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ABSTRACT. Covariance analysis for data from experiments designed in a split 

plot or split block design is mostly ignored in statistical literature. 

When it is considered, it is often done incorrectly and/or incompletely. 

This is especially true for computer packages. A discussion of what should 

be done, what is or can be done with computer packages, and a possible 

solution to the problems is given. The proposed solution is to obtain 

computer output for a particular package such as SAS, GENSTAT, BMDP, etc. 

and to annotate the output explaining which computations have been 

performed, which have not, and which are still needed. If an incorrect or 

useless procedure has been given, it is so stated. A short description of· 

annotated computer outputs prepared to date is given. Annotated computer 

outputs for five packages for principal component analyses, and for three 

packages for covariance in a split plot design have been prepared. Two 

technical reports and an annotated computer output have been written for 

cluster analysis. Copies of these reports are available from the 

Mathematical Sciences Institute. 
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1. INTRODUCTION. Split plot and split block designs appear to be 

rather mystifying to many individuals. They apparently are not cognizant 

of the many and varied forms these designs may take, the philosophical 

nature, concepts, and usage of the several error mean squares that are 

required, and the nature and use of covariance analyses for these designs. 

Since the computational procedure for an analysis of variance (ANOVA) for 

orthogonal split plot and split block designs are trivial, many individuals 

feel that the concepts are also simple. Computational procedures for an 

ANOVA do not explain concepts contrary to some opinions. 

Yates (1937) described one type of split plot design as an example of 

a class of designs. Unfortunately this one type of split plot design is 

described as THE split plot design in almost all of statistical literature, 

especially in textbooks. Federer (1955, 1975, 1977) described some 

variations, some misconceptions, and possible population structures for 

these designs. With regard to the last point, a glaring omission in 

statistics textbooks is the failure to include any discussion of population 

structure for even the simplest of experiment designs. This necessarily 

raises the question about meaningful inferences when the population is 

undefined and undescribed. 

* In the Technical Report Series of the Biometrics Unit, Cornell 
University, Ithaca, N.Y. 14853. 
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When analyses of covariance (ANCOVA) are attempted, the confusion 

continues. This becomes strikingly evident in outputs for computer 

packages purporting to give such analyses for any but the simplest of 

experiment designs (See, e.g., Federer, 1955, Federer ec a]. 1979, 1987a, 

1987b, 1987c, and Searle ec al. 1982a, 1982b, 1982c). The concept of a 

separate regression for each error mean square is lacking in a number of 

computer packages. Hence, if a package does supply output for means 

adjusted for a covariate, the adjusted means given are often incorrect. 

The fact that there may be as many regression coefficients as there are 

error mean squares appears not to be understood. Since many regression 

coefficients can be and are computed in an ANCOVA, it is important to 

understand which ones are to be used for adjusting means for covariates and 

why. 

Herein we shall discuss only ANCOVA for three specific designs, i.e. 

(i) the standard split plot design where the whole plot treatments are 

in a randomized complete b~ock design and split plot treatments are 

randomized within each whole plot, 

(ii) a split-split plot design which is the one in (i) except that the 

split plot is further split to have whole plot treatments, split plot 

treatments, and split-split plot treatments, and 

(iii) a split block design or two-way whole plot design where each set 

of treatments are in a randodmized complete block design arrangement. 

In addition, a list of available annotated computer outputs (ACOs) is given 

in the last section. 

2. Split Plot Experiment Designs. The almost universal split plot 

experiment design discussed in statistics textbooks is the one wherein the 

whole plot treatments are in a randomized complete block design and the 

split plots are completely randomized within each whole plot. Denote this 

as the standard design. However, Federer (1955, 1975) has pointed out 

that there is a vast variety of split plot experiment designs which are 

used in practice. There are many different experiment designs for whole 

plot treatments as well as for split plot treatments. Also, almost all 

statistics textbooks confine their discussion to an ANOVA for the standard 

split plot design with no discussion of an ANCOVA or of an ANOVA for 

nonorthogonal situations. Computer packages such as SAS, GENSTAT, BMDP, 
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and others are set up to provide computations for nonorthogonal situations 

but a full description and use of computer output computations is lacking, 

resulting in a need for annotating computer output (ACO). S. R. Searle and 

several co-workers have been very active in this area. A list of ACOs 

prepared by this group is given later in the paper. It should be noted 

that Searle is currently updating a number of previously prepared ACOs. 

In order to keep this paper relatively short, only the standard (or 

usual) split plot experiment design will be considered in detail. Many 

response models may be used for the vast variety of experiments designed as 

a split plot but we shall confine ourselves to the linear model in Federer 

(1955). Let the ijkch observation Yijk with an associated covariate Zijk 

be represented as follows: 

(1) 

yijk = ~ + Pj + ~i+ 6ij + ak + a~ik + B1(Zij.-z ... ) + B2(Zijk-Zij.) + eijk, 

where ~ is an overall mean effect, ~. is the effect of the ich whole plot 
1 

treatment, ak is the effect of the kch subplot treatment, a~ik is the 

interaction effect for the ikch combination of whole plot treatment i and 

split plot treatment k, pj 

zero and variance a2 , 6 .. is 
p 1] 

is a random block effect distributed with mean 

a random whole plot error effect· distributed 

with mean zero and variance a~, eijk is a random split plot error effect 

distributed with mean zero and variance cr 2 , zi. is the mean of the 
E J • 

covariate for the ijch whole plot, z •.• is the over-all mean of the 

covariate (i.e., the usual dot and bar notation), i = 1, ... , a, j = 1, ... , 

r, k = 1, ... , s, B1 is a whole plot linear regression coeficient of theY 

whole plot residuals on the Z whole plot residuals, and B2 is a split plot 

linear regression of the Y split plot residuals on the Z split plot 

residuals. Note that using estimates of B1 and B2 , i.e, a1 and a2 , to 

adjust means is the correct thing to do. The purpose of using covariates 

is to reduce the variation in observed Y variable means by measuring and 

using an associated covariate. The reduction must then occur in the error 

or residual line in the ANOVA. We have encountered individuals who did not 

use this regression to adjust treatment means but used another regression, 

e.g., on the total line in the ANCOVA. This is incorrect and possible with 

present computer packages by eliminating the effect of the covariate first. 

In some situations, the formulation of the response model as in (1) is 

inappropriate. Although (1) could be appropriate for one variable or for 
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one investigation it may not be for another. Also, as formulated (1) has 

two error effects, the Oij and Eijk When the whole plot treatments, e.g., 

represent a random sample of treatments from a population, then the~. are 
1 

distributed with mean zero and variance a 2 • An appropriate error term 
"[ 

for the fixed split plot treatment effects ak would be the whole plot by 

split plot treatment interaction mean square. The a-rik would have 

E, k a-r,k = 0 and variance cr 2 • Likewise in an ANCOVA, the appropriate 
1, 1 ct't: 

regression for split plot treatment means would be computed from the 

interaction line rather than the error (b) line (see Table 1). In other 

situations, the split plot treatments or both split plot and whole plot 

treatments could be considered as a random sample of treatments and the 

effects would be random rather than fixed effects. Appropriate 

modifications in ANOVA and ANCOVA would be required for both situations. 

A response model for variable Y is formulated and then an ANCOVA as in 

Table 1 is appropriate for a single covariate Z related to the variable Y 

in a linear manner. Note that the relation between Y and Z could be 

polynomial or nonlinear in nature. The number of covariates, say c, may 

exceed one. This situation may be handled as a straight-forward extension 

but we shall not consider these additional complexities. For response 

model equation (1), the ANCOVA is given in Table 1. The sums of products 

are 

A 
yz 

and 

computed in the usual manner. For example, T = Iii l 'k Z, , k 
yz ijk J 1J , 

= I I 6 .. 
i j Y1J 

iS , , is the 
21] 

8 i' , where 6 , , is the residual for the variable Y alone 
z J Y1J 

residual for the variable Z alone, and B = I I I £ £ 
yz i j k yijk zijk, 

where the £hijk are the computed split plot residuals for variable h = y, z. 

The above computations would still hold even for non-orthogonal experiment 

designs. The mean squares in ANCOVA are obtained by dividing by the appro-

priate degrees of freedom. If, in addition to an ANCOVA, it is desired to 

obtain ¥-statistics, the ratios W' (ar-r-a) I A' (a-1), S' [a(r-1)(s-1)-1] 
yy yy yy 

I B' (s-1), and I' [a(r-1)(s-1)-1] I B' (a-1)(s-1) may be computed. Given 
yy yy yy 

that the o,, and£, 'k are NIID, the probability of obtaining a larger 
1] 1] 

F-statistic may be obtained from prepared tables or computer programs. Even 

if normality does not hold, the probabilities will be approximately correct 

for most situations. 
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Table 1. ANCOVA for equation (1) for a split plot experiment design 1 

Sums of 
Source of Degrees of Products Adjusted Sums 
Variation Freedom (df) yy YZ zz df Of S uares 

Total ars T T T yy yz zz 

Correction 
for Mean 1 M M M yy yz zz 

Block ( r-1) R R R yy yz zz 

Whole Plot = w (a-1) w w w yy yz zz 

Error (a) (a-1)(r-1) A A A (ar-a-r) A -Az I A = A' yy yz zz yy yz zz yy 

Split Plot = s ( s-1) s s s yy yz zz 

S X W ( a-1 )( s-1) I I I (as-a-s) I -I2 I I = I, 
yy yz zz yy yz zz yy 

Error (b) a(r-1)(s-1) B B B a(r-l)(s-1)-1 B -Bz I B = B' z zz yy yz zz yy 

Whole Plot (a-1) (W + A )2 A2 
w yz yz + ...Y.3. = W' 

(adj. for f\) yy w + A A yy zz zz zz 

Split Plot (s-1) (S + B )2 B2 
s yz yz + ...Y.3. = S' 

(Adj. for i3 2) yy s + B B yy 
zz zz zz 

S X W 
(I + B ) 2 B2 

(a-l)(s-1) I 
yz yz + __:t:Z= I' 

(Adj. for 82) yy I + B B yy zz zz zz 

The various mean squares may be obtained by dividing by the appropriate 
degrees of freedom. 

The various Y means adjusted for the covariate Z are: 

~l<Z. - z 
1 .. 

) = Y! 
l •• ' 

Y. (adj.) 
1 •• 

= Y. 
l .. 

Y .• k (adj.) y 
.. k i3z<Z .. k- z ) = Y' .. k, 

and 

Y. k(adj.) = Y. k 
l. l. 

zi ) = Y! k 
. . l. 

where i3 1 =A I A a2 = B I B and the usual dot notation is used 
yz zz, yz zz, 

for the various means. 

Estimated variances of a difference between two adjusted means for 

i + i' and k = k' are: 
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Variance of a difference between two adjusted whole plot treatment means 

v (Y~ 
1 •• 

- Y~ 1 ) = (iJ 2 + s8~) [ 
1 .. £ u sr 

2 + 
<z. 

1 •• 

A zz 

- Z, 1 )
2 ] 1 •• 

Variance of a difference between two adjusted split plot treatment means 

v (Y' - Y' , ) = az [ 2 + 
.. k .. k £ ar 

Variance of a difference between two adjusted split plot treatment means 
for the same whole plot treatment 

2 
r 

Variance of a difference between two adjusted whole plot treatment means 
for the same split plot treatment 

2 <z 0 - z 0 , ) 
2 

(iJ2 + iJ2) + (82 + siJ2.) 1. .A 1 .. 
r £ o £ 6 zz 

(J~ z <Zi . k _ z . , k zi + z 0 I ) 2 
1 . - • . 1 •• 

+ £ B 
zz 

(iJ2 + s8 2 ) =A' I (ar-a-r), &2 = By'y I [a(r-)(s-1)-1] , 
£ 0 yy £ 

= [ (&~ + siJ~) - a~ ] I s . 

a~ is associated with a(r-1)(s-l)-l degrees of freedom, (a~ + siJ~) is assoc-

iated with ar-r-a degrees of freedom, and the degrees of freedom for the last 

variance above are approximated as the degrees of freedom f associated with 

t (f) = 
Ct 

(s-1)(& 2 + sa2 ) t (ar-r-a) + iJ 2t [a(r-1)(s-1)-1] 
£ o a £ a 

( s-1) ( 82 + sa 2 ) + 82 
£ 0 £ 
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where t (f) is the tabulated value of the t-statistic at the a percentage 
a 

level for f degrees of freedom. This approximation underestimates the 

degrees of freedom for this variance (see Cochran and Cox, 1950, and 

Grimes and Federer, 1984). 

Given the above variances, one may now use a multiple range procedure 

to compare individual pairs of means. Some authors (e.g. Cochran and Cox, 

1950) consider that there is a correlation between the split plot 

experimental units. Hence, the whole plot expected error mean square would 

be given as o 2 and the split plot error would be written as 

o 2 (1-p) = cr~ where the correlation pis equal to scr~ I o 2 • Although 

this formulation is useful for many situations it is not of universal 

application; e.g. when measurement error or competition exists between 

split plot experimental units but not between whole plot experimental 

units. Statistical modeling for any investigation should be carefully 

considered. 

3. Split-Split Plot Experiment Designs. For this class of designs, 

various experiment designs may be used for whole plot treatments, for split 

plot treatments, and for split-split plot treatments. However, we shall 

confine our remarks to a single member of this class, i.e., the whole plot 

treatments are arranged in a randomized complete blocks design, the split 

plot treatments are randomly allocated to the split plot experimental units 

within each whole plot unit, and the split-split plot treatments are 

randomly assigned to the split-split plot experimental units within each 

split plot experimental unit. There will be r randomizations for the a 

whole plot treatments, ra randomizations for the s split plot treatments, 

and ras randomizations for the p split-split plot treatments. The 
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treatment design considered here is a three factor factorial with asp 

combinations, but it should be noted that other treatment designs are 

possible. The factors are assumed to be fixed effects to simplify 

presentation. 

One possible response model for the above experiment and treatment 

design for a variable Y with a covariate Z is: 

=~+Ph+ ~i + 6hi + ~1 (Zh. - Z ) + ~j +a~.· +£h.· 
1. • . . . . 1] 1] 

(2) 

where the first nine effects are as defined for equation (1), rk is the 

effect of the kch split-split plot treatment, r~ik is a two-factor 

interaction effect for combination ik, ~rjk is a two-factor interaction 

effect for combination jk, ~r1:ijk is a three-factor interaction effect for 

combination ijk, ~hijk is a random error effect associated with split-split 

plot experimental unit hijk and distributed with mean zero and variance 

cr2 
~, 133 is a linear regression coefficient of the split-split plot y 

residuals on the corresponding z residuals, h = 1' ... ' r, i = 1 ' ... , a, j 

= 1 ' ... ' s, and k = 1 ' ... ' P· An ANCOVA for this design and response 

model is given in Table 2. 

The various adjusted means are computed as: 

y (adj.) = y - a1a.i..- z ) = Y'. . i .. . i .. .1 .. 

y (adj.) = y - a2cz .. j. - z ) = Y:• 
. . j. .. j. . . j . 

' 

y (adj.) = y - a3<z ... k- z ) = Y:• 
... k ... k ... k 

y (adj.) = y a1cz.i..- z ) - {!2(2 .. - z ) = Y' .. . ij. . ij. .1]. . i .. .1J. , 

y (adj.) = y - a1cz.i..- z ) - a3<Z.i.k - z ) = Y:• 
.i.k .i.k . i.. .i.k 

(adj.) a2cz . - ) a3(z .k-
- ) Y' y = y - z - z = .. jk .. jk .. J. ..J .j .. ..jk 
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Table 2. ANCOVA for equation (2) for a split-split plot experiment design 1 

Sums of 
Source of Products Adjusted Sums 
Variation df z zz df Of S uares 

Total rasp T T T 
yy yz zz 

Correction 
for Mean 1 M M M 

yy yz zz 

Block (r-1) R R R yy yz zz 

Whole Plot = w (a-1) w w w yy yz zz 

Error (a) (a-l)(r-1) A A A (ar-r-a) A -A2 I A =A' 
yy yz zz yy yz zz yy 

Split Plot = s ( s-1) s s s yy yz zz 

S X W (a-l)(s-1) I I I yy yz zz 

Error (b) a(r-1)(s-1) B B B a(r-1)(s-1)-1 B -B2 I B = B' 
YY yz zz YY yz zz yy 

Split-Split 
Plot = P (p-1) p p p 

yy yz zz 

w X p (a-1)(p-l) Qyy Qyz Qzz 

s X p (p-1)(s-l) u u u yy yz zz 

W X s X p (a-1)(p-1) v v v 
·(s-1) yy xy zz 

Error (c) as(r-1)(p-1) c c c as(r-l)(p-1)-1 c -c2 I c = C1 

yy yz zz yy yz zz yy 

W(adj. for Bl) (a-1) w - (W + A )2 I (W + A ) + A2 I A = W' yy yz yz zz zz yz zz 

S(adj. for Bz) (s-1) s - (S + B )2 I (S + B ) + B2 I B = yy yz yz zz zz yz zz 

SXW(adj. for a2) (a-1)(s-l) I - (I + B )2 I (I + B ) + Bz I B = yy yz yz zz zz yz zz 

P(adj. for B 3) (p-1) p - (P + c )2 I (Pzz + c ) + cz I c = 
YY yz yz zz yz zz 

WXP(adj. for a 3> (a-1)(p-1) Qyy - c + c )2 I (" + c ) + c2 I c = Qyz yz Qzz zz yz zz 

SXP(adj. for a 3> (p-1)(s-1) u - (U + c )2 I (U + c ) + c2 I c = yy yz yz zz zz yz zz 

WXSXP(adj. for a3)(a-l)(p-1)(s-l) v - (V + c )2 I (V + c ) + cz I c = yy yz yz zz zz yz zz 

The various mean squares may be obtained by dividing by the appropriate 
degrees of freedom. 

yy 

s 1 

yy 

I 1 

yy 

P' 
yy 

Q~y 

U' 
yy 

V' 
yy 
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and 

Y.ij'k (adj.) = y i'k- a1(Z . - z ) - a2(Z 'j - z . ) • J .1.. . . . . .1. • .1 .. 

- a3(z "k - z 'j ) = Y'. 'k . 1J . 1 . . 1J 

where a1 = A I A , a2 = B I B and a3 = C I C yz zz yz zz, yz zz 

Estimated variances of a difference between two means adjusted for a 

covariate fori+ i', j + j', E =A' I (ar-r-a), 
a yy 

and &2 = C' I [as(r-1)(p-1)-1] are given below: 
1£ yy 

B' 
yy 

I [a(r-1)(s-1)-1), 

Variance of a difference between two whole plot treatment adjusted means 

(2 . - z ' )2 
• 1. . • i .. 

+ A 
zz 

] 
Variance of a difference between two split plot treatment adjusted means 

V(Y' . 
.• J . 

- [ 2 Y' ) = E -
.. j' b arp + 

<z .-z .,) 2 
.. 1 • • . J • 

B zz 
] 

Variance of a difference between two split-split plot treatment adjusted means 

V(Y' -
... k 

-, ) A2 [ 2 y· ' = a ----... k 1£ ars + 
<z - z ,) 2 

... k •.. k 
c zz 

] 
Variance of a difference between two adjusted means for combinations ij and ij' 

V(Y' .. 
. 1J. 

Y' .. ' ) = Eb [ 2 . 1J . rp 

<Z .. -zi., )2 ] + .1]. . 1 . 
B zz 

Variance of a difference between two adjusted means for combinations ij and i'j 

V(Y'.' 
. 1J. y' ''' ) • 1 J • 

2 
rp 

<z .. . 1J. 
- z 

. i .. 

cz . z ., )2 
. 1. . . 1 .. 

A 
zz 

-z ·•· +Z ., )2 
.1 ]. .1 .. 

B 
zz 

Variance of a difference between two adjusted means for combinations ik and ik' 

V(Y'. k -
. 1. 

Y-, ) = ~2 [ _l 
.i.k' v7£ rs 

C:z . k - z . k' )2 ] + .1. .1. 

c zz 
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Varia~ce of a difference between two adjusted means for combination~ ik and i'k 

2 (sa~ + a~ + a;> E (Z . - z i' )Z + a . l.. • • •• 
A 

zz rs 

az <z . k - z . + ~ .1. .1 •• - z.i' .k + z.i' .. )2 

c 
zz 

Variance of a difference between two adjusted means for combinations ijk and ijk' 

V(Y'. 'k -
.1] 

- - 2 
2 (Z . 'k- z ''k 1 ) 

y:~ .. ) =-- (&2) + az --·~1~,-------·~l~,---
.1Jk1 r ~ ~ C 

zz 

Variance of a difference between two adjusted means for combinations ijk and ij 1 k 

2 Eb (z.1.i. - z i'I)Z 
r (8~ + a;) + B ~~--------·~1--·_ 

zz 

82 <Z , , k - z , , - z , , 1 k + Z , , 1 ) 2 
~ • 1 1 . 1 J • • 1 1 • 1] . +c-

zz 

Variance of a difference between two adjusted means for combinations ijk and i'jk 

.-I 

V( y . 'k -
.1] 

Y' I I 'k) = .]. J 
2 
r 

~ 
+ B 

zz 

(8~ + (j2 + az ) 
£ ~ 

(Z .. 
.1]. 

- z . 
• 1 •• 

(j2 (Z . 'k - z .. + ~ . 1] .1J. 
c 

zz 

E 
+~ 

A 
zz 

<z . -
• 1 •• 

- 2 
z.i' .. > 

- z , 1, + z , 1 ) 2 
.1 ]· .1 •• 

= v(Y'. 'k - Y'. ~, 'k') and that V(Y'. 'k - Y'., 'k) = V(Y'. 'k - Y .. 'k 1 ) 
• 1] . 1 J . 1] • 1] • 1J • 1] 

Most variances above without the covariate were given by Federer (1955). 

Also, the expected values of Ea and R are a2 + pa2 + psa 2 and a2 + pa2 
-b ~ E o ~ £ 

respectively. Estimates of variance components a~ , a2 , and E(rr2) = a2 
u £ ~ n 

are needed to compute the fifth, seventh, ninth, and tenth variances above. 
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The degrees of freedom for these variances need to be approximated as they 

were in the previous section. Also note that ps(cr2 + &2 + &2) = 
'If £ ~ 

4. Split Block Experiment Design. The experiment design considered 

here is denoted as a split block design. It has also been called a two-way 

whole plot and a strip trial design. This design has received no attention 

in statistical textbooks with an exception being Federer (1955). It does 

occur frequently in practice but sometimes is not analyzed correctly as a 

split block design. The member of this class of designs we shall discuss 

will be for a two-factor factorial treatment design with the levels of one 

factor being applied perpendicularly across all levels of the second factor 

within each replicate or complete block. The levels of each factor will 

have the same design for our example, that is a randomized complete block 

design. (The levels of one factor could be in a randomized complete block 

design and the levels of the second factor could be in a latin square, 

balanced incomplete block, or other experiment design.) Note that there 

will be r separate randomizations for the levels of each of the factors. 

The number of levels of factor one is a and the number of levels of the 

second factor is b, resulting in an a x b factorial treatment design. 

A response model equation as given in Federer (1955) for a variable Y 

and a covariate Z is: 

( 3) 

where v is a general mean effect, ph is the hch block effect, which has 

mean zero and variance cr 2 , ~. is the effect of the ich level of factor 
p 1. 

one, say A, rj is the effect of the jch level of factor two, say B, ~hi is 

a random error effect for the hich whole plot for factor A and has mean 

zero and variance cr~, nhi is a random error effect for the hjth whole 

plot for factor B and has mean zero and variance cr 2 , rxr .. is the 
'If 1] 

interaction effect for the ijth combination of levels of factors A and B, 

e:h .. is a random error effect associated with the hij th subplot for the 
1] 
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A x B interaction and has mean zero and variance a~, a1 is the linear 

regression of Y whole plot residuals on the Z whole plot residuals for 

factor A, a2 is the linear regression of the Y whole plot residuals on the 

Z whole plot residuals for factor B, and a3 is the linear regression of Y 

subplot residuals on Z subplot residuals. 

An ANCOVA for response model (3) is given in Table 3. For this design 

and for fixed effects for the a x b factorial, there are three error 

variances and three error regressions. Given that the error effects are 

NIID, the usual F statistics may be used if desired. The adjusted means 

are given by: 

Y . (adjusted) = y ~l<Z·i· - z ) = Y' • 1' . i. . i . 

Y . (adjusted) = y az<Z . - z ) = Y' •• J .. j •. J .. j 
and 

Y .. (adjusted) = y - al<z.i. - z ) - a2 (Z - z ) -
•1J . ij .. j 

e3<Z .. - z - z + z ) = Y' .. 
'1] •1• .. j •1J 

where the Bs are defined in Table 3. 

Estimated variances of a difference between adjusted means are given 

below fori¢ i', j ~ j': 

[ 2 (z. -2.,)2] 
V(Y' . - Y1 ) = E -- + -----~1-·------~1--·---

'1' ·i' a rb A zz 

[ 2 <z .-z .,)2] 
V( Y1 .- Y- 1 ) = E -- + .. J .. , 

·' b ab B .. J .. J zz 

E 
v<Y', .-Y' .. ,) = 

•1J •1J 
<Z .-z .,) 2 + cc <z ':·.-z .. ,-z .+z ,1 )2 •• J •• J z z • 1J • 1J •• J •• J 

V(Y 1i. - Y'. I.) • J • 1 J <Z. 
·1· 

-z . 1 ) 2 
• 1 • 

E 
+ ,~C a i, - z , lj - z , + z , 1 ) 2 ' 

'"'zz · J ·1 ·1· •1 • 
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and 

v<Y:il - Y:i'J') ·~<a~+"!+ a~)+::, <Z·i· - Z·i'·)' + ::. <Z .. J - '··J'l' 

where 

and 

E 
c 

+ c 
zz 

(Z .. -z.,.,-Z.+Z.i'·-z .+Z .,) 2 
• l.J • ]. J • ]. • • • J •• J 

E = A' /(ar-a-r) = a2 + ba2 E = B' /(br-b-r) = aZ + aa2 
a yy e &' b yy e ~· 

E = C' /[(a-1)(b-1)(r-1)-1] = a2 • 
C yy E 

The degrees of freedom for the last three variances need to be approximated 

by the method previously given or by some other appropriate approximation 

(See e.g., Grimes and Federer, 1984). 

Table 3. ANCOVA for equation (3) for a split block experiment design. 

Source of variation df Sum of products 

Total rab T T T yy yz zz 

Correction for mean 1 M M M 
YY yz zz 

Replicate = R (r-1) R R R yy yz zz 

Whole plot A (a-1) w w w yy yz zz 

Error (a) (r-l)(a-1) A A A yy yz zz 

Whole A adjusted for 61 = A /A yz zz 

Whole plot B (b-1) s s s yy yz zz 

Error (b) (b-1)(r-1) B B B yy yz zz 

Whole plot B adjusted for 62 = B /B yz zz 

A X B (a-l)(b-1) 

Error (ab) (r-l)(a-1)(b-1) 

I I I yy yz zz 

c c c yy yz zz 

df Adjusted sums of squares 

A2 
(ra-a-r)A - ...Y'£ =A' 

yy Azz YY 

(W + A )Z AZ 
( a-l)W J:Z yz + ...Y'£ = W' yy w + A A yy zz zz zz 

Bz 
(rb-b-r)B - ...Y'£ = B' yy B yy zz 

(S +B )2 Bz 
(b-l)S yz yz + E._= S' yy s + B B yy zz zz zz 

cz 
(r-l)(a-l)(b-1)-1 C - ...Y'£ = C' 

yy czz yy 

Interaction adjusted for §3 = C /C (a-l)(b-1)1 
yz zz YY 

(I +C ) 2 C2 

--~y=z---~y=z--- + ...Y'£ _ I' 
I + C C - yy 

zz zz zz 
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5. Some Comments. Since formulas for many of the above adjusted 

means and variances do not appear in statistical literature, it was deemed 

appropriate to include them here. As can be seen from the analyses for 

relatively simple designs from each of the three classes, there are a 

variety of formulas for adjusted means and variances of differences between 

two adjusted means. The more complex members of each class may have 5, 10, 

15, or 20 error mean squares and the same number of regression 

coefficients. Experiments are conducted wherein some of the factors are 

arranged in split blocks and others in split plot arrangements. Many 

different designs may be used for the different factors (See e.g., Federer, 

1955, 1975). The most complex experiment design encountered is described 

by Federer and Farden (1955), where there are several split plot and 

several split block arrangements with a total of 75 error mean squares and 

203 lines in the ANOVA. 

One method of aiding investigators with ANOVAs and ANCOVAs of 

complexly designed experiments is to ascertain how much of a statistical 

analysis can be obtained with computer packages such as SAS, BMDP, GENSTAT, 

SPSS, and others. Then, the output can be annotated, i.e. an explanation 

is appended to the computer output describing what has been computed and 

how to use the results. Annotated computer outputs for two different split 

plot designs with a covariate have been completed for SAS, BMDP, and 

GENSTAT (see Federer eta]. l987a, l987b, l987c). In addition to these 

covariance analyses, annotated computer outputs have been prepared for 

principal component analysis from five computer packages and the mixture 

method of cluster analysis on SAS. A listing of these is given in 

Appendix A. A second list of material available from the Biometrics Unit 

is given in Appendix B. 

The analyses have been described for a single covariate. Noting that 

A 
yy 

A' 

A2 I A yz zz 
when there 

= A (l-r 2 ) 
yy yz 

are several 

= A' one may simply 
yy, 

covariates and where R2 

use 

is 

A (l-R2 ) = 
yy 

the squared 
YY 

multiple correlation coefficient computed on the error line. If the 

relationship between a covariate Z and Y is curvilinear, it may be possible 

to use some function of Z, e.g. log Z, /Z, 1/Z, which makes the relation 

linear. If this can be accomplished both computations and interpretations 

are simplified. 

A simplification of the estimated variances for differences of means 

has been given by Yates (1934) and Finney (1946). Instead of computing the 
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- 2 - - 2 quantities <z.i. - Z ., ) I A and (Z . - Z j') I B , e.g, for each 
.1 • zz • ·J . . zz 

pair of means, one may compute a single variance by using W l(a-1)A and 
XX ZZ 

S l(s-1)B , respectively. 
XX ZZ 

pairs ii' of <z.i. - z.i' .> 2 

The quantity W /(a-1) is an average of all 
XX 

This simplication and approximation consid-

erably reduces the number of computations for large a and/or s. For the 

quantities <z.ij- z.ij' - z.i. + z.i'.)2 and <z.ij- z.i'j- z .. j + z .. j.) 2 

it is suggested that I I (a-l)(s-l)B be used if it is desired to compute 
XX ZZ 

only a single variance. 
,. 
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Appendix A MSI ANNOTATED COMPUTER OUTPUT 

ORDER FORM 

1. COVARIANCE ANAI:.YSIS FOR SPLIT PLOT DESIGN 
Office Ref. 

SAS •••..••..•.....•.•.•.•••••.•.••..•...•.• ACO 
BMDP 2V •••••••••••••••••••••••••••••••••••• ACO 
GENSTAT ••••..••••.••••••.••••••.•.••••••••• ACO 

2. PRINCIPAL COMPONENT ANALYSIS 

SAS •••••••••.•.•••••••••••••••••••••..••••. ACO 
SYSTAT .•..•...•..••.•••••••••••••••..•••••. ACO 
BMDP ••.•••.•..•..••••••••••.•••.••.•.•••... ACO 
S PSS-X •••.•..•.••••••••••••.••••••.•••••••. ACO 
GENSTAT .••.••..•••••••••••••••••••••••••..•• ACO 

3. CLUSTER ANALYSIS (Mixture Method) 

TEXT •••....••••.•••••••••••.••••••.•.•.•.... TR 
SAS ••.........•.••.•••••.••••.•.••••..•..... TR 

(Comparing 2 Clustering Methods 
to the Mixture Model Method) 

SAS ...•...•.••.••.•••••.••.••.•••••...•.... ACO 
(Annotated Computer Output for SAS, above) 

118 7-8 .• __ copies 
#8 7-5 •• __ copies 
1187-4 •• __ copies 

086-1 .• __ copies 
#87-6 .• copies 
1187-7 •• __ copies 
118 7-2 •• __ copies 
(187-3 .. __ copies 

(186-38. __ copies 
1187-5 .• __ copies 

(/87-l .. __ copies 

at $ 
at $ 
at $ 

at $ 
at $ 
at $ 
at $ 
at $ 

at $ 
at $ 

at $ 

+ 
$ 5 each 

each+ 
--

5 $ 
each+ --

5 $ --

5 each+ $ 
+ --

5 each $ 
+ --

5 each ~ 
• + --

5 eacn $ 
+ --

5 each $ --

+ 
$ 5 each 

+ --
5 each $ --

5 each 
+ 

$ --

TOTAL ........... $ 

+ One copy is free for U.S. Army Personnel upon request. 

Send Check (payable to Cornell University) to: 
Mathematical Consulting Liaison Group 
Mathematical Sciences Institute 
294 Caldwell Hall 
Cornell University 
Ithaca, New York, 14853, U.S.A. 

The above order is to be sent to: 

Orders will be mailed only after funds are received. 

--

(please print) 

This is our only invoice. 
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Appendix B ANNOTATED COMPQ_TER OUTPUT (ACO) 
ORDER FoRM 

·Second Edition: AC02 , 1988-9 

( i) Analysis of Variance Office Reference 

BMDP2V •••••••••••••••••• (due Aug. '88) • • • • • ••••••• _copies 
GENSTAT.ANOVA .•••••••••• (due Apr.'88) •••• 962 .•••.••• _copies 
SAS GLM •••••.••••••••••••••••••••••.••••• 949........ copies 
SAS HARVEY.(First Edition) ••••••••••••.•• 659 .••••••• :==copies 
SPSSX ANOVA •••••••••••••••••••••••••••••• 955 •••••••• _copies 

( ii] Variance Component Estimation 

ACOa2 : BMDP-V ••••••••••• (due Feb.'89).... •••.•••• copies 
ACOa 2 : SAS HARVEY.(First Edition) ••••••.• 723 .••••••• ==:copies 
ACOa2 : SAS RANDOM ••••••• (due June'88) •••• · •••••••• _copies 
ACOat: SAS GLM VARCOMP •• (due June'88)..... • ••.•••• _copies 

First Edition: ACO COV, 1982 

[iii] Analysis of Covariance 

Text ••••••••••••••••••••••••••••••••••••• • 780. • • . • • • • copies 
BMD(PlV, P2V, P4V) •••••••••••••••••••••••• 781 •••••••• _copies 
GENSTAT (ANOVA) ••••••••••••••••••••••••••• 782... • • • • • copies 
SAS (GLM and HARVEY) •••••••••••••••••••••• 783 •••••••• -copies 
SPSS (ANOVA, MANOVA) •••••••••••••••••••••• 784 •• ~·····_copies 

Other Publications Available 

at 
at 
at 
at 
at 

at 
at 
at 
at 

at 
at 
at 
at 
at 

$12 each $ --$12 each $ --$12 each $ 
$ 5 each $-
$12 eacll $= 

$12 each $ 
$ 5 each $-
$12 each $= 
$12 each $_ 

$20 each $ --$ 5 each $ 
$ 5 each $ 
$10 each $ 
$10 each $_ 

1. SOLUTIONS MANUAL to Searle's LINEAR HO.IJELS •••••••••••• • _copies at $ 7 each $ __ 

2. · SOLUTIONS MANUAL to Searle's HATJliX ALCEB.IlA USEFUL 
FOR STATISTICS •••••••• •• _copies at $ 7 each $ __ 

3. NOTES ON VARIANCE COMPONENTS by S.R. Searle •.••••••••.• _copies 

4. · PROCEEDINGS: STATISIICAL J)ESICH THEORY tf PRACTICE,..... copies 
CONF.E.IlEHCE IN HONOR OF II. T. FEOEJlEJl, 1986 -

5. EXERCISES FOR SIMPLE REGRESSION 
Program REGDATA...................... • • • • • • • • • • • • • • • • ·copies 
List of 100 Data Sets •••••••••••••••.•••••••••••.••••• ==:copies 

6. BIBLIOCR.APHJ' ON EXPEJliHE/11' .Ali1J TllEATKEJIT .IJESICN -
PRE-1968 by W.T. Federer and L.N. Balaam ••••••••••••• _copies 

at $ 7 

at $20 

at $ 5 
at $ 5 

at $10 

each $ --
each $_ 

each $ 
each$= 

each$ __ 

TOTAL ••••••••••.••• $_-_ 

7. EXP.ERIKEHTAL JJESICN_by W.T. Federer •••••••••••••.•••••• _copies at $13 each$ __ 
(check payable to W.T. Federer) 

Send check (payable to Cornell University) to: 
Biometrics Unit 
336 Warren Hall 
Cornell University 
Ithaca, Ne~ York, 14853, U.S.A. 

The above order is to be sent to: 

-------------------------------------------------- (please print) 

NOTE: Orders will be mailed·only after funds are received. This is our only invoice. 

3/88 


