
MECHANISMS FOR PROVABLE INTEGRITY
PROTECTION IN DECENTRALIZED SYSTEMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Ethan Benjamin Cecchetti

August 2021

© 2021 Ethan Benjamin Cecchetti

ALL RIGHTS RESERVED

MECHANISMS FOR PROVABLE INTEGRITY PROTECTION IN

DECENTRALIZED SYSTEMS

Ethan Benjamin Cecchetti, Ph.D.

Cornell University 2021

Decentralized systems are built from a set of coordinating independent services.

Yet these services might not trust each other, making it difficult to maintain the

integrity of the whole application. This dissertation explores two different ap-

proaches to achieving provable integrity guarantees in such systems.

The first technique, realized in Solidus, applies cryptographic tools to provably

preserve the integrity of a blockchain-based financial transaction system while hid-

ing the sender, receiver, and value of each transaction. The second complements

the cryptographic approach by showing how to achieve strong integrity guaran-

tees for realistic systems using language-based Information Flow Control (IFC).

Traditional IFC systems only provide strong integrity guarantees in the absence

of endorsement—treating inputs as more trusted than their source—but endorse-

ment is necessary in real-world systems. This work classifies two ways in which

unrestricted endorsements can compromise system integrity if attackers violate

implicit assumptions. In both cases, IFC ideas help define security and support

language-based rules to provably eliminate all attacks in the class.

BIOGRAPHICAL SKETCH

Ethan Cecchetti was born in Columbus, Ohio in 1990. He moved to Massachusetts

in 2003 and graduated from Lexington High School five years later. He then at-

tended Brown University where he earned a joint Bachelors degree in Mathematics

and Computer Science in May 2012. Upon graduating, Ethan took a job working as

a software engineer for the travel website TripAdvisor. He decided that, after three

years out of school, he missed solving mathematical puzzles and was interested in

the challenge of research, so he joined Cornell to pursue his PhD in August 2015.

iii

For my grandparents, Elizabeth, Giovanni, Elliot, and Gloria.

I wish you were here to celebrate this with me.

iv

ACKNOWLEDGEMENTS

A PhD is given to one person, but nobody goes through graduate school one alone.

In normal times, this dissertation would have been impossible without the help of

a great many people. Completing the final year during a global pandemic required

help from even more.

First and foremost, to my parents, Ruth and Steve: Thank you for your unwa-

vering love and support. I am privileged to have parents who understand the tri-

umphs and disappointments of graduate life, and I relied on you heavily through-

out. To my brother Dan and my entire extended family, you have always been

interested in what I do, even if you don’t understand it. I couldn’t ask for more.

To my advisors, Andrew Myers and Ari Juels: You both pushed me to look

at research problems from numerous directions and helped me see more angles

than I knew existed. You helped to understand the how of research, not just the

what. I may not have always appreciated your insistance that I figure things out

for myself, but I am a better researcher for it.

Several other people deserve special thanks. Andrew Hirsch, Eston Schwe-

ickart, and Isaac Sheff made me feel like I had a real home in Ithaca. Sorry I chased

you all off the continent. Rachit Nigam (who beautifully suggested I title this dis-

sertation “Information Security go Brrr”), Vedant Puri, and Armin Namavari pro-

vided companionship and understanding as our lives were upended by a global

pandemic. Thanks to all six of you for putting up with my nonsense around the

house. Mae Milano provided a familiar face when I arrived and introduced me

to more wonderful people and places than I can count as I built a life in Ithaca.

Xanda Schofield and Jake and Katie Gardner made me feel loved and included

when I needed friends. I cannot thank you three enough and I feel honored to be

your friend. Elizabeth Sibert has always been there from afar, sharing the ups and

v

downs. I immensely appreciate your support, understanding, and ability to make

our conversations feel comfortable and familiar, whether I ranted at you yester-

day or we haven’t spoken in months. Finally, Tegan Wilson arrived as many of my

friends were graduating and moving away. I’m still amazed at how fast you be-

came my best friend, and you didn’t stop there. I cannot express how much you

have improved my life in the last three years.

I also want to thank the entire Cornell Computing and Information Sciences

community. First, Becky Stewart, Tammy Gardner, and the entire rest of the ad-

ministrative staff of the department made many things easy that would have oth-

erwise been impossible. Second, I am grateful for all of the friends I made in the

CS department. I chose to come to Cornell because I believed I would have friends

here, and I was not disappointed. Danny Adams had a knack for making it easy

to open up about the difficulties of grad school, a skill he demonstrated reliably

at his Tea & Treats events. Lorenzo Alvisi routinely made me feel welcome and

brightened my day, simply by being excited to see me. Shrutarshi Basu’s seamless

transitions between deadpan jokes, fountain pen recommendations, and deep con-

versations about life came exactly when I needed them. And Soumya Basu was, of

course, a great backup when the other Basu wasn’t around. Eleanor Birrell made

sure I knew where to get the best food and drinks in town. The incessant silliness

of both Eric Campbell and Jonathan DiLorenzo constantly reminded me to enjoy

myself. Saying hi to Claire Cardie and her wonderful dogs, first Marseille and later

Mirabelle and Mayenne, was exactly what I needed on many stressful afternoons.

Natacha Crooks’ terrible horticulture skills never stopped her from being a great

friend and collaborator. Molly Q Feldman kept me sane by letting me interrupt

her several times a week with my triumphs and failures, great and small. As my

student mentor, Tom Magrino helped me navigate finding an advisor and start-

vi

ing research and became a great friend along the way. Fabian Muehlboeck was a

constant source of interesting conversations and delicious baked goods, though I

think I’ve had enough gummy bears. Veronica VanCleave-Seeley’s door was al-

ways open if I needed a break or pictures of her adorable cat Kaladin, whom I

finally confirmed is just as cute in person. Too many other students, faculty, and

staff to name provided the friendly faces and fun conversations that made me want

to come to the office every day.

Thankfully, my life did not stop at the doors of Gates Hall. Whether introduc-

ing me to a varied cast of new friends, giving me interesting whiskey and cocktails,

or letting me pet their beautiful cats, Anna Waymack and Nate Stetson had a way

of keeping my feet firmly planted on the ground. The entire Ithaca Area Ultimate

Alliance provided an amazingly fun, energetic, and silly community that, by con-

trast, tried to get my feet off the ground as much as possible.

When everything locked down in March 2020, leaning on all of the wonderful

people listed above felt impossible. Yet, two groups of people made it easier than

ever to stay connected. Virtual Argos meetups with Shrutarshi Basu, Eleanor Bir-

rell, Tom Magrino, Marin Cherry, Mae Milano, Laure Thompson, Soumya Basu,

Natacha Crooks, Andrew Hirsch, and Isaac Sheff made it feel like everyone was

still in Ithaca. Nori Aquino, Jane Brown, Leilani Diaz, John Hawley, Anna Louie,

Briana McGeough, Mae Milano, Robert Mustacchi, Nathan Partlan, and Abbie

Popa made every other Sunday afternoon feel like a college reunion. I look for-

ward to seeing many of you in person again.

Last but not least, a huge thanks to all of my research colleagues. Thanks to all

of my may coauthors over the course of my PhD: Rachit Agarwal, Lorenzo Alvisi,

Pedro de Amorim, Owen Arden, Matt Burke, Kyle Croman, Natacha Crooks, Ben

Fisch, Sitar Harel, Andrew Hirsch, Ahmed Kosba, Yan Ji, Ari Juels, Ian Miers, An-

vii

drew Myers, Haobin Ni, Elaine Shi, Ross Tate, Siqiu Yao, and Fan Zhang. This

dissertation would not exist without you. I had the great fortune to be part of two

different research groups, both full of brilliant friendly people who were never

afraid to be quirky and silly in their own way. Thanks to Josh Acay, Owen Arden,

Chin Isradisaikul, Jed Liu, Tom Magrino, Mae Milano, Haobin Ni, Rolph Recto,

Silei Ren, Isaac Sheff, Siqiu Yao, Drew Zagieboylo, and Yizhou Zhang in Andrew

Myers’ Applied Programming Languages group, and Sarah Allen, Iddo Bentov,

Kyle Croman, Phil Daian, Steven Goldfeder, Yan Ji, Mahimna Kelkar, Tyler Kell,

Sishan Long, Jasleen Malvai, Deepak Maram, Ian Miers, and Fan Zhang in Ari

Juels’ group. I would not be where I am today if not for all of you.

The work in this dissertation was funded in part by a fellowship awarded

through the National Defense Science and Engineering Graduate (NDSEG) Fel-

lowship Program, sponsored by the Air Force Research Laboratory (AFRL), the

Office of Naval Research (ONR), and the Army Research Office (ARO).

viii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . ix
List of Tables . xii
List of Figures . xiii

1 Introduction 1
1.1 Cryptography and Replication . 3
1.2 Compositional Integrity Guarantees 5

1.2.1 Endorsement With Secrets . 7
1.2.2 Reentrancy . 8

2 Solidus 12
2.1 Background . 16

2.1.1 Existing Cryptocurrencies . 16
2.1.2 Bank-Intermediated Systems 17
2.1.3 Oblivious RAM . 18
2.1.4 Generalized Schnorr Proofs . 19

2.2 Solidus Overview . 20
2.2.1 Design Approach . 21
2.2.2 Architectural Model . 22
2.2.3 Trust Model . 24
2.2.4 Security Goals . 26

2.3 PVORM . 27
2.3.1 Formal Definition . 29
2.3.2 Solidus Instantiation . 31

2.4 Solidus Protocol . 33
2.4.1 FLedger-Hybrid Functionality 36
2.4.2 Security Definition . 40

2.5 Optimizations . 42
2.5.1 Precomputing Randomization Factors 42
2.5.2 Reducing Verification Overhead 43
2.5.3 Transaction Pipelining . 44

2.6 Experiments . 45
2.6.1 PVORM Performance . 45
2.6.2 Solidus System Performance 48
2.6.3 zk-SNARK Comparison . 49

2.7 Related Work . 50
2.8 Crypto Primitives . 52

2.8.1 El Gamal Encryption and Account-Balance Representation . . 52
2.8.2 Generalized Schnorr Proofs (GSPs) 54

ix

2.8.3 Hidden-Public-Key Signatures 55
2.8.4 El Gamal Swaps . 56
2.8.5 Range Proofs . 57
2.8.6 Circuit ORAM . 58

2.9 Solidus PVORM Construction . 60
2.9.1 Construction . 61
2.9.2 Security Proofs . 63

2.10 Solidus Security Proof . 70
2.11 Variants . 78

2.11.1 zk-SNARK PVORM . 78
2.11.2 Use of Trusted Hardware . 80
2.11.3 Use of Pedersen Commitments 81

3 Nonmalleable Information Flow Control 82
3.1 Motivating Examples . 85

3.1.1 Fooling a Password Checker 86
3.1.2 Cheating in a Sealed-Bid Auction 87
3.1.3 Laundering Secrets . 89

3.2 Background . 90
3.3 Enforcing Nonmalleability . 92

3.3.1 Robust Declassification . 92
3.3.2 Transparent Endorsement . 94

3.4 A Core Language: NMIFC . 95
3.4.1 NMIFC Operational Semantics 96
3.4.2 NMIFC Type System . 99
3.4.3 Examples Revisited . 102

3.5 Security Conditions . 103
3.5.1 Attackers . 104
3.5.2 Equivalences . 105
3.5.3 Noninterference and Downgrading 106
3.5.4 Robust Declassification and Irrelevant Inputs 107
3.5.5 Transparent Endorsement . 112
3.5.6 Nonmalleable Information Flow 113

3.6 NMIF as 4-safety . 115
3.7 Implementing NMIF . 118

3.7.1 Information-Flow Monads in Flame 118
3.7.2 Nonmalleable HTTP Basic Authentication 120

3.8 Related Work . 122
3.9 Full NMIFC . 124

3.9.1 Label Tracking with Brackets 126
3.10 Attacker Properties . 128
3.11 Generalization . 130
3.12 Proofs . 132

3.12.1 Language Results . 133

x

3.12.2 Security Results . 136

4 Compositional Reentrancy Security 144
4.1 Motivating Examples . 147

4.1.1 Uniswap . 147
4.1.2 Key–Value Store . 150
4.1.3 Town Crier . 151

4.2 Information Flow Control . 153
4.2.1 Label model . 154
4.2.2 Endorsement . 155

4.3 Reentrancy and Security . 156
4.3.1 Defining Reentrancy . 156
4.3.2 Reentrancy Security . 158
4.3.3 Enforcing Reentrancy Security 160

4.4 SeRIF: A Core Calculus for Secure Reentrancy 162
4.4.1 SeRIF Operational Semantics 163
4.4.2 Type System for SeRIF . 166
4.4.3 Modeling Application Operation 169
4.4.4 Examples Revisited . 170

4.5 Formalizing Security Guarantees . 172
4.5.1 Attacker Model . 173
4.5.2 Noninterference . 176
4.5.3 Formalizing Reentrancy . 178

4.6 Implementation . 182
4.7 Related Work . 185
4.8 Full SeRIF Rules . 187
4.9 Location–Name Isomorphism . 192
4.10 Preservation and Progress . 193
4.11 Proof of Noninterference . 203
4.12 Proof of Reentrancy Security . 218

4.12.1 SeRIF Allows Only Tail Reentrancy 218
4.12.2 All Tail Reentrancy is Secure 233

5 Conclusion 241

xi

LIST OF TABLES

2.1 Performance of PVORM using zk-SNARKs. 50

4.1 Evaluation of SeRIF type checker. 184

xii

LIST OF FIGURES

2.1 An example of a bank-intermediated transaction. 24
2.2 Illustration of the update process of the PVORM construction. . . . 32
2.3 Lifecycle of a transaction in Solidus. 35
2.4 Solidus ideal initializer. 36
2.5 Solidus ideal ledger functionality. 37
2.5 Solidus hybrid protocol with an ideal ledger. 39
2.6 Ideal functionality for Solidus. 41
2.7 PVORM performance by stash size. 46
2.8 PVORM performance by capacity. 46
2.9 Parallel PVORM performance by thread count. 47
2.10 Solidus full system performance. 49

3.1 A password checker with malleable information flow 86
3.2 Cheating in a sealed-bid auction. 87
3.3 Robust declassification . 94
3.4 Transparent endorsement . 95
3.5 Core NMIFC syntax. 96
3.6 Core NMIFC operational semantics. 97
3.7 Type protection levels. 99
3.8 Typing rules for core NMIFC. 100
3.9 A secure version of a password checker. 102
3.10 Low equivalence and low trace equivalence. 105
3.11 A program that admits inept attacks. 109
3.12 Relating 4-safety hyperproperties and noninterference. 118
3.13 Core information flow control operations in Flame. 119
3.14 Nonmalleable information flow control in Flame. 120
3.15 Receive operations in NMIF in Flame. 120
3.16 A nonmalleable password checker in Servant. 121
3.17 Full NMIFC syntax. 124
3.18 Full NMIFC operational semantics. 125
3.19 Type protection levels. 126
3.20 Typing rules for full NMIFC language. 127
3.21 Principal lattice rules . 128
3.22 NMIFC language extensions. 129

4.1 Distilled Solidity code for the Uniswap bug. 148
4.2 Example of a key–value store with a reentrancy vulnerability. 150
4.3 Solidity code for simplified partial Town Crier contract. 152
4.4 Comparing `-reentrancy to object reentrancy. 157
4.5 The set of possible behaviors in a secure vs. a vulnerable system. . . 159
4.6 Syntax for SeRIF. 162
4.7 Selected small-step semantic rules for SeRIF. 165

xiii

4.8 Selected typing rules for SeRIF . 167
4.9 Full small-step operational semantics for SeRIF. 189
4.10 Full typing rules for SeRIF. 192
4.11 Small-step operational semantics for SeRIF with bullets. 205

xiv

CHAPTER 1

INTRODUCTION

How do we secure highly decentralized computer systems? Many applications

today are built from numerous independent communicating services, which often

do not trust each other. Despite this lack of trust, the overall system can only func-

tion if the services cooperate. Internet of Things sensors and appliances in a smart

home must coordinate to be useful, but sensors might be hacked and appliances

should still behave reasonably. Miners of blockchain cryptocurrencies like Bitcoin

and Ethereum need to agree on the state of the system, yet any of them might try to

steal money or censor transactions. Large web applications like Google, Facebook,

Amazon, or Twitter are built from numerous independent microservices, yet their

code bases are large enough and diverse enough that trusting every service might

be dangerous. This combination of structural interconnection and mutual distrust

makes it immensely difficult to maintain the integrity of every service.

The integrity of a decentralized system and its data relies on the component ser-

vices conforming to some system-specific expectations. For example, in a financial

transaction processing system, a service recording the movement of money should

ensure that all transactions are authorized by their sender and that accounts do

not overdraw their balances. A password-based authentication service should en-

sure that users construct their own password guesses rather than, say, providing a

pointer to the location of the password saved in the service’s memory.

When all parties are trustworthy, integrity is not a concern, and when all data is

public and the system’s expectations are made explicit, simply replicating all data

and computation, allowing each party to independently verify all transactions, is

sufficient to ensure integrity. This approach has become increasingly popular with

the proliferation of blockchain systems [e.g., 40, 60, 70, 121, 134, 162, 173]. Un-

1

fortunately, many decentralized systems meet neither of these criteria. They must

account for potentially untrustworthy actors while including secret data, making

implicit assumptions, or both.

This dissertation explores different ways decentralized systems can make ex-

plicit the expectations of each constituent module and verify that those require-

ments are not violated. Chapter 2 introduces Solidus, a protocol built from power-

ful cryptographic tools that hide secret data while proving that updates conform to

an agreed-upon specification. It leverages replication to allow all parties to verify

that all updates are declared and contain valid update proofs. Such cryptographic

techniques are powerful and flexible, but they have some notable drawbacks. Prov-

ing them correct requires careful manual analysis by highly trained experts, and

the protocols are often carefully tailored to specific settings and are non-modular,

meaning localized changes can destroy the security of the entire system.

Chapters 3 and 4 complement this approach by building language-based tools

to provide compositional integrity guarantees. Both chapters study static Informa-

tion Flow Control (IFC) analysis using type systems. This technique allows de-

velopers to specify security policies on code and data and check if those policies

are consistent. Previous IFC work either enforces noninterference [72]—a condi-

tion that is much too restrictive for real applications—or focuses on confidentiality,

defining and eliminating classes of data leakage attacks [44, 96, 103, 120, 145, 177].

Chapters 3 and 4 instead focus on identifying and eliminating classes of integrity

attacks even when services must accept data and requests from untrusted sources.

Together this collection of techniques forms a powerful tool set. The crypto-

graphic advances in Solidus show the power of carefully combining cryptographic

tools for maintaining both strong confidentiality and integrity in a system based

primarily on replication. The advances in IFC capabilities allow for provably-sound

2

compositional analyses of strong, yet expressive, integrity policies in decentralized

systems. This combination has the potential to extend and inform a variety of ex-

isting and ongoing work to automatically combine IFC and cryptography [4, 135].

1.1 Cryptography and Replication

Ensuring integrity of replicated data is simple when that data is visible to all par-

ties, but most interesting applications contain at least some secret data. Hiding

the secret information behind encryptions or cryptographic commitments is a step

toward preventing leaks, but it creates two critical challenges for maintaining in-

tegrity with replication. First, if not everyone can see the underlying data, replica-

tion alone is insufficient for ensuring integrity. Second, it is often not obvious what

combination of information an attacker can use to reconstruct secret data.

Both of these shortfalls are becoming increasingly important with the growing

prevalence of blockchain systems. Bitcoin, the first major blockchain system, recog-

nized the need for privacy. It uses unique pseudonyms to disconnect the real-world

identity of transacting parties from the transactions themselves, and the original

paper [121] claims the transactions are anonymous. Yet, the transaction values are

still visible, and transactions can be linked by noticing that the same address re-

ceived coins in transaction T1 and sent coins in transaction T2. In 2013, Meiklejohn

et al. [108] showed that, with minimal auxiliary information from real-world trans-

actions, this so-called “transaction graph” is sufficient to deanonymize a significant

fraction of Bitcoin transactions.

In response to this style of attack, there have been proposals to hide transaction

values with various so-called “confidential transaction” protocols [99, 105, 106], or

to “mix” transactions together, essentially creating cover traffic for each transac-

tion [77, 104, 112, 141, 166]. These attempts are intuitive and often fairly computa-

tionally efficient, but they generally lack rigorous definitions or proofs of security.

3

Indeed, they generally succeed in maintaining the integrity of the system, but they

leak a considerable amount of secret information [114, 158].

Solutions with stronger provable guarantees replicate only encryptions or com-

mitments to values. In doing so, they break the information symmetry between

the parties and complicate the task of verifying that each update is valid. Instead,

they require cryptographic proofs to demonstrate the integrity of the replicated

data. Zerocash [15] and its antecedents [55, 110] provide strong anonymity for

Bitcoin-like fully decentralize peer-to-peer payment systems. Hawk [90] provides

a compiler for ensuring privacy in smart contracts on Ethereum [173] and similar

computational platforms relying on replication for integrity. Though highly effec-

tive at ensuring integrity while hiding secret data, these structures are generally

inefficient and do not match cleanly with the architecture and needs of existing

real-world infrastructure, like the financial system.

Chapter 2 describes Solidus, a protocol with similar goals for confidentiality

and integrity, but fitting into a different design point. Solidus takes as a starting

point the structure of the existing financial system: a small set of banks each with a

large set of accounts. It then builds an anonymous transaction infrastructure on top

of this bank-intermediated architecture. By moving to a bank-intermediated model,

Solidus partially centralizes the payment system, removing the need for novel

cryptographic constructs like zk-SNARKs and achieving better performance.

Solidus builds on top of a new cryptographic primitive: the Publicly-Verifiable

Oblivious RAM Machine (PVORM). A PVORM provides a means for storing and

updating secret data while maintaining integrity in a replication-based system. It

completely obscures data and access patterns, yet allows all parties to verify that

updates conform to publicly agreed upon requirements (e.g., account balances can-

not be negative). In Solidus, each bank maintains its own PVORM of accounts, and

4

transactions link updates between two PVORMs to ensure they correspond. The

result is a transaction system that maintains a high level of integrity while leaking

almost no information about transactions outside of the banks processing them.

Chapter 2 was previously published as Solidus: Confidential Distributed Ledger

Transactions via PVORM in the proceedings of the 24th ACM Conference on Com-

puter and Communication Security (CCS ’17), co-authored with Fan Zhang, Yan Ji,

Ahmed Kosba, Ari Juels, and Elaine Shi [37].

1.2 Compositional Integrity Guarantees

Ideally, mechanisms for maintaining integrity in decentralized systems would pro-

vide compositional guarantees. That is, demonstrating the security of each module

separately would be sufficient to ensure security of the whole system. In a decen-

tralized system, compositional guarantees allow each service to check its security

independently, relying only on other services it trusts to properly enforce their se-

curity specification. There is no need to rely on how those other trusted services

maintain their security or on any behavior of untrusted services.

While the Universally Composable (UC) security framework [34] and others

it has inspired [33, 171] provide a structure for proving compositionality of cryp-

tographic techniques, using these frameworks is complicated and error-prone. We

thus complement the cryptographic techniques discussed above with the language-

based approach of Information Flow Control (IFC). IFC tools use labels on data

and computation as a security specification, allowing them to track and constrain

how data flows through an application. This strategy allows them to enforce entire

classes of compositional information security guarantees.

Though IFC tools traditionally use labels to represent confidentiality policies—

e.g., Alice may read this data but Bob may not—allowing IFC to prevent unwanted

5

data leaks [66, 159, 175], it can also track and control integrity [19, 178], availabil-

ity [183], distributed consistency guarantees [111], or combinations thereof [4, 9,

117]. Importantly, IFC guarantees are enforceable with a type system [144] and

are highly compositional. Multiple modules can safely compose into a larger ap-

plication with the same security guarantees as long as the types—including IFC

labels—at the module boundaries match and the sensitivity of the code is consid-

ered. IFC-based security also performs well in decentralized systems [119], ensur-

ing that you can only be hurt by someone if both you trust them and they fail to

enforce their stated security policies.

The gold standard security property for IFC systems is noninterference [72].

Noninterference forbids secret (untrusted) data from influencing public (trusted)

data in any way. While it will prevent all data leaks or unwanted influence, non-

interference is far too constraining for most realistic applications. Many services

need to make trustworthy decisions based on input from an untrusted source—

endorsing that input—or publicly release outputs computed from secret inputs—

declassifying the information. These operations break noninterference by design

and require more nuanced notions of security.

Many IFC systems support developer-specified violations of noninterference

through so-called “downgrading operations” like declassification of secrets and

endorsement of inputs. The research surrounding these tools defines several dif-

ferent notions of secure declassification [44, 96, 103, 120, 145, 177], but there is little

work addressing what it means to safely endorse. Chapters 3 and 4 address this

missing piece. They each investigate a different danger of endorsement and how

to eliminate corresponding insecurity.

6

1.2.1 Endorsement With Secrets

Just as in replication-based systems, in the presence of endorsement, secret data

complicates maintaining the integrity system. When a service endorses data, it

usually implicitly assumes that the provider of that data constructed the input

from information it could access. Consider a password checker that takes a guess

as input from an untrusted source, compares it to a secret and trusted password

value, and then outputs a public and trusted boolean to indicate if the guess was

correct. Such a checker clearly assumes the user constructed the password guess

using their own data. An attacker should not be able to pass, say, a pointer to the

secret password as an argument, allowing them to authenticate despite not know-

ing the password.

IFC labels provide only a security specification for programs, so this specifi-

cation should preclude attacks like the one described above. If the confidentiality

level of the guess is as secret as the stored password secret, the specification would

allow an attacker to provide that secret directly despite not being able to read it.

If the checker endorsed this input, it would violate the implicit assumption that

the attacker constructed the password guess on its own. To enforce this implicit as-

sumption, we compare the confidentiality and integrity of the endorsed data and

require that the source of the endorsed data can read it.

The idea of connecting confidentiality and integrity to secure downgrading is

not new. Robust declassification [120, 177] connects them to define and enforce

a notion of secure declassification. Intuitively, it prevents untrusted code or data

from influencing declassification decisions. That way attackers cannot cause the

wrong data to be declassified or a declassification to occur at the wrong time.

The connection, however, was one-sided. Confidentiality security depended on

integrity, but not vice versa. The work broke the classic duality between confiden-

7

tiality and integrity [19] and left open the question of how to secure endorsement.

Chapter 3 deepens the connection between confidentiality and integrity. It for-

malizes the intuition that endorsing data is only safe when the data’s source can

read it as transparent endorsement, making integrity security depend on confiden-

tiality. Indeed, the definition and enforcement conditions for transparent endorse-

ment are precise mathematical duals to the definition and enforcement conditions

of robust declassification, restoring the classic confidentiality–integrity duality.

Robust declassification and transparent endorsement combine to form nonmal-

leable information flow (NMIF), a single unified security condition that applies to

programs with an arbitrary mix of declassification and endorsement. Chapter 3

further recasts all three security conditions, framing them as hypersafety proper-

ties [46]. In particular, all three are 4-safety properties, meaning they can be de-

fined by sets of four execution traces that do not exhibit certain bad properties—

untrusted influence over declassification (robust declassification), secret influence

over endorsement (transparent endorsement), or either (NMIF).

Chapter 3 was previously published as Nonmalleable Information Flow Control in

the proceedings of the 24th ACM Conference on Computer and Communication

Security (CCS ’17), co-authored with Andrew C. Myers and Owen Arden [36].

1.2.2 Reentrancy

Transparent endorsement and nonmalleable information flow address the assump-

tions implicit in endorsing data, but many service must also endorse control flow.

Normally IFC requires that, to invoke an operation, the caller must be at least as

trusted as the operation. For a trustworthy service to accept a request from an

untrusted source, however, the service must endorse the control flow, allowing

that untrusted source to call a more-trusted request handler. Again, implicit as-

8

sumptions on the behavior of untrusted parties embedded in the endorsement can

endanger system integrity.

Secrets were integral to violating the implicit assumptions of data endorse-

ments, but they are unnecessary to violate the assumptions of control flow en-

dorsements. Most services implicitly assume that requests will execute in a call-

and-return pattern where a user makes a request, the service processes the request,

and then returns a result. In highly decentralized systems, however, one service

might rely on others to process the request, and those other services might be un-

trustworthy or pass control to someone that is. An attacker can then violate the

assumption that the original request will execute in a call-and-return pattern. If it

regains control of execution in the middle of processing the first request, the at-

tacker can make a second request, reentering the original service.

Without endorsement, standard IFC constraints would only permit these reen-

trant calls from within the same trust domain as the original service, making it

much easier to analyze and control their impacts. Unfortunately, it accomplishes

this restriction by preventing all requests from parties the service does not trust.

For any sort of public-facing application, this prohibition stops nearly all users

from submitting requests, rendering the service nearly useless. Instead services

will endorse the control flow at the public entry point, allowing anyone to sub-

mit requests. Existing IFC techniques provide no restriction on these control flow

endorsements, so they fail to detect or prevent reentrancy attacks. As before, a

compositional solution is necessary to secure large modular systems.

These reentrant calls can result in serious security vulnerabilities. Attackers

have exploited reentrancy bugs in two different Ethereum smart contracts, The

DAO [131] and the Uniswap/Lendf.me exchange [127], each time stealing tens

of millions of dollars. The attacks have not gone unnoticed, with researchers de-

9

veloping an array of tools and languages to identify reentrancy and other smart

contract bugs [e.g., 5, 26, 47, 57, 75, 93, 100]. These approaches universally con-

sider the security of a self-contained object, usually a smart contract. As a result,

they aim to secure single contracts—or objects—against reentrancy, resulting in

a non-compositional notion of reentrancy that we call object reentrancy. A single

application made from two smaller objects will have a different definition of reen-

trancy, and hence security, than a functionally equivalent application written as a

single monolithic object. In a decentralized system with different boundaries sep-

arating trust domains and objects, these object-based definitions fail to capture the

true security concerns of the system.

Chapter 4 recasts the reentrancy attack as a breach of the implicit assump-

tions of endorsing control flow, as described above. This new lens supports a

highly compositional definition: reentrancy occurs when trusted code calls un-

trusted code that then calls back into trusted code before returning—possibly vio-

lating an implicit call-and-return assumption. A reentrancy vulnerability then re-

sults when a reentrant call causes an application to violate an invariant it would

otherwise maintain, such as incorrectly overdrawing an account balance.

In addition to formalizing these definitions, Chapter 4 describes how locks on

integrity levels can provably guarantee security against reentrancy attacks, allow-

ing developers to ignore reentrancy when reasoning about correctness. The locks

are enforced with a mix of static and dynamic checking. The static checking al-

lows the type checker to guide developers and avoid the use of expensive run-

time checks, while the dynamic portion supports safe and expressive interactions

with untrusted code. The result is a powerful, yet expressive tool for maintaining

integrity in a decentralized setting with services in different trust domains.

Chapter 4 was previously published as Compositional Security for Reentrant Ap-

10

plications in the proceedings of the 42nd IEEE Symposium on Security and Privacy

(Oakland ’21), co-authored with Siqiu Yao, Haobin Ni, and Andrew C. Myers [39].

11

CHAPTER 2

SOLIDUS

Blockchain-based cryptocurrencies, such as Bitcoin, allow users to transfer value

quickly and pseudonymously on a reliable distributed public ledger. This ability to

manage assets privately and authoritatively in a single ledger is appealing in many

settings beyond cryptocurrencies. Companies already issue shares on ledgers [58]

and financial institutions are exploring ledger-based systems for instantaneous

financial settlement.

For many of these companies, confidentiality is a major concern and Bitcoin-

type systems are markedly insufficient. Those systems expose transaction values

and the pseudonyms of transacting entities, often permitting deanonymization [108].

Concerns over this leakage are driving many financial institutions to restrict on-

chain storage to transaction digests, placing details elsewhere [22, 88, 165]. Such

architectures discard the key benefits of blockchains as centralized authoritative

ledgers and reduce them to little more than a timestamping service.

The overall structure of current blockchains additionally misaligns with that of

the modern financial system. The direct peer-to-peer transactions in Bitcoin and

similar systems interfere with the customer-service role and know-your-customer

regulatory requirements of financial institutions. Instead, the financial industry is

exploring a model that we call bank-intermediated systems [88, 165]. In such systems

a small number of entities—which we call banks—manage transactions of on-chain

assets on behalf of a large number of users. For example, a handful of retail banks

could use a bank-intermediated ledger to authoritatively record stock purchases by

millions of customers. By design, bank-intermediated systems faithfully replicate

asset flows within modern financial institutions.

While a number of bank-intermediated blockchain systems have been proposed,

12

e.g., [54, 61, 168], these systems either do not provide inherently strong confiden-

tiality or do so by sequestering data off-chain, preventing on-chain settlement.

Coin mixes, e.g., [77, 104, 141, 166], and cryptocurrencies such as Monero [112] and

Zcash [15] do improve confidentiality, but with notable limitations. Coin mixes and

Monero provide only partial confidentiality, with demonstrated weaknesses [108,

114, 158]. Zero-knowledge Succinct Non-interactive ARguments of Knowledge

(zk-SNARKs) [14], on which Zcash is built, provide strong confidentiality. Proof

generation, however, is very expensive, requiring over a minute on a consumer

machine for Zcash [15]. While this is feasible for a single client performing in-

frequent transactions, we show experimentally in this paper that adapting zk-

SNARKs to a bank-intermediated system would be prohibitively expensive. zk-

SNARKs also require an undesirable trusted setup and introduce engineering com-

plexity and cryptographic hardness assumptions that financial institutions are re-

luctant to embrace [88].

To address these concerns we present Solidus,1 a system supporting strong con-

fidentiality and high transaction rates for bank-intermediated ledgers. Solidus not

only conceals transaction values, but also provides the much more technically chal-

lenging property of transaction-graph confidentiality.2 This means that a transaction’s

sender and receiver cannot be publicly identified, even by pseudonyms. They can

be identified by their respective banks, but other entities learn only the identities

of the banks.

Solidus takes a fundamentally different approach to transaction-graph confi-

dentiality than previous systems such as Zcash. As the technical cornerstone of

Solidus, we introduce a new primitive called Publicly-Verifiable Oblivious RAM Ma-

1The solidus was a solid gold coin in the late Roman Empire.
2Pseudonymous cryptocurrencies such as Bitcoin are often viewed as graphs where nodes rep-

resent keys and edges transactions. The term transaction-graph confidentiality means concealing the
graph’s edges to guard against deanonymization attacks exploiting its structure [108].

13

chine or PVORM, an idea derived from previous work on Oblivious RAM (ORAM).

In previously proposed applications, ORAM is used by a single client to outsource

storage; only that client needs to verify the integrity of the ORAM. In Solidus,

the ORAM stores user account balances. This means that any entity in the sys-

tem must be able to verify (in zero-knowledge) that bank B’s ORAM reflects pre-

cisely the set of valid transactions involving B. To meet this novel requirement, a

PVORM defines a set of legal application-specific operations and all updates must

be accompanied by ZK proofs of correctness. Correctness includes requirements

that account balances remain non-negative, that each transaction updates a single

account, and so forth. We offer a formal and general definition of PVORM and

describe an implementation incorporated into Solidus.

Introducing the PVORM provides several benefits to Solidus. First, a PVORM

can be constructed with either zk-SNARKs or NIZK proofs based on General-

ized Schnorr Proofs (GSPs) [29, 32]. GSPs are more efficient to construct than zk-

SNARKs and do not require trusted setup, but are much slower to verify, so we

explore both options. Second, unlike Zcash, Solidus’s core data structure grows

only with the number of user accounts, not the number of transactions over the

system’s lifetime. This property is especially important in high-throughput sys-

tems and minimizes performance penalties for injecting of “dummy” transactions

to mitigate timing side-channels. Finally, Solidus maintains all balances as cipher-

texts on the ledger. This approach supports direct on-chain settlement—a feature

many systems, like Zcash, do not aim for. It also permits decryption of balances by

authorized parties and allows users to prove their own balances if, for example,

they wish to transfer funds away from unresponsive banks.

In addition to the PVORM component, we present a formal security model for

Solidus as a whole in the form of an ideal functionality. This presentation may

14

be of independent interest as a specification of the security requirements of bank-

intermediated ledger systems. We prove the security of Solidus in this model.

Further, while Solidus targets a permissioned ledger model, it requires only a

permissioned group; it is agnostic to the implementation of the underlying ledger,

whether centralized or distributed. Therefore, we use the generic term ledger to

denote a blockchain substrate that can be instantiated in a wide variety of ways.

Our contributions can be summarized as follows:

• Bank-intermediated ledgers. Our work on Solidus represents the first formal

treatment of confidentiality on bank-intermediated ledgers—a new architec-

ture that closely aligns with the settlement process in the modern financial

system. Our work provides a formal security model that broadly captures

the requirements of financial institutions migrating assets onto ledgers.

• PVORM. We introduce Publicly-Verifiable Oblivous RAM Machines, a new con-

struction derived from ORAM and suitable for enforcing transaction-graph

confidentiality in ledger systems. We offer formal definitions and efficient

constructions using Generalized Schnorr Proofs.

• Implementation and Experiments. We report on our prototype implementation

of Solidus and present results of benchmarking expreiments, demonstrating

a lower bound on Solidus performence. We also provide a performance com-

parison with zk-SNARKs.

Our results are not just a new technical approach to transaction-graph confi-

dentiality on ledgers. They also show the practicality of bank-intermediated ledger

systems with full on-chain settlement.

15

2.1 Background

We now review existing cryptocurrency schemes and approaches to their confiden-

tiality. We then give some background on bank-intermediated system modeling

and describe the technical building blocks used to achieve security and confiden-

tiality in Solidus.

2.1.1 Existing Cryptocurrencies

Many popular cryptocurrencies are based on the same general transaction mech-

anism popularized by Bitcoin. Any user U may create an account (“address” in

Bitcoin) with a public/private key pair. To transfer money, U creates a transac-

tion T by signing a request to send some quantity of coins to a recipient.3 Min-

ers sequence transactions and directly publish T to the blockchain, an authoritative

append-only record of transactions. Since only transactions are recorded, to deter-

mine the balance of U, it is necessary to tally all transactions involving U in the

entire blockchain. As a performance optimization, many entities maintain a bal-

ance summary—called an unspent transaction (UTXO) set in Bitcoin.

This setup publicizes all account balances and transaction details. The only

confidentiality stems from the pseudonymity of public keys which are difficult—

though far from impossible [108]—to link to real-world identities.

To conceal balances and transaction values, Maxwell proposed a scheme called

Confidential Transactions (CT) [105]. CT operates in a Bitcoin-like model, but pub-

lishes only Pedersen commitments of balances. Transaction values are similarly

hidden and balances are updated using a homomorphism of the commitments

3This is a simplification and details vary between systems. For example, a basic transaction in
Bitcoin (“Pay-to-PubkeyHash”), takes a reference to the output from a previous transaction and
includes a small script restricting the user of outputs and a mining fee.

16

and proven non-negative using Generalized Schnorr Proofs (see below). Solidus

uses an El-Gamal-based variant of CT to conceal transaction values.

Several decentralized cryptocurrency schemes aim to provide partial or full

transaction-graph confidentiality. (See Section 2.7 for a brief overview.) As noted

above, though, only those involving zk-SNARKs provide strong confidentiality of

the type we seek for Solidus. Zcash and offshoots such as Hawk [90], for example,

conceal balances, transfer amounts, and the transaction graph. They do not, how-

ever, aim to align with the financial settlement system. Additionally, they require

trusted setup and store authoritative state in a Merkle tree that grows linearly with

the total system transaction history, drawbacks we avoid in the design of Solidus.

As a basis for performance comparison, we describe and evaluate a zk-SNARK-

based version of Solidus in Section 2.6.3.

2.1.2 Bank-Intermediated Systems

Managing assets on ledgers is appealing to the financial industry.

Asset transfers in financial markets today involves a laborious three-step pro-

cess. Execution denotes a legally enforceable agreement between buyer and seller to

swap assets, such as a security for cash. Clearing is updating a ledger to reflect the

transaction results. Settlement denotes the exchange of assets after clearing. Multi-

ple financial institutions typically act as intermediaries; when a customer buys a

security, a broker or bank will clear and settle on her behalf via a clearinghouse.

Today, the full settlement process typically takes three days (T+3) for securities.

This delay introduces systemic risk into the financial sector. Government agencies

such as the Securities and Exchange Commission (SEC) are trying to reduce this

delay and are looking to distributed ledgers as a long-term option. If asset titles—

the authoritative record of ownership—are represented on a ledger, then trades

17

could execute, clear, and settle nearly instantaneously.

Existing cryptocurrencies such as Bitcoin can be viewed as titles of a digital as-

set. Execution takes the form of digitally signed transaction requests, while clear-

ing and settlement are simultaneously accomplished when a block containing the

transaction is mined4

Today, however, banks intermediate most financial transactions. Even with Bit-

coin, many customers defer account management to exchanges (e.g. Coinbase).

Additionally, a labyrinthine set of regulations, such as Know-Your-Customer [116],

favors bank-intermediated systems. Thus existing cryptocurrencies do not align

well with either financial industry or ordinary customer needs.

Solidus aims to provide fast transaction settlement in a bank-intermediated

ledger-based setting. As in standard cryptocurrencies, Solidus assumes that each

user has a public/private key pair and digitally signs transactions. Solidus, how-

ever, conceals account balances and transaction amounts as ciphertexts. To do so

and provide public verifiability at the same time, it relies on PVORM.

2.1.3 Oblivious RAM

As PVORM is heavily inspired by Oblivious RAM (ORAM), we provide some back-

ground here.

An ORAM is a cryptographic protocol that permits a client to safely store data

on an untrusted server. The client maintains a map from logical memory addresses

to remote physical addresses and performs reads and writes remotely. Ensuring

freshness, integrity, and confidentiality of data in such a setting is straightfor-

ward using authenticated encryption and minimal local state. The key property

of ORAM is concealment of memory access patterns; a polynomially-bounded adver-

4Strictly speaking, settlement involves an exchange of assets, and thus two transactions, but this
issue lies outside the scope of our work.

18

sarial server cannot distinguish between two identical-length sequences of client

operations.

These properties provide an appealing building block for Solidus. Identifying

an edge in the system’s transaction graph can easily be reduced to identifying

which account’s balance changed with a transaction. Thus placing all balances

in an ORAM immediately provides transaction graph confidentiality. Moreover,

recent work has drastically improved the performance of ORAM. The most prac-

tical ORAM constructions maintain a small local cache on the client known as a

stash and either organize the data blocks as a tree allowing logarithmic work on

each access [160, 169], or write to completely randomized locations, resulting in

constant-time writes but linear reads (so-called “write-only” ORAM) [21, 137].

Unfortunately, standard ORAM is insufficient for Solidus. Because ORAM is

designed for a client using an untrusted server, correctness simply means the

ORAM reflects the client’s updates. There is no notion of “valid” updates, let

alone means for a client to prove an update’s validity. In Solidus, clients (banks)

must prove an application-defined notion of correctness for each update. Banks

also cannot store a local stash, as we would no longer have all data on the ledger.

To address these concerns we introduce PVORM—detailed in Section 2.3—a new

construction inspired by ORAM.

2.1.4 Generalized Schnorr Proofs

Solidus makes intensive use of Generalized Schnorr Proofs (GSPs), a class of Σ-proto-

col for which practical honest-verifier zero-knowledge arguments (or proofs) of

knowledge can be constructed.

Notation introduced in [29, 32] offers a powerful specification language for

GSPs that call the PoK language. Using multiplicative group notation, let G = 〈g〉

19

be a cyclic group of prime order p.5 If x ∈ Zp and y = gx, then PoK(x : y = gx) rep-

resents a ZK proof of knowledge of x such that y = gx where g and y are known to

the verifier. (This is the Schnorr identification protocol.)

The PoK specification language for GSPs is quite rich; it supports arbitrary

numbers of variables as well as conjunctions and disjunctions among predicates. It

has a set of corresponding standard tools based on the Schnorr identification pro-

tocol for efficient realization in practice when G has known order [32]. It is possible,

additionally, using the Fiat-Shamir heuristic [67], to render GSPs non-interactive,

i.e., to generate NIZK proofs of knowledge.

Solidus uses GSPs in a variety of ways to ensure account balances and PVORMs

are properly updated and remain valid.

2.2 Solidus Overview

Before delving into technical details, we give an overview of Solidus, including

basic notation, trust assumptions, and security goals. We also give an architectural

sketch. First, however, we give a concrete target application as motivation.

Example 2.1 (TradeWind Markets). TradeWind Markets, whose use case helped in-

form the design of Solidus, offers an example of how Solidus might support man-

agement of asset titles [165]. TradeWind is building an electronic communication

network (ECN) for physical gold bullion to be traded using a bank-intermediated

ledger for settlement and title management. The physical bullion is managed by a

custodian who is trusted to track inflows and outflows to and from a specifically

designated vault. Each user has an account with a holding bank—generally a large

commercial bank—which manages trades. A user may additionally buy gold from

5Solidus uses the group for elliptic curve secp256k1. We make this choice for performance, so
despite elliptic curve groups typically using additive notation, we will use multiplicative notation
for simplicity and generality.

20

outside, send it to the vault, and sell it on the TradeWind ECN—requiring the cus-

todian to create a record of the asset—or buy gold on the TradeWind ECN, remove

it from the vault, and sell it elsewhere—requring the custodian to destroy the asset

record.

Holdings are represented on the ledger as fractional ounces of gold held by in-

dividual users. To trade gold, a user authorizes her holding bank to transfer the

gold to another user. Holding banks may also provide other services, such as hold-

ing gold as collateral against a loan. In such cases the bank may freeze assets, for

example, until the loan is repaid.

As we shall show, Solidus can support the full asset lifecycle of a system like the

TradeWind ECN while providing practical performance and strong confidentiality

and verifiability guarantees.

2.2.1 Design Approach

Solidus has two important features that differ from existing ledger systems and

make it more amenable to the financial industry.

The first is its bank-intermediated design: unlike nearly all systems proposed

by the research community (see Section 2.7), Solidus aligns with the structure of

the modern financial system. Each bank in Solidus has a set of customers or users

who hold shares of some asset (e.g., securities, cryptocurrency, or gold) in their ac-

counts. Specially designated entities called asset notaries record the injection of as-

sets into the system, as we discuss below. Second, unlike other bank-intermediated

systems, Solidus provides strong confidentiality. It conceals account balances and

transaction details from non-transacting entities, placing them on the ledger as ci-

phertexts. It is for these reasons that Solidus uses PVORM. Each bank maintains

its own PVORM on the ledger to record the identities and balances of its account.

21

Each transaction involves a sending user at a sending bank, and a receiving

user at a receiving bank. When a user (sender) Us signs a transaction and gives

it to her (sending) bank Bs, Bs first verifies the validity of the transaction—that

it is correctly signed and Us possesses the funds $v to be sent—then updates its

PVORM to reflect the results of the transaction. The receiving bank performs a

corresponding update on the receiving user’s account.

The confidentiality properties of PVORM ensure that another entity can learn

only the identities of the sending and receiving banks, not $v or the identities of

the transacting users. Indeed, even the sending bank cannot identify the receiving

user nor the receiving bank the sending user.6 The public verifiability of PVORM

ensures that any entity with access to the ledger can verify that each transaction is

correctly processed by both banks.

Solidus’s design is agnostic to the implementation of the underlying ledger.

While it does require a mutually-aware group of banks and transaction valida-

tion by the ledger maintainers, those maintainers can be a “permissioned” (fixed-

entity) group, an “unpermissioned” (fully decentralized) ledger (a blockchain), or

any other trustworthy append-only data structure.

2.2.2 Architectural Model

In Solidus, a predetermined set of banksB1, . . . ,Bm maintain asset titles on a ledger.

Each bank Bi has a public/private key pair for each of encrypting and signing.

It also has up to n users {Ui
j}nj=1 each with a signature key pair. Each account is

publicly associated with one bank, so bank(Ui
j) = Bi is well-defined.

Each bankBi maintains its own private data structure Mi containing each user’s

balance and public key. It maintains a corresponding public data structure Ci,

6It is desirable for receiver to be able to verify the sender’s identity. The sender can easily acquire
a receipt by retaining a proof that she authorized the transaction.

22

placed on the ledger, whose elements are encrypted under Bi’s encryption key.

Mi and Ci together constitute the memory in a PVORM, which we describe in Sec-

tion 2.3. Solidus uses this structure to ensure that updates to Ci reflect valid trans-

actions processed in Mi while concealing transaction details and the transaction

graph.

A transaction T is a digitally signed request by userUi
j with balance $bi

j to send

some amount $v of asset to another userUi′
j′ . The transaction is valid if $bi

j ≥ $v ≥ 0.

To process a transaction, Bi updates Mi to set $bi
j ← $bi

j − $v and Bi′ updates Mi′

to set $bi′
j′ ← $bi′

j′ + $v. They generate publicly verifiable ZK-proofs that $v ≥ 0 and

that they updated their respective PVORMs correctly using $v. Figure 2.1 depicts

a simple Solidus transaction.

We treat the ledger as a public append-only memory which verifies transac-

tions. All banks have asynchronous authenticated read and write access and the

ledger accepts only well-formed transactions not already present. We model this

by an ideal functionalityFLedger, detailed in Section 2.4, which any bank can invoke.

Notarizing New Asset Titles. As described above, all user transactions must be

zero-sum;Ui
j sends money (that she must have) toUi′

j′ . Financial systems, however,

are generally not closed; assets can enter and leave the system through specific

channels. To support this, Solidus defines a fixed set of asset notaries {U$
1 , . . . ,U$

` }.
These are accounts with no recorded balance, but the authority to create and de-

stroy asset titles. To ease auditing of this sensitive action, transactions involvingU$
i

reveal its identity.

Asset notaries clearly must be restricted; it would make no sense to allow ar-

bitrary users to create and destroy asset titles. In Example 2.1, Solidus would des-

ignate the custodian as the sole notary responsible for acknowledging receipt and

removal of the physical asset (gold) and guaranteeing its physical integrity.

23

Ledger

PVORM PVORM

pks
1 $bs

1

Us
1

pks
2 $bs

2

Us
2

pkr
1 $br

1

Ur
1

pkr
2 $br

2

Ur
2

Bs Br

T : Us
2 →Ur

1 : $v

pks
1 $bs

1 pks
2 $bs

2 pkr
1 $br

1 pkr
2 $br

2

(−$v) (+$v)

T : Bs → Br

+ZK-Proofs

Figure 2.1: An example transaction T where Us
2 at Bs sends $v to Ur

1 at Br and
each bank has two users. The upper boxes are the logical (plaintext) memory of
each bank’s PVORM, and the lower boxes are the associated public (encrypted)
memories. Entities other than Bs, Br, Us

2, and Ur
1 learn only that a user at Bs sent

money to a user at Br and both banks updated their PVORMs correctly.

2.2.3 Trust Model

Solidus assumes that banks respect the confidentiality of their own users but oth-

erwise need not behave honestly. They may attempt to steal money, illicitly give

money to others, manipulate account balances, falsify proofs, etc. Banks (respec-

tively, users) can also attempt to violate the confidentiality of other banks’ users

(respectively, other users) passively or actively. We assume no bound on the num-

ber of corrupted banks or users, which may collude freely.

The Ledger. We assume the ledger abstraction given in Section 2.2.2. In practice,

the ledger can, but need not, be maintained by the banks themselves. If not main-

tained by the banks, the ledger’s trust model is independent from the higher-level

protocol. It may be constructed using a (crash-tolerant) consensus protocol such as

Paxos [94], ZooKeeper [82], or Raft [124], a Byzantine consensus protocol such as

PBFT [35], a decentralized consensus protocol such as Nakamoto consensus [121],

24

or even a single trustworthy entity. We simply assume that the ledger maintainers

satisfy the protocol’s requirements and the ledger remains correct and available.

We regard the ledger together with the public PVORM data structures {Ci} as

a replicated state machine. Despite this, Solidus’s flexible design allows us to treat

the consensus and application layers as entirely separate for the majority of our

discussion.

Availability. We assume that the ledger remains available at all times; it is not

susceptible to denial-of-service attacks and enough consensus nodes will remain

non-faulty to maintain liveness. A bank, however, can be unavailable in two ways:

it can freeze a user’s assets by rejecting transactions or it can go offline entirely.

Asset freezing can be a feature. For certain types of assets (e.g. gold, as in Ex-

ample 2.1) a user may wish to use her balance as collateral against a loan. A bank

could, however, maliciously freeze a user’s assets or go offline due to a technical

or business failure. In either case, an auditor with the bank’s decryption key (see

below) could enable a user to prove her balance and recover funds despite being

unable to transact directly.

Auditing. Regulators and auditors play a pivotal role in the financial sector. While

Solidus does not include explicit audit support, it enables banks to prove correct

decryption of on-chain data or share their private decryption key. In the first case,

the auditor can acquire a transaction log on demand and verify its correctness and

completeness. In the second case, the auditor can directly and proactively monitor

activity within the bank and its accounts.

Network. We do not assume a network adversary. An active network adversary

would make the availability requirement of the ledger impossible, while a pas-

sive adversary can be mostly mitigated simply by securing all messages with TLS.

The existence of communication between users and their banks could still leak

25

information, but this is inherent in any bank-intermediated system and could be

mitigated using Tor [62] or similar protocols.

2.2.4 Security Goals

Solidus aims to provide very strong safety and confidentiality guarantees for both

individual users and the system as a whole.

Safety Guarantees. Solidus provides a very simple but strong set of safety guar-

antees. First, no user’s balance may decrease without explicit permission of that

user (in the form of a signature), and such authorization can be used only once;

there are no replay attacks. Second, account balances can never be negative, ensur-

ing that no user can spend money she does not have. Finally, transactions that do

not include asset notaries must be zero-sum.

To ensure the above properties hold, we require that the correctness of every

transaction be proved in a publicly-verifiable fashion (via ZK-Proof). If the ledger

checks these proofs before accepting—and settling—the transaction, then every

transaction will maintain these guarantees. Solidus places all proofs on the ledger,

meaning an auditor can verify them offline.

Maintaining these guarantees requires all transactions involving a single bank

to be serialized. Banks can use the serialization provided by the ledger or another

locking mechanism to accomplish this, but everyone must agree on the ordering.

Confidentiality Guarantees. To facilitate audits and asset recovery against mali-

cious banks, Solidus places all account balances and transaction details directly on

the ledger. Despite this persistent public record, Solidus provides a strong confi-

dentiality for all users. First, account balances are visible only to the user’s bank

(and authorized auditors). Second, while transactions do reveal the sending and re-

26

ceiving banks, there is no way to determine if two transactions involving the same

bank involved the same account. We use a hidden-public-key signature scheme

(see Section 2.8.3) to enforce the publicly-verifiable authorization requirement above

without revealing identities. This second feature is often referred to as transaction

graph confidentiality. It precludes use of the pseudonymous schemes employed by

Bitcoin and similar systems, and is the challenge specifically addressed by PVORM.

We do not directly address information leaked by the timing of transactions.

These channels and the bank-level transaction graph can, however, be eliminated

by requiring each bank to post transactions at regular intervals in batches of uni-

form size. These batches would be padded out by “dummy” transactions of value

0 to obscure which banks conducted real transactions.

We present a formal model in Section 2.4 that encompasses all of these security

and confidentiality goals.

2.3 PVORM

As discussed in Section 2.1.3, ORAM presents a means to conceal the Solidus

transaction graph, but lacks the public verifiability that Solidus requires. To over-

come this limitation, we introduce the Publicly-Verifiable Oblivious RAM Machine

(PVORM).

As with ORAMs, PVORMs have a private logical memory M and correspond-

ing encrypted physical memory C. There are, however, four key differences:

• Constrained Updates. Write operations are constrained by a public function f .

In Solidus, for example, M contains account IDs and balances and f updates

a single balance to a non-negative value.

• Publicly Verifiable Updates. Whenever the client modifies C, it must publicly

27

prove (in zero-knowledge) that the change reflects a valid application of f .

• Client Maintains All Memory. Instead of a client maintaining M and a server

maintaining C, the client maintains both directly. While M remains hidden, C

is now publicly visible (e.g., on a ledger in Solidus).

• No Private Stash. Any data in M not represented in C would prevent the client

from proving correctness of writes. Instead of a variable-size private stash,

PVORM includes a fixed-size public encrypted stash.

To achieve public verifiability, our PVORM construction relies on public-key

cryptography. Another example of an ORAM scheme that uses public key cryp-

tography is Group ORAM [101], which does so for a more standard cloud set-

ting, rather than our setting here. In fact, while traditional ORAMs generally uses

symmetric-key primitives, this difference is not fundamental. One could construct

a PVORM using symmetric-key encryption and zk-SNARKs, but as we see in Sec-

tion 2.6.3, such a construction performs poorly.

We also leverage the fact that PVORM is designed for public verifiability and

not storage outsourcing to improve efficiency. In ORAM, reads incur a cost as the

client must retrieve data from the server. In PVORM, reads are “free” in that they

require only reading public state—the ledger in Solidus—which leaks nothing.

Writes, however, are still publicly visible. Second, since PVORM does not aim to

reduce local memory usage, we assume that the client locally maintains a full copy

of the PVORM including private data and metadata. This allows clients to perform

updates much more efficiently by avoiding unnecessary decryption.

These features are nearly identical to those leveraged by write-only ORAM,

but those techniques do not apply. Write-only ORAM requires simple writes, but

we implement updates as read-update-write operations to prove properties about

changes in values.

28

2.3.1 Formal Definition

We now present a formal definition of PVORM. We let M represent a private array

of values from a publicly-defined space (e.g. N) and C be the public (encrypted)

representation of M. U is the space of update specifications (e.g., account ID, bal-

ance change pairs).

Definition and Correctness. We first define the public interface of a PVORM and

its correct operation. A PVORM consists of the following operations.

• Init(1λ, n,m0,U)
$−→ (pk, sk,C), a randomized function that initializes the PVORM

with security parameter 1λ, n data elements, initial memory M = (m0, . . . ,m0),

and valid update values U.

• An update constraint function f (u,M)→ M′ that updates M according to update

u ∈ U. Note that f may be undefined on some inputs (invalid updates), and must

be undefined if u < U.

• Update(sk, u,C)
$−→ (C′, e, proof), a randomized update function that takes an up-

date u and a public memory and emits a new public memory, a ciphertext e of u,

and a zero-knowledge proof of correct application.

• Ver(pk,C,C′, e, proof)→ {true, false}, a deterministic update verification function.

We also define Read(sk,C) → M and Dec(sk, e) → u, two deterministic functions

that read every value from a C as a plaintext memory M and decrypt an update

ciphertext, respectively. We employ these operations only in our correctness and

security definitions; they are not part of the core PVORM interface.

We define correctness of a PVORM with respect to valid update sequences.

An update sequence {u0}ki=1 is valid for m0 if, when we let M0 = (m0, . . . ,m0) and

Mi = f (ui,Mi − 1), then Mi is defined for all 0 ≤ i ≤ k. A PVORM is correct if for all

29

initial values m0 and all update sequences {ui}ki=1 valid for m0,

Pr[ExpCorrect(λ, n,m0, {ui}ki=1)] = 1

where ExpCorrect(λ, n,m0, {ui}ki=1) is defined as

Experiment ExpCorrect(λ, n,m0, {ui}ki=1):

(pk, sk,C0)
$←− Init(1λ, n,m0,U)

if Read(sk,C0) , M0, return false

for i = 1 to k :

(Ci, ei, proof i)
$←− Update(sk, ui,Ci−1)

if
[
(Read(sk,Ci) , Mi) ∨ (Dec(sk, ei) , ui)

∨ ¬Ver(pk,Ci−1,Ci, ei, proof i)
]

return false

return true

with {M0, . . . ,Mk} defined as above. In other words, the PVORM is correct if Update

correctly transforms C as defined by f and Ver verifies these updates.

Obliviousness. Solidus requires a structure that can realize ORAM guarantees

in a new setting against even an adaptive adversary. Intuitively, we require the

PVORM to guarantee that any two adaptively-chosen valid update sequences re-

sult indistinguishable output. Formally, we say that a PVORM is oblivious if for all

PPT adversariesA, there is a negligible negl(λ) such that for all n ∈ N, m0, and U,

∣∣∣∣ Pr
[
ExpObliv(0,A, λ, n,m0,U) = 1

]
− Pr

[
ExpObliv(1,A, λ, n,m0,U) = 1

] ∣∣∣∣ ≤ negl(λ)

where ExpObliv(b,A, λ, n,m0,U) is defined by

Experiment ExpObliv(b,A, λ, n,m0,U):

(pk, sk,C)
$←− Init(1λ, n,m0,U)

returnAOb,sk,C(·,·)(1λ, pk,C)

30

where Ob,sk,C(·, ·) is a stateful oracle with initial state S ← C. On input (u0, u1), Ob,sk,C

executes (C′, e, proof)
$←− Update(sk, ub, S), updates S ← C′, and returns (C′, e, proof).

The experiment aborts if any C′ is ever undefined.

This definition is an adaptive version of those presented in the ORAM litera-

ture [153, 160, 169].

Public Verifiability. The final piece of our security definition is that of public ver-

ifiability. Intuitively, we require that each update produce a proof that the update

performed was valid and is the one claimed. Formally, a PVORM is publicly verifi-

able if for all PPT adversariesA,

Pr[ExpPubVer(A, λ, n)] ≤ negl(λ)

where ExpPubVer(A, λ, n) is defined as

Experiment ExpPubVer(A, λ, n):

(pk, sk, _)
$←− Init(1λ, n, _, _);

(C,C′, e, proof)
$←− A(1λ, n, pk, sk);

return Ver(pk,C,C′, e, proof)

∧ (
f (Dec(sk, e),Read(sk,C)) , Read(sk,C′)

)
This corresponds to the soundness of the ZK-proof that an update was performed

correctly.

2.3.2 Solidus Instantiation

In Solidus we instantiate a PVORM by combining several GSPs with the structure

of Circuit ORAM [169]. Circuit ORAM places data blocks into buckets organized as

a binary tree. It performs updates by swapping pairs of blocks along paths in that

tree. This structure leads to good performance for two reasons: updates require

logarithmic work in the number of accounts, and pairwise swaps of public-key

31

· · ·Stash
Fixed
block

· · · ··· ··· · · ·

· · · · · · · · ·

eModify
cipher

Buckets

Figure 2.2: An update for a Circuit ORAM-based PVORM with buckets of size 2.
Colors indicate the blocks involved in each operation of the read-modify-write
structure. Read moves one block from the read path (shaded) into the distin-
guished fixed block. Then modify combines it (homomorphically) with the modify
ciphertext (dashed). Finally write evicts the resulting value into the tree along two
eviction paths (thick bordered).

ciphertext admit efficient ZK-proofs of correctness. Figure 2.2 shows how Solidus’s

PVORM is structured and updated.

Each data block holds an account’s unique identifier and balance. This pair of

values must move in tandem as blocks are shuffled, so Solidus employs a verifiable

swap algorithm for El Gamal ciphertexts [85] augmented to swap ordered pairs of

ciphertexts (see Section 2.8.4).

Solidus constrains each update to modify one account balance and requires

that balances remain in a fixed range [0,N]. To make updates publicly verifiable,

a bank first moves the desired account to a deterministic fixed block by swapping

that position with each block along the Circuit ORAM access path. Next the bank

updates the account balance and generates a set inclusion proof on the resulting

ciphertext to prove it is in the legal range (see Section 2.8.5). Finally, the bank per-

forms Circuit ORAM’s eviction algorithm to reinsert the updated account. This

again requires swapping the fixed block with a set of tree paths.

In Section 2.9 we concretize this construction and prove that it is correct, obliv-

32

ious, and publicly verifiable.

Stash Overflow. Circuit ORAM assumes a stash of bounded size, but data loss is

possible if the stash overflows, resulting in a probabilistic definition of correctness;

correct behavior occurs only when data is not lost. Since the probability of data

loss is negligible in the size of the stash, the definition is reasonable for the setting.

In Solidus the stash must be placed on the ledger, so to prevent leaking infor-

mation we also bound the stash size. Data loss is, however, catastrophic no matter

how infrequent. When the stash would overflow, instead of losing data we insert

one account deeper into the tree. This insertion is public, so it does leak that regu-

lar eviction was insufficient as well as the location of a single account (though not

the account’s identity).

Solidus inherits the stash overflow probability of Circuit ORAM, which is neg-

ligible in the stash size [169]. As we show in Section 2.6, the PVORM update per-

formance is linear in the stash size, giving Solidus a direct performance-privacy

trade-off. Pleasantly, modest stash sizes make overflow exceedingly unlikely. With

buckets of size 3, a stash of size 25 reduces overflow probability to near 2−64.

2.4 Solidus Protocol

We now present the Solidus protocol. This construction relies heavily on crypto-

graphic primitives that we describe in Section 2.8. We make this choice to simplify

the explanation and leave abstract operations with several instantiations—such as

range proofs.

Bank State. The state of a bank Bi consists of an encryption key pair (ePKi, eSKi),

a signing key pair (sPKi, sSKi), and a set of accounts. Each accountU j has a unique

account identifier and a balance. For simplicity, we use U j’s public key pk j as its

33

identifier.

Each bank maintains its own PVORM, updated on every transaction, contain-

ing the information of each of its accounts. Section 2.3.2 describes the PVORM

structure.

Requesting Transactions. As Solidus is bank-intermediated, Us at Bs must send

a request to Bs in order to send $v toUr at Br. The request consists of:

• A unique ID txid

• Enc(ePK s, $v), $v encrypted under Bs’s public key

• Enc(ePKr, pkr), a ciphertext ofUr’s ID under Br’s public key

• A hidden-public-key signature signed with sks (see Section 2.8.3).

On receipt of a request, Bs must validate the request—check that txid is globally

unique and 0 ≤ $v ≤ $bs—and initiate the transaction settlement process.

Settling Transactions. Figure 2.3 shows the structure of settling a transaction in

Solidus. Bs generates a proof that $v ≥ 0, reencrypts $v under ePKr, and sends

(txid,Enc(ePKr, $v),Enc(ePKr, pkr)) to Br. Then both banks (concurrently) update

their respective PVORMs, sign their updates, and post all associated proofs and

signatures onto the ledger. Once the full transaction is accepted by the ledger, the

assets have been transferred and the transaction has settled.

Transaction IDs. To prevent replay attacks, Solidus includes a globally unique

ID with each transaction. This ID could simply be a random bit string (eg., a

GUID), but then verification would require the ID of every transaction over the

lifetime of the system. To avoid this growing cost, Solidus uses a two-part transac-

tion ID: a timestamp and a random number. Transactions are only valid within

a time window T∆. If txid = (T, id), the transaction is only valid at time Tnow if

34

Ledger

Us Bs Br

Transaction fromUs toUr

Request

Verify &
Prepare

PVORM
Update

PVORM
Update

Sign Sign

Settle

...

...

Tim
e

Figure 2.3: The lifecycle of a transaction in Solidus. An arrow from one operation
to another means the second depends on the first. Note that Ur does not appear.
The receiving user plays no role in settling transactions.

Tnow − T∆ < T < Tnow. This allows verification to only store IDs for T∆ and still

properly prevent replay attacks.

Opening and Closing Accounts. Banks are constantly opening new accounts, so

Solidus must support this. To create an account, bank Bi must insert the account

into its PVORM. Our construction makes this simple. Bi publishes the new ID

with a verifiable encryption of the ID and balance 0. It then inserts this ciphertext

pair into its PVORM by replacing a dummy value. To close an account Bi simply

publicly verifies the identity of an account and replaces it in the PVORM with a

dummy value.

35

FInit

[
λ,

{Bi
}k
i=1,

{Ui
}n
i=1

]
Init:

for i ∈ [1, n]:
Generate key pair (pki, ski)

$←− hGen(1λ)
send pki to each user and bank and (pki, skk) toUi

for i ∈ [0, k]:
Generate key pair (sPKi, sSKi)

$←− sGen(1λ)
(ePKi, eSKi,Ci)

$←− Init(1λ, |Bi|, 0,U)
send (“initBank”, ePKi, sPKi,Ci) to each user and bank
send all five values to Bi

Figure 2.4: Solidus ideal initializer with banks {Bi} and users {Ui}.

2.4.1 FLedger-Hybrid Functionality

For simplicity we define the Solidus protocol, ProtSol, using a trust initializer and

an idealized ledger. We could instantiate the trusted initializer using existing PKI

systems and, as mentioned above, Solidus is agnostic to the ledger implementation

so we wish to leave that abstract. We present the trusted initializerFInit in Figure 2.4

and the ledgerFLedger in Figure 2.5. Throughout the protocol, users employ hidden-

public-key signatures (see Section 2.8.3) and banks employ Schnorr signatures [32,

148], denoted (sGen,Sign, sVer).

The FLedger functionality has two operations: posting a completed transaction

and aborting an in-progress transaction. The need for the first is obvious; the ledger

is the authoritative record of transactions and is responsible for their verification.

The second helps guard against malicious activity. As we see below, processing

a transaction from Us requires bank Bs to send its PVORM update to Br prior to

posting the transaction to the ledger, but Br may never reply. With no abort opera-

tion, Bs has two options: wait for a reply—causing a DoS attack if none arrives—or

proceed as if the transaction were never initiated. In the second case, Br can learn

with high probability whetherUs participates in future transactions involving Bs;

if a different Circuit ORAM path is accessed, Us is not involved, but if the same

36

FLedger

[{Bi
}k
i=1,

{Ui
}n
i=1

]
Init: TXID = ∅ and Ledger = ε

On receive (“aprvRecvTxn”, txid, txn):
assert txid < TXID
Parse txn→ (Bs,Br, txdatas, σs, txdatar, σr)
assert sVer(Bs, txdatas, σs) ∧ sVer(Br, txdatar, σr)

∧ VerTxn(Bs,Br, txn, Ledger[Bs,Br])
TXID← TXID ∪ {txid}
Ledger← Ledger ‖ (txid, txn)
broadcast (“postTxn”, txid, txn) to all banks

On receive (“abortTxn”, abort) from B:
Parse abort→ (txid, (C, e, proof), pf ?)
assert txid < TXID
assert Ver(ePK, Ledger[B],C, e, proof)
assert pf ? proves e is a no-op
TXID← TXID ∪ {txid}
Ledger← Ledger ‖ (abort)
broadcast (“abortTxn”, abort) to all banks

Figure 2.5: Solidus ideal ledger with banks {Bi} and users {Ui}. Ledger[Bs,Br] de-
notes the most recent PVORM states for each bank in Ledger, and VerTxn verifies
all proofs associated with a given transaction, which requires the public keys and
preceding PVORM state of each bank involved.

path is accessed,Us likely is.

In order to prevent this information leakage, Bs must post some PVORM up-

date to the ledger after sending the update toBr before initiating any other transac-

tion. If the original transaction settles that includes exactly such an update. Other-

wise Bs can invoke “abortTxn” with a dummy update on the same tree path, thus

invalidating any information Br may have gained.

With these ideal functionalities defined, we can now present the main Solidus

protocol, ProtSol, in Figure 2.5. We note that the environment Z is a standard UC

framework entity that represents all behavior external to the protocol execution.

(Z feeds input to and collects outputs from protocol parties and the adversary.)

To execute a transaction in ProtSol, a user executes “beginTxn”, which sends a

“requestTxn” request to the user’s bank. The bank verifies the request, updates

37

ProtSol

[{Bi
}k
i=1,

{Ui
}n
i=1

]
UserUi:
On input (“beginTxn”,U j, $v) from environmentZ:

Let Bi = bank(Ui) and B j = bank(U j)
Generate random unique txid
Encrypt cr = Enc(ePK j, pk j) and cv = Enc(ePKi, $v)
σ = hSign(ski, ePK j, (txid, cr, cv))
send (“requestTxn”, txid, ePK j, cr, cv, σ) to Bi

Bank Bi:
On receive (“initBank”, ePK j, sPK j,C j) from FInit:

assert B[B j] is not set
B[B j]← (ePK j, sPK j,C j)

On receive (“postTxn”, txid, txn) from FLedger:
Retrieve (Bs,C′s) and (Br,C′r) from txn
if (Bi = Bs or Bi = Br), then Pend ← ⊥
Update B[Bs]← (ePK s, sPK s,C′s)

B[Br]← (ePKr, sPKr,C′r)

On input (“abortPend”) from environmentZ:
assert Pend , ⊥
RetrieveUi at Bi from Pend
Update (C′i , e, proof)← Update(eSKi, (Ui, 0),Ci)
Generate ZK-proof pf ? that e encrypts 0-value change.
send (“abortTxn”, (txid,Bi, (C′i , e, proof), pf ?) to FLedger

On receive (“abortTxn”, abort) from FLedger:
Parse (txid,B j, (C′j, e, proof), pf ?)← abort
if B j = Bi

assert Pend = (txid, _)
Pend ← ⊥

B[B j]← (ePK j, sPK j,C′j)
if Pend , ⊥ and B j is the other bank in Pend

Execute “abortPend” as described above

38

On receive (“requestTxn”, txid, ePK s, cv, cr, σ) fromUs:
assert (Pend = ⊥) ∧ (txid is unique)

∧ hVer(ePKi, (txid, cv, cr), σ)
∧ (

((α, β), _)← σ : Dec(eSKi, (α, β)) = pks
)

Decrypt $v = Dec(eSKi, cv)
assert 0 ≤ $v ≤ Mi[Us]
Update (C′i , es, proof s)← Update(eSKi, (Us,−$v),Ci)
Let c′v = Enc(ePK j, $v)
Generate txdatas containing:
• (txid, (cv, cr), σ, c′v)
• (C′i , es, proof s)
• RangePf(ev, t)
• Proof that es updatesUs by amount in cv

• Proof that cv and c′v encrypt the same value
Pend ← txdatas
σs = Sign(sSKi, txdatas)
send (“aprvSendTxn”, txid, txdatas, σs) to B j

On receive (“aprvSendTxn”, txid, txdatas, σs) from B j:
assert (Pend = ⊥) ∧ (txid is unique)

∧ sVer(sPK j, txdatas, σs)
∧ all proofs in txdatas are valid

Retrieve (txid, (cv, cr), σ, c′v) from txdatas
Decrypt $v← Dec(eSKi, c′v)
assert txid is unique and $v ≥ 0
Decrypt pkr = Dec(eSKi, cr)
Update (C′i , er, proof r)← Update(eSKi, (Ur, $v),Ci)
Generate txdatar containing:
• (txid, (cv, cr), σ, c′v)
• (C′i , er, proof r)
• Proof that er updates account cr by value c′v

Pend ← (txid, txdatar)
σr ← Sign(sSKi, txdatar)
Let txn = (B j,Bi, txdatas, σs, txdatar, σr)
send (“aprvRecvTxn”, txid, txn) to FLedger

Figure 2.5: FLedger-hybrid protocol for Solidus with banks {Bi} and users {Ui}. For
simplicity we omit operations to open and close accounts.

39

its PVORM, signs the update, and forwards it to the recipient’s bank. That bank

similarly verifies, updates, and signs before posting the completed transaction to

FLedger. For simplicity the sending bank performs all updates and sends them to

the receiving bank. In practice both banks can update their respective PVORMs in

parallel as implied by Figure 2.3.

The protocol also contains operations for two other purposes: handling trans-

action aborts described above and updating other banks’ states when they post

updates to FLedger.

2.4.2 Security Definition

To demonstrate the security of ProtSol, we need a notion of how a secure Solidus

protocol operates. We define this as an ideal functionality FSol presented in Fig-

ure 2.6. For an adversary A and environment Z, we let HybridA,Z(λ) denote the

transcript of A when interacting with ProtSol. We let IdealS,Z(λ) be the transcript

produced by a simulator S when run in the ideal world with FSol. This allows us

to define security as follows.

Definition 2.1. We say that Solidus securely emulates FSol if for all real-world PPT

adversaries A and all environments Z, there exists a simulator S such that for all

PPT distinguishersD,

∣∣∣ Pr
[
D

(
HybridA,Z(λ)

)
= 1

]
− Pr

[D (
IdealS,Z(λ)

)
= 1

] ∣∣∣ ≤ negl(λ).

This definition leads to the following theorem, which we prove in Section 2.10.

Theorem 2.1. The Solidus protocol ProtSol satisfies Definition 2.1 assuming a DDH-hard

group in the ROM.

40

FSol

[{Bi
}k
i=1,

{Ui
}n
i=1,

{U$
i
}`
i=1

]
Init

Initialize T to empty
Initialize V[Ui]← 0 for i ∈ [1, n]

On receive (“requestTxn”,Ur, $v) fromUs:
assert $v ≥ 0
Generate unique txid
T [txid]← (Us,Ur, $v, “req”)
send txid toUs
send (“req”, txid,Us, bank(Ur), $v) to bank(Us)

On receive (“aprvSendTxn”, txid) from Bs:
Retrieve (Us,Ur, $v, f)← T [txid]
assert f = “req” and Bs = bank(Us)
T [txid]← (Us,Ur, $v, “aprv”)
send (“aprv”, txid,Bs,Ur, $v) to bank(Ur)

On receive (“aprvRecvTxn”, txid) from Br:
Retrieve (Us,Ur, $v, f)← T [txid]
assert f = “aprv” and Br = bank(Ur)
Remove T [txid] mapping
Retrieve $bs ← V[Us], $br ← V[Ur]
assert $bs ≥ $v orUs = U$

i for some i
V[Us]← $bs − $v
V[Ur]← $br + $v
// Reveal identities of asset notaries and banks
Let Ps = Us ifUs = U$

i , bank(Us) otherwise
Let Pr = Ur ifUr = U$

j , bank(Ur) otherwise
broadcast (“postTxn”, txid,Ps → Pr) to all banks

On receive (“abortTxn”, txid) from B:
if txid has been seen before // Can “abort” nonexistent transactions

Retrieve (Us,Ur, _, _)← T [txid]
assert B = bank(Us) or B = bank(Ur)
Remove T [txid] mapping

broadcast (“abortTxn”, txid,B) to all banks

Figure 2.6: Ideal functionality for the Solidus system with banks {Bi}, users {Ui},
and asset notaries {U$

i }. For simplicity we assume a fixed set of accounts for each
bank.

41

In order to prove Theorem 2.1 in the Universal Composability (UC) frame-

work [34], we assume Solidus employs only universally composable (UC) NIZKs.

Prior work [13] demonstrates that GSPs can be transformed into UC-NIZKs by

using the Fiat-Shamir heuristic and including a ciphertext of the witness under

a public key provided by a common initializer. As Solidus already employs this

trusted initialization and includes ciphertexts of most operations anyway, the per-

formance impact of ensuring UC-NIZKs is minimal.

2.5 Optimizations

In addition parallelizing operation, there are several optimizations which make

Solidus more practical. Some of these optimizations are only appropriate for cer-

tain use cases, but they may result in significant speedups when applicable. We

include the simpler optimizations in our evaluation in Section 2.6.

2.5.1 Precomputing Randomization Factors

A large computational expense in Solidus is re-randomizing ciphertexts while up-

dating a PVORM. Fortunately, El Gamal allows us to re-randomize ciphertexts by

combining them with fresh encryptions of the group identity. That is, in a group

G = 〈g〉 with key pair (pk = gsk, sk) and a ciphertext c = (α, β), we can re-randomize

c by picking a random r ← Z|G| and computing c′ = (α · pkr, β · gr).

Computing (pkr, gr) only requires knowledge of the group G, the generator g,

and a bank’s public key pk, none of which change. This means we can precompute

these unit ciphertexts and re-randomize by multiplying in a precomputed value.

Since the system can continue indefinitely, it must continue generating these

randomization factors. Many financial systems have predictable high and low load

42

times (e.g., very light traffic at night), so they can utilize otherwise-idle hardware

for this purpose during low-traffic times. If the precomputation generates more

randomization pairs than the application consumes over a modest time frame

(e.g. a day), we can drastically improve performance.

2.5.2 Reducing Verification Overhead

As we see in Section 2.6, proof verification is quite expensive. In the basic protocol,

the ledger consensus nodes must each verify every transaction. As more banks

join the system this increases the load on the consensus nodes—which may be

the banks. By strengthening trust assumptions slightly, we can omit much of this

online verification and increase performance. We present two strategies that rely

on different assumptions.

Threshold Verification. In the financial industry, there is often a group of entities

(e.g., large banks and regulators) who are generally trusted. If a threshold number

of these entities verify a transaction, this could give all other consensus nodes—

often other banks—confidence that the transaction is valid, allowing them to ac-

cept it without further verification. Once the threshold is reached, each other node

need only verify the signatures of the trusted entities that verified the transaction,

which is far faster than performing a full verification. If the group of trusted en-

tities is significantly larger than the threshold or those entities have much more

capacity than others, this strategy will improve system scaling.

Full Offline Verification. In some cases banks can be treated as covert adver-

saries. That is, they will attempt to learn extra information, but they will subvert

the protocol only if attribution is impossible. This situation could arise if each

Solidus bank is controlled by a large commercial bank. While a bank may wish

43

to learn as much information as possible, the cost of being caught misbehaving is

high enough to deter attributable protocol deviations.

Under these assumptions we can omit online verification entirely. The verifia-

bility of a ledger-based system remains in place, so if a bank submits an invalid

transaction or proof, post hoc identification of the faulty transaction and offending

bank is trivial. Thus, in this covert adversary model, banks will only submit valid

transactions and proofs, meaning that the ledger can accept transactions without

first verifying the associated proofs first.

2.5.3 Transaction Pipelining

Solidus requires sequential processing of transactions at a single bank because

PVORM updates must be sequential to generate valid proofs. Given transactions

T1 followed by T2, in order for B to process T2 it needs the PVORM state follow-

ing T1. It does not, however, need the associated proofs. Therefore, if B assumes

T1 will settle—because faults are rare—it can start processing T2 early while gener-

ating proofs for T1. While this technique will not reduce transaction latency, it can

drastically increase throughput. Moreover, determining the updated PVORM state

requires primarily re-randomizing ciphertexts, making this optimization particu-

larly effective when combined with precomputation (Section 2.5.1).

When failures do occur, it impacts performance but not correctness. If T1 aborts

for any reason, T2 will not yet have settled since T1 would have to settle first. This

means B can immediately identify the problem and reprocess T2—and any follow-

ing transactions—without T1. This reprocessing may lead to significant, but tem-

porary, performance degradation, meaning this optimization is only appropriate

when failure are rare if each transaction is posted individually to the ledger.

We can alleviate some of this performance penalty by bundling transactions

44

into blocks, as in systems like Bitcoin. If T1 aborts, instead of reprocessing T2, B can

include a rollback operation later in the same block. This rollback must provably

revert any changes executed by T1’s update, thus allowing verifiers to check that

T1 was never processed at all. There is, however, no need to recompute T2 as long

as the rollback can be placed after it while remaining in the same block as T1.

2.6 Experiments

We now present performance results for our PVORM and Solidus prototypes. We

implemented Solidus in 4300 lines of Java code, 2000 of which form the PVORM.

We use BouncyCastle [24] for crypto primitives and Apache ZooKeeper [7] for dis-

tributed consensus. We ran all experiments on c4.8xlarge Amazon EC2 instances

and employed the precomputation optimization (Section 2.5.1). These benchmarks

do not include the precomputation time.

We emphasize that our performance results employ an unoptimized implemen-

tation and only one server per bank, highly limiting our parallelism. Solidus is de-

signed to be highly parallelized, allowing it to scale up using multiple servers per

bank to achieve vastly superior performance in practice.

2.6.1 PVORM Performance

We measured the concrete performance of PVORM Update and Ver operations un-

der different configurations and levels of parallelism.

Bucket and Stash Size. Figure 2.7 shows the single-threaded performance of our

PVORM as we vary bucket and stash sizes. As expected, larger buckets are slower

and runtime grows linearly with the stash size. As bucket and stash sizes deter-

mine the chance of stash overflow, this measures the performance-privacy trade-off.

45

15 20 25 30 35

0.3

0.4

0.5

0.6

0.7

Stash Size

Ti
m

e
(s

ec
)

B = 3 Ver
B = 2 Update

Figure 2.7: PVORM performance with capacity 215 for buckets of size B = 2 and
B = 3 as stash size varies.

210 211 212 213 214 215 216 217 218 219 220 221 222
0.3

0.4

0.5

0.6

0.7

0.8

PVORM Capacity

Ti
m

e
(s

ec
)

Generate Verify

Figure 2.8: PVORM capacity scaling with buckets of size 3 and stash of size 25.

Tree Depth. Figure 2.8 shows the single-threaded performance of our PVORM as

the capacity scales. As expected, the binary tree structure results in clearly loga-

rithmic scaling.

Parallelism. Our PVORM construction supports highly parallel operation. One

update contains many NIZKs that can be created or verified independently. Fig-

ure 2.9 shows the performance for one PVORM with varying numbers of worker

threads. In each test, there is one coordination thread, which does very little work.

Because the proof of each pairwise swap can be computed or verified indepen-

46

2 4 6 8 10

2

6

10

14

18

22

Number of Worker Threads

Th
ro

ug
hp

ut
(o

ps
/s

ec
)

Perfect Scaling
Update
Ver

Figure 2.9: Parallel PVORM performance using size 3 buckets, a size 25 stash, and
capacity of 215. Dashed lines show perfect scaling where all computation is paral-
lelized with no overhead.

dently, we expect performance to scale well beyond 10 threads—possibly as high

as 100. We stop at 10 for a combination of two reasons. First, PVORM operations

are CPU-bound, so adding threads beyond the number of CPU cores produces no

meaningful speedup. Second, our prototype implementation does not distribute to

multiple hosts and scales poorly to multi-CPU architectures. Since c4.8xlarge EC2

instances have two 10-core CPUs, we present scaling to only 10 worker threads.

Note that with 10 worker threads there are 11 total threads, so some work may

not be effectively parallelized on the same CPU. This likely explains some of the

reduced scaling in that case.

Proof Size and Memory Usage. For a PVORM with size 3 buckets, a size 25 stash,

and capacity 215, a single PVORM update with proofs is 190 KB (or 114 KB if com-

pressed7). To generate an update, our prototype requires a complete copy of the

PVORM in memory. Despite this, memory consumption peaks at only 880 MB.

7An elliptic curve point is an ordered pair of elements of Fp. Points can be compressed to a single
bit and a field element, but decompression imposes nontrivial overhead.

47

2.6.2 Solidus System Performance

We present performance tests of a fully distributed Solidus system with 2 to 12

banks. Each bank runs on its own c4.8xlarge EC2 instance and maintains a PVORM

with size 3 buckets, as size 25 stash, and capacity 215. These parameters allow re-

alistic testing, with a stash overflow probability of around 2−64. To maintain the

ledger, each bank’s host also runs a ZooKeeper [7] node. We make no attempt to

tune ZooKeeper or optimize off-ledger communication.

To test this configuration we fully load each bank with both incoming and

outgoing transactions. As explained in Section 2.5.2, in some settings transaction

verification can occur offline, so we also test performance with online verification

turned off.

Figure 2.10 contains the results of these tests. With online verification, perfor-

mance improves until all CPUs are saturated verifying third-party transactions, at

which point scaling slows. Using offline verification, transactions settle faster and

additional banks impose lower overhead on existing banks, improving scaling.

These results could be further improved by having each bank distribute veri-

fication cross multiple machines, improving capacity and throughput. Pipelining

transactions (as described in Section 2.5.3) could improve throughput substantially

if banks also distributed proof generation across multiple hosts. (Such distribution

is unlikely to provide any benefit without pipelining.) Implementing this distribu-

tion introduces complex systems engineering challenges that are orthogonal to the

technical innovations introduced by Solidus, so we neither implement nor bench-

mark these options.

48

2 4 6 8 10 12

3

5

7

9

Number of Banks

Th
ro

ug
hp

ut
(t

x/
se

c)

Offline Verification
Online Verification

Figure 2.10: Solidus performance distributed using ZooKeeper. Each bank is a
ZooKeeper node and maintains a PVORM with size 3 buckets, a size 25 stash,
and capacity 215.

2.6.3 zk-SNARK Comparison

We finally compare our prototype’s performance to that of a PVORM implemented

with zk-SNARKs. This approach has succinct proofs and short verification times,

but costly proof generation.

Taking the Circuit ORAM PVORM construction and converting all proofs to

zk-SNARKs would be needlessly expensive. As zk-SNARKs can prove correct ap-

plication of an arbitrary circuit [14], we use a compact Merkle tree structure. Each

account is stored at the leave of a standard Merkle hash tree, the root of which is

posted to the ledger. To update the PVORM, a bank updates one account to a valid

value and modifies the Merkle tree accordingly. It then produces a zk-SNARK that

it properly performed the update and verified the requester’s signature. The root

of the new Merkle tree is the new PVORM state and the zk-SNARK is the proof.

We implemented this construction using a security level equivalent to our GSP-

based PVORM.8 Table 2.1 shows its performance running on a c4.8xlarge EC2

8Both hash with SHA-256. The GSP-based PVORM uses El Gamal with the secp256k1 curve and

49

Number of Threads
1 4 36

Proof Time (sec) 65.45 24.53 13.76
Verification Time 0.0065 sec

Proof Size 288 bytes
Peak Memory Use 7.2 GB

Table 2.1: Performance of PVORM using zk-SNARKs.

instance. While verification is extremely fast, even highly parallel proof generation

is more than 200 times slower than the GSP PVORM. For this to improve overall

system throughput, the system would need to verify every proof around 200 times.

In our expected use-case, at most tens of banks would maintain the ledger, so this

is significantly slower. Moreover, additional hardware can allow banks to verify

numerous GSP transactions in parallel but provides little benefit to zk-SNARKs.

2.7 Related Work

We now compare Solidus to related work on cryptocurrencies and transaction con-

fidentiality. We omit related work on ORAM, which was covered in Sections 2.1.3

and 2.3.

Anonymous cryptocurrencies. Anonymous e-cash was proposed by Chaum [41,

42] and refined in a long series of works, e.g., [30, 31, 78]. In these schemes, trust

is centralized. A single authority issues and redeems coins that are anonymized

using blind signatures or credentials. Due to its centralization and technical limi-

tations, such as poor handling of fractional coins and double-spending, e-cash has

been largely displaced by decentralized cryptocurrencies.

Zcash, a recently deployed decentralized cryptocurrency, and its academic an-

the SNARK-based PVORM uses RSA-3072. Both provide 128 bits of security.

50

tecedents [15, 55, 110] and offshoots e.g., Hawk [90], provide strong transaction-

graph confidentiality like Solidus. Zcash relies on zk-SNARKs to ensure conser-

vation of money, prevent double spending, and hide both transaction values and

the system’s transaction graph. Consequently, unlike Solidus, it requires trusted

setup, which in practice must be centralized (as multiparty computation for this

purpose [17] is impractical). Moreover, as we showed in our exploration of a zk-

SNARK variant of Solidus in Section 2.6.3, zk-SNARKs are far more expensive to

generate (by two orders of magnitude) than the GSPs used in Solidus. Addition-

ally, Zcash and Hawk do not provide auditability as Solidus does; as designed,

they do not record assets on-chain, only commitments.

Alternative schemes such as Monero [112], a relatively popular cryptocurrency,

and MimbleWimble [86], a pseudonymous proposal, provide partial transaction-

graph concealment. Serious weaknesses in Monero’s anonymity have recently been

identified, however [115], while MimbleWimble has yet to be deployed or have its

confidentiality properties formally analyzed.

Mixes. Mixes partially obscure the transaction graph in an existing cryptocur-

rency. A number have been proposed and deployed, e.g., [77, 104, 141, 166]. Mixes

have a fundamental limitation: they only protect participating users, and thus pro-

vide only partial anonymity, resulting in demonstrated weaknesses [114, 158]. As

mixes’ costs are linear in the number of participants, they do not scale well. In

contrast, Solidus achieves strong and rigorously provable transaction-graph confi-

dentiality for all users.

Confidential Transactions. A class of schemes called Confidential Transactions [99,

105, 106] hide transaction amounts, but do not aim at transaction graph privacy.

Solidus employs a Confidential Transaction scheme similar to that in [105], but

makes more direct use of and inherits the provable security properties of GSPs.

51

Financial sector blockchain technologies. The financial industry’s intense inter-

est in blockchains has led to a number of proposed and deployed systems. These

systems support current banking system transaction flows like Solidus. They

achieve elements of Solidus, but lack its full set of features. For example, Rip-

ple [40, 136] is a widely deployed scheme for value transfer, but does not aim at the

confidentiality properties of Solidus. RSCoin [54], a scheme for central bank cryp-

tocurrency issuance that supports auditability like Solidus, but similarly does not

inherently support transaction confidentiality. Other examples are SETLcoin [168],

which aims at on-chain trade settlement, like Solidus, but lacks strong transaction-

graph confidentiality, and the Digital Asset Platform [61], which provides confi-

dentiality by keeping transaction details off-chain and completely foregoing on-

chain settlement and auditability.

2.8 Crypto Primitives

We now describe the basic cryptographic primitives used in Solidus. These prim-

itives operate over a multiplictive cyclic group G = 〈g〉 of order p determined by

(linear in) security parameter λ. As we explain, our building blocks require that the

Decisional Diffie-Hellman assumption hold for G. (To prevent sub-group attacks

using the Pohlig-Hellman algorithm, p is typically prime.) In our implementation

of Solidus, G is the secp256k1 elliptic curve group.

2.8.1 El Gamal Encryption and Account-Balance Representation

The El Gamal cryptosystem (Gen,Enc,Dec) is as follows:

• Gen: x
$←− Zq, sk ← x, pk ← gx, output (pk, sk)

• Enc(pk,m): if ¬(m, pk ∈ G), output ⊥; otherwise r
$←− Zq, α ← m · pkr, β = gr,

52

output c = (α, β)

• Dec(sk, (α, β)): if ¬(sk ∈ Zp ∧ α, β ∈ G), output ⊥; output α/βsk

If the Decisional Diffie-Hellman (DDH) problem is hard for G, then El Gamal

encryption is semantically secure. El Gamal ciphertexts are malleable, however, a

useful feature in our constructions. Specifically, El Gamal has a few useful homo-

morphisms. Let (α, β) 7→ m mean that (α, β) decrypts to m, i.e., (α, β) = (m · pkr, gr)

for r ∈ Zp. Then the following hold:

• Multiplicative homomorphism: (α, β) 7→ m, (α′, β′) 7→ m′ implies (αα′, ββ′) 7→ mm′.

• Additive homomorphism in exponent space: (α, β) 7→ gm, (α′, β′) 7→ gm′ implies

(αα′, ββ′) 7→ gm+m′ .

• Multiplicative homomorphism in exponent space: (α, β) 7→ gm implies (αk, βk) 7→ gmk.

Observe that re-encryption of a ciphertext (α, β) 7→ m without knowledge of

sk is achievable using the multiplicative homomorphism: Let r
$←− Zp, compute a

fresh ciphertext (α′, β′) = (pkr, gr) 7→ 1, and then let (A, B) = (αα′, ββ′). Observe that

(A, B) 7→ (m × 1) = m.

Account-Balance Representation. The cryptographic primitives in Solidus rely

on a representation of account balances in the exponent space in order to lever-

age the additive homomorphism in the exponent space illustrated above. Thus an

account balance $v is encoded as g$v and represented in an El Gamal ciphertext

as (g$vpkr, gr) for some r ∈ Zp. Decrypting a balance thus requires finding the dis-

crete log of g$v. While in general this is hard in G, if $v is known to be small (e.g.,

0 ≤ $v < 230), then the balance can be decrypted using a lookup table of manage-

able size.

53

2.8.2 Generalized Schnorr Proofs (GSPs)

Generalized Schnorr Proofs [32] are a type of Σ-protocol, that is, 3-move honest-

verifier zero-knowledge (HVZK) proofs (often more specifically defined as special

3-move HVZK proofs with special soundness) [53]. GSP specifically operate over

groups for which the discrete log problem and variants are hard. We note that here

we consider GSPs only in a cyclic group of prime order, avoiding the caveats of [32]

regarding composite-order groups.

Given x
$←− Zp and y ← gx, there is a simple Σ-protocol to prove knowledge of x

to a verifier that knows only y = gx:

• Prover P selects r
$←− Zp and sends e = gr to Verifier V

• V selects c
$←− Zp

• P replies with s = cx + e.

Verifier V then checks that gs = eyc. This protocol is specified in the language of

GSPs using notation introduced in [29] as:

PoK (x : y = gx) ,

and is a form of the Schnorr identification protocol.

A more general GSP is possible of the form:

PoK (x1, . . . , xk : Pred(y, (x1, . . . , xk), (y1, . . . , yk))) ,

where Pred is a predicate y = yx1
1 · · · yxk

k for a collection of values y, y1, . . . , yk ∈ G

known to the verifier and where the prover proves knowledge of x1, . . . , xk ∈ Zp.

It is possible to construct efficient GSPs on conjunctions and disjunctions of

such predicates. Additionally, the Fiat-Shamir heuristic [67] can convert GPSs into

NIZKs in the Random Oracle Model (ROM) by hashing the prover’s message to

54

obtain the challenge. It is also possible to append a supplementary value, which

we call a tag, to the message to be hashed. The NIZK version of PoK(x : y = gx),

with tag m, for example, is a Schnorr signature on m. In Solidus, all ZPKs are such

NIZKs, a fact we leave implicit in the remainder of the appendix.

2.8.3 Hidden-Public-Key Signatures

In order to authenticate transactions without revealing the sending user, Solidus

employs a hidden-public-key (HPK) signature scheme. This simple scheme allows a

signer to sign with respect to a signing public key pk that is (El Gamal) encrypted

under a bank’s public key ePK, i.e., a ciphertext c
$←− Enc(ePK, pk). An HPK signa-

ture scheme (hGen, hSign, hVer) with public key ePK is as follows:

• hGen: sk
$←− Zq, pk ← gsk, output (pk, sk)

• hSign(sk, ePK,m): r
$←− Zp, (α, β)← (pk · ePKr, gr). Construct a NIZK

pf = PoK
(
(sk, r) :

(
gsk · ePKr = α

)
∧ (gr = β)

)
with tag m. Output σ = (c = (α, β), pf).

• hVer(ePK,m, σ): Parse σ = (c, pf) and verify pf with ePK, m, c.

An HPK of this form is not terribly useful in and of itself, as the receiver knows

only that a valid signature was generated with respect to some key, but learns noth-

ing about the key.

The fact that c is an El Gamal ciphertext of pk under ePK, however, makes such

signatures useful in two ways. First, whenU requests a transaction, it allows B to

decrypt pk and identifyU. Second, it allows B to generate a plaintext equivalence

proof on c and the encryption of the updated account’s key. This second property

verifies that the user whose balance is updated knows sk, which thus makes this a

valid signature.

55

2.8.4 El Gamal Swaps

The vast majority of the computation required for proof generation and verification

in Solidus is devoted to what we call El Gamal swaps. The operation ElGamal-Swap

takes as input an ordered pair of El Gamal ciphertexts (c0, c1) =
(
(α0, β0), (α1, β1)

)
,

a corresponding public key pk, and a value s ∈ {Swap,NoSwap}. It outputs a fresh

ordered pair
(
(α′0, β

′
0), (α′1, β

′
1)
)
, re-encrypted under pk, with the same underlying

plaintexts. If s = NoSwap, the plaintext order is the same as the original cipher-

texts, otherwise it is swapped. The algorithm is as follows:

Algorithm ElGamal-Swap((c0, c1), pk, s):

parse (c0, c1) =
(
(α0, β0), (α1, β1)

)
;

r0
$←− Zp, r1

$←− Zp;

if s = NoSwap

c′0 = (α′0, β
′
0)← (α0pkr0 , β0gr0);

c′1 = (α′1, β
′
1)← (α1pkr1 , β1gr1)

else // s = Swap

c′0 = (α′0, β
′
0)← (α1pkr1 , β1gr1);

c′1 = (α′1, β
′
1)← (α0pkr0 , β1gr0);

output (c′0, c
′
1)

It is possible to prove correct execution of ElGamal-Swap for an input / output

pair (c0, c1) and (c′0, c
′
1) via a GSP specified in [85].

In Solidus, due to the fact that an account is represented by a pair of ciphertexts

on the public key of an account and the account balance, we in fact need perform

double El Gamal swaps, meaning that two pairs of ciphertexts are swapped using

the same value of s. The proof of correctness involves a straightforward extension

of the GSP for a single swap.

A double swap proof requires 13 elliptic curve multiplications, while verifica-

tion requires 18.

56

2.8.5 Range Proofs

There are a number of protocols (e.g., [23]) for proving statements of the form

PoK(x : y = gx ∧ l0 ≤ x ≤ lp).

Drawing on the conceptually simple Confidential Transactions approach [105],

we use a GSP to prove that an El Gamal ciphertex (α, β) = (g$vpkr, gr) encrypts an

account balance $v ≥ 0. To prevent modular wraparound, we specifically prove

that $v ∈ [0, 2t) for some small integer t. In our prototype, we set t = 30.

The GSP we use to accomplish this operates on each bit of $v separately. For

ciphertext (αi, βi), to show that (αi, βi) 7→ $vi ∈ {g0, g2i} under public key pk, it suffices

to prove:

PoK
(
ri :

(
(αi/g2i

= pkri) ∨ (αi = pkri)
)
∧ βi = gri

)
.

Thus the GSP

PoK

{ri}ti=1 :
t−1∧
i=0

((
αi/g2i

= pkri
) ∨ (

(αi = pkri)
)

∧ (βi = gri)
))

proves that (α, β) =

(
t∏

i=1
αi,

t∏
i=1
βi

)
. Thus if (α, β) 7→ g$v, it must be that $v ∈ [0, 2t) as

desired.

This range proof requires 5 + 10t elliptic curve multiplications and t encryp-

tions (requiring 2 multiplications each unless precomutation is employed), while

verification requires 7 + 12t multiplications.

We denote such a proof that ciphertext c encrypts a value in [0, 2t) (in exponen-

tial space) by RangePf(c, t).

57

2.8.6 Circuit ORAM

Solidus’s primary data structure used to store account balances on the ledger is a

PVORM based on the structure of Circuit ORAM [169]. PVORM, however, aims

to provide very different guarantees than classical ORAM. An ORAM enables a

client with limited local memory to maintain a piece of large virtual memory M

in a data structure C outsourced to a more powerful external device generically

called a server. The goal is to enable the client to store M confidentially with as little

local storage as possible.

An ORAM ensures access-pattern confidentiality; despite its ability to observe the

client’s accesses to C, the server learns nothing (no non-negligible) information

about the client’s pattern of access to blocks in M. Blocks in C are encrypted using a

symmetric-key cipher to ensure data confidentiality. Note that encryption alone does

not conceal access patterns. M is structured as a set of blocks M[1],M[2], . . . ,M[N].

Were C[idx] simply an encryption of the current value of M[idx], for instance, then

the server would know every time the client reads from or writes to M[idx], as it

would see the client access C[idx].

Thus, to achieve access-pattern confidentiality, ORAM implementations require

a more sophisticated approach.

In this approach, C is represented as a tree of depth L = log N + 1 (N is assumed

to be a power of 2). Each node in the tree contains a bucket that has B slots for

storage of blocks, where B is a system parameter. Most of these slots are empty at

a given time, an important fact, as we shall see below.

A block takes the form idx‖label‖data, where idx is the index of a block—the

value idx corresponding to its virtual memory slot M[idx], label identifies a leaf

in the tree along the path to which from the root the block is located in C, and data

stores the block contents.

58

The client maintains a small amount of local memory called a stash, which is

a buffer to handle overflow from C. The client also stores a position map PosMap,

a data structure such that PosMap[idx] = label. That is, PosMap maps a given

block’s index idx in M to its corresponding leaf value label. (PosMap can be

stored recursively in a separate ORAM on the server to reduce storage overhead,

a feature that is not relevant to PVORM.)

Reads and writes involve the same basic operation Access by the client on C,

which is as follows.

Algorithm Access(op):

// Note: op = (“read′′, idx) or (“write′′, idx, data∗)

label← PosMap[idx];

{idx||label||data} ← ReadAndRm(idx, label);

PosMap[idx]
$←− [0,N − 1];

if op = “read′′ then data∗ ← data;
stash.add({idx‖PosMap[idx]‖data∗});
Evict();

output data

Here, ReadAndRm reads the full path in C containing the target block and re-

moves the block (re-encrypting blocks along the path), while stash.add performs

the obvious operation of adding a block to the stash. Evict can be implemented

either randomly or deterministically. The random approach picks two leaves leaf l

and leaf r uniformly at random from the left and right halves of the three, respec-

tively, and performs what is called an eviction pass in the root-to-leaf paths they

define. The deterministic approach (which we adopt in our PVORM construction)

does the same, but it selects leaf l and leaf r in a rotating deterministic order de-

signed to place eviction passes on consecutive accesses as far away from each other

as possible while still rotating through every leaf over enough accesses.

An eviction pass on a given path involves performing swaps on pairs of adja-

59

cent path elements one by one from the top to bottom of the tree, with the stash

treated as a special “level 0,” i.e., sitting above the root. These swaps aim to move

blocks down the path to the lowest possible levels. A block is “picked up” and

moved through successive swaps to the lowest point such that it remains on the

path defined by label and there is an empty slot available for it. At this point it

is “dropped”—inserted into the bucket at that level. A block may be picked up

from the slot into which the last one was dropped or swapping may continue until

another block is reached that can be pushed further down the path. The reason for

performing evictions on two paths rather than one is to ensure that blocks remain

deep enough globally in C to prevent substantial overflow into the stash.

This processing step in Circuit ORAM is in fact quite complicated. The client

does not have full local information about where blocks reside in C, and therefore

must plan swaps using metadata. (This complication does not arise in PVORM,

however, as we explain below.)

Other tree-based ORAMs, such as Path ORAM [160], differ primarily in their

use of alternative eviction strategies. The use of swaps in Circuit ORAM is espe-

cially conducive to efficient NIZK production in Solidus, however, which is the

reason it is used in the Solidus PVORM.

2.9 Solidus PVORM Construction

We now present the details of the PVORM construction used in Solidus and prove

that it is a correct, oblivious, and publicly verifiable PVORM. Similar techniques al-

low construction of a PVORM from any ORAM, ZK proof system, and encryption

scheme. Our PVORM is constructed to ensure efficient proof computations in sup-

port of high throughputs. For this purpose, we use Circuit ORAM, non-interactive

Generalized Schnorr Proofs, and El Gamal encryption.

60

Recall from above that Circuit ORAM consists of a binary tree of buckets, each

containing a fixed number of data blocks. Each location contains an encryption

of either a data block or a dummy value. Each logical data block is associated

with a single leaf in the tree and physically resides somewhere along the path to

that leaf. To access a logical data block, a client reads all blocks along the path

to the associated leaf. The client then associates the accessed logical block with a

new random leaf, and writes new encryptions of all accessed physical blocks and

two other (deterministic) tree paths. During these writes, the client pushes (evicts)

existing data blocks as far as possible towards leaves while ensuring that each real

data block remains on the path to its associated leaf. These evictions can be done

with a number of pairwise swaps of physical memory locations linear in the depth

of the tree. We take advantage of the ability to do evictions via pairwise swaps in

our PVORM construction.

2.9.1 Construction

In Solidus, each bank maintains its own PVORM to store user account balances.

Since the PVORM is uniquely associated with a single bank, we a simple El Gamal

key pair for the key pair specified in Section 2.3. Each logical address is specified

by an account ID and each data block is itself an account balance. To store these,

each data block contains a pair of El Gamal encryptions: one of the account ID and

one of the balance. We limit the maximum balance to a relatively small value (e.g.,

230 or 240). This allows us to encrypt balances in exponential space, creating an

additive homomorphism, while still permitting decryption (using a lookup table).

Let t denote the binary log of the maximum balance.

Thus we interpret M as a map from account IDs to account balances. We define

the PVORM update function f ((id, $v),M) that replaces M[id] with M[id] + $v if id

61

(M[id] + $v) ∈ [0, 2t) and is a key in M. Otherwise f is undefined. Intuitively, f

updates a single account balance to any value within the valid range.

As noted in Section 2.3, we use a fixed-size public stash instead of the dynamic

private one assumed by Circuit ORAM. For simplicity, we merge this stash into the

root node of the tree. Each data block in the stash is of the same form as those in the

tree. We also employ a distinguished fixed block that exists as a single deterministic

block on every path. It may be part of the root/stash or separate.

We now specify the implementation of the operations in Section 2.3. Let

(Gen,Enc,Dec) be the standard El Gamal cryptosystem.

Construction 2.1 (Solidus PVORM). We always initialize all balances to 0. The up-

date space U consists of account ID/transaction value pairs, with values being

between the max balance and its negative. Initialization proceeds as follows:

Init(1λ, {idi}ni=1, 0,U):

(pk, sk)
$←− Gen(1λ)

for i ∈ [1, n]

Insert (idi, 0) into a Circuit ORAM tree

Set all unused blocks to (0, 0)

for each block (id, 0)

Set C at that location to (Enc(pk, id),Enc(pk, 0))

Let (α, β) be the encryption of 0

pf = PoK
(
x : (α = βx) ∧ (pk = gx)

)
return (pk, sk,C, {pf })

If M = Read(sk,C), then Update(sk, u,C) is only defined when f (u,M) is defined.

This property is easy to check given u, sk, and C, so we omit explicit validation. Let

BF be the distinguished fixed block and assume for simplicity that pk is derivable

from sk.

62

Update(sk, u,C):

e = (eid, ev)
$←− (Enc(pk, id),Enc(pk, $v))

for each block Bi along the path associated with id:

Let s = Swap if the ID in B is id and NoSwap otherwise.

(BF , B′i)
$←− ElGamal-Swap((BF , Bi), pk, s)

pf i = proof of correct swap

Let (cid, cv)← BF

rangePf = RangePf(cv − ev, t) // (see Section 2.8.5)

Let (α, β) = (cid − eid)

idPf = PoK
(
x : (α = βx) ∧ (pk = gx)

)
BF ← (cid, cv − ev)

for each block Bi along the eviction paths in Circuit ORAM

Let s = Swap or NoSwap as per Circuit ORAM

(BF , B′i)
$←− ElGamal-Swap((BF , Bi), pk, s)

pf i = proof of correct swap

return (C′, e, ({B′i}, {pf i}, rangePf , idPf))

Verification is performed simply by verifying all NIZKs included in the output

of Update and by verifying that the updated BF was computed correctly between

the two sets of swaps.

2.9.2 Security Proofs

We now prove the security of the construction given in the previous section.

Theorem 2.2 (PVORM Correctness). Construction 2.1 is a correct PVORM.

Proof. The following properties ensure correctness.

• Circuit ORAM is correct when the stash does not overflow and Construc-

tion 2.1 modifies Circuit ORAM to leak transaction graph information in-

stead of lose data on overflows.

63

• El Gamal is correct and includes a multiplicative homomorphism, while we

encrypt account balances in exponential space, thus making the homomor-

phism additive.

• Construction 2.1 employs correct NIZKs and only attempts to prove true

statements. �

To prove obliviousness, we provide a hardness reduction to the Decisional

Diffie-Hellman (DDH) problem. We do this through a series of reductions. First

we consider the following classic definition of CPA security that a cryptosystem

(Gen,Enc,Dec) is CPA secure if for all PPT adversariesA there is a negligible func-

tion negl such that ∣∣∣∣ Pr
[
ExpCPA(0,A, λ) = 1

]
− Pr

[
ExpCPA(1,A, λ) = 1

] ∣∣∣∣ ≤ negl(λ).

where ExpCPA(b,A, λ) is defined as

Experiment ExpCPA(b,A, λ):

(sk, pk)
$←− Gen(1λ)

(m0,m1)
$←− A(1λ, pk)

c
$←− Enc(pk,mb)

returnA(1λ, c)

It is well known that El Gamal (which Solidus uses) is CPA-secure in a DDH-

hard group. We further define double-CPA security which we will use to prove obliv-

iousness of our PVORM construction.

Definition 2.2 (Double-CPA Security). A cryptosystem (Gen,Enc,Dec) is double-

CPA secure if for all PPT adversariesA there is a negligible negl such that∣∣∣∣ Pr
[
Exp2CPA(0,A, λ) = 1

]
− Pr

[
Exp2CPA(1,A, λ) = 1

] ∣∣∣∣ ≤ negl(λ).

64

where Exp2CPA(0,A, λ) is defined as

Experiment Exp2CPA(b,A, λ):

(sk, pk)
$←− Gen(1λ)

((m0,m′0), (m1,m′1))
$←− A(1λ, pk)

c
$←− Enc(pk,mb)

c′
$←− Enc(pk,m′b)

returnA(1λ, c, c′)

We now prove by a hybrid argument that any public-key cryptosystem that is

CPA secure (e.g., El Gamal) is double-CPA secure.

Lemma 2.1 (Double-CPA Security). Let (Gen,Enc,Dec) be a CPA secure public-key

cryptosystem. Then it is also a double-CPA secure cryptosystem.

Proof. Assume for contradiction that there is someA and non-negligible ν(λ) where

∣∣∣∣ Pr
[
Exp2CPA(0,A, λ) = 1

]
− Pr

[
Exp2CPA(1,A, λ) = 1

] ∣∣∣∣ ≥ ν(λ).

We now consider a set of three hybrid experiments. Let H0 = Exp2CPA(0,A, λ),

H2 = Exp2CPA(1,A, λ), and

Experiment H1:

(sk, pk)
$←− Gen(1λ)

((m0,m′0), (m1,m′1))
$←− A(1λ, pk)

c
$←− Enc(pk,m0)

c′
$←− Enc(pk,m′1)

returnA(1λ, c, c′)

Note that we encrypt m0 (as in H0) and m′1 (as in H2). By the standard hybrid argu-

ment A must have advantage at least ν(λ)/2 in distinguishing either between H0

and H1 or between H1 and H2.

65

We now construct an adversary B to break the CPA security of (Gen,Enc,Dec).

On input (1λ, pk), B first runsA to get (m0,m′0) and (m1,m′1). It then picks a random

i
$←− {0, 1}. We handle these cases separately.

• i = 0: In this case B outputs (m0,m1). On receipt of challenge c it computes

c′
$←− Enc(pk,m′1), submits (1λ, c, c′) toA and returns the result.

• i = 1: In this case B outputs (m′0,m
′
1). On receipt of challenge c′, it computes

c
$←− Enc(pk,m0) and submits (1λ, c, c′) toA and returns the result.

In the first case, if c encrypts m0 then this is exactly experiment H1 and if c

encrypts m1, this is experiment H2. For the second case, B has similarly generated

either experiment H0 or H1. B will succeed exactly when A succeeds. Since A has

advantage at least ν(λ)/2 in one of these experiments andB randomly selects which

experiment to run, it must be the case that B succeeds with advantage at least

ν(λ)/4, which is non-negligible. By assumption, however, (Gen,Enc,Dec) is CPA-

secure, so this contradicts our assumption that A exists. Thus (Gen,Enc,Dec) is

double-CPA secure. �

Theorem 2.3 (PVORM Obliviousness). Construction 2.1 is oblivious in the ROM

assuming a DDH-hard group.

Proof. Assume for contradiction that there exists some PPT adversary A and non-

negligible ν(λ) such that∣∣∣∣ Pr
[
ExpObliv(0,A, λ, n,m0,U) = 1

]
− Pr

[
ExpObliv(1,A, λ, n,m0,U) = 1

] ∣∣∣∣ ≥ ν(λ).

We now construct an adversary B that breaks the game Exp2CPA, as defined in

Lemma 2.1, for El Gamal.

First we argue thatA cannot distinguish based solely on observing the pattern

of data blocks touched within the Circuit ORAM structure. As noted by Wang,

66

Chan, and Shi [169], each access consists first of accessing a uniformly random

path independent from all previous accesses, followed by eviction along two paths

chosen independently from the access. ThusA can only hope to distinguish in this

manner by forcing the stash to overflow. Wang, Chan, and Shi additionally note

that the probability of stash overflow is negligible in the size of the stash even for

a worst-case access pattern. Therefore A gains at most negligible advantage by

observing the Circuit ORAM access structure.

This means that A must either break the semantic security of El Gamal or the

zero-knowledge property of an NIZK. We now assume that A will make at most

poly(λ) queries the PVORM oracle for some polynomial poly. Using this, we con-

struct a series of hybrid distributions H0, . . . ,Hpoly(λ)+1 modifying how the ExpObliv

oracle works.

In hybrid H0, O operates exactly as O1,sk,C. In H1, O operates the same way ex-

cept it leverages the fact that we are in the ROM to forge all NIZKs. For Hi with

i ≥ 1, on input (u0, u1) from A, the oracle applies update u1 as in H1 for the first

i − 1 queries, after which it applies u0 instead. Though this may result in invalid

updates, the new oracle does not check the validity and applies the update any-

way with forged proofs. Because the proofs are forged, it will always succeeded

in making this (forged) update. Since, by the definition of the game, A could not

rely on submitting invalid updates in order to distinguish, this cannot improve the

advantage at all.

Because we are working in the ROM and all NIZKs are GSPs, A receives the

same view in H0 and H1. Whenever the PVORM oracle needs to generate a proof,

it first picks a random challenge c and a response. It then computes the commit-

ment com to ensure that the tuple is from the correct distribution, and modifiesA’s

random oracle so that it receives c when querying that oracle on com. As long as

67

the random oracle has not previously been queried on com, this strategy will work

and produce exactly the same distribution as in H1.

If there is a collision—the random oracle has been queried on com—then the

experiment H1 simply aborts. Fortunately this happens with negligible probability.

Specifically, A makes at most q(λ) independent queries to its random oracle for

some polynomial q, and O must forge some constant k number of proofs for each

PVORM update. This bounds the probability of collision to ν(λ) =
k·poly(λ)+q(λ)

2λ , a

negligible function.

We can apply the same argument to Hpoly(λ)+1 and the (unnamed) hybrid that

corresponds to O0,sk,C with real proofs. Thus A can distinguish between H1 and

Hpoly(λ)+1 with advantage at least ν(λ) − 2ν(λ). So by a standard hybrid argument,

there must be some i ∈ [1, poly(λ)] such thatA can distinguish between Hi and Hi+1

with advantage at least ν(λ)−2ν(λ)
poly(λ) . This too is non-negligible. For simplicity, we will

denote this advantage ν′(λ).

Next we recall that the secret key is only used to generate NIZKs in Update,

meaning an adversary with only the public key can run A with an oracle that

generates any of H1, . . . ,Hpoly(λ)+1. B is exactly such an adversary.

On input (1λ, pk), B first guesses a uniformly random i ∈ [1, poly(λ)] and then

runs A. B then handle’s A’s PVORM oracle queries as follows. For the first i − 1

queries (u0, u1), B applies u1 with forged proofs—as in both Hi and Hi+1. Because

Update uses sk only for proofs and B is forging proofs, it can perform the rest of

Update properly with only pk. Recall that an update u consists of two plaintexts: an

account ID id and a transaction value $v. So to generate its chosen plaintext pairs,

B outputs the updates specified for A’s ith PVORM oracle query. Upon receiving

a challenge pair of ciphertexts e = (cid, cv), B performs the rest of Update using that

update ciphertext (and forging proofs). For all future PVORM oracle queries after

68

the ith, B uses update request u0—as in both Hi and Hi+1. WhenA terminates with

an output, B outputs the same value.

We now claim that B has non-negligible advantage in the Exp2CPA experiment

defined above. With probability at least 1
poly(λ) , B will pick some i where A has

non-negligible advantage ν′(λ) distinguishing between Hi and Hi+1. If B receives a

challenge encryption of u1, then A is playing exactly the game in Hi. Similarly, if

B is challenged with an encryption of u0, then A sees exactly distribution Hi+1. In

either case Bwill output the correct value exactly whenA does. This means that B
must succeed with advantage at least ν′(λ)

poly(λ) , which is non-negligible.

By assumption we are working with a DDH-hard group and using El Gamal

as our cryptosystem. Thus our cryptosystem is CPA secure, so by Lemma 2.1 no

such B exists. This contradicts our assumption that A exists and therefore Con-

struction 2.1 must be an oblivious PVORM. �

Theorem 2.4 (PVORM Public Verifiability). Construction 2.1 is publicly verifiable

in the ROM.

Proof. This result follows directly from the fact that our Update specification in-

cludes a proof of every operation as well as a range proof. By definition Ver simply

verifies all NIZKs produced by Update. Therefore, if an adversary were able to fool

Ver, it must be able to forge (at least) one of the proofs produced by Update.

Assume for contradiction that there exists some PPT adversary adversary A
and non-negligible ν(λ) such that

Pr
[
ExpPubVer(A, λ, n)

]
≥ ν(λ).

We note that Update produces three types of proofs. Thus we construct three new

PPT adversaries BR, BE, and BS that attempt to forge range proofs, proofs of plain-

text equivalence on El Gamal ciphertexts, and proofs of correct El Gamal swaps,

respectively. They operate as follows.

69

• BR: On input (pk, sk), BR runs A and outputs the resulting range proof with

associated ciphertexts.

• BE: On input (pk, sk), BE runs A and outputs the resulting plaintext equiva-

lence proof and associated ciphertexts.

• BS : On input (pk, sk), BS runs A, picks a uniformly random El Gamal swap

proof from the output, and outputs that proof and the associated ciphertexts.

Whenever A forges the one range proof or the one plaintext equivalence proof,

BR or BE succeed, respectively. For BS , the number of El Gamal swaps executed

by Update is fixed for a given PVORM configuration (tree depth, bucket size, and

stash size), so if A forges any El Gamal swap correctness proof, BS will succeed

with constant probability.

By inspection of the specification of Update and a standard hybrid argument,A
must succeed in forging at least one type of proof with non-negligible probability,

hence one BR, BE, and BS must succeed with non-negligible probability. As we

describe in Section 2.8, prior work shows that each of the associated proofs have

negligible soundness error in the ROM. Thus no such adversaryA can exist so the

Solidus PVORM construction is publicly verifiable in the ROM. �

2.10 Solidus Security Proof

We now provide a proof of Theorem 2.1 that ProtSol is secure.

We assume several simple pieces of behavior not directly specified by the pro-

tocol. First, each honest bank will have only one pending transaction at a time.

That means that it will not approve a request (as sending or receiving bank) while

there is another transaction it has approved that has not yet cleared. In the FLedger-

hybrid world, this is codified within ProtSol, but we simply assume this property

70

in the ideal world. Second, we assume that an honest bank will reply immediately

upon receiving a transaction approval request. It may approve or abort the trans-

action, but it will reply in some fashion. Note that an honest bank may abort a

transaction it has already approved in order to maintain availability. Finally, we

assume that for an honest bank, whenever an assertion fails, the bank acts exactly

as if the message it failed to process was never received.

For simplicity, we omit asset notaries from our proof. Adding them requires

only small modification. Initialization must publicly distribute asset notary identi-

ties, FLedger must check for valid asset notary signatures, and ProtSol must properly

reveal asset notary identities.

Theorem 2.1. The Solidus protocol ProtSol satisfies Definition 2.1 assuming a DDH-hard

group in the ROM.

Proof. We prove that IdealS,Z(λ) and HybridA,Z(λ) are indistinguishable using a se-

quence of hybrids. In the following, a probability is negligible if it is a negligible

function of the security parameter λ.

We define hybrids H0, . . . ,H7. H0 is the FLedger-hybrid world with S being a

“dummy” simulator that passes all messages through unchanged. H1 allows S to

simulate FLedger. H2 replaces all proofs generated by honest parties with forgeries

and H3 to replaces the contents of requests and PVORMs with arbitrary values. In

H4 S simulates the trusted initializer and controls all keys. H5 isolates A’s set of

transaction IDs and H6 drops any invalid messages from A. Finally H7 is equiva-

lent to an ideal execution.

Hybrid H0 contains a dummy simulator that passes messages betweenA and hon-

est parties unchanged. This is identical to the FLedger-hybrid world.

Hybrid H1 is the same as H0 except that S maintains its own simulated copy of

FLedger that behaves as FLedger except for the initialization, which it does not emu-

71

late. During initialization, S passes the actual values sent by FLedger to A without

modification. All other operations are emulated faithfully. We note that all non-

initialization operations require only public information (including public keys).

When an honest bank posts to FLedger, S copies the message to its own copy, and

when A posts to FLedger, S first simulates the behavior on its copy, and if the post

is accepted, it forwards the post to the real FLedger.

Since all posts to FLedger are either dropped silently or broadcast in their entirety

to all banks, S’s faithful simulation of a copy will result in a view that is identical

to real execution.

Hybrid H2 proceeds as in H1 except whenever S receives any proofs or signa-

tures constructed by an honest party—as part of a request, PVORM update, or

“postTxn” message from FLedger—it stores the real proofs and signatures and re-

places them with forgeries. S sends the forgeries to A (or the simulated FLedger),

and if a message containing those proofs would be sent back to an honest party (or

forwarded to the real FLedger), S puts the original (real) proofs and signatures back

in place.

Note that this forgery and replacement only applies to the specific proofs and

signatures constructed by honest parties. Messages from honest parties containing

proofs and signatures from A-controlled parties—such as the request signature

from anA-controlled user at an honest bank included with the final transaction—

have only the honest signatures and proofs replaced. The values computed by A
are left exactly in-tact.

As all proofs in the system are cSE NIZKs, S can forge proofs thatAwill accept

andA still cannot forge proofs with non-negligible probability. Since the only thing

that has changed from H1 is these forged proofs, H1 and H2 are computationally

indistinguishable.

72

Hybrid H3 is much like H2, but S also replaces the values of all encryptions gen-

erated by honest parties under honest-party keys, including PVORM values. S re-

places these values with randomly-selected values encrypted under the same keys.

Again, it saves the real values and real proofs when communicating with honest

parties, but it uses the random values withA. Since S only replaces values thatA
did not generate and are encrypted under public keys for whichA does not know

the secret key, the semantic security of the encryption scheme guarantees that H3

is indistinguishable from H2. The proofs do not present a concern as they were

already forged (for the real values) in H2, so they remain forged (for the random

values) in H3.

Hybrid H4 differs from H3 in that S now emulates the initialization in FInit. It gen-

erates fake keys and PVORMs—from the correct distribution—for all parties and

sends those toA instead of those generated by FInit. Any encrypted values written

by A will be encrypted under the new (fake) keys for which S knows the secret

key, and any values intended to be read by A and written by an honest party will

be encrypted under a key given to S by the real FInit. In either case, S can decrypt

the ciphertext and re-encrypt the plaintext under the other set of keys before pass-

ing an honest message toA orA’s message to an honest party. The same is true for

signatures and proofs created byA.

For encryptions under honest-party keys written by honest parties as well as

proofs and signatures created by honest parties, S already replaced those in H3

with random values and forgeries, respectively, so it simply does the same but

under the new (fake) keys.

In this manner, all values, proofs, and signatures viewed by A in H4 are the

same as those in H3, but using different encryption/signing keys and different

randomness. All encryptions, proofs, and signatures generated by S to an honest

73

party are similarly the same, but with different randomness. Since the keys and

randomness are selected faithfully from exactly the original distributions, H3 and

H4 are identically distributed.

Hybrid H5 proceeds as H4, but S separates the transaction IDs used by A from

those used by honest parties. Whenever a new request comes from A with trans-

action ID txidA, S generates a new unique txidF to associate with the transaction

with honest parties. Whenever a message with a previously-unseen transaction ID

txidF comes in from an honest party (or FLedger), S generates a new unique txidA

before forwarding to A (or the simulated FLedger). If, for an incoming message in

either direction, S has seen the ID before, there must be an associated ID in the

other set, so it simply uses that.

Since only the transaction IDs have changed and the new IDs are drawn inde-

pendently from the old IDs using the same methodology, H4 and H5 are identically

distributed.

Hybrid H6 is the same as H5 except S verifies all proofs and signatures generated

by A on all messages. If any proof or signature fails to verify, S drops the mes-

sage and does not forward it. Because all proofs are verified in ProtSol (either by

the receiving party or by FLedger) before any other processing is done, and Z dic-

tates that if an assertion fails, the honest party behaves as if the associated message

had never arrived, this will not change any message received by A or the behav-

ior of any honest parties. Similarly, H6 drops all messages containing transaction

IDs which have already been posted to FLedger, which honest parties will similarly

drop. By the simulation soundness of the NIZKs employed, A has a negligible

probability of forging a proof and thus there is a negligible probability of passing

through a message that will be ignored anyway. Hence H5 and H6 are computa-

tionally indistinguishable.

74

Hybrid H7 is the most complex step, as we now replace all honest-party commu-

nication with FSol. We now describe what S does in H7 whenever it would send a

message to an honest party in H6 and whenever it receives a message from FSol in

H7.

• When S would send a “requestTxn” request to an honest bank B on behalf of a

compromised userUs in H6, S instead decrypts the values supplied byA to get

the plaintext value $v and receiving userUr and sends (“requestTxn”,Ur, $v) to

FSol on behalf ofUs. Instead of creating its own txidF to link to the txidA for this

transaction, it uses the one returned by FSol.

• When S would send an “aprvSendTxn” message to and honest bank in H6, it

first checks if there is an associated txidF from FSol, or if the message is coming

unprompted from A. In the first case it sends (“aprvSendTxn”, txidF) to FSol.

In the second case, it first decrypts the request included with the transaction

data, which must be from a compromised user U at a compromised bank B—

otherwise the request would have come through FSol or the proofs would fail

to verify and H6 would already have dropped it. It then submits the associated

“requestTxn” message to FSol from U. Upon receiving an associated txidF and

(“req”, txidF ,Us,Br, $v), S sends (“aprvSendTxn”, txidF) to FSol.

• When Swould send an “aprvRecvTxn” message to the real FLedger (after passing

through the simulated one), it again checks for an associated txidF from FSol. If

none is found, then the transaction must entirely be executed by compromised

entities for same reason described above. In this case, S decrypts the transaction

details and executes the entire transaction on FSol.

If an txidF is found and S has seen a “req” response from FSol but not a “aprv”

message, then it must be the case that both banks are compromised. As with

above, S finishes the transaction in order, first sending (“aprvSendTxn”, txidF)

75

and then (“aprvRecvTxn”, txidF).

Finally, if txidF is found and S has seen a “aprv” message from FSol for txidF ,

then it simply sends (“aprvRecvTxn”, txidF).

• When Swould send an “abortTxn” message to the real FLedger, it again checks if

there is an associated txidF . If there is, it sends (“abortTxn”, txidF) to FSol. If not,

it generates a random txid and sends (“abortTxn”, txid) to FSol.

Note that with negligible probability this new txid will conflict with an existing

transaction ID and the abort will not be received, but except with negligible

probability this will appropriately create an abort for a non-existent transaction.

• We handle S receiving (“req”, txidF ,Us,Br, $v) from FSol in two cases.

1. If Br is honest, then S acts as it would in H6 upon receiving a valid

(“requestTxn”, txidF , ePK s, cv, cr, σ) from Us, noting that in that case it can

decrypt the identity ofUs and $v, but not the identity of the receiving user.

2. If Br is compromised, while Swould have forwarded a “requestTxn” mes-

sage in H6, it does not have sufficient information to create the details of

that request correctly. To acquire that information, S immediately replies to

FSol with (“aprvSendTxn”, txidF).

• When S receives (“aprv”, txidF ,Bs,Ur, $v) from FSol, we again have three cases.

1. If Bs is compromised, then we must have been in case 2 above. Thus S now

has sufficient information to create a complete “requestTxn” message as it

would in H6, so it does so and submits that request toA.

2. If Bs is honest but the user who originally requested this transaction Us is

not, then there must be some txidA associated with txidF and an associated

request. S can thus manufacture an “aprvSendTxn” message to submit to

76

A. As in H6, S uses the stored request for values created byUs and falsifies

values created by the honest Bs.

3. If Bs and the sending user Us are both honest, then S must create a new

unique txidA and create an “aprvSendTxn” message as in H6. Note that the

values S could decrypt in H6 were the identity of Ur and $v, so it encrypts

the correct values for those and falsifies other values.

• When S receives (“postTxn”, txidF ,Ps → Pr) from FSol, Since this proof does not

handle asset notaries, we can assume Ps and Pr are both banks. There are three

cases to consider.

First we consider the simplest case: when Pr is a compromised bank. In this case

the transaction will only clear through FSol after S successfully posts it to (the

simulated) FLedger. Thus there is nothing to do.

Next we consider the case where Ps is a compromised bank but Pr is honest.

Here txidF must correspond to txidA for the pending transaction in S’s simula-

tion of Pr. In order for the transaction to be approved by the sender in FSol, S
must have received and verified (“signRecvTxn”, txidA, txdatas) from A. At this

point S updates Pr’s simulated PVORM with random values and forged proofs

(as in H6) and posts the full transaction to FLedger. We note thatA cannot have al-

ready submitted a transaction toFLedger with ID txidA since honest banks respond

instantly, so this must be in response to approving the sending of a transaction

and H6 would have dropped that message if txidA had already been posted to

FLedger.

Finally, we consider the case where Ps and Pr are both honest. In this case S
manufactures random updates to the respective PVORMs and forges all associ-

ated proofs. If txidF already corresponds to some txidA, that means the requesting

user was compromised, and S simply uses that request. Otherwise S selects a

77

new unique txidA and creates a request specification (again with random values

and forged proofs). It then posts the result to the simulated FLedger. We note that

this is precisely the value that would have been posted to the simulated FLedger

in H6.

• When S receives (“abortTxn”, txidF ,B) from FSol, it first checks of B is compro-

mised. If so, this must be the response after sending an abort to FSol and there is

nothing to do. If not, S checks if there is a known txidA already linked to txidF

and generates a new unique txidA otherwise. It then generates an abort opera-

tion using random values and forged proofs, as in H6 and posts it to FLedger. It

also clears the simulated pending transactions for B (which will only happen if

txidA already existed).

Thus we see that each hybrid is computationally indistinguishable from the

next, H0 corresponds to the FLedger-hybrid world, and H7 corresponds to the ideal

world. Thus ProtSol achieves the desired security. �

2.11 Variants

We now present three variants on the Solidus system based on different architec-

tural primitives. They provide different guarantees and features which we believe

are relevant.

2.11.1 zk-SNARK PVORM

Though GSPs are highly efficient to construct, they can be quite large and expen-

sive to verify. In circumstances where the size of proofs or the verification time

is more important than generation time, zk-SNARKs provide a good alternative.

While we could implement the Circuit ORAM-based PVORM described in Sec-

78

tion 2.3 and Section 2.9 using zk-SNARKs, the large numbers of reencryptions

would result in very expensive proofs, even if we were to use symmetric-key prim-

itives. Instead, in Section 2.6.3 we describe and evaluated a different construction,

based on a Merkle tree, which is much more efficient for zk-SNARKs than use of

Circuit ORAM.

Our evaluation in Table 2.1 shows the performance for a single bank update

at 128-bit security level, using libsnark [16] as the back end for computing the

zk-SNARK proofs. The Merkle tree has depth 15 giving the PVORM a capacity

of 215 (the same as in our GSP tests). Our implementation includes zk-SNARK-

optimized SHA-256 circuits for the Merkle tree, and optimized circuits for RSA-

3072 encryption (RSAES-PKCS1-v1_5) and signatures (RSASSA-PKCS1-v1_5 with

SHA-256). We used PKCS #1 v1.5 primitives instead of the more up-to-date PKCS

#1 v2.2 primitives and alternative public-key schemes for three reasons: they yield

less expensive zk-SNARK circuits, they are still used in practice, and they provide

a conservative (i.e. competitive) comparison point for GSPs.

When used in Solidus, the zk-SNARK PVORM construction has the clear draw-

back that the ledger does not contain each user’s account balance, even in en-

crypted form. To compute a user’s balance, an auditor would need to parse the

transaction ciphertexts, decrypt them and perform all the operations. To reduce

such overhead in practice, however, the bank may periodically checkpoint bal-

ances. Specifically, it may submit an encrypted version of the Merkle tree leaves,

and prove that the encryptions are consistent with a published Merkle tree digest

using another zk-SNARK proof. Such a proof is quite expensive to construct, and

could only be done periodically, e.g., once per day, without significantly affecting

the system throughput. But as transactions are accompanied by ciphertexts, an au-

ditor can start at a checkpoint and then decrypt all subsequent transactions to learn

79

current account balances.

Of course, proof generation times are more important in the applications tar-

geted by Solidus, and in our discussions with blockchain industry technologists,

the engineering complexity of zk-SNARKs and trusted setup make them less vi-

able than GSPs today. But zk-SNARKs offer an interesting alternative construction

and illustrate what could be a valuable point in the PVORM design space.

2.11.2 Use of Trusted Hardware

Using Intel Software Guard Extensions (SGX) it is possible to construct a much

more efficient PVORM. SGX provides a new set of instructions that permits execu-

tion of an application inside an enclave [6, 80, 107], which protects the application’s

control-flow integrity and confidentiality against even a hostile operating system.

SGX additionally enables generation of attestations that prove to a remote party

that an enclave is running a particular application (identified as a hash of its build

memory).

To reduce the expense of attestations, an enclave can generate a signing key

pair and attest to the integrity of the public key [84, 182]. It can then generate the

equivalent of a NIZK by simply signing an assertion that it knows a witness to the

statement. Trust in SGX then translates to trust in the application and thus its as-

sertions. Verifying an assertion requires only a single digital signature verification.

Using an SGX-based approach, we can build an extremely fast PVORM. We

replace the public-key encryption with symmetric-key encryption and all NIZKs

with SGX-signed assertions. We can even employ write-only ORAM [21, 137] to

further improve performance. Additionally, a PVORM constructed in the Sealed-

Glass Proof (SGP) model [164] provides security against arbitrarily strong side-

channel attacks, provided that the secret signing key remains protected—such as

80

by using a side-channel-resistant crypto library.

While several complications remain to be address (e.g., the need to share keys

across enclaves on different hosts in case of failure), we believe that this approach

is eminently practical—albeit under the (strong) assumption of trust in Intel and

SGX’s implementation.

2.11.3 Use of Pedersen Commitments

One of the important features of Solidus is auditability, which is greatly aided by

having all account balances encrypted on the ledger. Many financial companies

and regulatory agencies are, however, wary to include this information, even in

encrypted form [22, 88, 165]. While we believe it would degrade the functionality

significantly to omit these encryptions, it is not particularly difficult.

Instead of including encrypted balances on the ledger, banks could instead rep-

resent PVORM elements as Pedersen commitments [128]. Unlike El Gamal cipher-

texts, Pedersen commitments are perfectly hiding and computationally binding.

To implement this, banks would need to retain witnesses for each commitment,

which consists of both the account balance and the randomization factor. The bank

could then reveal this witness to an auditor in order to prove an account balance,

and the proof schemes used with El Gamal ciphertexts would require only slight

modification to prove information about the known witnesses.

81

CHAPTER 3

NONMALLEABLE INFORMATION FLOW CONTROL

An ongoing foundational challenge for computer security is to discover rigor-

ous, yet sufficiently flexible, ways to specify what it means for a computing system

to be secure. Such security conditions should be extensional, meaning that they are

based on the externally observable behavior of the system rather than on unob-

servable details of its implementation. To allow security enforcement mechanisms

to scale to large systems, a security condition should also be compositional, so that

secure subsystems remain secure when combined into a larger system.

Noninterference, along with many variants [72, 144], has been a popular security

condition precisely because it is both extensional and compositional. Noninterfer-

ence forbids all flows of information from “high” to “low”, or more generally, flows

of information that violate a lattice policy [59].

Unfortunately, noninterference is also known to be too restrictive for most real

systems, which need fine-grained control over when and how information flows.

Consequently, most implementations of information flow control introduce down-

grading mechanisms to allow information to flow contrary to the lattice policy.

Downgrading confidentiality is called declassification, and downgrading integrity—

that is, treating information as more trustworthy than information that has influ-

enced it—is known as endorsement [178].

Once downgrading is permitted, noninterference is lost. The natural question is

whether downgrading can nevertheless be constrained to guarantee that systems

still satisfy some meaningful, extensional, and compositional security conditions.

This paper shows how to constrain the use of both declassification and endorse-

ment in a way that ensures such a security condition holds.

Starting with the work of Biba [19], integrity has often been viewed as dual to

82

confidentiality. Over time, that simple duality has eroded. In particular, work on

robust declassification [12, 43, 120, 177, 178] has shown that in the presence of de-

classification, confidentiality depends on integrity. It is dangerous to give the ad-

versary the ability to influence declassification, either by affecting the data that is

declassified or by affecting the decision to perform declassification. By preventing

such influence, robust declassification stops the adversary from laundering confi-

dential data through existing declassification operations. Operationally, languages

prevent laundering by restricting declassification to high integrity program points.

Robust declassification can be enforced using a modular type system and is there-

fore compositional.

This paper introduces a new security condition, transparent endorsement, which

is dual to robust declassification: it controls endorsement by using confidentiality

to limit the possible relaxations of integrity. Transparent endorsement prevents an

agent from endorsing information that the provider of the information could not

have seen. Such endorsement is dangerous because it permits the provider to af-

fect flows from the endorser’s own secret information into trusted information.

This restriction on endorsement enforces an often-implicit justification for endors-

ing untrusted inputs in high-integrity, confidential computation (e.g., a password

checker): low-integrity inputs chosen by an attacker should be chosen without

knowledge of secret information.

A similar connection between the confidentiality and integrity of information

arises in cryptographic settings. A malleable encryption scheme is one where a ci-

phertext encrypting one value can be transformed into a ciphertext encrypting a

related value. While sometimes malleability is intentional (e.g., homomorphic en-

cryption), an attacker’s ability to generate ciphertexts makes malleable encryption

insufficient to authenticate messages or validate integrity. Nonmalleable encryp-

83

tion schemes [63] prevent such attacks. This paper combines robust declassification

and transparent endorsement into a new security condition, nonmalleable informa-

tion flow, which rules out analogous attacks in an information flow control setting.

The contributions of this chapter are as follows:

• We give example programs showing the need for a security condition that

controls endorsement of secret information.

• We generalize robust declassification to programs including complex data struc-

tures with heterogeneously labeled data.

• We identify transparent endorsement and nonmalleable information flow, new ex-

tensional security conditions for programs that mix both declassification and

endorsement.

• We present a core language, NMIFC, which provably enforces robust declas-

sification, transparent endorsement, and nonmalleable information flow.

• We present the a formulation of robust declassification as a 4-safety hyperprop-

erty, and define 4-safety hyperproperties for transparent endorsement and

nonmalleable information flow, the first time information security conditions

have been characterized as k-safety hyperproperties with k > 2.

• We describe our implementation of NMIFC using Flame, a flow-limited au-

thorization library for Haskell and adapt an example of the Servant web ap-

plication framework, accessible online at http://memo.flow.limited.

We organize the paper as follows. Section 3.1 provides examples of vulnerabili-

ties in prior work. Section 3.2 reviews relevant background. Section 3.3 introduces

our approach for controlling dangerous endorsements, and Section 3.4 presents a

syntax, semantics, and type system for NMIFC. Section 3.5 formalizes our security

conditions and Section 3.6 restates them as hyperproperties. Section 3.7 discusses

84

http://memo.flow.limited

our Haskell implementation, Section 3.8 compares our approach to related work.

Sections 3.9 – 3.12 include full details of NMIFC and all proofs.

3.1 Motivating Examples

To motivate the need for an additional security condition and give some intu-

ition about transparent endorsement, we give three short examples. Each example

shows code that type-checks under existing information-flow type systems even

though it contains insecure information flows, which we are able to characterize in

a new way.

These examples employ the notation of the flow-limited authorization model

(FLAM) [11], which offers an expressive way to state both information flow re-

strictions and authorization policies. However, the problems observed in these ex-

amples are not specific to FLAM; they arise in all previous information-flow mod-

els that support downgrading (e.g., [27, 65, 92, 119, 140, 170, 180]). The approach

in this paper can be applied straightforwardly to the decentralized label model

(DLM) [119], and with more effort, to DIFC models that are less similar to FLAM.

While some previous models lack a notion of integrity, from our perspective they

are even worse off, because they effectively allow unrestricted endorsement.

In FLAM, principals and information flow labels occupy the same space. Given

a principal (or label) p, the notation p→ denotes the confidentiality projection of p,

whereas the notation p← denotes its integrity projection. Intuitively, p→ represents

the authority to decide where p’s secrets may flow to, whereas p← represents the

authority to decide where information trusted by p may flow from. Robust declas-

sification ensures that the label p→ can be removed via declassification only in code

that is trusted by p; that is, with integrity p←.

Information flow policies provide a means to specify security requirements for

85

1 StringT password;

2

3 boolT← check_password(StringT→ guess) {

4 boolT endorsed_guess = endorse(guess, T);
5 boolT result = (endorsed_guess == password);

6 return declassify(result, T←);
7 }

Figure 3.1: A password checker with malleable information flow

a program, but not an enforcement mechanism. For example, confidentiality poli-

cies might be implemented using encryption and integrity policies using digital

signatures. Alternatively, hardware security mechanisms such as memory protec-

tion might be used to prevent untrusted processes from reading confidential data.

The following examples illustrate issues that would arise in many information

flow control systems, regardless of the enforcement mechanism.

3.1.1 Fooling a Password Checker

Password checkers are frequently used as an example of necessary and justifiable

downgrading. However, incorrect downgrading can allow an attacker who does

not know the password to authenticate anyway. Suppose there are two principals,

a fully trusted principal T and an untrusted principal U. The following information

flows are then secure: U→ v T→ and T← v U←. Figure 3.1 shows in pseudo-code

how we might erroneously implement a password checker in a security-typed lan-

guage like Jif [117]. Because this pseudo-code would satisfy the type system, it

might appear to be secure.

The argument guess has no integrity because it is supplied by an untrusted,

possibly adversarial source. It is necessary to declassify the result of the function

(at line 6) because the result indeed leaks a little information about the password.

Robust declassification, as enforced in Jif, demands that the untrusted guess be

86

A
a_bid

b_bid

b_bid

T

a_bid

b_bid

Bids

B

a_bid
b_bid

a_bid

T
A← ∧ (A ∧ B)→

(A ∧ B)(A ∧ B)

B← ∧ (A ∧ B)→

(A ∧ B) (A ∧ B)

open b_bid

(A ∧ B)← ∧ (A ∨ B)→
open a_bid

(A ∧ B)← ∧ (A ∨ B)→

Figure 3.2: Cheating in a sealed-bid auction. Without knowing Alice’s bid, Bob can
always win by setting b_bid := a_bid + 1

endorsed before it can influence information released by declassification.

Unfortunately, the check_password policy does not prevent faulty or malicious

(but well-typed) code from supplying password directly as the argument, thereby

allowing an attacker with no knowledge of the correct password to “authenticate.”

Because guess is labeled as secret (T→), a flow of information from password to

guess looks secure to the type system, so this severe vulnerability could remain

undetected. To fix this we would need to make guess less secret, but no prior work

has defined rules that would require this change. The true insecurity, however,

lies on line 4, which erroneously treats sensitive information as if the attacker had

constructed it. We can prevent this insecurity by outlawing such endorsements.

3.1.2 Cheating in a Sealed-Bid Auction

Imagine that two principals A and B (Alice and Bob) are engaging in a two-party

sealed-bid auction administered by an auctioneer T whom they both trust. Such an

auction might be implemented using cryptographic commitments and may even

simulate T without need of an actual third party. However, we abstractly specify

the information security requirements that such a scheme would aim to satisfy.

Consider the following sketch of an auction protocol, illustrated in Figure 3.2:

87

1. A sends her bid a_bid to T with label A← ∧ (A ∧ B)→. This label means a_bid

is trusted only by those who trust A and can be viewed only if both A and B

agree to release it.

2. T accepts a_bid from A and uses his authority to endorse the bid to label

(A ∧ B)← ∧ (A ∧ B)→ (identically, A ∧ B). The endorsement prevents any fur-

ther unilateral modification to the bid by A. T then broadcasts this endorsed

a_bid to A and B. This broadcast corresponds to an assumption that network

messages can be seen by all parties.

3. B constructs b_bid with label B← ∧ (A ∧ B)→ and sends it to T .

4. T endorses b_bid to A ∧ B and broadcasts the result.

5. T now uses its authority to declassify both bids and send them to all parties.

Since both bids have high integrity, this declassification is legal according

to existing typing rules introduced to enforce (qualified) robust declassifica-

tion [11, 43, 120].

Unfortunately, this protocol is subject to attacks analogous to mauling in mal-

leable cryptographic schemes [63]: B can always win the auction with the minimal

winning bid. In Step 3 nothing prevents B from constructing b_bid by adding 1 to

a_bid, yielding a new bid with label B← ∧ (A ∧ B)→ (to modify the value, B must

lower the value’s integrity as A did not authorize the modification).

Again an insecurity stems from erroneously endorsing overly secret informa-

tion. In step 4, T should not endorse b_bid since it could be based on confidential

information inaccessible to B—in particular, a_bid. The problem can be fixed by

giving A’s bid the label A→ ∧ A← (identically, just A), but existing information flow

systems impose no such requirement.

88

3.1.3 Laundering Secrets

Wittbold and Johnson [172] present an interesting but insecure program:

1 while (true) do {

2 x = 0 [] x = 1; // generate secret probabilistically

3 output x to H;

4 input y from H; // implicit endorsement

5 output x ⊕ (y mod 2) to L
6 }

In this code, there are two external agents, H and L. Agent H is intended to

have access to secret information, whereas L is not. The code generates a secret by

assigning to the variable x a nondeterministic, secret value that is either 0 or 1. The

choice of x is assumed not to be affected by the adversary. Its value is used as a

one-time pad to conceal the secret low bit of variable y.

Wittbold and Johnson observe that this code permits an adversary to launder

one bit of another secret variable z by sending z ⊕ x as the value read into y. The

low bit of z is then the output to L.

Let us consider this classic example from the viewpoint of a modern information-

flow type system that enforces robust declassification. In order for this code to

type-check, it must declassify the value x ⊕ (y mod 2). Since the attack depends

on y being affected by adversarial input from H, secret input from H must be low-

integrity (that is, its label must be H→). But if it is low-integrity, this input (or the

variable y) must be endorsed to allow the declassification it influences. As in the

previous two examples, the endorsement of high-confidentiality information en-

ables exploits.

89

3.2 Background

We explore nonmalleable information flow in the context of a simplified version

of FLAM [11], so we first present some background. FLAM provides a unified

model for reasoning about both information flow and authorization. Unlike in pre-

vious models, principals and information flow labels in FLAM are drawn from the

same set L. The interpretation of a label as a principal is the least powerful prin-

cipal trusted to enforce that label. The interpretation of a principal as a label is the

strongest information security policy that principal is trusted to enforce. We refer

to elements ofL as principals or labels depending on whether we are talking about

authorization or information flow.

Labels (and principals) have both confidentiality and integrity aspects. A label

(or principal) ` can be projected to capture just its confidentiality (`→) and integrity

(`←) aspects.

The information flow ordering v on labels (and principals) describes informa-

tion flows that are secure, in the direction of increasing confidentiality and de-

creasing integrity. The orthogonal trust ordering⇒ on principals (and labels) cor-

responds to increasing trustedness and privilege: toward increasing confidentiality

and increasing integrity. We read ` v `′ as “` flows to `′”, meaning `′ specifies a pol-

icy at least as restrictive as ` does. We read p ⇒ q as “p acts for q”, meaning that q

delegates to p.

The information flow and the trust orderings each define a lattice over L, and

these lattices lie intuitively at right angles to one another. The least trusted and

least powerful principal is ⊥, (that is, p ⇒ ⊥ for all principals p), and the most

trusted and powerful principal is > (where > ⇒ p for all p). We also assume there

is a set of atomic principals like alice and bob that define their own delegations.

90

Since the trust ordering defines a lattice, it has meet and join operations. Prin-

cipal p ∧ q is the least powerful principal that can act for both p and q; conversely,

p ∨ q can act for all principals that both p and q can act for. The least element in

the information flow ordering is >←, representing maximal integrity and minimal

confidentiality, whereas the greatest element is >→, representing minimal integrity

and maximal confidentiality. The join and meet operators in the information flow

lattice are the usual t and u, respectively.

Any principal (label) can be expressed in a normal form p→ ∧ q← where p and

q are CNF formulas over atomic principals [11]. This normal form allows us to

decompose decisions about lattice ordering (in either lattice) into separate ques-

tions regarding the integrity component (p) and the confidentiality component (q).

Lattice operations can be similarly decomposed.

FLAM also introduces the concept of the voice of a label (principal) `, written

∇(`). Formally, for a normal-form label ` = p→ ∧ q←, we define voice as follows:

∇(p→ ∧ q←) , p←.1 A label’s voice represents the minimum integrity needed to

securely declassify data constrained by that label, a restriction designed to enforce

robust declassification.

The Flow-Limited Authorization Calculus (FLAC) [9] previously embedded a

simplified version of the FLAM proof system into a core language for enforcing se-

cure authorization and information flow. FLAC is an extension of the Dependency

Core Calculus (DCC) [1, 3] whose types contain FLAM labels. A computation is ad-

ditionally associated with a program-counter label pc which tracks the influences

on the control flow and values that are not explicitly labeled.

In this paper we take a similar approach: NMIFC enforces security policies by

performing computation in a monadic context. As in FLAC, NMIFC includes a pc

1FLAM defines ∇(p→ ∧ q←) = p←∧q←, but our simplified definition is sufficient for NMIFC. For
clarity, the operator ∇ is always applied to a projected principal.

91

label. For an ordinary value v, the monadic term (η` v) signifies that value with the

information flow label `. If value v has type τ, the term (η` v) has type ` says τ,

capturing the confidentiality and integrity of the information.

Unlike FLAC, NMIFC has no special support for dynamic delegation of au-

thority. Principals may statically deligate their authority to other principals, adding

extra relationships in L. NMIFC then includes traditional declassification and en-

dorsement operations, decl and endorse. We leave to future work the integration

of nonmalleable information flow with secure dynamic delegation.

3.3 Enforcing Nonmalleability

Multiple prior security-typed languages—both functional [9] and imperative [12,

43, 120]—aim to allow some form of secure downgrading. These languages place

no restriction whatsoever on the confidentiality of endorsed data or the context in

which an endorsement occurs. Because of this permissiveness, all three insecure

examples from Section 3.1 type-check in these languages.

3.3.1 Robust Declassification

Robust declassification prevents adversaries from using declassifications in the

program to release information that was not intended to be released. The adversary

is assumed to be able to observe some state of the system, whose confidentiality

label is sufficiently low, and to modify some state of the system, whose integrity la-

bel is sufficiently low. Semantically, robust declassification says that if the attacker

is unable to learn a secret with one attack, no other attack will cause it to be re-

vealed [120, 177]. The attacker has no control over information release because all

attacks are equally good. When applied to a decentralized system, robust declassi-

92

fication means that for any principal p, other principals that p does not trust cannot

influence declassification of p’s secrets [43].

To enforce robust declassification, prior security-typed languages place integrity

constraints on declassification. The original work on FLAM enforces robust declas-

sification using the voice operator ∇. However, when declassification is expressed

as a programming-language operation, as is more typical, it is convenient to de-

fine a new operator on labels, one that maps in the other direction, from integrity

to confidentiality. We define the view of a principal as the upper bound on the con-

fidentiality a label or context can enforce to securely endorse that label:

Definition 3.1 (Principal view). Let ` = p→ ∨ q← be a FLAM label (principal) ex-

pressed in normal form. The view of `, written ∆(`), is defined as ∆(p→ ∨ q←) , q→.

When the confidentiality of a label ` lies above the view of its own integrity,

a declassification of that label may give adversaries the opportunity to subvert

the declassification to release information. Without enough integrity, an adversary

might, for example, replace the information that is intended to be released via de-

classification with some other secret.

Figure 3.3 illustrates this idea graphically. It depicts the lattice of FLAM labels,

which is a product lattice with two axes, confidentiality and integrity. A given label

` is a point in this diagram, whereas the set of labels sharing the same confiden-

tiality `→ or integrity `← correspond to lines on the diagram. Given the integrity

`← of the label `, the view of that integrity, ∆(`←), defines a region of information

(shaded) that is too confidential to be declassified.

The view operator directly corresponds to the writers-to-readers operator that

Chong and Myers [43] use to enforce robust declassification in the DLM. We gen-

eralize the same idea here to the more expressive labels of FLAM.

93

>→

>←

⊥ >

C

I

`←

∆(`←)

nonrobust

robust

Figure 3.3: Robust declassification says information at level ` can be declassified
only if it has enough integrity. The gray shaded region represents information that
∆(`←) cannot read, so it is unsafe to declassify with `’s integrity.

3.3.2 Transparent Endorsement

The key insight of this work is that endorsement should be restricted in a manner

dual to robust declassification; declassification (reducing confidentiality) requires a

minimum integrity, so endorsement (raising integrity) should require a maximum

confidentiality. Intuitively, if a principal could have written data it cannot read,

which we call an “opaque write,” it is unsafe to endorse that data. An endorsement

is transparent if it endorses only information its authors could read.

The voice operator suffices to express this new restriction conveniently, as de-

picted in Figure 3.4. In the figure, we consider endorsing information with con-

fidentiality `→. This confidentiality is mapped to a corresponding integrity level

∇(`→), defining a minimal integrity level that ` must have in order to be endorsed.

If ` lies below this boundary, its endorsement is considered transparent; if it lies

above the boundary, endorsement is opaque and hence insecure. The duality with

94

>→

>←

⊥ >

C

I

`→

∇(`→)

opaque

transparent

Figure 3.4: Transparent endorsement in NMIFC. The gray shaded region repre-
sents information that ∇(`→) does not trust and may have been created by an
opaque write. It is thus unsafe to endorse with `’s confidentiality.

robust declassification is clear.

3.4 A Core Language: NMIFC

We now describe the NonMalleable Information Flow Calculus (NMIFC), a new

core language, modeled on DCC and FLAC, that allows downgrading, but in a

more constrained manner than FLAC so as to provide stronger semantic guaran-

tees. NMIFC incorporates the program-counter label pc of FLAC, but eschews the

more powerful assume mechanism of FLAC in favor of more traditional declassify

and endorse operations.

The full NMIFC is a small extension of Polymorphic DCC [1]. In Figure 3.5 we

present the core syntax, leaving other features such as sums, pairs, and polymor-

phism to Section 3.9. Unlike DCC, NMIFC supports downgrading and models it

as an effect. It is necessary to track what information influences control flow so

95

n ∈ N (atomic principals)
x ∈ V (variable names)
π ∈ {→,←} (security aspects)

p, `, pc ::= n | > | ⊥ | pπ | p ∧ p | p ∨ p | p t p | p u p

τ ::= unit | τ pc−−→ τ | ` says τ

v ::= () | λ x :τ[pc]. e | (η` v)

e ::= x | v | e e | (η` e) | bind x = e in e

| decl e to ` | endorse e to `

Figure 3.5: Core NMIFC syntax.

that these downgrading effects may be appropriately constrained. Therefore, like

FLAC, NMIFC adds pc labels to lambda terms and types.

Similarly to DCC, protected values have type ` says τ where ` is the confiden-

tiality and integrity of a value of type τ. All computation on these values occurs

in the says monad; protected values must be bound using the bind term before

performing operations on them (e.g., applying them as functions). Results of such

computations are protected with the monadic unit operator (η` e), which protects

the result of e with label `.

3.4.1 NMIFC Operational Semantics

The core semantics of NMIFC are mostly standard, but to obtain our theoretical

results we need additional information about evaluation. This information is nec-

essary because we want to identify, for instance, whether information is ever avail-

able to an attacker during evaluation, even if it is discarded and does not influence

the final result. This approach gives an attacker more power; an attacker can see

information at its level even if it is not output by the program.

The NMIFC semantics, presented in Figure 3.6, maintain a trace t of events.

96

e −→ e′

[E-APP]
(λ x :τ[pc]. e) v −→ e[x 7→ v]

[E-BINDM]
bind x = (η` v) in e −→ e[x 7→ v]

(event) c ::= • | (η` v) | (↓π`′ , η` v)
(trace) t ::= ε | c | t; t

〈e, t〉 →−→ 〈
e′, t′

〉
[E-STEP]

e −→ e′

〈e, t〉 →−→ 〈
e′, t; •〉

[E-UNITM] 〈(η` v), t〉 →−→ 〈
(η` v), t; (η` v)

〉
[E-DECL] 〈

decl (η`′ v) to `, t
〉 →−→ 〈

(η` v), t; (↓→`′ , η` v)
〉

[E-ENDORSE] 〈
endorse (η`′ v) to `, t

〉 →−→ 〈
(η` v), t; (↓←`′ , η` v)

〉
[E-EVAL]

〈e, t〉 →−→ 〈
e′, t′

〉
〈E[e], t〉 →−→ 〈

E[e′], t′
〉

Evaluation context

E ::= [·] | E e | v E | (η` E) | bind x = E in e

| decl E to ` | endorse E to `

Figure 3.6: Core NMIFC operational semantics.

97

An event is emitted into the trace whenever a new protected value is created and

whenever a declassification or endorsement occurs. These events track the obser-

vations or influence an attacker may have during a run of an NMIFC program.

Formally, a trace can be an empty trace ε, a single event c, or the concatenation of

two traces with the associative operator “;” with identity ε.

When a source-level unit term (η` v) is evaluated (rule E-UNITM), an event (η` v)

is added to the trace indicating that the value v became protected at `. When a pro-

tected value is declassified, a declassification event (↓→`′ , η` v) is emitted, indicating

that v was declassified from `′ to `. Likewise, an endorsement event (↓←`′ , η` v) is

emitted for an endorsement. Other evaluation steps (rule E-STEP) emit •, for “no

event.” Rule E-EVAL steps under the evaluation contexts [174] defined at the bot-

tom of Figure 3.6.

Rather than being literal side effects of the program, these events track how

observable information is as it is accessed, processed, and protected by the pro-

gram. Because our semantics emits an event whenever information is protected

(by evaluating an η term) or downgraded (by a decl or endorse term), our traces

capture all information processed by a program, indexed by the policy protecting

that information.

By analogy, these events are similar to the typed and labeled mutable reference

cells of languages like FlowCaml [133] and DynSec [184]. An event (η` v) is anal-

ogous to allocating a reference cell protected at `, and (↓π`′ , η` v) is analogous to

copying the contents of a cell at `′ to a new cell at `.

It is important for the semantics to keep track of these events so that our se-

curity conditions hold for programs containing data structures and higher-order

functions. Previous language-based definitions of robust declassification have only

applied to simple while-languages [12, 43, 120] or to primitive types [9].

98

` / τ

[P-UNIT]
` / unit

[P-LBL]
`′ v `

`′ / ` says τ

Figure 3.7: Type protection levels.

3.4.2 NMIFC Type System

The NMIFC protection relation (Figure 3.7) defines how types relate to informa-

tion flow policies. A type τ protects the confidentiality and integrity of ` if ` / τ.

Unlike in DCC and FLAC, a label is protected by a type only if it flows to the outer-

most says principal. In FLAC and DCC, the types `′ says ` says τ and ` says `′ says τ

protect the same set of principals; in other words, says is commutative. By distin-

guishing between these types, NMIFC does not provide the same commutativity.

The commutativity of says is a design decision, offering a more permissive pro-

gramming model at the cost of less precise tracking of dependencies. NMIFC takes

advantage of this extra precision in the UNITM typing rule so the label on every

η term protects the information it contains, even if nested within other η terms.

Abadi [2] similarly modifies DCC’s protection relation to distinguish the protec-

tion level of terms with nested says types.

The core type system presented in Figure 3.8 enforces nonmalleable informa-

tion flow for NMIFC programs. Most of the typing rules are standard, and differ

only superficially from DCC and FLAC. Like in FLAC, NMIFC typing judgments

include a program counter label, pc, that represents an upper bound on the confi-

dentiality and integrity of bound information that any computation may depend

upon. For instance, rule BINDM requires the type of the body of a bind term to pro-

tect the unlabeled information of type τ′ with at least `, and to type-check under a

raised program counter label pc t `. Rule LAM ensures that function bodies type-

99

Γ; pc ` e : τ

[VAR]
Γ(x) = τ

Γ; pc ` x : τ
[UNIT]

Γ; pc ` () : unit
[LAM]

Γ, x :τ1; pc′ ` e : τ2

Γ; pc ` λ x :τ1[pc′]. e : τ1
pc′−−→ τ2

[APP]

Γ; pc ` e1 : τ′
pc′−−→ τ

Γ; pc ` e2 : τ′ pc v pc′

Γ; pc ` e1 e2 : τ
[UNITM]

Γ; pc ` e : τ pc v `
Γ; pc ` (η` e) : ` says τ

[VUNITM]
Γ; pc ` v : τ

Γ; pc ` (η` v) : ` says τ
[BINDM]

Γ; pc ` e : ` says τ′ ` / τ
Γ, x :τ′; pc t ` ` e′ : τ

Γ; pc ` bind x = e in e′ : τ

[DECL]

Γ; pc ` e : `′ says τ pc v `
`′→ v `→ t ∆((`′ t pc)←) `′← = `←

Γ; pc ` decl e to ` : ` says τ

[ENDORSE]

Γ; pc ` e : `′ says τ pc v `
`′← v `← t ∇((`′ t pc)→) `′→ = `→

Γ; pc ` endorse e to ` : ` says τ

Figure 3.8: Typing rules for core NMIFC.

check with respect to the function’s pc annotation, and rule APP ensures functions

are only applied in contexts that flow to these annotations.

The NMIFC rule for UNITM differs from FLAC and DCC in requiring the

premise pc v ` for well-typed η terms. This premise ensures a more precise re-

lationship between the pc and η terms. Intuitively this restriction makes sense. The

pc is a bound on all unlabeled information in the context. Since an expression e

protected with (η` e) may depend on any of this information, it makes sense to

require that pc flow to `.2

By itself, this restrictive premise would prevent any public data from flowing

through secret contexts and trusted data from flowing through untrusted contexts.

2The premise is not required in FLAC because protection is commutative. For example, in a
FLAC term such as bind x = v in (η`′ (η` x)), x may be protected by ` or `′.

100

To allow such flows, we distinguish source-level (η` e) terms from run-time values

(η` v), which have been fully evaluated. These terms are only created by the opera-

tional semantics during evaluation and no longer depend on the context in which

they appear; they are closed terms. Thus it is appropriate to omit the new premise

in VUNITM. This approach allows us to require more precise flow tracking for

the explicit dependencies of protected expressions without restricting where these

values flow once they are fully evaluated.

Rule DECL ensures a declassification from label `′ to ` is robust. We first re-

quire `′← = `← to ensure that this does not perform endorsement. A more permis-

sive premise `′← v `← is admissible, but requiring equality simplifies our proofs

and does not reduce expressiveness since the declassification can be followed by a

subsequent relabeling. The premise pc v ` requires that declassifications occur in

high-integrity contexts, and prevents declassification events from creating implicit

flows. The premise `′→ v `→ t ∆((`′ t pc)←) ensures that the confidentiality of the

information declassified does not exceed the view of the integrity of the principals

that may have influenced it. These influences can be either explicit (`′←) or implicit

(pc←), so we compare against the join of the two.3 This last premise effectively com-

bines the two conditions identified by Chong and Myers [43] for enforcing robust

declassification in an imperative while-language.

Rule ENDORSE enforces transparent endorsement. All but the last premise are

straightforward: the expression does not declassify and pc v ` requires a high-

integrity context to endorse and prevents implicit flows. Interestingly, the last pre-

mise is dual to that in DECL. An endorsement cannot raise integrity above the voice

of the confidentiality of the data being endorsed (`′→) or the context performing the

endorsement (pc→). As in DECL, we compare against their join.

3 The first two premises—`′← = `← and pc v `—make this join redundant. It would, however,
be necessary if we replaced the equality premise with the more permissive `′← v `← version, so we
include it for clarity.

101

checkpwd = λ g :U← says String, p :T says String[T←].
bind guess = (endorse g to T←) in

decl (bind pwd = p in (ηT pwd == guess)) to T←

Figure 3.9: A secure version of a password checker.

3.4.3 Examples Revisited

We now reexamine the examples presented in Section 3.1 to see that the NMIFC

type system prevents the vulnerabilities seen above.

Password Checker

We saw above that when the password checker labels guess at T→, well-typed code

can improperly set guess to the actual password. We noted that the endorsement

enabled an insecure flow of information. Looking at ENDORSE in NMIFC, we can

attempt to type the equivalent expression: endorse guess to T . However, if guess

has type T→ says bool, the endorse does not type-check; it fails to satisfy the final

premise of ENDORSE:

⊥← = (T→)← @ T← t ∇(T→) = T←.

If we instead give guess the label U←, the endorsement type-checks, assuming a

sufficiently trusted pc.

This is as it should be. With the label U←, the guesser must be able to read

their own guess, guaranteeing that they cannot guess the correct password unless

they in fact know the correct password. Figure 3.9 shows this secure version of the

password checker.

102

Sealed-Bid Auction

In the insecure auction described in Section 3.1.2, we argued that an insecure flow

was created when T endorsed b_bid from B←∧ (A ∧ B)→ to A∧B. This endorsement

requires a term of the form endorse v to A ∧ B where v types to B←∧(A ∧ B)→ says int.

Despite the trusted context, the last premise of ENDORSE again fails:

B← @ (A ∧ B)← t ∇((A ∧ B)→) = (A ∧ B)←.

If we instead label a_bid : A says int and b_bid : B says int, then the corresponding

endorse statements type-check, assuming that T is trusted: T v (A ∧ B)←.

Laundering Secrets

For the secret-laundering example in Section 3.1.3, we assume that neither H nor L

is trusted, but the output from the program is. This forces an implicit endorsement

of y, the input received from H. But the condition needed to endorse from H→∧⊥←

to H→ ∧ >← is false:

⊥← v >← t ∇(H→) = ∇(H→)

We have ∇(L→) @ ∇(H→) and all integrity flows to ⊥←, so by transitivity the above

condition cannot hold.

3.5 Security Conditions

The NMIFC typing rules enforce several strong security conditions: multiple forms

of conditional noninterference, robust declassification, and our new transparent

endorsement and nonmalleable information flow conditions. We define these con-

ditions formally but relegate proof details to Section 3.12.

103

3.5.1 Attackers

Noninterference is frequently stated with respect to a specific but arbitrary label.

Anything below that label in the lattice is “low” (public or trusted) and everything

else is “high”. We broaden this definition slightly and designate high information

using a set of labels H that is upward closed. That is, if ` ∈ H and ` v `′, then

`′ ∈ H . We refer to such upward closed sets as high sets.

We say that a type τ is a high type, written “` τ prot H”, if all of the information

in a value of type τ is above some label in the high setH . The following rule defines

high types:

[P-SET]
H ∈ H H / τ

` τ prot H
H is upward closed

This formulation of adversarial power is adequate to express noninterference,

in which confidentiality and integrity do not interact. However, our more complex

conditions relate confidentiality to integrity and therefore require a way to relate

the attacker’s power in the two domains.

Intuitively, an attacker is an arbitrary set of colluding atomic principals. Specif-

ically, if the attacker controls atomic principals n1, . . . , nk ∈ N , then the set of labels

A = {` ∈ L | n1 ∧ · · · ∧ nk ⇒ `} represents the attacker’s power. These principals

may include principals mentioned in the program, and there may be delegations

between attacker principals and program principals. While this definition of an at-

tacker is intuitive, the results in this paper actually hold for a more general notion

of attacker defined in Section 3.10.

Attackers correspond to two high sets: an untrusted set U = {` ∈ L | `← ∈ A}
and a secret set S = {` ∈ L | `→ < A}. We say thatA inducesU and S.

104

c ≈W c′ v ≈W v′

These equivalence relations are the smallest congruences over c and over v extended with
•, containing the equivalences defined by these rules:

[EQ-UNITM]
` <W

(η` v) ≈W •
[EQ-DOWN]

` <W
(↓π`′ , η` v) ≈W •

t ≈?W t′

The equivalence relation t ≈?W t′ is the smallest congruence over t containing the
equivalences defined by these rules:

[T-LIFT]
c ≈W c′

c ≈?W c′
[T-BULLETR] t; • ≈?W t [T-BULLETL] •; t ≈?W t

Figure 3.10: Low equivalence and low trace equivalence.

3.5.2 Equivalences

All of our security conditions involve relations on traces. As is typically the case

for information-flow security conditions, we define a notion of “low equivalence”

on traces, which ignores effects with high labels. We proceed by defining low-

equivalent expressions and then extending low-equivalence to traces.

For expression equivalence, we examine precisely the values which are visible

to a low observer defined by a set of labelsW: (η` v) and (↓π`′ , η` v) where ` ∈ W.

We formalize this idea in Figure 3.10, using • to represent values that are not vis-

ible. Beyond ignoring values unable to affect the output, we use a standard struc-

tural congruence (i.e., syntactic equivalence). This strict notion of equivalence is

not entirely necessary; observational equivalence or any refinement thereof would

be sufficient if augmented with the •-equivalences in Figure 3.10.

Figure 3.10 also extends the equivalence on emitted values to equivalence on

entire traces of emitted values. Essentially, two traces are equivalent if there is a

way to match up equivalent events in each trace, while ignoring high events equiv-

105

alent to •.

3.5.3 Noninterference and Downgrading

An immediate consideration when formalizing information flow is how to express

interactions between an adversary and the system. One possibility is to limit in-

teraction to inputs and outputs of the program. This is a common approach for

functional languages. We take a stronger approach in which security is expressed

in terms of execution traces. Note that traces contain all information necessary to

ensure the security of input and output values.

We begin with a statement of noninterference in the presence of downgrading.

Theorem 3.1 states that, given two high inputs, a well-typed program produces

two traces that are either low-equivalent or contain a downgrade event that distin-

guishes them. This implies that differences in traces distinguishable by an attacker

are all attributable to downgrades of information derived from the high inputs.

Furthermore, any program that performs no downgrades on secret or untrusted

values (i.e., contain no decl or endorse terms onH data) must be noninterfering.

Theorem 3.1 (Noninterference modulo downgrading). Let H be a high set and let

W = L \ H . Given an expression e such that Γ, x :τ1; pc ` e : τ2 where ` τ1 prot H , for

all v1, v2 with Γ; pc ` vi : τ1, if

〈e[x 7→ vi], vi〉 →−→∗
〈
v′i , ti

〉
then either there is some event (↓π`′ , η` w) ∈ ti where `′ ∈ H and ` < H , or t1 ≈?W t2.

The restrictions placed on downgrading operations mean that we can charac-

terize the conditions under which no downgrading can occur. We add two further

noninterference theorems that restrict downgrading in different ways. Theorem 3.2

106

states that if a program types without a public–trusted pc it must be noninterfering

(with respect to that definition of “public–trusted”).

Theorem 3.2 (Noninterference of high-pc programs). Let A be an attacker inducing

high sets U and S. Let H be one of those high sets and W = L \ H . Given some e

such that Γ, x :τ1; pc ` e : τ2 where ` τ1 prot H , for all v1, v2 with Γ; pc ` vi : τ1, if

〈e[x 7→ vi], vi〉 →−→∗ 〈v′i , ti〉 and pc ∈ U ∪ S, then t1 ≈?W t2.

Rather than restrict the pc, Theorem 3.3 states that secret–untrusted informa-

tion is always noninterfering. Previous work [e.g., 12, 120] does not restrict en-

dorsement of confidential information, allowing any label to be downgraded to

public–trusted (given a public–trusted pc). In NMIFC, however, secret–untrusted

data must remain secret and untrusted.

Theorem 3.3 (Noninterference of secret–untrusted data). Let A be an attacker in-

ducing high sets U and S. Let H = U ∩ S and W = L \ H . Given some e such

that Γ, x :τ1; pc ` e : τ2 where ` τ1 prot H , for all v1, v2 with Γ; pc ` vi : τ1, if

〈e[x 7→ vi], vi〉 →−→∗ 〈v′i , ti〉 then t1 ≈?W t2.

3.5.4 Robust Declassification and Irrelevant Inputs

We now move to security conditions for programs that do not satisfy noninterfer-

ence. Recall that robust declassification informally means the attacker has no influ-

ence on what information is released by declassification. Traditionally, it is stated

in terms of attacker-provided code that is inserted into low-integrity holes in pro-

grams which differ only in their secret inputs. In NMIFC, the same attacker power

can be obtained by substituting exactly two input values into the program, one

secret and one untrusted. This simplification is possible because NMIFC has first-

class functions that can model the substitution of low-integrity code. Section 3.11

107

shows that this simpler two-input definition is equivalent to the traditional hole-

based approach in the full version of NMIFC (Section 3.9).

Prior work on while-based languages [43, 120] defines robust declassification

in terms of four traces generated by the combination of two variations: a secret

input and some attacker-supplied code. For terminating traces, these definitions

require any pair of secrets to produce public-equivalent traces under all attacks or

otherwise to produce distinguishable traces regardless of the attacks chosen. This

implies that an attacker cannot control the disclosure of secrets.

We can attempt to capture this notion of robust declassifcation using the nota-

tion of NMIFC. For a program e with a secret input x and untrusted input y, we

wish to say e robustly declassifies if, for all secret values v1, v2 and for all untrusted

values w1,w2, where

〈
e[x 7→ vi][y 7→ w j], vi; w j

〉
→−→∗

〈
vi j, ti j

〉
,

then t11 ≈?P t21 ⇐⇒ t12 ≈?P t22.

This condition is intuitive but, unfortunately, overly restrictive. It does not ac-

count for the possibility of an inept attack, in which an attacker causes a program

to reveal less information than intended.

Inept attacks are harder to characterize than in previous work because, unlike

the previously used while-languages, NMIFC supports data structures with het-

erogeneous labels. Using such data structures, we can build a program that im-

plicitly declassifies data by using a secret to influence the selection of an attacker-

provided value and then declassifying that selection. Figure 3.11 provides an ex-

ample of such a program, which uses sums and products from the full NMIFC

language.

While this program appears secure—the attacker has no control over what in-

formation is declassified or when a declassification occurs—it violates the above

108

(
λ x : (P→ ∧ U← says τ) × (P→ ∧ U← says τ)[P→ ∧ T←].

decl
(
bind b = (ηS→∧T← sec) in
match b with
| in1(_). (ηS→∧T← (proj1 x))
| in2(_). (ηS→∧T← (proj2 x))

end
)

to P→ ∧ T←
) 〈

atk1, atk2
〉

Figure 3.11: A program that admits inept attacks. Here P v S and T v U, but
not vice versa, so sec is a secret boolean and 〈atk1, atk2〉 form an untrusted pair of
values. If atk1 , atk2, then the attacker will learn the value of sec. If atk1 = atk2,
however, then the attacker learns nothing due to its own ineptness.

condition. One attack can contain the same value twice—causing any two secrets

to produce indistinguishable traces—while the other can contain different values.

Intuitively, no vulnerability in the program is thereby revealed; the program was

intended to release information, but the attacker failed to infer it due to a poor

choice of attack. Such inputs result in less information leakage entirely due to the

attacker’s ineptness, not an insecurity of the program. As a result, we consider

inputs from inept attackers to be irrelevant to our security conditions.

Dually to inept attackers, we can define uninteresting secret inputs. For exam-

ple, if a program endorses an attacker’s selection of a secret value, an input where

all secret options contain the same data is uninteresting, so we also consider it

irrelevant.

Which inputs are irrelevant is specific to the program and to the choice of at-

tacker. In Figure 3.11, if both execution paths used (proj1 x), there would be no way

for an attacker to learn any information, so all attacks are equally relevant. Simi-

larly, if S→ is already considered public, then there is no secret information in the

first place, so again, all attacks are equally relevant.

For an input to be irrelevant, it must have no influence over the outermost

layer of the data structure—the label that is explicitly downgraded. If the input

109

could influence that outer layer in any way, the internal data could be an integral

part of an insecure execution. Conversely, when the selection of nested values is

independent of any untrusted/secret information (though the content of the val-

ues may not be), it is reasonable to assume that the inputs will be selected so that

different choices yield different results. An input which does not is either an inept

attack—an attacker gaining less information than it could have—or an uninterest-

ing secret—a choice between secrets that are actually the same. In either case, the

input is irrelevant.

To ensure that we only consider data structures with nested values that were

selected independently of the values themselves, we leverage the noninterference

theorems in Section 3.5.3. In particular, if the outermost label is trusted before a

declassification (or public prior to an endorsement), then any influence from un-

trusted (secret) data must be the result of a prior explicit downgrade. Thus we can

identify irrelevant inputs by finding inputs that result in traces that are public-

trusted equivalent, but can be made both public (trusted) equivalent and non-

equivalent at the point of declassification (endorsement).

To define this formally, we begin by partitioning the principal lattice into four

quadrants using the definition of an attacker from Section 3.5.1. We consider only

flows between quadrants and, as with noninterference, downgrades must result in

public or trusted values. We additionally need to refer to individual elements and

prefixes of traces. For a trace t, let tn denote the nth element of t, and let t..n denote

the prefix of t containing its first n elements.

Definition 3.2 (Irrelevant inputs). Consider attackerA inducing high setsH← and

H→. LetWπ = L \ Hπ andW =W← ∩W→. Given opposite projections π and π′, a

program e, and types τx and τy such that ` τx prot Hπ′ and ` τy prot Hπ, we say an

input v1 is an irrelevant π′-input with respect to A and e if Γ; pc ` v1 : τx and there

110

exist values v2, w1, and w2 and four trace indices ni j (for i, j ∈ {1, 2}) such that the

following conditions hold:

1. Γ; pc ` v2 : τx, Γ; pc ` w1 : τy, and Γ; pc ` w2 : τy

2. 〈e[x 7→ vi][y 7→ w j], vi; w j〉 →−→∗ 〈vi j, ti j〉

3. ti j
ni j 0W • for all i, j ∈ {1, 2}

4. ti j
..ni j ≈?W tkl

..nkl
for all i, j, k, l ∈ {1, 2}

5. t11
..n11
≈?Wπ

t12
..n12

6. t21
..n21
0`Wπ

?t22
..n22

Otherwise we say v1 is a relevant π′-input with respect toA and e, denoted relπ
′
A,e(v1).

Note that the four indices ni j identify corresponding prefixes of the four traces.

As mentioned above, prior downgrades can allow secret/untrusted informa-

tion to directly influence the outer later of the data structure, but Condition 4 re-

quires that all four trace prefixes be public-trusted equivalent, so any such down-

grades must have the same influence across all executions. Condition 5 requires

that some inputs result in prefixes that are public equivalent (or trusted equivalent

for endorsement), while Condition 6 requires that other inputs result in prefixes

that are distinguishable. Since all prefixes are public-trusted equivalent, this means

there is an implicit downgrade inside a data structure, so the equivalent prefixes

form an irrelevant input.

We can now relax our definition of robust declassification to only restrict the

behavior of relevant inputs.

Definition 3.3 (Robust declassification). Let e be a program and let x and y be vari-

ables representing secret and untrusted inputs, respectively. We say that e robustly

declassifies if, for all attackersA inducing high setsU and S (and P = L\S) and all

111

values v1, v2,w1,w2, if

〈
e[x 7→ vi][y 7→ w j], vi; w j

〉
→−→∗

〈
vi j, ti j

〉
,

then
(
rel←A,e(w1) and t11 ≈?P t21

)
=⇒ t12 ≈?P t22.

As NMIFC only restricts declassification of low-integrity data, endorsed data is

free to influence future declassifications. As a result, we can only guarantee robust

declassification in the absence of endorsements.

Theorem 3.4 (Robust declassification). Given a program e, if Γ, x :τx, y :τy; pc ` e : τ

and e contains no endorse expressions, then e robustly declassifies.

Note that prior definitions of robust declassification [43, 120] similarly prohibit

endorsement and ignore pathological inputs, specifically nonterminating traces.

Our irrelevant inputs are very different since NMIFC is strongly normalizing but

admits complex data structures, but the need for some restriction is not new.

3.5.5 Transparent Endorsement

We described in Section 3.1 how endorsing opaque writes can create security vul-

nerabilities. To formalize this intuition, we present transparent endorsement, a se-

curity condition that is dual to robust declassification. Instead of ensuring that

untrusted information cannot meaningfully influence declassification, transparent

endorsement guarantees that secret information cannot meaningfully influence en-

dorsement. This guarantee ensures that secrets cannot influence the endorsement

of an attacker’s value—neither the value endorsed nor the existence of the endorse-

ment itself.

As it is completely dual to robust declassification, we again appeal to the no-

tion of irrelevant inputs, this time to rule out uninteresting secrets. The condition

112

looks nearly identical, merely switching the roles of confidentiality and integrity.

It therefore ensures that any choice of interesting secret provides an attacker with

the maximum possible ability to influence endorsed values; no interesting secrets

provide more power to attackers than others.

Definition 3.4 (Transparent endorsement). Let e be a program and let x and y

be variables representing secret and untrusted inputs, respectively. We say that

e transparently endorses if, for all attackers A inducing high sets U and S (and

T = L \U) and all values v1, v2,w1,w2, if〈
e[x 7→ vi][y 7→ w j], vi; w j

〉
→−→∗

〈
vi j, ti j

〉
,

then
(
rel→A,e(v1) and t11 ≈?T t12

)
=⇒ t21 ≈?T t22.

As in robust declassification, we can only guarantee transparent endorsement

in the absence of declassification.

Theorem 3.5 (Transparent endorsement). Given a program e, if Γ, x :τx, y :τy; pc ` e : τ

and e contains no decl expressions, then e transparently endorses.

3.5.6 Nonmalleable Information Flow

Robust declassification restricts declassification and transparent endorsement re-

stricts endorsement, but as structured above, neither cannot be enforced in the

presence of both declassification and endorsement. The key difficulty stems from

the fact that previously declassified and endorsed data should be able to influence

future declassifications and endorsements. However, any endorsement allows an

attack to influence declassification, so varying the secret input can cause the traces

to deviate for one attack and not another. Similarly, once a declassification has oc-

curred, we can say little about the relation between trace pairs that fix a secret and

vary an attack.

113

There is one condition that allows us to safely relate trace pairs even after a

downgrade event: if the downgraded values are identical in both trace pairs. Even

if a declassify or endorse could have caused the traces to deviate, if it did not, then

this program is essentially the same as one that started with that value already

downgraded and performed no downgrade. To capture this intuition, we define

nonmalleable information flow in terms of trace prefixes that either do not deviate

in public values when varying only the secret input or do not deviate in trusted

values when varying only the untrusted input. This assumption may seem strong

at first, but it exactly captures the intuition that downgraded data—but not se-

cret/untrusted data—should be able to influence future downgrades. While two

different endorsed attacks could influence a future declassification, if the attacks

are similar enough to result in the same value being endorsed, they must influence

the declassification in the same way.

Definition 3.5 (Nonmalleable information flow). Let e be a program and let x and y

be variables representing secret and untrusted inputs, respectively. We say that e

enforces nonmalleable information flow (NMIF) if the following holds for all attackers

A inducing high sets U and S. Let T = L \ U, P = L \ S andW = T ∩ P. For all

values v1, v2, w1, and w2, let

〈
e[x 7→ vi][y 7→ w j], vi; w j

〉
→−→∗

〈
vi j, ti j

〉
.

For all indices ni j such that ti j
ni j 0W •

1. If ti1
..ni1−1 ≈?T ti2

..ni2−1 for i = 1, 2, then

(
rel←A,e(w1) and t11

..n11
≈?P t21

..n21

)
=⇒ t12

..n12
≈?P t22

..n22
.

2. Similarly, if t1 j
..n1 j−1 ≈?P t2 j

..n2 j−1 for j = 1, 2, then

(
rel→A,e(v1) and t11

..n11
≈?T t12

..n12

)
=⇒ t21

..n21
≈?T t22

..n22
.

114

Unlike the previous conditions, NMIFC enforces NMIF with no syntactic re-

strictions.

Theorem 3.6 (Nonmalleable information flow). For any program e such that

Γ, x :τx, y :τy; pc ` e : τ, e enforces NMIF.

We note that both Theorems 3.4 and 3.5 are directly implied by Theorem 3.6.

For robust declassification, the syntactic prohibition on endorse directly enforces

ti1 ≈?T ti2 (for the entire trace), and the rest of case 1 is exactly that of Theorem 3.4.

Similarly, the syntactic prohibition on decl enforces t1 j ≈?P t2 j, while the rest of case 2

is exactly Theorem 3.5.

3.6 NMIF as 4-safety

Clarkson and Schneider [46] define a hyperproperty as “a set of sets of infinite

traces,” and hypersafety to be a hyperproperty that can be characterized by a finite

set of finite trace prefixes defining some “bad thing.” That is, given any of these

finite sets of trace prefixes it is impossible to extend those traces to satisfy the hy-

perproperty. It is therefore possible to show that a program satisfies a hypersafety

property by proving that no set of finite trace prefixes emitted by the program fall

into this set of “bad things.” They further define a k-safety hyperproperty (or k-safety)

as a hypersafety property that limits the set of traces needed to identify a violation

to size k.

Clarkson and Schneider note that noninterference is 2-safety. We demonstrate

here that robust declassification, transparent endorsement, and nonmalleable in-

formation flow are all 4-safety properties.4

4While NMIFC produces finite traces and hyperproperties are defined for infinite traces, we can
easily extend NMIFC traces by stuttering • infinitely after termination.

115

For a condition to be 2-safety, it must be possible to demonstrate a violation

using only two finite traces. With noninterference, this demonstration is simple: if

two traces with low-equivalent inputs are distinguishable by a low observer, the

program is interfering.

Robust declassification, however, has no such representation. It says that the

program’s confidentiality release events cannot be influence by untrusted inputs.

If we could precisely identify the release events, we could specify robust declassi-

fication as a 2-safety property on those release events: if every pair of untrusted in-

puts results in the same trace of confidentiality release events, the program satisfies

robust declassification. Identifying confientiality release events, however, requires

comparing traces with different secret inputs. A trace consists of a set of observable

states, not a set of release events. Release events are identified by varying secrets;

the robustness of releases is identified by varying untrusted input. Thus properly

characterizing robust declassification requires 4 traces.

Both prior work [43] and our definition in Section 3.5.4 state robust declassifi-

cation in terms of four traces, making it easy to convert to a 4-hyperproperty. That

formulation cannot, however, be directly translated to 4-safety, as 4-safety requires

a statement about trace prefixes, which cannot be invalidated by extending traces.

Instead of simply reformulating Definition 3.3 with trace prefixes, we modify it

using insights gained from the definition of NMIF. In particular, instead of a strict

requirement that if a relevant attack results in public-equivalent trace prefixes then

other attacks must as well, we relax this requirement to apply only when the trace

prefixes are trusted-equivalent. As noted in Section 3.5.6, if we syntactically pro-

hibit endorse—the only case in which we could enforce the previous definition—

this trivially reduces to that definition. Without the syntactic restriction, however,

the new condition is still enforceable.

116

For a given attacker A we can define a 4-safety property with respect to A (let

U, S, T , P, andW be as in Definition 3.5).

RDA ,
{
T ⊆ T | T =

{
t11, t12, t21, t22

}
∧ ti j

1 , • ∧ ti j
2 , • ∧ ti1

1 = ti2
1 ∧ t1 j

2 = t2 j
2

=⇒
(
∀{ni j} ⊆ N :

(
ti j
ni j 0W • ∧ ti1

..ni1−1 ≈?T ti2
..ni2−1

∧ t11
..n11
≈?P t21

..n21
∧ t12

..n12
0` P?t22

..n22

)
=⇒ t12

..n12
≈W t22

..n22

)}
We then define robustness against all attackers as the intersection over all attackers:

RD =
⋂
ARDA.

The above definition structurally combines Definition 3.2 with the first clause of

Definition 3.5 to capture both the equivalence and the relevant-input statements of

the original theorem. In the nested implication, if the first two clauses hold (ti j
ni j 0W

• and ti1
..ni1−1 ≈?T ti2

..ni2−1), then one of three things must happen when fixing the attack

and varying the secret: both trace pairs are equivalent, both trace pairs are non-

equivalent, or the postcondition of the implication holds (t12
..n12
≈W t22

..n22
). The first

two satisfy the equivalency implication in Definition 3.5 while the third is exactly

a demonstration that the first input is irrelevant.

Next we note that, while this does not strictly conform to the definition of ro-

bust declassification in Definition 3.3 which cannot be stated as a hypersafety prop-

erty, RD is equivalent to Definition 3.3 for programs that do not perform endorse-

ment. This endorse-free condition means that the equivalence clause ti1
..ni1−1 ≈?T ti2

..ni2−1

will be true whenever the trace prefixes refer to the same point in execution. In

particular, they can refer to the end of execution, which gives exactly the condition

specified in the theorem.

As with every other result so far, the dual construction results in a 4-safety

property TE representing transparent endorsement. Since RD captures the first

117

RD TE
NMIF

NI

Figure 3.12: Relating 4-safety hyperproperties and noninterference.

clause of Definition 3.5, TE thus captures the second. We can now represent non-

malleable information flow as a 4-safety property very simply: NMIF = RD ∩ TE.

Figure 3.12 illustrates the relation between these hyperproperty definitions. Ob-

serve that the 2-safety hyperproperty NI for noninterference is contained in all

three 4-safety hyperproperties. The insecure example programs of Section 3.1 are

found in the left crescent, satisfying RD but not NMIF.

3.7 Implementing NMIF

We have implemented the rules for nonmalleable information flow in context of

Flame [8], a Haskell library and GHC [71] plugin. Flame provides data structures

and compile-time checking of type-level acts-for constraints that are checked using

a custom type-checker plugin. These constraints are used as the basis for encod-

ing NMIFC as a shallowly-embedded domain-specific language (DSL). We have

demonstrated that programs enforcing nonmalleable information flow can be built

using this new DSL.

3.7.1 Information-Flow Monads in Flame

The DSL works by wrapping sensitive information in an abstract data type—a

monad—that includes a principal type parameter representing the confidentiality

and integrity of the information.

118

1 class (Monad e, Labeled n) => IFC m e n where
2 protect :: (pc v l) => a -> m e n pc l a

3 use :: (l v l', pc v pc', l v pc', pc v pc'') =>
4 m e n pc l a -> (a -> m e n pc' l' b)

5 -> m e n pc'' l' b

6 runIFC :: m e n pc l a -> e (n l a)

Figure 3.13: Core information flow control operations in Flame.

The Flame library tracks computation on protected information as a monadic

effect and provides operations that constrain such computations to enforce infor-

mation security. This effect is modeled using the IFC type class defined in Fig-

ure 3.13. The type class IFC is parameterized by two additional types, n in the

Labeled type class and e in Monad. Instances of the Labeled type class enforce non-

interference on pure computation–no downgrading or effects. The e parameter

represents an effect we want to control. For instance, many Flame libraries control

effects in the IO monad, which is used for input, output, and mutable references.

The type m e n pc l a in Figure 3.13 associates a label l with the result of

a computation of type a, as well as a program counter label pc that bounds the

confidentiality and integrity of side effects for some effect e. Confidentiality and

integrity projections are represented by type constructors C and I. The protect

operator corresponds to monadic unit η (rule UNITM). Given any term, protect

labels the term and lifts it into an IFC type where pc v l.

The use operation corresponds to a bind term in NMIFC. Its constraints imple-

ment the BINDM typing rule. Given a protected value of type m e n pc l a and

a function on a value of type a with return type m e n pc’ l’ b, use returns the

result of applying the function, provided that l v l’ and (pc t l) v pc’. Finally,

runIFC executes a protected computation, which results in a labeled value of type

(n l a) in the desired effect e.

119

1 class IFC m e n => NMIF m e n where
2 declassify :: ((C pc) v (C l)

3 , (C l') v (C l) t ∆(I (l' t pc))

4 , (I l') === (I l)) =>
5 m e n pc l' a -> m e n pc l a

6 endorse :: ((I pc) v (I l)

7 , (I l') v (I l) t ∇(C (l' t pc))

8 , (C l') === (C l)) =>
9 m e n pc l' a -> m e n pc l a

Figure 3.14: Nonmalleable information flow control in Flame.

1 recv :: (NMIF m e n, (I p) v ∇(C p)) =>
2 n p a

3 -> m e n (I (p ∧ q)) (p ∧ (I q)) a

4 recv v = endorse $ lift v

5 badrecv :: (NMIF m e n, (I p) v ∇(C p)) =>
6 n (p ∧ C q) a

7 -> m e n (I (p ∧ q)) (p ∧ q) a

8 badrecv v = endorse $ lift v {-REJECTED-}

Figure 3.15: Receive operations in NMIF. The secure recv is accepted, but the inse-
cure badrecv is rejected.

We provide NMIF, which extends the IFC type class with endorse and declassify

operations. The constraints on these operations enforce the premises of ENDORSE

and DECL, respectively.

We implemented the secure and insecure sealed-bid auction examples from

Section 3.1.2 using NMIF operations, shown in Figure 3.15. As expected, the inse-

cure badrecv is rejected by the compiler while the secure recv type checks.

3.7.2 Nonmalleable HTTP Basic Authentication

To show the utility of NMIFC, we adapt a simple existing Haskell web applica-

tion [91] based on the Servant [151] framework to run in Flame. The application al-

lows users to create, fetch, and delete shared memos. Our version uses HTTP Basic

120

1 authCheck :: Lbl MemoClient BasicAuthData

2 -> NM IO (I MemoServer) (I MemoServer)

3 (BasicAuthResult Prin)

4 authCheck lauth =

5 let lauth' = endorse $ lift lauth

6 res = use lauth' $ \(BasicAuthData user guess) ->

7 ebind user_db $ \db ->

8 case Map.lookup user db of
9 Nothing -> protect Unauthorized

10 Just pwd ->

11 if guess == pwd then
12 protect $ Authorized (Name user)

13 else
14 protect Unauthorized

15 in declassify res

Figure 3.16: A nonmalleable password checker in Servant.

Authentication and Flame’s security mechanisms to restrict access to authorized

users. We have deployed this application online at http://memo.flow.limited.

Figure 3.16 contains the function authCheck, which checks passwords in this

application using the NM data type, which is an instance of the NMIF type class.

The function takes a value containing the username and password guess of the

authentication attempt, labeled with the confidentiality and integrity of an unau-

thenticated client, MemoClient. This value is endorsed to have the integrity of the

server, MemoServer. This operation is safe since it only endorses information visible

to the client. Next, the username is used to look up the correct password and com-

pare it to the client’s guess. If they match, then the user is authorized. The result of

this comparison is secret, so before returning the result, it must be declassified.

Enforcing any form of information flow control on authentication mechanisms

like authCheck provides more information security guarantees than traditional ap-

proaches. Unlike other approaches, nonmalleable information flow offers strong

guarantees even when a computation endorses untrusted information. This exam-

ple shows it is possible to construct applications that offer these guarantees.

121

http://memo.flow.limited

3.8 Related Work

Our efforts belong both within a significant body of work attempting to develop se-

mantic security conditions that are more nuanced than noninterference, and within

an overlapping body of work aiming to create expressive practical enforcement

mechanisms for information flow control. Most prior work focuses on relaxing

confidentiality restrictions; work permitting downgrading of integrity imposes rel-

atively simple controls and lacks semantic security conditions that capture the con-

cerns exemplified in Section 3.1.

Intransitive noninterference [130, 139, 142, 167] is an information flow condition

that permits information to flow only between security levels (or domains) accord-

ing to some (possibly intransitive) relation. It does not address the concerns of

nonmalleability.

Decentralized information flow control (DIFC) [119] introduces the idea of me-

diating downgrading using access control [132]. However, the lack of robustness

and transparency means downgrading can still be exploited in these systems [e.g.,

65, 92, 117, 180].

Robust declassification and qualified robustness have been explored in DIFC

systems as a way to constrain the adversary’s influence on declassification [9, 11,

12, 44, 120, 177, 178]. While transparent endorsement can be viewed as an integrity

counterpart to robust declassification, this idea is not present in prior work.

Sabelfeld and Sands provide a clarifying taxonomy for much prior work on

declassification [146], introducing various dimensions along which declassification

mechanisms operate. They categorize robust declassification as lying on the “who”

dimension. However, they do not explicitly consider endorsement mechanisms.

Regardless of the taxonomic category, transparent endorsement and nonmalleable

122

information flow also seem to lie on the same dimension as robust declassification,

since they take into account influences on the information that is downgraded.

Label algebras [113] provide an abstract characterization of several DIFC sys-

tems. However, they do not address the restrictions on downgrading imposed by

nonmalleable information flow.

The Aura language [87] uses information flow policies to constrain authoriza-

tion and endorsement. However, it does not address the malleability of endorse-

ment. Rx [161] represents information flow control policies in terms of dynamic

roles [147]. Adding new principals to these roles corresponds to declassification

and endorsement since new flows may occur. Rx constrains updates to roles sim-

ilarly to previous type systems that enforce robust declassification and qualified

robustness but does not prevent opaque endorsements.

Relational Hoare Type Theory (RHTT) [122] offers a powerful and precise way

to specify security conditions that are 2-hyperproperties, such as noninterference.

Cartesian Hoare logic (CHL) [157] extends standard Hoare logic to reason about

k-safety properties of relational traces (the input/output pairs of a program). Since

nonmalleable information flow, robust declassification, and transparent endorse-

ment are all 4-safety properties that cannot be fully expressed with relational traces,

neither RHTT nor CHL can characterize them properly.

Haskell’s type system has been attractive target for embedding information

flow checking [28, 97, 159]. Much prior work has focused on dynamic informa-

tion flow control. LIO [159] requires computation on protected information to oc-

cur in the LIO monad, which tracks the confidentiality and integrity of information

accessed (“unlabeled”) by the computation. HLIO [28] explores hybrid static and

dynamic enforcement. Flame enforces information flow control statically, and the

NMIF type class enforces nonmalleable IFC statically as well. The static component

123

n ∈ N (atomic principals)
x ∈ V (variable names)

p, `, pc ::= n | > | ⊥ | pπ | p ∧ p | p ∨ p | p t p | p u p

τ ::= unit | X | (τ + τ) | (τ × τ)

| τ
pc−−→ τ | ∀X[pc]. τ | ` says τ

v ::= () | ini v | 〈v, v〉 | (η` v)

| λ x :τ[pc]. e | ΛX[pc]. e

e ::= x | v | e e | e τ | 〈e, e〉 | (η` e)

| proji e | ini e | bind x = e in e

| match e with | in1(x). e | in2(x). e end

| decl e to ` | endorse e to `

Figure 3.17: Full NMIFC syntax.

of HLIO enforces solely via the Haskell type system (and existing general-purpose

extensions), but Flame—and by extension, NMIF—uses custom constraints based

on the FLAM algebra which are processed by a GHC type checker plugin. Ex-

tending the type checker to reason about FLAM constraints significantly improves

programmability over pure-Haskell approaches like HLIO.

3.9 Full NMIFC

We present the full syntax, semantics, and typing rules for NMIFC in Figures 3.17,

3.18, and 3.20, respectively. This is a straightforward extension of the core language

presented in Section 3.4. We note that polymorphic terms specify a pc just as λ

terms. This is because they contain arbitrary expressions which could produce ar-

bitrary effects, so we must constrain the context that can execute those effects.

Figure 3.21 presents the full set of derivation rules for the acts-for (delegation)

relation p⇒ q.

124

e −→ e′

[E-APP]
(λ x :τ[pc]. e) v −→ e[x 7→ v]

[E-TAPP]
(ΛX[pc]. e) τ −→ e[X 7→ τ]

[E-UNPAIR]
proji 〈v1, v2〉 −→ vi

[E-MATCH]
(match (ini v) with | in1(x). e1 | in2(x). e2 end) −→ ei[x 7→ v]

[E-BINDM]
bind x = (η` v) in e −→ e[x 7→ v]

〈e, t〉 →−→ 〈
e′, t′

〉
[E-STEP]

e −→ e′

〈e, t〉 →−→ 〈
e′, t; •〉

[E-UNITM] 〈(η` v), t〉 →−→ 〈
(η` v), t; (η` v)

〉
[E-DECL] 〈

decl (η`′ v) to `, t
〉 →−→ 〈

(η` v), t; (↓→`′ , η` v)
〉

[E-ENDORSE] 〈
endorse (η`′ v) to `, t

〉 →−→ 〈
(η` v), t; (↓←`′ , η` v)

〉
[E-EVAL]

〈e, t〉 →−→ 〈
e′, t′

〉
〈E[e], t〉 →−→ 〈

E[e′], t′
〉

Evaluation context

E ::= [·] | E e | v E | E τ | 〈E, e〉 | 〈v, E〉 | (η` E)

| proji E | ini E | bind x = E in e

| match E with | in1(x). e | in2(x). e end

| decl E to ` | endorse E to `

Figure 3.18: Full NMIFC operational semantics.

125

` / τ

[P-UNIT] ` / unit [P-LBL]
`′ v `

`′ / ` says τ
[P-PAIR]

` / τ1 ` / τ2

` / (τ1 × τ2)

τ / H

[P-SET]
H ∈ H H / τ

` τ prot H H is upward closed

Figure 3.19: Type protection levels.

3.9.1 Label Tracking with Brackets

In order to simply proofs of hyperproperties requiring 2 and 4 traces, we intro-

duce a new bracket syntax to track secret and untrusted data. These brackets are

inspired by those used by Pottier and Simonet [133] to prove their FlowCaml

type system enforced noninterference. Their brackets served two purposes simul-

taneously. First they allow a single execution of a bracketed program to faithfully

model two executions of a non-bracketed program. Second, the brackets track se-

cret/untrusted information through execution of the program, thereby making it

easy to verify that it did not interfere with public/trusted information simply by

proving that brackets could not be syntactically present in such values. Since non-

interference only requires examining pairs of traces, these purposes complement

each other well; if the two executions vary only on high inputs, then low outputs

cannot contain brackets.

While this technique is very effective to prove noninterference, nonmalleable

information flow provides security guarantees even in the presence of both declas-

sification and endorsement. As a result, we need to track secret/untrusted infor-

mation even through downgrading events that can cause traces to differ arbitrarily.

To accomplish this goal, we use brackets that serve only the second purpose: they

126

Γ; pc ` e : τ

[VAR]
Γ(x) = τ

Γ; pc ` x : τ
[UNIT]

Γ; pc ` () : unit

[LAM]
Γ, x :τ1; pc′ ` e : τ2

Γ; pc ` λ x :τ1[pc′]. e : τ1
pc′−−→ τ2

[APP]

Γ; pc ` e1 : τ′
pc′−−→ τ

Γ; pc ` e2 : τ′ pc v pc′

Γ; pc ` e1 e2 : τ

[TLAM]
Γ, X; pc′ ` e : τ

Γ; pc ` ΛX[pc′]. e : ∀X[pc′]. τ

[TAPP]

Γ; pc ` e : ∀X[pc′]. τ
pc v pc′

Γ; pc ` (e τ′) : τ[X 7→ τ′]
τ′ is well-formed in Γ

[PAIR]
Γ; pc ` e1 : τ1 Γ; pc ` e2 : τ2

Γ; pc ` 〈e1, e2〉 : (τ1 × τ2)
[UNPAIR]

Γ; pc ` e : (τ1 × τ2)

Γ; pc ` proji e : τi

[INJ]
Γ; pc ` e : τi

Γ; pc ` ini e : (τ1 + τ2)
[MATCH]

Γ; pc ` e : (τ1 + τ2) pc / τ
Γ, x :τ1; pc ` e1 : τ Γ, x :τ2; pc ` e2 : τ

Γ; pc ` match e with | in1(x). e1 | in2(x). e2 end : τ

[UNITM]
Γ; pc ` e : τ pc v `
Γ; pc ` (η` e) : ` says τ

[VUNITM]
Γ; pc ` v : τ

Γ; pc ` (η` v) : ` says τ

[BINDM]

Γ; pc ` e : ` says τ′ ` / τ
Γ, x :τ′; pc t ` ` e′ : τ

Γ; pc ` bind x = e in e′ : τ

[DECL]

Γ; pc ` e : `′ says τ pc v `
`′→ v `→ t ∆((`′ t pc)←) `′← = `←

Γ; pc ` decl e to ` : ` says τ

[ENDORSE]

Γ; pc ` e : `′ says τ pc v `
`′← v `← t ∇((`′ t pc)→) `′→ = `→

Γ; pc ` endorse e to ` : ` says τ

Figure 3.20: Typing rules for full NMIFC language.

127

p⇒ q

[BOT]
p⇒ ⊥ [TOP] > ⇒ p

[REFL]
p⇒ p

[PROJR]
p⇒ pπ

[PROJ]
p⇒ q

pπ ⇒ qπ
[CONJL]

pi ⇒ q
i ∈ {1, 2}

p1 ∧ p2 ⇒ q
[CONJR]

p⇒ q1
p⇒ q2

p⇒ q1 ∧ q2

[DISL]

p1 ⇒ q
p2 ⇒ q

p1 ∨ p2 ⇒ q
[DISR]

p⇒ qi
i ∈ {1, 2}

p⇒ q1 ∨ q2
[TRANS]

p⇒ q q⇒ r

p⇒ r

Figure 3.21: Principal lattice rules

track restricted information but not multiple executions.

As in previous formalizations, NMIFC’s brackets are defined with respect to

a notion of “high” labels, in this case a high set. The high set restricts the type of

the expression inside the bracket as well as the pc at which it must type, thereby

restricting the effects it can create. For the more complex theorems we must track

data with multiple different high labels within the same program execution, so we

parameterize the brackets themselves with the high set. We present the extended

syntax, semantics, and typing rules in Figure 3.22.

3.10 Attacker Properties

Recall that we defined an attacker as a set of principalsA = {` ∈ L | n1∧· · ·∧nk ⇒ `}
for some non-empty finite set of atomic principals {n1, . . . , nk} ⊆ N . The formal

results of this work rely only on a somewhat more general definition of an attacker.

Definition 3.6 (Attacker). An attackerA ⊆ L is any subset of Lwith the following

properties:

1. A is upward-closed in the trust ordering: for all a ∈ A and b ∈ L, if a ⇒ b,

128

Syntax extensions

v ::= · · · | (|v |)H
e ::= · · · | (|e |)H

New contexts

E ::= · · · | (|E |)H
B ::= proji [·] | bind x = [·] in e

Evaluation extensions

[B-EXPAND] B[(|v |)H] −→ (|B[v] |)H

[B-DECLL]
` < H

decl (|v |)H to ` −→ decl v to `

[B-DECLH]
` ∈ H

decl (|v |)H to ` −→ (|decl v to ` |)H

[B-ENDORSEL]
` < H

endorse (|v |)H to ` −→ endorse v to `

[B-ENDORSEH]
` ∈ H

endorse (|v |)H to ` −→ (|endorse v to ` |)H
Typing extensions

[BRACKET]

Γ; pc′ ` e : τ pc v pc′

pc′ ∈ H ` τ prot H
Γ; pc ` (|e |)H : τ

H is upward closed

Bracket projection

bec =

be′c if e = (|e′ |)H
recursively project all sub-expressions otherwise

Figure 3.22: NMIFC language extensions.

129

then b ∈ A.

2. A is a sublattice of L: for all a, b ∈ A, a ∨ b ∈ A and a ∧ b ∈ A.

3. The complementA = L \ A is also a sublattice of L.

4. For all a ∈ A, ∇(a→) ∧ ∆(a←) ∈ A.

Note that Conditions 2 and 3 imply that A→ and A← and their complements

are also sublattices of L.

3.11 Generalization

Definition 3.5 (and correspondingly Theorem 3.6) might appear relatively narrow;

they only speak directly to programs with a single untrusted value and a single se-

cret value. However, because the language has first-class functions and pair types,

the theorem as stated is equivalent to one that allows insertion of secret and un-

trusted code into multiple points in the program, as long as that code types in an

appropriately restrictive pc.

To define this formally, we first need a means to allow for insertion of arbitrary

code. We follow previous work [120] by extending the language to include holes.

A program expression may contain an ordered set of holes. These holes may be

replaced with arbitrary expressions, under restrictions requiring that the holes be

treated as sufficiently secret or untrusted. Specifically, the type system is extended

with the following rule:

[HOLE]
pc ∈ H ` τ prot H

Γ; pc ` [•]H : τ
H is a high set

Using this definition, we can state NMIF in a more traditional form.

130

Definition 3.7 (General NMIF). We say that a program e[~•]H enforces general NMIF

if the following holds for all attackersA inducing high setsU and S. Let T = L\U,

P = L \S andW = T ∩S. IfH ⊆ U, then for all values v1, v2 and all attacks ~a1 and

~a2, let 〈
e[~ai]H [~x 7→ ~vi], ~vi

〉 →−→∗ 〈vi j, ti j
〉
.

For all indices ni j such that ti j
ni j 0W •

1. If ti1
..ni1−1 ≈?T ti2

..ni2−1 for i = 1, 2, then(
rel←A,e(w1) and t11

..n11
≈?P t21

..n21

)
=⇒ t12

..n12
≈?P t22

..n22
.

2. Similarly, if t1 j
..n1 j−1 ≈?P t2 j

..n2 j−1 for j = 1, 2, then(
rel→A,e(v1) and t11

..n11
≈?T t12

..n12

)
=⇒ t21

..n21
≈?T t22

..n22
.

For NMIFC, this definition is equivalent to Definition 3.5. We prove this fact to

prove the following theorem.

Theorem 3.7 (General NMIF). Given a program e[~•]H such that Γ, ~x :~τ; pc ` e[~•]H : τ′,

then e[~•]H enforces general NMIF.

Proof. We prove this by reducing Definition 3.7 to Definition 3.5 in two steps. We

assume that no two variables in the original expression e[~•]H have the same name

as this can be enforced by α-renaming.

The first step handles expressions that only substitute values (and have no

holes), but allow any number of both secret and untrusted values. An expression

of the form in this corollary is easily rewritten as such a substitution as follows.

For each hole [•]H , we note that Γ′; pc′ ` [•]H : τ′′ where Γ, ~x :~τ ⊆ Γ′ and pc′ ∈ H .

We replace the hole with a function application inside a bind. Specifically, the hole

becomes

bind y′ = y in
(
y′ z1 · · · zk

)
131

where y and y′ are fresh variables and the zis are every variable in Γ′ \ Γ (including

every element of ~x). Let

τy = pc′ says
(
τz1

pc′−−→ · · · pc′−−→ τzk

pc′−−→ τ′′
)

and include y :τy as the type of an untrusted value to substitute in.

Instead of inserting the expression a into that hole, we substitute in for y the

value

w = ηpc′
(
λ z1 :τz1[pc′]. · · · λ zk :τzk[pc′]. a

)
.

By HOLE we know that pc′ ∈ H and ` τ′′ prot H , so the type has the proper

protection, and by construction Γ; pc ` w : τy. Moreover, while it has an extra value

at the beginning of the trace (the function), the rest of the traces are necessarily the

same.

As a second step, we reduce the rest of the way to the expressions used in Def-

inition 3.5. To get from our intermediate step to these single-value expressions, if

we wish to substitute ks secret values and ku untrusted values, we instead substi-

tute a single list of ks secret values and a single list of ku untrusted values. These

lists are constructed in the usual way out of pairs, meaning the protection rela-

tions continue to hold as required. Finally, whenever a variable is referenced in

the unsubstituted expression, we instead select the appropriate element out of the

substituted list using nested projections. �

We also note that the same result holds if we allow for insertion of secret code

and untrusted values, as the argument is exactly dual. Such a situation, however,

makes less sense, so we do not present it explicitly.

3.12 Proofs

We now prove a variety of properties about NMIFC.

132

3.12.1 Language Results

We begin with the core results about the language itself.

Lemma 3.1 (Values). For any value v such that Γ; pc ` v : τ, Γ; pc′ ` v : τ for any pc′.

Proof. This follows by induction on the typing derivation for values. �

Lemma 3.2 (Substitution). If Γ, x :τ′; pc ` e : τ and Γ; pc ` v : τ′, then Γ; pc ` e[x 7→ v] : τ.

Proof. By induction on the derivation of Γ, x :τ′; pc ` e : τ using Lemma 3.1. �

Lemma 3.3 (pc reduction). If Γ; pc ` e : τ and pc′ v pc, then Γ; pc′ ` e : τ.

Proof. By induction on the derivation of Γ; pc ` e : τ. �

Theorem 3.8 (Subject reduction). If Γ; pc ` e : τ and 〈e, t〉 →−→ 〈e′, t′〉 then Γ; pc ` e′ : τ.

Proof. This proof follows by an inductive case analysis on the operational seman-

tics in Figures 3.18 and 3.22. There are a few interesting cases.

Case B-EXPAND: This case handles a context (B), we will do a sub-case analysis

on each such expression type.

• e =
(
proji (|v |)H)

: UNPAIR allows the expression to type-check in any pc in

which its argument type-checks. Since BRACKET says Γ; pc′ ` v : (τ1 × τ2)

for some pc′ ∈ H , we get that Γ; pc′ ` proji v : τi. Moreover BRACKET and

P-SET also require H / (τ1 × τ2) which, by P-PAIR can only happen if H / τi

for i = 1, 2. Together these satisfy the requirements for BRACKET and give

us Γ; pc′ ` (|proji v |)H : τi.

• e = (bind x = (|v |)H in e′): By BINDM, Γ; pc ` (|v |)H : ` says τ′ and by BRACKET

and inversion on the protection rules, H v ` for some H ∈ H and thus

` ∈ H . Let pc′ = pc′′ u (pc t `) where pc′′ is the higher pc used in BRACKET.

133

Since H is upward closed and pc′′, ` ∈ H , (pc t `) ∈ H and thus pc′ ∈ H .

Moreover, pc′ t ` = pc t `, so by BINDM Γ, x :τ′; pc′ t ` ` e′ : τ and by

Lemma 3.1 Γ; pc′ ` v : ` says τ′. This means that Γ; pc′ ` bind x = v in e′ : τ.

Also by BINDM we have ` / τ so since ` ∈ H we have now satisfied the

conditions on BRACKET and Γ; pc ` (|bind x = v in e′ |)H : τ.

Case B-DECLH: By DECL Γ; pc ` (|v |)H : `′ says τ′ and by inspection on the protec-

tion rules and BRACKET, it must be the case that H v `′ for some H ∈ H and

thus `′ ∈ H .

By assumption ` ∈ H , so the final protection requirement of BRACKET on

the stepped expression is satisfied. We now claim that if pc′ = pc t ` then

Γ; pc′ ` decl v to ` : τ. DECL gives us that pc v `, so clearly pc′ = pc t ` v `.

DECL also gives us `′→ v `→ t ∆((`′ t pc)←). Since `′← = `←, we note that

(`′ t pc)← = (` t pc)← = pc′←.

Therefore (`′ t pc′)← = (`′ t pc)← and the premise still holds.

Since the other premises DECL are trivially still satisfied in a higher pc (using

Lemma 3.1 for v to type), we see that Γ; pc′ ` decl v to ` : τ. Thus since pc′ ∈ H
and ` ∈ H , we get Γ; pc ` (|decl v to ` |)H : τ.

Case B-ENDORSEH: We omit the details of this case as they are identical to the

previous case, but with projection arrows reversed and ∆ replaced by ∇.

All other cases follow trivially from inspection on the typing derivations in

Figure 3.8 and applications of Lemmas 3.2 and 3.3. Rule E-EVAL also requires an

inductive application. �

Lemma 3.4 (Bracket Soundness). If 〈e, ε〉 →−→∗ 〈e′, t〉 then 〈bec, ε〉 →−→∗ 〈be′c, btc〉.

134

Proof. This result follows by inspection on the operational semantics in Figures 3.18

and 3.22. Note that every step the non-projected expression takes is mirrored ex-

actly by a step the projected value takes except applications of B-EXPAND, B-DECLL,

B-DECLH, B-ENDORSEL, and B-ENDORSEH. Those applications are simply dropped

and since they emit no values to the trace, the traces remain the same. �

Lemma 3.5 (Bracket Completeness). If 〈bec, ε〉 →−→∗ 〈e′, t〉 and Γ; pc ` e : τ, then there

is some e′′, t′ such that 〈e, ε〉 →−→∗ 〈e′′, t′〉.

Proof. Assume 〈bec, ε〉 →−→∗ 〈e′, t〉 and consider the operational semantics in Fig-

ures 3.18 and 3.22. We consider a single step in the projected expression which

gives us two cases.

If the step happens either entirely within a bracket or entirely outside brackets,

then the same step must be possible in the original expression. If the step in the

original expression is not possible because of brackets, then there must be brack-

ets around a term other than an arbitrary expression or value in the semantic rule

employed. Since the expression type-checks and by Theorem 3.8, each intermedi-

ate expression also type-checks, the protection clause on BRACKET and inversion

on the protection rules in Figure 3.7 give us four possible options for the semantic

rule employed: E-UNPAIR, E-BINDM, E-DECL, and E-ENDORSE. For the first two,

we can first step using B-EXPAND one or more times before applying the origi-

nal rule. For the second two, we can apply B-DECLL, B-DECLH, B-ENDORSEL, or

B-ENDORSEH one or more times again before applying the original rule.

In all cases we see that if the projected term steps and equivalent step is possible

in the original expression, though possibly after applying one or more other steps

first. This proves the desired result. �

135

3.12.2 Security Results

We now prove the various security results stated throughout the paper.

Lemma 3.6 (Release on downgrade). Let H be a high set and W = L \ H . Given a

program e such that Γ, x :τ1; pc ` e : τ2 with ` τ1 prot H , for all v1, v2 with Γ; pc ` vi : τ1,

let

〈e[x 7→ (|vi |)H], vi〉 →−→∗ 〈v′i , ti
〉
.

If n1 and n2 are such that ti
ni
0W • and t1

..n1−1 ≈?W t2
..n2−1, then either ti

ni
= (↓π`′ , η` wi) with

`′ ∈ H and ` < H for both i = 1, 2, or t1
n1
≈W t2

n2
.

Proof. We refer to elements of the form (↓π`′ , η` w) with `′ ∈ H and ` < H as rele-

vant downgrade elements. This is a proof by induction on the number of relevant

downgrade elements in t1
..n1−1 and t2

..n2−1. Note that while the prefixes can contain

any number of relevant downgrade elements, the prefixes are W-equivalent, so

the downgraded values must also be W-equivalent. In particular, there must be

the same number in each trace prefix.

As the base case, assume there are no such values in the trace prefixes. We first

claim that there can be no application of B-DECLL or B-ENDORSEL prior to the

current step.

By the typing rules DECL and ENDORSE, that would require the value inside the

bracket to have type `′ says τ for some type τ. The protection clause on BRACKET

and the protection rules in Figure 3.19 would thus require there to be some H ∈ H
such that H v `′, which in turn means `′ ∈ H . However, application of B-DECLL

or B-ENDORSEL requires ` < H . Therefore if either rule is applied, the next value

emitted to the trace must be (↓π`′ , η` w) where `′ ∈ H and ` < H . While ti
ni

may be of

that form, we assumed that no prior values are.

Next we claim that any differences between the two prefixes must be emitted

136

from within brackets. The initial expression in each case differs only in the substi-

tuted value, which is inside brackets. If we syntactically examine the expression

at every step of evaluation, we notice that no semantic rules allow anything in-

side brackets to affect anything outside brackets except through the B-DECLL and

B-ENDORSEL rules, which remove brackets. Since those rules are never applied,

all differences must be contained within brackets. This means that all differences

within the prefixes must have been emitted from inside brackets.

Finally, we claim that if a trace element c is emitted from within a bracket, then

c ≈W •. The only three rules that emit trace elements are E-UNITM, E-DECL, and

E-ENDORSE. By Theorem 3.8, the expression stepping must type check, and each

of the corresponding typing rules (UNITM, DECL, and ENDORSE) contain the con-

dition pc v `. By BRACKET, if the expression is inside a bracket then pc ∈ H and

since H is upward closed, this means ` ∈ H . Thus by EQ-UNITM or EQ-DOWN,

c ≈W •.
Coupled with the above logic about applications of B-DECLL and B-ENDORSEL

and the fact that ti
ni
0W •, either t1

n1
≈W t2

n2
, or both are the result of downgrades

that resulted in applications of either B-DECLL or B-ENDORSEL. In the latter case

both are of the form (↓π`′ , η` w) where `′ ∈ H and ` < H , as desired.

Now we assume that there is at least one such expression in the trace prefixes,

but those prefixes are stillW-equivalent. Take the first such trace element. This el-

ement must appear in both trace prefixes. Let e1 and e2 be the top-level expressions

that stepped in each trace to emit the downgrade element. The two expressions can

differ inside brackets, and can differ inside the downgraded value (that was pre-

viously inside brackets). Because the downgraded values are W-equivalent, any

such differences must be contained inside terms of the form (η` w) where ` ∈ H .

We can replace any such terms by (|η` w |)H in the expression and it will still type-

137

check since ` ∈ H and w type-checks in any pc. This results in a new pair of expres-

sions that are W-equivalent except inside brackets. By Lemmas 3.4 and 3.5 these

expression generate traces that are equivalent to the original up to brackets and

bullets. By construction, these new expressions generate trace prefixes with one

less (↓π`′ , η` w) element than the original expressions, so by the inductive hypothe-

sis, the result holds.

Since the same brackets were necessarily added in both expressions, the new

expressions will thus generate equivalent traces if and only if the old expressions

did. Since the trace prefixes prior to this modification were equivalent, if the new

expressions generate equivalent traces, the original expressions must also generate

equivalent traces. Thus the result holds for the original traces as well. �

Theorem 3.1 (Noninterference of non-downgrading programs). LetH be a high set

and letW = L\H . Given an expression e such that Γ, x :τ1; pc ` e : τ2 where ` τ1 prot H ,

for all v1, v2 with Γ; pc ` vi : τ1, if

〈e[x 7→ vi], vi〉 →−→∗
〈
v′i , ti

〉
then either there is some (↓π`′ , η` w) ∈ ti where `′ ∈ H and ` < H , or t1 ≈?W t2.

Proof. Since Γ; pc ` vi : τ1 and ` τ1 prot H , BRACKET says Γ; pc ` (|vi |)H : τ1. Lem-

mas 3.4 and 3.5 tell us that the result holds as stated above if and only if it holds

when substituting (|vi |)H instead of vi. From there we can apply Lemma 3.6. If there

are no (↓π`′ , η` w) events in either trace with `′ ∈ H and ` < H , then eachW-visible

term in each trace must be equivalent to each other by induction on the number of

elements (empty traces are equivalent). �

Theorem 3.2 (Noninterference of high-pc programs). Let A be an attacker inducing

high setsU and S. LetH be one of those high sets andW = L \ H . Given an expression

e such that Γ, x :τ1; pc ` e : τ2 where ` τ1 prot H , for all v1, v2 with Γ; pc ` vi : τ1, if

〈e[x 7→ vi], vi〉 →−→∗ 〈v′i , ti〉 and pc ∈ U ∪ S, then t1 ≈?W t2.

138

Proof. We claim that neither trace contains any (↓π`′ , η` w) elements where `′ ∈ H
and ` < H , thus reducing this to Theorem 3.1. There are three cases to consider

here: pc ∈ H , pc ∈ U andH = S, and pc ∈ S andH = U.

Case pc ∈ H : Both DECL and ENDORSE require pc v `, so by upward-closure ofH ,

` ∈ H .

Case pc ∈ U andH = S: DECL contains the condition `′→ v `→t∆((`′ t pc)←). Con-

verting into the authority lattice, this gives us `→ ∧ ∆((`′ ∨ pc)←)⇒ `′→. Since

U = A← and A← is upward-closed, pc ∈ U means (`′ ∨ pc)← ∈ A←. Con-

dition 4 of Definition 3.6 then ensures ∆((`′ ∨ pc)←) ∈ A→. Because A→ is an

upward-closed sublattice, if `→ ∈ A→, then `′→ ∈ A→. SinceH = S = L\(A→),

this means ` < H only if `′ < H .

Case pc ∈ S andH = U: This argument is nearly identical to the previous case.

ENDORSE means `′← v `← t ∇((`′ t pc)→) which, in the trust lattice, means

`′← ⇒ `← ∨ ∇((`′ ∧ pc)→). In the trust ordering,A is upward-closed, and thus

S = L \ (A→) is downward-closed. Since pc ∈ S, that means (`′ ∧ pc) ∈ S.

Condition 4 of Definition 3.6 then ensures ∇((`′ ∧ pc)→) < A← = H . Because

L \ H is a doward-closed sublattice, if `← < H , then `′← < H , as desired. �

Theorem 3.3 (Noninterference of secret–untrusted data). Let A be an attacker in-

ducing high sets U and S. Let H = U ∩ S and W = L \ H . Given an expression e

such that Γ, x :τ1; pc ` e : τ2 where ` τ1 prot H , for all v1, v2 with Γ; pc ` vi : τ1, if

〈e[x 7→ vi], vi〉 →−→∗ 〈v′i , ti〉 then t1 ≈?W t2.

Proof. First we note that H is a high set as the intersection of two upward closed

sets is also upward closed. We claim that neither trace contains any (↓π`′ , η` w) ele-

ments where `′ ∈ H and ` < H , thus reducing this to Theorem 3.1. We will cover

the two cases of π separately despite their similarities.

139

Case π =→: The only way to emit (↓→`′ , η` w) is through E-DECL. By Theorem 3.8,

each intermediate expression type-checks under the same initial context. This

is a sub-expression, meaning there is some Γ′, pc′, and τ such that

Γ′; pc′ ` decl (η`′ v) to ` : ` says τ.

Therefore DECL ensures that `′→ v `→ t ∆((`′ t pc′)←). Every typing rule ei-

ther moves pc up the information-flow lattice (by joining it with another la-

bel) or leaves it unchanged, so pc v pc′ and thus ∆(pc′←) v ∆(pc←), mean-

ing `′→ v `→ t ∆((`′ t pc)←). Converting to the authority lattice gives us

`→ ∧ ∆((`′ ∨ pc)←)⇒ `′→.

If `′ ∈ H , then `′→ ∈ S, and S is downward-closed in the trust ordering.

Therefore `→ ∧ ∆((`′ ∨ pc)←) ∈ S.

However, `′ ∈ H also means `′← ∈ U = A←. Because U is upward-closed,

(`′ ∨ pc)← ∈ U. So by Condition 4 of Definition 3.6, ∆((`′ ∨ pc)←) ∈ A→ =

L \ S. Because A→ is a sublattice, if `→ ∈ A→, then it would be the case that

`→∧∆((`′ ∨ pc)←) ∈ A→ = L\S, contradicting the above conclusion. Therefore

`→ ∈ S. Since `′← ∈ U and DECL ensures `← = `′←, this means ` ∈ S ∩U = H ,

as desired.

Case π =←: Dual to the above case, (↓←`′ , η` w) must be emitted from E-ENDORSE,

so Theorem 3.8 now implies that there is some Γ′, pc′, and τ such that

Γ′; pc′ ` endorse (η`′ v) to ` : τ.

Since pc v pc′, ENDORSE and the same logic as above require `′← v `← t
∇((`′ t pc)→), which converts to `′← ⇒ `← ∨ ∇((`′ ∧ pc)→) in the trust lattcie.

If `′ ∈ H , then `′← ∈ U, andU is upward-closed in the trust ordering. There-

fore `← ∨ ∆((`′ ∧ pc)→) ∈ U.

140

However, `′ ∈ H also means `′→ ∈ S = L \ A→. Because S is downward-

closed in the trust ordering, (`′ ∧ pc)→ ∈ S. So by Condition 4 of Definition 3.6,

∇((`′ ∧ pc)→) < A← = U. BecauseL\U is a sublattice, if `← < U, then it would

be the case that `← ∨ ∇((`′ ∧ pc)→) < U, contradicting the above conclusion.

Therefore, `← ∈ U. Since `′→ ∈ S and ENDORSE ensures `→ = `′→, this means

` ∈ S ∩U = H , as desired.

Thus we see that for any trace element (↓π`′ , η` w), if `′ ∈ H , then ` ∈ H , so by

Theorem 3.1 the result holds. �

Theorem 3.6 (Nonmalleable information flow). For any program e such that

Γ, x :τx, y :τy; pc ` e : τ, e enforces NMIF.

Proof. We provide here only a proof of case 1 of Definition 3.5. All statements in

case 2 are exactly dual so a precisely dual argument holds.

LetA be an attacker inducing high setsU and S and let T = L \ U, P = L \ S,

andW = T∩P. To prove case 1 we prove a contrapositive of the stated implication.

Specifically, if t12
..n12
0` P?t22

..n22
but rel←A,e(w1), then t11

..n11
0` P?t21

..n21
.

First we note that the theorem is uninteresting unless ` τx prot S and ` τy prot U.

Since vi and w j are both present in trace ti j, if v1 0P v2 or w1 0T w2, the theorem

is trivially true. In the former case, varying the first input clearly results in non-

equivalent traces for both attacks. In the latter case, the result holds for ni j = 1

and the precondition is clearly false otherwise. Now consider the case where v1 ≈P
v2 and w1 ≈T w2. If ` τx prot S and ` τy prot U, then these are trivially true—

the interesting case we will handle below. Otherwise the equivalences require the

contents of the value to be identical (except for nested secret/untrusted values).

Any identical values clearly cannot result in distinguishable traces. We can handle

nested secret/untrusted values by fixing the public/trusted parts of the inputs

and viewing those values as the inputs instead, thus reducing to the case where

141

` τx prot S and ` τy prot U.5 The rest of the proof assumes we are in this case.

By assumption t12
..n12
0` P?t22

..n22
, there is some point at which the traces become

distinguishable. This can happen for one of two reasons: one trace is a prefix of

the other (up to extra •-equivalent terms), or there are two non-• terms that are

non-equivalent.

In the first case, without loss of generality assume t12
..n12

is a prefix of t22
..n22

. We

claim that t11
..n11

is a prefix of t21
..n21

. Lemma 3.6 ensures that any difference must come

from a downgrade, which must be a declassification because ENDORSE prohibits

changing the confidentiality and P allows labels of any integrity. By the argument

in Theorem 3.3 this declassification event must be on trusted data, thus producing

a public–trusted output. Thus the condition that ti1
..ni1−1 ≈?T ti2

..ni2−1 ensures that any

declassifications appearing in t21
..n21−1 appear identically in t11

..n11−1, and similarly for

t22
..n22−1 and t12

..n12−1. Since ti j
ni j 0W •, any public–untrusted events appearing in t2 j

..n2 j

must also appear in t1 j
..n1 j , and thus t11

..n11
must be a prefix of t21

..n21
.

For the second case—two non-• terms are non-equivalent—let n′i2 be the indices

of the first such terms in each trace. That is, ti2
n′i2
0P • and t12

n′12
0P t22

n′22
, but t12

..n′12−1 ≈?P
t22
..n′22−1. Again Lemma 3.6 ensures that the first non-equivalence must be the result

of a declassification that exists in both traces.

By construction n′i j ≤ ni j and we have that t12
..n′12−1 ≈?P t22

..n′22−1 by the definition of n′i j

and ti1
..ni1−1 ≈?T ti2

..ni2−1 by assumption. Consequently, for all i, j, k, l ∈ {1, 2}, we have

ti j
..n′i j−1 ≈?W tkl

..n′kl−1.

In particular, this is true for t11 and t21. We also know that for all i, j ∈ {1, 2} ti j
n′i j

=

(↓→`′ , η` wi j) for some value wi j.

We know that w12 0P w22, and we now claim that w11 0P w21. To emit this value,

E-DECL must have been applied, meaning there must have been a term (η`′ wi j) in
5This technically reduces to the many-input version of the theorem that we prove is equivalent

in Section 3.11.

142

the preceding expression. Since such expressions are not in the source language—

they can only be created by applications of E-UNITM, E-DECL, and E-ENDORSE—

this expression must appear previously in each trace. We know that ` ∈ P ∩ T and

DECL requires that `′← = `←, so therefore `′ ∈ T . Since the prefixes prior to this

event are trusted-equivalent when varying only attacks, wi1 ≈T wi2 for i = 1, 2. By

assumption w12 0P w22 and this is the first difference in those traces. This means

that if w11 ≈P w21 then w12 and w22 must have differed only in untrusted public

values nested inside the original declassification (i.e., w12 ≈•→A w22). Therefore if

w11 ≈P w21, then v1, v2, and w2 are exactly the inputs needed in Definition 3.2 to

demonstrate that w1 is an irrelevant attack. We assumed that rel←A,e(w1), so w11 0P

w21 and therefore t11
..n11
0` P?t21

..n21
, proving our desired result. �

143

CHAPTER 4

COMPOSITIONAL REENTRANCY SECURITY

Compositional security remains a fundamental concern for software security.

Code might appear secure, yet expose vulnerabilities when it interacts with other

code. Blockchain smart contracts offer multiple prominent recent examples of this

problem [126, 127, 131], but other instances exist. JavaScript code is difficult to

secure when running on the same web page as code from a different source [45, 76,

109]. Web browsers themselves have fallen victim to attacks when executing code

on web pages [49, 50]. In these settings, securing code in isolation is not sufficient.

Reasoning about the behavior of a combination of interacting systems, however,

is notoriously difficult. This work therefore aims for a way to build software with

compositional security guarantees, meaning the security of an entire system follows

from the security of its components.

Complex control flow, and in particular reentrant executions, pose a fundamen-

tal challenge for compositional security. Developers are increasingly building ap-

plications from separate communicating services that may belong to different trust

domains [64, 163]. In such architectures, one service waiting for another to respond

must be prepared to handle separate incoming requests. These reentrant calls effec-

tively interrupt the execution of the application and, if the developer is not careful,

can catch it in an inconsistent state, creating security vulnerabilities [51].

Reentrancy security has received much more attention since July 2016, when

the Decentralized Autonomous Organization (DAO)—an Ethereum smart contract

intended to function as a distributed venture capital fund—lost $50 million in to-

kens to such an attack, making global news [131]. Since then, a variety of methods

have emerged to analyze or eliminate reentrancy attacks [5, 47, 57, 75, 100], but

vulnerabilities continue to appear. For example, a January 2019 audit uncovered a

144

reentrancy vulnerability in the Uniswap decentralized exchange [48]. The attack

leveraged a subtle interaction between two contracts that were secure in isola-

tion, and a third malicious contract. The first contract implicitly assumed the sec-

ond would not call the malicious contract. Because the interface could not specify

this expectation, developers used the exchange for a token standard that allowed

for such calls. This choice led to the theft of $25 million worth of tokens in April

2020 [127], over a year after the original vulnerability disclosure.

We follow our previous suggestion [38] and use a general language-based tech-

nique to obtain compositional security even in the presence of reentrant execu-

tions. We define and enforce security using a semantic specification of trust in the

form of information flow labels. Information flow control (IFC) has long been an

appealing technique for obtaining compositional security and has proven useful

in practice [66]. IFC type systems can guide software development with compile-

time checking and provably enforce strong security guarantees such as noninter-

ference. But while IFC is a good starting point for compositional security, existing

approaches break down in the presence of reentrancy. Standard IFC rules either

reject useful, secure applications by blocking requests from untrusted sources, or

they allow insecure applications that are vulnerable to reentrancy attacks. We ex-

tend standard IFC rules to define a secure type system that efficiently and provably

prevents attacks, yet is expressive enough to build interesting applications.

This approach addresses fundamental shortcomings of existing solutions. Cur-

rent stand-alone reentrancy analyses [5, 75, 100] are non-compositional. That is,

analyzing two pieces of code separately might not yield useful guarantees about

their combination—the exact failing that led to the Uniswap attack. These tools

also focus specifically on blockchain smart contracts. While smart contracts have

provided notable recent examples of reentrancy vulnerabilities, similar exploits ap-

145

pear elsewhere [49–51] and there is no reason to limit solutions. The focus on smart

contracts and the absence of trust specifications forces the tools to rely on contract

boundaries—a syntactic construct—as a proxy for semantic security boundaries.

This choice leads to a reentrancy definition we call object reentrancy that can judge

the security of two semantically equivalent implementations differently, merely

because the code has different structure.

There exist other language-based approaches that provide compositional guar-

antees and consider reentrancy, but they are again smart-contract focused and use

object-based reentrancy definitions. Moreover, some limit expressiveness by out-

lawing reentrancy entirely [47, 57], while others provide only heuristic reentrancy

protection [20, 149, 150]. In addition, they universally assume that all code is writ-

ten in the same language. This strong assumption clearly does not apply to open

systems where anyone can submit code, like Ethereum contracts or JavaScript on

web pages. Even in closed systems with controlled environments and known code,

new code might need to interact with legacy applications that do not respect the

language rules.

We address these shortcomings by defining a new general-purpose security

type system that tracks the integrity of data and computation. In addition to pro-

viding standard IFC data security guarantees, the type system combines with a

run-time mechanism to provably eliminate dangerous reentrancy while allowing

safe reentrancy. The guarantees, moreover, continue to hold even when trusted

code interacts with untrusted code that does not obey the same restrictions.

The remainder of the chapter is structured as follows:

• Examples in Section 4.1 show the complexity of reentrancy.

• Section 4.2 provides background on information flow control and exposes its

failure to handle reentrancy.

146

• Section 4.3 presents a new definition of security in the presence of reentrancy.

• Section 4.4 defines SeRIF, a core calculus that eliminates insecure reentrancy

by combining a static IFC type system with a dynamic locking mechanism.

• Section 4.5 shows formally that SeRIF enforces our formal, compositional

security condition.

• Section 4.6 describes a prototype type checker implementation and our expe-

rience using it on realistic programs.

• Section 4.7 discusses related work in more detail.

• Sections 4.8 – 4.12 include full details of SeRIF and all proofs.

4.1 Motivating Examples

By their very nature, reentrancy vulnerabilities are often hard to spot. For instance,

the attack on Ethereum’s Decentralized Autonomous Organization (DAO) was

considered subtle at the time [52], despite being one of the simplest examples of

reentrancy. To build intuition, we present three running examples of applications

with reentrancy. Though we have distilled them to their core components, the vul-

nerabilities have undermined security in real-world applications.

4.1.1 Uniswap

We begin with the Uniswap/Lendf.me reentrancy vulnerability first identified in

January 2019 [48] and later exploited in April 2020 [127]. The vulnerability arises

from the combination of two contracts. Though each may be considered secure in

isolation, they combine in unexpected ways, demonstrating the need for composi-

tional reentrancy security.

147

1 contract Uniswap {

2 Token tX, tY;

3

4 function sellXForY(uint xSold) returns uint {

5 uint prod = tX.getBal(this) * tY.getBal(this);

6 uint yKept = prod / (tX.getBal(this) + xSold);

7 uint yBought = tY.getBal(this) - yKept;

8

9 assert tX.transferTo(msg.sender, this, xSold);

10 assert tY.transferTo(this, msg.sender, yBought);

11 return yBought;

12 }

13 }

14

15 contract Token {

16 function transferTo(address from, address to,

17 uint amount) returns bool {

18

19
... // check and update balances

20 from.alertSend(to, amount);

21 to.alertReceive(from, amount);

22 return true;

23 }

24 }

Figure 4.1: Distilled Solidity [155] code for the Uniswap bug.

Uniswap is a smart contract platform where users can exchange one token for

another. Figure 4.1 shows a simplified portion of the Uniswap contract: the ex-

change function sellXForY allows users to sell tokens of type X for tokens of type Y .

Uniswap determines the exchange rate by the amount of X and Y it currently holds.

It holds the product of the two amounts constant, allowing Uniswap to maintain

the same total asset value as exchange rates fluctuate. The tokens themselves are

implemented by independent contracts.

To perform an exchange, Uniswap first queries its balance with each token, then

computes how much of token Y the user bought, and finally transfers tokens by

calling transferTo on each token contract. Tokens execute transfers by first check-

148

ing and updating balances, and then notifying the sender and recipient, allowing

each in turn to execute arbitrary code.

Both contracts appear secure in isolation, following the best-practice recom-

mendation of modifying state before making external calls to avoid reentrancy

concerns [156]. However, when combined, they expose a dangerous exploit. Sup-

pose the exchange begins with 6 units each of X and Y .

1. An attackerA calls sellXForY selling 6 units of X.

2. Uniswap correctly computes prod = 36 and yBought = 3.

3. Uniswap calls token X to transfer 6 units fromA.

4. The token notifiesA, giving it control of the execution.

5. Before returning,A calls sellXForY again to sell 6 more units of X, reentering

the Uniswap contract.

6. Uniswap now has 12 units of X, but still 6 units of Y , so it computes prod = 72,

not 36, and yBought = 2.

When the dust settles, Uniswap has 18 units of X and only 1 unit of Y , having

givenA an extra unit of Y and having broken the invariant that the product of the

balances is 36. If desired,A can reclaim their original 12 units of X for only 2 units

of Y , keeping the other 3 as illicit profit.

The fundamental problem is a mismatch between Uniswap’s notion of secure

behavior and the token’s. The token correctly checks that all transfers are valid

and authorized and follows programming patterns that avoid (internal) reentrancy

concerns. No user can transfer more tokens than they have. Uniswap, however,

implicitly assumes that transferTo transfers tokens and returns without allowing

an adversary to call Uniswap before it reestablishes the invariant that prod = 36.

This insight suggests two approaches to fixing the bug: (1) token contracts

149

1 getOrCompute(key, computeFun) {

2 i = _getIdx(key) // index of mapping if it exists

3 if (mappings[i] == null) {

4 mappings[i] = computeFun();

5 }

6 return mappings[i];

7 }

Figure 4.2: The getOrCompute function of a key–value store. Here mappings is an
array that the store resizes as mappings are added.

could respect Uniswap’s assumption by not calling unknown, untrusted code, or

(2) Uniswap could stop relying on the assumption. Current platforms provide no

way to guarantee the first option. Uniswap could state its assumption in documen-

tation, but there is no technical means of specifying or enforcing it. Tokens that

violate it could continue to freely interface with Uniswap, with disastrous results.

The exchange can, however, implement the second option by acquiring a run-time

lock on entry to the contract. It could then recognize the above attack and produce

an error at step 5.

Our approach detects this vulnerability and can specify and correctly analyze

either proposed solution. Among existing tools, only Nomos [57] can express the

assumption in (1), which it mandates to statically eliminate all reentrancy. Other

tools either cannot properly secure the application [20, 149, 150] or force the use of

computationally expensive dynamic locks even when they are unnecessary [5, 47].

4.1.2 Key–Value Store

Smart contracts have made reentrancy concerns highly visible, but reentrancy is

not unique to that domain. It has led to multiple critical security vulnerabilities in

Internet Explorer [49, 50], and is a known concern for any application executing

user-provided code [51].

150

For example, key–value stores often compute missing mappings with user-

supplied functions [125, 143]. A careless implementation of this functionality can

enable dangerous reentrancy. Consider the code in Figure 4.2, along with a clear

method that frees mappings and installs a new empty array. An attacker can call

getOrCompute, providing as arguments an unmapped key and a malicious func-

tion that calls clear and then returns a value. First getOrCompute computes i, then

it calls the malicious function, which calls clear and replaces the mappings array.

Finally getOrCompute attempts to write the attacker-provided value into index i of

the new array.

If i is large—which is likely if the store previously contained many mappings—

the write would be past the end of the new empty array. In languages like C/C++

without array bounds checking, an attacker-provided value would thus be written

into an arbitrary memory location, enabling remote code execution or other critical

security vulnerabilities. Even memory-safe languages like Java explicitly recom-

mend developers check for reentrant modifications and throw exceptions [125].

Notably, while this attack appears very similar to concurrent-modification at-

tacks on key–value stores, it requires no concurrency. Single-threaded applications

or applications using simple thread-level locking are still vulnerable.

4.1.3 Town Crier

Banning all reentrancy might seem appealing, but this solution would be overly

restrictive. Town Crier (TC) [182] is an example where safe reentrancy enables

important functionality. TC provides authenticated data to smart contracts upon

request. Users place requests with a smart-contract front end, and TC processes

them asynchronously and delivers the data to user-specified callbacks when it is

available. TC also allows users to cancel pending requests for a refund. Figure 4.3

151

1 contract TownCrier {

2 address[] requesters, callbacks;

3

4 function deliver(uint reqId, bytes data) {

5 if (msg.sender == SERVICE_ADDR

6 && requesters[reqId] != 0) {

7 requesters[reqId] = 0;

8 SERVICE_ADDR.call{value: FEE}("");

9 callbacks[reqId].call(bytes);

10 }

11 }

12

13 function cancel(uint reqId) {

14 if (msg.sender == requesters[reqId]) {

15 requesters[reqId] = 0;

16 msg.sender.call{value: FEE}("");

17 }

18 }

19 }

Figure 4.3: Solidity [155] code for simplified partial Town Crier contract. Here
SERVICE_ADDR is TC’s trusted wallet address, and FEE is the request fee.

shows simplified versions of TC’s deliver and cancel methods.

Invoking a user-provided callback in deliver opens the possibility of reentrant

calls. Unlike in the previous examples, however, these calls are safe. By ensuring

that the request status is always updated (lines 7 and 15) before calling untrusted

code (lines 9 and 16), TC prevents attackers from receiving refunds for canceling

requests that are mid-delivery or already canceled. Honest users, however, can still

respond to data from one request by creating or canceling different requests.

For instance, a user contract may ask TC to function as a real-world timer and

alert it at a specific real-world time. When woken up, the contract may determine

that it needs to wait longer and request that TC send another alert, say, 2 hours

later. A different user could make multiple parallel requests to retrieve the same

data, e.g., a stock price, from several sources. Once enough responses have arrived,

the user might wish to cancel the outstanding requests to reduce costs. Both of

152

these patterns require safe reentrant calls into TC. This work aims to allow this

secure reentrancy while still eliminating the vulnerabilities described above.

4.2 Information Flow Control

To obtain compositional security, it is natural to build on top of information flow

control (IFC), a classic way to obtain compositional security guarantees such as

noninterference [72]. Most IFC work has focused on data confidentiality [144, 175],

but IFC can also protect integrity [19, 178] and availability [183]. As our goal is

to guard against attackers performing unexpected calls into trustworthy code, we

track only integrity.

IFC systems assign labels to computation and data within a system. As infor-

mation flows through the system, the label on the destination of information is

constrained to be no less restrictive than the label on its source. Since our goal is

to enforce integrity, less trusted information should be prevented from influencing

more trusted information.

Secure information flow is statically enforceable by a type system [144]. When

linking separate code modules together, the security guarantees offered by the type

system are automatically compositional, as long as the linked modules agree on

types at interface boundaries and account for the confidentiality and integrity of

the code itself [10]. Of course, real-world systems often have to interact with user-

provided code or legacy applications that do not obey the rules of the type system.

As we show, such noncompliant code can only violate the security guarantees of

code that expresses trust in it.

153

4.2.1 Label model

We specify integrity using a set of integrity labels L and give each piece of data x

a label `x representing its trust level. The labels have a reflexive, transitive relation

`1 ⇒ `2, which we read “`1 acts for `2,” to denote that `1 is at least as trusted as

`2. That is, anything that can influence data labeled `1 can also influence data la-

beled `2.1 Data x can thus safely influence data y only when `x ⇒ `y. Influence can

be either explicit—by assigning x directly to y—or implicit—by condition on x and

assigning different values to y in each branch. For explicit flows, a simple check

that `x ⇒ `y at the point of assignment is sufficient. To control implicit flows, a

program counter label, written pc, tracks the integrity of the computation itself, as

is standard [144]. Inside a branch conditioned on x, the value of x has influenced

control flow, so we require the constraint `x ⇒ pc. Assigning a variable y to some

value then requires pc⇒ `y, ensuring transitively that `x ⇒ `y.

L must also have some additional structure. Any pair of labels `1 and `2 must

have a join, denoted `1 ∨ `2, and a meet, denoted `1 ∧ `2. The join is the least upper

bound and the meet is the greatest lower bound, so

`1 ∨ `2 ⇒ ` ⇐⇒ `1 ⇒ ` and `2 ⇒ `

` ⇒ `1 ∧ `2 ⇐⇒ ` ⇒ `1 and ` ⇒ `2.

We can then safely label information influenced by both `1 and `2 with label `1 ∨ `2,

for example. Lastly, join and meet must distribute: `1 ∨ (`2 ∧ `3) = (`1 ∨ `2)∧ (`1 ∨ `3).

These properties collectively make (L,⇒) a distributive lattice.

This additional structure is only necessary to support our precise and flexi-

ble approach to enforcing reentrancy security. Luckily, existing label models are

1Most IFC systems use flows-to, denoted v. We use acts-for as we find it intuitive, and the two
mean the same thing when only tracking integrity.

154

typically distributive lattices, including two-point lattices, subset lattices of per-

missions [180], and free distributive lattices over a set of principals [11, 118]. In

smart-contract systems, for example, it is natural to view contracts themselves as

principals with different trust relationships among them. We might then employ

decentralized information flow control [119] where labels are constructed from prin-

cipals (e.g., contracts) that can influence data or computation.

4.2.2 Endorsement

Strictly enforcing IFC allows systems to enforce strong security properties like non-

interference, which forbids any influence from untrusted information to trusted

information. Noninterference, however, is too restrictive to build real applications,

so practical IFC systems allow downgrading. Downgrading integrity, known as en-

dorsement [185], treats information with a low-integrity label as being more trust-

worthy than its source would indicate.

From the IFC perspective, smart contracts and other similar services endorse

frequently, though implicitly. They expose functions that accept calls from un-

trusted users, yet modify trusted local state. In other words, untrusted state affects

trusted state, which an IFC system should only allow via endorsement.

Existing IFC languages support these trusted functions, but make them explicit.

For example, the Jif language [102] supports autoendorse methods that can be called

by an untrusted caller and that boost the integrity of the pc label on entry.

Viewed from the perspective of pc integrity, reentrancy attacks all exhibit a

distinctive pattern: trusted (high-integrity) code calls lower-integrity code, which

calls back into high-integrity code by exploiting endorsement. Existing endorse-

ment mechanisms in Jif and other systems [65, 92, 98, 180] do not prevent this

potentially dangerous control-flow pattern, and are thus vulnerable to reentrancy

155

attacks. Preventing reentrancy attacks requires new restrictions on endorsement.

4.3 Reentrancy and Security

The examples in Section 4.1 show the need across application domains to constrain

reentrancy without eliminating it entirely. We build on our previous work [38] to

provide flexible definitions of reentrancy and security based on information flow

control. This choice gives access to existing IFC tools and techniques with their

strong data security guarantees, while making possible a precise, semantic specifi-

cation of security.

4.3.1 Defining Reentrancy

Prior work [5, 47, 75, 100] focuses on smart contracts and defines reentrancy in

those terms: if contract A calls contract B, which calls back into contract A, the

second call, and thus the entire execution, is considered reentrant. If no calls to A

occur before the call to B returns, the execution is non-reentrant. We refer to this

notion of reentrancy as object reentrancy, viewing contracts as a form of object.

We avoid object reentrancy because it relies on object boundaries—a fundamen-

tally syntactic construct—to define security. Instead we define reentrancy with re-

spect to the integrity level of computation. As integrity levels are part of a semantic

security specification, using them to define a security-relevant property is sensible.

This view leads to the following informal definition.

Definition 4.1 (`-Reentrancy (informal)). If computation C1 calls computation C2,

which then (possibly indirectly) calls C3, the execution is reentrant with respect to

label `, or `-reentrant, if C1 and C3 are trusted at `, but C2 is not.

156

A B

(a) Object reentrancy and `-reentrancy are the same when
object and trust boundaries match.

A B

(b) Partially-trusted objects can create
object reentrancy that is not

`-reentrancy.

A

C

B

(c) Mutually-trusting objects can
create `-reentrancy that is not object

reentrancy.

Figure 4.4: Comparing `-reentrancy to object reentrancy. Boxes represent objects,
the blue shaded region is high-integrity code, and arrows represent calls.

Note that C1 and C3 may be the same or different, as long as they are both

trusted at `.

Figure 4.4 depicts how `-reentrancy relates to object reentrancy. If an entire ob-

ject is trusted at ` and nothing else is (Figure 4.4a), `-reentrancy and object reen-

trancy align. However, object and trust boundaries may differ, leading to different

definitions. If a trusted operation in A calls untrusted B, a call to an untrusted por-

tion of A (Figure 4.4b), would be considered reentrant in an object-based definition

but not `-reentrancy. Such a call could correspond to a Town Crier user updating a

request callback during data delivery or a web app accessing untrusted user pro-

file data while modifying a trusted billing key–value store. These operations are

never dangerous, as low-integrity operations cannot damage high-integrity data.

By contrast, one application may be split across multiple mutually trusting objects.

Such a split in Ethereum’s Parity Wallet led to two famous attacks [25, 126]. For an

application split across A and C, if A calls B, then a call from B into C (Figure 4.4c)

is a reentrant call into the application. By relying on trust levels, `-reentrancy prop-

157

erly identifies this pattern as reentrancy, while object reentrancy does not.

To employ `-reentrancy, each operation needs an integrity level. Conveniently,

the pc label used to control implicit information flows (Section 4.2.1) provides such

a label. It combines the integrity of the code and the integrity of data influencing

the control flow to specify how trusted an operation is to execute when it does,

making it ideal to define a property of trusted and untrusted operations calling

each other.

4.3.2 Reentrancy Security

While `-reentrancy defines reentrancy based on integrity patterns of the control

flow, it does not tell us when it is secure. Some work [47, 57] simply declares all

reentrancy (according to their definition) dangerous and to outlaws it entirely. With

an appropriate definition of reentrancy, this approach eliminates vulnerabilities,

but safe reentrancy has legitimate uses, as illustrated by the Town Crier example.

To eliminate the need for difficult manual reentrancy analysis, we define “se-

cure reentrancy” as reentrancy that programmers can ignore when analyzing cor-

rectness. One way to accomplish this goal is to ensure that reentrancy cannot en-

able program behaviors that would not exist without it. These behaviors could be

program invariants, such as Uniswap holding the product of its asset quantities

constant or the key–value store never writing to unallocated memory; they could

be statements about how state changes, like Town Crier’s request ID monotoni-

cally increasing; or they could be more complex properties like noninterference.

158

(a) Vulnerable system (b) Secure system

All behavior

Non-
reentrant
behavior

Figure 4.5: The set of possible behaviors in a secure vs. a vulnerable system. In a
vulnerable system, reentrancy can introduce behaviors not possible without it. In
a secure system, all behaviors are possible in non-reentrant executions.

Programmers cannot hope to guarantee properties that unknown or untrusted

code can directly violate, so our definition ignores such properties entirely. Specif-

ically, `-reentrancy security considers only properties defined over state trusted at

label `. We refer to these as `-integrity properties, leading to the following security

definition, depicted visually in Figure 4.5.

Definition 4.2 (Reentrancy Security (informal)). A program is `-reentrancy-secure

if every `-integrity property, such as a program invariant, that holds for all non-

`-reentrant executions holds for all executions.

Definition 4.2 specifies a semantic notion of security. It also provides a princi-

pled explanation for a common best practice for smart-contract programming: to

perform all state modifications before calling other contracts [156]. Done properly,

this design pattern ensures that any reentrant calls occur after all logic in the origi-

nal execution has completed. As a result, those reentrant calls would have the same

effect as making a second, non-reentrant call after the first call completes. Because

this reentrancy stems from untrusted calls that the original trusted code made in

tail position, we refer to it as tail reentrancy.

The definition is also flexible. For a specific application, we could refine it to

require only that reentrancy does not violate particular programmer-specified ap-

plication properties. To keep annotation burden low and to avoid the need to spec-

ify detailed program properties, our definition requires that `-reentrant executions

159

maintain all properties that hold without reentrancy. However, the later formal

definition (Definition 4.9) allows such refinement simply by restricting a universal

quantifier.

4.3.3 Enforcing Reentrancy Security

As described above, `-reentrancy occurs when high-integrity code calls into low-

integrity code that then calls back into high-integrity code before returning. IFC

only permits this pattern through the autoendorse mechanism described in Sec-

tion 4.2.2. Many services, including the examples in Section 4.1, require untrusted

users to make requests into trusted code, making some version of autoendorse

necessary. We therefore allow it, but with additional restrictions.

In particular, endorsement of control flow is restricted by locking integrity. When

a function endorses the integrity of the control flow to label `, integrity ` is locked,

preventing further endorsement up to ` until the original call returns. Honest users

can then invoke a service one or more times in sequence using a call-and-return

pattern, but adversaries are unable to reenter into high-integrity code.

The semantics of these locks is to prevent autoendorsement from granting in-

tegrity that is locked. A trusted operation is then always given the chance to reestab-

lish any high-integrity invariants or properties it may have temporarily invali-

dated before an attacker can invoke another trusted operation. To safely autoen-

dorse from integrity pc1 to integrity pc2, for any operation pc2 is trusted to per-

form, either pc1 must already be trusted at that level or the requisite integrity must

be unlocked. Formally, when integrity `L is locked, then for all labels `, if `L ⇒ `

and pc2 ⇒ `, then pc1 ⇒ `. The definition of lattice join quickly shows that this rule

is equivalent to pc1 ⇒ pc2 ∨ `L.

We could track and enforce locks statically, as part of the type system, or dy-

160

namically in the runtime. Static locking—proving that a dynamic lock would never

prevent execution—imposes no overhead and avoids unexpected errors at run

time. Unfortunately, purely static locks interact poorly with code that may not

enforce the same guarantees. Since any unknown code could call autoendorse

functions—violating a static lock, meaning a dynamic lock would halt execution—

a sound type system must assume the worst and prevent all calls to that code when

integrity might be locked. This highly restrictive outcome would violate a core de-

sign goal of this work: providing compositional security even when interacting

with unknown code. Dynamic locks avoid this constraining over-approximation

at the expense of run-time cost.

We therefore take a hybrid approach and separate locked integrity into a static

component and a dynamic one. The type system automatically adds endorsed

control flow to the static component, but programmers can explicitly move in-

tegrity from the static component to the dynamic one. This approach achieves

the run-time efficiency and predictability of static mechanisms when security can

be proved statically, while still supporting safe interaction with unknown or un-

trusted code through more expressive dynamic locks.

The calculus does not specify how to implement dynamic locks. They could be

built into the runtime, tracked by a security monitor, or even implemented as a li-

brary. So long as all code trusted at level ` is well-typed and agrees on some protocol

to enforce the dynamic portion of the locks, the system will preserve `-reentrancy

security. There is no requirement that untrusted check integrity locks statically or

dynamically.

161

f ,m, x ∈ V (variable, method, and field names)
`, pc ∈ L (integrity labels)

t ::= unit | bool | ref τ | C
τ ::= t`

CL ::= class C[`] extends C { f :τ ; K ; M}
K ::= C(f :τ) {super(f) ; this. f = f }
M ::= τ m{pc�pc; `}(x :τ) {e}
v ::= x | () | true | false | ι | null | new C(v)
e ::= v | if{pc} v then e else e
| ref v τ | !v | v := v
| (C)v | v. f | v.m(v)
| endorse v from ` to ` | lock ` in e
| let x = e in e

Figure 4.6: Syntax for SeRIF.

4.4 A Core Calculus for Secure Reentrancy

We present the Secure-Reentrancy Information Flow Calculus (SeRIF), an object-

oriented core calculus that models how a programming language can implement

the above ideas. Figure 4.6 gives the syntax for SeRIF. It extends Featherweight

Java (FJ) [83] with information flow labels and, to support mutation, also reference

cells [129, Chapter 13].

SeRIF employs fine-grained IFC, so each type τ consists of a base type t and

an integrity label `. For simplicity, we limit base types to unit, bool, references, and

object types. To simplify proofs, null references are allowed.

Class and method definitions extend those in FJ with integrity labels. To model

distributed systems, we consider code a form of data that may come from multiple

sources, so each class definition CL includes a label `C for the integrity of the code.

A method definition M contains labels pc1�pc2; `. Most IFC systems give func-

tions a single pc label, but SeRIF has two: pc1 specifies the minimum integrity re-

quired to call m, while pc2 specifies the integrity at which m operates. Separating

162

these labels supports autoendorsement as described in Section 4.2.2. If pc1 ; pc2,

then m is an autoendorse function. Both pc labels are bounded by `C, so code may

only perform operations that `C is trusted to perform. The label ` specifies the locks

method m promises not to violate.

The if syntax includes the pc label used for the branches. We make this label

explicit only to simplify the operational semantics. In practice, it is easy to infer

automatically.

The endorse expression endorses data as in other IFC systems with downgrad-

ing. The term lock ` in e converts static locks to dynamic ones. In the operational

semantics, e executes with ` dynamically locked, so the type system can safely re-

lease any static lock on ` when type-checking e.

Expression subterms consist mostly of (open) values, not arbitrary expressions.

In particular, let statements are the only way to sequentially compose computation.

Because SeRIF is object-oriented, it can model interacting services and reen-

trancy concerns. An application or contract implementation is a class, and a con-

tract or instance of that application is an object of that class type, allowing easy

interaction between different services. Moreover, inheritance allows applications

that share common features to inherit form a common parent. For example, a

blockchain smart contract system can be modeled by having all contracts inherit

from a Contract class that implements tracking of currency.

4.4.1 SeRIF Operational Semantics

SeRIF has a small-step substitution-based semantics. Most rules are standard for

an object-oriented language with mutable references [83, 129], with a few additions

for security.

Because expressions are built mostly out of values, evaluation contexts are sim-

163

ple. Indeed, let expressions are the only surface syntax to serve as evaluation con-

texts. We introduce three new syntactic forms as evaluation contexts to enable pre-

cise tracking of function boundaries, execution integrity, and dynamic locks. These

statements are denoted by s.

E ::= [·] | let x = E in e | returnτ E | E at-pc pc | E with-lock `

s ::= E[e]

Semantic steps are defined on a pair of a statement s and a semantic configu-

ration: a four-tuple C = (CT , σ,M, L). Unlike in FJ, the class table CT is explicit, as

the security definitions in Section 4.5 quantify over possible class tables. A heap σ

maps locations to value–type pairs, and Σσ denotes the location-to-type mapping

induced by σ. That is, Σσ(ι) = τ if and only if σ(ι) = (v, τ) for some v. The final

two elements,M and L are both lists of integrity labels.M tracks the integrity of

executing code, and L tracks the dynamic portion of the currently-locked integrity.

For notational ease, we reference the components of C freely when only one group

is in scope and we write C[X/L] to denote (CT , σ,M, X), and similarly for σ andM.

Figure 4.7 presents selected semantic rules. The complete semantics is in Fig-

ure 4.9 (Section 4.8). In the semantic rules, v refers to a closed value, not a variable.

In addition to many standard rules, the rules E-LOCK and E-UNLOCK dynamically

lock and unlock labels. The semantics abstracts out the many possible lock imple-

mentations, merely tracking the set of locked labels and defining where to check

them. The rules for conditionals (E-IFT and E-IFF) now include tracking terms.

The key rule is E-CALL. It looks up the definition of a method with mbody (Sec-

tion 4.8) and performs several dynamic checks: it verifies that the arguments all

have the correct types, that the caller has sufficient integrity to invoke the function,

and that calling the method does not violate any dynamically locked label ` ∈ L.

164

[E-IFT] 〈if{pc} true then e1 else e2 | C〉 −→ 〈e1 at-pc pc | C〉

[E-ATPC] 〈v at-pc pc | C〉 −→ 〈v | C〉

[E-REF]
ι < dom(σ) Σσ ` v : τ M =M′, `m `m / τ

〈ref v τ | C〉 −→ 〈ι | C[σ[ι 7→ (v, τ)]/σ]〉

[E-ASSIGN]
Σσ(ι) = τ Σσ ` v : τ M =M′, `m `m / τ

〈ι := v | C〉 −→ 〈() | C[σ[ι 7→ (v, τ)]/σ]〉

[E-CALL]

mbody(C,m) =
(
`m, x, τa, pc1�pc2, e, τ

)
M =M′, `′m `′m ⇒ pc1

∧
`∈L

(pc1 ⇒ pc2 ∨ `)
Σσ ` w : τa e′ = e[x 7→ w, this 7→ new C(v)]

〈new C(v).m(w) | C〉 −→ 〈returnτ (e′ at-pc pc2) | C[M, `m/M]〉

[E-RETURN]
Σσ ` v : τ M =M′, `m

〈returnτ v | C〉 −→ 〈v | C[M′/M]〉

[E-LOCK] 〈lock ` in e | C〉 −→ 〈e with-lock ` | C[L, `/L]〉

[E-UNLOCK]
L = L′, `

〈v with-lock ` | C〉 −→ 〈v | C[L′/L]〉

Figure 4.7: Selected small-step semantic rules for SeRIF.

Dynamic Security Checks. The E-REF, E-ASSIGN, E-CALL, and E-RETURN rules

contain dynamic checks for type safety and information security. These checks pre-

vent untrusted code from placing ill-typed values in the heap or passing them to

trusted code. They similarly prevent untrusted code from modifying trusted heap

locations in any way. Such checks are critical for trusted code to safely interact

with ill-typed attacker code in any information flow system. While we do not de-

tail how to implement dynamic typing or label checks here, there is considerable

research into both. Gradually typed languages do run-time type checking [154],

and distributed IFC systems include run-time label checks [e.g., 69, 98, 179]. More-

over, when all high-integrity code is well-typed, it is sufficient to isolate memory

165

between objects, as in Ethereum contracts [173], and execute run-time checks when

entering trusted code.

4.4.2 Type System for SeRIF

The type system for SeRIF contains two different forms for typing judgments: one

for values and one for expressions. The typing judgment for values is straightfor-

ward for a stateful language. It takes the form Σ; Γ ` v : τ where Σ is a heap type

mapping references to types and Γ is a typing environment mapping variables to

types. We write Σ ` v : τ when Γ is empty, as we did in Section 4.4.1.

Values specify no computation so they need not reason about security. Typ-

ing judgments for expressions are more complex, including a standard pc label to

track the integrity of the control flow. To secure reentrancy with static locks when

possible, they also include a label ` representing locked integrity.

Allowing tail reentrancy while eliminating other forms of `-reentrancy requires

treating calls in tail position differently from calls in other positions. We accom-

plish this goal not by restricting when a given call can occur, but instead by re-

stricting what can occur after the call returns. Instead of one lock label, this strategy

uses two: an input lock `I that an expression must maintain to safely execute out-

side tail position, and an output lock `O specifying the locks the expression actually

maintains. The typing judgment now takes the form Σ; Γ; pc; `I ` e : τ a `O.

For an expression e to type-check with input lock `I, each subexpression of e

outside tail position must maintain `I. As non-value expressions only appear out-

side of tail position in let expressions, the following typing rule enforces this re-

166

[IF]

Σ; Γ ` v : bool` ` ⇒ pc ` / τ
Σ; Γ; pc; `I ` e1 : τ a `O Σ; Γ; pc; `I ` e2 : τ a `O

Σ; Γ; pc; `I ` if{pc} v then e1 else e2 : τ a `O

[ASSIGN]

Σ; Γ ` v1 : (ref τ)`

Σ; Γ ` v2 : τ ` / τ

Σ; Γ; `; `I ` v1 := v2 : unit`
′ a `O

[CALL]

mtype(C,m) = τa
pc1�pc2;`O−−−−−−−−→ τ0 Σ; Γ ` v : C` Σ; Γ ` va : τa

` ⇒ pc1 pc1 ⇒ pc2 ∨ `I τ0 <: τ pc2 ∨ ` / τ
Σ; Γ; pc1; `I ` v.m(va) : τ a `O ∨ pc2

[LOCK]

Σ; Γ; pc; `′I ` e : τ a `′O
`′I ∧ ` ⇒ `I `′O ∧ ` ⇒ `O

Σ; Γ; pc; `I ` lock ` in e : τ a `O

[METHOD-OK]

`I ⇒ pc2 `C ⇒ pc2 `I ∨ `′O ⇒ `O pc1 / τa

Σ; x :τa, this :Cpc2 ; pc2; `I ` e : τ a `′O
CT(C) = class C[`C] extends D {· · ·}

(D,m) ∈ dom(mtype) =⇒ mtype(D,m) = τa
pc1�pc2;`O−−−−−−−−→ τ

Σ ` τ m{pc1�pc2; `O}(x :τa) {e} ok in C

Figure 4.8: Selected typing rules for SeRIF

striction.

[LET]

Σ; Γ; pc; `I ` e1 : τ1 a `′O `′O ⇒ `I

Σ; Γ, x :τ1; pc; `I ` e2 : τ2 a `O

Σ; Γ; pc; `I ` let x = e1 in e2 : τ2 a `O

This rule is standard except that it requires `′O ⇒ `I, capturing the intuition above:

e1 must maintain at least lock `I, as it is outside tail position. Because e2 is in tail

position in this expression, there is no similar restriction on `O.

Figure 4.8 contains selected typing rules for SeRIF. The notation ` / τ indicates

that data of type τ is no more trusted than `; that is, ` / t`
′ if and only if ` ⇒ `′. The

rules also use the auxiliary lookup functions fields and mtype as well as a subtyping

relation <: that includes standard object subtyping and safe relabeling—t` <: t`
′ if

167

and only if ` ⇒ `′. The complete type system is in Figure 4.10 in Section 4.8.

Most typing rules (e.g., IF and ASSIGN) are standard for an information flow

calculus [144]. The only non-standard rules are those that directly reference or

constrain static locks: sequential composition (LET), method calls (CALL), and dy-

namic locking (LOCK).

Most of the premises of CALL are standard. They check that the object and

arguments have appropriate types and ensure information-security of the return

type and control flow of the call. They also check that the call does not violate any

static locks (pc1 ⇒ pc2∨`I) and that it attenuates trust in the output by the integrity

of both the object and the method (pc2 ∨ ` / τ).

This rule has two notable features. The first is not what it requires, but rather

what it does not require. There is no relation between the static input locks `I of

the surrounding environment and `O, the locks maintained by the method itself.

This lack of constraint is precisely what enables tail reentrancy. A call in tail posi-

tion need not maintain any locks, so it may result in reentrancy. Outside tail posi-

tion, however, the LET rule requires that the output locks of the call expression—

bounded by the locks maintained by the method—must act for `I. CALL and LET

therefore combine to enable safe tail reentrancy while ruling out other potentially

dangerous reentrancy.

The second feature is that CALL does not maintain locks `O—the locks main-

tained by the method—but instead only `O ∨ pc2. This adjustment enables safe in-

teraction with untrusted code that might not enforce the same guarantees as SeRIF.

Such code may claim to maintain locks, but fail to do so. Our safeguard follows

the principle of decentralized IFC [119]: you can only be hurt by an adversary you

trust. We therefore attenuate the claimed lock label `O by the integrity of the code.

Due to SeRIF’s inheritance structure, however, they type system cannot deter-

168

mine the exact integrity of the code. The implementation of m may come from C or

any of its superclasses or subclasses. We instead need a bound on the implemen-

tation’s integrity. The class typing rule METHOD-OK requires that the integrity of

the code act for pc2 to define or override a method with integrity pc2. As a result,

pc2 is the most precise bound on the code’s integrity available to the type system.

To understand the LOCK rule, recall that the lock term is designed to convert

static locks to dynamic ones. The type system must ensure that `I, the previous

input locks, remain locked in some manner, but it can safely release the portion

that is dynamically checked. In particular, LOCK splits `I into ` and some `′I such

that `′I ∧ ` ⇒ `I. Now `I will remain locked as long as e type-checks with static

input lock `′I. Similarly, lock ` in e actually maintains locks on both `′O—the locks e

maintains—and `. It is thus safe to trust `O up to `′O ∧ ` ⇒ `O.

Finally, METHOD-OK defines when a method is well-typed. This rule imple-

ments the idea that autoendorse methods statically lock integrity by default. Specif-

ically, it requires `I ⇒ pc2, so any expression outside tail position must respect locks

on the new, higher integrity of control flow. The integrity of the code must also act

for the integrity with which the function executes (`C ⇒ pc2), ensuring code can-

not do anything its source is not trusted to do. Next, the locks the method claims

to enforce (`O) must be maintained both initially (`I) and throughout (`′O). The last

information-security check (pc1 / τa) guarantees that any code trusted to call the

method is also trusted to provide its arguments.

4.4.3 Modeling Application Operation

We aim to model applications that, like smart contracts, service user requests and

may persist state across requests. We represent the current state of the world by a

set of class definitions in a class table CT and a state map σ. A single user interac-

169

tion, which we term an invocation I, is a label specifying the user’s integrity and a

call to a single method of an object stored in σ.

Execution of an invocation I = (ι,m(v), `) with state σ starts from a semantic

configuration with the expression, integrity `, and no locks, and step it to comple-

tion. The notation (I,CT , σ) ⇓ σ′ signifies that it terminates in updated state σ′. The

following rule formalizes this idea, using !ι.m(v) as shorthand for let o = !ι in o.m(v).

[E-INVOKE]
〈!ι.m(v) | (CT , σ, `, ·)〉 −→∗ 〈w | (CT , σ′, `, ·)〉

(I,CT , σ) ⇓ σ′

We use the same notation to denote running a list of invocations I in sequence,

using the output state from one as the input state from the next. That is, when

I = I1, . . . , In and (Ii,CT , σi−1) ⇓ σi for each 1 ≤ i ≤ n, we write (I,CT , σ0) ⇓ σn.

To type-check an invocation, the expression used in the evaluation must be

well-typed in the evaluation environment:

[INVOKE]
Σ; ·; `; `I ` !ι.m(v) : τ a `O

Σ ` (ι,m(v), `)

4.4.4 Examples Revisited

We now revisit the examples from Section 4.1 to see how SeRIF detects application

vulnerabilities while permitting secure implementations.

Uniswap. The vulnerability (Section 4.1.1) stems from an unexpected interaction

between an exchange, tokens, and a malicious user. While they may all have differ-

ent integrity, for simplicity, we give the exchange and the tokens the same trusted

label T and the user an untrusted label U with U ; T .

Anyone can call sellXForY, but it computes how much of asset Y to move and

transfers tokens, so it must have label U�T ; `O for some `O. Similarly, the token’s

170

transferTo method modifies high-integrity records, so it needs label pc�T ; `′O for

some labels pc and `′O.

The METHOD-OK rule requires sellXForY to type-check with some `I where

`I ⇒ T . Because we sequence two calls to transferTo, LET requires either a dy-

namic lock on label T around (at least) the first transfer. or `′O ⇒ `I ⇒ T . These

options correspond precisely to the solutions suggested in Section 4.1.1. Requiring

`′O ⇒ T is a statement that Uniswap expects the tokens not to call untrusted code. A

dynamic lock, by contrast, secures the exchange without assuming any particular

token behavior and correspondingly allows any value of `′O.

Notably, transferTo can type-check with `′O ⇒ T in either of two ways: it can

decline to call unknown code (i.e., remove lines 20 and 21 in Figure 4.1), or the

token itself could acquire a dynamic lock while making the calls. The first option

straightforwardly eliminates the vulnerability. By dynamically locking T , the sec-

ond option will prevent an attacker from making reentrant calls to either the token

or the exchange during a transfer.

Key–value store. We use the same labeling scheme: the key–value store applica-

tion gets a trusted label T while the user gets an untrusted label U. Because anyone

can call getOrCompute but it modifies trusted data, it must have label U�T ; `O for

some `O. The user-provided computation function is not trusted, so it gets label

pc�U; `′O for some labels pc and `′O.

As in the Uniswap example above, METHOD-OK requires getOrCompute to type-

check with some `I ⇒ T . Because the user-provided fallback function executes in

sequence before another trusted operation, LET and CALL combine to require ei-

ther a dynamic lock or `′O∨U ⇒ `I ⇒ T . This second option, however, is impossible

because U ; T .

This forced reliance on a dynamic lock stems from the type system not trust-

171

ing the user-provided callback to even type-check. In a modified type system that

separated trust in the code’s execution from trust that it type-checks, it would be

sufficient to require that it type-check with high-integrity and some `′O ⇒ T . This

solution would correspond to a static guarantee that the user-provided callback

does not invoke clear or any other method modifying the store’s internal state.

Town Crier. As described in Section 4.1.3 and the original paper [182], Town Crier

is secure despite using (object) reentrancy, and the type system can verify that.

Using the same labels again, we label Town Crier and the trusted service address T

and the user U. We can give the functions the following signatures.

int request{U�T ; T}(params:tU, callback:addressU)

void cancel{U�T ; U}(id:intU)

void deliver{T �T ; U}(id:intT, data:bytesT)

The request method—which just records the request parameters and updates a

counter—type-checks simply. The cancel method type-checks with an endorse-

ment on the condition on line 14 of Figure 4.3. Type-checking deliver relies on

TC trusting SERVICE_ADDR not to call attackers when receiving money. However,

SERVICE_ADDR is a hard-coded wallet address with no code that is already trusted

to provide data to deliver, so the operation sending it money can safely have the

signature T �T ; T . These labels allow deliver to type-check as written.

4.5 Formalizing Security Guarantees

We now have the tools needed to formalize reentrancy and security definitions

from Section 4.3.

172

4.5.1 Attacker Model

Proving a security guarantee requires a well-defined attacker. As `-reentrancy is

parameterized on a label, we also parameterize attackers over what they compro-

mise. We assume that an attacker A controls some collection of system compo-

nents, including anything that trusts any combination of those components. For

simplicity, we require a label `A representing the combined attacker power and

a label `t representing the minimum honest integrity, where every label is either

attacker-control or honest. That is, for all ` ∈ L, either `A ⇒ ` or ` ⇒ `t, but not

both.2 We prove that, for any such `t and `A, if all code trusted at `t abides by the

static and dynamic locking requirements, the system is `-reentrancy secure when-

ever ` ⇒ `t. This parameterization of the attacker ensures that only someone you

trust can damage your security.

Notably, the requiring `t and `A to exist means that, to guaranteeing security at

`1 ∧ `2, one or both of `1 and `2 must act for `t, and therefore be honest. In other

words, trusting the combined power of two labels is a statement that you believe

at least one of those labels is honest, though you may not know which. Combined

with trust in `1 ∨ `2 expressing trust in both `1 and `2, this idea supports modeling

complex assumptions like “at least k of n nodes are honest.”

Because reentrancy attacks stem from attacker code performing unexpected op-

erations, we grant attackers considerable power. Specifically, attackers can mod-

ify or replace any code that executes with low integrity—that is, any code where

`A ⇒ pc. Allowing attackers to modify high-integrity code executing with a low-

integrity pc may seem unrealistic, but experience has shown that code bases con-

tain “gadgets” that attackers can combine to achieve arbitrary functionality [138,

2 Our results hold for any partition of L into a downward-closed sublattice T and an upward-
closed sublattice A, letting ` be “trusted” if ` ∈ T . If T and A are complete, this formulation is
equivalent with `t =

∨T and `A =
∧A.

173

152]. This expansive power conservatively models the ability to exploit such gad-

gets without modeling the gadgets explicitly.

To model the attacker’s ability to sidestep static security features, we introduce

a new term to ignore static lock labels.

e ::= · · · | ignore-locks-in e

E ::= · · · | ignore-locks-in E

[E-IGNORELOCKS]
〈ignore-locks-in v | C〉 −→ 〈v | C〉

[IGNORELOCKS]
Σ; Γ; pc; `′I ` e : τ a `′O

Σ; Γ; pc; `I ` ignore-locks-in e : τ a `O

Reasoning explicitly about ill-typed code is challenging, so the formal model

requires all code to type-check, but allows low-integrity code to use this new term.

Using ignore-locks-in may not appear to grant the full power of ignoring the type

system. After all, the type system limits the location of method calls and state

modifications based on the pc label, which attackers cannot modify. However,

low-integrity code can only interact with high-integrity code in three ways: call-

ing high-integrity methods, returning values to high-integrity contexts, or writing

to memory that high-integrity code will later read. In each case, the operational

semantics includes dynamic checks to ensure memory safety and to ensure that

method calls and state modifications are only performed by sufficiently trusted

code—exactly what the type system asks.

Indeed, the only constraint the type system imposes that these dynamic checks

do not enforce is the static locking that ignore-locks-in is designed to avoid. Mod-

eling well-typed high-integrity code and unknown attacker code is therefore as

simple as demanding that all code type-checks and high-integrity code does not

use ignore-locks-in, formalized as follows.

174

Definition 4.3 (Lock Compliance). A class table CT complies with locks in `t-code if,

whenever

CT(C) = class C[`C] extends D { f :τ f ; K ; M}

and `C ⇒ `t, then ignore-locks-in does not appear syntactically in the body of any

method m ∈ M.

Strong object-level memory isolation, like that in Ethereum, reduces the infor-

mation security checks of the semantics to type-checking high-integrity code. Forc-

ing dynamic lock checks, however, requires direct support in the system runtime.

As such features are uncommon, we model a system where attackers can freely

ignore dynamic locks. Specifically, we extend the operational semantics with a sec-

ond rule for function calls, E-CALLATK, which enables calls to attacker-controlled

code without checking dynamic label locks.

[E-CALLATK]

mbody(C,m) =
(
`m, x, τa, pc1�pc2, e, τ

)
M =M′, `′m `′m ⇒ pc1 `A ⇒ pc2

Σσ ` w : τa e′ = e[x 7→ w, this 7→ new C(v)]

〈new C(v).m(w) | C〉 −→ 〈returnτ (e′ at-pc pc2) | C[M, `m/M]〉

This rule is identical to E-CALL, except instead of checking dynamic locks, it checks

that pc2 is untrusted (`A ⇒ pc2).

Interestingly, in systems that require even untrusted calls to check dynamic

locks—admitting only E-CALL and not E-CALLATK—trust of `1 ∧ `2 can be safe

even when neither `1 nor `2 is honest. Such systems enforce `t-reentrancy security

whenever CT complies with locks in `t-code. There can even exist labels `1 and `2

where CT does not comply with locks in `1-code or `2-code, but `1 ∧ `2 ⇒ `t, mean-

ing `A cannot be a well-defined label. The proofs in Section 4.12 consider both

system and attacker models.

175

Attacker-provided code. In addition to having ill-typed code, attackers can tailor

their attacks to the specific application. We therefore define security with respect

to any system with the same high-integrity code. Specifically, we employ a notion

of `t-equivalent code that allows an attacker to add, remove, or replace code when-

ever pc; `t.

We formalize the equivalence using erasure on the code in a class table CT . Let

CT |`t denote CT , but erasing any class C with low-integrity code (`C ; `t), any

method m that executes with low integrity (pc2 ; `t), and the branches of if state-

ments executing with low integrity (pc ; `t). Two class tables are then `t-equiva-

lent if they erase to the same thing.

CT ≈` CT ′
4⇐⇒ CT |`t = CT ′|`t

Attackers can also freely modify low-integrity locations in the heap, so we de-

fine `t-equivalent heaps using similar erasure. As a heapσ is a partial function from

locations to value–type pairs, memory is erased to σ|`t simply by erasing mappings

with low-integrity types. Formally, σ|`t(ι) = σ(ι) if σ(ι) = (v, t`) with ` ⇒ `t, and it

is undefined otherwise. As with code, the equivalence follows directly from this

erasure:

σ ≈` σ′ 4⇐⇒ σ|`t = σ′|`t .

4.5.2 Noninterference

A typical goal for security in IFC systems, including our core calculus, is noninter-

ference [72], which for integrity means untrusted data should not influence trusted

data at all. As we argued in Section 4.2.2, noninterference is too restrictive, and

indeed, endorsement exists to violate it. However, explicit endorsement should be

the only way to violate noninterference.

176

To state this, we first need a notion of a class table CT being endorsement-free for

a label `.

Definition 4.4 (Endorsement-Free). CT is `-endorsement-free if, for all classes C and

methods m such that

class C[`C] extends D { f :τ f ; K ; M} ∈ CT

τ m{pc1�pc2; `O}(x :τa) {e} ∈ M

two properties hold. (1) Either pc1 ⇒ ` or pc2 ; `, and (2) for any subexpression

of e of the form endorse v from `1 to `2, similarly, either `1 ⇒ ` or `2 ; `.

Intuitively, this definition says that CT is `-endorsement-free if CT contains no

means of endorsing either control flow or data from a label that ` does not trust to

one that it does.

This condition is sufficient to prove a strong notion of noninterference at `. Be-

cause the SeRIF semantics are nondeterministic with respect to selection of location

names (E-REF), we use a modified equivalence '` that allows renaming locations

in addition to erasing low-integrity state. See Section 4.9 for the formal definition

of this equivalence.

For partial functions f and f ′, we write f ⊆ f ′ to mean dom(f) ⊆ dom(f ′) and

f (x) = f ′(x) wherever f is defined.

Theorem 4.1 (Noninterference). Let CT be a class table where Σ ` CT ok is `-endorse-

ment-free. For any well-typed heaps σ1 and σ2 such that Σ ⊆ Σσi and any invocation I

such that Σ ` I and (I,CT , σi) ⇓ σ′i , if σ1 '` σ2, then σ′1 '` σ′2.

Theorem 4.1 follows by complicated induction on the operational semantics,

erasing untrusted values in the heap. See Section 4.11 for details.

Note also, the theorem says nothing about lock compliance, only endorsement

freedom. Indeed, reentrancy locks are unnecessary to enforce noninterference.

177

4.5.3 Formalizing Reentrancy

Definition 4.1 in Section 4.3.1 informally defines `-reentrancy as a trusted oper-

ation calling an untrusted operation, which then calls a trusted operation before

returning. We also noted that the pc label specifies the integrity of the control flow

and is therefore ideal for defining reentrancy.

Because SeRIF’s semantics has no explicit call stack, it must insert at-pc track-

ing terms in the only places where the pc label of the currently-executing code

can change: conditionals and method calls. The terms surround the body of the

condition or method and remain until execution returns to the previous pc label.

Nested tracking terms appear precisely when code in one conditional or method

body calls a second before returning. We therefore formalize `-reentrancy as three

nested at-pc terms where ` trusts the label of the first and third, but not the second.

As each condition or call may still have pending computation, we allow arbitrary

evaluation contexts at each integrity level.

Definition 4.5 (`-Reentrancy). A statement s is `-reentrant if, for some evaluation

contexts E0, E1, E2,

s = E0

[
E1

[
E2[s′ at-pc pc3] at-pc pc2

]
at-pc pc1

]
where pc1, pc3 ⇒ ` but pc2 ; `.

An invocation I = (ι,m(v), `′) is `-reentrant inσ if 〈!ι.m(v) | (CT , σ, `′, ·)〉 −→∗ 〈s | C〉
where s is `-reentrant.

With a definition of reentrancy and a formal attacker model, we can now for-

malize the notion of security described in Section 4.3.2. Recall that we took “secure

reentrancy” to mean that any program behavior the application exhibits with reen-

trancy, it can also exhibit without reentrancy. Equivalently, any state changes made

by a reentrant execution must be possible using non-reentrant ones.

178

The properties a program maintains can be described using a modified Hoare

logic [79]. Because high-integrity code may interact with arbitrary attacker code,

we consider all possible invocations with `-equivalent code. Specifically, the high-

integrity component of CT maintains a property defined by a predicate pair (P,Q)

if, whenever P holds on the input state, Q must hold on the output state.

Definition 4.6 (Predicate Satisfaction). Given a class table CT , a heap type Σ, and

state predicates P and Q, CT satisfies (P,Q) at ` in Σ, denoted Σ �` {P} CT {Q}, if, for

any CT ′ such that CT ≈` CT ′, any well-typed state σ1 where Σ ⊆ Σσ1 , and any invo-

cation sequence I such that Σσ1 ` I and (I,CT ′, σ1) ⇓ σ2, then P(σ1) implies Q(σ2).

To simplify proofs, the definition requires invocations to be well-typed. The

requirement does not, however, weaken the security guarantee. In a system like

Ethereum without a strong type system, a high-integrity contract would need to

examine its arguments to ensure they are well-typed. We assume this facility is

built into the runtime.

The predicates P and Q can capture a variety of program properties. A sim-

ple example is program invariants—such as Uniswap’s invariant on the product

of the token balances—in which case they would be the same. Quantifying over a

potentially infinite set of predicates, as the security definition does below, allows

for arbitrarily complex properties. For example, requiring a specific high-integrity

output state for each possible high-integrity input state would enforce noninterfer-

ence. A demonstration of interference would demonstrate that one such predicate

pair is not satisfied.

Our goal, however, is not to guarantee any specific properties, but to formalize

the idea that reentrancy should not introduce new behavior. Definition 4.6 says

nothing about reentrancy. It captures the entire set of possible behaviors, including

the reentrant ones. Saying that a complete set of behaviors is equivalent to the non-

179

reentrant behaviors requires a definition of non-reentrant behaviors. For that, we

simply restrict our previous definition to executions that are not `-reentrant.

Definition 4.7 (Single-Entry Predicate Satisfaction). Given a class table CT , a heap

type Σ, and state predicates P and Q, we say that CT single-entry satisfies (P,Q) at

` in Σ, denoted Σ �1` {P} CT {Q}, if CT satisfies (P,Q) at ` in Σ when restricted to

invocation sequences I that are not `-reentrant.

These two definitions combine to specify the difference between non-reentrant

program behavior and all program behavior. To compare them, note that a pro-

gram satisfies predicate pair (P,Q) precisely when no behavior violates it. Thus, if

reentrancy can exhibit new behaviors—the program is insecure—there should be

a predicate pair that is single-entry satisfied, but not satisfied in general.

Because attackers can arbitrarily modify low-integrity state, any changes to

low-integrity state are possible without `-reentrancy. We correspondingly restrict

our security notion to predicates that are unaffected by low-integrity state.

Definition 4.8 (`-integrity Predicate). We say a predicate P is `-integrity if, for all

pairs of states σ1 and σ2,

σ1 ≈` σ2 =⇒ P(σ1)⇔ P(σ2).

We now define `-reentrancy security formally.

Definition 4.9 (Reentrancy Security (formal)). We say a class table CT is `-reen-

trancy secure in Σ if for all pairs (P,Q) of `-integrity predicates, Σ �1` {P}CT{Q} implies

Σ �` {P} CT {Q}.

Definition 4.9 is the core security definition SeRIF enforces.

Theorem 4.2. For any label `, class table CT , and heap type Σ, if ` ⇒ `t and Σ ` CT ok

complies with locks in `t-code, then CT is `-reentrancy secure in Σ.

180

Theorem 4.2 follows from two core results. First, all reentrancy allowed by

SeRIF is tail reentrancy. That is, if an invocation passes through an `-reentrant

state, then the outer high-integrity call (E1 at-pc pc1 in Definition 4.5) must be in

tail position.

Theorem 4.3. For a label `, class table CT , and well-typed heap σ1, if ` ⇒ `t and Σσ1 `
CT ok complies with locks in `t-code, then for any invocation I and heap σ2 where Σσ1 ` I

and (I,CT , σ1) ⇓ σ2, all `-reentrant states in the execution are `-tail-reentrant.

Proof Sketch. The theorem follows from two facts. First, if a statement s steps to a

call to a method that grants integrity `, then s cannot maintain a lock on `. Second,

any statement executing with integrity ` must maintain a lock on ` (either stati-

cally or dynamically) unless it is in tail position. We provide a complete proof in

Section 4.12.1. �

Once we know that all reentrant executions are tail-reentrant, we need only

show that tail reentrancy is secure. The following theorem formalizes this idea by

proving that, if all `-reentrant states are `-tail-reentrant, then single-entry predicate

satisfaction translates to predicate satisfaction.

Theorem 4.4. Let CT be a class table, σ1 and σ2 be well-typed heaps, and I be an invo-

cation such that (I,CT , σ1) ⇓ σ2 where all `-reentrant states are `-tail-reentrant. For any

`-integrity predicates P and Q, if Σσ1 �
1
` {P} CT {Q} and P(σ1), then Q(σ2).

Proof Sketch. Examine the execution of I and build a CT ′ and I that produce a

`-equivalent final state with no reentrancy. Whenever a high-integrity environ-

ment transitions to a low-integrity one in CT , replace the low-integrity code in CT ′

with code that returns the same value as a hard-coded constant and makes no calls

to high-integrity code. For each call from a low-integrity environment to a high-

integrity method, add an invocation to I that makes the same call with the same

181

arguments. Add additional invocations between each high-integrity call to update

the low-integrity state to match the low-integrity state in the original execution

when the call occurred. The result is clearly a non-reentrant set of executions. Be-

cause all `-reentrant states are `-tail-reentrant in the original execution, placing a

reentrant call sequentially after the call it was originally inside produces the same

result.

Since the start and end states σ′1 and σ′2 of this new execution are `-equivalent

to σ1 and σ2 and Σσ1 �
1
` {P} CT {Q},

P(σ1) ⇐⇒ P(σ′1) =⇒ Q(σ′2) ⇐⇒ Q(σ2).

See Section 4.12.2 for details. �

From here, we have enough to prove our desired result.

Proof of Theorem 4.2. For a class table CT ′, invocation I, and heaps σ1 and σ2 such

that CT ≈` CT ′ and (I,CT ′, σ1) ⇓ σ2, Theorem 4.3 says all `-reentrant states are

`-tail-reentrant. For `-integrity predicates P and Q such that Σσ1 �
1
` {P} CT {Q},

Theorem 4.4 says that if P(σ1) then Q(σ2), which is precisely the definition of

Σσ1 �` {P} CT {Q}. �

4.6 Implementation

We implemented a type checker for SeRIF in 4,200 lines of Java, using JFlex [89] and

CUP [81]. We employ the SHErrLoc constraint solver [181] to analyze information

flow constraints, infer missing integrity labels, and identify likely error locations.

We ran the type checker on four examples: the three from Section 4.1, but with-

out simplifying Town Crier, and one we call Multi-DAO. Multi-DAO is a multi-

contract version of the vulnerable portion of Ethereum’s DAO contract [131]. It

182

is one application split across multiple contracts that synchronize on each trans-

action. This structure allows for the DAO’s original reentrancy vulnerability, as

well as a second attack where the attacker reenters the application by leaving one

contract and entering another before they synchronize. By definition, this attack is

not object reentrancy, but as long as the Multi-DAO contracts trust each other, it is

`-reentrancy. As with the original DAO, the exploits can be patched either with dy-

namic locks or by performing local state changes and inter-contract synchronization

operations before external calls.

For each example the type checker correctly identified vulnerabilities in the

initial versions presented in Section 4.1. It also accepted as secure patched imple-

mentations following the suggested fixes, both with and without dynamic locks.

Developer Overhead. Table 4.1 presents several metrics for developer overhead.

As each example application is designed to distill complex security logic into min-

imal code, the examples are all relatively short—ranging from 35 to 133 lines of

code. On these examples, the type checker is able to run in a few seconds on a

consumer desktop from 2015 with an Intel i7-4790 CPU. Because the type system

and the associated guarantees are compositional, modules can be checked inde-

pendently, so running time should scale well as the code grows.

Another important practical concern is the annotation burden of adding infor-

mation flow labels to the code. Labels on classes, fields, methods, and data en-

dorsements are necessary to define the security of a program. Though SeRIF re-

quires explicit labels elsewhere to ease formal reasoning, many of these—such as

the pc labels on if statements—are simple to infer. Considering only the labels with

no obvious inference mechanism, we found that 13% of the lines required explicit

labels in Town Crier. The other examples required more annotations per line as

their distilled nature led to more function declarations and explicit endorsements.

183

Application LoC
type-check

time (s)
necessary

annotations
Uniswap 1 57 4.1 11
Uniswap 2 49 4.0 9
Uniswap 3∗ 53 4.3 9

Town Crier 1 133 6.3 17
Town Crier 2∗ 133 6.5 17
Town Crier 3∗ 133 6.4 17

KV Store 1 38 2.1 10
KV Store 2∗ 35 2.0 9

Multi-DAO 1 38 3.5 8
Multi-DAO 2 36 3.3 7
Multi-DAO 3∗ 36 3.3 7

Table 4.1: Evaluation of SeRIF type checker. Asterisks indicate vulnerable imple-
mentations.

As even Town Crier is a short application with complex security concerns, we ex-

pect many applications would have lower annotation burdens.

Finally, SHErrLoc is capable of localizing errors, helping guide development. To

see its utility, we look at the Uniswap example in more detail. As in Section 4.4.4,

we use two labels: U and T . Recall that the exchange must either utilize a lock

or state its assumption that the token will not call untrusted code. The following

signature for the token’s transferTo method makes the assumption explicit, where

H is a token holder class.

boolT transferTo{T �T ; T}(from:HT, to:HT, amount:intT)

To model the alert functions in H being unknown code from unknown sources, the

interface can state the following entirely-untrusted signatures.

void alertSend{U�U; U}(to:HU, amount:intU)

void alertReceive{U�U; U}(from:HU, amount:intU)

With these signatures, the calls to the alert functions in transferTo on lines 20

and 21 of Figure 4.1 cannot type-check without a dynamic lock. SHErrLoc helpfully

identifies line 21 as the most likely error. The type checker correctly identifies the

program as secure if we either wrap both alerts in a dynamic lock or remove them

184

entirely.

4.7 Related Work

We now discuss other work on reentrancy security, secure smart contracts, and

information flow control.

Formal Reentrancy Security. Grossman et al. [75] define Effectively Callback-

Free (ECF) executions, the only other formal definition of reentrancy security of

which we are aware. An ECF execution is one where the operations can be re-

ordered to produce the same result without callbacks (reentrancy). Their definition

is object-based, which we have argued fails to separate the security specification

from the program design, and they focus on dynamic analysis of individual exe-

cutions.

Albert et al. [5] present a static analysis tool to check if code produces only

ECF executions. The authors advertise the tool as providing modular guarantees,

but define “modular” to mean that a contract remains secure against any possible

outside code. Our approach provides the same guarantees when applied to a sin-

gle program with no assumptions on others, but also enables developers to safely

compose independently-checked modules by stating assumptions on each other’s

behavior. Furthermore, Albert et al.’s analysis relies on an SMT solver, limiting its

scalability. In comparison, SeRIF only relies on checking acts-for relationships of

information flow labels.

We previously proposed the intuition of using information flow control with a

mix of static and dynamic locks to enforce `-reentrancy [38]. In this work we add

a core calculus with static and dynamic semantics, formal definitions, proofs, and

an evaluation.

185

Reentrancy-aware Languages. Several languages—all smart-contract oriented—

attempt to guard against reentrancy using a variety of techniques.

Scilla [150] constrains programming style by eliminating the call-and-return

model of contract interaction. Instead, it queues requests and executes them when

the caller completes. While this structure makes object-level reentrancy difficult, it

prevents contracts from using the return values from remote calls. Moreover, by

allowing multiple unconstrained requests, it fails to detect or eliminate bugs like

Uniswap (see Section 4.1.1).

Obsidian [47] and Flint [149] ease reasoning about contract behavior using

typestate. Obsidian includes a dynamic check that prevents (object) reentrancy en-

tirely, while Flint has no such check. Both languages and Move [20] have a notion

of linear assets that cannot be created or destroyed. Asset linearity prevents attacks

like the DAO, but fails to address the challenges of Uniswap. The errant send in

Uniswap does not create or destroy tokens; it merely sends the wrong number

because it the invariant it relies on is broken.

Nomos [57] enforces security using resource-aware session types. Since linear-

ity of session types is insufficient to eliminate reentrancy, It uses the resources

tracked by the session types to prevent attackers from acquiring permission to call

an in-use contract—again, eliminating all (object) reentrancy.

Smart Contract Analysis Tools. There are many static analysis tools for blockchain

smart contracts. Some tools operate as best-effort bug finding tools with no sound-

ness guarantees. OYENTE [100] searches for anti-patterns in code, TEETHER [93]

automatically generates exploits based on commonly-exploitable operations, and

Ethainter [26] uses information flow taint analysis to attempt to locate a predefined

set of security concerns, such as tainted owner variables and access to self-destruct.

Other tools use formal analysis techniques to soundly analyze contracts. Bhar-

186

gavan et al. [18] prove functional correctness by translation to F?. MAIAN [123] and

ETHBMC [68] prove security against specific classes of vulnerabilities using sym-

bolic execution and bounded model checking, respectively. EtherTrust [74] allows

developers to specify program properties as Horn clauses and verify them using

a formal semantics for EVM [73]. SOLYTHESIS [95] combines static and dynamic

mechanisms It statically determines what checks are necessary for correctness and

compiles them into run-time checks.

These tools are valuable for securing smart contracts, but they all analyze in-

dividual contracts, and their analyses often fail to compose. As a result, they are

unable to verify security of applications like Uniswap that span multiple contracts.

Information Flow Control. Several distributed and decentralized systems enforce

security using IFC. Fabric [98] is a system and language for building distributed

systems that allows secure data and code sharing between nodes despite mutual

distrust. DStar [179] uses run-time tracking at the OS level to control information

flow in a distributed system. These previous systems have the same limitation of

information flow systems that is described in the introduction to this chapter and

Section 4.2.2: they do not defend against reentrancy attacks. The IFC-based instruc-

tion set of Zagieboylo et al. [176] restricts endorsement of pc labels using a purely

dynamic mechanism that appears to prevent all `-reentrancy. However, this prop-

erty is neither stated nor proved.

4.8 Full SeRIF Rules

The full operational semantics for SeRIF is given in Figure 4.9 and the full typing

rules are given in Figure 4.10.

187

[E-EVAL]
〈s | C〉 −→ 〈s′ | C′〉

〈E[s] | C〉 −→ 〈E[s′] | C′〉

[E-LET] 〈let x = v in e | C〉 −→ 〈e[x 7→ v] | C〉

[E-IFT] 〈if{pc} true then e1 else e2 | C〉 −→ 〈e1 at-pc pc | C〉

[E-IFF] 〈if{pc} false then e1 else e2 | C〉 −→ 〈e2 at-pc pc | C〉

[E-ATPC] 〈v at-pc pc | C〉 −→ 〈v | C〉

[E-REF]
ι < dom(σ) Σσ ` v : τ M =M′, `m `m / τ

〈ref v τ | C〉 −→ 〈ι | C[σ[ι 7→ (v, τ)]/σ]〉

[E-DEREF]
σ(ι) = (v, τ)

〈!ι | C〉 −→ 〈v | C〉

[E-ASSIGN]
Σσ(ι) = τ Σσ ` v : τ M =M′, `m `m / τ

〈ι := v | C〉 −→ 〈() | C[σ[ι 7→ (v, τ)]/σ]〉

[E-CAST]
D <: C

〈(C)(new D(v)) | C〉 −→ 〈new D(v) | C〉

[E-FIELD] 〈new C(v). fi | C〉 −→ 〈vi | C〉

[E-ENDORSE] 〈endorse v from `′ to ` | C〉 −→ 〈v | C〉
(a) Standard IFC calculus small-step semantic rules

188

[E-CALL]

mbody(C,m) =
(
`m, x, τa, pc1�pc2, e, τ

)
M =M′, `′m `′m ⇒ pc1

∧
`∈L

(pc1 ⇒ pc2 ∨ `)
Σσ ` w : τa e′ = e[x 7→ w, this 7→ new C(v)]

〈new C(v).m(w) | C〉 −→ 〈returnτ (e′ at-pc pc2) | C[M, `m/M]〉

[E-CALLATK]

mbody(C,m) =
(
`m, x, τa, pc1�pc2, e, τ

)
M =M′, `′m `′m ⇒ pc1 `A ⇒ pc2

Σσ ` w : τa e′ = e[x 7→ w, this 7→ new C(v)]

〈new C(v).m(w) | C〉 −→ 〈returnτ (e′ at-pc pc2) | C[M, `m/M]〉

[E-RETURN]
Σσ ` v : τ M =M′, `m

〈returnτ v | C〉 −→ 〈v | C[M′/M]〉

[E-LOCK] 〈lock ` in e | C〉 −→ 〈e with-lock ` | C[L, `/L]〉

[E-UNLOCK]
L = L′, `

〈v with-lock ` | C〉 −→ 〈v | C[L′/L]〉

[E-IGNORELOCKS] 〈ignore-locks-in v | C〉 −→ 〈v | C〉
(b) Lock-aware small-step semantic rules

Figure 4.9: Full small-step operational semantics for SeRIF.

[VAR]
Γ(x) = τ

Σ; Γ ` x : τ
[UNIT]

Σ; Γ ` () : unit`
[TRUE]

Σ; Γ ` true : bool`

[FALSE]
Σ; Γ ` false : bool`

[NEW]

fields(C) = f :τ
Σ; Γ ` v : τ

Σ; Γ ` new C(v) : C`
[LOC]

Σ(ι) = τ

Σ; Γ ` ι : (ref τ)`

[NULL]
Σ; Γ ` null : (ref τ)`

[SUBTYPEV]
Σ; Γ ` v : τ′ τ′ <: τ

Σ; Γ ` v : τ

(a) Value typing

189

[VAL]
Σ; Γ ` v : τ

Σ; Γ; pc; `I ` v : τ a `O

[ENDORSE]
Σ; Γ ` v : t`

′

Σ; Γ; `; `I ` endorse v from `′ to ` : t` a `O

[CAST]
Σ; Γ ` v : D`

Σ; Γ; pc; `I ` (C)v : C` a `O

[FIELD]

Σ; Γ ` v : C` fields(C) = f :τ
τi <: τ ` / τ

Σ; Γ; pc; `I ` v. fi : τ a `O

[CALL]

mtype(C,m) = τa
pc1�pc2;`O−−−−−−−−→ τ0 Σ; Γ ` v : C` Σ; Γ ` va : τa

` ⇒ pc1 pc1 ⇒ pc2 ∨ `I τ0 <: τ pc2 ∨ ` / τ
Σ; Γ; pc1; `I ` v.m(va) : τ a `O ∨ pc2

[IF]

Σ; Γ ` v : bool` ` ⇒ pc ` / τ
Σ; Γ; pc; `I ` e1 : τ a `O Σ; Γ; pc; `I ` e2 : τ a `O

Σ; Γ; pc; `I ` if{pc} v then e1 else e2 : τ a `O

[REF]
Σ; Γ ` v : τ pc / τ

Σ; Γ; pc; `I ` ref v τ : (ref τ)` a `O

[DEREF]

Σ; Γ ` v : (ref τ′)`

τ′ <: τ ` / τ

Σ; Γ; pc; `I ` !v : τ a `O

[ASSIGN]

Σ; Γ ` v1 : (ref τ)`

Σ; Γ ` v2 : τ ` / τ

Σ; Γ; `; `I ` v1 := v2 : unit`
′ a `O

[LOCK]

Σ; Γ; pc; `′I ` e : τ a `′O
`′I ∧ ` ⇒ `I `′O ∧ ` ⇒ `O

Σ; Γ; pc; `I ` lock ` in e : τ a `O

[LET]

Σ; Γ; pc; `I ` e1 : τ1 a `′O `′O ⇒ `I
Σ; Γ, x :τ1; pc; `I ` e2 : τ2 a `O

Σ; Γ; pc; `I ` let x = e1 in e2 : τ2 a `O

[VARIANCE]

Σ; Γ; pc′; `′I ` e : τ′ a `′O
τ′ <: τ pc⇒ pc′

`′I ⇒ `I `′O ⇒ `O

Σ; Γ; pc; `I ` e : τ a `O

(b) Core expression typing

[ATPC]
Σ; Γ; pc; `I ` s : τ a `O

Σ; Γ; pc′; `I ` s at-pc pc : τ a `O

[WITHLOCK]

Σ; Γ; pc; `′I ` s : τ a `′O
`′I ∧ ` ⇒ `I `′O ∧ ` ⇒ `O

Σ; Γ; pc; `I ` s with-lock ` : τ a `O

[RETURN]
Σ; ·; pc; `′I ` s : τ a `′O `′I ∨ `′O ⇒ `O

Σ; Γ; pc; `I ` returnτ s : τ a `O

[IGNORELOCKS]
Σ; Γ; pc; `′I ` e : τ a `′O

Σ; Γ; pc; `I ` ignore-locks-in e : τ a `O

(c) Tracking and attacker-modeling statement typing

190

[METHOD-OK]

`I ⇒ pc2 `C ⇒ pc2 `I ∨ `′O ⇒ `O pc1 / τa

Σ; x :τa, this :Cpc2 ; pc2; `I ` e : τ a `′O
CT(C) = class C[`C] extends D {· · ·}

(D,m) ∈ dom(mtype) =⇒ mtype(D,m) = τa
pc1�pc2;`O−−−−−−−−→ τ

Σ ` τ m{pc1�pc2; `O}(x :τa) {e} ok in C

[CLASS-OK]

fields(D) = g :τg

K = C(g :τg ; f :τ f) {super(g) ; this. f = f }
Σ ` M ok in C

Σ ` class C[`C] extends D { f :τ f ; K ; M} ok

[CT-OK]

C referenced in any type =⇒ C ∈ dom(CT)
∀C ∈ dom(CT).Σ ` CT(C) ok

Σ ` CT ok

(d) Class typing

CT(C) = class C[`C] extends D { f :τ f ; K ; M}
fields(D) = g :τg

fields(C) = g :τg ; f :τ f

CT(C) = class C[`C] extends D { f :τ f ; K ; M}
τ m{pc1�pc2; `O}(x :τa) {e} ∈ M

mtype(C,m) = τa
pc1�pc2;`O−−−−−−−−→ τ

mbody(C,m) =
(
`C , x, τa, pc1�pc2, e, τ

)
CT(C) = class C[`C] extends D { f :τ f ; K ; M}

m not defined in M

mtype(C,m) = mtype(D,m)
mbody(C,m) = mbody(D,m)

(e) Lookup functions

` ⇒ `′

t` <: t`
′

CT(C) = class C[`C] extends D {· · ·}
C` <: D`

τ1 <: τ2 τ2 <: τ3

τ1 <: τ3

(f) Subtyping rules

191

` ⇒ `′

` / t`
′

(g) Protection relation

σ(ι) = (v, τ) =⇒ Σσ ` v : τ

` σ wt

(h) Heap typing

Figure 4.10: Full typing rules for SeRIF.

4.9 Location–Name Isomorphism

The E-REF operational semantic rule allows for selection of any unmapped loca-

tion name when creating a new location. This makes the SeRIF operational se-

mantics nondeterministic in its choice of location names. However, this is the only

source of nondeterminism in the semantics. That is, for any pair of statement-heap

pairs that are equivalent up to location names, if one steps, then the other steps

and the results are again equivalent up to location names.

To reason about these differences, we define an equivalence relation that relates

statements and heaps that differ only in their location names. Formally, we define a

location name permutation θ as an injective map from locations to locations. We ex-

tend it to values by permuting location names, recursively permuting constructor

arguments of objects, and leaving other values unmodified. We further extend it to

statements by recursively applying to each sub-statement and to heaps as follows.

θ(σ)(ι) , (θ(v), τ) where σ(θ−1(ι)) = (v, τ)

This permutation supports the requisite equivalence relation.

Definition 4.10 (Location–name isomorphism). Statements s1 and s2 are location–

name isomorphic, denoted s1 ' s2, if there exists some θ such that s1 = θ(s2). Similarly,

for heaps σ1 and σ2, σ1 ' σ2
4⇐⇒ ∃θ. σ1 = θ(σ2).

We write (s1, σ1) ' (s2, σ2) to mean there is a θ such that (s1, σ1) = (θ(s2), θ(σ2))

and similarly for (s1,C1) ' (s2,C2).

192

This definition is sufficient to state and prove the important property that the

SeRIF semantics is deterministic up to location–name isomorphism.

Theorem 4.5. For any s1, s′1, and s2 and any C1, C′1 and C2, if (s1,C1) ' (s2,C2) and

〈s1 | C1〉 −→ 〈s′1 | C′1〉, then there exists s′2 and C′2 such that 〈s2 | C2〉 −→ 〈s′2 | C′2〉, and for

all such s′2 and C′2, (s′1,C′1) ' (s′2,C′2).

Proof. By induction on the operational semantics. We take the permutation to be

defined only mapping location names between σ1 and σ2 and extend it on uses of

E-REF (or inductively with E-EVAL). �

For the noninterference theorem (Theorem 4.1), we combine location–name iso-

morphism with `t-equivalence.

Definition 4.11 (Location–name `t-isomorphism). Two statesσ1 andσ2 are location–

name `t-isomorphic, denoted σ1 '` σ2, if there exists a θ such that σ1|`t = θ(σ2)|`t .

4.10 Preservation and Progress

We now prove preservation and progress theorems for SeRIF.

Because SeRIF is stateful, the type preservation theorem includes preservation

of both the statement and the heap.

Theorem 4.6 (Type Preservation). If

• 〈s | (CT , σ,M, L)〉 −→ 〈s′ | (CT , σ′,M′, L′)〉,
• Σσ ` CT ok,

• Σσ; Γ; pc; `I ` s : τ a `O, and

• ` σ wt,

then

• Σσ ⊆ Σσ′ ,

193

• ` σ′ wt, and

• Σσ′; Γ; pc; `I ` s′ : τ a `O.

The proof of Theorem 4.6 makes use of several simple lemmas.

Lemma 4.1 (Closed Value Typing). If v , x and Σ; Γ ` v : t`, then Σ; Γ′ ` v : t`
′ for any

Γ′ and `′.

Proof. By inspection on the value typing rules. �

Lemma 4.2 (Value Substitution). The following rule is admissible

Σ; Γ, x :τ′; pc; `I ` s : τ a `O Σ; Γ ` v : τ′

Σ; Γ; pc; `I ` s[x 7→ v] : τ a `O

Proof. By simple structural induction on the proof that Σ; Γ, x :τ′; pc; `I ` s : τ a
`O. �

Lemma 4.3 (Heap-type Extension). The following rules are admissible

Σ; Γ ` v : τ Σ ⊆ Σ′

Σ′; Γ ` v : τ

Σ; Γ; pc; `I ` s : τ a `O Σ ⊆ Σ′

Σ′; Γ; pc; `I ` s : τ a `O

Proof. By simple induction on the proofs of Σ; Γ ` v : τ and Σ; Γ; pc; `I ` s : τ a `O. �

Lemma 4.4 (Heap Extension). The following rule is admissible

` σ wt Σσ ` v : τ ι < dom(σ)

` σ[ι 7→ (v, τ)] wt

Proof. For notational ease, let σ[ι 7→ (v, τ)] = σ′. First note that, because ι < dom(σ),

it must be the case that Σσ′ = Σσ ∪ {ι 7→ τ} with ι < dom(Σσ) = dom(σ). Now assume

σ′(ι′) = (v′, τ′). If ι′ = ι, then the premise of the rule gives us Σσ ` v′ : τ′, otherwise

inversion on ` σ wt gives us the same property. By Lemma 4.3, Σσ′ ` v′ : τ′, thereby

proving ` σ′ wt. �

194

Lemma 4.5 (Statement Substitution). If Σ; Γ; pc; `I ` E[s1] : τ a `O then there is some

Γ′, pc′, `′I, τ
′, and `′O such that Σ; Γ′; pc′; `′I ` s1 : τ′ a `′O and for any statement s2 and

heap-type Σ′ ⊇ Σ, such that Σ′; Γ′; pc′; `′I ` s2 : τ′ a `′O, then Σ′; Γ; pc; `I ` E[s2] : τ a `O.

Proof. By simple induction on the proof of Σ; Γ; pc; `I ` E[s1] : τ a `O. �

These lemmas are sufficient to prove type preservation.

Proof of Theorem 4.6. This will be a proof by induction on the typing rules and in-

version on the operational semantics.

Case VAL: Values cannot step, so this is impossible.

Case ENDORSE: Because v must be a closed value, it type-checks with any label,

so VAL proves the result.

Case CAST: Inversion on the operational semantics requires that v = new C′(v) and

C′ <: C. Therefore NEW, SUBTYPEV, and VAL prove the case.

Case FIELD: Inversion on the operational semantics says v = new D(v) and the

premise of FIELD requires Σ; Γ ` new D(v) : C`. By inversion on the value

typing rules, D` <: C` and Σ; Γ ` vi : τi. Therefore, SUBTYPEV is sufficient to

prove Σ; Γ ` vi : τ, and VAL competes the case.

Case CALL: Inversion on the operational semantics says v = new D(v), and the

premise of CALL requires Σ; Γ ` new D(v) : C`. By inversion on the value

typing rules, D` <: C`. By the restrictions on overriding and the fact that

mtype(C,m) = τa
pc1�pc2;`O−−−−−−−→ τ, we know that mbody(D,m) =

(
`m, x, τa, pc1�pc2, e, τ

)
.

METHOD-OK further requires Σ; x :τa, this : D̃pc2; pc2; `′I ` e : τ a `′O where

`′I ∨ `′O ⇒ `O and D <: D̃. The premise that Σ; Γ ` w : τa and Lemma 4.2,

are sufficient to prove Σ; ·; pc2; `′I ` e[x 7→ w, this 7→ new D(v)] : τ a `′O. This

result coupled with RETURN and ATPC prove that s′ is well-typed.

195

Case IF: Inversion on the operational semantics requires that the step must be

E-IFT or E-IFF. The appropriate premise of IF requiring the branches to type-

check in the same environment and ATPC prove the case.

Case REF: By construction Σσ′(ι) = τ, so LOC and VAL prove the well-typed condi-

tion. Lemma 4.4 ensures ` σ′ wt, and σ ⊂ σ′, so Σσ ⊂ Σσ′ .

Case DEREF: Inversion on the operational semantics shows the step uses E-DEREF,

meaning v = ι and σ(ι) = (v′, τ). The assumption that ` σ wt means Σσ ` v′ : τ,

so that coupled with SUBTYPEV and VAL proves the case.

Case ASSIGN: Inversion on the operational semantics proves the step is E-ASSIGN,

meaning v1 = ι. Inversion on the premise Σ; Γ ` v1 : (ref τ)` then proves

σ(ι) = (v, τ), so E-ASSIGN requires Σσ ` v2 : τ. The heap type is therefore

unchanged—Σσ = Σσ′—and σ′ = σ[ι 7→ (v2, τ)] remains well-typed. Finally,

UNIT and VAL prove s′ properly type-checks.

Case LOCK: The semantic rule must be E-LOCK, so s′ = e with-lock `, and the

premises of WITHLOCK are identical to LOCK, so WITHLOCK proves the case.

Case LET: Here we see s = (let x = s1 in e2). We consider two sub-cases: if s1 = v

is a value, and if it is not. In the first sub-case, the operational semantic rule

must be LET, and inversion on the typing rules proves that Σσ; Γ ` v : τ1, so

Lemma 4.2 proves the sub-case.

In the second sub-case, inversion on the operational semantics proves that the

step must be E-EVAL. The LET rule’s first premise is: Σσ; Γ; pc; `I ` s1 : τ1 a `′O.

The premise of E-EVAL is 〈s1 | (CT , σ,M, L)〉 −→ 〈s′1 | (CT , σ′,M′, L′)〉, so the

inductive hypothesis proves that Σσ′; Γ; pc; `I ` s′1 : τ1 a `′O with Σσ ⊆ Σσ′

and ` σ′ wt. Lemma 4.3 shows that Σσ′; Γ, x :τ1; pc; `I ` e2 : τ2 a `O, so LET is

sufficient to prove Σσ′; Γ; pc; `I ` let x = s′1 in e2 : τ2 a `O, finishing the case.

196

Case VARIANCE: By induction on the typing rules.

Cases ATPC, WITHLOCK, and RETURN: Each of these three cases has two sub-

cases: where the sub-statement is a value and where it is not. If the sub-

statement is a value, the step must be E-ATPC, E-UNLOCK, or E-RETURN,

respectively. In each case, VAL allows values to type-check with any pc and

lock labels, proving the case. If the sub-statement is not a value, the only step

possible is E-EVAL. Here the proof follows by induction on the typing rules

in the same manner as the LET case above. �

Several semantic steps (E-REF, E-ASSIGN, and E-CALL) include information-

security checks to guarantee that the code performing the operation is sufficiently

trusted. The type system guarantees that these labels remain at least as trusted

as the pc label of code executing. We formally define this property as a relation

between a label stack and a statement, denoted byM! s, and then prove that the

semantics maintains this relation. The relation is formally defined on evaluation

contexts and extended to statements s = E[e] ifM! E.

`m ! [·]

M! E

M! let x = E in e

M! E

M! E with-lock `

M! E

M! ignore-locks-in E

M! E

`,M! returnτ E

`,M! E ` ⇒ pc

`,M! E at-pc pc

Proposition 4.1. For any statements s and s′ and configurations C = (CT , σ, (`m,M), L)

and C′ = (CT , σ′,M′, L′), if ` CT ok and (`m,M) ! s and Σσ; Γ; `m; `I ` s : τ a `O and

〈s | C〉 −→ 〈s′ | C′〉, thenM′! s′.

The proof of Proposition 4.1 relies on two lemmas.

Lemma 4.6. For any label listM and evaluation contexts E1 and E2,M! E1[E2] if and

197

only if there existM1,M2, and `m such that (1)M1, `m,M2 =M, (2)M1, `m ! E1, and

(3) `m,M2 ! E2.

Proof. This is a proof by induction on E1.

Case E1 = [·]:

(⇒) LetM1 be empty and note thatM cannot be empty, soM = `m,M2.

(⇐) By inversion on the rules, M1 must be empty, so M = `m,M2, proving

the result.

Case E1 = (let x = E′1 in e), E′1 with-lock `, or ignore-locks-in E′1:

(⇒) By induction, there exist M1, M2, and `m such that M = M1, `m,M2,

M1, `m ! E′1, and `m,M2 ! E2. Therefore, by the appropriate rule,

M1, `m ! E1.

(⇐) By induction, M1, `m,M2 ! E′1[E2], so the appropriate rule proves

M1, `m,M2 ! E1[E2].

Case E1 = returnτ E′1:

(⇒) Inversion on the correspondence proves M = `,M′ and M′ ! E′1[E2].

By induction, there is someM′
1, `m,M2 =M′ such thatM′

1, `m ! E′1 and

`m,M2 ! E2. LettingM1 = `,M′
1 completes the case.

(⇐) By inversion on the correspondence rules, if M1, `m ! E1, then M1 =

`,M′
1 for some ` andM′

1 andM′
1, `m ! E′1. By induction,M′

1, `m,M2 !

E′1[E2], so therefore

M1, `m,M2 = `,M′
1, `m,M2 ! returnτ E′1[E2] = E1[E2].

Case E1 = E′1 at-pc pc:

(⇒) By inversion on the rules,M! E′1[E2], so by inductionM =M1, `m,M2

with the desired properties. Moreover,M = `,M′ and ` ⇒ pc. Because

198

M1, `m is a non-empty prefix of M, it must be the case that M1, `m =

`,M′
1, so thereforeM1, `m ! E′1 at-pc pc = E1, as desired.

(⇐) By inversion on the correspondence rules, M1, `m ! E′1, so by induc-

tion,M = M1, `m,M2 ! E′1[E2]. Moreover,M1, `m = `,M′
1 and ` ⇒ pc.

Therefore M = `,M′
1,M2, satisfying the requirements to prove M !

E′1[E2] at-pc pc = E1[E2]. �

Lemma 4.7. For any statements s and s′, configurations C = (CT , σ,M, L) and

C′ = (CT , σ′,M′, L′), and label listsM1 andM2, ifM = M1,M2 andM2 is not empty,

then 〈s | C〉 −→ 〈s′ | C′〉 if and only if 〈s | C[M2/M]〉 −→ 〈s′ | C′[M′
2/M]〉 for someM′

2

whereM′ =M1,M′
2.

Proof. By simple induction on the operational semantics. �

Proof of Proposition 4.1. This is a proof by induction on the operational semantics.

Case E-EVAL: In this case s = E[s̃], and by definition, s̃ = Ẽ[e]. By Lemma 4.6,

there existM1,M2, and ` such that `m,M = M1, `,M2 whereM1, `! E and

`,M2 ! Ẽ. Therefore E-EVAL gives 〈s̃ | C〉 −→ 〈s̃′ | C′〉, and because `,M2

is non-empty, Lemma 4.7 proves 〈s̃ | C[(`,M2)/M]〉 −→ 〈s̃′ | C′[M′
2/M]〉,

and moreover M′ = M1,M′
2. Induction on this step ensures that M′

2 ! s̃′,

so therefore M′
2 must be non-empty. As a single step can only add or re-

move one element fromM, that meansM′
2 = `,M′′

2 , so by Lemma 4.6,M′ =

M1, `,M′′
2 ! E[s̃′] = s′.

Case E-IFT and E-IFF: Here s = if{pc} v then e1 else e2. By inversion on the cor-

respondence rules, M = ·, and by inversion on the typing rules `m ⇒ pc.

Therefore `m ! [·] at-pc pc, so by definitionM′ = `m ! (ei at-pc pc) = s′.

Case E-ATPC: Here s = v at-pc pc and s′ = v. By inversion on the correspondence

rules,M = · andM′ = `m. Because `m ! v for any v, this completes the case.

199

Cases E-CALL and E-CALLATK: In both of these cases, s = new C(v).m(w) and

mbody(C,m) =
(
`′m, x, τa, pc1�pc2, e, τ

)
. By inversion on the correspondence

rules, M = · and M′ = `m, `
′
m. By METHOD-OK, `′m ⇒ pc2. Therefore, letting

e′ = e[x 7→ w, this 7→ new C(v)],

`′m ! e′ `′m ⇒ pc2

`′m ! e′ at-pc pc2

`m, `
′
m ! returnτ (e′ at-pc pc2) .

Case E-RETURN: Here s = returnτ v, so inversion on the correspondence rules

provesM = `. ThereforeM′ = `m ! v = s′ proves the case.

No other operational semantic rules modify M or add or remove return or at-pc

terms. Therefore the same proofs apply before and after the step. �

The progress theorem is not without caveats. SeRIF’s type system intentionally

leaves checking of explicit casts, null dereferences, and dynamic reentrancy locks

to run time. As a result, the progress theorem states that these three are the only

ways a well-typed program can get stuck.

Theorem 4.7 (Progress). For a statement s and configuration C = (CT , σ, (`m,M), L), if

• Σσ; ·; pc; `I ` s : τ a `O,

• `m ⇒ pc, and

• (`m,M)! s,

then one of the following holds:

1. s is a closed value,

2. 〈s | C〉 −→ 〈s′ | C′〉 for some s′ and C′,
3. s = E[(C)(new D(v))] where D 6<: C,

4. s = E[!null] or s = E[null := v], or

200

5. s = E[new C(v).m(w)] for a C and m such that mtype(C,m) = τa
pc1�pc2;`O−−−−−−−→ τ and

there is some `′m ∈ L such that pc1 ; pc2 ∨ `′m.

Proof. This is a proof by induction on the derivation that Σσ; ·; pc; `I ` s : τ a `O.

Case VAL: Because Γ = ·, s is a closed value.

Case ENDORSE: Here s = endorse v from ` to `′. Since Γ = ·, v is a closed value, so

E-ENDORSE applies.

Case CAST: Here s = (C)v. Inversion on the value typing rules coupled with the

fact that Γ = · proves that v = new D(v). If D <: C, then E-CAST applies with

C′ = C. Otherwise this is a bad cast.

Case FIELD: Here s = v. fi. Again, inversion on the value typing rules with Γ = ·
proves v = new C(v). Moreover FIELD requires reference to a valid fields, so

E-FIELD steps s with C′ = C.

Case CALL: Here s = v.m(v). Any step must be either E-CALL or E-CALLATK. Be-

cause Γ = ·, inversion on the premise that Σσ; Γ ` v : C` proves v = new C(w).

The premise Σ; Γ ` v : τa also directly proves the corresponding premise of

E-CALL/E-CALLATK. Inversion on the proof that (`m,M) ! s proves that

M is empty, so therefore the premise of E-CALL/E-CALLATK requiring the

caller’s integrity to act for pc1 is satisfied by `m ⇒ pc ⇒ pc1. At this point,

E-CALLATK applies if `A ⇒ pc2 and E-CALL applies if
∧

`∈L(pc1 ⇒ pc2 ∨ `).
Therefore, if the statement is stuck, neither is satisfied, and the second is pre-

cisely the condition of a dynamic reentrancy lock blocking a call.

Case IF: Here s = if{pc′} v then e1 else e2. Inversion on the value typing rules using

Γ = ·means v = true or v = false. Therefore E-IFT or E-IFF apply.

Case REF: Here s = ref v τ. This step will be with E-REF. Since Γ = ·, the require-

ment that Σσ ` v : τ comes directly from REF. Moreover, inversion on the

201

rules proving (`m,M) ! s shows thatM = ·, so the protection requirement

of E-REF is `m / τ and `m ⇒ pc / τ, meaning the step applies with some fresh

ι < dom(σ).

Case DEREF: Here s = !v. Since Γ = ·, inversion on the DEREF premise that Σ ` v :

(ref τ′)` means v = ι with Σσ(ι) = τ′ or v = null. In the first case, by definition

this means σ(ι) = (v′, τ′) for some v′, so E-DEREF applies. In this second case,

this is a null dereference.

Case ASSIGN: Here s = (v1 := v2). Again, Γ = · and inversion on the typing rules

using the premise Σ; Γ ` v1 : (ref τ)` proves that v1 = ι or v1 = null. If v1 = null,

then this is a null dereference. If v1 = ι, then the step must be E-ASSIGN. The

requirement that Σσ(ι) = τ and Σ ` v2 : τ stem from inversion on the typing

derivation of v1 and the second premise of ASSIGN. Finally, inversion on the

rules proving (`m,M)! s shows thatM = ·, and ASSIGN requires pc ∨ ` / τ,

so the transitivity of⇒ proves `m / τ, as needed.

Case LOCK: E-LOCK always applies.

Case LET: Here s = let x = s̃ in e. The first hypothesis of LET proves Σσ; ·; pc; `I ` s̃ :

τ1 a `′O, and (`m,M)! s̃. Therefore, our inductive hypothesis applies to s̃. If

s̃ is a closed value, then E-LET applies to s, stepping to s′ = e[x 7→ s̃] letting

C′ = C. If 〈s̃ | C〉 −→ 〈s̃′ | C′〉, then by E-EVAL, 〈s | C〉 −→ 〈let x = s̃′ in e | C′〉.
For the other three cases where s̃ = E[e′] where e′ is a failure condition, we

note that let x = E in e is an evaluation context, so s falls into the same failure

case.

Case VARIANCE: Because `m ⇒ pc⇒ pc′, this case follows directly by induction.

Case ATPC: Here s = s̃ at-pc pc′. Inversion on the proof that (`m,M) ! s proves

`m ⇒ pc′. The hypothesis of ATPC is Σσ; ·; pc′; `I ` s̃ : τ a `O, so the inductive

202

hypothesis applies to s̃.

If s̃ is a closed value, then E-ATPC applies letting C′ = C. If s̃ steps to s̃′, then

E-EVAL proves 〈s | C〉 −→ 〈s̃′ at-pc pc′ | C′〉. For the other three cases, as with

LET, s̃ = E[e] where e is a failure condition, so E at-pc pc′ is an evaluation

context proving that s falls into the same failure case as s̃.

Cases WITHLOCK and IGNORELOCKS: The logic of these cases is the same as the

logic of the ATPC case, but using pc instead of pc′.

Case RETURN: Here s = returnτ s̃. Inversion on the proof that (`m,M) ! s shows

that M is not empty and M ! s̃. Additionally, a premise of RETURN is

Σσ; ·; pc; `′I ` s̃ : τ a `′O. Therefore, the inductive hypothesis applies using

Lemma 4.7 to replace (`m,M) withM in C.

If s̃ is a closed value, the well-typed premise of RETURN proves Σσ ` v : τ, and

since (`m,M) is non-empty, E-RETURN applies. If s̃ steps to s̃′, then E-EVAL

allows s to step as well. Again, for the three failure cases where s̃ = E[e],

simply replacing E with returnτ E creates the expected form. �

Note that, for any invocation I = (`, ι,m(v)), ` ! !ι.m(v). Therefore, if the invo-

cation and class table are well-typed in Σσ for a well-typed heap σ, Theorems 4.6

and 4.7 combine with Proposition 4.1 to prove that the invocation steps to a closed

value with a well-typed heap, diverges (can take infinitely many steps), or gets

stuck on one of the three run-time error checks.

4.11 Proof of Noninterference

We now prove Theorem 4.1, presented in Section 4.5, using an erasure-based con-

struction. Specifically, we will erase low-integrity values in the heap and then ex-

ecute the same program using a modified semantics that continues to omit low-

203

integrity values from the state and uses a special value, •, when one would be read.

We prove that, if the original execution terminated and the code is endorsement-

free, this modified execution must terminate and, critically, the high-integrity com-

ponents of the state must match. The theorem then follows by noting that if σ1 ≈`t

σ2, then both executions must produce heaps that’s high-integrity components are

the same as the modified execution on a partially-erased heap.

Formally, we introduce a new value to denote erased data.

v ::= · · · | •

The typing and semantic rules that handle • are parameterized on a label `t defin-

ing high-integrity values. For notational ease, we omit that label in our syntax.

However, as our theorems are all parameterized over `t, they remain true for any

possible choice of `t.

The type system allows • to be any type, as long as that type is low-integrity.

To simplify notation, we define label(t`) = `.

[BULLET]
label(τ); `t

Σ; Γ ` • : τ

We introduce a new operational semantics in Figure 4.11 to deal with these

terms. To separate executions with and without bullets, we define a new step func-

tion denoted •−→ when working with erased terms. We also define a context B

defining syntactic forms that normally require a decision based on the value. The

B-BULLETCTX rule simply erases the entire expression when the given value is •.

B ::= if{pc} [·] then e else e | ![·] | (C)[·] | [·]. f | [·].m(v)

These semantics inherit from our original operation semantics whenever the

step does not modify the heap. When modifying the heap, however, •−→ omits any

204

[B-PURESTEP]
〈s | (CT , σ,M, L)〉 −→ 〈s′ | (CT , σ,M′, L′)〉
〈s | (CT , σ,M, L)〉 •−→ 〈s′ | (CT , σ,M′, L′)〉

[B-EVAL]
〈s | C〉 •−→ 〈s′ | C′〉

〈E[s] | C〉 •−→ 〈E[s′] | C′〉 [B-BULLETCTX] 〈B[•] | C〉 •−→ 〈• | C〉

[B-TREF]

ι < dom(σ) Σσ ` v : τ
M =M′, `m `m / τ label(τ)⇒ `t

〈ref v τ | C〉 •−→ 〈ι | C[σ[ι 7→ (v, τ)]/σ]〉

[B-UREF]

ι < dom(σ) Σσ ` v : τ
M =M′, `m `m / τ label(τ); `t

〈ref v τ | C〉 •−→ 〈ι | C[σ[ι 7→ (•, τ)]/σ]〉 [B-BASSIGN] 〈• := v | C〉 •−→ 〈() | C〉

[B-TASSIGN]

Σσ(ι) = τ Σσ ` v : τ
M =M′, `m `m / τ label(τ)⇒ `t

〈ι := v | C〉 •−→ 〈() | C[σ[ι 7→ (v, τ)]/σ]〉

[B-UASSIGN]

Σσ(ι) = τ Σσ ` v : τ
M =M′, `m `m / τ label(τ); `t

〈ι := v | C〉 •−→ 〈() | C[σ[ι 7→ (•, τ)]/σ]〉

Figure 4.11: Small-step operational semantics for SeRIF with bullets.

values that are in low-integrity memory locations, while treating high-integrity

memory locations normally. When reading from the heap, it produces •whenever

it tries to read from a location that has a type but not a value. In our construction

for our proof, these will be precisely the low-integrity locations.

We now claim that, if CT is endorsement-free at `t, then any invocation with

input state σ1 will, under normal semantics, produce a state σ2 that is `t-equivalent

to executing the same invocation under bullet semantics with input state σ1|`t .

Lemma 4.8 (Label Stack Maintenance). For any expression e, if

〈e | (CT , σ,M, L)〉 −→∗ 〈v | (CT , σ′,M′, L′)〉,

thenM′ =M and L′ = L.

205

Proof. This will be a proof by induction on the number of steps from e to v and

on the operational semantics. In the base case, there are zero steps, so the result

trivially holds.

We now assume 〈e | (CT , σ,M, L)〉 −→∗ 〈v | (CT , σ′,M′, L′)〉 takes n ≥ 1 steps and

the result holds for all executions of k < n steps. We consider the following cases.

Case E-EVAL: If E = [·], we can replace this step with another, so without loss

of generality, we assume E , [·]. Since e = E[ẽ] is an expression, ẽ is also

an expression and E = let x = x in E′e′′. By inversion on the operational

semantics, E-EVAL is the only rule that can apply until ẽ reaches some value

ṽ. Moreover, E[ṽ] is not a value, so 〈ẽ | C〉 −→∗ 〈ṽ | C̃〉 in fewer steps. By

induction, we therefore have that M̃ = M and L̃ = L. Moreover, since E[ẽ]

was surface syntax, E[ṽ] must be as well. Therefore, another application of

our inductive hypothesis proves

〈E[ẽ] | (CT , σ,M, L)〉 −→∗ 〈E[ṽ] | (CT , σ̃,M, L)〉 −→∗ 〈v | (CT , σ′,M, L)〉

Cases E-IFT and E-IFF: Because e = if{pc} v′ then e1 else e2 was surface-syntax, ei

must also be surface syntax. Inspection on the semantic rules says that any

expression of the form ẽ at-pc pc can only step using E-EVAL if ẽ steps or

E-ATPC if ẽ is a value. Therefore, we know that 〈ẽ | C〉 −→∗ 〈v | C′〉, and then

v at-pc pc steps once using E-ATPC. By induction on the number of steps, we

therefore have thatM′ =M and L′ = L.

Case E-LOCK: This case is similar to the previous case. Here e = lock ẽ in ` and ẽ

is surface-syntax. We also know that 〈e | C〉 −→ 〈ẽ with-lock ` | C[L, `/L]〉. By

the same argument as above, ẽ must step to a value in fewer steps, so by

induction

〈ẽ | (CT , σ,M, (L, `))〉 −→∗ 〈v | (CT , σ′,M, (L, `))〉

206

A single application of E-UNLOCK then gives us the desired result.

Cases E-CALL and E-CALLATK: These cases are identical to the previous one, but

modifyingM instead of L and using E-RETURN instead of E-UNLOCK.

Cases E-UNLOCK and E-RETURN: These are impossible because e is surface-syntax.

In all other cases, stepping e once continues to be surface syntax and leaves M
and L unmodified. We can therefore remove a single step and apply our inductive

hypothesis. �

Lemma 4.9 (Step Confinement). For a state σ1 where Σ ⊆ Σσ1 and a statement s1, if

1. Σ ` CT ok is endorsement-free at `t,

2. ` σ1 wt,

3. Σ; Γ; pc; `I ` s1 : τ a `O,

4. pc; `t,

5. for all sub-statements s at-pc pc′ of s1, pc′ ; `t, and

6. 〈s1 | (CT , σ1,M1, L1)〉 −→ 〈s2 | (CT , σ2,M2, L2)〉,
then

• σ1 ≈`t σ2 and

• for all sub-statements s at-pc pc′ of s2, pc′ ; `t.

Proof. This will be a proof by induction on the semantic rule used to take a step.

The following are the nontrivial cases.

Case E-EVAL: In this case s1 = E[s̃1]. We claim by induction on E that, for some

pc′, `′I, τ
′, and `′O where pc′ ; `t, Σ; Γ; pc′; `′I ` s̃1 : τ′ a `′O. If E = [·], this

follows directly from our assumptions. If E = let x = x in E′s′, returnτ E′, or

E′ with-lock `, we note that Σ; Γ; pc; `′I ` E′[s̃1] : τ′ a `′O for some `′I, τ
′, and `′O,

so by induction on E, we have the desired result. If E = E′ at-pc pc′′, we note

that Σ; Γ; pc′′; `′I ` E′[s̃1] : τ a `O and, by assumption, pc′′ ; `t. Thus induction

on E again gets us the desired typing judgment.

207

E-EVAL tells us 〈s̃1 | (CT , σ1,M1, L1)〉 −→ 〈s̃2 | (CT , σ2,M2, L2)〉 and s2 = E[s̃2].

Since s̃1 is a sub-statement of s1, it must satisfy hypothesis 5, and the typing

judgment above gives us hypotheses 3 and 4. Induction on the operational

semantics therefore gives us σ1 ≈`t σ2 and, for all sub-statements e at-pc pc′

of s̃2, pc′ ; `t. By hypothesis 5, the same must be true of E, so therefore

E[s̃2] = s2 satisfies the required condition.

Cases E-IFT and E-IFF: Here s1 = if{pc′} v then s′1 else s′2. We know that σ1 = σ2,

so that condition is trivially true. Both s′1 and s′2 are surface-syntax, so they

contain no sub-statement of the form e at-pc pc′′, meaning the only such sub-

statement in s2 = s′i at-pc pc′ is the outer one. By inversion on the typing rules,

we know that pc⇒ pc′, so by transitivity, pc′ ; `t.

Case E-REF: Here s1 = ref v τ′. By inversion on the typing rules, we know that

pc / τ′, and by assumption, pc ; `t. Therefore, since ι < dom(σ1) and σ2 =

σ1[ι 7→ (v, τ′)], we know that σ1|`t = σ2|`t , which is exactly the definition of

σ1 ≈`t σ2. There are no sub-statements of the form e at-pc pc′, so that result is

trivially true.

Case E-ASSIGN: Here s1 = ι := v. By inversion on the typing rules, we know Σ(ι) =

τ′ and pc / τ′. By assumption, pc; `t, so therefore ι < dom((|`tσ1)). Given this

and the fact that Σσ2 = Σσ1 , again σ1 ≈`t σ2, as desired. As in the previous case,

there are no sub-statements of the form e at-pc pc′.

Cases E-CALL and E-CALLATK: In both of these cases, s1 = new C(v).m(w) with

mbody(C,m) =
(
`m, x, τa, pc1�pc2, e, τ

)
. Inversion on the typing rules proves

that pc⇒ pc1, and by assumption, pc; `t. Therefore, by transitivity, pc1 ; `t,

so, by the definition of CT being endorsement-free at `t, it must be the case

that pc2 ; `t. Moreover, e[x 7→ w, this 7→ new C(v)] is surface-syntax, so the

only sub-statement of the form s′ at-pc pc′ on s2 is the outer one where pc′ =

208

pc2, and we just proved pc2 ; `t. Finally, the step leaves the heap and heap

type unmodified, finishing the case.

All other cases leave the heap and heap type unmodified and do not add sub-

statement of the form e at-pc pc′, making the result trivial in those cases. �

Corollary 4.1 (Confinement). Given a class table CT and an expression (not statement)

e, if

• CT and e are both endorsement-free at `t,

• Σσ ` CT ok,

• Σσ; Γ; pc; `I ` e : τ a `O for some pc; `t, and

• 〈e | (CT , σ,M, L)〉 −→∗ 〈v | (CT , σ′,M′, L′)〉,
then σ ≈`t σ

′,M =M′, and L = L′.

Proof. We apply Lemma 4.8 and inductively apply Lemma 4.9 using the fact that

expressions cannot contain any subexpressions of the form e′ at-pc pc′. �

We aim to prove something about execution in our regular semantics through

execution in our semantics with bullets, so we need a way to relate terms with and

without bullets. We do this using a syntactic relation denoted e1 ≥• e2 to indicate

that e2 is just e1 but possibly with some information erased. On values, the relation

is defined as follows.

v , •

v ≥• v

v < {x, •}

v ≥• •

v ≥• w

new C(v) ≥• new C(w)

We extend this relation to typing proofs. We first relate typing proofs of closed

values (so proofs that do not use VAR) to value typing proofs using BULLET. Note

that we do not mandate that the heap types be the same at every location so long

209

as they are the same at the locations used in the typing proof. That is

[LOC]
Σ1(ι) = τ

Σ1; Γ ` ι : (ref τ)`
≥•

Σ2(ι) = τ

Σ2; Γ ` ι : (ref τ)`
[LOC]

whenever Σ1(ι) = Σ2(ι), though if Σ1 and Σ2 may differ on other locations. Notably,

if Σ1(ι) = τ , Σ2(ι) (possibly because ι < dom(Σ2)) and ` ; `t, then,

[LOC]
Σ1(ι) = τ

Σ1; Γ ` ι : (ref τ)`
≥•

` ; `t

Σ2; Γ ` • : (ref τ)`
[BULLET].

We finally extend the relation to typing proofs of expressions and statements

by extending it structurally. That is, if the typing proofs of each sub-statement is

related, then the typing proof of the whole statement is related. For example,

π1

Σ1; Γ ` v1 : τ
≥•

π2

Σ2; Γ ` v2 : τ

π1

Σ1; Γ ` v1 : τ pc / τ

Σ1; Γ; pc; `I ` ref v τ : (ref τ)` a `O

≥•

π2

Σ2; Γ ` v2 : τ pc / τ

Σ2; Γ; pc; `I ` ref v τ : (ref τ)` a `O

We usually denote this relation Σ1; Γ; pc; `I ` s1 : τ a `O ≥• Σ2; Γ; pc; `I ` s2 : τ a `O.

We now use this relation to relate executions in the regular semantics and the

erasure semantics. For this we use a slightly modified erasure procedure on heaps,

σ|•`t
. Instead of simply removing all low-integrity mappings, it instead replaces the

values with •.

σ|•`t
(ι) ,

(v, t`) if σ(ι) = (v, t`) and ` ⇒ `t

(•, t`) if σ(ι) = (v, t`) and ` ; `t

Lemma 4.10 (Bullet Semantics Completeness). Let Ci = (CT , σi,M, L). If

• Σσ1; Γ; pc; `I ` s1 : τ a `O ≥• Σσ2; Γ; pc; `I ` s2 : τ a `O,

210

• 〈s1 | C1〉 −→ 〈s′1 | C′1〉,
then 〈s2 | C2〉 •−→ 〈s′2 | C′2〉.

Proof. This is a proof by induction on the operational semantics of s1 −→ s′1.

Case E-EVAL: By induction on E, if s1 = E[s̃1], then s2 = E′[s̃2] where s̃1 ≥• s̃2. By

induction on the operational semantics, 〈s̃2 | C2〉 •−→ 〈s̃′2 | C′2〉, and B-EVAL

applies to complete the case.

Cases E-IFT and E-IFF: Here the statement s1 = if{pc} ṽ then ẽ1 else ẽ2, and the

statement s2 = if{pc} v• then e•1 else e•2. We consider two sub-cases. First, if

v• = •, we see that 〈s2 | C2〉 •−→ 〈• | C2〉 by B-BULLETCTX. If v• , •, then v• = ṽ,

and therefore B-PURESTEP allows s2 to step, as desired.

Cases E-CAST, E-FIELD, E-CALL, and E-CALLATK: These cases follow the same

logic as the previous case, with their corresponding syntax.

Case E-REF: Here we have s1 = ref v1 τ so therefore s2 = ref v2 τ where v1 ≥• v2.

Inversion on E-REF provesM = M′, `m where `m / τ. SinceM is the same in

C1 and C2, if label(τ)⇒ `t, then B-TREF applies, and if not, B-UREF applies.

Case E-DEREF: Here s1 = !ι and s2 = !v where either v = • or v = ι. If v = •, then

B-BULLETCTX applies. Otherwise, we know that Σσ2; Γ; pc, `I ` !ι : τ a `O. By

inversion on the expression typing rules, we know that Σσ2; Γ ` ι : (ref τ)`, and

by inversion on the value typing rules, we therefore have Σσ2(ι) = τ. In other

words, ι ∈ dom(σ2), so B-PURESTEP applies with E-DEREF.

Case E-ASSIGN: Here s1 = ι := v and s2 = v1 := v2 where v1 = • or v1 = ι. If v1 = •,
then B-BASSIGN applies. Otherwise, because s1 is well-typed with Σσ1 , inver-

sion on the typing rules proves Σσ1(ι) = τ′. Because s1 steps with E-ASSIGN,

inversion on E-ASSIGN proves M = M′, `m where `m / τ′. By inversion on

the ≥• relation, it must be the case that Σσ2(ι) = τ′ and Σσ2; Γ ` v2 : τ′. Since

211

M is the same in C1 and C2, this is sufficient to apply one of B-TASSIGN or

B-UASSIGN, depending on label(τ′).

For all other cases, the heap remains unmodified and no decisions are made based

on a value that may be •, so B-PURESTEP applies to s2 using the same step that

applied to s1. �

Lemma 4.11 (Bullet Step Correspondence). For any class table CT , statements s1 and

s2, heaps σ1 and σ2, and heap-type Σ, if

• Σ ` CT ok is endorsement-free at `t,

• s1 and s2 are endorsement-free at `t,

• ` σi wt for both i = 1, 2,

• σ1 ≈`t σ2 with σ2 ⊆ σ1|•`t
,

• Σ ⊆ Σσ2 ,

• Σσ1; Γ; pc; `I ` s1 : τ a `O ≥• Σσ2; Γ; pc; `I ` s2 : τ a `O, and

• 〈s1 | (CT , σ1,M, L)〉 −→+ 〈v | C〉,
then there exists statements s′1 and s′2, heaps σ′1 and σ′2, and label stacksM′ and L′ such

that

• 〈s1 | (CT , σ1,M, L)〉 −→+ 〈s′1 | (CT , σ′1,M′, L′)〉,
• 〈s2 | (CT , σ2,M, L)〉 •−→ 〈s′2 | (CT , σ′2,M′, L′)〉,
• s′1 and s′2 are endorsement-free at `t,

• ` σ′i wt for both i = 1, 2,

• σ′1 ≈`t σ
′
2 with σ′2 ⊆ σ′1|•`t

, and

• Σσ′1; Γ; pc; `I ` s′1 : τ a `O ≥• Σσ′2; Γ; pc; `I ` s′2 : τ a `O.

Proof. By Lemma 4.10, the fact that s1 −→+ v means that s2 •−→ s′2. This will be

a proof by induction on the rule used to prove s2 •−→ s′2, though in the case of

B-TREF, we may need to construct a new, different s′2.

Case B-PURESTEP: We have that s1 −→ s′1 by whatever step was used in the hy-

212

pothesis of B-PURESTEP. To prove the typing proofs correspond, we note

that, for most possible steps, both s′1 and s′2 type-check by the same logic as in

the proof of Theorem 4.6, meaning the typing proofs transform in the same

way. The exception is E-ENDORSE. Here let s2 = endorse v2 from `′ to ` and

consider two cases: if v2 = • and if v2 , •. When v2 , •, the same argument as

in Theorem 4.6 applies, and s1 = endorse v1 from `′ to ` follows the same step

by the same argument. When v2 = •, inversion on the typing rules gives us

that `′ ; `t. Because we know s2 is endorsement-free at `t, this means ` ; `t,

so therefore Σ; Γ ` • : t`. Again, s1 follows E-ENDORSE and the typing proofs

correspond.

For the heap correspondence and well-typed conditions, we note that the

heaps and their types remain unchanged for both executions. To maintain

endorsement-freedom at `t, most possible steps cannot add new terms, so

they cannot add new endorse terms. E-CALL and E-CALLATK, however, can

introduce new terms into s′1 and s′2 that may not have been present in s1 and

s2. Because CT is endorsement-free at `t, any new sub-statements of the form

endorse v from `′ to ` must have the required property.

Case B-EVAL: In this case s2 = E2[s̃2] and s̃2 •−→ s̃′2. By inversion on s1 ≥• s2, it must

be the case that s1 = E1[s̃1] where s̃1 ≥• s̃2. By inversion on the set of evalua-

tion contexts, s1 can only step through E-EVAL and no other steps. Therefore,

by induction, on the •−→ relation, s̃1 −→ s̃′1 with the required properties, so

E-EVAL gives us everything except correspondence of the typing proof. We

get that by noting that we can apply Lemma 4.5 in exactly the same way to

both proofs.

Case B-BULLETCTX with B = ![·], (C)[·], or [·]. f : Here we have that s2 = B[•], so

by inversion on s1 ≥• s2, we know that s1 = B[v1] for some non-bullet value

213

v1. By the fact that s1 −→+ v, we know that s1 must step, so by inspection on

the operational semantics, it must step with E-DEREF, E-CAST, or E-FIELD,

depending on the syntactic form. In each case the result is a non-variable

value v′1, so therefore s′1 = v′1 ≥• • = v′2 with typing proofs using VAL to get to

a value typing judgment that allows them to differ on •. The heap does not

change.

Case B-BULLETCTX with B = if{pc′} [·] then e2
1 else e2

2: First we note that s′2 = • and

σ′2 = σ2. Inversion on the typing rules proves that Σσ2; Γ ` • : bool` for some

` ; `t and ` / τ, meaning BULLET gives us Σσ2; Γ ` • : τ. We now examine s1

and the corresponding steps.

Because Σσ1; Γ; pc; `I ` s1 : τ a `O ≥• Σσ2 ; Γ; pc; `I ` s2 : τ a `O, it must be

the case that s1 = if{pc′} v1 then e1
1 else e1

2. This syntactic structure ensures

that s1 must step with one of E-IFT or E-IFF. Because we have assumed that

〈s1 | (CT , σ1,M, L)〉 −→+ 〈v | C〉, we further know that

〈s1 | (CT , σ1,M, L)〉 −→ 〈e1
i at-pc pc′ | (CT , σ1,M, L)〉

−→∗ 〈v at-pc pc′ | C〉

−→ 〈v | C〉.

By inspection on the semantic rules, E-EVAL must apply in each of the steps

in the middle segment, meaning 〈e1
i | (CT , σ1,M, L)〉 −→∗ 〈v | C〉.

The correspondence of the typing proof with s1 proves that Σσ1; Γ ` v1 : bool`

for some ` ; `t. Inversion on that typing proof reveals that ` ⇒ pc′ and

Σσ1; Γ; pc′; `I ` e1
i : τ a `O. By Corollary 4.1, M′ = M and L′ = L, and σ′1 ≈`t

σ1 ≈`t σ2 = σ′2. By inductively applying Theorem 4.6, we get σ′1 ⊇ σ1, so

σ′2 = σ2 ⊆ σ1|•`t
⊆ σ′1|•`t

.

214

By letting s′1 = v and noting that all values are endorsement-free at `t, we

complete the case.

Case B-BULLETCTX with [·].m(v): This case is very similar to the previous case.

Again, s′2 = • and σ′2 = σ2. Also, inversion on the typing rules gives us Σσ2; Γ `
• : C` for some ` ; `t, and ` / τ, again allowing BULLET to prove Σσ2; Γ ` • : τ.

We again turn to s1.

The typing correspondence now means s1 = v1.m(w), so it must step us-

ing E-CALL or E-CALLATK. Therefore v1 = new C(w′) and mbody(C,m) =(
`m, x, τa, pc1�pc2, e, τ

)
. Again, we know that it steps to a value, so now

〈s1 | (CT , σ1,M, L)〉 −→ 〈(returnτ e′) at-pc pc2 | (CT , σ1, (M, `m), L)〉

−→∗ 〈(returnτ v) at-pc pc2 | (CT , σ′1,M′
1, L

′
1)〉

where e′ = e[x 7→ w, this 7→ new C(w′)] is an expression. Additionally, Theo-

rem 4.6 ensures Σσ1; Γ; pc2; `′I ` e′ : τ a `′O. By the correspondence of the typing

proofs of s1 and s2, we know that Σσ2; Γ; pc; `I ` •.m(v) : τ a `O interpreting •
as Σσ2; Γ ` • : C`. Inversion on the typing rules therefore gives us that ` ; `t

and ` ⇒ pc1. By transitivity, we know that pc1 ; `t, so by the fact that CT

is endorsement-free at `t, we have that pc2 ; `t. Therefore, we can apply

Corollary 4.1 to our above semantic steps, giving:

• σ′1 ≈`t σ1 ≈`t σ2 = σ′2,

• M′
1 =M, `m, and

• L′1 = L.

Again, Theorem 4.6’s result tells us σ′1 ⊇ σ1, meaning σ′2 ⊆ σ′1|•`t
. Applying

E-ATPC and E-RETURN while letting s′1 = v completes the case.

Case B-TREF: Here we take the s̃′2 from Lemma 4.10 as a candidate, which we may

modify. In particular, we note that s2 = ref v2 τ
′, so by the typing correspon-

215

dence, s1 = ref v1 τ
′. Therefore, s1 must step using E-REF, giving s′1 = ι for

some ι < dom(σ1) and σ′1 = σ1[ι 7→ (v1, τ
′)].

For s′2, we know that dom(σ2) ⊆ dom(σ1), so ι < dom(σ2). We also know that s2

could step using B-TREF, so we can use the same step, setting the location to

ι. Therefore, σ′2 = σ2[ι 7→ (v2, τ
′)]. The fact that s′2 is well-typed in Σσ′2 follows

directly from this extension.

Endorsement-freedom of s′1 and s′2, typing correspondence, and that σ′1 ≈`t σ
′
2

are now straightforward. To show that σ′2 ⊆ σ′1|•`t
, we note that the typing cor-

respondence between v1 and v2 means that either v2 = v1 or v2 = •. The sec-

ond case is impossible because label(τ′)⇒ `t, so inversion on the typing rules

demonstrates Σσ2; Γ 0 • : τ′. With v2 = v1, the relation between σ′1 and σ′2 fol-

lows directly from their definitions and the corresponding relation between

σ1 and σ2.

Case B-UREF: Using the same logic as the previous case, s1 must step using E-REF,

and we can make s′2 = s′1 = ι for some ι < dom(σ1) ⊇ dom(σ2). We again have

that s′1 and s′2 correspond and are well-typed and that σ′1 ≈`t σ
′
2. Finally, we

note that, by assumption from B-UREF, s2 = ref v2 τ
′ where label(τ′) ; `t.

Therefore, σ′1|•`t
= σ1[ι 7→ τ′]|•`t

= σ1|•`t
[ι 7→ (•, τ′)], and correspondingly, σ′2 =

σ2[ι 7→ (•, τ′)]. The correspondence follows from the correspondence between

σ1 and σ2.

Case B-BASSIGN: Here s2 = • := v2, so s1 = ι := v1 where v1 ≥• v2. By inversion

on the typing rules and the ≥• relation, we know that Σσ1; Γ ` ι : ref τ′` and

Σσ2; Γ ` • : ref τ′`. Moreover, we know that ` ; `t and ` / τ. Since s1 steps,

it must step with E-ASSIGN, meaning σ′1 = σ1[ι 7→ (v1, τ
′)]. Therefore σ′1|•`t

=

σ1|•`t
⊇ σ2 = σ′2. Letting s′1 = s′2 = () completes the case.

Case B-TASSIGN: This is similar to the B-TREF case, but we do not need to con-

216

struct a new location, as s2 = ι := v. We also know by the same logic as in that

case that v , •, so s1 = s2. B-TASSIGN and E-ASSIGN produce precisely the

same output on the same input, proving the case.

Case B-UASSIGN: Here we note that s2 = ι := v2, meaning s1 = ι := v1 where

v1 ≥• v2 and i ∈ dom(σ2). By inversion on the typing rules, we know that

Σσi(ι) = τ′ for both i = 1, 2 and some τ′ where label(τ′); `t. Therefore, s1 steps

using E-ASSIGN, so σ′1 = σ1[ι 7→ (v1, τ
′)] where σ1(ι) = (v, τ′) for some v. As

a result, σ′2 = σ2 ⊆ σ1|•`t
= σ′1|•`t

. The two steps result in s′1 = s′2 = (), so the

statements type-check with corresponding rules. �

Corollary 4.2. For any class table CT , heap type Σ, and expression (not statement) e, if

• Σ ` CT ok is endorsement-free at `t,

• e is endorsement-free at `t,

• Σ ⊆ Σσ1 ,

• Σ; Γ; pc; `I ` e : τ a `O,

• ` σ1 wt, and

• 〈e | (CT , σ1,M, L)〉 −→∗ 〈v | (CT , σ′1,M′, L′)〉,
then there is some value v′, heap σ′2, and heap type Σ′2 such that

• 〈e | (CT , σ1|•`t
,M, L)〉 •−→∗ 〈v′ | (CT , σ′2,M′, L′)〉 and

• σ′1 '`t σ
′
2.

Proof. This proof follows from Lemma 4.11 and induction on the number of steps,

letting s1 = s2 = e and σ2 = σ1|•`t
to start. If there are zero steps—that is e = s1 = v—

then we are done. Otherwise Lemma 4.11 allows us to step s2 once using •−→
and provides a corresponding set of steps using −→ for s1. The result may have

differently-named locations from the original, but Theorem 4.5 allows us to con-

tinue stepping a location-name isomorphic expression. The steps therefore main-

tain all requirements to apply Lemma 4.11 again until s1 reaches a value. At that

217

point, we are assured σ′2 ⊆ σ′′1 |•`t
and σ′1 ≈`t σ

′′
1 for some σ′′1 ' σ′1. Therefore

σ′1 '`t σ
′
2. �

Theorem 4.1 (Noninterference). Let CT be a class table where Σ ` CT ok is endorsement-

free at `t. For any well-typed heaps σ1 and σ2 such that Σ ⊆ Σσi and any invocation I such

that Σ ` I and (I,CT , σi) ⇓ σ′i , if σ1 '`t σ2, then σ′1 '`t σ
′
2.

Proof. First we note that since Σ ⊆ Σσi , Lemma 4.4 means Σσi ` CT ok for both i =

1, 2, meaning our various lemmas apply in both cases. Without loss of generality,

we assume σ1 ≈`t σ2, since we can permute the location names in one to match the

other and permute the results back later. There exists a unique

σ̃ = σ1|•`t
= σ2|•`t

Let I = (ι,m(v), `). Note that !ι.m(v) is an expression with no endorse statements

and Σ ` !ι.m(v) : τ for some τ. Therefore, by Corollary 4.2,

〈!ι.m(v) | (CT , σ̃, `, ·)〉 •−→∗ 〈v | (CT , σ̃′, `, ·)〉

where σ̃′ '`t σ
′
i for both i = 1, 2. Transitivity of '`t then proves σ′1 '`t σ

′
2. �

4.12 Proof of Reentrancy Security

We now prove Theorem 4.2. As discussed in Section 4.5.3, we do this by first prov-

ing Theorem 4.3 saying all reentrancy is tail-reentrancy and Theorem 4.4 that says

tail reentrancy is secure according on Definition 4.9.

4.12.1 SeRIF Allows Only Tail Reentrancy

We start by proving Theorem 4.3. We prove this theorem using the general for-

mulation of “trusted” and “untrusted” labels. In particular, we partition L into a

218

downward-closed sublattice T and the attacker-controlled labelsA = T . Notation-

ally, we will use `t to denote some trusted label (`t ∈ T), rather than a distinguished

one. We refer to code complying with locks in T -code, to mean it complies with

locks in `t-code for all `t ∈ T .

Finally, we will prove the result for two adversarial models: one in which the

E-CALLATK rule is admissible and A is a sublattice, and the other where the

E-CALLATK rule is not admissible, but A has no restrictions beyond A = T .

These two proofs are extremely similar. Indeed, they differ only in a single case

of Lemma 4.15 and Lemma 4.16 on which it relies. We will specifically call out the

differences when they arise.

The proof follows the following general structure. First we show that high-

integrity code maintains all of the input locks `I it claims to and the operational

semantics maintain all dynamic locks. Second, we will show that, if a statement

that complies with locks steps to an auto-endorse call, it cannot comply with a lock

on any label that call endorses through (i.e., one that does not trust pc1 but does

trust pc2). Finally, we connect these to show that, for low-integrity call from a high-

integrity context that proceeds to make a reentrant call, the original low-integrity

call must have been in tail position form the original high-integrity execution.

To discuss the security of an invocation mid-evaluation, we need to discuss the

security of a statement s with respect to locks. We do this using several different

tools. First, we extend our notion of lock compliance in T -code to statements. We

219

do this with a judgment pc T̀ s cwl. The nontrivial rules are as follows.

pc T̀ e1 cwl pc T̀ e2 cwl

pc T̀ (if{pc′} v then e1 else e2) cwl

pc T̀ e cwl

pc T̀ (lock ` in e) cwl

pc T̀ s cwl

pc T̀ (s with-lock `) cwl

pc T̀ s cwl pc T̀ e cwl

pc T̀ (let x = s in e) cwl

pc T̀ s cwl

pc T̀ (returnτ s) cwl

pc′ T̀ s cwl

pc T̀ (s at-pc pc′) cwl

pc T̀ s cwl pc < T

pc T̀ (ignore-locks-in s) cwl

If s has none of the syntactic forms in the rules defined above, then pc T̀ s cwl for

any pc andT . Note that, because at-pc terms are statements but not expressions, for

any expression e, pc T̀ e cwl if one of two conditions holds: either pc < T or e has

no subexpressions of the form ignore-locks-in e′. As a result, we can also specify our

definition of lock compliance from class tables using this judgment. Specifically,

CT complies with locks in T -code~www�
CT(C) = class C[`C] extends D { f :τ f ; K ; M}

τ m{pc1�pc2; `O}(x :τa) {e} ∈ M

`C T̀ e cwl
is admissible for CT

Lemma 4.12. If pc T̀ s cwl and pc⇒ pc′, then pc′ T̀ s cwl.

Proof. By simple induction on the definition of pc T̀ s cwl. �

We will also be considering statements in the middle of evaluation, so we need

a way to extract the pc label that we expect sub-statements to type-check with, and

similarly we need to extract the list of dynamic locks that will be present when a

sub-statement completes executing. We do that using the following two recursive

220

functions defined on evaluation contexts.

getLocks(L, E) =

L if E = [·]

getLocks((L, `), E′) if E = E′ with-lock `

getLocks(L, E′) if E = let x = E′ in e, returnτ E′, or E′ at-pc pc

innerPc(pc, E) =

pc if E = [·]

innerPc(pc′, E′) if E = E′ at-pc pc′

innerPc(pc, E′) if E = let x = E′ in e, returnτ E′, or E′ with-lock `

We extend both of these to statements by getLocks(L, E[e]) = getLocks(L, E), and

similarly for innerPc.

Definition 4.12 (Configuration Safety). A pair 〈s | (CT , σ,M, L)〉 of statement and

configuration is T -safe with pc and L̂ if

1. Σσ ` CT ok complies with locks in T -code,

2. ` σ wt,

3. Σσ; Γ; pc; `I ` s : τ a `O,

4. pc T̀ s cwl,

5. L = getLocks(L̂, s), and

6. for any E and s′ where E , E′[returnτ [·]] and pc′ = innerPc(pc, E) ∈ T , if

s = E[s′] then there is some `′I such that Σσ; Γ′; pc′; `′I ` s′ : τ′ a `′O and

(
∧

getLocks(L̂, E)) ∧ `′I ⇒ pc′.

Lemma 4.13. If 〈E[s] | C〉 is T -safe at pc and L, then 〈s | C〉 is T -safe at innerPc(pc, E)

and getLocks(L, E).

Proof. By induction on E and the definitions of innerPc and getLocks. �

Lemma 4.14 (Preservation of T -Safety). If 〈s | C〉 is T -safe with pc and L̂, and

〈s | C〉 −→ 〈s′ | C′〉, then 〈s′ | C′〉 is T -safe with pc and L̂.

221

Proof. Condition 1 follows from Lemma 4.3 and the fact that CT must remain un-

changed. Conditions 2 and 3 follow directly from Theorem 4.6. We prove the other

three conditions by induction on the operational semantics. Notationally, we let

C = (CT , σ,M, L) and C′ = (CT , σ′,M′, L′). Also, by assumption, there is some `′I

such that Σσ; Γ; pc; `′I ` s : τ a `O and (
∧

L̂) ∧ `′I ⇒ pc. We assume without loss of

generality that `I has this property.

Case E-EVAL: In this case s = E[s̃], 〈s̃ | C〉 −→ 〈s̃′ | C′〉, and s′ = E[s̃′]. Let

pc′ = innerPc(pc, E) and L̂′ = getLocks(L̂, E). By Lemma 4.13, we know that

s̃ is T -safe at pc′ and L̂′, so by induction on the operational semantics, 〈s̃′ | C′〉
is as well. We also note that Σσ; Γ′; pc′; `′I ` s̃ : τ′ a `′O.

By the safety of 〈s | C〉, for every pair of sub-contexts E1 and E2 such that

E = E1[E2], either p̃c = innerPc(pc, E1) < T , E1 = E′1[returnτ [·]], or Σσ; Γ̃; p̃c; ˜̀I `
E2[s̃] : τ1 a ˜̀

O for some ˜̀I where (
∧

getLocks(L̂, E1))∧ ˜̀I ⇒ p̃c. By Theorem 4.6,

Σσ′; Γ′; pc′; `′I ` s̃′ : τ′ a `′O, so by Lemma 4.5, we also have that Σσ′; Γ̃; p̃c; ˜̀I `
E2[s̃′] : τ1 a ˜̀

O. As this holds for every choice of E1 and E2, this proves the

case.

Cases E-IFT and E-IFF: In both cases we have s = if{pc′} v then e1 else e2 and s′ =

ei at-pc pc′ for either i = 1 or 2. By inversion on the typing rules, pc ⇒ pc′

and Σσ; Γ; pc′; `I ` ei : τ a `O for both i = 1, 2. Moreover, by Lemma 4.12,

pc′ T̀ ei cwl, so Condition 4 holds for s′. Because e1 and e2 are expressions,

we know that if ei = E[s̃], then E consists entirely of let and ignore-locks-in

statements and s̃ is an expression. Therefore, if pc′ < T , then Condition 6 is

trivial.

If pc′ ∈ T , then because T is downward-closed, pc ∈ T . Because pc T̀ ei cwl,

ignore-locks-in cannot appear in e in this sub-case, so E consists entirely of

let statements. As a result, Σσ; Γ′; pc′; `I ` s̃ : τ′ a `O for some Γ′ ⊇ Γ and τ′.

222

Because (
∧

L̂) ∧ `I ⇒ pc ⇒ pc′, this proves that 〈ei | C′〉 is T -safe at pc′ and L̂.

Since s′ = ei at-pc pc′, the T -safety transfers to 〈s′ | C′〉.

Case E-LET: Here s = (let x = v in e) and s′ = e[x 7→ v]. Theorem 4.6 proves

Σσ; Γ; pc; `I ` s′ : τ a `O. Moreover, because s′ is an expression, by the same

logic as in the previous case, 〈s′ | C′〉must be T -safe at pc and L̂.

Case E-LOCK: In this case s = lock ` in e. To prove Condition 5 holds, simply note

that L′ = (L, `) = (L̂, `) = getLocks(L̂, e with-lock `).

Next, inversion on the typing rules tells that Σσ; Γ; pc; `′I ` e : τ a `′O where

`′I ∧ ` ⇒ `I and `′O ∧ ` ⇒ `O. Further, we know that s′ = e with-lock `, L = L̂,

and L′ = (L, `) By Condition 4 on s, first Condition 4 holds trivially on s′, and

second, either pc ∈ T or e contains no ignore-locks-in terms, as e is an expres-

sion. Therefore, by the same logic as in the previous two cases, it suffices to

show Condition 6 holds when pc ∈ T and E = [·] with-lock `. Here we know

that Σσ; Γ; pc; `′I ` e : τ a `′O with `′I defined as above. As a result,

(∧
getLocks(L̂, E)

)
∧ `′I =

(∧
(L̂, `)

)
∧ `′I

=
(∧

L̂
)
∧ ` ∧ `′I

⇒
(∧

L̂
)
∧ `I

⇒ pc.

Case E-UNLOCK: Here s = v with-lock ` and s′ = v, so Condition 4 is trivial.

Condition 5 follows from the semantic rule that requires L = (L′, `), so if

getLocks(L̂, s) = L, then L̂ = L′ = getLocks(L̂, v). Condition 6 follows from the

fact that values type-check with any `I, including pc.

Cases E-CALL and E-CALLATK: In both of these cases, s = new C(v).m(w). If we

let mbody(C,m) =
(
`m, x, τa, pc1�pc2, e, τ

)
, then s′ = (returnτ e′) at-pc pc2 where

223

e′ = e[x 7→ w, this 7→ new C(v)]. By Condition 1 on s, we know that `C T̀ e′ cwl.

The METHOD-OK rule requires that `C ⇒ pc2, so therefore by Lemma 4.12

proves pc2 T̀ e′ cwl, proving Condition 4.

Since the body of the method is an expression and L = L′, Condition 5 holds

trivially.

For Condition 6, we consider multiple possible evaluation contexts E. If E =

[·], note that returnτ s′′ type-checks with any `I. If E = returnτ [·], then this is

precisely the caveat that Condition 6 does not restrict. If E = returnτ [·] at-pc pc2,

METHOD-OK ensures that Σσ; ·; pc2; `′I ` e′ : τ a `′O for some `′I ⇒ pc2. In par-

ticular, this means (
∧

L̂) ∧ `′I ⇒ pc2 regardless of the contents of L̂. Moreover,

because we know that pc2 T̀ e′ cwl and e′ is an expression, either pc2 < T ,

in which case Condition 6 is trivial in e′, or pc2 ∈ T and e′ does not contain

ignore-locks-in terms. In the second case, the same logic as in several previous

cases completes the proof that Condition 6 holds, and thus the case.

In all other cases the step leaves L unchanged and produces a value. All well-

typed value type check with any `I and pc T̀ v cwl for any label pc and value v, so

all conditions hold. �

Lemma 4.15. For any label `t ∈ T , statement s, configuration C = (CT , σ,M, L), lock list

L̂, if

1. 〈s | C〉 is T -safe with pc and L̂ for some label pc,

2. s contains no sub-statements of the form ignore-locks-in s′,

3. 〈s | C〉 −→∗ 〈E[new C(v).m(w)] | C′〉 −→ 〈s′ | C′′〉, and

4. mtype(C,m) = τa
pc1�pc2; ˆ̀

O−−−−−−−→ τ̂ with pc1 ; `t and pc2 ⇒ `t,

then for any `I and `O such that Σσ; Γ; pc; `I ` s : τ a `O, then (
∧

L̂) ∧ (`I ∨ `O); `t.

Proof. This is a proof by induction on the number of steps in premise 3. For the

base case of zero steps, s = E[new C(v).m(w)]. We prove this case by induction on E.

224

For these cases, we will use the notational short-hand s′ = E′[new C(v).m(w)] where

E′ will be defined in each inductive case.

Case E = [·]: The fact that 〈s | C〉 is T -safe with pc and L̂ directly means that

Σσ; Γ; pc; `I ` new C(v).m(w) : τ a `O. Inversion on the typing rules proves that

pc1 ⇒ pc2 ∨ `I. Because this expression steps again, inversion on the op-

erational semantics ensures that it must step using E-CALL, and therefore∧
`∈L(pc1 ⇒ pc2 ∨ `). Because ∧ produces the greatest lower bound and the

lattice is distributive,

pc1 ⇒
∧
`∈L

(pc2 ∨ `) ∧ (pc2 ∨ `I) = pc2 ∨
((∧

L
)
∧ `I

)
.

Moreover, because pc1 ; `t, transitivity of⇒ tells us that this label does not

act for `t. Yet pc2 ⇒ `t, so by the definition of join, it must be the case that

((
∧

L) ∧ `I); `t. Because `I ⇒ `I ∨ `O, and L = L̂ in this case, transitivity of⇒
and equality substitution proves (

∧
L̂) ∧ (`I ∨ `O); `t, as desired.

Case E = let x = E′ in e: In this case, inversion on the typing rules guarantees that

Σσ; Γ; pc; `I ` s′ : τ′ a `′O where `′O ⇒ `I. Premises 1 and 2 are clearly true for

〈s′ | C〉, so by induction on E, (
∧

L̂) ∧ (`I ∨ `′O) ; `t. Since `′O ⇒ `I, we know

that `I ∨ `′O = `I ⇒ `I ∨ `O. Transitivity of⇒ then proves the desired result.

Case E = returnτ E′: Inversion on the typing rules proves Σσ; ·; pc; `′I ` s′ : τ a `′O for

some `′I and `′O where `′I ∨ `′O ⇒ `O. As with the previous case, our inductive

hypothesis on E applies, giving us (
∧

L̂) ∧ (`′I ∨ `′O); `t. Because `′I ∨ `′O ⇒ `O

and `O ⇒ `I ∨ `O, transitivity of⇒ again gives us the desired result.

Case E = E′ with-lock `: Inversion on the typing rules proves Σσ; Γ; pc; `′I ` s′ : τ a `′O
where `′I ∧ ` ⇒ `I and `′O ∧ ` ⇒ `O. By the definition of getLocks, we know that

〈s′ | C〉 must be T -safe with pc and (L̂, `). Premise 2 is clearly true of s′ since

there is no added syntax, so induction on E proves (
∧

(L̂, `)) ∧ (`′I ∨ `′O) ; `t.

225

Using the above facts and the distributive property of the lattice,(∧
(L̂, `)

)
∧ (`′I ∨ `′O) =

(∧
L̂
)
∧ ` ∧ (`′I ∨ `′O)

=
(∧

L̂
)
∧ (

(`′I ∧ `) ∨ (`′O ∧ `)
)

⇒
(∧

L̂
)
∧ (`I ∨ `O).

Transitivity of⇒ finishes the case.

Case E = E′ at-pc pc′: Here 〈s′ | C〉 is T -safe at pc′ and L̂ and premise 2 clearly

holds, so induction on E proves the case.

Case E = ignore-locks-in E′: This case is impossible by premise 2.

We now move on to the inductive case on the number of steps. For all cases,

Lemma 4.14 ensures that premise 1 remains true after a single step. By inspection

on the operational semantics, we can introduce ignore-locks-in terms in only two

ways: directly through E-CALL and E-CALLATK and indirectly through E-EVAL.

Thus premise 2 inductively holds for all other steps. Similarly, premises 3 and 4

remain true by assumption at top-level. We can therefore directly apply our induc-

tive hypothesis for all steps except E-EVAL, E-CALL, and E-CALLATK. We handle

those cases explicitly.

For the case of E-EVAL where s = Ẽ[s̃], we induct on Ẽ and the operational

semantics.

Case Ẽ = [·]: Here induction on the operational semantic rule proves the case.

Case Ẽ = let x = Ẽ′ in e: We now consider two sub-cases: first is the case where

〈Ẽ′[s̃] | C〉 −→∗ 〈Ẽ′′[new C(v).m(w)] | C′〉 and second is the case where no such

steps exist. If there is such an evaluation, then all of the inductive hypotheses

hold for Ẽ′[s̃], so induction on Ẽ prove the case. If there is no such evaluation,

inspection on the operational semantics tells us that we can only step s using

E-EVAL stepping Ẽ′[s̃] until it steps to a value. Therefore, premise 3, ensures

226

that there is some value v and context Cv such that 〈Ẽ′[s̃] | C〉 −→+ 〈v | Cv〉.
Using E-EVAL on each step gives us

〈s | C〉 −→+ 〈let x = v in e | Cv〉 −→∗ 〈E[new C(v).m(w)] | C′〉 −→ 〈s̃ | C′′〉.

Therefore, 〈let x = v in e | Cv〉 satisfies our inductive hypothesis, so induction

completes the case.

For the other three possible cases of Ẽ, the same logic as in the base-case proof

above applies.

We now turn to when the step is E-CALL or E-CALLATK. In both cases, the

statement s = new D(v′).m′(w′) with mbody(D,m′) =
(
`m, x, τ′a, pc′1�pc′2, e, τ

)
. If we let

e′ = e[x 7→ w′, this 7→ new D(v′)], this steps to (returnτ e′) at-pc pc′2. We handle this in

two sub-cases: if pc′2 ∈ T and if pc′2 < T .

If pc′2 ∈ T , then METHOD-OK proves that `m ⇒ pc′2 and therefore `m ∈ T . Be-

cause 〈s | C〉 isT -safe, the method body e, and hence e′, cannot have any subexpres-

sions of the form ignore-locks-in e′′. Therefore the new statement satisfies premise 2

of this lemma, allowing us to apply the inductive hypothesis.

If pc′2 < T , we claim that (
∧

L̂) ∧ pc′2 ; `t, which we prove differently based on

the security assumptions of the system: eitherA = T is a sublattice, or E-CALLATK

is not admissible. In both cases we will apply Lemma 4.16 to the configuration

after taking this step. To meet the requirement of the lemma that there is no sub-

statement of the form s′ at-pc pc′, we use 〈e′ | (CT , σ, (M, `m), L)〉, noting that this

configuration is T -safe with pc′2 and L̂.

Because pc′2 < T , Lemma 4.16 proves that (
∧

L̂) ∈ A. When A is a sublattice, it

is closed under meet, so (
∧

L̂) ∧ pc′2 ∈ A. By the downward-closed property of T ,

that means (
∧

L̂) ∧ pc′2 ; `t.

If E-CALLATK is not admissible, Lemma 4.16 proves that pc′2 ⇒ pc2 ∨ (
∧

L̂). By

227

the definition of meet and the distributive property of the lattice,

pc′2 =
(
pc2 ∨

(∧
L̂
))
∧ pc′2 = (pc2 ∧ pc′2) ∨

((∧
L̂
)
∧ pc′2

)
.

By assumption on this sub-case, pc′2 < T and therefore pc′2 ; `t, so at least one of

the two sides of the join cannot act for `t. However, the definition of meet gives

pc2 ∧ pc′2 ⇒ pc2 ⇒ `t. Therefore (
∧

L̂) ∧ pc′2 ; `t.

By inversion on the typing rules, if Σσ; Γ; pc; `I ` s : τ a `O, then `′O ∨ pc′2 ⇒ `O

where `′O is the lock label on D.m. In particular, pc′2 ⇒ `O ⇒ `I ∨ `O. As a result,

(
∧

L̂) ∧ pc′2 ⇒ (
∧

L̂) ∧ (`I ∨ `O), so transitivity of⇒ proves (
∧

L̂) ∧ (`I ∨ `O); `t. �

Lemma 4.16. For any statement s, configuration C = (CT , σ,M, L), label pc, and lock

list L̂, if

• 〈s | C〉 is T -safe with pc and L̂,

• s contains no sub-statements of the form s′ at-pc pc′,

• 〈s | C〉 −→∗ 〈E[new C(v).m(w)] | C′〉 −→ 〈s′ | C′′〉, and

• mtype(C,m) = τa
pc1�pc2;`O−−−−−−−→ τ with pc2 ∈ T ,

then pc < T implies (
∧

L̂) < T , and pc⇒ pc2 ∨ (
∧

L̂) if no step uses E-CALLATK.

Proof. This proof follows by induction on the number of steps. For the base case

where s = E[new C(v).m(w)], we induct on E to prove pc⇒ pc2 ∨ (
∧

L̂).

Case E = [·]: Inversion on the typing rules tells us pc ⇒ pc1 and inversion on the

operational semantics tell us pc1 ⇒ pc2 ∨ (
∧

L). By the definition of getLocks,

L̂ = L, so transitivity proves the case.

Case E = E at-pc pc′: This case is impossible by assumption.

Case E = E′ with-lock `: In this case we note that if s = E[s̃], then 〈E′[s̃] | C〉must be

T -safe with pc and (L̂, `). Therefore, by induction on E, pc ⇒ pc2 ∨ (
∧

(L̂, `)).

However, ∧
(L̂, `) =

(∧
L̂
)
∧ ` ⇒

∧
L̂.

228

Therefore, by transitivity, pc⇒ pc2 ∨ (
∧

L̂).

All other cases: The pc is unmodified and getLocks(L̂, E′[s̃]) = getLocks(L̂, E[s̃]) = L,

so a simple inductive application completes the case.

This directly proves the second conclusion in this case. When pc < T , the fact thatT
is downward-closed means pc2∨(

∧
L̂) < T . However, pc2 ∈ T and T is a sublattice,

so therefore it must be the case that (
∧

L̂) < T .

We now move to the inductive step. Lemma 4.14 ensures that T -safety is re-

tained. By inspection on the operational semantic rules, we can introduce new

syntax only with E-EVAL, E-IFT, E-IFF, E-CALL, and E-CALLATK. For all other

steps, a direct application of the inductive hypothesis proves the lemma. We now

prove those cases.

Case E-EVAL: This case is by induction on Ẽ where s = Ẽ[s̃]. If Ẽ = [·], induction

on the operational semantics completes the case. When Ẽ = let x = Ẽ′ in e,

we must consider whether Ẽ′[s̃] steps to the relevant method call or not. If

it does, a direct inductive application proves the case. If it does not, we note

that 〈Ẽ′[s̃] | C〉 −→+ 〈v | Cv〉 for some value v and configuration Cv. This new

expression satisfies the premises of our top-level inductive hypothesis, so we

can apply that.

By assumption, Ẽ , Ẽ′ at-pc pc′, and the other possible options are the same

as in the base case.

Cases E-IFT and E-IFF: In this case we note that s = if{pc′} v then e1 else e2. In-

version on the typing rules proves that Σσ; Γ; pc′; `I ` ei : τ a `O for both

i = 1, 2 and pc ⇒ pc′. Therefore, 〈ei | C〉 is T -safe with pc′ and L̂. More-

over, e1 and e2 are expressions, so they contain no sub-statements of the form

s′′ at-pc pc′′, allowing us to apply our inductive hypothesis. If pc < T , then

because T is downward-closed, pc′ < T , so induction proves that (
∧

L̂) < T .

229

If E-CALLATK is not admissible, induction proves pc′ ⇒ pc2 ∨ (
∧

L̂), so tran-

sitivity gets us the desired result.

Case E-CALL: The premises of E-CALL require that s = new D(v′).m′(w′) with

mbody(D,m′) =
(
`m′ , x, τ′a, pc′1�pc′2, e, τ

′) and pc′1 ⇒ pc′2 ∨ (
∧

L). Inversion on

the typing rules proves that pc ⇒ pc′1. Additionally, the statement after the

step is returnτ′ (e′ at-pc pc′2) for some expression e′.

By Lemma 4.14 the new configuration is T -safe at pc and L̂, so inductively,

replacing the statement with e′ is T -safe at pc′2 and L̂. If pc′2 < T , then by

induction (
∧

L̂) < T . When pc′2 ∈ T , the fact that T is a sublattice means

(
∧

L̂) ∈ T =⇒ pc′2 ∨ (
∧

L̂) ∈ T . Moreover, the acts-for relations proved in the

previous paragraph and transitivity give pc⇒ pc′2∨(
∧

L̂). T is also downard-

closed, so therefore (
∧

L̂) ∈ T =⇒ pc ∈ T . Hence, if pc < T then (
∧

L̂) < T ,

as desired.

If E-CALLATK is never used, induction on the number of steps immediately

proves pc′2 ⇒ pc2 ∨ (
∧

L̂). Combining this result with the flow above gives

pc⇒ pc′2 ∨
(∧

L̂
)
⇒

(
pc2 ∨

(∧
L̂
))
∨

(∧
L̂
)

= pc2 ∨
(∧

L̂
)
.

Case E-CALLATK: Inversion on the semantic rules proves pc′2 ∈ A = T . Using

the same argument as in the E-CALL case to apply the inductive hypothesis,

induction proves that (
∧

L̂) < T regardless of the value of pc. This case is

impossible by assumption when E-CALLATK is not taken. �

We formalize the concept of a tail call, which is a call initiated in a tail position of

some expression, by defining a tail context T which, by construction, does nothing

after the call returns.

Definition 4.13 (Tail Context).

T ::= [·] | returnτ T | T with-lock ` | T at-pc pc

230

The following lemma captures our intuition that a tail context “does nothing”.

Lemma 4.17. If 〈T [v] | (CT , σ,M, L)〉 −→ 〈s | (CT , σ′,M′, L′)〉, then for some tail con-

text T ′, s = T ′[v] and σ = σ′.

Proof. By simple induction on the operational semantics, noting for E-EVAL that,

if T [v] = E[s′], then E = T1 and s′ = T2[v] for some tail contexts T1 and T2. �

Definition 4.14 (Tail Reentrancy). We say a statement s is in an `t-tail-reentrant

state if s is `t-reentrant—that is, s = E0[E1[E2[s′ at-pc pc3] at-pc pc2] at-pc pc1] where

pc1, pc3 ⇒ `t and pc2 ; `t—and there is some tail context T , evaluation context Ẽ2,

and label pc′2 such that pc′2 ; `t and

E1[[·] at-pc pc2] = T [Ẽ2 at-pc pc′2]

Theorem 4.3. For any label `t ∈ T , class table CT , and well-typed heap σ1, if Σσ1 ` CT ok

complies with locks in T -code, then for any invocation I and heap σ2 where Σσ1 ` I and

(I,CT , σ1) ⇓ σ2, all `t-reentrant states in the execution are `t-tail-reentrant.

Proof. By Definition 4.5, if I = (ι,m(v), `) is an `t-reentrant invocation in σ1, there

must exists a statement s such that

s = E0

[
E1

[
E2[s′ at-pc pc3] at-pc pc2

]
at-pc pc1

]
where pc1, pc3 ⇒ `t but pc2 ; `t, and 〈!ι.m(v) | (CT , σ1, `, ·)〉 −→∗ 〈s | C〉. We prove by

induction on E1 that s is `t-tail-reentrant according to Definition 4.14. Specifically,

we claim the following.

Claim. If s = E′0[E1[s′′ at-pc pc2]] where innerPc(`, E′0) ⇒ `t, then there is some Ẽ2, T ,

and pc′2 such that E1[[·] at-pc pc2] = T [Ẽ2 at-pc pc′2] and pc′2 ; `t.

Proof of claim. This is a proof by induction on E1.

231

Case E1 = [·]: Because pc2 ; `t by assumption, letting pc′2 = pc2, Ẽ2 = [·], and

T = [·] proves the case.

Case E1 = E′1 at-pc pc′ : There are two sub-cases to consider. If pc′ ⇒ `t, then the

inductive hypothesis applies by replacing E′0 with E′0[[·] at-pc pc′] and E1

with E′1. It then proves that E′1 = T ′[Ẽ2 at-pc pc′2] for some pc′2 ; `t. Letting

T = T ′ at-pc pc′ completes the sub-case.

If pc′ ; `t, then letting Ẽ2 = E′1, pc′2 = pc′, and T = [·] proves the case.

Case E1 = E′1 with-lock `: Replacing E′0 with E′0[[·] with-lock `] and E1 with E′1, the

inductive hypothesis proves E′1 = T ′[Ẽ2 at-pc pc′2] for some pc′2 ; `t. Letting

T = T ′ with-lock ` completes the case.

Case E1 = returnτ E′1: This case follows from the same logic as the previous case.

Case E1 = (let x = E′1 in e): Let pc = innerPc(`, E′0). Lemma 4.14 and induction on

the number of steps to get to s prove that, if 〈!ι.m(v) | (CT , σ1, `, ·)〉 −→∗ 〈s |
(CT , σ,M, L)〉, then it must be the case that each configuration encountered

along the way is `t-safe with ` and ·.

To step to s, there must be some expression e1 such that

〈!ι.m(v) | (CT , σ1, `, ·)〉 −→∗ 〈E′0[let x = e1 in e] | (CT , σ′,M, L)〉
and

〈e1 | (CT , σ′,M, L)〉 −→∗ 〈E[new D(v′).m′(w)] | C′〉

where mtype(D,m′) = τa
p̃c1�p̃c2; ˜̀

O−−−−−−−→ τ̃ such that p̃c1 ; `t and p̃c2 ⇒ `t. Inver-

sion on the typing rules and the safety of 〈E′0[let x = e1 in e] | (CT , σ′,M, L)〉
prove that Σ; Γ; pc; `I ` e1 : τ1 a `O for some Σ, Γ, `I, τ1, and `O, where

`O ⇒ `I and (
∧

getLocks(·, E′0)) ∧ `I ⇒ pc ⇒ `t. Moreover, the safety of the

configuration guarantees that getLocks(·, E′0) is a prefix of L, so in particular,∧
L⇒ ∧

getLocks(·, E′0).

232

However, Lemma 4.15 proves that, because Σ; Γ; pc; `I ` e1 : τ1 a `O, it must

be the case that (
∧

L) ∧ (`I ∨ `O) ; `t. Yet we already proved that `O ⇒ `I,

meaning `I ∨ `O = `I, and
∧

L ⇒ ∧
getLocks(·, E′0). Together these prove that

(
∧

getLocks(·, E′0)) ∧ `I ; `t. This lack of relationship contradicts the safety

result, so this case is impossible.

Case E1 = ignore-locks-in E′1: Safety of the configuration, as argued in the previ-

ous case, proves that ` T̀ s cwl. Because, by assumption, innerPc(`, E′0) ⇒ `t,

inversion on the proof rules for ` T̀ s cwl demonstrates that this case is im-

possible. �

Letting E′0 = E0[[·] at-pc pc1] clearly satisfies the assumptions of the claim.

Therefore,

s = E0[T [Ẽ2[s′′] at-pc pc′2] at-pc pc1]

for some pc′2 ; `t. This form satisfies Definition 4.14 and proves the theorem. �

4.12.2 All Tail Reentrancy is Secure

We now present a proof for Theorem 4.4, proving that all tail reentrancy is se-

cure. The proof follows the structure outlined in the proof sketch in Section 4.5.3.

It requires one simple lemma and follows essentially as a corollary from a more

complicated statement.

Lemma 4.18. For any type τ and heap-type Σ, there exists a value v such that Σ ` v : τ.

Proof. This proof is by induction on the structure of τ. If τ = unit`, v = (). If τ = bool`,

v = true. If τ = (ref τ′)`, v = null. If τ = C`, let fields(C) = x :τ. For each τi, by induction,

there is some vi such that Σ ` vi : τi. Therefore, by NEW, Σ ` new C(v) : C`. �

For the main proof, we assume the existence of an nat type and constant nat

values. This assumption is without loss of generality as natural numbers are simple

233

to encode using objects. The class simply has isZero and previous methods. There

are two implementations: zero returns true and this, respectively, while non-zero

values have a single field pointing to the previous nat and return false and the

value of their one field. We will only use nat to increment and check the value,

each of which is simple with this implementation.

Lemma 4.19. For any class table CT , invocation I, and heaps σ1 and σ2, if

• Σσ1 ` CT ok complies with locks in `-code,

• ` σ1 wt,

• Σσ1 ` I, and

• (I,CT , σ1) ⇓ σ2 where all `-reentrant states are `-tail-reentrant,

then there exist CT ′, I, σ′1, and σ′2 such that

1. Σσ′1 ` CT ′ ok complies with locks in `-code,

2. CT ≈` CT ′,

3. ` σ′1 wt,

4. Σσ′1 ` I,

5. (I,CT ′, σ′1) ⇓ σ′2 are all non-`-reentrant, and

6. σi ≈` σ′i with σi ⊆ σ′i for both i = 1, 2.

Proof. For notation, let I = (`I , ιI ,mI(vI)).

Step through the execution of (I,CT , σ1) ⇓ σ2 and create a log of the following

relevant events:

1. Calls from low-integrity environments into high-integrity environments.

2. Calls from high-integrity environments into low-integrity environments.

3. Returns from low-integrity environments into high-integrity environments.

4. State modifications from low-integrity environments.

234

For most events, we will only need to reply the event later, so logging the type of

event and the statement that is evaluated is sufficient. For event 2, however, CT ′

will need to have different code than CT , so there must be a link to the original

piece of code. Method calls already have a name and clear location in the code,

but if statements can also move from high-integrity to low-integrity and have no

names. To support unique tracking, we attach a unique name a to each branch of

each conditional in CT . They have the same typing and semantic rules as before,

but syntactically include this new annotation, denoted if{pc} v thena1 e1 elsea2 e2.

For a semantic step 〈s | (CT , σ,M, L)〉 −→ 〈s′ | (CT , σ′,M′, L′)〉, notationally, let

pcs = innerPc(`I , s) and pcs′ = innerPc(`I , s′). The following formally defines when

each type of event is emitted.

1. When s = E[new C(v).m(w)] and mtype(C,m) = τa
pc1�pc2;`O−−−−−−−→ τ, if pcs ; ` and

pc2 ⇒ `, emit up(pcs, new C(v).m(w), σ).

2. - When s = E[new C(v).m(w)] and mtype(C,m) = τa
pc1�pc2;`O−−−−−−−→ τ, if pcs ⇒ ` but

pc2 ; `, emit down(pc2,C.m).

- When s = E[if{pc} v thena1 e1 elsea2 e2], if pcs ⇒ ` but pc; `, emit down(pc, a1)

if v = true and down(pc, a2) if v = false.

3. When σ′ = σ[ι 7→ (v, τ)] , σ, emit set(ι 7→ (v, τ)).

4. When s = E[v at-pc pcs], if pcs ; ` and pcs′ ⇒ `, emit ret(v).

By inspection on the operational semantics, each step will emit at most one of the

above events.

There are several important properties to note about the log. First, the only se-

mantic steps that can change the value of innerPc(`I , s) are E-CALL, E-CALLATK,

E-IFT, E-IFF, and E-ATPC. Type preservation (Theorem 4.6) ensures that each

statement is well-typed, so if statements can only lower the integrity of the pc,

not raise it. Therefore, whenever pcs ⇒ ` and pcs′ ; `, the log will contain a down

235

event, and whenever pcs ; ` and pcs′ ⇒ `, the log will contain either a up event or

ret event. As a result, any two down events must be separated by either an up event

or a ret event.

Additionally, the down and ret events must follow a stack discipline as the rep-

resent calls and returns. This stack discipline creates a correspondence between

each down and exactly one ret, which we will refer to as the “corresponding ret”

event.

We now use the log constructed from the execution of (I,CT , σ1) ⇓ σ2 to con-

struct CT ′, I, and σ′1. We will ensure by construction that all conditions hold aside

from Condition 6 with σ2 and σ′2. We will then argue Condition 6 on σ2 holds.

Constructing CT ′, I, and σ′1. Initialize I = I if `I ⇒ ` and empty otherwise, and

initialize σ′1 = σ and CT ′ = CT . We will add to I and σ′1 and modify CT ′ as the

construction progresses.

Step through the log. When a down(pc, a) event appears, where a can either be

C.m or a unique name for the branch of an if statement, note that the log must

be of the form . . . , down, set, ev, . . . where ev is either up or ret. If this is the first

down event at location a, add a new mapping ιa 7→ (0, natpc) to σ′1 where ιa is fresh,

meaning ιa < dom(σ′1)∪ dom(σ2). Also modify the code at location a in CT ′. If this is

the first time encountering a, replace the existing code with code that increments

ιa and conditions on it. If this is the nth down(pc, a) event in the log for n > 1, add a

new branch to the code in CT ′ for if ιa 7→ n.

The code in the conditional branch for ιa 7→ n will do different things depend-

ing on ev. If ev = ret(v), the code in CT ′ performs all state modification in set and

then returns v. Making these state modification may require constructing new low-

integrity methods if pc does not have sufficient integrity for each. Since we know

that none of the modified cells are trusted by `, however, making the modifications

236

is always possible using low-integrity code. Moreover, because the state modifica-

tions were possible in the original execution without violating locks or entering

high-integrity code (there was no up prior to ev = ret(v)), a call graph with the

same pc labels where pc ; ` for each label must be possible. This guarantees that

CT ′ continues to type-check.

If ev is an up event and this is the nth down(pc, a) event for location a, then the

nth entry into a in CT ′ simply returns some value v of the appropriate type. By

Lemma 4.18, some such well-typed v must exist.

When a up(pc, new C(v).m(w), σ) event appears in the log, modify both σ′1 and I.

For σ′1, add a mapping ι 7→ (new C(v),Cpc) for a fresh location ι < dom(σ′1)∪dom(σ2).

For I, add two new invocations. The first performs all state modifications from all

set events in the log prior to this up that have not already been performed by a pre-

vious invocation. As before, constructing such an invocation may require adding

new low-integrity code to CT ′. The second invocation added to I is (pc, ι,m(w))

where ι is the new location added to σ′1.

Finally, after completing all up and down events in the log, include one final

invocation with associated new code to apply any set events not included in any

previous invocations.

The construction satisfies all requirements. By construction, the resulting invo-

cations I are non-reentrant in CT ′ with initial state σ′1. All code changes in CT ′ were

low-integrity and remained well-typed, so Σσ′1 ` CT ′ ok complies with locks in

`-code and CT ≈` CT ′. We constructed σ′1 by adding new well-typed low-integrity

mappings to σ1, meaning ` σ′1 wt, σ1 ≈` σ′1, and σ1 ⊆ σ′1, as desired. It remains to

show that there is a σ′2 such that (I,CT ′, σ′1) ⇓ σ′2 with σ2 ≈` σ′2 and σ2 ⊆ σ′2.

Let σ̃1, . . . , σ̃n be the sequence of heaps appearing in the up events in the log.

Let I1, . . . , In be the elements of I that call into high-integrity code (note that these

237

are every other element of I), and let σ̃′k be the heap provided as input to Ik when

executing (I,CT ′, σ′1) ⇓ σ′2. We now argue by induction on k that σ̃k ≈` σ̃′k and

σ̃k ⊆ σ̃′k.
For the base case let k = 1. There are two sub-cases to consider: if `I ⇒ ` and

if it does not. If `I ⇒ `, then I1 = I and there are no elements of I before it, so

σ̃1 = σ1 and σ̃′1 = σ′1, meaning the conditions on σ1 and σ′1 proved above are pre-

cisely the goal. If `I ; `, there is one invocation I0 in I before I1, and it executes

only low-integrity code to set mappings. By construction, the code invoked by I0

performs exactly the modifications to σ′1 that occurred to σ1 prior to the up event

in the original invocation. Note that some of these modifications may be adding

new mappings through using E-REF, which is non-deterministic. Because all map-

pings in σ′1 not in σ1 were taken to be fresh with respect to σ2 as well, the names

used in the original invocation must be free, so we can pick the same names when

evaluating to σ̃′1. Therefore, for some set of mappings ι 7→ (v, τ), σ̃1 = σ1[ι 7→ (v, τ)]

and σ̃′1 = σ′1[ι 7→ (v, τ)]. Since σ1 ≈` σ′1 and σ1 ⊆ σ′1, the same must therefore be true

of σ̃1 and σ̃′1, as desired.

Now assume k > 1 and, by induction, that σ̃k−1 ≈` σ̃′k−1 with σ̃k−1 ⊆ σ̃′k−1. There

are two sub-cases to consider depending on whether or not kth up event stems

from a `-reentrant call inside the call resulting in the (k − 1)st up event.

If Ik does not correspond to a reentrant call, then Ik−1 corresponds to a high-

integrity call that executed to completion without reentrancy in the original ex-

ecution. By construction of CT ′, any part of that execution that operated at low-

integrity corresponds to a down in the log, and since none of those produced any

high-integrity calls (that would cause reentrancy), they modified the state by incre-

menting new low-integrity counters and otherwise making the same modifications

and returning the same values as the original execution. In particular, the changes

238

to σ̃′k−1 needed to achieve the state σ̂′ after completing Ik−1, are updates to new low-

integrity counters and the changes to σ̃k−1 to achieve the state σ̂ after completing

the original high-integrity call. Because σ̃k−1 ≈` σ̃′k−1 and σ̃k−1 ⊆ σ̃′k−1, it must be that

σ̂ ≈` σ̂′ and σ̂ ⊆ σ̂′.
Further, any state modifications made after the high-integrity call returns (and

thus after Ik−1 completes) but before the kth up event (the beginning of Ik) must be

made in a low-integrity environment. By the same logic as Lemma 4.9 from the

proof of Noninterference, they must be updates to low-integrity state. As a result,

each has a corresponding set event in the log, denoted set(ι 7→ (v, τ)). The extra

low-integrity invocation added to I before Ik makes exactly these modifications to

the state. Therefore, σ̃k = σ̂[ι 7→ (v, τ)] and σ̃′k = σ̂′[ι 7→ (v, τ)]. The desired result

follows from the above-proved correspondence of σ̂ and σ̂′.

Lastly, consider the case where Ik corresponds to a reentrant call inside the call

that Ik−1 corresponds to. That is, the has the form . . . , upk−1, ev, down(pc, a), set, upk, . . .

where ev contains no up events. In this case, the code in CT ′ created to replace

the down(pc, a) event simply returns an arbitrary value of the correct type without

modifying the state. Because we assumed all reentrancy was tail-reentrancy, this

means upk occurred when stepping a term of the form

E0[T [E2[new C(v).m(w)] at-pc pc2] at-pc pc1]

where pc1 ⇒ `, pc2 ; `, and mtype(C,m) = τa
pc′2�pc3;`O−−−−−−−→ τ with pc3 ⇒ `.

In CT ′, we replaced the code corresponding to E2[new C(v).m(w)] with code that

returns an arbitrary value of the correct type, and splitting the invocations means

inside Ik−1, E0 will be empty. Therefore, by Lemma 4.17, once E2[new C(v).m(w)]

evaluates to some value v, T [v] will evaluate to v with no changes to the state.

Similarly, Ik−1 will return the arbitrary value returned in CT ′ without examining

it or modifying the state at all. That means that the change from σ̃′k−1 to σ̂′, the

239

heap when Ik−1 returns, is, as before, updates to new low-integrity counters cou-

pled with exactly the change from σ̃k−1 to the heap σ̂ when the down(pc, a) event

occurred. The low-integrity state modifications in the extra invocation before Ik are

again those made by the low-integrity code in CT before the call corresponding to

up(pc′, new C(v).m(w), σ̃k). By the same argument as before, σ̃k ≈` σ̃′k and σ̃k ⊆ σ̃′k,
as desired.

We have now shown that the state before each Ik is a `-equivalent superset

of the state before the corresponding call in the original execution. To see that this

result extends to σ2 and σ′2, note that the logic above for non-reentrant calls applies

to show that the state after completing In is a `-equivalent superset of the state

after completing the call that generated the final up event in the original execution.

There may be further low-integrity code in the original execution that modifies

the state, but all such modifications generate set events and are updated by the

final invocation in I as described above. Therefore, again, σ2 and σ′2 are acquired

by making identical modifications to the heap after the return of the final high-

integrity call, thereby proving σ2 ≈` σ′2 and σ2 ⊆ σ′2. �

Theorem 4.4. Let CT be a class table, σ1 and σ2 be well-typed heaps, and I be an invo-

cation such that (I,CT , σ1) ⇓ σ2 where all `-reentrant states are `-tail-reentrant. For any

`-integrity predicates P and Q, if Σσ1 �
1
` {P} CT {Q} and P(σ1), then Q(σ2).

Proof. Lemma 4.19 proves that there exists CT ′, I, σ′1, and σ′2 with the properties

stated in the lemma. Because P is a `-integrity predicate and σ1 ≈` σ′1, the as-

sumption that P(σ1) means P(σ′1). The definition of Σσ1 �
1
` {P}CT {Q}, coupled with

CT ≈` CT ′ and Σσ1 ⊆ Σσ′1 mean that since P(σ′1) holds, Q(σ′2) must hold. Finally,

since σ2 ≈` σ′2, the fact that Q is also a `-integrity predicate proves Q(σ2). �

240

CHAPTER 5

CONCLUSION

This dissertation has explored three different ways for decentralized systems to

maintain integrity in the presence of distrusting parties. Each strategy addresses a

different type of vulnerability.

We began in Chapter 2 with Solidus, a protocol for anonymous transactions in

a bank-intermediated system. Solidus relies partially on the increasingly popular

idea of replicating data to maintain system integrity across transactions. By plac-

ing only encryptions of account balances on its public ledger, however, Solidus

creates an information asymmetry and requires careful use of cryptographic tools

to establish the integrity of each individual transaction without compromising con-

fidentiality. One of those tools is the Publicly Verifiable Oblivious RAM Machine

(PVORM), The PVORM is a new cryptographic primitive that supports storing

and updating data such that only authorized parties can see the data or access pat-

terns, but anyone can verify that data updates conform to a given specification.

Giving each bank a separate PVORM allows Solidus to separate banks effectively

and allow for efficient transaction processing.

Solidus demonstrates the power of combining cryptographic building blocks,

but it also illustrates the precision, care, and expert reasoning required to design

a protocol and prove its security. Defining and using a PVORM helps to make the

construction more modular, but much of the security still relies on analysis that

could break in unexpected ways with small protocol modifications.

Chapters 3 and 4 provided more principled ways to reason about program se-

curity. The IFC techniques they developed provide a structure for compositional

reasoning about integrity in real-world systems that include endorsement of both

data and control flow. Nonmalleable Information Flow Control (Chapter 3) deep-

241

ened the existing connection between confidentiality and integrity. It identified

and formalized a class of potential attacks enabled by endorsing secret data, and

it presented a simple condition to provably eliminate such vulnerabilities. Chap-

ter 4 recast the reentrancy attacks that have cost blockchain smart contract systems

tens of millions of dollars [127, 131] as integrity failures. The vulnerabilities result

from an attacker violating the implicit assumption of many services that requests

will follow a call-and-return pattern, where one completes before a second begins.

Services that endorse control flow in an unconstrained manner cannot safely make

this assumption, drastically complicating reasoning about correctness and security.

Chapter 4 formalized this formerly implicit assumption and a security condition

stating that it is not violated. It then provided a technique for making the assump-

tion explicit and provably enforcing it with a combination of static and dynamic

locks on integrity levels.

Together these three works provide tools and insights for enforcing integrity in

decentralized systems with mutual distrust. Notably, Chapter 2 uses very different

tools and techniques from Chapters 3 and 4, and both approaches have notable

shortcomings. The applied cryptographic techniques of Solidus are difficult to use

and their security is fragile in the face of protocol changes. IFC techniques provide

robust compositional guarantees, but operate at a very high level, often abstracting

away details like how to prevent an attacker from directly viewing data marked as

secret or writing to memory marked as trusted.

The strengths of the two approaches are complementary. Combining them shows

promise for building executable protocols with compositional security guarantees

that are easier to understand. Systems like Wysteria [135] and λ-Symphony [56]

have used this approach for confidentiality, and Viaduct [4] has made strides to-

ward incorporating integrity as well.

242

However, there is still much work to be done on this connection. Permissive

but meaningful information security conditions like NMIF assume deterministic

single-threaded executions and need to be extended and modified to accommo-

date the probabilistic guarantees of underlying cryptographic protocols. It is my

hope that the work in this dissertation will help provide foundations and direction

for building these connections, making both IFC techniques and powerful crypto-

graphic tools easier to deploy in real-world systems.

243

BIBLIOGRAPHY

[1] Martín Abadi. Access control in a core calculus of dependency. In 11th In-

ternational Conference on Functional Programming (ICFP ’06), pages 263–273,

September 2006. doi: 10.1145/1159803.1159839.

[2] Martín Abadi. Variations in access control logic. In 2nd International Confer-

ence on Deontic Logic in Computer Science, pages 96–109, 2008. doi: 10.1007/

978-3-540-70525-3_9.

[3] Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A core cal-

culus of dependency. In 26th ACM SIGPLAN Symposium on Principles of Pro-

gramming Languages (POPL ’99), January 1999. doi: 10.1145/292540.292555.

[4] Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine

Shi. Viaduct: An extensible, optimizing compiler for secure distributed pro-

grams. In 42nd ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’21), June 2021. doi: 10.1145/3453483.3454074.

[5] Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez,

Albert Rubio, and Mooly Sagiv. Taming callbacks for smart contract mod-

ularity. Proceedings of the ACM on Programming Languages, 4(OOPSLA),

November 2020. doi: 10.1145/3428277.

[6] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative

technology for CPU based attestation and sealing. In 2nd Hardware and Archi-

tectural Support for Security and Privacy (HASP ’13), June 2013.

[7] Apache Software Foundation. Apache ZooKeeper (Version 3.4.9). https:

//zookeeper.apache.org/, 2016.

244

https://doi.org/10.1145/1159803.1159839
https://doi.org/10.1007/978-3-540-70525-3_9
https://doi.org/10.1007/978-3-540-70525-3_9
https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/3453483.3454074
https://doi.org/10.1145/3428277
https://zookeeper.apache.org/
https://zookeeper.apache.org/

[8] Owen Arden. Flow-Limited Authorization. PhD thesis, Cornell University,

2016.

[9] Owen Arden and Andrew C. Myers. A calculus for flow-limited authoriza-

tion. In 29th IEEE Computer Security Foundations Symposium (CSF ’16), June

2016. doi: 10.1109/CSF.2016.17.

[10] Owen Arden, Michael D. George, Jed Liu, K. Vikram, Aslan Askarov, and

Andrew C. Myers. Sharing mobile code securely with information flow con-

trol. In 33rd IEEE Symposium on Security and Privacy (Oakland ’12), May 2012.

doi: 10.1109/SP.2012.22.

[11] Owen Arden, Jed Liu, and Andrew C. Myers. Flow-limited authorization. In

28th IEEE Computer Security Foundations Symposium (CSF ’15), July 2015. doi:

10.1109/CSF.2015.42.

[12] Aslan Askarov and Andrew C. Myers. Attacker control and impact for con-

fidentiality and integrity. Logical Methods in Computer Science (LMCS), 7(3),

September 2011. doi: 10.2168/LMCS-7(3:17)2011.

[13] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally

composable protocols with relaxed set-up assumptions. In 45th IEEE Sym-

posium on Foundations of Computer Science (FOCS ’04), October 2004. doi:

10.1109/FOCS.2004.71.

[14] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars

Virza. SNARKs for C: Verifying program executions succinctly and in zero

knowledge. In 33rd International Cryptology Conference (CRYPTO ’13), August

2013. doi: 10.1007/978-3-642-40084-1_6.

245

https://doi.org/10.1109/CSF.2016.17
https://doi.org/10.1109/SP.2012.22
https://doi.org/10.1109/CSF.2015.42
https://doi.org/10.2168/LMCS-7(3:17)2011
https://doi.org/10.1109/FOCS.2004.71
https://doi.org/10.1007/978-3-642-40084-1_6

[15] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian

Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous

payments from Bitcoin. In 35th IEEE Symposium on Security and Privacy (Oak-

land ’14), May 2014. doi: 10.1109/SP.2014.36.

[16] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.

Succinct non-interactive zero knowledge for a von neumann architec-

ture. In 23rd USENIX Security Symposium (USENIX Security ’14), Au-

gust 2014. URL https://www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/ben-sasson.

[17] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and

Madars Virza. Secure sampling of public parameters for succinct zero knowl-

edge proofs. In 36th IEEE Symposium on Security and Privacy (Oakland ’15),

May 2015. doi: 10.1109/SP.2015.25.

[18] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha

Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem

Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, et al. Formal verification of

smart contracts: Short paper. In 11th Workshop on Programming Languages and

Analysis for Security (PLAS ’16), October 2016. doi: 10.1145/2993600.2993611.

[19] Kenneth J. Biba. Integrity considerations for secure computer systems. Tech-

nical report, MITRE Corp, Bedford, MA, 1977. URL https://apps.dtic.mil/

sti/pdfs/ADA039324.pdf.

[20] Sam Blackshear, Evan Cheng, David L. Dill, Victor Gao, Ben Maurer, Todd

Nowacki, Alistair Pott, Shaz Qadeer, Rain, Dario Russi, Stephane Sezer,

Tim Zakian, and Runtian Zhou. Move: A language with programmable

246

https://doi.org/10.1109/SP.2014.36
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://doi.org/10.1109/SP.2015.25
https://doi.org/10.1145/2993600.2993611
https://apps.dtic.mil/sti/pdfs/ADA039324.pdf
https://apps.dtic.mil/sti/pdfs/ADA039324.pdf

resources. https://developers.diem.com/docs/technical-papers/move-

paper/, May 2020. Accessed March 2021.

[21] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu.

Toward robust hidden volumes using write-only Oblivious RAM. In 21st

ACM Conference on Computer and Communication Security (CCS ’14), Novem-

ber 2014. doi: 10.1145/2660267.2660313.

[22] Tamás Blummer. Personal communication with Tamás Blummer, Chief

Ledger Architect, Digital Asset Holdings, 2016.

[23] Fabrice Boudot. Efficient proofs that a committed number lies in an interval.

In 19th International Conference on the Theory and Applications of Cryptographic

Techniques (EuroCrypt ’00), May 2000. doi: 10.1007/3-540-45539-6_31.

[24] BouncyCastle 1.55. Bouncy Castle Crypto APIs (Version 1.55). https://www.

bouncycastle.org/, 2016.

[25] Lorenz Breidenbach, Phil Daian, Ari Juels, and Emin Gün Sirer. An in-depth

look at the parity multisig bug. https://hackingdistributed.com/2017/07/

22/deep-dive-parity-bug/, 22 July 2017. Accessed March 2021.

[26] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis

Smaragdakis. Ethainter: A smart contract security analyzer for compos-

ite vulnerabilities. In 41st ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI ’20), June 2020. doi: 10.1145/3385412.

3385990.

[27] Niklas Broberg and David Sands. Paralocks: Role-based information flow

control and beyond. In 37th ACM SIGPLAN Symposium on Principles of Pro-

gramming Languages (POPL ’10), January 2010. doi: 10.1145/1706299.1706349.

247

https://developers.diem.com/docs/technical-papers/move-paper/
https://developers.diem.com/docs/technical-papers/move-paper/
https://doi.org/10.1145/2660267.2660313
https://doi.org/10.1007/3-540-45539-6_31
https://www.bouncycastle.org/
https://www.bouncycastle.org/
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://doi.org/10.1145/3385412.3385990
https://doi.org/10.1145/3385412.3385990
https://doi.org/10.1145/1706299.1706349

[28] Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. HLIO: Mixing static

and dynamic typing for information-flow control in Haskell. In 20th Inter-

national Conference on Functional Programming (ICFP ’15), August 2015. doi:

10.1145/2784731.2784758.

[29] Jan Camenisch and Markus Stadler. Efficient group signature schemes for

large groups. In 17th International Cryptology Conference (CRYPTO ’97), Au-

gust 1997. doi: 10.1007/BFb0052252.

[30] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-

cash. In 24th International Conference on the Theory and Applications of Crypto-

graphic Techniques (EuroCrypt ’05), May 2005. doi: 10.1007/11426639_18.

[31] Jan Camenisch, Anna Lysyanskaya, and Mira Meyerovich. Endorsed e-cash.

In 28th IEEE Symposium on Security and Privacy (Oakland ’07), May 2007. doi:

10.1109/SP.2007.15.

[32] Jan Camenisch, Aggelos Kiayias, and Moti Yung. On the portability of

generalized schnorr proofs. In 28th International Conference on the Theory

and Applications of Cryptographic Techniques (EuroCrypt ’09), April 2009. doi:

10.1007/978-3-642-01001-9_25.

[33] Jan Camenisch, Stephan Krenn, Ralf Küsters, and Daniel Rausch. iUC:

Flexible universal composability made simple. In 25th International Confer-

ence on The Theory and Application of Cryptology and Information Security (Asi-

aCrypt ’19), December 2019. doi: 10.1007/978-3-030-34618-8_7.

[34] Ran Canetti. Universally composable security: a new paradigm for crypto-

graphic protocols. In 42nd IEEE Symposium on Foundations of Computer Science

(FOCS ’01), October 2001. doi: 10.1109/SFCS.2001.959888.

248

https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/11426639_18
https://doi.org/10.1109/SP.2007.15
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/978-3-030-34618-8_7
https://doi.org/10.1109/SFCS.2001.959888

[35] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.

In 3rd USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI ’99), February 1999. URL https://www.usenix.org/conference/

osdi-99/practical-byzantine-fault-tolerance.

[36] Ethan Cecchetti, Andrew C. Myers, and Owen Arden. Nonmalleable infor-

mation flow control. In 24th ACM Conference on Computer and Communication

Security (CCS ’17), October 2017. doi: 10.1145/3133956.3134054.

[37] Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed Kosba, Ari Juels, and Elaine Shi.

Solidus: Confidential distributed ledger transactions via PVORM. In 24th

ACM Conference on Computer and Communication Security (CCS ’17), October

2017. doi: 10.1145/3133956.3134010.

[38] Ethan Cecchetti, Siqiu Yao, Haobin Ni, and Andrew C. Myers. Securing

smart contracts with information flow. In 3rd International Symposium on

Foundations and Applications of Blockchain (FAB ’20), May 2020.

[39] Ethan Cecchetti, Siqiu Yao, Haobin Ni, and Andrew C. Myers. Composi-

tional security for reentrant applications. In 42nd IEEE Symposium on Security

and Privacy (Oakland ’21), May 2021. doi: 10.1109/SP40001.2021.00084.

[40] Brad Chase and Ethan MacBrough. Analysis of the XRP ledger consensus

protocol. Technical Report arXiv:1802.07242, February 2018. URL https:

//arxiv.org/abs/1802.07242.

[41] David Chaum. Blind signatures for untraceable payments. In 3rd International

Cryptology Conference (CRYPTO ’83), August 1983. doi: 10.1007/978-1-4757-

0602-4_18.

249

https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://doi.org/10.1145/3133956.3134054
https://doi.org/10.1145/3133956.3134010
https://doi.org/10.1109/SP40001.2021.00084
https://arxiv.org/abs/1802.07242
https://arxiv.org/abs/1802.07242
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18

[42] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In

8th International Cryptology Conference (CRYPTO ’88), August 1988. doi: 10.

1007/0-387-34799-2_25.

[43] Stephen Chong and Andrew C. Myers. Decentralized robustness. In 19th

IEEE Computer Security Foundations Workshop (CSFW ’06), July 2006. doi: 10.

1109/CSFW.2006.11.

[44] Stephen Chong and Andrew C. Myers. End-to-end enforcement of erasure

and declassification. In 21st IEEE Computer Security Foundations Symposium

(CSF ’08), June 2008. doi: 10.1109/CSF.2008.12.

[45] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged in-

formation flow for JavaScript. In 30th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI ’09), June 2009. doi:

10.1145/1542476.1542483.

[46] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Com-

puter Security (JCS), 18(6):1157–1210, 2010. doi: 10.3233/JCS-2009-0393.

[47] Michael Coblenz, Reed Oei, Tyler Etzel, Paulette Koronkevich, Miles Baker,

Yannick Bloem, Brad A. Myers, Joshua Sunshine, and Jonathan Aldrich. Ob-

sidian: Typestate and assets for safer blockchain programming. ACM Trans-

actions on Programming Languages and Systems (TOPLAS), 42(3), November

2020. doi: 10.1145/3417516.

[48] ConsenSys Diligence. Uniswap audit. https://github.com/ConsenSys/

Uniswap-audit-report-2018-12#31-liquidity-pool-can-be-stolen-in-

some-tokens-eg-erc-777-29, January 2019. Accessed March 2021.

250

https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1109/CSFW.2006.11
https://doi.org/10.1109/CSFW.2006.11
https://doi.org/10.1109/CSF.2008.12
https://doi.org/10.1145/1542476.1542483
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1145/3417516
https://github.com/ConsenSys/Uniswap-audit-report-2018-12#31-liquidity-pool-can-be-stolen-in-some-tokens-eg-erc-777-29
https://github.com/ConsenSys/Uniswap-audit-report-2018-12#31-liquidity-pool-can-be-stolen-in-some-tokens-eg-erc-777-29
https://github.com/ConsenSys/Uniswap-audit-report-2018-12#31-liquidity-pool-can-be-stolen-in-some-tokens-eg-erc-777-29

[49] CVE-2014-1772. CVE-2014-1772. http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2014-1772, 29 January 2014. Accessed March 2021.

[50] CVE-2018-8174. CVE-2018-8174. https://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2018-8174, 14 March 2018. Accessed March 2021.

[51] CWE-1265. CWE-1265: Unintended reentrant invocation of non-reentrant

code via nested calls. https://cwe.mitre.org/data/definitions/1265.

html, 20 December 2018. Accessed March 2021.

[52] Phil Daian. Analysis of the DAO exploit. https://hackingdistributed.com/

2016/06/18/analysis-of-the-dao-exploit/, 18 June 2016. Accessed March

2021.

[53] Ivan Damgård. On Σ-protocols. Lecture Notes, University of Aarhus, Depart-

ment for Computer Science, 2002.

[54] George Danezis and Sarah Meiklejohn. Centrally banked cryptocurrencies.

In 2016 Network and Distributed System Security Symposium (NDSS ’16), Febru-

ary 2016.

[55] George Danezis, Cedric Fournet, Markulf Kohlweiss, and Bryan Parno.

Pinocchio Coin: Building Zerocoin from a succinct pairing-based proof sys-

tem. In 1st ACM Workshop on Language Support for Privacy-Enhancing Technolo-

gies, 2013. doi: 10.1145/2517872.2517878.

[56] David Darais, David Heath, Ryan Estes, William Harris, , and Michael Hicks.

λ-Symphony: A concise language model for MPC. https://www.cs.umd.edu/

~mwh/papers/mwh.html, July 2020. Accessed June 2021.

[57] Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani

Santurkar. Resource-aware session types for digital contracts. In 34th IEEE

251

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1772
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1772
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8174
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8174
https://cwe.mitre.org/data/definitions/1265.html
https://cwe.mitre.org/data/definitions/1265.html
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://doi.org/10.1145/2517872.2517878
https://www.cs.umd.edu/~mwh/papers/mwh.html
https://www.cs.umd.edu/~mwh/papers/mwh.html

Computer Security Foundations Symposium (CSF ’21), June 2021. doi: 10.1109/

CSF51468.2021.00004.

[58] Michael del Castillo. Overstock just closed its first day of blockchain stock

trading. Coindesk, 16 December 2016. URL https://www.coindesk.com/

overstock-first-day-blockchain-stock-trading.

[59] Dorothy E. Denning. A lattice model of secure information flow. Communi-

cations of the ACM, 19(5):236–243, May 1976. doi: 10.1145/360051.360056.

[60] Diem Association. Diem white paper. https://www.diem.com/en-us/white-

paper/, April 2020. Accesses May 2021.

[61] Digital Asset. Digital asset plaform. www.digitalasset.com, 2017.

[62] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-

generation onion router. In 13th USENIX Security Symposium (USENIX Se-

curity ’04), August 2004. URL https://www.usenix.org/conference/13th-

usenix-security-symposium/tor-second-generation-onion-router.

[63] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography.

SIAM Review, 45(4):727–784, 2003. doi: 10.1137/S0036144503429856.

[64] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Maz-

zara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices:

yesterday, today, and tomorrow. In Present and Ulterior Software Engineering,

pages 195–216. Springer, 2017.

[65] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David

Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris.

Labels and event processes in the asbestos operating system. In 20th ACM

252

https://doi.org/10.1109/CSF51468.2021.00004
https://doi.org/10.1109/CSF51468.2021.00004
https://www.coindesk.com/overstock-first-day-blockchain-stock-trading
https://www.coindesk.com/overstock-first-day-blockchain-stock-trading
https://doi.org/10.1145/360051.360056
https://www.diem.com/en-us/white-paper/
https://www.diem.com/en-us/white-paper/
www.digitalasset.com
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://doi.org/10.1137/S0036144503429856

SIGOPS Symposium on Operating Systems Principles (SOSP ’05), October 2005.

doi: 10.1145/1095810.1095813.

[66] Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pern-

steiner, Franziska Roesner, Karl Koscher, Paulo Barros, Ravi Bhoraskar, Se-

ungyeop Han, Paul Vines, and Edward X. Wu. Collaborative verification

of information flow for a high-assurance app store. In 21st ACM Confer-

ence on Computer and Communication Security (CCS ’14), November 2014. doi:

10.1145/2660267.2660343.

[67] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to

identification and signature problems. In 6th International Cryptology Confer-

ence (CRYPTO ’86), August 1986. doi: 10.1007/3-540-47721-7_12.

[68] Joel Frank, Cornelius Aschermann, and Thorsten Holz. ETHBMC: A

bounded model checker for smart contracts. In 29th USENIX Security Sym-

posium (USENIX Security ’20), August 2020. URL https://www.usenix.org/

conference/usenixsecurity20/presentation/frank.

[69] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières,

John C. Mitchell, and Alejandro Russo. Hails: Protecting data privacy in

untrusted web applications. In 10th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI ’12), October 2012. URL https://www.

usenix.org/system/files/conference/osdi12/osdi12-final-35.pdf.

[70] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. Algorand: Scaling byzantine agreements for cryptocurrencies. In 26th

ACM SIGOPS Symposium on Operating Systems Principles (SOSP ’17), 2017.

doi: 10.1145/3132747.3132757.

253

https://doi.org/10.1145/1095810.1095813
https://doi.org/10.1145/2660267.2660343
https://doi.org/10.1007/3-540-47721-7_12
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-35.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-35.pdf
https://doi.org/10.1145/3132747.3132757

[71] Glasgow Haskell Compiler. The Glasgow Haskell Compiler. URL https:

//www.haskell.org/ghc/.

[72] Joseph A. Goguen and José Meseguer. Security policies and security models.

In 3rd IEEE Symposium on Security and Privacy (Oakland ’82), April 1982. doi:

10.1109/SP.1982.10014.

[73] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic

framework for the security analysis of ethereum smart contracts. In 7th Prin-

ciples of Security and Trust (POST ’18), April 2018. doi: 10.1007/978-3-319-

89722-6_10.

[74] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. Foundations and

tools for the static analysis of Ethereum smart contracts. In 30th International

Conference on Computer Aided Verification (CAV ’18), July 2018. doi: 10.1007/

978-3-319-96145-3_4.

[75] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam

Rinetzky, Mooly Sagiv, and Yoni Zohar. Online detection of effectively

callback free objects with applications to smart contracts. Proceedings of

the ACM on Programming Languages, 2(POPL):1–28, December 2017. doi:

10.1145/3158136.

[76] Daniel Hedin and Andrei Sabelfeld. Information-flow security for a core of

JavaScript. In 25th IEEE Computer Security Foundations Symposium (CSF ’12),

June 2012. doi: 10.1109/CSF.2012.19.

[77] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and

Sharon Goldberg. TumbleBit: An untrusted Bitcoin-compatible anonymous

254

https://www.haskell.org/ghc/
https://www.haskell.org/ghc/
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1145/3158136
https://doi.org/10.1109/CSF.2012.19

payment hub. In 2017 Network and Distributed System Security Symposium

(NDSS ’17), February 2017.

[78] Gesine Hinterwälder, Christian T. Zenger, Foteini Baldimtsi, Anna Lysyan-

skaya, Christof Paar, and Wayne P. Burleson. Efficient e-cash in practice:

NFC-based payments for public transportation systems. In 13th Privacy En-

hancing Technologies Symposium (PETS ’13), July 2013. doi: 10.1007/978-3-

642-39077-7_3.

[79] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,

1(4):271–281, December 1972. doi: 10.1007/BF00289507.

[80] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Carlos Rozas, Vinay

Phegade, and Juan del Cuvillo. Using innovative instructions to create trust-

worthy software solutions. In 2nd Hardware and Architectural Support for Secu-

rity and Privacy (HASP ’13), June 2013.

[81] Scott Hudson, Frank Flannery, C. Scott Ananian, and Michael Petter. CUP

0.11b: Construction of Useful Parsers. Software release, June 2014. URL

http://www2.cs.tum.edu/projects/cup.

[82] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Ben-

jamin Reed. ZooKeeper: Wait-free coordination for internet-scale sys-

tems. In 2010 USENIX Annual Technical Conference (USENIX ATC ’10),

June 2010. URL https://www.usenix.org/conference/usenix-atc-10/

zookeeper-wait-free-coordination-internet-scale-systems.

[83] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:

A minimal core calculus for Java and GJ. ACM Transactions on Programming

255

https://doi.org/10.1007/978-3-642-39077-7_3
https://doi.org/10.1007/978-3-642-39077-7_3
https://doi.org/10.1007/BF00289507
http://www2.cs.tum.edu/projects/cup
https://www.usenix.org/conference/usenix-atc-10/zookeeper-wait-free-coordination-internet-scale-systems
https://www.usenix.org/conference/usenix-atc-10/zookeeper-wait-free-coordination-internet-scale-systems

Languages and Systems (TOPLAS), 23(3):396–450, May 2001. doi: 10.1145/

503502.503505.

[84] Intel SGX. Intel® Software Guard Extensions SDK. Intel Corporation, 2016.

Accessed February 2017.

[85] Markus Jakobsson and Ari Juels. Millimix: Mixing in small batches. Techni-

cal report, DIMACS Technical report 99-33, 1999.

[86] Tom Elvis Jedusor. MimbleWimble. https://download.wpsoftware.net/

bitcoin/wizardry/mimblewimble.txt, 19 July 2016. Accessed March 2021.

[87] Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko,

Joseph Schorr, and Steve Zdancewic. AURA: A programming language for

authorization and audit. In 13th International Conference on Functional Pro-

gramming (ICFP ’08), September 2008. doi: 10.1145/1411204.1411212.

[88] Shaul Kfir. Personal communication with Shaul Kfir, CTO, Digital Asset

Holdings, 2016.

[89] Gerwin Klein, Steve Rowe, and Regis Decamp. JFlex 1.8.2. Software release,

https://jflex.de, May 2020. URL https://jflex.de.

[90] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Pa-

pamanthou. Hawk: The blockchain model of cryptography and privacy-

preserving smart contracts. In 37th IEEE Symposium on Security and Privacy

(Oakland ’16), May 2016. doi: 10.1109/SP.2016.55.

[91] krdlab. Haskell servant example. https://github.com/krdlab/examples,

December 2014.

256

https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://doi.org/10.1145/1411204.1411212
https://jflex.de
https://jflex.de
https://doi.org/10.1109/SP.2016.55
https://github.com/krdlab/examples

[92] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans

Kaashoek, Eddie Kohler, and Robert Morris. Information flow control for

standard OS abstractions. In 21st ACM SIGOPS Symposium on Operating Sys-

tems Principles (SOSP ’07), October 2007. doi: 10.1145/1294261.1294293.

[93] Johannes Krupp and Christian Rossow. TEETHER: Gnawing at Ethereum

to automatically exploit smart contracts. In 27th USENIX Security Sympo-

sium (USENIX Security ’18), August 2018. URL https://www.usenix.org/

conference/usenixsecurity18/presentation/krupp.

[94] Leslie Lamport. The part-time parliament. ACM Transactions on Computer

Systems (TOCS), 16(2):133–169, May 1998. doi: 10.1145/279227.279229.

[95] Ao Li, Jemin Andrew Choi, and Fan Long. Securing smart contract with

runtime validation. In 41st ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI ’20), June 2020. doi: 10.1145/3385412.

3385982.

[96] Peng Li and Steve Zdancewic. Downgrading policies and relaxed nonin-

terference. In 32nd ACM SIGPLAN Symposium on Principles of Programming

Languages (POPL ’05), January 2005. doi: 10.1145/1040305.1040319.

[97] Peng Li and Steve Zdancewic. Encoding information flow in Haskell. In

19th IEEE Computer Security Foundations Workshop (CSFW ’06), July 2006. doi:

10.1109/CSFW.2006.13.

[98] Jed Liu, Owen Arden, Michael D. George, and Andrew C. Myers. Fabric:

Building open distributed systems securely by construction. Journal of Com-

puter Security (JCS), 25(4–5):319–321, May 2017. doi: 10.3233/JCS-0559.

257

https://doi.org/10.1145/1294261.1294293
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/3385412.3385982
https://doi.org/10.1145/3385412.3385982
https://doi.org/10.1145/1040305.1040319
https://doi.org/10.1109/CSFW.2006.13
https://doi.org/10.3233/JCS-0559

[99] Denis Lukianov. Compact confidential transactions. http://voxelsoft.com/

dev/cct.pdf, 2015.

[100] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Ho-

bor. Making smart contracts smarter. In 23rd ACM Conference on Computer

and Communication Security (CCS ’16), October 2016. doi: 10.1145/2976749.

2978309.

[101] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder.

Privacy and access control for outsourced personal records. In 36th IEEE

Symposium on Security and Privacy (Oakland ’15), May 2015. doi: 10.1109/SP.

2015.28.

[102] Tom Magrino, Jed Liu, Owen Arden, Chinawat Isradisaikul, and Andrew C.

Myers. Jif 3.5: Java information flow. Software release, June 2016. URL

https://www.cs.cornell.edu/jif.

[103] Heiko Mantel and David Sands. Controlled declassification based on intran-

sitive noninterference. In 2nd Asian Symposium on Programming Languages and

Systems (APLAS ’04), November 2004. doi: 10.1007/978-3-540-30477-7_9.

[104] Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world. https://

bitcointalk.org/?topic=279249, August 2013.

[105] Gregory Maxwell. Confidential transactions. https://people.xiph.org/

~greg/confidential_values.txt, 2013.

[106] Gregory Maxwell and Andrew Poelstra. Borromean ring signatures. https:

//github.com/Blockstream/borromean_paper, 2015.

[107] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham

Shafi, Vedvyas Shanbhogue, and Uday Savagaonkar. Innovative instructions

258

http://voxelsoft.com/dev/cct.pdf
http://voxelsoft.com/dev/cct.pdf
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/SP.2015.28
https://doi.org/10.1109/SP.2015.28
https://www.cs.cornell.edu/jif
https://doi.org/10.1007/978-3-540-30477-7_9
https://bitcointalk.org/?topic=279249
https://bitcointalk.org/?topic=279249
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://github.com/Blockstream/borromean_paper
https://github.com/Blockstream/borromean_paper

and software model for isolated execution. In 2nd Hardware and Architectural

Support for Security and Privacy (HASP ’13), June 2013.

[108] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon

McCoy, Geoffrey M. Voelker, and Stefan Savage. A fistful of bitcoins: Char-

acterizing payments among men with no names. In 13th Internet Measurement

Conference (ICM ’13), October 2013. doi: 10.1145/2504730.2504747.

[109] Leo A. Meyerovich and Benjamin Livshits. ConScript: Specifying and en-

forcing fine-grained security policies for JavaScript in the browser. In

31st IEEE Symposium on Security and Privacy (Oakland ’10), May 2010. doi:

10.1109/SP.2010.36.

[110] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zero-

coin: Anonymous distributed e-cash from bitcoin. In 34th IEEE Symposium on

Security and Privacy (Oakland ’13), 2013. doi: 10.1109/SP.2013.34.

[111] Mae Milano and Andrew C. Myers. MixT: A language for mixing consis-

tency in geodistributed transactions. In 39th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’18), June 2018. doi:

10.1145/3192366.3192375.

[112] Monero. Monero. www.getmonero.org, Referenced May 2017.

[113] Benoît Montagu, Benjamin C. Pierce, and Randy Pollack. A theory of

information-flow labels. In 26th IEEE Computer Security Foundations Sympo-

sium (CSF ’13), June 2013. doi: 10.1109/CSF.2013.8.

[114] Malte Möser, Rainer Böhme, and Dominic Breuker. An inquiry into money

laundering tools in the bitcoin ecosystem. In 2013 APWG eCrime researchers

summit (eCrime ’13), September 2013. doi: 10.1109/eCRS.2013.6805780.

259

https://doi.org/10.1145/2504730.2504747
https://doi.org/10.1109/SP.2010.36
https://doi.org/10.1109/SP.2013.34
https://doi.org/10.1145/3192366.3192375
www.getmonero.org
https://doi.org/10.1109/CSF.2013.8
https://doi.org/10.1109/eCRS.2013.6805780

[115] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shash-

vat Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind

Narayanan, , and Nicolas Christin. An empirical analysis of traceability in

the Monero blockchain. Proceedings on Privacy Enhancing Technologies (PETS),

2018(3):143–163, 2018.

[116] Daniel Mulligan. Know your customer regulations and the international

banking system: towards a general self-regulatory regime. Fordham Int’l LJ,

22:2324, 1998.

[117] Andrew C. Myers. JFlow: Practical mostly-static information flow control.

In 26th ACM SIGPLAN Symposium on Principles of Programming Languages

(POPL ’99), January 1999. doi: 10.1145/292540.292561.

[118] Andrew C. Myers and Barbara Liskov. Complete, safe information flow with

decentralized labels. In 19th IEEE Symposium on Security and Privacy (Oak-

land ’98), May 1998. doi: 10.1109/SECPRI.1998.674834.

[119] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decen-

tralized label model. ACM Transactions on Software Engineering and Methodol-

ogy (TOSEM), 9(4):410–442, October 2000. doi: 10.1145/363516.363526.

[120] Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust

declassification and qualified robustness. Journal of Computer Security (JCS),

14(2):157–196, 2006. doi: 10.3233/JCS-2006-14203.

[121] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http:

//bitcoin.org/bitcoin.pdf, 2009.

[122] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Verification of

information flow and access control policies with dependent types. In 32nd

260

https://doi.org/10.1145/292540.292561
https://doi.org/10.1109/SECPRI.1998.674834
https://doi.org/10.1145/363516.363526
https://doi.org/10.3233/JCS-2006-14203
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

IEEE Symposium on Security and Privacy (Oakland ’11), May 2011. doi: 10.

1109/SP.2011.12.

[123] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas

Hobor. Finding the greedy, prodigal, and suicidal contracts at scale. In

34th Annual Computer Security Applications Conference, December 2018. doi:

10.1145/3274694.3274743.

[124] Diego Ongaro and John Ousterhout. In search of an understandable con-

sensus algorithm. In 2014 USENIX Annual Technical Conference (USENIX

ATC ’14), June 2014. URL https://www.usenix.org/conference/atc14/

technical-sessions/presentation/ongaro.

[125] Oracle Corporation. Java SE version 15 API specification.

java.util.Map#computeIfAbsent. https://docs.oracle.com/en/java/

javase/15/docs/api/java.base/java/util/Map.html#computeIfAbsent(K,

java.util.function.Function), September 2020. Accessed March 2021.

[126] Parity Technologies. A postmortem on the parity multi-sig library self-

destruct. https://www.parity.io/a-postmortem-on-the-parity-multi-

sig-library-self-destruct/, 15 November 2017. Accessed March 2021.

[127] PeckShield. Uniswap/Lendf.Me hacks: Root cause and loss anal-

ysis. https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-

cause-and-loss-analysis-50f3263dcc09, April 2020. Accessed March 2021.

[128] Torben Pryds Pedersen. Non-interactive and information-theoretic se-

cure verifiable secret sharing. In 11th International Cryptology Conference

(CRYPTO ’91), August 1991. doi: 10.1007/3-540-46766-1_9.

[129] Benjamin C. Pierce. Types and programming languages. MIT press, 2002.

261

https://doi.org/10.1109/SP.2011.12
https://doi.org/10.1109/SP.2011.12
https://doi.org/10.1145/3274694.3274743
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/Map.html#computeIfAbsent(K,java.util.function.Function)
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/Map.html#computeIfAbsent(K,java.util.function.Function)
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/Map.html#computeIfAbsent(K,java.util.function.Function)
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://doi.org/10.1007/3-540-46766-1_9

[130] Sylvan Pinsky. Absorbing covers and intransitive non-interference. In 16th

IEEE Symposium on Security and Privacy (Oakland ’95), May 1995. doi: 10.

1109/SECPRI.1995.398926.

[131] Nathaniel Popper. A hacking of more than $50 million dashes hopes in the

world of virtual currency. The New York Times, 17 June 2016.

[132] François Pottier and Sylvain Conchon. Information flow inference for free. In

5th International Conference on Functional Programming (ICFP ’00), September

2000. doi: 10.1145/351240.351245.

[133] François Pottier and Vincent Simonet. Information flow inference for ML.

ACM Transactions on Programming Languages and Systems (TOPLAS), 25(1):

117–158, January 2003. doi: 10.1145/596980.596983.

[134] Protocol Labs. Filecoin: A decentralized storage network. https://

filecoin.io/filecoin.pdf, July 19, 2017. Accessed March 2021.

[135] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Wysteria: A pro-

gramming language for generic, mixed-mode multiparty computations. In

35th IEEE Symposium on Security and Privacy (Oakland ’14), May 2014. doi:

10.1109/SP.2014.48.

[136] Ripple. Ripple. https://ripple.com/, 2017.

[137] Daniel S. Roche, Adam Aviv, Seung Geol Choi, and Travis Mayberry. Deter-

ministic, stash-free write-only ORAM. In 24th ACM Conference on Computer

and Communication Security (CCS ’17), October 2017. doi: 10.1145/3133956.

3134051.

[138] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-

oriented programming: Systems, languages, and applications. ACM Trans-

262

https://doi.org/10.1109/SECPRI.1995.398926
https://doi.org/10.1109/SECPRI.1995.398926
https://doi.org/10.1145/351240.351245
https://doi.org/10.1145/596980.596983
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://doi.org/10.1109/SP.2014.48
https://ripple.com/
https://doi.org/10.1145/3133956.3134051
https://doi.org/10.1145/3133956.3134051

actions on Information and System Security (TISSEC), 15(1), March 2012. doi:

10.1145/2133375.2133377.

[139] Andrew W. Roscoe and Michael H. Goldsmith. What is intransitive nonin-

terference? In 12th IEEE Computer Security Foundations Workshop (CSFW ’99),

June 1999. doi: 10.1109/CSFW.1999.779776.

[140] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and

Emmett Witchel. Laminar: Practical fine-grained decentralized information

flow control. In 30th ACM SIGPLAN Conference on Programming Language De-

sign and Implementation (PLDI ’09), June 2009. doi: 10.1145/1542476.1542484.

[141] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. CoinShuffle: Practical

decentralized coin mixing for Bitcoin. In 19th European Symposium on Research

in Computer Security (ESORICS ’14), 2014. doi: 10.1007/978-3-319-11212-1_

20.

[142] John Rushby. Noninterference, transitivity and channel-control security

policies. Technical Report CSL-92-02, SRI, December 1992. URL http:

//www.csl.sri.com/papers/csl-92-2/.

[143] Rust 2020. The Rust standard library, version 1.48.0. Enum

std::collections::hash_map::Entry.or_insert_with. https://doc.rust-lang.

org/std/collections/hash_map/enum.Entry.html#method.or_insert_with,

November 2020. Accessed March 2021.

[144] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow

security. IEEE Journal on Selected Areas in Communications, 21(1):5–19, January

2003. doi: 10.1109/JSAC.2002.806121.

263

https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1109/CSFW.1999.779776
https://doi.org/10.1145/1542476.1542484
https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1007/978-3-319-11212-1_20
http://www.csl.sri.com/papers/csl-92-2/
http://www.csl.sri.com/papers/csl-92-2/
https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html#method.or_insert_with
https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html#method.or_insert_with
https://doi.org/10.1109/JSAC.2002.806121

[145] Andrei Sabelfeld and Andrew C. Myers. A model for delimited information

release. In International Symposium on Software Security, November 2003. doi:

10.1007/978-3-540-37621-7_9.

[146] Andrei Sabelfeld and David Sands. Dimensions and principles of declassifi-

cation. In 18th IEEE Computer Security Foundations Workshop (CSFW ’05), June

2005. doi: 10.1109/CSFW.2005.15.

[147] Ravi S. Sandhu. Role-based access control. In Advances in Computers, vol-

ume 46, pages 237–286. Elsevier, 1998. doi: 10.1016/S0065-2458(08)60206-5.

[148] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal

of Cryptology, 4(3):161–174, 1991. doi: 10.1007/BF00196725.

[149] Franklin Schrans, Susan Eisenbach, and Sophia Drossopoulou. Writing safe

smart contracts in Flint. In Conference Companion of the 2nd International Con-

ference on Art, Science, and Engineering of Programming, pages 218–219, 2018.

[150] Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton

Trunov, and Ken Chan Guan Hao. Safer smart contract programming with

Scilla. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–30,

October 2019. doi: 10.1145/3360611.

[151] Servant Contributors. Servant – a type-level web DSL. http://haskell-

servant.readthedocs.io/, 2016.

[152] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-

libc without function calls (on the x86). In 14th ACM Conference on Computer

and Communication Security (CCS ’07), October 2007. doi: 10.1145/1315245.

1315313.

264

https://doi.org/10.1007/978-3-540-37621-7_9
https://doi.org/10.1109/CSFW.2005.15
https://doi.org/10.1016/S0065-2458(08)60206-5
https://doi.org/10.1007/BF00196725
https://doi.org/10.1145/3360611
http://haskell-servant.readthedocs.io/
http://haskell-servant.readthedocs.io/
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313

[153] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM

with O((log N)3) worst-case cost. In 17th International Conference on The Theory

and Application of Cryptology and Information Security (AsiaCrypt ’11), Septem-

ber 2011. doi: 10.1007/978-3-642-25385-0_11.

[154] Jeremy Siek and Walid Taha. Gradual typing for objects. In 21st European

Conference on Object-Oriented Programming (ECOOP ’07), July 2007. doi: 10.

1007/978-3-540-73589-2_2.

[155] Solidity. Solidity documentation. Release 0.7.5. https://docs.

soliditylang.org/en/v0.7.5/, November 18 2020. Accessed December

2020.

[156] Solidity. Solidity security considerations. https://solidity.readthedocs.

io/en/latest/security-considerations.html#use-the-checks-effects-

interactions-pattern, 2021. Accessed March 2021.

[157] Marcelo Sousa and Isil Dillig. Cartesian hoare logic for verifying k-safety

properties. In 37th ACM SIGPLAN Conference on Programming Language De-

sign and Implementation (PLDI ’16), June 2016. doi: 10.1145/2908080.2908092.

[158] Jon Southurst. Blockchain’s SharedCoin users can be identified, says se-

curity expert. CoinDesk, 10 June 2014. URL https://www.coindesk.com/

blockchains-sharedcoin-users-can-identified-says-security-expert.

[159] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flex-

ible dynamic information flow control in Haskell. In 4th ACM SIGPLAN

Haskell Symposium (HASKELL ’11), September 2011. doi: 10.1145/2034675.

2034688.

265

https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://docs.soliditylang.org/en/v0.7.5/
https://docs.soliditylang.org/en/v0.7.5/
https://solidity.readthedocs.io/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://solidity.readthedocs.io/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://solidity.readthedocs.io/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://doi.org/10.1145/2908080.2908092
https://www.coindesk.com/blockchains-sharedcoin-users-can-identified-says-security-expert
https://www.coindesk.com/blockchains-sharedcoin-users-can-identified-says-security-expert
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1145/2034675.2034688

[160] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. Path ORAM: An extremely simple

Oblivious RAM protocol. In 20th ACM Conference on Computer and Communi-

cation Security (CCS ’13), November 2013. doi: 10.1145/2508859.2516660.

[161] Nikhil Swamy, Michael Hicks, Stephen Tse, and Steve Zdancewic. Managing

policy updates in security-typed languages. In 19th IEEE Computer Security

Foundations Workshop (CSFW ’06), July 2006. doi: 10.1109/CSFW.2006.17.

[162] Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and

Emin Gün Sirer. Scalable and probabilistic leaderless BFT consensus through

metastability. Technical Report arXiv:1906.08936, August 2020. URL https:

//arxiv.org/abs/1906.08936.

[163] The Open Group. SOA standards. https://publications.opengroup.org/

standards/soa, 2020. Accessed December 2020.

[164] Florian Tramer, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and

Elaine Shi. Sealed-glass proofs: Using transparent enclaves to prove and

sell knowledge. In 2nd IEEE European Symposium on Security and Privacy (Eu-

roS&P ’17), 2017. doi: 10.1109/EuroSP.2017.28.

[165] Matthew Trudeau. Personal communication with Matthew Trudeau, Presi-

dent, TradeWind Markets, 2016.

[166] Luke Valenta and Brendan Rowan. Blindcoin: Blinded, accountable mixes

for Bitcoin. In 19th Financial Cryptography and Data Security (FC ’15), 2015.

doi: 10.1007/978-3-662-48051-9_9.

[167] Ron van der Meyden. What, indeed, is intransitive noninterference? In 12th

266

https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1109/CSFW.2006.17
https://arxiv.org/abs/1906.08936
https://arxiv.org/abs/1906.08936
https://publications.opengroup.org/standards/soa
https://publications.opengroup.org/standards/soa
https://doi.org/10.1109/EuroSP.2017.28
https://doi.org/10.1007/978-3-662-48051-9_9

European Symposium on Research in Computer Security (ESORICS ’07), Septem-

ber 2007. doi: 10.1007/978-3-540-74835-9_16.

[168] Paul Walker and Phil J. Venables. Cryptographic currency for securities set-

tlement. U.S. Patent Application 20150332395, November 2015.

[169] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of

the Goldreich–Ostrovsky lower bound. In 22nd ACM Conference on Computer

and Communication Security (CCS ’15), October 2015. doi: 10.1145/2810103.

2813634.

[170] Lucas Waye, Pablo Buiras, Dan King, Stephen Chong, and Alejandro Russo.

It’s my privilege: Controlling downgrading in DC-labels. In 11th International

Workshop on Security and Trust Management (STM ’15), September 2015.

[171] Douglas Wikström. Simplified universal composability framework. In 13th

IACR Theory of Cryptography Conference (TCC ’16), January 2016. doi: 10.1007/

978-3-662-49096-9_24.

[172] J. Todd Wittbold and Dale M. Johnson. Information flow in nondeterministic

systems. In 11th IEEE Symposium on Security and Privacy (Oakland ’90), May

1990. doi: 10.1109/RISP.1990.63846.

[173] Gavin Wood. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum Project Yellow Paper, 2014.

[174] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type

soundness. Information and Computation, 115(1):38–94, 1994. doi: 10.1006/

inco.1994.1093.

[175] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for

automatically enforcing privacy policies. In 39th ACM SIGPLAN Sympo-

267

https://doi.org/10.1007/978-3-540-74835-9_16
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1007/978-3-662-49096-9_24
https://doi.org/10.1007/978-3-662-49096-9_24
https://doi.org/10.1109/RISP.1990.63846
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093

sium on Principles of Programming Languages (POPL ’12), January 2012. doi:

10.1145/2103656.2103669.

[176] Drew Zagieboylo, G. Edward Suh, and Andrew C. Myers. Using information

flow to design an ISA that controls timing channels. In 32nd IEEE Computer

Security Foundations Symposium (CSF ’19), June 2019. doi: 10.1109/CSF.2019.

00026.

[177] Steve Zdancewic and Andrew C. Myers. Robust declassification. In 14th

IEEE Computer Security Foundations Workshop (CSFW ’01), June 2001. doi:

10.1109/CSFW.2001.930133.

[178] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. My-

ers. Secure program partitioning. ACM Transactions on Computer Systems

(TOCS), 20(3):283–328, August 2002. doi: 10.1145/566340.566343.

[179] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing

distributed systems with information flow control. In 5th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI ’08), April

2008. URL https://www.usenix.org/legacy/events/nsdi08/tech/full_

papers/zeldovich/zeldovich.pdf.

[180] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.

Making information flow explicit in HiStar. Communications of the ACM, 54

(11):93–101, November 2011. doi: 10.1145/2018396.2018419.

[181] Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Simon Peyton-

Jones. SHErrLoc: A static holistic error locator. ACM Transactions on

Programming Languages and Systems (TOPLAS), 39(4), August 2017. doi:

10.1145/3121137.

268

https://doi.org/10.1145/2103656.2103669
https://doi.org/10.1109/CSF.2019.00026
https://doi.org/10.1109/CSF.2019.00026
https://doi.org/10.1109/CSFW.2001.930133
https://doi.org/10.1145/566340.566343
https://www.usenix.org/legacy/events/nsdi08/tech/full_papers/zeldovich/zeldovich.pdf
https://www.usenix.org/legacy/events/nsdi08/tech/full_papers/zeldovich/zeldovich.pdf
https://doi.org/10.1145/2018396.2018419
https://doi.org/10.1145/3121137

[182] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town

Crier: An authenticated data feed for smart contracts. In 23rd ACM Conference

on Computer and Communication Security (CCS ’16), October 2016. doi: 10.

1145/2976749.2978326.

[183] Lantian Zheng and Andrew C. Myers. End-to-end availability policies

and noninterference. In 18th IEEE Computer Security Foundations Workshop

(CSFW ’05), June 2005. doi: 10.1109/CSFW.2005.16.

[184] Lantian Zheng and Andrew C. Myers. Dynamic security labels and static

information flow control. International Journal of Information Security, 6(2-3):

67–84, March 2007. doi: 10.1007/s10207-007-0019-9.

[185] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve Zdancewic.

Using replication and partitioning to build secure distributed systems. In

24th IEEE Symposium on Security and Privacy (Oakland ’04), May 2003. doi:

10.1109/SECPRI.2003.1199340.

269

https://doi.org/10.1145/2976749.2978326
https://doi.org/10.1145/2976749.2978326
https://doi.org/10.1109/CSFW.2005.16
https://doi.org/10.1007/s10207-007-0019-9
https://doi.org/10.1109/SECPRI.2003.1199340

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Cryptography and Replication
	Compositional Integrity Guarantees
	Endorsement With Secrets
	Reentrancy

	Solidus
	Background
	Existing Cryptocurrencies
	Bank-Intermediated Systems
	Oblivious RAM
	Generalized Schnorr Proofs

	Solidus Overview
	Design Approach
	Architectural Model
	Trust Model
	Security Goals

	PVORM
	Formal Definition
	Solidus Instantiation

	Solidus Protocol
	FLedger-Hybrid Functionality
	Security Definition

	Optimizations
	Precomputing Randomization Factors
	Reducing Verification Overhead
	Transaction Pipelining

	Experiments
	PVORM Performance
	Solidus System Performance
	zk-SNARK Comparison

	Related Work
	Crypto Primitives
	El Gamal Encryption and Account-Balance Representation
	Generalized Schnorr Proofs (GSPs)
	Hidden-Public-Key Signatures
	El Gamal Swaps
	Range Proofs
	Circuit ORAM

	SolidusPVORM Construction
	Construction
	Security Proofs

	Solidus Security Proof
	Variants
	zk-SNARK PVORM
	Use of Trusted Hardware
	Use of Pedersen Commitments

	Nonmalleable Information Flow Control
	Motivating Examples
	Fooling a Password Checker
	Cheating in a Sealed-Bid Auction
	Laundering Secrets

	Background
	Enforcing Nonmalleability
	Robust Declassification
	Transparent Endorsement

	A Core Language: NMIFC
	NMIFC Operational Semantics
	NMIFC Type System
	Examples Revisited

	Security Conditions
	Attackers
	Equivalences
	Noninterference and Downgrading
	Robust Declassification and Irrelevant Inputs
	Transparent Endorsement
	Nonmalleable Information Flow

	NMIF as 4-safety
	Implementing NMIF
	Information-Flow Monads in Flame
	Nonmalleable HTTP Basic Authentication

	Related Work
	Full NMIFC
	Label Tracking with Brackets

	Attacker Properties
	Generalization
	Proofs
	Language Results
	Security Results

	Compositional Reentrancy Security
	Motivating Examples
	Uniswap
	Key–Value Store
	Town Crier

	Information Flow Control
	Label model
	Endorsement

	Reentrancy and Security
	Defining Reentrancy
	Reentrancy Security
	Enforcing Reentrancy Security

	SeRIF: A Core Calculus for Secure Reentrancy
	SeRIF Operational Semantics
	Type System for SeRIF
	Modeling Application Operation
	Examples Revisited

	Formalizing Security Guarantees
	Attacker Model
	Noninterference
	Formalizing Reentrancy

	Implementation
	Related Work
	Full SeRIF Rules
	Location–Name Isomorphism
	Preservation and Progress
	Proof of Noninterference
	Proof of Reentrancy Security
	SeRIF Allows Only Tail Reentrancy
	All Tail Reentrancy is Secure

	Conclusion

