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Abstract: When evaluating the performance of a query strategy, one must often estimate the number
of distinct values of an attribute in a randomly selected subset of a relation. Most query optimizers
compute this estimate based on the assumption that prior to the selection, the attribute values are
uniformly distributed in the relation. In this paper we depart from this assumption and instead
consider Zipf distributions that are known to accurately model text and name distributions. Given a
relation of cardinality n where a non-key atrribute A has a Zipf distribution, we derive both an exact
formula and an approximate non-iterative formula for the expected number of distinct A-values
contained in a sample of k randomly selected tuples. The approximation is accurate, and it is very
easy to compute. Thus it provides a practical tool to deal with non-uniform distributions in query

optimization.

1. Introduction

Estimating the number of distinct tuples produced at a certain stage in processing a relational
query is an important problem in performance evaluation of database systems and in query
optimization [Jarke and Koch 1984]. This estimate provides an indication of the size of a relation
obtained after a selection and a projection [Christodoulakis 1983], it is useful in the evaluation of
semi-join strategies [Kerschberg et al. 1980] and it also provides a basis to evaluate the cost of

duplicate tuple elimination [Bitton and DeWitt].

In all of the above instances, an estimate of the relevant performance parameter has been
obtained by reducing the problem to a multiset sampling problem. For the sake of clarity, we will deal
with estimating the number of distinct tuples that satisfy the following relational query. Suppose
that starting with a relation R of cardinality n, where A and B are two independent attributes we
select k tuples based on their B value and then project on attribute A. Initially, in R, the values of A
constitute a multiset of size n(that is a set of n elements among which only m <n are distinct). The
selection can be viewed as a random sample of k elements from this multiset. Then the size of the
projection on A can be estimated as the expected number of distinct elements in the sample. We will
use the notation X, for the random variable representing the number of distinct elements occurring
in a random sample of size k from a multiset of size n. A number of previous studies have dealt with

estimating the expected value of X, (denoted as E[Xx]). Often, the problem has been equivalently



formulated as estimating the number of disk accesses required to retrieve k records, since
records residing on the same block can be treated as identical elements of a multiset. The
proposed estimates differ depending on whether sampling without replacement [Yao 1977] or
with replacement [Cardenas 1975; Cheung 1982] is assumed, or on the kind of approximation
used to compute the actual values of E[X,x] [Whang et al 1983]. Indeed the closed formulas
obtained for these estimates often contain complex combinatorial terms, and would be of very
limited use without approximations that have good computation characteristics [Whang et al

1983, Luk 1983].

Like many other performance parameters, the number of distinct tuples is usually
estimated under the assumption that the attributes are uniformly distributed. However, a
number of recent studies show that this assumption may lead to estimates that deviate
s;.xbstantially from actual values [Christodoulakis 1983, Piatetsky-Shapiro and Connell
1984]. These findings have been reinforced by theoretical results that prove that uniformity
assumptions systematically lead to pessimistic estimates for the number of distinct tuples and
a number of other related performance parameters [Christodoulakis 1984]. As an alternative
to a theoretical uniform distribution, Zipf distributions have been shown to model well the
data in certain large databases [Fedorowicz 1982 and 1984] when non-unique attribute values

or text words are stored.

The results of these studies indicate that two areas of research warrant further work:

(1) For the most part, previous estimates only apply to the uniform cases. That is, results
were derived based on the assumption that attribute values are uniformly distributed (or
records are uniformly distributed among the blocks), that the sample retrieved is random

and that all tuples are selected with the same probability.

(2) Even when closed formulas are obtained, computing the combinatorial terms involved in
these formulas requires a high number of floating point operations. Thus approximations
must be derived to increase the usability of these results by query optimizers. The work

in [Whang et al 1983] constitutes a first step in this direction.

In this paper, we depart from the uniform distribution assumption and consider a family
of Zipf distributions. We derive both an exact formula and an accurate approximation, that is
amenable to fast computation, for the expected number of distinct tuples E[Xpk] in the case
where the n initial attribute values have a Zipf distribution. For the sake of clarity, we have
chosen to restrict ourselves to the context of attribute values in a relation (although our
results are equally applicable to the evaluation of disk accesses). Thus we are concerned with

the distribution of the random variable X, that represents the number of distinct attribute



values present in a random subset of k tuples sampled from a relation of size n, given that the

attribute values inititially obey a Zipf distribution. To deal with this distribution, we propose

E[Xnk] = A +4 ﬁ +

for the expected value of Xk, and evaluate the error-rate associated with this approximation.

an approximation of the form

CRES

The remainder of this paper is organized as follows. In Section 2, we briefly describe Zipf
distributions. In Section 3 we derive an exact formula for E[X,x]. In Section 4, we describe a
least-square curve-fitting experiment where we derive a good approximation for E[Xx] in the
case corresponding to a relation with n = 1,000,000 tuples and 100,000 distinct attribute
values. In Section 5, we generalize the result of this experiment to a broad range of relation
sizes and Zipf distributions by establishing certain properties of these distributions. We

briefly summarize our results in section 6.

2. Zipf Distributions

Assuming that the attribute values are uniformly distributed is often unrealistic. For
example if an attribute represents salary or age brackets of employees in a company, it is
clear that the majority of employee records will fall within certain brackets while other
brackets will only represent a small number of employees. In this section, we deal with other
theoretical distributions, the Zipf distributions, that have been shown to model closely the
occurrence of words in text data and the record fields in certain large databases [Fedorowicz
1982 and 1984]. These distributions are based on the observation that when values are
ranked according to their frequency of occurrence (the most frequent values first), there is a
constant relationship between the rank and the frequency of occurrence. Zipf’s first law
simply states that rank times frequency = constant. Zipf's second law [Booth 1967] divides the
distribution into frequency counts and handles better low frequency terms. In a multiset of n
elements distributed according to Zipf’s second law, the number of different attribute values
that occur j times is defined by the formula:

[ = (m)l/a L _ ___1_
J jl/u G+ 1)la (2.1)
If m is the number of distinct attribute values, the constants r and alpha are related by
m = ()
r is called the "richness” constant, as it has been observed that it measures the richness of the

vocabulary used in a text [Booth 1967]. Alpha has no intuitive meaning, but it is used to



obtain a more accurate approximation to the distribution of the observed data. Several
studies have empirically demonstrated that a=1 provides a good approximation in many
applications [Booth 1967; Fedorowicz 1984]. In the remainder of this paper we will only
consider the Zipf distribution that corresponds to a=1, thus

1
; a G+1)

_m
Jjg+1)

Ij =(rn) (2.2)

3. An exact formula for E[X k]

Consider a multiset of n elements, m of which are distinct. Assuming that random
samples are drawn from the multiset without replacement (i.e., an element that has been
drawn is not replaced in the multiset before other elements are drawn), the number of distinct
values X in a sample of size k may be expressed as the sum of m identically distributed

random variables:
1, if the ith attribute value is selected

X=X +X+...+ X ;where X, = 0, if the ith attribute value is not selected

If the ith value occurs f; times then

—fi‘
(nk ) (3.1)

Thus the expected value of X is

n—fl)
m m (3.2)
EX 1= > PX,=1)= 2[1_ i I

=1 =1 ( )
k
If the values are uniformly distributed all the f; are equal to n/m and the sum reduces to Yao’s
("))
k l (3.3)
(+)
k

However, it is unlikely that a closed formula could also be derived for Zipf distributions. By

formula:

E[Xnk] = mll -

reordering the terms in the sum (3.2) by frequency of occurrence we derive the following

theorem.



Theorem 1: If a multiset of n elements obeys the Zipf distribution (2.2), the expected number

of distinct values in a sample of size k is

(3.4)

EX]= > — [1_ ,
.‘—1](]+1) (n)

J=

where ¢ = exp(l/r + .423).

Proof: Equation (3.4) can be obtained from (3.2) by grouping terms with the same frequency fj,

and noting that Ij represents the size of this group. Then the summation becomes
n—j
()
( n’ }
)
and (3.4) follows by substituting expression (2.2) for I;. The constant c is derived by noting
that:

EX]= > IJ,[1 -
=1

C
) m
lelj=n=> Zj—+-1-=n

Using the approximation

c
S L < mlne+1) + 577 = 1) = m(nc — .423)
j=1j+1

and some algebraic manipulation, we obtain the desired result.

4. Usability and approximations

The formula derived in Section 3 for the expected value of the variable X, includes
combinatorial terms whose evaluation for given values of the parameters n and k generally
requires a large number of floating point multiplications. On the other hand, the usability of
this formula largely depends on the ease of computing it. In particular, when intended to
support a query optimizer’s decision, it must be repetititvely computed for alternative query
strategies and for each relational operation implied by a strategy. The upper bound on the
time that can be spent for this computation must be low enough to make the optimization
process desirable. Otherwise, choosing a strategy at random might be more efficient than
determining what the fastest strategy is. Thus, exact formulas such as (3.3) and (3.4) have
little practical value in the context of query optimization unless they can be approximated by

formulas that are more amenable to fast computation.



4.1. A least-square approximation

A number of previous papers have dealt with finding approximations for E[Xp] in the
uniform distribution case [Yao 1977, Whang et al. 1983]. The motivation for finding a good
approximation for this expected value in the case of a Zipf distribution is even stronger, given
that the exact formula we derived (3.4) is not in closed form and involves more complex terms.
This problem was addressed in a recent work by Luk [Luk 1983], where an attempt was made
to approximate a Zipf distribution formula for E[X,k] using the formula for a uniformly
distributed multiset with the same number of distinct values. However, for large files, the
relative error was found to be unacceptably large (generally greater than 50% and in some

cases close to 100%).

Our approach to this approximation problem is very different. Rather than trying to find
another distribution that approximates the Zipf distribution but is more likely to lead to a
simple exact formula for E[Xp], we investigated the possibility of directly approximating the
formula that we derived for the Zipf distribution. We began by plotting some values of E[Xp]
as a function of the sample size k, and realized that the shape of the graph resembled sqrt(k)

(Figure 1). This led us to the conjecture that we could find coefficients aj,as,a3 such that:

2 4.1
k= al(E[XnkD + aZE[Xnk] + a,
or equivalently
—a a, P a k (4.2)
EX | = — ¢ (—2)_—‘5+— '
nk 2a 2a1 a, a,

In order to determine the approximation coefficients, we used a curve-fitting technique [Yule

1950].

4.2. Experiments with empirical data

We generated data for our initial approximation by choosing values corresponding to the
Zipf distribution with m = 100,000 and r = .1 (thus n = 1,000,000). For this multiset, we
varied the sample size from 500 to 1,000,000 by increments of 500 and derived the
corresponding values of E[Xnk] from the exact formula (3.4). We then ran a series of
experiments in which the number of points fitted was varied between 50 and 200, and the first
fitted point was varied between 1 and 6. Table 1 shows the results of these experiments;

column 2 in the table shows the optimal number of points fitted, column 3 shows the size of
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Figure 1: E[X k[l as a function of k for a Zipf and a Uniform distribution (r = .1).

the samples for which the error fell below 3%, and column 4 shows the maximum error that

occurs after the error first falls below 3%.

Table 1

Relative Errors for Curves that Approximate
E[X] Under Zipf Assumptions

Start Points Under  Maximum
Point Fitted 3% Error

1 133 3000 2.99

2 140 3000 2.75

3 144 3000 2.75

4 148 3000 2.74

5 153 2500 2.85

6 163 2500 3.24




The approximation we chose utilizes a curve with a starting point of 4 and 148 fitted

points. For this curve the values of the a’s are a; = 7.731e-07, a2 = 1.99e-02, and a3 = -7.125.

5. A general approximation formula

The accuracy exhibited by our least-square approximation in the above experiments was
so high that we felt it could not depend on the particular choice of values for the multiset size
or the richness parameter. Indeed, our empirical results can be generalized to a range of
multliset sizes and richness parameters. This generalization is based on the following two
propositions that we derived for a Zipf distribution. In the following we refer to the Zipf

distribution defined in Section 2 and assume sampling without replacement.

Proposition 1: If two multisets of size n; and ng have a Zipf distribution with the same
richness parameter r, then for random samples of size k; and kg such that ki/n; = ko/ng, the

expression

(5.1)

is a good approximation for E[Xp ,].

Analytically validating this approximation would require finding absolute upper bounds
for complex combinatorial expressions. Such bounds are usually difficult to find [King 1984].
An alternative approach is to conduct an exhaustive computer evaluation which examines the
validity of the approximation over a wide range of parameter values. We have adopted the
latter method and in Appendix A we present the detailed results of such an experiment.
Here we briefly summarize the findings. Representative graphs of the results are plotted in
Figures 2 and 3. As the graphs demonstrate, the approximation in (5.1) improves as the
parameters np, ng/ny, and r increase. The analysis demonstrated that the approximation
yields a maximum relative error of 8.12% over the range of parameter values that were
tested. This error occurred at the values ny = 10000, no/ny = 100, ky/n; = .01, r = .25.
However, the values of E[Xp,] and (ng/np)E[Xy k] still agreed in the first decimal digit (1.0
versus .92). In general the relative error of the approximation in expression (5.1) dropped
below 2% for sample proportions greater than .01, 1% for sample proportions greater than .05,
and approached 0 for sample proportions greater than .25. However, for larger values of nj,
ng/ny, and r, the relative error declined much more dramatically (as Figures 2 and 3
illustrate). In these cases, sample proportions as low as .001 produced relative errors less
than .5%. Overall the results of the computer evaluation indicate that expression (5.1) holds

over a wide range of values for the parameters ny, ng/ny, ky/ny,andr.
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Figure 2: Relative error of the approximation in expression (5.1) when n; = 700,000 and r = .15
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Figure 3: Relative error of the approximation in expression (5.1) when n; = 10,000 and ng = 1,000




Proposition 2: If two multisets of size n have a Zipf distribution with different richness

parameters r; and rg then for large enough samples

m m2 m2

9
E X |l=—E X |+ — -
rg[ nk m, "1[ e ctl = e+l

whereE_[X , |represents the expected valueof X , when the richness constantisr .
[

We also used a computer evaluation to demonstrate the validity of this approximation.

Forrj < rg the expression

c (”‘f
m 1 m
2 1 1 2 k )
E X - —E [Xnk]+m2( - ) = S — [ ] (5-3)
9 m. e+l e +1 jmeytt Jjg+1) (n .
k )

depends on four parameters nk,r, and ro. The computer evaluation determined how large k
must be, given values for n,ry, and rg_in order for the value of (5.3) to be negligible compared
with Ep [Xnk]. For the purposes of the computer evaluation, we considered the approximation

in (5.2) valid if the relative error was less than 3%.

The evaluation demonstrated that only ro had a noticeable impact on the required sample

proportion. The size of the sample proportion versus rg is plotted in Figure 4.
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Figure 4: Sample proportion for which the relative error in expression (5.2) is less than 3%
(.09 < r < .5). Forr = .5, the required sample proportion is .106.



As the figure demonstrates, the sample proportion rises extremely slowly for small ro and
then starts to rise rapidly for richness constants greater than .3. This result makes sense
since small ro correspond to large cg and large co lead to negligible values for (5.3), even for
small sample proportions. On the other hand, large ry are associated with small values of ¢o
and thus larger sample proportions are required to make the relative size of the sum (5.3)
negligible. Appendix B presents a more detailed discussion of the results of the computer

evaluation.

Proposition 1 relates two populations with different sizes while Proposition 2 relates two
populations with different richness parameters. The combination of these two propositions
allows us to generalize expression (4.2) to any population with an arbitrary size and arbitrary

richness parameter. Figure 5 illustrates how this process works.

Sample
Proportion

A (.1,1000000))

Proposition 1

& —® (r,n)
(.1,n) Proposition 2

Richness
Constant

Figure 5: We can get an expression for E [X,x] by applying Proposition 2
and then Proposition 1
Suppose we are asked to find the expected number of distinct values in a sample of size k from
a Zipf population with size n and richness parameter r. Initially we are located at the point
(r,n) in Figure 5. Since we have a good approximation for E 1[X1,000,000xk)], we would like to
move to the point (.1,1000000). From Figure 5, we see that the first step involves applying

Proposition 2 to move from the point (r,n) to the point (.1,n). At the end of this step we obtain

m 1 1°
E[X ]=—E [X ]+m<*——) (5.4)
r nk 1n ! nk a c
where a = e10'423andc — el/r + .423




Then in the second and final step, we apply Proposition 1 to move from the point (.1,n) to the

point (.1,1000000). We first write E 1[X k] as:

1n
100.000 E. 1[X( 1,000,000)( £/n*1,000,000)

We then substitute expression (4.2) for E ;1[X(1,000.000)k/n*1,000,000] in (5.5) and substitute the

E.l[Xnk] = ] (5.5)

resulting expression for E 1[X,k] in (5.4) to obtain:

2 Al
) ( %y as (1,000,000 ko
2(11 2al a, n La,

We performed an exhaustive computer evaluation of this approximation using the

m

1 1 ) (5.6)
100,000

em( ot
a c

Er[Xnk] =

following parameter values:

n : 1000, 4000, 7000, 10000, 40000, 70000, 100000, 400000, 700000, 1000000, 4000000,
7000000, 10000000

r:.09,.1,.15,.20,.25,1/3, .5

Representative results of the evaluation are plotted in Figure 6.
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Figure 6: Relative error of expression (5.6) when n = 10,000,000. Forr = .5, the relative error
drops below 6% when the sample proportion exceeds .15.

Two conclusions can be drawn from the graph. First, the value of the richness constant is the
primary determinant of the validity of the approximation. As the richness constant increases,

the size of the relative error increases. This behavior is predicted by the proofs of both




Propositions 1 and 2. Second, as long as the sample proportion is greater than .2% of the
population, Figure 6 shows the ranges in which it is safe to use (5.6) as an approximation for
E.[Xnk). The results of the computer evaluation confirm these conclusions. Thus for a large
range of n, r, and k, the approximation in (5.6) is so precise that it obviates the need for a

closed form expression.

6. Contributions and future research

In this paper, we have investigated the problem of estimating certain performance
parameters that play an important role in query optimization, in the presence of Zipf
distributions. In particular, assuming that a non-key attribute in a relation obeys a Zipf
distribution, we have obtained estimates for the expected number of distinct values of this
attribute that remain after a selection query is applied to the relation. First, we have derived
an exact formula for the expected value (Theorem 1). However, because this formula involves
a complex sum of combinatorial terms we have proceeded to find an approximation that would
be more amenable to computation. We derived this approximation in two steps. First, we
applied a least-square technique to fit empirical data. For a multiset of 1,000,000 élements,
100,000 of which were distinct, we showed that E[X,k] behaved as a square root function of
the sample size. Then, based on the result of this experiment and on two properties of the Zipf
distribution (Propositions 1 and 2), we generalized our square root approximation to arbitrary
values of n (the multiset size) and m (the number of distinct elements in the multiset).
Furthermore, we proved that for practical values of n and m, and for large enough sample

sizes, the relative error associated with this approximation fell below 3%.

These results are applicable to a range of problems that arise in query optimization. In
particular, they may be applied to obtain accurate estimates for the number of disk accesses

required to process a retrieval query.
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APPENDIX A - EVALUATION OF EXPRESSION (5.1)

The validity of the approximation in expression (5.1) depends on four parameters: the size
of the first population ny, the size of the second population ng, the size of the sample ky, and j.
A close inspection of (5.1) allows us to make several observations about the relationship
between the size of the parameters and the size of the approximation error:

1. Smallj: As the values of j decrease, the expression



(n;:j ) (nZ;j ) (A.1)
)

approaches 0. This behavior suggests that the approximation in (5.1) is better for small c.

2. Large ny/ng: As the ratio ny/ng approaches 1, expression (A.1) approaches 0 and thus the
size of the approximation error in (5.1) decreases.

3. Large ki/ny: As the ratio ky/n; approaches 1, expression (A.1) approaches 0 since both of its
terms rapidly approach 0. Consequently large sample proportions should improve the
approximation.

The validity of these observations was confirmed by the computer evaluation of the relative
error in expression (5.1). The values of the parameters that were used are as follows:

n; : 1000, 4000, 7000, 10000, 4000, 70000, 100000, 400000, 700000, 1000000, 4000000,
7000000, 10000000

ng/ny : 105,104, 10-3,10-2,10-1, .3, .7,.9
ky/n; :.001,.002,.005, .01, .015, .02, .05, .1, .25, .5, .75, .9
r:.09,.1,.15,.2,.25, .33, .5

In one series of experiments, we examined the validity of Observation 1 by holding the
parameters nj and ng/n; constant and steadily increasing the richness constant r and sample
proportion ky/n;. The results indirectly verified Observation 1 by demonstrating that higher
values of the richness constant r lead to better approximations in expression (5.1). These
results are consistent with Observation 1 since higher values of r lead to lower values for ¢ in
the summation formula in (5.1). Thus E[X; k,] and E[Xy,k,] depend on the sum of a small
number of terms with small j’s. In another series of experiments, we investigated the validity
of Observation 2 by holding n; and the richness constant r constant and steadily increasing
the ratio ne/n; and the sample proportion ki/ny. As predicted by Observation 2, we found that
the accuracy of the approximation increased as the ratio ng/n; increased. Finally both series
of experiments confirmed Observation 3, since the relative error of the approximation in (5.1)
decreased as the sample proportion k/n; increased.

APPENDIX B- EVALUATION OF EXPRESSION (5.2)

In this appendix we provide a more detailed discussion of the results of the computer
evaluation of expression (5.2). The values of the parameters that we used are as follows:



n : 100, 400, 700, 1000, 4000, 7000, 10000, 40000, 70000, 100000, 400000, 700000,
1000000, 4000000, 700000, 10000000

rp:.09,.1,.15,.20,.25,1/3

re:.1,.15,.20,.25,1/3, .5 subject to the restrictionry < rso.

The simulation produced a mixed bag of results. As expected, the parameter n had no
impact on the size of the sample proportion required to make the approximation in

Proposition 2 valid. This outcome can be traced to two factors. First the emphasis on relative
error rather than absolute error eliminated mg from equation (5.3). Second, Proposition 1

demonstrated that
( nl—j > ( nz—j >
k k

()

for all ny, ng of interest. Thus the size of n should be unimportant.

An unexpected result was that the parameter r; had no bearing on the required size of the
sample proportion. This outcome was surprising since smaller values of r; should have
resulted in larger values for ¢; and thus larger values of (5.3). However, a close analysis of the
results indicated that after ¢; crossed a relatively low threshold value, the size of (5.3)
relative to E [Xp k,) increased only negligibly. Although this threshold value varied, it
tended to stay below 100.
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