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Abstract 

This is an expository paper on sample size in experimenta-

tion with particular reference to animal experiments. Rando.miza-

tion in animal experiments was discussed first in connection 

with a consideration of a disturbance of the randomization 

procedure caused by making the means of all samples equal before 

starting an experiment. A general discussion of number of 

animals per cage or pen was then presented. This was followed 

by a discussion 6f number of samples allocated to the control 

relative to other tr~atments for one statistical criterion. 

Sample size computations were given for interval estimation 

using a camparisonwise and an experimentwise error rate base. 

The required sample size for a two-stage procedure resulting 

in a confidence interval of a specified length was also pre-

sented. The last section dealt with experiments for which nhe 

sample size is fixed. A number of situations were presented 

1-1ith a somewhat detailed discussion of one of them. 

* Lecture presented at the Food and Drug Administration 
Statistics Seminar, Hashington, D. C., September 19, 1966. 
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1. Introduction 

In line '\'Tith some suggestions by Jacob N. Eisen, past)~h~irman of your 

F.D.A. Statistics Seminar Committee, I shall talk on. a. nuro.R'7r of:.topics related 

to experimentat~on with emphasis on animal e~eriments. In particular, the 

following five topics will be discussed: 

i) Randomization in animal experiments. 

ii) Number of animals per cage or pen. 

iii) _R~lative number of experimental units on a control and on a treatment. 

iv) Sample size computations for interval .estimation. 

v) Fixed sample size. 

2. Randomization in Animal Experiments 

Sir Ronald A& Fisher is said to have had the follmring diagram, enunciating 

the three principles of experimental design, hanging on the wall of his office 

at the'-·Rothamsted Experimental Station: 

/Replication 

IL' / ~ Randamizatio~ ~ Local control 

! ~ ' ' 1 
Valid estimate of 

experimental error 
Reduction of experimental· 

error 

~~ Lecture presented at the Food and Drug Administration Statistics Seminar, 
v!ash,ington, D. C., ~eptember 19, 1966. 
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He stated that design and analysis are two aspects of the same thing; randomiza­

tion and replication are necessary to obtain a valid estimate of the error 

variance of a contrast. If the error variance of a contrast, e.g. the difference 

between two treatment means, contains all sources of variation inherent in the 

variation among experimental treatments or entities except that portion due 

specifically to the treatments themselves, then the error variance is said to 

be valid. (Fisher, R. A., The Design of Experiments, Section 65, 5th edition, 

Oliver and Boyd, London, 1949.) 

Let us illustrate the effect of a disturbance of the randomization procedure 

as described in Chapter I, Example I.l, of my text (Experimental Design, Mac­

millan, New York, 1955). Suppose that fifty pigs ·are available for experimenta­

tion and that their initial weights (randomly selected weights from Table 3.21 

of Snedecor, G. w., Statistical Methods, 5th edition, Iowa State University 

Press, Ames, Iowa, 1956) for 10 random samples of 5 pigs each are as given in 

Table 1. An analysis of variance on these data result in the one given in the 

bottom part of Table 1. Since there are no sample differences other than random 

sampling fluctuations, both mean squares are estimates of the same parameter a2. 

Suppose now that 10 treatments had been applied and that three of the treat­

ments had a -6 effect, three had a +6 effect, and four had a zero effect. Then, 

the sum of squares among sample means would be 661.2 + 5(6)(36) = 1741.2, and 

the mean sq~are would be 1741.2/9 = 193· 5· The resulting F statistic would be 

193-5/82.87 = 2.33 which is approximately equal to the corresponding tabulated 

F value at the 3 percent level. 

Now, let us disturb the random feature of the experiment and use a "balanced'' 

grouping as utilized in some animal and educational experimentation. The re­

arrangement to obtain 10 samples of 5 each is made in such a way as to make all 
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TabJ..e l~ Data a..r:td analysis of variance on pig weights for 10 randomly selected 
samples of 5 weights each. 

Sample number 
_J. i 1 2 3 4 5 6 7 8 9 10 

30 i9 16 17 47 17 41 20 38 42 

29 42 41 30 33 23 26 28 20 47 
39 27 37 24 17 31 19 39 30 41 
17 25 31 28 33 39 32 43 46 31 
12 22 25 35 29 30 27 30 36 29 

Mean 25.4 27.0 30.0 26.8 31.8 28.0 29.0 32.0 34.0 38.0 

Analysis of variance 

Source of variation d. f. Sum of squares Mean square 

Among sample means 9 661.2 73-5 
Within samples 4o 3314.8 82,87 

---~·-· ----- -·-·--- --------
e q'able· 2. Data and analysis of variance on pig weights for 10 balanced samples 

of 5 weights each. 

Sample number 

1 2 . 3 4 5 6 7 8 9 10 

30 19 16 17 47 17 43 20 24 42 

29 42 41 30 25 23 30 28 20 12 

39 27 37 41 17 31 19 39 30 22 

17 25 31 28 33 39 32 33 47 46 

36 38 26 35 29. 41 27 31 30 29 

Mean· -. 30.2 30.2 30.2 30.2 30.2 -~, 30.2' 30.2 30.2 30.2 30.2 

Analysis of variance 
.·. -'· ..... :.. f' 

Sum of ·squares ·Source of variation d. f. Mean square 

Among sample means 9 0 0 

Within samples 4o -3~76 99·4 . 
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._s~ple means equal. Some such grouping as given in Table 2 might result. The 

resulting analysis of variance on these "balanced" samples is given in the 

bottom part of Table 2. Since all means are equal there is no variation among 

sample means and hence the sum of squares for this category is zero. If this 

method of balancing were used and if the treatment effects were as above then 

the among treatment means sum of squares v1ould be 0 + 5(6) (36) = loBO with the 

resulting mean square being 120.0. The F statistic would be 120.0/99.4 = 1.21 

vlhich is considerably lower than the previous F statistic = 2.33. In order to 

achieve the same F value in the "balanced" array as for the random array almost 

t · · 1 ldh b · d.· 2 33 _n(216/9) w1.ce as many anJ.IDa s wou ave een requ1.re , 1.. e. • - 99.4 or 

- 2.33(99.4)(9) ~ 9 65 
n - 216 - • • 

The above computations have been performed assuming a within-treatment 

correlation of unity between initial and final weights in an experiment. If 

the within-treatment correlation of initial and final weights is zero, "balanc• 

ing" has no effect and would not affect the validity of the error variance in 

the analysis of variance. The real-life situation, however, would usually have 

a correlation between these two extremes. Of course, none of us would let our-

selves get into the above situation, but let us suppose that one of our 

scientific friends used "balancing" and then wanted to compute an error variance 

and thus salvage this information from his data. Can this be done? The answer 

is yes. We could use the technique of covariance of final weight on·initial 

"\veight to eliminate the effect of "balancing" and then obtain valid tests of 

significance or valid interval estimates (see Yates, F. J., Roy. Stat. Soc. 109: 

12-4 3, 1946). 

To sum up, if we utilize a statistical technique re~uiring randomization, 

we must either use randomization or devise a scheme which removes the effect of 
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tit non~randamness from the data. 

3. Number.£! Animals per Cage ~ Pen 

There are many statistical criteria for detennining optimum sample size. 

However, prior to considering any of these, the practical and biological condi­

tions of the experiment must be considered first. If the cages or pens are 

already available they will have certain limitations on the number of animals 

that can be accommodated in a cage. Too many animals in a pen or cage may 

result in the animals contacting a disease or may result in severe competition 

for food, light, and space. This would result in an additional compcrient of 

variation within cages or pens which would not enter into the variation among 

pens. Competition between individuals within a pen or cage is not necessarily 

bad, but one must know how to handle it. At first thought one could "eli!iiinate" 

competition by using single animal cages. However, this could induce another 

kind of competition, e.g. lonesomeness for pigs, antagonisms for pheasants, etc. 

If the results of an experiment are to have application value, the experiment 

must be such that the results are applicable to a real-life situation. One way 

of achieving this is to have the experimental conditions conform with those from 

real lif:e. 

If the cage size can be varied at will and if this has no effect on the 

response of the animals being used, then we are in a position to invoke 

statistical considerations. As a general rule, for a fixed total number of 

animals it is best to use as many cages as possible, resulting in few animals 

or one animal per cage. The variation among cages is generally greater than 

within cages and hence the above generalization. If the cost of one animal 
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per cage is ca + cw and if the cost of two a."limals per cage is ca + 2cw' of 

three animals per cage is ca + 3c , etc., then the optimum (in the sense of w: 

minimizing cost for a fixed vai'iance or vice versa) number of animals per cage 

is given by the formula, 

k=Jcc!Zicc? a vi w a 

where d2 is the variance (either an estimate or the actual value) among indi­
'" 

viduals within cages and ~ is the variance ccmponent among cages or pens. This 

is the formula well-known to sample surveyors for determining the optimum number 

of sampling units per stratum. The formula is useful in a variety of contexts 

and situations, e.g. the optimum number of determinations on a sample relative 

to the number of samples, the optimum number of readings per determination, etc. 

In scm.e cases k may turn out to be a fraction, in which instance samples may be 

bulked prior to making a determination. In other cases the minimum number for 

k will be one. 

Another criterion for determining sample size i:s a minimax procedure with 

a specified percentage of selecting a correct hypothesis, the correct binomial 

ratio, or the correct ranking of treatments. P. NaNagara (M.S. Thesis, Cornell 

University, 1953) has provided the procedure for binomial ratios and R. Bech-

hofer (Annals of Mathematical Statistics 25:16-39, 1954) has provided the pro-

cedure for ranking means fram a normal population. 

Many 6ther criteria are available for determining sample size. Three of 

these will be used in the following sections. One criterion which has no 

statistical justification is one which might be called a crystal-ball procedure. 

This involves a purely arbitrary choice of sample size for such various and 
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sundry reasons as: 

i) I have always used 3 animals per cage. 

ii) My major professor used 5 animals per cage. 

iii) A Nobel prize-winner used 4 animals -per cage. 

iv) A statistician suggests a total sample size of 20 because he knows 

that the experimenter has only been using one or two. 

v) A statistician thought I should use 6 animals per cage. 

vi) I like the number 7 so I'll use a total of 7 animals per treatment 

with one in each cage. 

vii) etc. 

This procedure brings to mind an amusing incident described by Wilson, E. B., Jr., 

An Introduction to Scientific Research, McGraw-Hill, Ne''~' York, 1952, page 46. 

It ap-pears that chickens were subjected to a specified treatment; it was reported 

that 33t% of the chickens recovered, that 3~% died, and that no conclusions 

could be drawn about the other 33i% since that one ran away~ 

4. Relative Number of Experimental Units ~ ~ Control Treatment 

Another criterion for determining sample size is that the standard error 

of a difference between two treatments be a minimum. Let us su-ppose that '\>Te 

wish to compare a set of v treatments with a control or standard in our experi-

ment and that we do not wish, primarily, to compare the v treatments among 

themseJ.:ves'~' If each treatment is to have r replicates or samples, if the control 

is to: have re replicates, and if N = r ( v+e) = total number of samples, then the 

quantity to be minimized is: 

a J (v~e) ( e;~) 
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Minimization results in 

or e = /v 

For example, suppose that we are interested in comparing four treatments 

A,B,C, and D with a control or brand X. Then the relative number of replicates 

or samples on control X should be 9 = /4 = 2. If r = 20 samples for each treat-

ment, then re = 40 should be the sample size for the control in order to minimize 

the standard error of the mean difference between the control and a treatment. 

The standard error for the above optimum procedure would be 

whereas for equal replication of the control on N = 4(20) + 40 = 120 samples, 

r would be 24 and the standard error would be 

Although the difference in the two standard errors isn't world-shaking it 

does illustrate that equal allocation can be improved upon in certain situations. 

5. Sample ~ Computations for Interval Estimation 

A criterion useful here is to select sample size r such that one has a 

specified probability, say 1 - ·y, that a 1 - ex percent confidence interval vrill 

be less than or equal to a specified length, say 25. In other words, we pick a 

sample size such that 1 - y percent of all confidence intervals are less than or 
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equal to 25 and y% are greater than 25 in length. The experimenter is at 

liberty to choosethe error rate base, the confidence coefficient = 1- a, the 

assurance coefficient = 1 - y, and o = the difference of interest and importance 

to him given a specified experimental design and the error variance oF. If 

the value of aF is not known then one may use a previous estimate of aF which 

has f 1 degrees of freedcm. Using the appropriate procedure and the resulting· 

sample size, the experimenter will have a 1 - y percent assurance that the 1 - a 

percent confidence interval -vlill be less than or equal to 25. 

·.Let us determine the required sample size for two error rate bases, i.e. 

comparisonwise error rate and experimentwise error rate and for the case where 

the random errors are normally distributed with mean zero and ccmmon variance 

aF. Let us suppose that we plan to use . ·a randomized complete block design 

with r replicates, that v = 3 treatments are to be used, that a = 100/o, that 

y = 25%, tha.t' o = 5, that s~ = 25 with f 1 = 120 degrees of freedom, that 

f2 = (r-1)(3-1) = 2(r-l), and that a camparisonwise error rate is to be used. 

Then, r may be computed from the following formula: 

r 

where ta,f2 is Student's t and F is Snedecor' s variance ratio vTith f2 degrees 

in the numerator and f1 degrees of freedom in the denominator. In order to 
~ ;. ~ . L :: . 

solve for r we need to select a value of f2 = 2(r-l). Suppose ive try r = 7 
. -~· -: ·-. d ·~ 

and then f2 = 12. Substituting in the above formula we obtain 
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~.' ... 

Since 7 was too. small let us try r = 8; then 

Since r = 7 is too small and r = 8 is too large, we would use r = 8 replicates 

to obtain a 90% confidence interval which would be less than or equal to 10 = 25 

in 75% of all experiments conducted. 

Now suppose that instead of a comparisonwise error rate we wish to use an 

experil:)lentwise error rate of a: = 10% for the above experimental situation. What 

would r have to be? Now r may be obtained from an iterative solution of the 

following formula: 

' 

where a_. f is the tabulated value of the studentized range for v treatments 
-a,v, 2 

at the a: percent level. H. L. Harter ~ !!• have published extensive tables 

of the studentized range. (E.g. see WADC Technical Report 58-484, volume II, 

October, 1959, Wright Air Development Center and Annals of Mathematical Statis­

tics 31:1122-1147, 1960.) As before one would need to substi~ute an arbitrary 

value for r and then to use f2 = 2(r-l). Both r = 11 and r = 12 result in 

values between 11 and 12. For the latter value, (~2 (3.06)2 (1.22) = 11.4. 

• 
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Hence, one would use r = 12 replicates to have a 75% assurance that the 9(11/a 

confidence interval would be less than or equal to 25 = 10 = two standard 

deviation units. 

Another procedure for obtaining a confidence interval of a specified length 

has been put forth by Charles Stein (Annals of Mathematical Statistics 16:243-

258, 1945). The procedure gives a 100% assurance that the confidence interval 

will be less than or equal to the specified length and it involves sampling in 

two stages. Suppose that V is the variance of the linear contrast which will 

yield a confidence interval of the specified length. For the first stage we 

decide to take n1 observations such that n1 is large enough so that terms of 

1/n~ are small relative to l/n1 . An estimate, s~, of the error variance of a 

single observation is computed from the n1 observations obtained from the first 

stage of sampling. The additional number of observations required in the second 

stage of sampling is computed from the formula: 

s2 

vrhere n is the smallest integer part of the above maximum. Then, if ~ + 1 is 

the maximum, V = s~ (n1 +~). The value of /V then is substituted in the formula 

for computing the confidence interval for the contrast 1J., say, thus 1J. ± ta · I/V; 
,nl-

this interval will always be approximately equal to the specified interval. 

F. A. Graybill and T. L. Connell (Annals of Mathematical Statistics 35: 

438-44o, 1964) present a two-stage procedure for estimating the population 

variance such that the estimate vlill be within d units of the true value. This 

reference illustrates another of the many variations of estimating sample size 

to achieve a desired goal. The reader is referred to Cochran, w. G.,Sampling 

Techniques, 2nd edition, Wiley, New York, 1963, Chapter 4, for further discussion~ 
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6. Fixed Sam~le ~ 

In many situations sample size is fixed by the resources and/ or number of 

sampling units available for an experiment. This fact has been virtually 

ignored by statisticians, probably feeling that the problem didn't exist or, if 

it did, that it would go away if they ignored it. Unfortunately, it does exist 

and it won't go awayt Let us get out of the statistical ~t of considering that 

the determination of the sample size r is the item of sole ~portance and look 

at the more general problem. Suppose that the experimental design is specified 

and consider the following class of problems. 

Quantities s~ecified Quantity to be determined 

a, y, a, 0 (or o/ a) r 

a, y, a, r 0 

a, a, 0 (or B/ a), r y 

y, a, '0 (or o/ a), r a 

a, y, a, r a 

o/ a, (l..a)/ (1-y) = k, r a,y 

etc. 

where the above quantities are as defined previously. All the above except -

the first consider sample size fixed. Did it ever occur to you to consider the 

significance level or size of the test as a random variable? The idea that the 

first problem above was the only one of importance in real-life situations 

appears to be a figment of the statistician's imagination! 

The last problem listed above has been presented to my classes in experi­

mental design for several years. Let me illustrate the procedure for the fixed 
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sample. size case where the confide.nc~. coefficient relative to the assurance 
- ({\. 

coefficient is a specified value, i.e. (l_a)/(1-y) = k a constant. Then 

y = 1 - (1-a)/k and is a function of a. Hence, if we:. determine a we then ·have· 

determined y. Suppose tha.t we use a comparisomvise error rate, then the a . -,, 

satisf'ying the following formula is one to be used in an experiment: 

For example, let r = 6, v = 5, f2 = 20, lets~= 25 be estimated fram a previous 

experiment with f1 = 60 degrees of freedam, let k = (l~Y(l-y) = 1 and there­

fore a = y, and let 5 = s1 = 5 units.* Then a is selected to satisfy the follow­

ing equation which is solved iteratively fora: 

First try a = .10; 

Next try a :;:: .20; 

Next try a = .15; 

Next try a = .17; 

3 = t~ 20 F (20,60) , y 

(2.97)(1.54) = 4.6 

(1.76)(1.30) = 2.3 

(2. 5)(1. 5) = 3.8 

1.9(1.5) = 2.85 

* A randomized complete block design is assumed. 
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(The above value·s; were read from graphs prepared by L. E. Vogler and K. A. ·Norton, 

NBS Report 5069,-.National Bureau of Standards, Boulder, Colorado, 1957.) We ·, 

"TOUld use a = 17% = y in the above experiment. This might bother the conv~h~ -

tional 115-percenters 11 , but it really shouldn1 t because there is really no haici 

around the 5% point~ 

Similar computations are involved using other error rate bases such as 

experimentwise, per experiment, etc. 

··: .. • .. !•• 


