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Graphs have enjoyed immense success as a model for analyzing pairwise interac-
tions, such as friendships on Facebook, where people are encoded as nodes and
friendships as edges that link nodes. However, many datasets exhibit higher-order
interactions that go beyond the scope of the pairwise graph model, such as product
co-purchasing data on Amazon. We lose important information by ignoring this
higher-order structure. Currently, few methods for directly analyzing higher-order
data exist. In this dissertation, we present principled and scalable methods for
analyzing higher-order information. We rst focus on the hypergraph perspective,
where the hyperedges representing an interaction can connect two or more nodes
at once. In the rst part of the thesis, we introduce methods for analyzing hy-
pergraphs that have multiple types of interactions. In particular, in Chapter 2 we
develop a framework for detecting communities of nodes in hypergraphs that have
di erent types or categories of hyperedges. In Chapter 3, we use the theory from
Chapter 2 to construct a method for diverse recommender systems that scales to
large datasets. In the next part of the thesis, we present some novel methods for
dealing with hypergraphs that have special structure. In particular, in Chapter 4

we present a principled method for recovering planted \core" nodes. In the last
part of the thesis, we present higher-order methods for graphs that come with edge
ow metadata. In particular, in Chapter 5 we show that their associated Laplacian

harmonic vectors exhibit spacial localization, and leverage this insight to create a



principled algorithm that allows us to e ciently localize holes in these complexes.



BIOGRAPHICAL SKETCH

llya Amburg was born in Tashkent, Uzbekistan. He moved to the U.S. at the
age of nine. After attending high school in the Chicago area, he received his
BA in mathematics and physics from Williams College in 2014, and his MS in
applied mathematics from Cornell University in 2020. llya's research interests lie
in developing methods for analysis of large and complex datasets, with special
interest in tools for network data. Aside from his research, llya enjoys teaching

and spending time with his family.



ACKNOWLEDGEMENTS

| would like to thank my wife, Jennifer Ese Alakpa Amburg, for her support during
my doctoral studies. Additionally, | thank my advisor, Austin R. Benson, for his
mentorship and support, and all the help he provided over the years. | also thank
all the people with whom | have collaborated on research, with a special thank you
to Nate Veldt and Sinan Aksoy. This research was supported by NSF CAREER
Award 11S-2045555, NSF Award DMS-2146079, NSF Award DMS-1830274, ARO
Award W911NF19-1-0057, and ARO MURI.



For my wonderful wife, whose patience and support made this work possible.



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . ... . L ii

Acknowledgements . . . . . ... \Y
Dedication . . . . . . . . . . . %
Table of Contents . . . . . . . . . . . . . Vi
Listof Tables . . . . . . . . . . . IX
Listof Figures. . . . . . . . . . e Xi
Overview 1
1.1 Jointauthorship. . . .. .. ... .. ... .. .. .. ... .. ... 1
1.2 Background on higher-order networks . . . . . ... ... ... ... 1
1.2.1 Pairwise networks . . . . . . . ... o 1
1.2.2 Hypergraphs for higher-order interactions. . . . . . .. ... 2
1.2.3 Simplicial complexes for higher-order networks . . . . . . .. 3
1.2.4 Analysis of networks: clustering . . . . . ... ... .. ... 4
1.2.5 Hypergraphs with multiple connection types . . . . . . . .. 5
1.2.6 Hypergraphs with special structure . . . . ... ... .... 6
1.2.7 Inferring higher-order structure from pairwise interactions . 6
Methods for edge-labeled hypergraphs 8
Clustering in graphs and hypergraphs with categorical edge labels 10
2.1 Introduction . . . . . . ... 10
2.2 Preliminaries and relatedwork . . . . . .. ... ... ... . ... 14
2.2.1 Categorical edge clustering objective . . . . .. ... .. .. 14
2.2.2 Relation to Correlation Clustering . . . . . ... ... .. .. 15
2.2.3 Additional relatedwork . . . ... .. oL 17
2.3 The case of two categories . . . . .. .. ... ... ... ...... 17
2.3.1 Analgorithmforgraphs . . ... ... ... ......... 17
2.3.2 An algorithm for hypergraphs . . . . . . ... ... ... .. 18
2.4 More thantwo categories . . . . . . . . . .. ... 21
2.4.1 NP-hardness of Categorical Edge Clustering . . . . . .. .. 21
2.4.2 Algorithms based on LP relaxations . . . . ... ... .. .. 23
2.4.3 Algorithms based on multiway cut . . . ... ... .. ... 28
2.4.4 Approximation through a linear objective. . . . . . .. ... 30
25 Experiments . . . . . . .. 32
2.5.1 Analysis on Real Graphs and Hypergraphs . . . . . ... .. 32
2.5.2 Categorical Edge Community Detection . . ... ... ... 35
2.5.3 Temporal Community Detection. . . . ... ... ...... 38
2.5.4 Analysis of the Cooking Hypergraph . . . .. ... .. ... 40
2.6 Connection to energy minimization . . . . . ... ... ... . ... 42
2.6.1 Graphs with two categories . . . ... ... ... ...... 42

Vi



2.6.2 Rank-3 hypergraphs with two categories . . . ... .. ... 44

2.7 DISCUSSION . . . . . . 46
3 Diverse and experienced group discovery via hypergraph cluster-
ing 50
3.1 Introduction . . . . . . . .. ... 51
3.1.1 Relatedwork . ... ... ... ... ... ... ... ... 53
3.2 Clustering with Diversity and Experience . . . . . ... ... .. .. 54
3.2.1 A awed but illustrative rstapproach . . ... ... .. .. 55
3.2.2 Diversity-regularized categorical edge clustering . . . . . .. 56
3.2.3 A general preference-regularized objective . . .. ... ... 59
3.2.4 Extremal LP and ILP solutions at large enough values of . 60
3.3 Bounding Hyperparameters that Yield Extremal Solutions . . . . . 62
3.4 Numerical Experiments . . . . . . . . . .. .. .. ... 64
3.4.1 Datasets and algorithm scalability . . . . .. ... ... ... 66
3.4.2 Diversity regularization . . . . . . ... ... L. 68
3.4.3 Preference regularization . . . . .. ... ... ........ 73
3.4.4 Dynamic group formation . . .. ... ... ......... 74
3.5 DISCUSSION . . . . . . . 76

Il Methods for hypergraphs with special structure 77

4 Planted hitting set recovery in hypergraphs 79

4.1 Core and fringe nodesinnetworks . . . . . ... .. ... ...... 79

4.2 Problem setup and theoretical results for core recovery . . . . ... 83
4.2.1 Minimal hittingsets . . . . . .. .. ... .. o L. 84
4.2.2 Non-minimal hittingsets . . . .. .. ... ... ....... 90
4.2.3 Recovery in a random hypergraph model . . . . . .. .. .. 94

4.3 Union of Minimal Hitting Sets (UMHS): A practical core recovery
algorithm . . . . . . ... 97

4.4 Experimentalresults . . ... ... ... ... oL 99
441 Data . . . . . 99
442 Recoveryresults. . . ... ... ... .. .. ... .. ... 101
4.4.3 Recovery as a function of outputsize . . .. ... ... ... 105

45 Relatedwork . . . .. .. . .. 105

4.6 DISCUSSION . . . . . . . e e 107

1l Higher-order methods for graphs with metadata 109

5 Localization in harmonic vectors of simplicial complexes 111
5.1 Introduction . . . . . . . . ... 111
511 Relatedwork . ... ... ... .. ... ... ... .. ... 113

Vil



5.2 Background on algebraic topology . . . . .. ... .. ... ... 115

5.2.1 Simplicial complexes and orientation . . .. .. .. .. ... 116
5.2.2 Boundary maps and homology . . . . . .. ... ... .... 116
5.2.3 Hodge lLaplacian . . .. ... ... .. ... ... .. 117
5.2.4 A matrix representation of (co)boundary maps and ther
Hodge Laplacian . . . . .. ... ... ... ......... 118
5.25 Harmonicvectors . . . . . . .. ... ... 119
526 Bettinumbers . ... .. ... ... .. .. .. .. ..., 119
5.2.7 Harmonic localization around holes and orthogonal cone struc-
ture . . .. 120
53 Theory . . . . . . e e 121
5.3.1 Localizationintheplane . . . ... ... ... ........ 122
5.3.2 Perturbationanalysis . . . . ... ... ... ... ... ... 129
5.4 A principled, scalable algorithm for harmonic basis separation . . . 130
5.5 Structure of harmonic vectors of real-life simplicial complexes . . . 135
5.6 Structure of synthetic simplicial complexes . . . . ... .. ... .. 142
5.7 Better solution quality and ten-thousandfold speedups . . . . . .. 145
5.7.1 Much-improved solutionquality . . . . ... ... ...... 145
5.7.2 Much faster than the state-of-the-art . . . .. ... ..... 147
5.8 Separated harmonic vectors are useful . . . . . .. ... ... .... 147
5.8.1 Coverage hole detection . . ... ... ... ......... 148
582 Holetracking . . ... ... ... ... . ... ... ..... 149
5.8.3 Spectralclustering . . . .. .. ... ..o o 151
5.8.4 Useinsupervisedlearning . . ... .. ... ... ...... 152
5.9 DISCUSSION . . . . . . . e e e 153
Bibliography 155

viii



2.1

2.2

3.1

3.2

4.1

LIST OF TABLES

Summary statistics of datasets | number of nodegVj, number of
(hyper)edgesEj, maximum hyperedge sizeé, and number of cate-
goriesk | along with Categorical Edge Clustering performance for
the algorithms LP-round (LP), Majority Vote (MV), Cat-IsoCut
(IC), ChromaticBalls (CB) and LazyChromaticBalls (LCB). Per-
formance is listed in terms of the approximation guarantee given
by the LP lower bound (lower is better) and in terms of the edge
satisfaction, which is the fraction of edges that areot mistakes
(higher is better; see EQ. (2.2)). Our LP method performs the
best overall and can even nd exactly (or nearly) optimal solutions
to the NP-hard objective by matching the lower bound. We also
report the running times for rough comparison, though our imple-
mentations are not optimized for e ciency. Due to its simplicity,

MV is extremely fast. . . ... ... ... ... ... ........ 31
Examples of ingredients and recipes from special clusters identi ed
by LP, but not Majority Vote. . . . . ... ... .. ... ..... 41

Summary statistics of datasets. The computed bounds using
the tools in Section 3.3 are much smaller than thd,. bound in

Theorem 18. . . . . . . . . . . . 65
Summary statistics of datasets with hyperedges based on product
ratings. Fast runtimes indicate the scalability of our approach. . . 65

Summary statistics of core-fringe hypergraph datasets. We con-
struct r-uniform hypergraphs from six corpora for rank = 3;4;5

along with non-uniform hypergraphs where the rank is at most 25.

The DBLP and Math tags datasets are collections of 50 hyper-
graphs, so we report the value range. The fringe tends to be much
larger than the core in these datasets. . . .. ... ......... 99



4.2

5.1

Planted hitting set recovery performance for our algorithm and
competitive baseline algorithms. We compare our proposed union
of minimal hitting sets (UMHS) method against ve hypergraph
centrality measures | degree [107], clique-motif graph eigenvec-
tor [24], a projected-graph version of PageRank centrality [146], Z-
eigenvector [24], H-eigenvecgtor [24] | as well as two core-periphery
measurements | Borgatti-Everett [38] and k-core [164]. Each method
produces an ordering of vertices, and we measure performance by
precision at the core size (fraction of top€j ranked nodes that
are in C) and area under the precision-recall curve far-uniform
hypergraphs ¢ = 3;4;5), as well as nonuniform hypergraphs with

r 25 nodes in each hyperegde. The DBLP and tags datasets are
collections of 50 hypergraphs, and we report the mean and standard
deviation for these. UMHS scores outperforming all baselines by
at least an 8% relative improvement are bold. Any method's score
outperforming UMHS by at least 8% is also bold. Our UMHS
method performs he best on all the non-uniform hypergraphs and
many of the uniformcases. . . .. ... .. ... ... ....... 102

Dataset statistics . . . . . . . . . . . ..o 136



11

1.2

1.3
1.4
15

2.1

2.2

2.3

2.4

2.5

2.6

2.7

LIST OF FIGURES

A graph with 12 nodes and 12 edges on the left, and a hypergraph

with 12 nodes and 7 hyperedges on theright. . . . ... ... ... 2
Representing a three-author paper as a graph (clique expansion)

and asahyperedge. . ... ... ... ... ... 3
A simple simplicial complex. . . .. ... .. ... ... ... ... 4
Partitioning the nodes of a hypergraph into two communities. . . . 5

A toy example of telecom call volume network among four cities.
Filling in the upper triangle in the resulting simplicial complex
respects the large call volumes among the three cities that form the
nodes of thetriangle. . . . . . . . . ... ... ... .. .. .. ... 7

Subgraphs used for the-t cut reduction of two-color Categorical

Edge Clustering in hypergraphs. Here, and are hyperedges in

the original hypergraph with colorsc, (orange, left) andc, (blue,

rght). . . . . e 19
Gadget used for reducing maxcut to 3-color Categorical Edge Clus-
tering. Each gadget has new auxiliary nodes, but and v may be

a part of many 3-color gadgets. . . . . ... ... ... ....... 21
(a){(b): Performance of algorithms on a synthetic graph model for
chromatic correlation clustering [36]. Across a range of parameters,
our LP method outperforms competing methods in predicting the
ground truth label of the nodes. (c){(d): In experiments on syn-
thetic 3-uniform hypergraphs,LP performs well for most parameter
regimes but there is some sensitivity to the very noisy setting. . . . 47
LCB and CB are primarily designed for settings wher is much
larger than L. Despite this, our LP method always obtains better
label assignment scores, and often obtains better ARI cluster iden-

ti cation scores, when we x L = 20 and let K vary from 50 to

500. . . . 48
Accuracy in clustering nodes in real-world datasets when edge la-
bels are a noisy signal for ground truth node cluster membership.

For both an email graph (a) and a product co-purchasing hyper-
graph (b), our LP-Round method consistently outperforms other
methods. . . . . . .. 48
Results forLP and Graclus in clustering a temporal network. Our

LP method is competitive forGraclus's objective (normalized cut;

left), while preserving the temporal structure of network much bet-

ter (right). . . . . . . . 49
As increases, we discard fewer high-degree ingredients before clus-
tering the rest. Our method always \makes" more recipes (higher
edge satisfaction) and \wastes" fewer ingredients (smaller number

of unused ingredients). . . . . . . .. ... Lo 49

Xi



3.1

3.2
3.3

3.4

3.5
3.6

3.7
4.1

4.2

4.3

5.1

5.2

5.3

Various performance metrics as a function of. Dots mark the
corresponding™. . ... ..., 67
fwithin fOr within-cluster reviews/posts. . . . . .. .. .. ... ... 69
(Left) Distribution of node (reviewer) majority categories within
the Mexican restaurant review cluster. (Right) The fraction (ex-
perience homogeneity score) of user reviews in the Mexican cluster
that were written in that same category. . . . . .. .. ... .. .. 70
(Left) Average cluster reviewer score for cluster 1. (Middle left)
Re ned average cluster reviewer score for cluster 1. (Middle right)
Distribution of average cluster reviewer score in the Amazon Pantry
product category. (Right) Distribution of re ned average cluster
reviewer score in the same category. . . . ... .. ... ...... 71
Metrics for preference regularization. . . . . . ... ... ... ... 73
Color assignments over time for a subset of nodes and tags in the
geometry-questions dataset for di erent regularization parameters

(from left to right and top to bottom: =0, 0.07, 0.1, 0.2, 0.4,
0.7). e 74
Mean number of node exchanges. . . .. ... ... ........ 75

Hypergraphs and planted hitting sets.(Left) A 3-uniform hyper-
graph on the top and a minimal hitting set on the bottom (with hy-
peredges superimposed to facilitate comparison to the hypergraph).
(Right) A planted hitting set (red nodes) in a hypergraph, consti-
tuting the core nodes. Hyperedges are illustrated by ellipses en-
compassing nodes, which include both core and non-cofange)
nodes. We study how well we can recover the core (red) nodes if

they are notidentied. . .. ... .. ... ... ... ... ... . 80
The hypergraphT, (r = 3) used in the proof of Theorem 24 with
hyperedges identi ed by dotted shapes. . . .. ... ........ 88

Planted hitting set recovery improves with more iterations before
leveling (top row), and similarly, size increases with more iterations
before leveling (bottom row). Fewer than 50 iterations typically
reaches peak performance in our email datasets. The leveling of
the output size is consistent with Theorems 21 and 26, which say
that our algorithm's output cannot grow too large. . .. .. ... 104

The harmonic vector components (in red) superimposed upon the

edges of a simple simplicial complex. . . . .. ... ... ...... 112
(Left). A sample harmonic vector induced by telecom data. (Right).
Harmonic vector output by our proposed algorithm. . . . .. . .. 112
From edge signals to projected harmonic vectors. . . . .. ... .. 117

Xil



5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

A simplicial complex characteristic pattern, the 4-pinwheel, ex-
hibiting perfect localization of harmonic values away from the clus-

ter of holes. Values in red indicate the harmonic vector components

of the associated edges. . . . . .. . . .. ... .. .. .. ..., 123
A simplicial complex exhibiting perfect localization of harmonic
values away from the holes, called the-pinwheel. Values in red
indicate the harmonic vector components of the associated edges. . 124
The 4-pinwheel (left) andn-pinwheel (right) without lled-in inter-

nal triangles. . . . . . ... 125
A nonplanar simplicial complex exhibiting perfect localization of
harmonic values away from the holes. Values in red indicate the
harmonic vector components of the associated edges. . . . . . . .. 126
(Left). First two stages of construction of the 4-star fractal simpli-

cial complex. (Right). Harmonic ow on rst stage of fractal. . . . 127
harmonic ow on rst stage of construction of then-star fractal
complex. . . .. e e e 128
Orthogonal cone structures allows us to rotate harmonic ow vec-

tors into a basis where each harmonic ow vector is localized around
justone component. . . . . . ... 131
Power-law decay of harmonic vector components away from a hole
inthe Milan dataset. . . . . ... ... ... ... ... ....... 137
(Left). A sample harmonic vector induced by the Milan data. (Mid-

dle). Output of the LP baseline. (Right). SCDM output. We
observe that SCDM is the only solution localized around just one

hole. . . . . . . . 138
Power-law decay of harmonic vector components away from a hole
in the Trentino dataset. . . . . . ... .. ... ... ........ 138

(Left). A sample harmonic vector induced by the Trentino data.
(Middle). Output of the LP baseline. (Right). SCDM output. We
observe that SCDM is the only solution localized around just one

(Left). A sample harmonic vector induced by the migration data.
(Middle). Output of the LP baseline. (Right). SCDM output. We
observe that SCDM is the only solution localized around just one

(Left). A sample harmonic vector induced by the commute data.
(Middle). Output of the LP baseline. (Right). SCDM output. We
observe that SCDM is the only solution localized around just one

hole. . . . . . . . . e 140
(Left). Two well-separated holes in the Trentino dataset. (Right).
Two clustered holes in the Trentino dataset. . . . . ... ... ... 141

Xiii



5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

[Top row: = 0: Middle row: = 0:25. Bottom row: = 1:]
(Left). A sample harmonic vector induced by the synthetic data.
(Middle). Output of the LP baseline. (Right). SCDM output. We
observe that SCDM is the only solution localized around just one

hole. . . . . . . . 144
Power-law decay of harmonic vector components away from a hole
in the synthetic datasets. Left to right: =0;0251.. ... .. .. 144

Output of LP with the SCDM solution as input (left) vs. the
SCDM output (right) projected onto the edges of the Trentino (top)

and Milan (bottom) telecom networks. While the SCDM output

is localized around just one hole, LP digs up undesirable phantom
cycles. . . . . 146
Number of connected components for post-processed harmonic vec-
tors in Milan (left) and Trentino (right). We see that for all ltra-

tion strengths the number of connected components is lowest for

SCDM, meaning it improves the phantom cycle problem of LP. . . 147
Our method is roughly four orders of magnitude faster across all
dimensions . . . . ... 148

Temporal hole matching diagrams for Milan (left) and Trentino
(right). Yellow indicates that the hole was matched at a given time

step while black indicated it was not matched then. . . . . . . . .. 150
The percentage of holes matched at each time period for Milan
(left) and Trentino (right). Notice that a larger percentage tends

to be matched when comparing to other morning networks. . . . . 150
We observe that the clustering similarity decreases as we include
edges with progressively larger edge ow component in the SCDM
solution. . . . . .. 152
We observe that using SCDM output as the input to the learning
pipeline results in better predictive performance for both the Milan

(left) and Trentino (right) datasets for the vast majority of ratios

of trainftest splits. . . . . . . . . . .. .. ... 154

Xiv



CHAPTER 1
OVERVIEW

1.1 Joint authorship

This thesis is the result of joint work with Austin R. Benson, Nate Veldt, Jon
Kleinberg, and Anil Damle. In particular, Chapters 2 and 3 were written with Nate
Veldt and Austin R. Benson [14, 15]; Chapter 4 was written with Jon Kleinberg
and Austin R. Benson [13]; and Chapter 5 was written with Austin R. Benson and

Anil Damle [12].

1.2 Background on higher-order networks

In this section we give a brief overview of higher-order networks to facilitate a
common language for the chapters that follow. We start with a basic overview
of pairwise networks as represented by graphs. We then introduce hypergraphs
as a rst model for group interactions. After a brief overview of the alternative
simplicial complex model and the basics of clustering in graphs and hypergraphs,
we review networks that come with additional metadata such as edge labels. We
follow with an overview of networks that have special structure, with a special
emphasis on networks that exhibit core-fringe structure. Lastly, we review methods

for inferring higher-order interactions from pairwise networks.

1.2.1 Pairwise networks

Interactions that involve only two entities interacting at once are faithfully mod-
elled by graphs, where the entities are represented by nodes, and the interactions

by edges among the nodes. See Figure 1.1 (left) for an example of a graph with



Figure 1.1: A graph with 12 nodes and 12 edges on the left, and a hypergraph
with 12 nodes and 7 hyperedges on the right.

12 nodes and 12 edges. Formally, the set mfnodesV is typically represented by

setE is then a set of sets of size twds = ff i;j g s.t. i;j 2 Vg. If each edge has a
directionality, representing a one-way connectiork is treated as a set of ordered
pairs, E = f(i;j ) s.t. i;j 2 Vg. The graph model has enjoyed immense success in
many application areas including social, biological, nancial, web, healthcare, and
so on [75, 10, 141]. However, the model fails to faithfully represent interactions
with multiple entities interacting as groups. In the next subsection, we introduce

the hypergraph model that allows us to go beyond pairwise interactions.

1.2.2 Hypergraphs for higher-order interactions

In numerous real-life settings, interactions involve more than two entities interact-
ing at once [28, 181, 182]. The graph model fails to faithfully capture interactions
in this setting, as it can only encode pairwise ones. See Figure 1.2 for an example
where we try to represent a paper coauthored by three authors using a graph,
referred to as the clique expansion. Instead, it is much more natural to encode
these kinds of \higher-order" interactions using a more general construction called
a hypergraph. In particular, we allow the edges, in this context called hyperedges,
to connect more than two nodes at once, and the resulting network is called a hy-
pergraph. See Figure 1.1 (right) for an example of a hypergraph with 12 nodes and
7 hyperedges. Formally, a hypergraph is a node s€ttogether with a hyperedge



setE = fest. e Vg So in that same coauthorship example, we can encode
the three-author paper as a single hyperedge containing three nodes. We lose im-
portant information by choosing to model the paper using the graph model, as
we can no longer infer from the graph whether the three authors wrote one paper
together, and in fact the graph implies the existence of three two-author papers,
which were never in the example to begin with! This simple example illustrates
the modelling power of hypergraphs. In the next subsection, we will see that if
we restrict the classes of hypergraphs we can consider, we are able to study the

\shape" of the underlying network using tools from algebraic topology.

1.2.3 Simplicial complexes for higher-order networks

Consider restricting the class of hypergraphs we examine to only ones where for
every hyperedgee in the hypergraph there also existevery possiblehyperedge

on the nodes ofe. Any hypergraph from this class is called a simplicial complex,
and is a topological space since it satis es this nested containment property. See
Figure 1.3 for an example of a simplicial complex that contains four nodes (treated
as hyperedges of size 1), ve edges, and one hyperedge that contains three nodes

(which in the context of simplicial complexes is typically represented by coloring

Figure 1.2: Representing a three-author paper as a graph (clique expansion) and
as a hyperedge.



[4]

Figure 1.3: A simple simplicial complex.

in the corresponding triangle). Simplicial complexes have been used extensively
as models for higher-order networks [145, 26, 160, 162, 161]. The fact that any
simplicial complex is a topological space allows us to use tools from algebraic
topology to study the shape of the network, allowing us to quantify and detect
\holes" in the network. Refer to the introduction of Chapter 5 for more details

and subtleties about simplicial complexes, such as their orientation.

1.2.4 Analysis of networks: clustering

One of the most fundamental tasks in network analysis is clustering, where one
seeks to partition the nodes of the network based on some similarity function. In
most contexts it is synonymous with community detection, where one seeks to
nd communities of nodes in the network. In the graph case, clustering has been
studied extensively and many clustering objectives and algorithms to optimize
them have been introduced [159, 82]. However, very few principled methods for
clustering hypergraphs exist. One of the goals of Chapters 2 and 3 is to introduce
such methods in the presence of multiple types of connections, which we discuss
in the next subsection. Refer to Figure 1.4 for an example where we partition the

nodes of a small hypergraph into two clusters.



Figure 1.4: Partitioning the nodes of a hypergraph into two communities.

1.2.5 Hypergraphs with multiple connection types

In many application areas, networks come with metadata regarding the edges. One
common type of metadata are edge labels. In particular, these labels could be inter-
preted as representing di erent interaction types. For example, in a recipe dataset
with the ingredients treated as nodes and recipes as hyperedges, the recipes could
be labeled by cuisine type, such as Italian or Thai. Such edge-labeled hypergraphs,
though ubiquitous, have not been rigorously studied, prior to this work.

Graphs with multiple types of connections have been studied from a purely
theoretical perspective in [17, 46, 5]. In particular, [17] proposes the problem
of partitioning a graph with k di erent colors of edges intok clusters so that the
number of edges where at least one of the nodes is placed in a cluster corresponding
to a color (or label) di erent than that of the edge is minimized. This work shows
the NP-hardness of the problem and along with [5] proposes some approximation
algorithms. [46] shows that in the case of two labels, the problem can actually be
solved in polynomial time.

In Chapter 2, we greatly improve upon these results and generalize the prob-
lem to the hypergraph setting, while creating approximation algorithms with much
better approximation ratios, and better performance in practice. In particular, we
study the categorical edge clustering problem in the case of hypergraphs wikh
edge labels, show the hardness of the problem, and demonstrate a suite of ap-

proximation algorithms for the problem from several di erent perspectives. In



addition, ours is the rst work to put these algorithms into practice, as we demon-
strate the e ectiveness and scalability of our algorithms for a host of application
areas. Furthermore, in Chapter 3 we build o of these results to create techniques

that facilitate nding diverse and experienced sets of reviews.

1.2.6 Hypergraphs with special structure

In many real-life settings, hypergraphs arise that naturally have special structure.
One important type of special structure occurs when one records only all the
interactions of a chosen set of nodes, which we refer to as the core. This results in
a core-fringe structure with a (usually) densely-connected core, and no connections
among the fringe nodes [23]. In many instances the identity of the core may
become lost, or is never known. For instance, a hacker could release all emails
from hacked accounts without the identity of the hacked individuals [102]. Note
that this situation is naturally modelled as a hypergraph with a planted set of
core nodes, as we could take hyperedges to connect sender and recipient(s) of the
emails, and the identity of the core is unknown. A planted core problem also could
arise if the identity of the core simply gets lost due to maintenance issues [43].

In Chapter 4, we propose an algorithm for the recovery of the planted core.
We demonstrate its e cacy and scalability on a host of datasets, and show that it

outperforms known baselines.

1.2.7 Inferring higher-order structure from pairwise inter-

actions

Higher-order information is extremely useful for a host of tasks, including down-

stream machine learning. Often, pairwise networks come with metadata that could
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Figure 1.5: A toy example of telecom call volume network among four cities.
Filling in the upper triangle in the resulting simplicial complex respects the large
call volumes among the three cities that form the nodes of the triangle.

be used to infer higher-order structure. One common approach is to infer only an
extra layer of three-way interactions. This results in a simplicial complex struc-
ture since each three-way interaction also contains the three pairwise interactions
from which it was inferred as subsets. This approach facilitates the study of the
shape of the underlying network using tools from algebraic topology. For example,
higher-order information in edge- ow networks, such as telecom networks, where
call volumes between regions (nodes) act as the edge attributes, can be inferred
through this approach by \lling in" the triangles where call volumes along each

of their three edges exceed a certain threshold. See Figure 1.5 for a pictorial
representation of this process.

In Chapter 5, we develop a method for analyzing edge signal networks that relies
on rst converting them to simplicial complexes using the process described above.
In particular, we develop topologically-based algorithms for localizing holes in such
networks that yield higher-quality results many orders of magnitude faster than
state-of-the-art baselines. We provide theoretical motivation for our algorithm
by demonstrating, both analytically and empirically, that we expect simplicial
complexes arising from edge ow networks to have certain structure that makes
our algorithms perform particularly well. Lastly, we demonstrate the usefulness of

the output of our algorithm on a host of real-world tasks.



Part |

Methods for edge-labeled

hypergraphs



Many hypergraphs naturally come together with labels on the hyperedges,
which may represent di erent types of interactions. No principled, hypergraph-
native methods exist that e ectively incorporate this important hyperedge meta-
data. Here, we present a principled framework for analysis of such networks. In
particular, in Chapter 2, we develop a clustering scheme where the output is in-
formed by the hyperedge labels, and use this framework in Chapter 4 to construct

a framework for discovering diverse and experienced groups.



CHAPTER 2
CLUSTERING IN GRAPHS AND HYPERGRAPHS WITH
CATEGORICAL EDGE LABELS

Modern graph or network datasets often contain rich structure that goes beyond
simple pairwise connections between nodes. This calls for complex representations
that can capture, for instance, edges of di erent types as well as so-called \higher-
order interactions” that involve more than two nodes at a time. However, we have
fewer rigorous methods that can provide insight from such representations. Here,
we develop a computational framework for the problem of clustering hypergraphs
with categorical edge labels | or dierent interaction types | where clusters
corresponds to groups of nodes that frequently participate in the same type of
interaction.

Our methodology is based on a combinatorial objective function that is related
to correlation clustering on graphs but enables the design of much more e cient
algorithms that also seamlessly generalize to hypergraphs. When there are only two
label types, our objective can be optimized in polynomial time, using an algorithm
based on minimum cuts. Minimizing our objective becomes NP-hard with more
than two label types, but we develop fast approximation algorithms based on
linear programming relaxations that have theoretical cluster quality guarantees.
We demonstrate the e cacy of our algorithms and the scope of the model through
problems in edge-label community detection, clustering with temporal data, and

exploratory data analysis.

2.1 Introduction

Representing data as a graph or network appears in numerous application domains,

including, for example, social network analysis, biological systems, the Web, and

10



any discipline that focuses on modeling interactions between entities [75, 10, 141].
The simple model of nodes and edges provides a powerful and exible abstrac-
tion, and over time, more expressive models have been developed to incorporate
richer structure in data. In one direction, models now use more information about
the nodes and edges: multilayer networks capture nodes and edges of di erent
types [139, 109], meta-paths formalize heterogeneous relational structure [170, 73],
and graph convolutional networks use node features for prediction tasks [108].
In another direction, group, higher-order, or multi-way interactions between sev-
eral nodes | as opposed to pairwise interactions | are paramount to the model.

In this space, interaction data is modeled with hypergraphs [181, 182, 25], ten-
sors [2, 148, 18], a liation networks [120], simplicial complexes [145, 26, 154, 150],
and motif representations [28, 153]. Designing methods that e ectively analyze
the richer structure encoded by these expressive models is an ongoing challenge in
graph mining and machine learning.

In this work, we focus on the fundamental problem of clustering, where the
general idea is to group nodes based on some similarity score. While graph clus-
tering methods have a long history [159, 82, 126, 137], existing approaches for
rich graph data do not naturally handle networks with categorical edge labels. In
these settings, a categorical edge label encodes a type of discrete similarity score
| two nodes connected by an edge with category labet are similar with respect
to c. This structure arises in a variety of settings: brain regions are connected by
di erent types of connectivity patterns [58]; edges in coauthorship networks are
categorized by publication venues, and copurchasing data can contain information
about the type of shopping trip. In the examples of coauthorship and copurchasing,
the interactions are also higher-order | publications can involve multiple authors

and purchases can be made up of several items. Thus, we would like a scalable
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approach to clustering nodes using a similarity score based on categorical edge
labels that work well for higher-order interactions.

Here, we solve this problem with a novel clustering framework for edge-labeled
graphs. Given a network withk edge labels (categories or colors), we credte
clusters of nodes, each corresponding to one of the labels. As an objective function
for cluster quality, we seek to simultaneously minimize two quantities: (i) the
number of edges that cross cluster boundaries, and (ii) the number of intra-cluster
\mistakes", where an edge of one category is placed inside the cluster corresponding
to another category. This approach results in a clustering of nodes that respects
both the coloring induced by the edge labels and the topology of the original
network. We develop this computational framework in a way that seamlessly
generalizes to the case of hypergraphs to model higher-order interactions, where
hyperedges have categorical labels.

The style of our objective function is related to correlation clustering in signed
networks [19], as well as its generalization for discrete labels (colors), chromatic
correlation clustering [37, 36], which are based on similar notions of mistake mini-
mization. However, a key di erence is that our objective function does not penalize
placing nodes not connected by an edge in the same cluster. This modeling di er-
ence provides serious advantages in terms of tractability, scalability, and the ability
to generalize to higher-order interactions.

We rst study the case of edge-labeled (edge-colored) graphs with only two
categories. We develop an algorithm that optimizes our Categorical Edge Cluster-
ing objective function in polynomial time by reducing the problem to a minimum
s-t graph cut problem on a related network. We then generalize this construction
to facilitate quickly nding the optimal solution exactly for hypergraphs. This is

remarkable on two fronts. First, typical clustering objectives such as minimum
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bisection, ratio cut, normalized cut, and modularity are NP-hard to optimize even
in the case of two clusters [177, 42]. And in correlation clustering, having two
edge types is also NP-hard [19]. In contrast, our setup admits a simple algorithm
based on minimums-t cuts. Second, our approach seamlessly generalizes to hyper-
graphs. Importantly, we do not approximate hyperedge cuts with weighted graph
cuts, which is a standard heuristic approach in hypergraph clustering [4, 182, 129].
Instead, our objective exactly models the number of hyperedges that cross cluster
boundaries and the number of intra-cluster \mistake" hyperedges.

With more than two categories, we show that minimizing our objective is NP-
hard, and we proceed to construct several approximation algorithms. The rst set

of algorithms are based on practical linear programming relaxations, achieving an

1

=1 » Wherek is the number of categories

approximation ratio of min 2 %;2
and r is the maximum hyperedge sizer(= 2 for the graph case). The second
approach uses a reduction to multiway cut, where practical algorithms have a
% approximation ratio and algorithms of theoretical interest have a 2(1 %)
approximation ratio.

We test our methods on synthetic benchmarks as well as a variety of real-
world datasets coming from neuroscience, biomedicine, and social and information
networks; our methods work far better than baseline approaches at minimizing our
objective function. Surprisingly, our linear programming relaxation often produces
a rounded solution that matches the lower bound, i.e., it exactly minimizes our
objective function. Furthermore, our algorithms are also fast in practice, often
taking under 30 seconds on large hypergraphs.

We examine an application to a variant of the community detection problem

where edge labels indicate that two nodes are in the same cluster and nd that

our approach accurately recovers ground truth clusters. We also show how our
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formulation can be used for temporal community detection, in which one clusters
the graph based on topology and temporal consistency. In this case, we treat
binned edge timestamps as categories, and our approach nds good clusters in
terms of topological metricsand temporal aggregation metrics. Finally, we provide

a case study in exploratory data analysis with our methods using cooking data,

where a recipe's ingredients form a hyperedge and its edge label the cuisine type.

2.2 Preliminaries and related work

Let G =(V;E;C;’) be an edge-labeled (hyper)graph, wheié is a set of nodesk
is a set of (hyper)edgesC is a set of categories (or colors), and E ! C is afunc-
tion which labels every edge with a category. Often, we just use= f1;2;:::;Kkg,
and we can think of” as a coloring of the edges. We use \category", \color", and
\label" interchangeably, as these terms appear in di erent types of literature (e.qg.,
\color" is common for discrete labeling in graph theory and combinatorics). We
usek = jCj to denote the number of categoriets. E for the set of edges having
label ¢, and r for the maximum hyperedge size (i.e.prder), where the size of a

hyperedge is the number of nodes it contains (in the case of graphs; 2).

2.2.1 Categorical edge clustering objective

Given G, we consider the task of assigning a category (color) to each node in such a
way that nodes in categoryc tend to participate in edges with labelc; in this setup,

we partition the nodes intok clusters with one category per cluster. We encode the
objective function as minimizing the number of \mistakes" in a clustering, where

a mistake is an edge that either (i) contains nodes assigned to di erent clusters or

(ii) is placed in a cluster corresponding to a category which is not the same as its
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label. In other words, the objective is to minimize the number of edges that are
not completely contained in the cluster corresponding to the edge's label.

Let Y be a categorical clustering, or equivalently, a coloring of the nodes, where
Y [i] denotes the color of node. Let my: E ! f 0;1g be the category-mistake

function, de ned for an edgee 2 E by

8
2 1 ifY][i]6 “(e) for any nodei 2 e,
my (e) = (2.1)

-B 0 otherwise.

Then, the Categorical Edge Label Clusteringbjective score for the clusteringr is

simply the number of mistakes:
P
CatEdgeClus (Y)= g my(€): (2.2)

This form applies equally to hypergraphs; a mistake is a hyperedge with a node
placed in a category di erent from the edge's label.

Our objective can easily be modi ed for weighted (hyper)graphs. If a hyperedge
e has weightw, then the category mistake function simply becomesy (€) = we
if Y[i] 6 "(e) for any nodei in e and is O otherwise. Our results easily generalize

to this setting, but we present results in the unweighted case for ease of notation.

2.2.2 Relation to Correlation Clustering

Our objective function is related to chromatic correlation clustering [36], in which
one clusters an edge-colored graph into any number of clusters, and a penalty is
incurred for any one of three types omistakes (i) an edge of colorc is placed in

a cluster of a di erent color; (ii) an edge of any color has nodes of two di erent
colors; or (iii) a pair of nodesnot connected by an edge is placed inside a clus-
ter. This objective is a strict generalization of the classical correlation clustering

objective [19].
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Our Categorical Edge Clustering objective is similar, except we remove the
penalty for placing non-adjacent nodes in the same cluster (mistakes of type (iii)).
The chromatic correlation clustering objective treats the absence of an edge be-
tween noded and | as a strong indication that these nodes should not share the
same label. We instead interpret a non-edge simply as missing information: the
absence of an edge may be an indication thaandj do not belong together, but it
may also be the case that they have a relationship that simply has not been mea-
sured. This is a natural assumption with large, sparse real-world graphs, where
we rarely have information on all pairs of entities. Another key di erence between
chromatic correlation clustering and our objective is that in the former, one may
form several clusters for the same color. For our objective, merging two separate
clusters for the same color can only improve the objective.

Our formulation also leads to several di erences in computational tractability.
Chromatic correlation clustering is NP-hard in general, and there are several ap-
proximation algorithms [37, 36, 16]. The tightest of these is a 4-approximation,
though the algorithm is mostly of theoretical interest, as it involves solving an
incredibly large linear program. Moreover, the higher-order generalization of sim-
ple correlation clustering (without colors) to hypergraphs is more complicated to
solve and approximate than standard correlation clustering [94, 84, 128, 131]. We
will show that our Categorical Edge Clustering objective can be solved in polyno-
mial time for graphs and hypergraphs with two categories. The problem becomes
NP-hard for more than two categories, but we are able to obtain practical 2-
approximation algorithms for both graphs and hypergraphs. Our approaches are
based on linear programming relaxations that are small enough to be solved quickly

in practice.
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2.2.3 Additional related work

There are several methods for clustering general data points that have categorical
features [87, 91, 39], but these methods are not designed for clustering graph
data. There are also methods for clustering in graphs with attributes [178, 9,
183, 40]; these focus on vertex features and do not connect categorical features to
cluster indicators. Finally, there are several clustering approaches for multilayer
networks modeling edge types [139, 72, 119], but the edge types are not meant to

be indicative of a cluster type.

2.3 The case of two categories

In this section we design algorithms to solve the Categorical Edge Clustering prob-
lem when there are only two categories. In this case, both the graph and hy-
pergraph problem can be reduced to a minimurs-t cut problem, which can be

e ciently solved.

2.3.1 An algorithm for graphs

To solve the two-category problem on graphs, we rst convert it to an instance
of a weighted minimums-t cut problem on a graph with no edge labels. Recall
that E; is the set of edges with category labad. Given the edge-labeled graph

G =(V;E;C;"), we construct a new graphG°= (V% E9 as follows:

" Introduce a terminal nodev, for each of the two labelsc 2 L, so that V°=

V[ WV, whereV, = fv.jc2Lag.

" For each labelc and each {;j ) 2 E, introduce edgesi(j ), (vc;i) and (vc;j),

all of which have weight3.
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Since there are only two categories; and c,, let s = v, be treated as a source
node andt = v, be treated as a sink node. The minimuns-t cut problem in G°
is de ned by

migin\)ize cut(S|[ s); (2.3)

where cut (T) is the weight of edges crossing from nodes W V°to its com-
plement setT = VhT. This classical problem that can be e ciently solved in
polynomial time, and we have an equivalence with the original two-category edge

clustering objective.

Proposition 1 Forany S V, the value ofcut (S[ s) in G°is equal to the value

of CatEdgeClus (fS;Sg), whereS and S are the clusters for categories; and c;.

Proof Let edgee = (i;j) be a \mistake" in the clustering (my(e) = 1) and
without loss of generality have colorc;. If i and j are assigned toc,, then the
half-weight edgesi(v,,) and (j;v,) are cut. Otherwise, exactly one of andj is
assigned toc,. Without loss of generality, let it bei. Then (i;v.,) and (i;j ) are

cut. 2

Thus, a minimizer for the s-t cut in G° directly gives us a minimizer for our
Categorical Edge Clustering objective. We next provide a similar reduction for

the case of hypergraphs.

2.3.2 An algorithm for hypergraphs

We now develop a method to exactly solve our objective in the two-color case with
arbitrary order-r hypergraphs, and we again proceed by reducing to amt cut
problem. Our approach is to construct a subgraph for every hyperedge and paste
these subgraphs together to create a new gra@f= (V% E9, where minimum s-t

cuts produce partitions that minimize the Categorical Edge Clustering objective.
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Figure 2.1: Subgraphs used for the-t cut reduction of two-color Categorical Edge
Clustering in hypergraphs. Here, and are hyperedges in the original hypergraph
with colors ¢; (orange, left) andc, (blue, right).

A similar construction has been used for B" Potts model in computer vision [113],
and our reduction is the rst direct application of this approach to network analysis.

We start by adding terminal nodess = v, andt = v, (corresponding to

categoriesc; and c,) as well as all nodes iV to V% For each hyperedgee =

Again, the minimum s-t cut on G° produces a partition that also minimizes the

categorical edge clustering objective, as shown below.

Theorem 2 Let S be the solution to the minimum cut problem. Then the label
assignmentY dened by YJ[i]=c, ifi2S andYJ[i]=c¢ if i 2 S minimizes the

Categorical Edge Clustering objective.

right). If Y[vi] = i1 = Y[vw] = ¢, then vy;:::;v, 2 S and the cost of the
minimum s-t-cut is 0 (via placing s by itself). Now suppose at least one of
Y[vi];:i:;Y[ve] equalsc,. Without loss of generality, say that Y[vi] = ¢;, so

vi2S.Ifue2 S, we cut (Ue;t) and none of the edgesv; ue) contribute to the
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cut. If ue 2 S, we cut (v1; Ue); and it cannot be the case that ¥;; ue) is cut for
i 6 1 (otherwise, we could have reduced the cost of the minimum cut by placing
Ue2 S).

To summarize, if edgee with label ¢, induces a mistake in the clustering, then
the cut contribution is 1; otherwise, it is 0. A symmetric argument holds ik has
label ¢;, using the graph in Fig. 2.1 (left). By additivity, minimizing the s-t cut in
G°minimizes the number of mistakes in the Categorical Edge Clustering objective.

2

This procedure also works for the special case of graphs. Howew@?,has more
nodes and directed edges in the more general reduction, which can increase running
time in practice.

Computational considerations. Both algorithms solve a single minimum cut
problem on a graph withO(T) vertices and O(T) edges, wherel = P weld IS

the sum of hyperedge degrees (this is bounded aboverlp j, wherer is the order

of the hypergraph). In theory, this can be solved irO(T?) time in the worst
case [144]. However, practical performance is often much di erent than this worst-
case running time. That being said, we do nd the maximum ow formulations to
often be slower than the linear programming relaxations we develop in Section 2.4.
We emphasize that being able to solve the Categorical Edge Clustering objective
in polynomial time for two colors is itself interesting, and that the algorithms we
use for experiments in Section 2.5 are able to scale to large hypergraphs.
Considerations for unlabeled edges.  Our formulation assumed that all of the
(hyper)edges carry a unique label. However, in some datasets, there may be edges
with no label or both labels. In these cases, the edge's existence still signals that its
constituent nodes should be colored the same | just not with a particular color.

A natural augmentation to our objective is then to penalize this edge only when
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o >

Edge 3 color gadget

Figure 2.2: Gadget used for reducing maxcut to 3-color Categorical Edge Cluster-
ing. Each gadget has new auxiliary nodes, but and v may be a part of many
3-color gadgets.

it is not entirely contained in somecluster. Our reductions above handle this case
by simply connecting the corresponding nodes M°to both terminals instead of

just one.

2.4 More than two categories

We now move to the general formulation of Categorical Edge Clustering when
there can be more than two categories or labels. We rst show that optimizing the
objective in this setting is NP-hard. After, we develop approximation algorithms

based on linear programming relaxations and multiway cut problems with theo-
retical guarantees on solution quality. Many of these algorithms are practical, and

we use them in numerical experiments in Section 2.5.

2.4.1 NP-hardness of Categorical Edge Clustering

We now prove that the Categorical Edge Clustering objective is NP-hard for the
case of three categories. Our proof follows the structure of the NP-hardness re-
duction for 3-terminal multiway cut [60], and the reduction is from the NP-hard
maximum cut (maxcut) problem. Written as a decision problem, this problem
seeks to answer if there exists a partition of the nodes of a graph into two sets such

that the number of edges cut by the partition is at leasK .
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Consider an unweighted instance of maxcut on a grapgh = (V; E). To convert
this into an instance of 3-color Categorical Edge Clustering, we replace each edge
(u;v) 2 E with the 3-color gadget in Fig. 2.2. We will use the following lemma in

our reduction.

Lemma 3 In any node coloring of the 3-color gadget (Fig. 2.2), the minimum
number of edges whose color does not match both of its nodes (i.e., number of
mistakes in categorical edge clustering) is three. This only occurs when one of

fu;vg is red and the other is blue.

Proof If vis blue andu is red, then we can achieve the minimum three mistakes
by clustering each node in the gadget with its horizontal neighbor in Fig. 2.2
or alternatively by placing each node with its vertical neighbor. Ifu and v are

constrained to be in the same cluster, then the optimal solution is to place all
nodes in the gadget together, which makes 4 mistakes. It is not hard to check that

all other color assignments yield a penalty of 4 or more. 2

Now let G°be the instance of 3-color Categorical Edge Clustering obtained by

replacing each edgeuv) 2 E with a 3-color gadget.

Theorem 4 There exists a partition of the nodes irnG into two sets withK or
more cut edges if and only if there is a 3-coloring of the nodes @P that makes

4Ej K or fewer mistakes.

Proof Consider rstacutin G =(V;E)ofsizeK® K. LetS, andS, denote the
two clusters in the corresponding bipartition ofG, mapping to red and blue clusters.
Consider each ; v) 2 E in turn along with its 3-color gadget. If (u;v) 2 E is cut,
cluster all nodes in its gadget with their vertical neighbor it 2 Spandv 2 S;, and
cluster them with their horizontal neighbor ifu 2 S; andv 2 S,. Either way, this

makes exactly 3 mistakes. Ify;v) is not cut, then label all nodes in the gadget
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red if u;v 2 S;, or blue if u;v 2 S, which makes exactly 4 mistakes. The total
number of mistakes inG%is then K °+4(JEj] K9 =4jEj K° 4Ej K.

Now start with G%and consider a node coloring that makeB® B =4jEj K
mistakes. There argEj total 3-color gadgets inG% We claim that there must be
at least K of these gadgets at which only three mistakes are made. If this were
not the case, then assume exactlif < K gadgets where 3 mistakes are made.
By Theorem 3, there argE] H gadgets where at least 4 mistakes are made, so
the total number of mistakes isB® 3H +4(jEj H)=4jEj H > 4Ej K,
contradicting our initial assumption. Thus, by Theorem 3, there are at leask
edges (;v) 2 E where one of u; vg is red and the other is blue, and the maximum

cutin G is at leastK . 2

Consequently, if we can minimize Categorical Edge Clustering in polynomial
time, we can solve the maximum cut decision problem in polynomial time, and
Categorical Edge Clustering is thus NP-hard. As a natural next step, we turn to

approximation algorithms.

2.4.2 Algorithms based on LP relaxations

We now develop approximation algorithms by relaxing an integer linear program-
ming (ILP) formulation of our problem. We design the algorithms for hyper-
graphs, with graphs as a special case. Suppose we have an edge-labeled hyper-
graph G = (V;E;C; ) with C = f1;:::;kg, whereE. = fe2 E j '[¢] = cg. The

Categorical Edge Clustering objective can be written as the following ILP:
P P

min ©2C  e2E; Xe

P
sit. forallv2V: K x¢=k 1
=1 7 (2.4)
forallc2 C,e2 E;: x{ Xx.forallv2e

XS Xe 2 10; 19 forallc2C,v2V,e2E.
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Algorithm 1 A simple 2-approximation for Categorical Edge Clustering based on
an LP relaxation. Algorithm 2 details a more sophisticated rounding scheme.

1. Input: Labeled hypergraphG = (V; E; C;").
2: Output: Label Y[i] for each noda 2 V. Solve the LP-relaxation of ILP (2.4).
3: for c2 C do
4: S f v2Vjxi<i1=2g
5: for i 2 S; do
6
7
8
9

assignY[i] c.
end for
. end for
: Assign unlabeled nodes to an arbitrarg 2 C.

In this ILP, x{ =1 if node v is not assigned to category, and is zero otherwise.
The rst constraint in (2.4) ensures that x{ = 0 for exactly one category. The
second constraint says that in any minimizerxe = 0 if and only if all nodes in e
are colored the same as; otherwise,x. = 1. If we relax the binary constraints

in (2.4):

0 x¢ 1, 0 X 1

then the ILP is just a linear program (LP) that can be solved in polynomial time.

When k = 2, the constraint matrix of the LP relaxation is totally unimodular
as it corresponds to the incidence matrix of a balanced signed graph [180]. Thus,
all basic feasible solutions for the LP satisfy the binary constraints of the original
ILP (2.4), which is another proof that the two-category problem can be solved in
polynomial time.

With more than two categories, the LP solution can be fractional, and we
cannot directly determine a node assignment from the LP solution. Nevertheless,
solving the LP provides a lower bound on the optimal solution, and we show how
to round the result to produce a clustering within a bounded factor of the lower
bound. Algorithm 1 contains our rounding scheme, and the following theorem

shows that it provides a clustering within a factor of 2 from optimal.
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Theorem 5 Algorithm 1 returns at worst a 2-approximation to the Categorical

Edge Clustering objective.

Proof First, for any v 2 V, x¢ < 1=2 for at most one categoryc 2 C in the
solution. If this were not the case, there would exist two colora and b such that
x8 < 1=2 andx? < 1=2 and

Pk xc=xaaxda C<1+k 2=k 1
c=1 Xy = Xy T Xy c02Cnfa;ngv - )

which violates the rst constraint of the LP relaxation. Therefore, each node will
be assigned to at most one category. Consider ary2 E. for which all nodes are
not assigned toc. This means that there exists at least one node 2 e such that

X¢  1=2. Thus, the Algorithm incurs a penalty of one for this edge, but the LP
relaxation pays a penalty ofxe x{ 1=2. Therefore, every edge mistake will be

accounted for within a factor of 2. 2

We can get better approximations in expectation with a more sophisticated
randomized rounding algorithm (Algorithm 2). In this approach, we form setS;
based on a threshold parametetr so that each node may be included in more than
one set. To produce a valid clustering, we rst generate a random permutation of
colors to indicate an (arbitrary) priority of one color over another. For anyw 2 V
contained in more than one se8;, we assigrv to the cluster with highest priority.
By carefully setting the parametert, this approach has better guarantees than

Algorithm 1.

Theorem 6 If t = k=(2k 1), Algorithm 2 returns an at worst(2 1=k)-approximation
for Categorical Edge Clustering in expectation. And if = (r + 1) =2r + 1), Algo-

rithm 2 returns an at worst (2 1=(1 + r))-approximation in expectation.

Proof For the choices oft listed in the statement of the theorem,t 2 [1=2; 2=3]

aslongassr 2andk 2, which is always true. We say that coloc wants node
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Algorithm 2 LP relaxation for Categorical Edge Clustering with a randomized
rounding scheme. Theorem 6 gives approximation guarantees based.on
Input: Labeled hypergraphG = (V;E;C = f1;2;:::;Kkg; ); rounding parame-
ter t 2 [1=2; 2=3].
Output: Label Y[i] foreach noda 2 V. Solve the LP-relaxation of ILP (2.4).
uniform random permutation off 1;2;:::; kg.
for c= q;:::; (do
Sc f v2Vjxi<to.
for i 2 S; do
Yi] (0).
end for
end for
Assign unlabeled nodes to an arbitrarg 2 C.

vifv2 S but this does not automatically mean thatv will be colored asc. For
any v 2 V, there exist at most two colors that wantv. If v were wanted by more
than two colors, this would meanv 2 S;\ S,\ S, for three distinct colorsa; b; c
This leads to a violation of the rst constraint in (2.4):
X2+ xD+ xC+ X x,<3t+(k 3) 2+(k 3)=(k 1)
i5i2f ajb;cg

Consider an arbitraryt 2 (1=2;2=3). We can bound the expected number of
mistakes made by Algorithm 2 and pay for them individually in terms of the LP
lower bound. To do this, we consider a single hyperedge2 E. with color ¢ and
bound the probability of making a mistake and the LP cost of this hyperedge.

Case 1:xe t. Inthis case, we are guaranteed to make a mistake at edge
sincexe t implies there is some nod® 2 e such that x{ t, and sov 2 S..
However, because the LP value at this edge i& t, we pay for our mistake
within a factor 1=t.

Case 2:Xxe <t. Now, colorc wants every node in the hyperedge 2 E.. If no
other colors want any nodev 2 e, then Algorithm 2 will not make a mistake at
e, and we have no mistake to account for. Assume then that there is some node

v 2 eand a colorc®6 ¢ such that ®wants v. This implies that x& < t, from which
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we have thatxi 1 xgo > 1 t (to satisfy the rst inequality in (2.4)). Thus,
Xe x\°,°> 1 t (2.5)

This gives a lower bound of 1 t on the contribution of the LP objective at edge
e.

In the worst case, eachv 2 e may be wanted by adierent c®6 c, and the
number of colors other thanc that want some node ine is bounded above by
B: =k 1landB;=r. We avoid a mistake ate if and only if ¢ has higher priority
than all of the alternative colors, where priority is established by the random

permutation . Thus,

Pr[mistake at e xe <t] ghy =min 2 (2.6)

Recall from (2.5) that the LP paysxe. > 1 t. Therefore, the expected cost at a

hyperedgee 2 E. satisfyingxe <t is at most in expectation. Taking the

@ t)(B +1)
worst approximation factor from Case 1 and Case 2, Algorithm 2 will in expectation
n 0

provide an approximation factor of max tl; (“)?—‘Biﬂ) . This will be minimized

when the approximation bounds from Cases 1 and 2 are equal, which occurs when

t= 2% If Bi=k 1, thent= 2% and the expected approximation factor is
2 1=k. Andif B; = r, thent = 55 and the expected approximation factor is
2 1=(r +1). 2

For the graph case ( = 2), this theorem implies ag-approximation for Categorical
Edge Clustering with any number of categories.

Computational considerations. The linear program hasO(JEj) variables and
sparse constraints, which written as a matrix inequality would haveO(T) non-
zeros, wher€T is again the sum of hyperedge degrees. Improving the best theoret-
ical running times for solving linear programs is an active area of research [124, 55],

but practical performance of solving linear programs is often much di erent than
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worst-case guarantees. In Section 2.5, we show that a high-performance LP solver
from Gurobi is extremely e cient in practice, nding solutions in seconds on hy-
pergraphs with several categories and tens of thousands of hyperedges in tens of

seconds.

2.4.3 Algorithms based on multiway cut

We now provide alternative approximations based on multiway cut, similar to
the reductions from Section 2.3. Again, we develop this technique for general
hypergraphs and graphs are a special case.

Suppose we have an edge-labeled hypergraph= (V;E;C; ). We construct a
new graphG°= (V% EY as follows. First, introduce a terminal nodev, for each

categoryc 2 C, so that VO = V [f v, j ¢ 2 Cg. Second, for each hyperedge

in the clique has weight £r. (Overlapping cliques are just additive on the weights.)
The multiway cut objective is the number of cut edges in any partition of the
nodes intok clusters such that each cluster contains exactly one of the terminal
nodes. We can associate each cluster with a category, and any clusteihgf nodes
in Categorical Edge Clustering forG can be mapped to a candidate partition for
multiway cut in G°% Let MultiwayCut (Y) denote the value of the multiway cut
objective for the clusteringY. The next result relates multiway cut to Categorical

Edge Clustering.
Theorem 7 For any clusteringy,

CatEdgeClus (Y) MultiwayCut (Y) %CatEdgeClus (Y):

Proof Let e = fvy;:::;v,g with label ¢ = "[e] be a hyperedge inG. We can

show that the bounds hold when considering the associated clique@i and then
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apply additivity. First, if e is not a mistake in the Categorical Edge Clustering,
then no edges are cut in the clique. I& is a mistake in the Categorical Edge
Clustering, then there are some edges cut in the associated clique. The smallest
possible contribution to the multiway cut objective occurs when all but one node
is assigned tac. Without loss of generality, consider this to bes;, which is inr cut
edges: ( 1) corresponding to the edges from, to other nodes in the hyperedge,
plus one for the edge fronv, to the terminal v.. Each of ther cut edges has weight
1=r, so the multiway cut contribution is 1.

The largest possible cut occurs when all nodes @are colored di erently from
e. In this case, the edges incident to each node in the clique are all cut. For any
one of these nodes, the sum of edge weights incident to that node equals 1 by the
same arguments as above. This cost is incurred for each of thenodes in the
hyperedge plus the terminal noder, for a total weight of r + 1. Since each edge

is counted twice, the actual penalty isi( + 1) =2. 2

Computational considerations. Minimizing the multiway cut objective is NP-
hard [60], but there are many approximation algorithms. Theorem 7 implies that
any p-approximation for multiway cut provides a p(r + 1)=2-approximation for
Categorical Edge Clustering. For example, the simple isolating cuts heuristic yields
aL(2 2)-approximation, and more sophisticated algorithms provide &3t (2
%)-approximation [47]. For our experiments, we use the isolating cut approach,
which solvesO(k) maximum ow problems on a graph with O(rjEj) vertices and
O(r?jEj) edges. This can be expensive in practice. We will nd that the LP
relaxation performs better in terms of solution quality and running time.

A node-weighted multiway cut reduction. We also provide an approxima-
tion based on adirect reduction to a node-weighted multiway cut (NWMC) prob-

lem that is of theoretical interest. As above, suppose we have an edge-labeled
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hypergraph G = (V;E;C;"). We construct a new graphG°® = (V%E9 as fol-
lows. First, introduce a terminal nodev, for each categoryc 2 C, so that

Vo= V[f v, jc2 Cg Assign innite weights to all nodes inV% Next, for

straightforward to check that deletingve corresponds to making a mistake at hy-
peredgee. Thus an optimizer of NWMC on Glis also an optimizer of Categorical
Edge Clustering onG.

Solving NWMC is also NP-hard [88], and there are again well-known approxi-
mation algorithms. The above discussion implies any-approximation to NWMC
also provides gp-approximation for Categorical Edge Clustering. For example, an
LP-based algorithm has a 2(1 1=k)-approximation [88]. This approximation is
better but the LPs are too large to be practical; however, the improvement of a

direct algorithm suggests room for better theoretical results.

2.4.4 Approximation through a linear objective

The Categorical Edge Clustering objective assigns a penalty of 1 regardless of the
proportion of the nodes in a hyperedge which are clustered away from hyperedge's
color. Although useful, we might consider alternative penalties that value the
extent to which each hyperedge is satis ed in the nal clustering. One natural
penalty for a hyperedge of coloc is the number of nodes within that hyperedge
that are not clustered into that color. With such a \linear" mistake function, we

de ne the Categorical Node Clustering Objective as
P P
CatNodeClugY) =, md(e); wherem{(e) = .,.lvfe (o'
It turns out that this objective is optimized with a simple majority vote algorithm

that assigns a node to the majority color of all hyperedges that conatin it.
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Table 2.1: Summary statistics of datasets | number of nodegVj, number of (hy-
per)edgesEj, maximum hyperedge size, and number of categoriek | along with
Categorical Edge Clustering performance for the algorithmisP-round (LP), Ma-
jority Vote (MV), Cat-IsoCut (IC), ChromaticBalls (CB) and LazyChromaticBalls
(LCB). Performance is listed in terms of the approximation guarantee given by the
LP lower bound (lower is better) and in terms of the edge satisfaction, which is
the fraction of edges that arenot mistakes (higher is better; see Eq. (2.2)). Our
LP method performs the best overall and can even nd exactly (or nearly) opti-
mal solutions to the NP-hard objective by matching the lower bound. We also
report the running times for rough comparison, though our implementations are
not optimized for e ciency. Due to its simplicity, MV is extremely fast.

Approx. Guarantee Edge Satisfaction Runtime (in seconds)
Dataset jVj JEj r k LP MV IC CB LCB LP MV IC CB LCB LP MV IC CB LCB
Brain 638 21180 2 2 1.0 1.01 127 156 141 0.64 064 055 044 05 18 00 19 04 08
MAG-10 80198 51889 25 10 1.0 1.18 137 144 135 0.62 055 048 045 049 51 0.1 203 333 699
Cooking 6714 39774 65 20 10 121 1.21 123 124 0.2 0.03 0.03 0.01 0.01 72 0.0 1223 46 6.7
DAWN 2109 87104 22 10 1.0 1.09 10 131 115 053 048 053 0.38 046 13 0.0 190 03 04

Walmart-Trips 88837 65898 25 44 1.0 1.2 119 126 126 0.24 0.09 0.09 0.04 005 7686 0.2 68801 493 1503

Theorem 8 The majority vote algorithm yields an optimizer of the Categorical

Node Clustering (linear) objective.

Proof Suppose nodai is contained inJ; hyperedges of color. Without loss of

generality, assumel; ::: Jk. The cost of assigningu to cis C. = Jj,

j6¢c
which is minimized forc = 1. 2

In Section 2.5, we will see that the majority vote solution provides a good ap-
proximation to the optimizer of the Categorical Edge Clustering objective. The
reason is that the cost of a hyperedge under the linear objective is at mastvhile
that cost under the Categorical Edge Clustering objective is just 1, which makes

majority vote an r-approximation algorithm.

Theorem 9 The majority vote algorithm provides arr-approximation for Cate-

gorical Edge Clustering.
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2.5 Experiments

We now run four types of numerical experiments to demonstrate our methodology.
First, we show that our algorithms indeed work well on a broad range of datasets
at optimizing our objective function and discover that our LP relaxation tends be
extremely e ective in practice, often nding an optimal solution (i.e., matching the
lower bound). After, we show that our approach is superior to competing base-
lines in categorical community detection experiments where edges are colored to
signal same-community membership. Next, we show how to use timestamped edge
information as a categorical edge label, and demonstrate that our method can nd
clusters that preserve temporal information better than methods that only look at
graph topology, without sacri cing performance on topological metrics. Finally, we
present a case study on a network of cooking ingredients and recipes to show that
our methods can also be used for exploratory data analysis. Our code and datasets

are available athttps://github.com/nveldt/CategoricalEdgeClustering

2.5.1 Analysis on Real Graphs and Hypergraphs

We rst evaluate our methods on several real-world edge-labeled graphs and hyper-
graphs in terms of Categorical Edge Clustering. The purpose of these experiments
is to show that our methods can optimize the objective quickly and accurately and
to demonstrate that our methods nd global categorical clustering structure bet-
ter than natural baseline algorithms. All experiments ran on a laptop with a 2.2
GHz Intel Core i7 processor and 8 GB of RAM. We implemented our algorithms
in Julia, using Gurobi software to solve the linear programs.

Datasets. Table 2.1 provides summary statistics of the datasets we use, and we
brie y describe them. Brain [58] is a graph where nodes represent brain regions

from an MRI. There are two edge categories: one for connecting regions with high
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fMRI correlation and one for connecting regions with similar activation patterns.
In the Drug Abuse Warning Network (DAWN ) [169], nodes are drugs, hyperedges
are combinations of drugs taken by a patient prior to an emergency room visit, and
edge categories indicate the patient disposition (e.g., \sent home" or \surgery").
The MAG-10 network is a subset of the Microsoft Academic Graph [166] where
nodes are authors, hyperedges correspond to a publication from those authors, and
there are 10 edge categories which denote the computer science conference publica-
tion venue (e.g., \WWW" or \KDD"). If the same set of authors published at more
than one conference, we used the most common venue as the category, discarding
cases where there is a tie. In th€ooking dataset [106], nodes are food ingredients,
hyperedges are recipes made from combining multiple ingredients, and categories
indicate cuisine (e.g., \Southern-US" or \Indian"). Finally, the Walmart-Trips
dataset is made up of products (nodes), groups of products purchased in a single
shopping trip (hyperedges), and categories are 44 unique \trip types" classi ed by
Walmart [105].
Algorithms.  We use two algorithms that we developed in Section 2.4. The rst
is the simple 2-approximation rounding scheme outlined in Algorithm 1, which we
refer to asLP-round (LP) (in practice, this performs as well as the more sophisti-
cated algorithm in Algorithm 2 and has the added bene t of being deterministic).
The second iLat-IsoCut (IC ), which runs the standard isolating cut heuristic [60]
on an instance of multiway cut derived from the Categorical Edge Clustering prob-
lem, as outlined in Section 2.4.3.

The rst baseline we compare against idMajority Vote (MV ) discussed in
Section 2.4.4: node is assigned to category if ¢ is the most common edge type
in which i participates. The MV result is also the default cluster assignment for

IC, since in practice this method leaves some nodes unattached from all terminal
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nodes.

The other baselines ar€hromatic Balls (CB) and Lazy Chromatic Balls(LCB)
| two algorithms for chromatic correlation clustering [36]. These methods repeat-
edly select an unclustered edge and greedily grow a cluster around it by adding
nodes that share edges with the same label. Unlike our method3B and LCB
distinguish between category (color) assignment and cluster assignment: two nodes
may be colored the same but placed in di erent clusters. To provide a uniform
comparison among methods, we merge distinct clusters of the same category into
one larger cluster. These methods areot designed for hypergraph clustering,
but we still use them for comparison by reducing a hypergraph to an edge-labeled
graph, where node$ andj share an edge in categorg if they appear together in
more hyperedges of category than any other.
Results. Table 2.1 reports how well each algorithm solves the Categorical Edge
Clustering objective. We report the approximation guarantee (the ratio between
each algorithm's output and the LP lower bound), as well as thedge satisfaction
which is the fraction of hyperedges that end up inside a cluster with the correct
label. Maximizing edge satisfaction is equivalent to minimizing the number of edge
label mistakes but provides an intuitive way to interpret and analyze our results.
High edge satisfaction scores imply that a dataset is indeed characterized by large
groups of objects that tend to interact in a certain way with other members of the
same group. A low satisfaction score indicates that a single label for each node
may be insu cient to capture the intricacies of the data.

In all cases, the LP solution is integral or nearly integral, indicating that_P
does an extremely good job solving the original NP-hard objective, often nding
an exactly-optimal solution. As a result, it outperforms all other methods on all

datasets. Furthermore, on nearly all datasets, we can solve the LP within a few
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seconds or a few minutesWalmart is the exception{given the large number of
categories, the LP contains nearly 4 million variables, and far more constraints.
Other baseline algorithms can be faster, but they do not perform as well in solving
the objective.

The high edge satisfaction scores indicate that our method does the best job
identifying sets of nodes whichas a grouptend to participate in one speci c type
of interaction. In contrast, the MV algorithm identi es nodes that individually
exhibit a certain behavior, but the method does not necessarily form clusters of
nodes that as a group interact in a similar way. Because olwP method outper-
forms ourIC approach on all datasets in terms of both speed and accuracy, in the
remaining experiments we focus only on comparing® against other competing

algorithms.

2.5.2 Categorical Edge Community Detection

Next we demonstrate the superiority ofLP in detecting communities of nodes
with the same node labels (i.e.categorical communitie$, based on labeled edges
between nodes. We perform experiments on synthetic edge-labeled graphs, as well
as two real-world datasets, where we reveal edge labels indicative of the ground
truth node labels and see how well we can recover the node labels.

Synthetic Model.  We use the synthetic random graph model of Bonchi et al.
for chromatic correlation clustering [36]. A user speci es the number of nodes
colors L, and clustersK, as well as edge parameters, g, and w. The model

rst assigns nodes to clusters uniformly at random, and then assigns clusters to
colors uniformly at random. (Due to the random assignment, some clusters and
colors may not be sampled. ThusK and L are upper bounds on the number of

distinct clusters and unique colors.) For nodes and j in the same cluster, the
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model connects them with an edge with probabilityp. With probability 1w,
the edge is the same color d@sand j. Otherwise, it is a uniform random color. If

i andj are in dierent clusters, an edge is drawn with probabilityq and given a
uniform random color. We will also use a generalization of this model to synthetic
r-uniform hypergraphs. The dierence is that we assign colored hyperedges to
r-tuples of the n nodes, rather than just pairs, and we assign each cluster to a
unique color.

Synthetic Graph Results. We set up two experiments, where performance is
measured by the fraction of nodes placed in the correct cluster (node label accu-
racy). In the rst, we form graphs with n = 1000, p = 0:05, andq = 0:01, xing

L = K =15 (which in practice leads to graphs with 15 clusters and typically be-
tween 8 and 12 distinct edge and cluster colors). We then vary the noise parameter
w from 0 to 0:75 in increments of @5. Figure 2.3a reports the median accuracy
over 5 trials of each method for each value af. In the second, we xw = 0:2,
and vary the number of clustersK from 5 to 50 in increments of 5 withL = K.
Figure 2.3b reports the median accuracy over 5 trials for each value kf.

For our rst two experiments, we additionally found that our LP algorithm
similarly outperformed other methods in terms of cluster identi cation scores such
as Adjusted Rand Index and F-score, followed in performance by MV. Cluster
identi cation scores for LCB and CB were particularly low (ARI scores always
below 0.02), as these methods tended to form far too many clusters.

The CB and LCB algorithms, as well as the synthetic graph model itself, ex-
plicitly distinguish between ground truth node labels and ground truth clusters.
Thus, our third experiment explores a parameter regime tailored more towards the
strengths of CB and LCB. We x L = 20, and vary the number of clusters from

K =50 to K =200 in increments of 25. Following the experiments of Bonchi et
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al. [36] we setp = w = 0:5, and setq = 0:03. Even in this setting, we nd that
our algorithms maintain an advantage. For all values oK, our LP algorithm out-
performs other methods in terms of node label accuracy, and also obtains higher
ARI scores whenK is a small multiple of L. We note that LCB and CB only ob-
tain better cluster identi cation scores in parameter regimes where all algorithms
obtain ARI scores below 0.1.

Synthetic Hypergraph Results. We ran similar experiments on synthetic 3-
uniform hypergraphs. We again seh = 1000 and usedp = 0:005 andqg = 0:0001
for intra-cluster and inter-cluster hyperedge probabilities. In one experiment, we
xed L =15 and variedw, and in another we xedw = 0:2 and varied the number

of clustersL. Figures 2.3c and 2.3d shows the accuracies. Agdif, tends to have
the best performance. Wher. = 15, our method achieves nearly perfect accuracy
forw 0:6. However, we observe performance sensitivity when the noise is too
large: whenw increases from & to 0.65, the output of LP no longer tracks the
ground truth cluster assignment. This occurs despite the fact that the LP solution
is integral, and we are in fact optimally solving the Categorical Edge Clustering
objective. We conjecture this sharp change in accuracy is due to an information
theoretic detectability threshold, which depends on parameters of the synthetic
model.

Academic Department Labels in an Email Network. To test the algo-
rithms on real-world data, we use theEmail-Eu-core network [179, 125]. Nodes
in the graph represent researchers at a European institution, edges indicate email
correspondence (we consider the edges as undirected), and nodes are labeled by the
departmental a liation of each researcher. We wish to test how well each method
can identify node labels, if we assume we have access to a (perhaps noisy and

imperfect) mechanism for associating emails with labels for inter-department and
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intra-department communication. To model such a mechanism, we generate edge
categories in a manner similar to the synthetic above. An edge inside of a cluster
(i.e., an email within the same department) is given the correct department label
with probability 1  w, and a random label with probability w. An edge between
two members of di erent departments is given a uniform random label. Figure 2.5a
reports each algorithm's ability to detect department labels whenv varies from

0 to 0:75. Our LP method returns the best results in all cases, and is robust in
detecting department labels even in the high-noise regime.

Product Categories.  The Walmart-Trips dataset from Section 2.5.1 also has
product information. We assigned products to one of ten broad departments in
which they appear onwalmart.com (e.g., \Clothing, Shoes, and Accessories") to
construct a Walmart-Products hypergraph with ground truth node labels. Recall
that hyperedges are sets of co-purchased products. We generate noisy hyperedge
labels as before, with 1 w as the probability that a hyperedge with nodes from

a single department will have the correct label. Results are reported in Fig. 2.5b,
and our LP-round method can detect true departments at a much higher rate than

the other methods.

2.5.3 Temporal Community Detection

In the next experiment, we show how our framework can be used to identify com-
munities of nodes in a temporal network, where we use timestamps on edges as a
type of categorical label that two nodes should be clustered together. For data, we
use theCollegeMsgnetwork [147], which records private messages (time-stamped
edges) between 1899 users (nodes) of a social media platform at UC-Irvine.
Removing timestamps and applying a standard graph clustering algorithm

would be a standard approach to identify communities of users. However, this
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loses the explicit relationship with time. As an alternative, we convert timestamps
into discrete edge labels by ordering edges with respect to time and separating
them into k equal-sized bins representing time windows. Optimizing Categorical
Edge Clustering then corresponds to clustering users into time windows, in order
to maximize the number of private messages that occur between users in the same
time window. In this way, our framework can identifytemporal communitiesin a
social network, i.e., groups of users that are highly active in sending each other
messagesvithin a short period of time

We construct edge-labeled graphs for di erent values &, and comparelLP
against clusterings obtained by discarding time stamps and runnin@raclus [71],

a standard graph clustering algorithm. Graclus seeks to cluster the nodes int&

P .
Ncut (S1; 8,500, &) = ik=1 3‘37((33

where cut (S) is the number of edges leaving, and vol (S) is the volume of S,

i.e., the number of edge end points ir5. Figure 2.6a shows thatLP is in fact
competitive with Graclus in nding clusterings with small normalized cut scores,
even thoughLP is designed for a dierent objective. HoweverLP still avoids
cutting edges, and it nds clusterings that also have small normalized cut values.
The other goal ofLP is to place few edges in a cluster with the wrong label, which

in this scenario corresponds to clustering messages together if they were sent close
in time. We therefore also measure the average di erence between timestamps of

interior edges and the average time stamp in each clustering, i.e.,

AvgTimeDi  (Sp;:::;S) = == £, jimestamp(e)  j;

where Ejy is the set of interior edges completely contained in some clustét; is

the set of interior edges of cluste;, and ; is the average time stamp irg;. Not
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surprisingly, this value tends to be large foiGraclus, since this method ignores
timestamps. However, Figure 2.6b shows that this value tends to be small foP,
indicting that it is indeed detecting clusters of users that are highly interactive

within a speci ¢ short period of time.

2.5.4 Analysis of the Cooking Hypergraph

Finally, we apply our framework and LP-round algorithm to gain insights into the
Cooking hypergraph dataset from Section 2.5.1, demonstrating our methodology
for exploratory data analysis. An edge in this hypergraph is a set of ingredients
for a recipe, and each recipe is categorized according to cuisine. Categorical Edge
Clustering thus corresponds to separating ingredients among cuisines, in a way
that maximizes the number of recipes whose ingredients are all in the same cluster
(see Ahn et al. [8] for related analyses).

Table 2.1 shows that only 20% of the recipes can be made (i.e., a 0.2 edge
satisfaction) after partitioning ingredients among cuisine types. This is due to the
large number of common ingredients such as salt and olive oil that are shared across
many cuisines (a problem in other recipe network analyses [173]). We negate the
negative e ect of high-degree nodes as follows. For an ingredidntlet df be the
number of recipes of cuisin€ containing i. Let M; = max.df measuremajority
degreeand T; = P . d7 the total degree Note that B; = T; M; is a lower bound
on the number of hyperedge mistakes we will make at edges incident to nod&Ve
can re ne the original dataset by removing all nodes witiB; greater than some .
Making recipes or wasting ingredients. Figure 2.7a shows edge satisfaction
scores forLP and MV when we cluster for dierent . When = 10, edge
satisfaction is above 0.64 withLP. As increases, edge satisfaction decreases,

but LP outperforms MV in all cases. We also consider a measure of \ingredient
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waste" for each method. An ingredient isunusedif we cannot make any recipes
by combining the ingredient with other ingredients in its cluster. A low number
of unused ingredients indicates that a method forms clusters where ingredients
combine together well. Figure 2.7b shows the number of unused ingredients as
varies. Again,LP outperforms MV.

Speci ¢ ingredient and recipe clusters. We nally highlight speci ¢ ingre-

Table 2.2: Examples of ingredients and recipes from special clusters identi ed by
LP, but not Majority Vote.

French Fruit-Based Desserts ( =70)

Ingredients:  ruby red grapefruit, strawberry ice cream, dry hard cider, icing,
prunes, tangerine juice, sour cherries.

Recipes: 1. falmond extract, bittersweet chocolate, sugar, sour cherries, brioche,
heavy cream, unsalted butter, kirsch, 2. flarge egg yolks, ruby red grapefruit,
dessert wine, sugay

Brazilian Caipirinha Recipes ( =170)

Ingredients:  simple syrup, light rum, ice, superne sugar, key lime, coco,
kumquats, liquor, mango nectar, vanilla essence

Recipes: fcachaca, icg + 1. f lime juice, kumquats, sugag, 2. flime, fruit
puree, simple syrupg, 3. f super ne sugar, lime juice, passion fruit juicg, 4. f
sugar, liquor, mango nectar, lime, mangp

dient clusters that LP identies but MV does not. When = 170, LP places
10 ingredients with the Brazilian cuisine whichMV does not, leading to 23 extra
recipes that are unique toLP. Of these, 21 correspond to variants of the Caipir-
inha, a popular Brazilian cocktail. When = 70, 24 ingredients and 24 recipes
are unique to the French cuisine cluster diP. Of these, 18 correspond to desserts,
and 14 have a signi cant fruit component. Table 2.2 has examples of ingredients

and recipes from both these clusters.
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2.6 Connection to energy minimization

Special cases of our Categorical Edge Clustering framework t within the paradigm
of energy function minimization in computer vision [41, 114, 83]. The energy
minimization approach uses minimums-t cut algorithms for functions of binary
and ternary variables which satisfy a certain regularity property. In this appendix
we show that our objective induces a regular energy function in both the graph an