

-16-

named functions extracted from proofs, with syntax: name eztract theorem name
where the theorem must be of the form all z,...2,: type . some y: type . P. The function may

be used in subsequent applications.

definition of new notation in terms of existing notations, syntax: name def template = right
hand side

where template is a list of characters and parameters and the right hand side is any piece of
text with interspersed parameter references. Library members constructed after such a defini-
tion may use the notation of the template, with the system construing their meaning as the

right hand side.

primitive recursive definitions of functions over int or list. The syntax for integer definitions is

f(x:int,...):type =
x = ¢
a = tl

b = ta-1
X = I,

with the property that for any integer x and other arguments to f,

x<a=f(x,..)=1t,
x=13a=>{(x,..) =1

x > b = f(x,..) =t,

given that ¢,...t,_; have no reference to f, t, may invoke f recursively with first argument x+¢
and arbitrary other arguments, for ¢ a constant between 1 and b-a+ 1, and ¢, may invoke f
recursively with first argument x-c and arbitrary other arguments, for ¢ a constant satisfying

1<c<b-a+ L

The syntax for list definitions is



-17-

f(x:list,...):type =
0= ¢,

n = {,
x$tl+l

with the property that for any list x and other arguments to f,

length x = 0 = f(x,..) = ¢,

length x = n = f(x,..) =1,
length x > n = f(x,...) = t,4,

given that ¢o,...,t, do not invoke f, and ¢, , may call f recursively with first argument tl x, tl tl x, ...
or ti** 1 x and arbitrary other arguments. It is possible to define several mutually recursive functions

in one definition block, but the schemes of all the functions must be identical.
Examples

Here is a complete sample proof for the well known Euclidean division algorithm. Since the
logic is not designed to display proofs on paper as they are developed, we can only approximate the
kind of interactive proof generation that the system encourages. We do this by presenting the proof
at various stages of development. To facilitate writing we abbreviate extensively. We suppress the
display of unnecessary assumptions, as the system does; and we introduce a large number of simple
definitions with mnemonic names, e.g. indhyp for "induction hypothesis” and goal for the quantifier

free proposition expressing the theorem. Here are the definitions.

def hyp(n,ab)=n>0&a>0&b>0&a-b <,
goal(a,b,qr) = (a = b*q+ r&0 < r < b),
G(n,a,b) = some q,r:int . (hyp(n,a,b) => goal(a,b,q,r)),
indhyp(n) = all a,b:int . G(n,a,b).
The main goal is:

- all n:int . all a,b:int . some q,r:int . (hyp(n,a,b) = goal(a,b,q,r))

With full abbreviation the goal is simply

b all n:int . indhyp(n).

The essence of this algorithm is induction. In the typical setting for this algorithm, there are so



- 18-

few primitives that we are required to build even the divide function. Although in principle we need
induction on only the nonnegative integers, the system requires us to consider all integers. So we call
for a proof by induction from O as the base case. After entering the command induction,0 the

response is a list of subgoals as shown below.

induction,0
1. [n:inf] <0, indhyp(n+ 1) |- indhyp(n)
2. [n:inf] n=0, }~ indhyp(0)
3. [n:inf] n>0, indhyp(n-1) |- indhyp(n)

In the first case, since n<0 and the hypothesis includes the assumption that n>0, it is trivial
to achieve the goal. We first indicate that we want arbitrary integers a and b in order to introduce
the all quantifier. Then we arbitrarily choose integers for q,r because the choice is irrelevant; we
take 0,0. Here is the complete refinement of the first subgoal. The command is shown on the left

and the system'’s response is beneath it.
allin

[n:int,a,b:ind] b G(n,a,b)
ezistin,0,0

[n:int,a,b:int,q,r:inf n<0, q=0, r=0 |- hyp(n,a,b) = goal(a,b,q,r)

tmpin

n<0, hyp(n,a,b) - goal(a,b,q,r)
false

n<0, hyp(n,a,b) = false

by arithmetic (n<0, n>0)

Next we attack the second main subgoal. This is the basis case. Again the first step is to con-

sider arbitrary a,b. So we direct the system to perform all-introduction.

allin

[n:int,a,b:ind]  G(n,a,b).



-19-

We know that when n=0, a-b<0, so a<b, and we can take q=0 and r=a since a=b*0+ a and
0<a<b. We thus direct the system to use the values 0 and a for q 2nd r respectively.
ezistin 0,a
[n:int,a,b:int,q,r:int] n=0, q=0, r=a |- hyp(n,a,b) => goal(a,b,q,r)
The standard way to prove an implication is to introduce it. So we direct an implication intro-
duction.
impin
n=0, q=0, r=a, hyp(n,a,b) |~ goal(a,b,q,r)
Now we use arithmetic on a-b<0 to finish this branch.
arithmetic (a<b).
Next we consider the only remaining subgoal.
3. [n:inf] n>0, indhyp(n-1) |- indhyp(n).
As in cases 1 and 2 we perform an all-introduction. But now in order to choose values for q
and r we must express them in terms of the values q' and r' known to exist for the smaller problem
of dividing (a-b) by b. To obtain these values we must invoke the induction hypothesis on (a-b) and

b. This is done by the all-elimination rule applied to indhyp(n-1) with (a-b) for a and b for b. Let

us examine just this segment of the proof.
allin
n>0, indhyp(n-1) - G(n,a,b)
allel, indhyp(n-1), (a-b), b
n>0, indhyp(n-1), G(n-1,(a-b),b) - G(n,a,b)
At this stage we must know whether a-b<0 or a-b>0 in order to know whether to take q=0

and r=a or q=q' + 1 or r=r’. So a proof by cases is conducted. Here is its structure.

arithmetic, (a-b)<0 V (a-b)>0

(a-b)<0 V (a-b)>0 |- G(n,a,b)



-20-

orel
1. (a-b)<0 |~ G(n,a,b)
2. (a-b)>0 |- G(n,a,b)

The first subgoal is proved as in the basis case. For the second subgoal before we can define q
and r we need to obtain the values of q,r in some q,r:int . (hyp(n-1,(a-b),b) => goal((a-b),b,q,r)). We
choose q',r' as values, and then in order to use the information in goal((a-b),b,q’ ,r') we prove that
hyp(n-1,(a-b),b) holds. The details of these steps can be found in the complete proof which follows.
For esthetic reasons we write the commands to the system at the end of the goal to which they are

applied. Thus to generate the above subgoals we write

(a-b)<0 V (a-b)>0 |- G(n,a,b) by orel

- all n:int . indhyp(n) by induction,
(negative case)

[n:inf] <O, indhyp(n+ 1) |- indhyp(n) by allin

Let e = n:int, a:int, b:int
[e] n<0, indhyp(n+ 1) - G(n,a,b) by ezistin, 0, 0
F hyp(n,a,b) => goal(a,b,0,0) by impin
le] n<0, hyp(n,a,b) |- goal(a,b,0,0) by false

[e] n<0, hyp(n,a,b) | false by arith (n<0, n>0)

(base case)
[n:in¢] n=0 |~ indhyp(n) by allin
[e] n=0 |- G(n,a,b) by ezistin, 0,a
[e] n=0 |- hyp(n,a,b) => goal(a,b,0,a) by impin

[e] n=0, hyp(n,a,b) |- goal(a,b,0,a) by arith (a-b<0).

(positive case)



-21-

[n:inf] n>0, indhyp(n-1) |- indhyp(n) by allin
[e] n>0, indhyp(n-1) - G(n,a,b) by allel, indhyp(n-1), (a-b),b
[e] n>0, G(n-1,(a-b),b) - G(n,a,b) by arith on left
[e] (2-b)<0 V (a-b)>0 |~ G(n,a,b) by orel
le] a-b<0 |~ G(n,a,b) by ezistin, 0, a
[e] a-b<0 |- hyp(n,a,b) => goal(a,b,0,a) by impin
[e] a-b<0 |- goal(a,b,0,a) by arith (a<b)
[e] a-b>0, G(n-1,a-b,b) - G(n,a,b) by ezistel
[e.q’ :int, ¢’ :inf} >0, hyp(n-1,a-bb) = goal(a-b,b,q' ,r') - G(n,a,b) by ezistin, ' + 1, '

(Let e’ = (e,q :int, r' :int) and suppress most assumptions.)

[e'] - hyp(n,a,b) = goal(a,b,q’' + 1,¢') by impin
[¢’'] byp(n-1,a-b,b) => goal(a,b,q¢’ '), hyp(n,a,b) - goal(a,b,q' + 1,r') by impel

[¢'] n>0, hyp(n,a,b) - hyp(n-1,a-b,b) by andin
[e] n>0, hyp(n,a,b) - n-1 > 0 by arith
[¢'] >0, a-b<n,b>0 |- (a-b}-b<n-1 by arith
[¢'] a-b>0 |- (a-b)>0
[¢’] byp(n,a,b) - b>0 given

[¢'] hyp(n,a,b), goal(a-b,b,q' r') |- goal(a,b,q’' + 1,r') by arith

(this is just (a-b) = b*q' +r' & 0<r' <b|- a = b¥(¢'+ 1) + ' & 0<r' <b.)

Larger Examples

One principle that guides the organization of larger pieces of technmical text than the above
example is that it be decomposed into pieces that fit on a single page and can be understood more or
less in isolation. In a programming language like Lisp this is accomplished by decomposing a large
program into a sequence of small functions. In proofs it is accomplished by writing many small lem-
mas. There is however an overhead in decomposing proofs into lemmas because the statement of the
result must be repeated. In procedural programming languages like Algol there is also an overhead

associated with decomposition into procedures because declarations and comments must be repeated.



-22-

(There is usually some execution inefficiency as well.)

The refinement style presentation of proofs adopted in PRL supports this principle of modular
decomposition without substantial overhead. At any point in the proof a single goal is visible and
the list of assumptions permitted in meeting the goal can be made explicit. The system allows the
user a display of “one page worth” of the proof tree. This display can highlight the relevant assump-
tions and thus serves some of the purposes of lemmas and subprograms. These features were illus-
trated above and also in the following fragment of a PRL formalization of the max segment sum

example of sections I and II. First we express relevant definitions.

define: B(A,n,L,M,a,bs,p,q) =

(1<p<a<n&n=lem(A) =

M= EADEM2 LA &L= EADEL 2 EAG)

define: G(A,n,L M) =
some(a,b,s):nat . allp,q):nat . B(A,n,L,M,a,b,s,p,q)
At the top level the problem specification in PRL is written
b all n:nat . all A:list . some(L,M):int . G(A,n,L M)
The user then calls for a proof by induction on n with base 1 and the system responds with a

list of subgoals as follows.

[n:nat] all A:list . some(L,M):int . G(A,n,L M), n<1

= all A:list . some(L,M):int . G(A,n-1,L M)
[p:naf n=1 = all A:list . some(L M):int . G(A,n,L, M)
[n:nai] all A:list . some(L,M):int . G(A,n,L M), n>1

- all A:list . some(L,M):int . G(A,n+ 1L, M)

The user is free to prove the subgoals in any order. It will be easy to prove the result for n<1

because the hypothesis 1 < p < q < n is vacuous. In the case n=1, the value A(1) suffices for L



-923-

and M.

Consider what can be done in the last case. The all statement is proved by all introduction (see

the list of rules). The user invokes the rule allin and the following subgoal is generated:

[n:nat, A:list] all A:list . some(L M):int . G(A,n,L M), n>1
b- some(L,M):int . G(A,n+ 1L, M)

At this point it is difficult to work on the goal because to get beyond the existential quantifier,
some(L,M):int, expressions for L and M must be chosen for use with the rule ezistel. But such
expressions may not be known at this point. To discover them the user can extract more informa-
tion from the hypotheses. This too requires knowledge, but the pattern of inductive proof suggests
what to do. The induction hypothesis supplies information about smaller lists. The list tl(A) is such
a list, so the allel, tl(A) rule is used to produce the following subgoal (only the relevant hypotheses

are written on the left from now on, and we use "goal” to denote some(L M):int . G(A,n+ 1,L,M)).

[n:nat] some(L,M):int . G(tl(A),n,L,M) |- goal
Now it is possible to choose values for L,M by first getting expressions for L,M on the list tl(A)

of length n. We do this by existential elimination to produce the following subgoal.

[n:nat, A:list,(L,,M,):int] G(t}(A)n,L,,M,) |- goal

Now it is possible to choose values for the indexes of L as follows.

[n:nat, A:list,(L,,M,):int, (a,b,s):nat, (p,q):naf]
B(tl(A),n,L,,M,,a,b,s,p,q) - goal.
At this point we need insight to define L and M, but having determined that the proper choice
is L = maz(L,,L, + A(n+1)) and M = maz(L ,M,), then the rule of consequence bridges between
the goal and the properties easily proved of L and M. For example, let

C(An,L,,M,) = all(p,q):nat . (max(A(n+ 1),L, + A(n+1)) >
j

| 07+

iAu)

& max(M,, max(An+ 1)L, + A(n+1))) > é'A(i))



-24-
Then the rule of consequence on C produces the subgoals

H, C |- goal

HI-C
where H is the list of hypotheses at the point that consequences is used.

The remainder of the proof is a routine translation of the argument in section II. However, the
logic is designed with the highly interactive system in mind, therefore a complete rendition of the
formal proof on paper would not present a realistic image of proof development in PRL. This seg-
ment in fact illustrates the kind of local reasoning typical of proof development. In a more lengthy

report we will discuss more fully the role of the system in efficiently generating proofs.

Acknowledgements

We would like to thank our colleagues on the PRL project for their advise and suggestions.
We expecially acknowledge the detailed criticisms of Fred Schneider and David Gries. Not only
that, but David also supplied us Jon Bentley’s problem on segment sums. We also appreciate the

efforts of Donette Isenbarger in preparing the manuscript.



[1]:
[2):

[3]:
[4]:

[5]:
[6]:

[7}:
8]:
[9]:

[10]:

[11]:

[12]:

[13):
[14]):

[15]:
[16]:

[17):

[18]:
[19):

[20):
[21):

[22]:

-25-
REFERENCES

Bates, J.L., A Logic for Correct Program Development, Ph.D. Thesis, Department of Com-
puter Science, Cornell University, 1979.

Bates J. and R.L. Constable, "Definition of Micro-PRL”, Technical Report TR 82-492, Com-
puter Science Department, Cornell University, October 1981.

Bishop, E., Foundations of Constructive Analysis, McGraw Hill, NY, 1967, 370 pp.

Bishop, E., "Mathematics as a Numerical Language”, Intuitionism and Proof Theory, ed. by
Myhill, J., et al., North-Holland, Amsterdam, 1970, 53-71.

Boyer, R.S. and J.S. Moore, A Computational Logic, Academic Press, NY, 1979, 397 pp.

Constable, Robert L., ”Constructive Mathematics and Automatic Program Writers”, Proc. of
IFIP Congress, Ljubljana, 1971, 229-233.

Constable, Robert L., "Programs and Types”, Proc. of 21st Annual Symposium on Founda-
tions of Computer Science, IEEE, NY, 1980, 118-128.

Constable, Robert L., "Intensional Analysis of Functions and Types”, University of Edin-
burgh, Dept. of Computer Science Internal Report CSR-118-82, June 1982.

Constable, Robert L. and D.R. Zlatin, The Type Theory of PL/CV3”, IBM Logic of Pro-
grams Conference, Lecture Notes in Computer Science, Vol. 131, Springer-Verlag, NY, 1982,
72-93.

Constable, Robert L., S.D. Johnson and C.D. Eichenlaub, Introduction to the PL/CV2 Pro-
gramming Logic, Lecture Notes in Computer Science, Vol. 135, Springer-Verlag, NY, 1982.

Constable, Robert L., "Programs As Proofs”, Department of Computer Science, Technical
Report TR 82-532, Cornell University, 1982. (To appear in Information Processing Letters,
1983.)

deBruijn, N.G., A Survey of the Project AUTOMATH”, Essays on Combinatory Logic,
Lambda Calculus and Formalism, (eds. J.P. Seldin and J.R. Hindley), Academic Press, NY,
1980, 589-606.

Dijkstra, Edsger W., A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976,
217 pp.

Gordon, M., R. Milner and C. Wadsworth, Edinburgh LCF: A Mechanized Logic of Compu-
tation, Lecture Notes in Computer Science, Vol. 78, Springer-Verlag, 1979.

Gries, David, The Science of Programming, Springer-Verlag, 1982.

Hoare, C.A.R., "An Axiomatic Basis for Computer Programming”, Comm. ACM, 12, Oct.
1969, 576-580.

Kleene, S.C., ”On the Interpretation of Intuitionistic Number Theory”, JSL, 10, 1945, 109-
124.

Kleene, S.C., Introduction to Metamathematics, D. Van Nostrand, Princeton, 1952, 550 pp.

Krafft, Dean B., ”AVID: A System for the Interactive Development of Verifiable Correct Pro-
grams”, Ph.D. Thesis, Cornell University, Ithaca, NY, August 1981.

Martin-Lof, Per, ”Constructive Mathematics and Computer Programming”, 6th International
Congress for Logic, Method and Phil. of Science, Hannover, August, 1979.

Nordstrom, B., "Programming in Constructive Set Theory: Some Examples”, Proc. 1951
Conf. on Functional Prog. Lang. and Computer Archi, Portsmouth, 1981, 141-153.

Scott, Dana, ”Constructive Validity”, Symposium on Automatic Demonstration, Lecture
Notes in Mathematics, 125, Springer-Verlag, 1970, 237-275.



-26 -

[23]:  Stenlund, S., Combinators, Lambda-terms, and Proof-Theory, D. Reidel, Dordrecht, 1972, 183
PP-

[24):  Teitelbaum, R. and T. Reps, "The Cornell Program Synthesizer: A Syntax-Directed Pro-
gramming Environment”, Comm. ACM, 24, 9, September 1981, 563-573.



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif

