SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

TECHNICAL REPORT NO. 847

JUNE 1989

A NOTE
ON
A FORMAL DEVELOPMENT OF EVENT GRAPHS AS AN AID TO
STRUCTURED AND EFFICIENT SIMULATION PROGRAMS

by
Lee ¥W. Schruben

and
Enver Yucesan

This work was sponsored in part by National Science Foundation Grant ECS 8810517.

ABSTRACT

The event graph is a graphical technique for modeling and
simulating discrete event systems. Recently, Som and Sargent addressed
the issues‘of (i) anticipating logic errors due to simultaneously
scheduled events and (ii) identifying and eliminating any unnecessary
events using event graphs. They presented an elaborate algorithm to
perform these tasks. In this note, we point out several shortcomings of
their algorithm. With a simple example, we demonstrate that their

algorithm can generate an infinite amount of computer code.

1, INTRODUCTION AND BACKGROUND

Event graphs are directed graphs with temporal and logical
attributes. They were introduced by Schruben (1983) as a graphical
technique to construct and analyze event-scheduling discrete event
simulation models. On this graph, events are represented as vertices.
Each vertex is associated with a set of changes to the state of the
model. Relationships between events are represented as directed edges
between pairs of vertices. Each edge is associated with a set of
logical and temporal expressions. In other words, the edges determine
under what conditions and after how long of a time delay one event will
schedule or cancel further events.

Event graphs are also useful in analyzing simulation models. In
particular, the analysis of an event graph can aid in the following
simulation modeling tasks:

(i) identifying needed state variables,

(ii) determining a minimal set of events that must be scheduled at
model initiation,

(iii) anticipating logic errors due to simultaneously scheduled
events, and

(iv) eliminating unnecessary event routines.

Schruben offers ''rules of thumb' to assist the modeler in the
above tasks. Recently, Som and Sargent (1989) introduced a formal
framework for event graphs and presented an elaborate procedure to
address the last two issues listed above. However, the procedure has

certain shortcomings which may result in an infinite expanded event

graph while trying to eliminate unnecessary event routines. These are

discussed in the next section.

2. POTENTTAL PROBLEMS

> 1 E i order Priority Matri
~ Two events are order independent if the resulting state of the

model is independent of the sequence in which the events are executed.
Overstreet (1982) shows that order dependencies is an undecidable
problem. That is, there exists no general algorithm that would
determine whether any two events are order independent; the question
can only be answered on a case by case basis. Hence, Rule 3 of Schruben
and Theorems 1 and 2 of Som and Sargent are the only available
assistance for detecting such dependencies. Moreover, they represent
sufficient but not necessary conditions.

In the event execution order priority matrix of Som and Sargent,
an entry of "y” in the ith row and jth column '"means events i and j may
occur simultaneously and the condition of Theorem 2 (event interaction)
is not satisfied; however, they do not interact. Therefore, an execution
order priority is not required, and events i and j may be executed in
either order.' As order dependencies is an unsolvable problem, it is
impossible to determine whether such a relationship exists between
events i and j. Thus, some of the entries of the priority matrix, which
is a crucial input to their algorithm, remain undefined.

In a recent version of the computer implementation of event graph

modeling, event execution priorities are computed dynamically as the

model is run [Schruben and Briskman, 1988]. This scheme appears to be

completely general.

52 AP 1 ¢ Identifyi S E !
Using Som and Sargent (SS) algorithm, it is possible to generate
an infinite expanded event graph while trying to eliminate unnecessary

event routines. Consider, for instance, the following event graph:

(1)

——0,

(ii)

Suppose that the associated event execution priority matrix is as

follows:
1 2 3
1 n
2 -1 n
3 n -1 n

Next, we apply the (SS) algorithm. In step 1, the root events in the
expanded graph are determined. These are:
Primary Root Set = § 2 §,

Root Set = § 2 }.

In step 2, the vertex set of the subgraph associated with each root

vertex is constructed. The algorithm yields:

This is an infinite set of vertices! Moreover, property g of expanded
graphs (which states: ''in a subgraph, two event vertices cannot have the
same name, i.e., no event vertex can have more than one copy) is

violated. This, in turn, invalidates Theorem 5.

2.3 Rule 4(a) of Schruben

The Som and Sargent event reduction algorithm is essentially an
attempt to automate Schruben's Rule 4(a) together with the given
priority scheme. Furthermore, since the algorithm ignores the
possibilities described by Rules 4(b) and 4(c) of Schruben, it fails to
exploit all possible event reduction opportunities.

To show the parallelism between Schruben's Rule 4(a) and Som and
Sargent algorithm, both procedures are applied to a single server
queueing model. In the event graph, presented in Figure 1, there are
three events: the arrival event, A, simply increases the queue size (Q
= Q + 1). If the server is "available'" (S = 1), then the begin_service
event, B, is executed. This, in turn, decrements the queue size and
changes the status of the server to ''unavailable” (Q = Q - 1, S = 0).
The end_service event, E, updates the status of the server back to
"available" (S = 1). The customer interarrival times are represented by
ta while the service times are given by ts. The associated event

execution order priority matrix is given by:

A B E
A n
B 1 n
E 1 -1 n

The same expanded event graph is obtained when each procedure is
applied to the single server queueing model. The expanded graph is
presented in Figure 2.

Straiéhtforward application of Schruben's rules of thumb to the
example (interactive computer system model) in Som and Sargent's paper
resulted in a SLAM II [Pritsker, 1984] model with 257% less executable
code than the model generated by the (SS) algorithm. The execution speed
of the two reduced models is not significantly different, even though
both (reduced) models executed roughly 50% faster than the original

one. The former model is highlighted in the appendix.

3. CONCLUDING REMARKS

Even though Som and Sargent algorithm seems to be the automation
of Schruben's Rule 4(a), it has several shortcomings. For instance,
certain entries in the execution order priority matrix are not defined.
Furthermore, step 2 of the expansion algorithm may generate an infinite
event graph, hence an infinite computer code.

Clearly, more work is needed before the ''rules”" in Schruben's
original paper can be called theorems. The application of these rules
seems to be quite easy; however, as demonstrated by Som and Sargent

(1989), general algorithms for automatic event reduction must be

developed carefully.

APPENDIX: THE EVENT GRAPH USING SCHRUBEN'S RULES

Schruben's rules of thumb are applied to reduce the interactive
computer model of Som and Sargent (1989). The resulting event graph is
presented in Figure 3 and the event descriptions are given below. The
definitions of the state variables can be found in the original paper.
The edge conditions are:

(i) NM < Z

(ii) R=1

(iii) (R = 1) & (QM > 0)

(iv) (R=2) & (sC = 1)

(v) sD=1

(vi) SC = 1

(vii) @C > 0

(viii) QD > 0

NT
NJ = NJ
QM = QM
IF (NM

NT

1
1
1
Z

A+ o+

) SCHEDULE event 6' AT TNOW

Event 6°'

QM = QM
NM = NM
IF (sC
SC =20
SCHEDULE event 10' at TNOW+tc
ELSE

QC = QC + 1
ENDIF

1
1
1

-+ i

) THEN

Event 10°
IF (QC > 0) THEN

QC =QC -1

SCHEDULE event 10' AT TNOW + tc
ELSE

SC =1
ENDIF
IF (SD = 1) THEN

SD =0

SCHEDULE event 13' AT TNOW + td

ELSE
QD = QD + 1
ENDIF

Event 13'

IF (QD > 0) THEN
QD = QD - 1
SCHEDULE event 13' AT TNOW + td

ELSE
SD =1
ENDIF
GENERAT
IF (R

I <>]

1

> 15000) STOP

IF (Q4 > 0) SCHEDULE event 6' AT TNOW
+ 1

SCHEDULE event 3' AT TNOW + t

t
ELSE
IF (SC = 1) THEN
SC=0
SCHEDULE event 10' AT TNOW + tc

ELSE
QC =QC + 1
ENDIF
ENDIF

-10-

REFERENCES3

[1] Overstreet, C.M. (1982) Model Specification and Analysis for
Discrete Event Simulations. PhD Dissertation. Virginia Polytechnical
Institute and State University. Blacksburg, VA.

[2] Pritsker, A.A.B. (1984) Introduction to Simulation and SLAM
II John Wiley and Sons. New York

' [3] Schruben, L.¥W. (1983) Simulation Modeling With Event Graphs
Communications of the ACM. Vol. 29.11 pp.957-963

[4] Schruben, L.¥. and Briskman, D. (1988) Teaching Simulation
with £ in the Proceedings of the 1988 Winter Simulation Conference. San
Diego, CA (Abrams, Haigh and Comfort, eds.) pp.869-874

[5] Som, T.K. and Sargent, R.G. (1989) A Pormal Development of
Event Graphs as an Aid to Structured and Efficient Simulation Programs

ORSA Journal on Computing Vol.1.2 pp.107-125

-11-

e
v

~~
ks
pubs
N’
)]
\Y
3
A)
N
<
["H
-’

(iii)

