
PRINCIPLED AND SCALABLE METHODS FOR

ANALYSIS OF HIGHER-ORDER NETWORKS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Ilya Amburg

May 2022

© 2022 Ilya Amburg

ALL RIGHTS RESERVED

PRINCIPLED AND SCALABLE METHODS FOR ANALYSIS OF

HIGHER-ORDER NETWORKS

Ilya Amburg, Ph.D.

Cornell University 2022

Graphs have enjoyed immense success as a model for analyzing pairwise interac-

tions, such as friendships on Facebook, where people are encoded as nodes and

friendships as edges that link nodes. However, many datasets exhibit higher-order

interactions that go beyond the scope of the pairwise graph model, such as product

co-purchasing data on Amazon. We lose important information by ignoring this

higher-order structure. Currently, few methods for directly analyzing higher-order

data exist. In this dissertation, we present principled and scalable methods for

analyzing higher-order information. We �rst focus on the hypergraph perspective,

where the hyperedges representing an interaction can connect two or more nodes

at once. In the �rst part of the thesis, we introduce methods for analyzing hy-

pergraphs that have multiple types of interactions. In particular, in Chapter 2 we

develop a framework for detecting communities of nodes in hypergraphs that have

di�erent types or categories of hyperedges. In Chapter 3, we use the theory from

Chapter 2 to construct a method for diverse recommender systems that scales to

large datasets. In the next part of the thesis, we present some novel methods for

dealing with hypergraphs that have special structure. In particular, in Chapter 4

we present a principled method for recovering planted \core" nodes. In the last

part of the thesis, we present higher-order methods for graphs that come with edge

ow metadata. In particular, in Chapter 5 we show that their associated Laplacian

harmonic vectors exhibit spacial localization, and leverage this insight to create a

principled algorithm that allows us to e�ciently localize holes in these complexes.

BIOGRAPHICAL SKETCH

Ilya Amburg was born in Tashkent, Uzbekistan. He moved to the U.S. at the

age of nine. After attending high school in the Chicago area, he received his

BA in mathematics and physics from Williams College in 2014, and his MS in

applied mathematics from Cornell University in 2020. Ilya's research interests lie

in developing methods for analysis of large and complex datasets, with special

interest in tools for network data. Aside from his research, Ilya enjoys teaching

and spending time with his family.

iii

ACKNOWLEDGEMENTS

I would like to thank my wife, Jennifer Ese Alakpa Amburg, for her support during

my doctoral studies. Additionally, I thank my advisor, Austin R. Benson, for his

mentorship and support, and all the help he provided over the years. I also thank

all the people with whom I have collaborated on research, with a special thank you

to Nate Veldt and Sinan Aksoy. This research was supported by NSF CAREER

Award IIS-2045555, NSF Award DMS-2146079, NSF Award DMS-1830274, ARO

Award W911NF19-1-0057, and ARO MURI.

iv

For my wonderful wife, whose patience and support made this work possible.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Acknowledgements . iv
Dedication . v
Table of Contents . vi
List of Tables . ix
List of Figures . xi

1 Overview 1
1.1 Joint authorship . 1
1.2 Background on higher-order networks 1

1.2.1 Pairwise networks . 1
1.2.2 Hypergraphs for higher-order interactions 2
1.2.3 Simplicial complexes for higher-order networks 3
1.2.4 Analysis of networks: clustering 4
1.2.5 Hypergraphs with multiple connection types 5
1.2.6 Hypergraphs with special structure 6
1.2.7 Inferring higher-order structure from pairwise interactions . 6

I Methods for edge-labeled hypergraphs 8

2 Clustering in graphs and hypergraphs with categorical edge labels 10
2.1 Introduction . 10
2.2 Preliminaries and related work . 14

2.2.1 Categorical edge clustering objective 14
2.2.2 Relation to Correlation Clustering 15
2.2.3 Additional related work . 17

2.3 The case of two categories . 17
2.3.1 An algorithm for graphs . 17
2.3.2 An algorithm for hypergraphs 18

2.4 More than two categories . 21
2.4.1 NP-hardness of Categorical Edge Clustering 21
2.4.2 Algorithms based on LP relaxations 23
2.4.3 Algorithms based on multiway cut 28
2.4.4 Approximation through a linear objective 30

2.5 Experiments . 32
2.5.1 Analysis on Real Graphs and Hypergraphs 32
2.5.2 Categorical Edge Community Detection 35
2.5.3 Temporal Community Detection 38
2.5.4 Analysis of the Cooking Hypergraph 40

2.6 Connection to energy minimization 42
2.6.1 Graphs with two categories 42

vi

2.6.2 Rank-3 hypergraphs with two categories 44
2.7 Discussion . 46

3 Diverse and experienced group discovery via hypergraph cluster-
ing 50
3.1 Introduction . 51

3.1.1 Related work . 53
3.2 Clustering with Diversity and Experience 54

3.2.1 A
awed but illustrative �rst approach 55
3.2.2 Diversity-regularized categorical edge clustering 56
3.2.3 A general preference-regularized objective 59
3.2.4 Extremal LP and ILP solutions at large enough values of� . 60

3.3 Bounding Hyperparameters that Yield Extremal Solutions 62
3.4 Numerical Experiments . 64

3.4.1 Datasets and algorithm scalability 66
3.4.2 Diversity regularization . 68
3.4.3 Preference regularization . 73
3.4.4 Dynamic group formation 74

3.5 Discussion . 76

II Methods for hypergraphs with special structure 77

4 Planted hitting set recovery in hypergraphs 79
4.1 Core and fringe nodes in networks 79
4.2 Problem setup and theoretical results for core recovery 83

4.2.1 Minimal hitting sets . 84
4.2.2 Non-minimal hitting sets . 90
4.2.3 Recovery in a random hypergraph model 94

4.3 Union of Minimal Hitting Sets (UMHS): A practical core recovery
algorithm . 97

4.4 Experimental results . 99
4.4.1 Data . 99
4.4.2 Recovery results . 101
4.4.3 Recovery as a function of output size 105

4.5 Related work . 105
4.6 Discussion . 107

III Higher-order methods for graphs with metadata 109

5 Localization in harmonic vectors of simplicial complexes 111
5.1 Introduction . 111

5.1.1 Related work . 113

vii

5.2 Background on algebraic topology 115
5.2.1 Simplicial complexes and orientation 116
5.2.2 Boundary maps and homology 116
5.2.3 Hodge Laplacian . 117
5.2.4 A matrix representation of (co)boundary maps and theq-

Hodge Laplacian . 118
5.2.5 Harmonic vectors . 119
5.2.6 Betti numbers . 119
5.2.7 Harmonic localization around holes and orthogonal cone struc-

ture . 120
5.3 Theory . 121

5.3.1 Localization in the plane . 122
5.3.2 Perturbation analysis . 129

5.4 A principled, scalable algorithm for harmonic basis separation . . . 130
5.5 Structure of harmonic vectors of real-life simplicial complexes . . . 135
5.6 Structure of synthetic simplicial complexes 142
5.7 Better solution quality and ten-thousandfold speedups 145

5.7.1 Much-improved solution quality 145
5.7.2 Much faster than the state-of-the-art 147

5.8 Separated harmonic vectors are useful 147
5.8.1 Coverage hole detection . 148
5.8.2 Hole tracking . 149
5.8.3 Spectral clustering . 151
5.8.4 Use in supervised learning 152

5.9 Discussion . 153

Bibliography 155

viii

LIST OF TABLES

2.1 Summary statistics of datasets | number of nodesjV j, number of
(hyper)edgesjE j, maximum hyperedge sizer , and number of cate-
goriesk | along with Categorical Edge Clustering performance for
the algorithms LP-round (LP), Majority Vote (MV), Cat-IsoCut
(IC), ChromaticBalls (CB) and LazyChromaticBalls (LCB). Per-
formance is listed in terms of the approximation guarantee given
by the LP lower bound (lower is better) and in terms of the edge
satisfaction, which is the fraction of edges that arenot mistakes
(higher is better; see Eq. (2.2)). Our LP method performs the
best overall and can even �nd exactly (or nearly) optimal solutions
to the NP-hard objective by matching the lower bound. We also
report the running times for rough comparison, though our imple-
mentations are not optimized for e�ciency. Due to its simplicity,
MV is extremely fast. 31

2.2 Examples of ingredients and recipes from special clusters identi�ed
by LP, but not Majority Vote . 41

3.1 Summary statistics of datasets. The computed̂� bounds using
the tools in Section 3.3 are much smaller than thedmax bound in
Theorem 18. 65

3.2 Summary statistics of datasets with hyperedges based on product
ratings. Fast runtimes indicate the scalability of our approach. . . 65

4.1 Summary statistics of core-fringe hypergraph datasets. We con-
struct r -uniform hypergraphs from six corpora for rankr = 3; 4; 5
along with non-uniform hypergraphs where the rank is at most 25.
The DBLP and Math tags datasets are collections of 50 hyper-
graphs, so we report the value range. The fringe tends to be much
larger than the core in these datasets. 99

ix

4.2 Planted hitting set recovery performance for our algorithm and
competitive baseline algorithms. We compare our proposed union
of minimal hitting sets (UMHS) method against �ve hypergraph
centrality measures | degree [107], clique-motif graph eigenvec-
tor [24], a projected-graph version of PageRank centrality [146], Z-
eigenvector [24], H-eigenvecgtor [24] | as well as two core-periphery
measurements | Borgatti-Everett [38] and k-core [164]. Each method
produces an ordering of vertices, and we measure performance by
precision at the core size (fraction of top-jCj ranked nodes that
are in C) and area under the precision-recall curve forr -uniform
hypergraphs (r = 3; 4; 5), as well as nonuniform hypergraphs with
r � 25 nodes in each hyperegde. The DBLP and tags datasets are
collections of 50 hypergraphs, and we report the mean and standard
deviation for these. UMHS scores outperforming all baselines by
at least an 8% relative improvement are bold. Any method's score
outperforming UMHS by at least 8% is also bold. Our UMHS
method performs he best on all the non-uniform hypergraphs and
many of the uniform cases. 102

5.1 Dataset statistics . 136

x

LIST OF FIGURES

1.1 A graph with 12 nodes and 12 edges on the left, and a hypergraph
with 12 nodes and 7 hyperedges on the right. 2

1.2 Representing a three-author paper as a graph (clique expansion)
and as a hyperedge. 3

1.3 A simple simplicial complex. 4
1.4 Partitioning the nodes of a hypergraph into two communities. . . . 5
1.5 A toy example of telecom call volume network among four cities.

Filling in the upper triangle in the resulting simplicial complex
respects the large call volumes among the three cities that form the
nodes of the triangle. 7

2.1 Subgraphs used for thes-t cut reduction of two-color Categorical
Edge Clustering in hypergraphs. Here,� and � are hyperedges in
the original hypergraph with colorsc1 (orange, left) andc2 (blue,
right). 19

2.2 Gadget used for reducing maxcut to 3-color Categorical Edge Clus-
tering. Each gadget has new auxiliary nodes, butu and v may be
a part of many 3-color gadgets. 21

2.3 (a){(b): Performance of algorithms on a synthetic graph model for
chromatic correlation clustering [36]. Across a range of parameters,
our LP method outperforms competing methods in predicting the
ground truth label of the nodes. (c){(d): In experiments on syn-
thetic 3-uniform hypergraphs,LP performs well for most parameter
regimes but there is some sensitivity to the very noisy setting. . . . 47

2.4 LCB and CB are primarily designed for settings whereK is much
larger than L. Despite this, our LP method always obtains better
label assignment scores, and often obtains better ARI cluster iden-
ti�cation scores, when we �x L = 20 and let K vary from 50 to
500. 48

2.5 Accuracy in clustering nodes in real-world datasets when edge la-
bels are a noisy signal for ground truth node cluster membership.
For both an email graph (a) and a product co-purchasing hyper-
graph (b), our LP-Round method consistently outperforms other
methods. 48

2.6 Results forLP and Graclus in clustering a temporal network. Our
LP method is competitive forGraclus's objective (normalized cut;
left), while preserving the temporal structure of network much bet-
ter (right). 49

2.7 As� increases, we discard fewer high-degree ingredients before clus-
tering the rest. Our method always \makes" more recipes (higher
edge satisfaction) and \wastes" fewer ingredients (smaller number
of unused ingredients). 49

xi

3.1 Various performance metrics as a function of� . Dots mark the
corresponding�̂ . 67

3.2 f within for within-cluster reviews/posts. 69
3.3 (Left) Distribution of node (reviewer) majority categories within

the Mexican restaurant review cluster. (Right) The fraction (ex-
perience homogeneity score) of user reviews in the Mexican cluster
that were written in that same category. 70

3.4 (Left) Average cluster reviewer score for cluster 1. (Middle left)
Re�ned average cluster reviewer score for cluster 1. (Middle right)
Distribution of average cluster reviewer score in the Amazon Pantry
product category. (Right) Distribution of re�ned average cluster
reviewer score in the same category. 71

3.5 Metrics for preference regularization. 73
3.6 Color assignments over time for a subset of nodes and tags in the

geometry-questions dataset for di�erent regularization parameters
� (from left to right and top to bottom: � = 0, 0.07, 0.1, 0.2, 0.4,
0.7). 74

3.7 Mean number of node exchanges. 75

4.1 Hypergraphs and planted hitting sets.(Left) A 3-uniform hyper-
graph on the top and a minimal hitting set on the bottom (with hy-
peredges superimposed to facilitate comparison to the hypergraph).
(Right) A planted hitting set (red nodes) in a hypergraph, consti-
tuting the core nodes. Hyperedges are illustrated by ellipses en-
compassing nodes, which include both core and non-core (fringe)
nodes. We study how well we can recover the core (red) nodes if
they are not identi�ed. 80

4.2 The hypergraphT2 (r = 3) used in the proof of Theorem 24 with
hyperedges identi�ed by dotted shapes. 88

4.3 Planted hitting set recovery improves with more iterations before
leveling (top row), and similarly, size increases with more iterations
before leveling (bottom row). Fewer than 50 iterations typically
reaches peak performance in our email datasets. The leveling of
the output size is consistent with Theorems 21 and 26, which say
that our algorithm's output cannot grow too large. 104

5.1 The harmonic vector components (in red) superimposed upon the
edges of a simple simplicial complex. 112

5.2 (Left). A sample harmonic vector induced by telecom data. (Right).
Harmonic vector output by our proposed algorithm. 112

5.3 From edge signals to projected harmonic vectors. 117

xii

5.4 A simplicial complex characteristic pattern, the 4-pinwheel, ex-
hibiting perfect localization of harmonic values away from the clus-
ter of holes. Values in red indicate the harmonic vector components
of the associated edges. 123

5.5 A simplicial complex exhibiting perfect localization of harmonic
values away from the holes, called then-pinwheel. Values in red
indicate the harmonic vector components of the associated edges. . 124

5.6 The 4-pinwheel (left) andn-pinwheel (right) without �lled-in inter-
nal triangles. 125

5.7 A nonplanar simplicial complex exhibiting perfect localization of
harmonic values away from the holes. Values in red indicate the
harmonic vector components of the associated edges. 126

5.8 (Left). First two stages of construction of the 4-star fractal simpli-
cial complex. (Right). Harmonic
ow on �rst stage of fractal. . . . 127

5.9 harmonic
ow on �rst stage of construction of then-star fractal
complex. 128

5.10 Orthogonal cone structures allows us to rotate harmonic
ow vec-
tors into a basis where each harmonic
ow vector is localized around
just one component. 131

5.11 Power-law decay of harmonic vector components away from a hole
in the Milan dataset. 137

5.12 (Left). A sample harmonic vector induced by the Milan data. (Mid-
dle). Output of the LP baseline. (Right). SCDM output. We
observe that SCDM is the only solution localized around just one
hole. 138

5.13 Power-law decay of harmonic vector components away from a hole
in the Trentino dataset. 138

5.14 (Left). A sample harmonic vector induced by the Trentino data.
(Middle). Output of the LP baseline. (Right). SCDM output. We
observe that SCDM is the only solution localized around just one
hole. 139

5.15 (Left). A sample harmonic vector induced by the migration data.
(Middle). Output of the LP baseline. (Right). SCDM output. We
observe that SCDM is the only solution localized around just one
hole. 140

5.16 (Left). A sample harmonic vector induced by the commute data.
(Middle). Output of the LP baseline. (Right). SCDM output. We
observe that SCDM is the only solution localized around just one
hole. 140

5.17 (Left). Two well-separated holes in the Trentino dataset. (Right).
Two clustered holes in the Trentino dataset. 141

xiii

5.18 [Top row:
 = 0: Middle row:
 = 0:25. Bottom row:
 = 1:]
(Left). A sample harmonic vector induced by the synthetic data.
(Middle). Output of the LP baseline. (Right). SCDM output. We
observe that SCDM is the only solution localized around just one
hole. 144

5.19 Power-law decay of harmonic vector components away from a hole
in the synthetic datasets. Left to right:
 = 0; 0:25; 1: 144

5.20 Output of LP with the SCDM solution as input (left) vs. the
SCDM output (right) projected onto the edges of the Trentino (top)
and Milan (bottom) telecom networks. While the SCDM output
is localized around just one hole, LP digs up undesirable phantom
cycles. 146

5.21 Number of connected components for post-processed harmonic vec-
tors in Milan (left) and Trentino (right). We see that for all �ltra-
tion strengths the number of connected components is lowest for
SCDM, meaning it improves the phantom cycle problem of LP. . . 147

5.22 Our method is roughly four orders of magnitude faster across all
dimensions . 148

5.23 Temporal hole matching diagrams for Milan (left) and Trentino
(right). Yellow indicates that the hole was matched at a given time
step while black indicated it was not matched then. 150

5.24 The percentage of holes matched at each time period for Milan
(left) and Trentino (right). Notice that a larger percentage tends
to be matched when comparing to other morning networks. 150

5.25 We observe that the clustering similarity decreases as we include
edges with progressively larger edge
ow component in the SCDM
solution. 152

5.26 We observe that using SCDM output as the input to the learning
pipeline results in better predictive performance for both the Milan
(left) and Trentino (right) datasets for the vast majority of ratios
of train/test splits. 154

xiv

CHAPTER 1

OVERVIEW

1.1 Joint authorship

This thesis is the result of joint work with Austin R. Benson, Nate Veldt, Jon

Kleinberg, and Anil Damle. In particular, Chapters 2 and 3 were written with Nate

Veldt and Austin R. Benson [14, 15]; Chapter 4 was written with Jon Kleinberg

and Austin R. Benson [13]; and Chapter 5 was written with Austin R. Benson and

Anil Damle [12].

1.2 Background on higher-order networks

In this section we give a brief overview of higher-order networks to facilitate a

common language for the chapters that follow. We start with a basic overview

of pairwise networks as represented by graphs. We then introduce hypergraphs

as a �rst model for group interactions. After a brief overview of the alternative

simplicial complex model and the basics of clustering in graphs and hypergraphs,

we review networks that come with additional metadata such as edge labels. We

follow with an overview of networks that have special structure, with a special

emphasis on networks that exhibit core-fringe structure. Lastly, we review methods

for inferring higher-order interactions from pairwise networks.

1.2.1 Pairwise networks

Interactions that involve only two entities interacting at once are faithfully mod-

elled by graphs, where the entities are represented by nodes, and the interactions

by edges among the nodes. See Figure 1.1 (left) for an example of a graph with

1

Figure 1.1: A graph with 12 nodes and 12 edges on the left, and a hypergraph
with 12 nodes and 7 hyperedges on the right.

12 nodes and 12 edges. Formally, the set ofn nodesV is typically represented by

a set of integers uniquely identifying the nodes, i.e.,V = f 1; : : : ; ng, and the edge

set E is then a set of sets of size two,E = ff i; j g s.t. i; j 2 Vg. If each edge has a

directionality, representing a one-way connection,E is treated as a set of ordered

pairs, E = f (i; j) s.t. i; j 2 Vg. The graph model has enjoyed immense success in

many application areas including social, biological, �nancial, web, healthcare, and

so on [75, 10, 141]. However, the model fails to faithfully represent interactions

with multiple entities interacting as groups. In the next subsection, we introduce

the hypergraph model that allows us to go beyond pairwise interactions.

1.2.2 Hypergraphs for higher-order interactions

In numerous real-life settings, interactions involve more than two entities interact-

ing at once [28, 181, 182]. The graph model fails to faithfully capture interactions

in this setting, as it can only encode pairwise ones. See Figure 1.2 for an example

where we try to represent a paper coauthored by three authors using a graph,

referred to as the clique expansion. Instead, it is much more natural to encode

these kinds of \higher-order" interactions using a more general construction called

a hypergraph. In particular, we allow the edges, in this context called hyperedges,

to connect more than two nodes at once, and the resulting network is called a hy-

pergraph. See Figure 1.1 (right) for an example of a hypergraph with 12 nodes and

7 hyperedges. Formally, a hypergraph is a node setV together with a hyperedge

2

set E = f e s.t. e � Vg. So in that same coauthorship example, we can encode

the three-author paper as a single hyperedge containing three nodes. We lose im-

portant information by choosing to model the paper using the graph model, as

we can no longer infer from the graph whether the three authors wrote one paper

together, and in fact the graph implies the existence of three two-author papers,

which were never in the example to begin with! This simple example illustrates

the modelling power of hypergraphs. In the next subsection, we will see that if

we restrict the classes of hypergraphs we can consider, we are able to study the

\shape" of the underlying network using tools from algebraic topology.

1.2.3 Simplicial complexes for higher-order networks

Consider restricting the class of hypergraphs we examine to only ones where for

every hyperedgee in the hypergraph there also existsevery possiblehyperedge

on the nodes ofe. Any hypergraph from this class is called a simplicial complex,

and is a topological space since it satis�es this nested containment property. See

Figure 1.3 for an example of a simplicial complex that contains four nodes (treated

as hyperedges of size 1), �ve edges, and one hyperedge that contains three nodes

(which in the context of simplicial complexes is typically represented by coloring

Figure 1.2: Representing a three-author paper as a graph (clique expansion) and
as a hyperedge.

3

[1]

[4]

[3]

[2]

[1; 2]

[2; 3]

[1; 3]

[3; 4]
[2; 4]

[1; 2; 3]

Figure 1.3: A simple simplicial complex.

in the corresponding triangle). Simplicial complexes have been used extensively

as models for higher-order networks [145, 26, 160, 162, 161]. The fact that any

simplicial complex is a topological space allows us to use tools from algebraic

topology to study the shape of the network, allowing us to quantify and detect

\holes" in the network. Refer to the introduction of Chapter 5 for more details

and subtleties about simplicial complexes, such as their orientation.

1.2.4 Analysis of networks: clustering

One of the most fundamental tasks in network analysis is clustering, where one

seeks to partition the nodes of the network based on some similarity function. In

most contexts it is synonymous with community detection, where one seeks to

�nd communities of nodes in the network. In the graph case, clustering has been

studied extensively and many clustering objectives and algorithms to optimize

them have been introduced [159, 82]. However, very few principled methods for

clustering hypergraphs exist. One of the goals of Chapters 2 and 3 is to introduce

such methods in the presence of multiple types of connections, which we discuss

in the next subsection. Refer to Figure 1.4 for an example where we partition the

nodes of a small hypergraph into two clusters.

4

1

2

1

2

Figure 1.4: Partitioning the nodes of a hypergraph into two communities.

1.2.5 Hypergraphs with multiple connection types

In many application areas, networks come with metadata regarding the edges. One

common type of metadata are edge labels. In particular, these labels could be inter-

preted as representing di�erent interaction types. For example, in a recipe dataset

with the ingredients treated as nodes and recipes as hyperedges, the recipes could

be labeled by cuisine type, such as Italian or Thai. Such edge-labeled hypergraphs,

though ubiquitous, have not been rigorously studied, prior to this work.

Graphs with multiple types of connections have been studied from a purely

theoretical perspective in [17, 46, 5]. In particular, [17] proposes the problem

of partitioning a graph with k di�erent colors of edges intok clusters so that the

number of edges where at least one of the nodes is placed in a cluster corresponding

to a color (or label) di�erent than that of the edge is minimized. This work shows

the NP-hardness of the problem and along with [5] proposes some approximation

algorithms. [46] shows that in the case of two labels, the problem can actually be

solved in polynomial time.

In Chapter 2, we greatly improve upon these results and generalize the prob-

lem to the hypergraph setting, while creating approximation algorithms with much

better approximation ratios, and better performance in practice. In particular, we

study the categorical edge clustering problem in the case of hypergraphs withk

edge labels, show the hardness of the problem, and demonstrate a suite of ap-

proximation algorithms for the problem from several di�erent perspectives. In

5

addition, ours is the �rst work to put these algorithms into practice, as we demon-

strate the e�ectiveness and scalability of our algorithms for a host of application

areas. Furthermore, in Chapter 3 we build o� of these results to create techniques

that facilitate �nding diverse and experienced sets of reviews.

1.2.6 Hypergraphs with special structure

In many real-life settings, hypergraphs arise that naturally have special structure.

One important type of special structure occurs when one records only all the

interactions of a chosen set of nodes, which we refer to as the core. This results in

a core-fringe structure with a (usually) densely-connected core, and no connections

among the fringe nodes [23]. In many instances the identity of the core may

become lost, or is never known. For instance, a hacker could release all emails

from hacked accounts without the identity of the hacked individuals [102]. Note

that this situation is naturally modelled as a hypergraph with a planted set of

core nodes, as we could take hyperedges to connect sender and recipient(s) of the

emails, and the identity of the core is unknown. A planted core problem also could

arise if the identity of the core simply gets lost due to maintenance issues [43].

In Chapter 4, we propose an algorithm for the recovery of the planted core.

We demonstrate its e�cacy and scalability on a host of datasets, and show that it

outperforms known baselines.

1.2.7 Inferring higher-order structure from pairwise inter-

actions

Higher-order information is extremely useful for a host of tasks, including down-

stream machine learning. Often, pairwise networks come with metadata that could

6

10M4M

5K
7K

NYC

Chicago

LA

Tulsa

NYC

Tulsa

Chicago

LA

Edge signals Simplicial complex

8M

Figure 1.5: A toy example of telecom call volume network among four cities.
Filling in the upper triangle in the resulting simplicial complex respects the large
call volumes among the three cities that form the nodes of the triangle.

be used to infer higher-order structure. One common approach is to infer only an

extra layer of three-way interactions. This results in a simplicial complex struc-

ture since each three-way interaction also contains the three pairwise interactions

from which it was inferred as subsets. This approach facilitates the study of the

shape of the underlying network using tools from algebraic topology. For example,

higher-order information in edge-
ow networks, such as telecom networks, where

call volumes between regions (nodes) act as the edge attributes, can be inferred

through this approach by \�lling in" the triangles where call volumes along each

of their three edges exceed a certain threshold. See Figure 1.5 for a pictorial

representation of this process.

In Chapter 5, we develop a method for analyzing edge signal networks that relies

on �rst converting them to simplicial complexes using the process described above.

In particular, we develop topologically-based algorithms for localizing holes in such

networks that yield higher-quality results many orders of magnitude faster than

state-of-the-art baselines. We provide theoretical motivation for our algorithm

by demonstrating, both analytically and empirically, that we expect simplicial

complexes arising from edge
ow networks to have certain structure that makes

our algorithms perform particularly well. Lastly, we demonstrate the usefulness of

the output of our algorithm on a host of real-world tasks.

7

Part I

Methods for edge-labeled

hypergraphs

8

Many hypergraphs naturally come together with labels on the hyperedges,

which may represent di�erent types of interactions. No principled, hypergraph-

native methods exist that e�ectively incorporate this important hyperedge meta-

data. Here, we present a principled framework for analysis of such networks. In

particular, in Chapter 2, we develop a clustering scheme where the output is in-

formed by the hyperedge labels, and use this framework in Chapter 4 to construct

a framework for discovering diverse and experienced groups.

9

CHAPTER 2

CLUSTERING IN GRAPHS AND HYPERGRAPHS WITH

CATEGORICAL EDGE LABELS

Modern graph or network datasets often contain rich structure that goes beyond

simple pairwise connections between nodes. This calls for complex representations

that can capture, for instance, edges of di�erent types as well as so-called \higher-

order interactions" that involve more than two nodes at a time. However, we have

fewer rigorous methods that can provide insight from such representations. Here,

we develop a computational framework for the problem of clustering hypergraphs

with categorical edge labels | or di�erent interaction types | where clusters

corresponds to groups of nodes that frequently participate in the same type of

interaction.

Our methodology is based on a combinatorial objective function that is related

to correlation clustering on graphs but enables the design of much more e�cient

algorithms that also seamlessly generalize to hypergraphs. When there are only two

label types, our objective can be optimized in polynomial time, using an algorithm

based on minimum cuts. Minimizing our objective becomes NP-hard with more

than two label types, but we develop fast approximation algorithms based on

linear programming relaxations that have theoretical cluster quality guarantees.

We demonstrate the e�cacy of our algorithms and the scope of the model through

problems in edge-label community detection, clustering with temporal data, and

exploratory data analysis.

2.1 Introduction

Representing data as a graph or network appears in numerous application domains,

including, for example, social network analysis, biological systems, the Web, and

10

any discipline that focuses on modeling interactions between entities [75, 10, 141].

The simple model of nodes and edges provides a powerful and
exible abstrac-

tion, and over time, more expressive models have been developed to incorporate

richer structure in data. In one direction, models now use more information about

the nodes and edges: multilayer networks capture nodes and edges of di�erent

types [139, 109], meta-paths formalize heterogeneous relational structure [170, 73],

and graph convolutional networks use node features for prediction tasks [108].

In another direction, group, higher-order, or multi-way interactions between sev-

eral nodes | as opposed to pairwise interactions | are paramount to the model.

In this space, interaction data is modeled with hypergraphs [181, 182, 25], ten-

sors [2, 148, 18], a�liation networks [120], simplicial complexes [145, 26, 154, 150],

and motif representations [28, 153]. Designing methods that e�ectively analyze

the richer structure encoded by these expressive models is an ongoing challenge in

graph mining and machine learning.

In this work, we focus on the fundamental problem of clustering, where the

general idea is to group nodes based on some similarity score. While graph clus-

tering methods have a long history [159, 82, 126, 137], existing approaches for

rich graph data do not naturally handle networks with categorical edge labels. In

these settings, a categorical edge label encodes a type of discrete similarity score

| two nodes connected by an edge with category labelc are similar with respect

to c. This structure arises in a variety of settings: brain regions are connected by

di�erent types of connectivity patterns [58]; edges in coauthorship networks are

categorized by publication venues, and copurchasing data can contain information

about the type of shopping trip. In the examples of coauthorship and copurchasing,

the interactions are also higher-order | publications can involve multiple authors

and purchases can be made up of several items. Thus, we would like a scalable

11

approach to clustering nodes using a similarity score based on categorical edge

labels that work well for higher-order interactions.

Here, we solve this problem with a novel clustering framework for edge-labeled

graphs. Given a network withk edge labels (categories or colors), we createk

clusters of nodes, each corresponding to one of the labels. As an objective function

for cluster quality, we seek to simultaneously minimize two quantities: (i) the

number of edges that cross cluster boundaries, and (ii) the number of intra-cluster

\mistakes", where an edge of one category is placed inside the cluster corresponding

to another category. This approach results in a clustering of nodes that respects

both the coloring induced by the edge labels and the topology of the original

network. We develop this computational framework in a way that seamlessly

generalizes to the case of hypergraphs to model higher-order interactions, where

hyperedges have categorical labels.

The style of our objective function is related to correlation clustering in signed

networks [19], as well as its generalization for discrete labels (colors), chromatic

correlation clustering [37, 36], which are based on similar notions of mistake mini-

mization. However, a key di�erence is that our objective function does not penalize

placing nodes not connected by an edge in the same cluster. This modeling di�er-

ence provides serious advantages in terms of tractability, scalability, and the ability

to generalize to higher-order interactions.

We �rst study the case of edge-labeled (edge-colored) graphs with only two

categories. We develop an algorithm that optimizes our Categorical Edge Cluster-

ing objective function in polynomial time by reducing the problem to a minimum

s-t graph cut problem on a related network. We then generalize this construction

to facilitate quickly �nding the optimal solution exactly for hypergraphs. This is

remarkable on two fronts. First, typical clustering objectives such as minimum

12

bisection, ratio cut, normalized cut, and modularity are NP-hard to optimize even

in the case of two clusters [177, 42]. And in correlation clustering, having two

edge types is also NP-hard [19]. In contrast, our setup admits a simple algorithm

based on minimums-t cuts. Second, our approach seamlessly generalizes to hyper-

graphs. Importantly, we do not approximate hyperedge cuts with weighted graph

cuts, which is a standard heuristic approach in hypergraph clustering [4, 182, 129].

Instead, our objective exactly models the number of hyperedges that cross cluster

boundaries and the number of intra-cluster \mistake" hyperedges.

With more than two categories, we show that minimizing our objective is NP-

hard, and we proceed to construct several approximation algorithms. The �rst set

of algorithms are based on practical linear programming relaxations, achieving an

approximation ratio of min
�

2 � 1
k ; 2 � 1

r +1

	
, wherek is the number of categories

and r is the maximum hyperedge size (r = 2 for the graph case). The second

approach uses a reduction to multiway cut, where practical algorithms have a

r +1
2 approximation ratio and algorithms of theoretical interest have a 2(1� 1

k)

approximation ratio.

We test our methods on synthetic benchmarks as well as a variety of real-

world datasets coming from neuroscience, biomedicine, and social and information

networks; our methods work far better than baseline approaches at minimizing our

objective function. Surprisingly, our linear programming relaxation often produces

a rounded solution that matches the lower bound, i.e., it exactly minimizes our

objective function. Furthermore, our algorithms are also fast in practice, often

taking under 30 seconds on large hypergraphs.

We examine an application to a variant of the community detection problem

where edge labels indicate that two nodes are in the same cluster and �nd that

our approach accurately recovers ground truth clusters. We also show how our

13

formulation can be used for temporal community detection, in which one clusters

the graph based on topology and temporal consistency. In this case, we treat

binned edge timestamps as categories, and our approach �nds good clusters in

terms of topological metricsand temporal aggregation metrics. Finally, we provide

a case study in exploratory data analysis with our methods using cooking data,

where a recipe's ingredients form a hyperedge and its edge label the cuisine type.

2.2 Preliminaries and related work

Let G = (V; E; C; `) be an edge-labeled (hyper)graph, whereV is a set of nodes,E

is a set of (hyper)edges,C is a set of categories (or colors), and̀: E ! C is a func-

tion which labels every edge with a category. Often, we just useC = f 1; 2; : : : ; kg,

and we can think of` as a coloring of the edges. We use \category", \color", and

\label" interchangeably, as these terms appear in di�erent types of literature (e.g.,

\color" is common for discrete labeling in graph theory and combinatorics). We

usek = jCj to denote the number of categories,Ec � E for the set of edges having

label c, and r for the maximum hyperedge size (i.e.,order), where the size of a

hyperedge is the number of nodes it contains (in the case of graphs,r = 2).

2.2.1 Categorical edge clustering objective

Given G, we consider the task of assigning a category (color) to each node in such a

way that nodes in categoryc tend to participate in edges with labelc; in this setup,

we partition the nodes intok clusters with one category per cluster. We encode the

objective function as minimizing the number of \mistakes" in a clustering, where

a mistake is an edge that either (i) contains nodes assigned to di�erent clusters or

(ii) is placed in a cluster corresponding to a category which is not the same as its

14

label. In other words, the objective is to minimize the number of edges that are

not completely contained in the cluster corresponding to the edge's label.

Let Y be a categorical clustering, or equivalently, a coloring of the nodes, where

Y[i] denotes the color of nodei . Let mY : E ! f 0; 1g be the category-mistake

function, de�ned for an edgee 2 E by

mY (e) =

8
>><

>>:

1 if Y [i] 6= `(e) for any nodei 2 e,

0 otherwise.
(2.1)

Then, the Categorical Edge Label Clusteringobjective score for the clusteringY is

simply the number of mistakes:

CatEdgeClus (Y) =
P

e2 E mY (e): (2.2)

This form applies equally to hypergraphs; a mistake is a hyperedge with a node

placed in a category di�erent from the edge's label.

Our objective can easily be modi�ed for weighted (hyper)graphs. If a hyperedge

e has weightwe, then the category mistake function simply becomesmY (e) = we

if Y [i] 6= `(e) for any node i in e and is 0 otherwise. Our results easily generalize

to this setting, but we present results in the unweighted case for ease of notation.

2.2.2 Relation to Correlation Clustering

Our objective function is related to chromatic correlation clustering [36], in which

one clusters an edge-colored graph into any number of clusters, and a penalty is

incurred for any one of three types ofmistakes: (i) an edge of colorc is placed in

a cluster of a di�erent color; (ii) an edge of any color has nodes of two di�erent

colors; or (iii) a pair of nodesnot connected by an edge is placed inside a clus-

ter. This objective is a strict generalization of the classical correlation clustering

objective [19].

15

Our Categorical Edge Clustering objective is similar, except we remove the

penalty for placing non-adjacent nodes in the same cluster (mistakes of type (iii)).

The chromatic correlation clustering objective treats the absence of an edge be-

tween nodesi and j as a strong indication that these nodes should not share the

same label. We instead interpret a non-edge simply as missing information: the

absence of an edge may be an indication thati and j do not belong together, but it

may also be the case that they have a relationship that simply has not been mea-

sured. This is a natural assumption with large, sparse real-world graphs, where

we rarely have information on all pairs of entities. Another key di�erence between

chromatic correlation clustering and our objective is that in the former, one may

form several clusters for the same color. For our objective, merging two separate

clusters for the same color can only improve the objective.

Our formulation also leads to several di�erences in computational tractability.

Chromatic correlation clustering is NP-hard in general, and there are several ap-

proximation algorithms [37, 36, 16]. The tightest of these is a 4-approximation,

though the algorithm is mostly of theoretical interest, as it involves solving an

incredibly large linear program. Moreover, the higher-order generalization of sim-

ple correlation clustering (without colors) to hypergraphs is more complicated to

solve and approximate than standard correlation clustering [94, 84, 128, 131]. We

will show that our Categorical Edge Clustering objective can be solved in polyno-

mial time for graphs and hypergraphs with two categories. The problem becomes

NP-hard for more than two categories, but we are able to obtain practical 2-

approximation algorithms for both graphs and hypergraphs. Our approaches are

based on linear programming relaxations that are small enough to be solved quickly

in practice.

16

2.2.3 Additional related work

There are several methods for clustering general data points that have categorical

features [87, 91, 39], but these methods are not designed for clustering graph

data. There are also methods for clustering in graphs with attributes [178, 9,

183, 40]; these focus on vertex features and do not connect categorical features to

cluster indicators. Finally, there are several clustering approaches for multilayer

networks modeling edge types [139, 72, 119], but the edge types are not meant to

be indicative of a cluster type.

2.3 The case of two categories

In this section we design algorithms to solve the Categorical Edge Clustering prob-

lem when there are only two categories. In this case, both the graph and hy-

pergraph problem can be reduced to a minimums-t cut problem, which can be

e�ciently solved.

2.3.1 An algorithm for graphs

To solve the two-category problem on graphs, we �rst convert it to an instance

of a weighted minimums-t cut problem on a graph with no edge labels. Recall

that Ec is the set of edges with category labelc. Given the edge-labeled graph

G = (V; E; C; `), we construct a new graphG0 = (V 0; E0) as follows:

ˆ Introduce a terminal nodevc for each of the two labelsc 2 L, so that V 0 =

V [Vt whereVt = f vc j c 2 Lg.

ˆ For each labelc and each (i; j) 2 Ec, introduce edges (i; j), (vc; i) and (vc; j),

all of which have weight 1
2 .

17

Since there are only two categoriesc1 and c2, let s = vc1 be treated as a source

node andt = vc2 be treated as a sink node. The minimums-t cut problem in G0

is de�ned by

minimize
S� V

cut (S [s); (2.3)

where cut (T) is the weight of edges crossing from nodes inT � V 0 to its com-

plement set �T = V 0nT. This classical problem that can be e�ciently solved in

polynomial time, and we have an equivalence with the original two-category edge

clustering objective.

Proposition 1 For any S � V, the value ofcut (S [s) in G0 is equal to the value

of CatEdgeClus (f S; �Sg), whereS and �S are the clusters for categoriesc1 and c2.

Proof Let edge e = (i; j) be a \mistake" in the clustering (mY (e) = 1) and

without loss of generality have colorc1. If i and j are assigned toc2, then the

half-weight edges (i; vc1) and (j; v c1) are cut. Otherwise, exactly one ofi and j is

assigned toc2. Without loss of generality, let it be i . Then (i; vc1) and (i; j) are

cut. 2

Thus, a minimizer for the s-t cut in G0 directly gives us a minimizer for our

Categorical Edge Clustering objective. We next provide a similar reduction for

the case of hypergraphs.

2.3.2 An algorithm for hypergraphs

We now develop a method to exactly solve our objective in the two-color case with

arbitrary order-r hypergraphs, and we again proceed by reducing to ans-t cut

problem. Our approach is to construct a subgraph for every hyperedge and paste

these subgraphs together to create a new graphG0 = (V 0; E0), where minimum s-t

cuts produce partitions that minimize the Categorical Edge Clustering objective.

18

.
v1 v2 vr � 1 vr

u�

s
.

v1 v2 vr � 1 vr

u�

t

Figure 2.1: Subgraphs used for thes-t cut reduction of two-color Categorical Edge
Clustering in hypergraphs. Here,� and � are hyperedges in the original hypergraph
with colors c1 (orange, left) andc2 (blue, right).

A similar construction has been used for aP r Potts model in computer vision [113],

and our reduction is the �rst direct application of this approach to network analysis.

We start by adding terminal nodess = vc1 and t = vc2 (corresponding to

categoriesc1 and c2) as well as all nodes inV to V 0. For each hyperedgee =

(v1; : : : ; vr) of G, we add a nodeue to V 0 and add the followingdirected edges to

E 0 (see also Figure 2.1):

ˆ If e has labelc1, add (s; ue), (ue; v1); : : : ; (ue; vr) to E 0.

ˆ If e has labelc2, add (ue; t), (v1; ue); : : : ; (vr ; ue) to E 0.

Again, the minimum s-t cut on G0 produces a partition that also minimizes the

categorical edge clustering objective, as shown below.

Theorem 2 Let S� be the solution to the minimum cut problem. Then the label

assignmentY de�ned by Y[i] = c1 if i 2 S� and Y[i] = c2 if i 2 �S� minimizes the

Categorical Edge Clustering objective.

Proof Consider a hyperedgee = (v1; : : : ; vr) with label c2. We show that mY (e)

precisely corresponds to ans-t cut on the subgraph ofG0 induced by e (Fig. 2.1,

right). If Y [v1] = : : : = Y[vr] = c2, then v1; : : : ; vr 2 �S� and the cost of the

minimum s-t-cut is 0 (via placing s by itself). Now suppose at least one of

Y[v1]; : : : ; Y[vr] equals c1. Without loss of generality, say that Y[v1] = c1, so

v1 2 S� . If ue 2 S� , we cut (ue; t) and none of the edges (vi ; ue) contribute to the

19

cut. If ue 2 �S� , we cut (v1; ue); and it cannot be the case that (vi ; ue) is cut for

i 6= 1 (otherwise, we could have reduced the cost of the minimum cut by placing

ue 2 S�).

To summarize, if edgee with label c2 induces a mistake in the clustering, then

the cut contribution is 1; otherwise, it is 0. A symmetric argument holds ife has

label c1, using the graph in Fig. 2.1 (left). By additivity, minimizing the s-t cut in

G0 minimizes the number of mistakes in the Categorical Edge Clustering objective.

2

This procedure also works for the special case of graphs. However,G0 has more

nodes and directed edges in the more general reduction, which can increase running

time in practice.

Computational considerations. Both algorithms solve a single minimum cut

problem on a graph with O(T) vertices and O(T) edges, whereT =
P

e2 E jej is

the sum of hyperedge degrees (this is bounded above byr jE j, wherer is the order

of the hypergraph). In theory, this can be solved inO(T2) time in the worst

case [144]. However, practical performance is often much di�erent than this worst-

case running time. That being said, we do �nd the maximum
ow formulations to

often be slower than the linear programming relaxations we develop in Section 2.4.

We emphasize that being able to solve the Categorical Edge Clustering objective

in polynomial time for two colors is itself interesting, and that the algorithms we

use for experiments in Section 2.5 are able to scale to large hypergraphs.

Considerations for unlabeled edges. Our formulation assumed that all of the

(hyper)edges carry a unique label. However, in some datasets, there may be edges

with no label or both labels. In these cases, the edge's existence still signals that its

constituent nodes should be colored the same | just not with a particular color.

A natural augmentation to our objective is then to penalize this edge only when

20

Edge

u

v

3� color gadget

v

u

Figure 2.2: Gadget used for reducing maxcut to 3-color Categorical Edge Cluster-
ing. Each gadget has new auxiliary nodes, butu and v may be a part of many
3-color gadgets.

it is not entirely contained in somecluster. Our reductions above handle this case

by simply connecting the corresponding nodes inV 0 to both terminals instead of

just one.

2.4 More than two categories

We now move to the general formulation of Categorical Edge Clustering when

there can be more than two categories or labels. We �rst show that optimizing the

objective in this setting is NP-hard. After, we develop approximation algorithms

based on linear programming relaxations and multiway cut problems with theo-

retical guarantees on solution quality. Many of these algorithms are practical, and

we use them in numerical experiments in Section 2.5.

2.4.1 NP-hardness of Categorical Edge Clustering

We now prove that the Categorical Edge Clustering objective is NP-hard for the

case of three categories. Our proof follows the structure of the NP-hardness re-

duction for 3-terminal multiway cut [60], and the reduction is from the NP-hard

maximum cut (maxcut) problem. Written as a decision problem, this problem

seeks to answer if there exists a partition of the nodes of a graph into two sets such

that the number of edges cut by the partition is at leastK .

21

Consider an unweighted instance of maxcut on a graphG = (V; E). To convert

this into an instance of 3-color Categorical Edge Clustering, we replace each edge

(u; v) 2 E with the 3-color gadget in Fig. 2.2. We will use the following lemma in

our reduction.

Lemma 3 In any node coloring of the 3-color gadget (Fig. 2.2), the minimum

number of edges whose color does not match both of its nodes (i.e., number of

mistakes in categorical edge clustering) is three. This only occurs when one of

f u; vg is red and the other is blue.

Proof If v is blue andu is red, then we can achieve the minimum three mistakes

by clustering each node in the gadget with its horizontal neighbor in Fig. 2.2

or alternatively by placing each node with its vertical neighbor. Ifu and v are

constrained to be in the same cluster, then the optimal solution is to place all

nodes in the gadget together, which makes 4 mistakes. It is not hard to check that

all other color assignments yield a penalty of 4 or more. 2

Now let G0 be the instance of 3-color Categorical Edge Clustering obtained by

replacing each edge (u; v) 2 E with a 3-color gadget.

Theorem 4 There exists a partition of the nodes inG into two sets withK or

more cut edges if and only if there is a 3-coloring of the nodes inG0 that makes

4jE j � K or fewer mistakes.

Proof Consider �rst a cut in G = (V; E) of sizeK 0 � K . Let Sr and Sb denote the

two clusters in the corresponding bipartition ofG, mapping to red and blue clusters.

Consider each (u; v) 2 E in turn along with its 3-color gadget. If (u; v) 2 E is cut,

cluster all nodes in its gadget with their vertical neighbor ifu 2 Sb and v 2 Sr , and

cluster them with their horizontal neighbor if u 2 Sr and v 2 Sb. Either way, this

makes exactly 3 mistakes. If (u; v) is not cut, then label all nodes in the gadget

22

red if u; v 2 Sr , or blue if u; v 2 Sb, which makes exactly 4 mistakes. The total

number of mistakes inG0 is then 3K 0+ 4(jE j � K 0) = 4 jE j � K 0 � 4jE j � K .

Now start with G0 and consider a node coloring that makesB 0 � B = 4jE j � K

mistakes. There arejE j total 3-color gadgets inG0. We claim that there must be

at least K of these gadgets at which only three mistakes are made. If this were

not the case, then assume exactlyH < K gadgets where 3 mistakes are made.

By Theorem 3, there arejE j � H gadgets where at least 4 mistakes are made, so

the total number of mistakes isB 0 � 3H + 4(jE j � H) = 4 jE j � H > 4jE j � K ,

contradicting our initial assumption. Thus, by Theorem 3, there are at leastK

edges (u; v) 2 E where one off u; vg is red and the other is blue, and the maximum

cut in G is at least K . 2

Consequently, if we can minimize Categorical Edge Clustering in polynomial

time, we can solve the maximum cut decision problem in polynomial time, and

Categorical Edge Clustering is thus NP-hard. As a natural next step, we turn to

approximation algorithms.

2.4.2 Algorithms based on LP relaxations

We now develop approximation algorithms by relaxing an integer linear program-

ming (ILP) formulation of our problem. We design the algorithms for hyper-

graphs, with graphs as a special case. Suppose we have an edge-labeled hyper-

graph G = (V; E; C; `) with C = f 1; : : : ; kg, whereEc = f e 2 E j `[e] = cg. The

Categorical Edge Clustering objective can be written as the following ILP:

min
P

c2 C

P
e2 Ec

xe

s.t. for all v 2 V:
P k

c=1 xc
v = k � 1

for all c 2 C, e 2 Ec: xc
v � xe for all v 2 e

xc
v; xe 2 f 0; 1g for all c 2 C, v 2 V, e 2 E.

(2.4)

23

Algorithm 1 A simple 2-approximation for Categorical Edge Clustering based on
an LP relaxation. Algorithm 2 details a more sophisticated rounding scheme.

1: Input: Labeled hypergraphG = (V; E; C; `).
2: Output: Label Y[i] for each nodei 2 V. Solve the LP-relaxation of ILP (2.4).
3: for c 2 C do
4: Sc f v 2 V j xc

v < 1=2g
5: for i 2 Sc do
6: assignY[i] c.
7: end for
8: end for
9: Assign unlabeled nodes to an arbitraryc 2 C.

In this ILP, xc
v = 1 if node v is not assigned to categoryc, and is zero otherwise.

The �rst constraint in (2.4) ensures that xc
v = 0 for exactly one category. The

second constraint says that in any minimizer,xe = 0 if and only if all nodes in e

are colored the same ase; otherwise, xe = 1. If we relax the binary constraints

in (2.4):

0 � xc
v � 1; 0 � xe � 1;

then the ILP is just a linear program (LP) that can be solved in polynomial time.

When k = 2, the constraint matrix of the LP relaxation is totally unimodular

as it corresponds to the incidence matrix of a balanced signed graph [180]. Thus,

all basic feasible solutions for the LP satisfy the binary constraints of the original

ILP (2.4), which is another proof that the two-category problem can be solved in

polynomial time.

With more than two categories, the LP solution can be fractional, and we

cannot directly determine a node assignment from the LP solution. Nevertheless,

solving the LP provides a lower bound on the optimal solution, and we show how

to round the result to produce a clustering within a bounded factor of the lower

bound. Algorithm 1 contains our rounding scheme, and the following theorem

shows that it provides a clustering within a factor of 2 from optimal.

24

Theorem 5 Algorithm 1 returns at worst a 2-approximation to the Categorical

Edge Clustering objective.

Proof First, for any v 2 V, xc
v < 1=2 for at most one categoryc 2 C in the

solution. If this were not the case, there would exist two colorsa and b such that

xa
v < 1=2 and xb

v < 1=2 and

P k
c=1 xc

v = xa
v + xb

v +
P

c02 Cnf a;bg xc0

v < 1 + k � 2 = k � 1;

which violates the �rst constraint of the LP relaxation. Therefore, each node will

be assigned to at most one category. Consider anye 2 Ec for which all nodes are

not assigned toc. This means that there exists at least one nodev 2 e such that

xc
v � 1=2. Thus, the Algorithm incurs a penalty of one for this edge, but the LP

relaxation pays a penalty ofxe � xc
v � 1=2. Therefore, every edge mistake will be

accounted for within a factor of 2. 2

We can get better approximations in expectation with a more sophisticated

randomized rounding algorithm (Algorithm 2). In this approach, we form setsSt
c

based on a threshold parametert so that each node may be included in more than

one set. To produce a valid clustering, we �rst generate a random permutation of

colors to indicate an (arbitrary) priority of one color over another. For anyv 2 V

contained in more than one setSt
c, we assignv to the cluster with highest priority.

By carefully setting the parameter t, this approach has better guarantees than

Algorithm 1.

Theorem 6 If t = k=(2k� 1), Algorithm 2 returns an at worst(2� 1=k)-approximation

for Categorical Edge Clustering in expectation. And ift = (r + 1) =(2r + 1) , Algo-

rithm 2 returns an at worst (2 � 1=(1 + r))-approximation in expectation.

Proof For the choices oft listed in the statement of the theorem,t 2 [1=2; 2=3]

as long asr � 2 and k � 2, which is always true. We say that colorc wants node

25

Algorithm 2 LP relaxation for Categorical Edge Clustering with a randomized
rounding scheme. Theorem 6 gives approximation guarantees based ont.

Input: Labeled hypergraphG = (V; E; C = f 1; 2; : : : ; kg; `); rounding parame-
ter t 2 [1=2; 2=3].
Output: Label Y[i] for each nodei 2 V. Solve the LP-relaxation of ILP (2.4).
� uniform random permutation of f 1; 2; : : : ; kg.
for c = � 1; : : : ; � k do

Sc f v 2 V j xc
v < t g.

for i 2 Sc do
Y[i] � (c).

end for
end for
Assign unlabeled nodes to an arbitraryc 2 C.

v if v 2 Sc, but this does not automatically mean thatv will be colored asc. For

any v 2 V, there exist at most two colors that wantv. If v were wanted by more

than two colors, this would meanv 2 Sa \ Sb \ Sc for three distinct colorsa; b; c.

This leads to a violation of the �rst constraint in (2.4):

xa
v + xb

v + xc
v +

X

i :i=2f a;b;cg

x i
v < 3t + (k � 3) � 2 + (k � 3) = (k � 1):

Consider an arbitrary t 2 (1=2; 2=3). We can bound the expected number of

mistakes made by Algorithm 2 and pay for them individually in terms of the LP

lower bound. To do this, we consider a single hyperedgee 2 Ec with color c and

bound the probability of making a mistake and the LP cost of this hyperedge.

Case 1: xe � t. In this case, we are guaranteed to make a mistake at edgee,

sincexe � t implies there is some nodev 2 e such that xc
v � t, and sov =2 Sc.

However, because the LP value at this edge isxe � t, we pay for our mistake

within a factor 1=t.

Case 2: xe < t . Now, color c wants every node in the hyperedgee 2 Ec. If no

other colors want any nodev 2 e, then Algorithm 2 will not make a mistake at

e, and we have no mistake to account for. Assume then that there is some node

v 2 e and a colorc0 6= c such that c0 wants v. This implies that xc0

v < t , from which

26

we have that xc
v � 1 � xc0

v > 1 � t (to satisfy the �rst inequality in (2.4)). Thus,

xe � xc0

v > 1 � t: (2.5)

This gives a lower bound of 1� t on the contribution of the LP objective at edge

e.

In the worst case, eachv 2 e may be wanted by adi�erent c0 6= c, and the

number of colors other thanc that want some node ine is bounded above by

B1 = k � 1 andB2 = r . We avoid a mistake ate if and only if c has higher priority

than all of the alternative colors, where priority is established by the random

permutation � . Thus,

Pr [mistake at ej xe < t] � B i
B i +1 = min

�
r

r +1 ; k� 1
k

	
: (2.6)

Recall from (2.5) that the LP paysxe > 1� t. Therefore, the expected cost at a

hyperedgee 2 Ec satisfyingxe < t is at most B i
(1� t)(B i +1) in expectation. Taking the

worst approximation factor from Case 1 and Case 2, Algorithm 2 will in expectation

provide an approximation factor of max
n

1
t ; B i

(1� t)(B i +1)

o
. This will be minimized

when the approximation bounds from Cases 1 and 2 are equal, which occurs when

t = B i +1
2B i +1 . If B i = k � 1, then t = k� 1

2k� 1 and the expected approximation factor is

2 � 1=k. And if B i = r , then t = r
2r +1 and the expected approximation factor is

2 � 1=(r + 1). 2

For the graph case (r = 2), this theorem implies a 5
3-approximation for Categorical

Edge Clustering with any number of categories.

Computational considerations. The linear program hasO(jE j) variables and

sparse constraints, which written as a matrix inequality would haveO(T) non-

zeros, whereT is again the sum of hyperedge degrees. Improving the best theoret-

ical running times for solving linear programs is an active area of research [124, 55],

but practical performance of solving linear programs is often much di�erent than

27

worst-case guarantees. In Section 2.5, we show that a high-performance LP solver

from Gurobi is extremely e�cient in practice, �nding solutions in seconds on hy-

pergraphs with several categories and tens of thousands of hyperedges in tens of

seconds.

2.4.3 Algorithms based on multiway cut

We now provide alternative approximations based on multiway cut, similar to

the reductions from Section 2.3. Again, we develop this technique for general

hypergraphs and graphs are a special case.

Suppose we have an edge-labeled hypergraphG = (V; E; C; `). We construct a

new graphG0 = (V 0; E0) as follows. First, introduce a terminal nodevc for each

category c 2 C, so that V 0 = V [f vc j c 2 Cg. Second, for each hyperedge

e = f v1; : : : ; vr g 2 E, add a clique on nodesv1; : : : ; vr ; v` [e] to E 0, where each edge

in the clique has weight 1=r. (Overlapping cliques are just additive on the weights.)

The multiway cut objective is the number of cut edges in any partition of the

nodes intok clusters such that each cluster contains exactly one of the terminal

nodes. We can associate each cluster with a category, and any clusteringY of nodes

in Categorical Edge Clustering forG can be mapped to a candidate partition for

multiway cut in G0. Let MultiwayCut (Y) denote the value of the multiway cut

objective for the clusteringY. The next result relates multiway cut to Categorical

Edge Clustering.

Theorem 7 For any clustering Y,

CatEdgeClus (Y) � MultiwayCut (Y) �
r + 1

2
CatEdgeClus (Y):

Proof Let e = f v1; : : : ; vr g with label c = `[e] be a hyperedge inG. We can

show that the bounds hold when considering the associated clique inG0 and then

28

apply additivity. First, if e is not a mistake in the Categorical Edge Clustering,

then no edges are cut in the clique. Ife is a mistake in the Categorical Edge

Clustering, then there are some edges cut in the associated clique. The smallest

possible contribution to the multiway cut objective occurs when all but one node

is assigned toc. Without loss of generality, consider this to bev1, which is in r cut

edges: (r � 1) corresponding to the edges fromv1 to other nodes in the hyperedge,

plus one for the edge fromv1 to the terminal vc. Each of ther cut edges has weight

1=r, so the multiway cut contribution is 1.

The largest possible cut occurs when all nodes ine are colored di�erently from

e. In this case, the edges incident to each node in the clique are all cut. For any

one of these nodes, the sum of edge weights incident to that node equals 1 by the

same arguments as above. This cost is incurred for each of ther nodes in the

hyperedge plus the terminal nodevc, for a total weight of r + 1. Since each edge

is counted twice, the actual penalty is (r + 1) =2. 2

Computational considerations. Minimizing the multiway cut objective is NP-

hard [60], but there are many approximation algorithms. Theorem 7 implies that

any p-approximation for multiway cut provides a p(r + 1) =2-approximation for

Categorical Edge Clustering. For example, the simple isolating cuts heuristic yields

a r +1
2 (2 � 2

k)-approximation, and more sophisticated algorithms provide ar +1
2 (3

2 �

1
k)-approximation [47]. For our experiments, we use the isolating cut approach,

which solvesO(k) maximum
ow problems on a graph with O(r jE j) vertices and

O(r 2jE j) edges. This can be expensive in practice. We will �nd that the LP

relaxation performs better in terms of solution quality and running time.

A node-weighted multiway cut reduction. We also provide an approxima-

tion based on adirect reduction to a node-weighted multiway cut (NWMC) prob-

lem that is of theoretical interest. As above, suppose we have an edge-labeled

29

hypergraph G = (V; E; C; `). We construct a new graphG0 = (V 0; E0) as fol-

lows. First, introduce a terminal node vc for each categoryc 2 C, so that

V 0 = V [f vc j c 2 Cg. Assign in�nite weights to all nodes in V 0. Next, for

each hyperedgee = f v1; : : : ; vr g 2 E, add an auxiliary nodeve with weight 1.

Next, append edges (ve; v1); : : : ; (ve; vr) as well as (vc; ve) for `(e) = c to E 0. It

straightforward to check that deletingve corresponds to making a mistake at hy-

peredgee. Thus an optimizer of NWMC on G0 is also an optimizer of Categorical

Edge Clustering onG.

Solving NWMC is also NP-hard [88], and there are again well-known approxi-

mation algorithms. The above discussion implies anyp-approximation to NWMC

also provides ap-approximation for Categorical Edge Clustering. For example, an

LP-based algorithm has a 2(1� 1=k)-approximation [88]. This approximation is

better but the LPs are too large to be practical; however, the improvement of a

direct algorithm suggests room for better theoretical results.

2.4.4 Approximation through a linear objective

The Categorical Edge Clustering objective assigns a penalty of 1 regardless of the

proportion of the nodes in a hyperedge which are clustered away from hyperedge's

color. Although useful, we might consider alternative penalties that value the

extent to which each hyperedge is satis�ed in the �nal clustering. One natural

penalty for a hyperedge of colorc is the number of nodes within that hyperedge

that are not clustered into that color. With such a \linear" mistake function, we

de�ne the Categorical Node Clustering Objective as

CatNodeClus(Y) =
P

e2 E m0
Y (e); wherem0

Y (e) =
P

i 2 e I Y [i]6= `(e) :

It turns out that this objective is optimized with a simple majority vote algorithm

that assigns a node to the majority color of all hyperedges that conatin it.

30

Table 2.1: Summary statistics of datasets | number of nodesjV j, number of (hy-
per)edgesjE j, maximum hyperedge sizer , and number of categoriesk | along with
Categorical Edge Clustering performance for the algorithmsLP-round (LP), Ma-
jority Vote (MV), Cat-IsoCut (IC), ChromaticBalls (CB) and LazyChromaticBalls
(LCB). Performance is listed in terms of the approximation guarantee given by the
LP lower bound (lower is better) and in terms of the edge satisfaction, which is
the fraction of edges that arenot mistakes(higher is better; see Eq. (2.2)). Our
LP method performs the best overall and can even �nd exactly (or nearly) opti-
mal solutions to the NP-hard objective by matching the lower bound. We also
report the running times for rough comparison, though our implementations are
not optimized for e�ciency. Due to its simplicity, MV is extremely fast.

Approx. Guarantee Edge Satisfaction Runtime (in seconds)

Dataset jV j jE j r k LP MV IC CB LCB LP MV IC CB LCB LP MV IC CB LCB

Brain 638 21180 2 2 1.0 1.01 1.27 1.56 1.41 0.64 0.64 0.55 0.44 0.5 1.8 0.0 1.9 0.4 0.8
MAG-10 80198 51889 25 10 1.0 1.18 1.37 1.44 1.35 0.62 0.55 0.48 0.45 0.49 51 0.1 203 333 699
Cooking 6714 39774 65 20 1.0 1.21 1.21 1.23 1.24 0.2 0.03 0.03 0.01 0.01 72 0.0 1223 4.6 6.7
DAWN 2109 87104 22 10 1.0 1.09 1.0 1.31 1.15 0.53 0.48 0.53 0.38 0.46 13 0.0 190 0.3 0.4
Walmart-Trips 88837 65898 25 44 1.0 1.2 1.19 1.26 1.26 0.24 0.09 0.09 0.04 0.05 7686 0.2 68801 493 1503

Theorem 8 The majority vote algorithm yields an optimizer of the Categorical

Node Clustering (linear) objective.

Proof Suppose nodeu is contained inJi hyperedges of colori . Without loss of

generality, assumeJ1 � : : : � Jk . The cost of assigningu to c is Cc =
P

j 6= c Jj ,

which is minimized forc = 1. 2

In Section 2.5, we will see that the majority vote solution provides a good ap-

proximation to the optimizer of the Categorical Edge Clustering objective. The

reason is that the cost of a hyperedge under the linear objective is at mostr while

that cost under the Categorical Edge Clustering objective is just 1, which makes

majority vote an r -approximation algorithm.

Theorem 9 The majority vote algorithm provides anr -approximation for Cate-

gorical Edge Clustering.

31

2.5 Experiments

We now run four types of numerical experiments to demonstrate our methodology.

First, we show that our algorithms indeed work well on a broad range of datasets

at optimizing our objective function and discover that our LP relaxation tends be

extremely e�ective in practice, often �nding an optimal solution (i.e., matching the

lower bound). After, we show that our approach is superior to competing base-

lines in categorical community detection experiments where edges are colored to

signal same-community membership. Next, we show how to use timestamped edge

information as a categorical edge label, and demonstrate that our method can �nd

clusters that preserve temporal information better than methods that only look at

graph topology, without sacri�cing performance on topological metrics. Finally, we

present a case study on a network of cooking ingredients and recipes to show that

our methods can also be used for exploratory data analysis. Our code and datasets

are available athttps://github.com/nveldt/CategoricalEdgeClustering .

2.5.1 Analysis on Real Graphs and Hypergraphs

We �rst evaluate our methods on several real-world edge-labeled graphs and hyper-

graphs in terms of Categorical Edge Clustering. The purpose of these experiments

is to show that our methods can optimize the objective quickly and accurately and

to demonstrate that our methods �nd global categorical clustering structure bet-

ter than natural baseline algorithms. All experiments ran on a laptop with a 2.2

GHz Intel Core i7 processor and 8 GB of RAM. We implemented our algorithms

in Julia, using Gurobi software to solve the linear programs.

Datasets. Table 2.1 provides summary statistics of the datasets we use, and we

brie
y describe them. Brain [58] is a graph where nodes represent brain regions

from an MRI. There are two edge categories: one for connecting regions with high

32

fMRI correlation and one for connecting regions with similar activation patterns.

In the Drug Abuse Warning Network (DAWN) [169], nodes are drugs, hyperedges

are combinations of drugs taken by a patient prior to an emergency room visit, and

edge categories indicate the patient disposition (e.g., \sent home" or \surgery").

The MAG-10 network is a subset of the Microsoft Academic Graph [166] where

nodes are authors, hyperedges correspond to a publication from those authors, and

there are 10 edge categories which denote the computer science conference publica-

tion venue (e.g., \WWW" or \KDD"). If the same set of authors published at more

than one conference, we used the most common venue as the category, discarding

cases where there is a tie. In theCooking dataset [106], nodes are food ingredients,

hyperedges are recipes made from combining multiple ingredients, and categories

indicate cuisine (e.g., \Southern-US" or \Indian"). Finally, the Walmart-Trips

dataset is made up of products (nodes), groups of products purchased in a single

shopping trip (hyperedges), and categories are 44 unique \trip types" classi�ed by

Walmart [105].

Algorithms. We use two algorithms that we developed in Section 2.4. The �rst

is the simple 2-approximation rounding scheme outlined in Algorithm 1, which we

refer to asLP-round (LP) (in practice, this performs as well as the more sophisti-

cated algorithm in Algorithm 2 and has the added bene�t of being deterministic).

The second isCat-IsoCut (IC), which runs the standard isolating cut heuristic [60]

on an instance of multiway cut derived from the Categorical Edge Clustering prob-

lem, as outlined in Section 2.4.3.

The �rst baseline we compare against isMajority Vote (MV) discussed in

Section 2.4.4: nodei is assigned to categoryc if c is the most common edge type

in which i participates. The MV result is also the default cluster assignment for

IC, since in practice this method leaves some nodes unattached from all terminal

33

nodes.

The other baselines areChromatic Balls (CB) and Lazy Chromatic Balls(LCB)

| two algorithms for chromatic correlation clustering [36]. These methods repeat-

edly select an unclustered edge and greedily grow a cluster around it by adding

nodes that share edges with the same label. Unlike our methods,CB and LCB

distinguish between category (color) assignment and cluster assignment: two nodes

may be colored the same but placed in di�erent clusters. To provide a uniform

comparison among methods, we merge distinct clusters of the same category into

one larger cluster. These methods arenot designed for hypergraph clustering,

but we still use them for comparison by reducing a hypergraph to an edge-labeled

graph, where nodesi and j share an edge in categoryc if they appear together in

more hyperedges of categoryc than any other.

Results. Table 2.1 reports how well each algorithm solves the Categorical Edge

Clustering objective. We report the approximation guarantee (the ratio between

each algorithm's output and the LP lower bound), as well as theedge satisfaction,

which is the fraction of hyperedges that end up inside a cluster with the correct

label. Maximizing edge satisfaction is equivalent to minimizing the number of edge

label mistakes but provides an intuitive way to interpret and analyze our results.

High edge satisfaction scores imply that a dataset is indeed characterized by large

groups of objects that tend to interact in a certain way with other members of the

same group. A low satisfaction score indicates that a single label for each node

may be insu�cient to capture the intricacies of the data.

In all cases, the LP solution is integral or nearly integral, indicating thatLP

does an extremely good job solving the original NP-hard objective, often �nding

an exactly-optimal solution. As a result, it outperforms all other methods on all

datasets. Furthermore, on nearly all datasets, we can solve the LP within a few

34

seconds or a few minutes.Walmart is the exception{given the large number of

categories, the LP contains nearly 4 million variables, and far more constraints.

Other baseline algorithms can be faster, but they do not perform as well in solving

the objective.

The high edge satisfaction scores indicate that our method does the best job

identifying sets of nodes whichas a grouptend to participate in one speci�c type

of interaction. In contrast, the MV algorithm identi�es nodes that individually

exhibit a certain behavior, but the method does not necessarily form clusters of

nodes that as a group interact in a similar way. Because ourLP method outper-

forms our IC approach on all datasets in terms of both speed and accuracy, in the

remaining experiments we focus only on comparingLP against other competing

algorithms.

2.5.2 Categorical Edge Community Detection

Next we demonstrate the superiority ofLP in detecting communities of nodes

with the same node labels (i.e.,categorical communities), based on labeled edges

between nodes. We perform experiments on synthetic edge-labeled graphs, as well

as two real-world datasets, where we reveal edge labels indicative of the ground

truth node labels and see how well we can recover the node labels.

Synthetic Model. We use the synthetic random graph model of Bonchi et al.

for chromatic correlation clustering [36]. A user speci�es the number of nodesn,

colors L, and clustersK , as well as edge parametersp, q, and w. The model

�rst assigns nodes to clusters uniformly at random, and then assigns clusters to

colors uniformly at random. (Due to the random assignment, some clusters and

colors may not be sampled. Thus,K and L are upper bounds on the number of

distinct clusters and unique colors.) For nodesi and j in the same cluster, the

35

model connects them with an edge with probabilityp. With probability 1 � w,

the edge is the same color asi and j . Otherwise, it is a uniform random color. If

i and j are in di�erent clusters, an edge is drawn with probabilityq and given a

uniform random color. We will also use a generalization of this model to synthetic

r -uniform hypergraphs. The di�erence is that we assign colored hyperedges to

r -tuples of the n nodes, rather than just pairs, and we assign each cluster to a

unique color.

Synthetic Graph Results. We set up two experiments, where performance is

measured by the fraction of nodes placed in the correct cluster (node label accu-

racy). In the �rst, we form graphs with n = 1000, p = 0:05, andq = 0:01, �xing

L = K = 15 (which in practice leads to graphs with 15 clusters and typically be-

tween 8 and 12 distinct edge and cluster colors). We then vary the noise parameter

w from 0 to 0:75 in increments of 0:05. Figure 2.3a reports the median accuracy

over 5 trials of each method for each value ofw. In the second, we �x w = 0:2,

and vary the number of clustersK from 5 to 50 in increments of 5 withL = K .

Figure 2.3b reports the median accuracy over 5 trials for each value ofK .

For our �rst two experiments, we additionally found that our LP algorithm

similarly outperformed other methods in terms of cluster identi�cation scores such

as Adjusted Rand Index and F-score, followed in performance by MV. Cluster

identi�cation scores for LCB and CB were particularly low (ARI scores always

below 0.02), as these methods tended to form far too many clusters.

The CB and LCB algorithms, as well as the synthetic graph model itself, ex-

plicitly distinguish between ground truth node labels and ground truth clusters.

Thus, our third experiment explores a parameter regime tailored more towards the

strengths of CB and LCB. We �x L = 20, and vary the number of clusters from

K = 50 to K = 200 in increments of 25. Following the experiments of Bonchi et

36

al. [36] we setp = w = 0:5, and setq = 0:03. Even in this setting, we �nd that

our algorithms maintain an advantage. For all values ofK , our LP algorithm out-

performs other methods in terms of node label accuracy, and also obtains higher

ARI scores whenK is a small multiple of L. We note that LCB and CB only ob-

tain better cluster identi�cation scores in parameter regimes where all algorithms

obtain ARI scores below 0.1.

Synthetic Hypergraph Results. We ran similar experiments on synthetic 3-

uniform hypergraphs. We again setn = 1000 and usedp = 0:005 andq = 0:0001

for intra-cluster and inter-cluster hyperedge probabilities. In one experiment, we

�xed L = 15 and varied w, and in another we �xedw = 0:2 and varied the number

of clustersL. Figures 2.3c and 2.3d shows the accuracies. Again,LP tends to have

the best performance. WhenL = 15, our method achieves nearly perfect accuracy

for w � 0:6. However, we observe performance sensitivity when the noise is too

large: whenw increases from 0:6 to 0:65, the output of LP no longer tracks the

ground truth cluster assignment. This occurs despite the fact that the LP solution

is integral, and we are in fact optimally solving the Categorical Edge Clustering

objective. We conjecture this sharp change in accuracy is due to an information

theoretic detectability threshold, which depends on parameters of the synthetic

model.

Academic Department Labels in an Email Network. To test the algo-

rithms on real-world data, we use theEmail-Eu-core network [179, 125]. Nodes

in the graph represent researchers at a European institution, edges indicate email

correspondence (we consider the edges as undirected), and nodes are labeled by the

departmental a�liation of each researcher. We wish to test how well each method

can identify node labels, if we assume we have access to a (perhaps noisy and

imperfect) mechanism for associating emails with labels for inter-department and

37

intra-department communication. To model such a mechanism, we generate edge

categories in a manner similar to the synthetic above. An edge inside of a cluster

(i.e., an email within the same department) is given the correct department label

with probability 1 � w, and a random label with probability w. An edge between

two members of di�erent departments is given a uniform random label. Figure 2.5a

reports each algorithm's ability to detect department labels whenw varies from

0 to 0:75. Our LP method returns the best results in all cases, and is robust in

detecting department labels even in the high-noise regime.

Product Categories. The Walmart-Trips dataset from Section 2.5.1 also has

product information. We assigned products to one of ten broad departments in

which they appear onwalmart.com (e.g., \Clothing, Shoes, and Accessories") to

construct a Walmart-Products hypergraph with ground truth node labels. Recall

that hyperedges are sets of co-purchased products. We generate noisy hyperedge

labels as before, with 1� w as the probability that a hyperedge with nodes from

a single department will have the correct label. Results are reported in Fig. 2.5b,

and our LP-round method can detect true departments at a much higher rate than

the other methods.

2.5.3 Temporal Community Detection

In the next experiment, we show how our framework can be used to identify com-

munities of nodes in a temporal network, where we use timestamps on edges as a

type of categorical label that two nodes should be clustered together. For data, we

use theCollegeMsgnetwork [147], which records private messages (time-stamped

edges) between 1899 users (nodes) of a social media platform at UC-Irvine.

Removing timestamps and applying a standard graph clustering algorithm

would be a standard approach to identify communities of users. However, this

38

loses the explicit relationship with time. As an alternative, we convert timestamps

into discrete edge labels by ordering edges with respect to time and separating

them into k equal-sized bins representing time windows. Optimizing Categorical

Edge Clustering then corresponds to clustering users into time windows, in order

to maximize the number of private messages that occur between users in the same

time window. In this way, our framework can identifytemporal communitiesin a

social network, i.e., groups of users that are highly active in sending each other

messageswithin a short period of time.

We construct edge-labeled graphs for di�erent values ofk, and compareLP

against clusterings obtained by discarding time stamps and runningGraclus [71],

a standard graph clustering algorithm.Graclus seeks to cluster the nodes intok

disjoint clusters S1; : : : ; Sk to minimize the normalized cut objective:

Ncut (S1; S2; : : : ; Sk) =
P k

i =1
cut (Si)
vol (Si)

;

where cut (S) is the number of edges leavingS, and vol (S) is the volume of S,

i.e., the number of edge end points inS. Figure 2.6a shows thatLP is in fact

competitive with Graclus in �nding clusterings with small normalized cut scores,

even thoughLP is designed for a di�erent objective. However,LP still avoids

cutting edges, and it �nds clusterings that also have small normalized cut values.

The other goal ofLP is to place few edges in a cluster with the wrong label, which

in this scenario corresponds to clustering messages together if they were sent close

in time. We therefore also measure the average di�erence between timestamps of

interior edges and the average time stamp in each clustering, i.e.,

AvgTimeDi� (S1; : : : ; Sk) = 1
jE int j

P k
i =1

P
e2 E i

jtimestamp(e) � � i j;

whereE int is the set of interior edges completely contained in some cluster,E i is

the set of interior edges of clusterSi , and � i is the average time stamp inE i . Not

39

surprisingly, this value tends to be large forGraclus, since this method ignores

timestamps. However, Figure 2.6b shows that this value tends to be small forLP,

indicting that it is indeed detecting clusters of users that are highly interactive

within a speci�c short period of time.

2.5.4 Analysis of the Cooking Hypergraph

Finally, we apply our framework and LP-round algorithm to gain insights into the

Cooking hypergraph dataset from Section 2.5.1, demonstrating our methodology

for exploratory data analysis. An edge in this hypergraph is a set of ingredients

for a recipe, and each recipe is categorized according to cuisine. Categorical Edge

Clustering thus corresponds to separating ingredients among cuisines, in a way

that maximizes the number of recipes whose ingredients are all in the same cluster

(see Ahn et al. [8] for related analyses).

Table 2.1 shows that only 20% of the recipes can be made (i.e., a 0.2 edge

satisfaction) after partitioning ingredients among cuisine types. This is due to the

large number of common ingredients such as salt and olive oil that are shared across

many cuisines (a problem in other recipe network analyses [173]). We negate the

negative e�ect of high-degree nodes as follows. For an ingredienti , let dc
i be the

number of recipes of cuisinec containing i . Let M i = max c dc
i measuremajority

degreeand Ti =
P

t dc
i the total degree. Note that B i = Ti � M i is a lower bound

on the number of hyperedge mistakes we will make at edges incident to nodei . We

can re�ne the original dataset by removing all nodes withB i greater than some� .

Making recipes or wasting ingredients. Figure 2.7a shows edge satisfaction

scores forLP and MV when we cluster for di�erent � . When � = 10, edge

satisfaction is above 0.64 withLP. As � increases, edge satisfaction decreases,

but LP outperforms MV in all cases. We also consider a measure of \ingredient

40

waste" for each method. An ingredient isunused if we cannot make any recipes

by combining the ingredient with other ingredients in its cluster. A low number

of unused ingredients indicates that a method forms clusters where ingredients

combine together well. Figure 2.7b shows the number of unused ingredients as�

varies. Again,LP outperformsMV.

Speci�c ingredient and recipe clusters. We �nally highlight speci�c ingre-

Table 2.2: Examples of ingredients and recipes from special clusters identi�ed by
LP, but not Majority Vote .

French Fruit-Based Desserts (� = 70)
Ingredients: ruby red grapefruit, strawberry ice cream, dry hard cider, icing,
prunes, tangerine juice, sour cherries.
Recipes: 1. f almond extract, bittersweet chocolate, sugar, sour cherries, brioche,
heavy cream, unsalted butter, kirschg, 2. f large egg yolks, ruby red grapefruit,
dessert wine, sugarg

Brazilian Caipirinha Recipes (� = 170)
Ingredients: simple syrup, light rum, ice, super�ne sugar, key lime, coco,
kumquats, liquor, mango nectar, vanilla essence
Recipes: f cachaca, iceg + 1. f lime juice, kumquats, sugarg, 2. f lime, fruit
puree, simple syrupg, 3. f super�ne sugar, lime juice, passion fruit juiceg, 4. f
sugar, liquor, mango nectar, lime, mangog

dient clusters that LP identi�es but MV does not. When� = 170, LP places

10 ingredients with the Brazilian cuisine whichMV does not, leading to 23 extra

recipes that are unique toLP. Of these, 21 correspond to variants of the Caipir-

inha, a popular Brazilian cocktail. When� = 70, 24 ingredients and 24 recipes

are unique to the French cuisine cluster ofLP. Of these, 18 correspond to desserts,

and 14 have a signi�cant fruit component. Table 2.2 has examples of ingredients

and recipes from both these clusters.

41

2.6 Connection to energy minimization

Special cases of our Categorical Edge Clustering framework �t within the paradigm

of energy function minimization in computer vision [41, 114, 83]. The energy

minimization approach uses minimums-t cut algorithms for functions of binary

and ternary variables which satisfy a certain regularity property. In this appendix

we show that our objective induces a regular energy function in both the graph and

rank-3 hypergraph case when there are two categories. This connection implies

that in addition to the algorithms we developed above, we may use the tools

developed for energy minimization to facilitate solving these special instances of our

problem exactly in polynomial time. However, these approaches do not work for

two important regimes: more than two categories, or in general hypergraphs (in the

latter, the penalties are no longer a semi-metric, which is needed for approximation

algorithms [41]).

2.6.1 Graphs with two categories

To show the connection to energy minimization, we cast our objective as a so-

called energy function. With two categories, we can encode our coloringC of the n

nodes in the graph as a vector of 1s and 2s corresponding to which color each node

takes. For this, we writeC = (x1; ::::; xn) where x i = 1 if node i is assigned color

1 and x i = 2 if node i is assigned a color 2. Now the Categorical Edge Clustering

objective can be written as an energy function as

CatEdgeClus (C) =
X

i<j s.t. (i;j)2 E

E i;j (x i ; x j);

where 2

6
4

E i;j (1; 1) E i;j (1; 2)

E i;j (2; 1) E i;j (2; 2)

3

7
5 =

2

6
4

0 1

1 1

3

7
5

42

if (i; j) is of color 1 and
2

6
4

E i;j (1; 1) E i;j (1; 2)

E i;j (2; 1) E i;j (2; 2)

3

7
5 =

2

6
4

1 1

1 0

3

7
5

if (i; j) is of color 2. We will show that this energy function satis�es a regular-

ity property, which enables a reduction of our objective to a minimums-t graph

cut [114].

De�nition 10 A function of two binary variables isregular if each term satis�es

the following inequality

E i;j (0; 0) + E i;j (1; 1) � E i;j (0; 1) + E i;j (1; 0):

It is easy to see that our energy function is indeed regular. We formalize this

observation in the following theorem.

Theorem 11 The Categorical Edge Clustering objective for graphs with two cat-

egories induces a regular energy function.

Proof Regardless of whether (i; j) is an edge of color 1 or of color 2, the o�-

diagonal terms in the energy function sum to 2 while the diagonal terms sum to

1. This ensures that the regularity property is satis�ed. 2

Having established the regularity of our energy function, the results of Kol-

mogorov and Zabih [114, Theorem 4.1] say that we can cast the energy mini-

mization problem as ans-t-cut problem on a directed graph. In particular, fol-

lowing their construction, we would create a directed graphG0 = (V 0; E0) from

G = (V; E; C; `) as follows, which is similar to the reduction we used in Sec-

tion 2.3.1.

ˆ Append nodess and t to V 0

43

ˆ For every undirected edge (i; j) with i < j in G, if (i; j) has color 1, create a

directed edge (i; j) and a directed edge (j; t) in E 0, while if (i; j) has color 2

in G, append the directed edge (i; j) and the directed edge (s; i) to E 0

This construction guarantees that the energy functionE i;j of every edge (i; j) in

G is exactly represented by the corresponding cut on the subgraph inG0 which

the edge induced. The following theorem is then a result of the additivity theorem

from Kolmogorov and Zabih [114].

Theorem 12 Let C� be a two-colored clustering that is the solution of thes-t-

mincut problem on the graphG0 constructed using the procedure above. ThenC�

also optimizes the Categorical Edge Clustering objective for the original graphG.

2.6.2 Rank-3 hypergraphs with two categories

The energy minimization framework also allows us to handle the case of rank-3

hypergraphs. Adopting the conventions of the previous subsection, we can write

the clustering objective as follows.

CatEdgeClus (C) =
X

i<j : (i;j)2 E

E i;j (x i ; x j) +
X

i<j<k : (i;j;k)2 E

E i;j;k (x i ; x j ; xk);

44

whereE i;j (x i ; x j) is the same as in the previous section and the higher-order energy

for hyperedges is
2

6
6
6
6
6
6
6
4

E i;j;k (1; 1; 1) E i;j;k (1; 1; 2)

E i;j;k (1; 2; 1) E i;j;k (1; 2; 2)

E i;j;k (2; 1; 1) E i;j;k (2; 1; 2)

E i;j;k (2; 2; 1) E i;j;k (2; 2; 2)

3

7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
4

0 1

1 1

1 1

1 0

3

7
7
7
7
7
7
7
5

+ I(C[i] = C[j] = C[k] = 2)

2

6
6
6
6
6
6
6
4

1 0

0 0

0 0

0 0

3

7
7
7
7
7
7
7
5

+ I(C[i] = C[j] = C[k] = 1)

2

6
6
6
6
6
6
6
4

0 0

0 0

0 0

0 1

3

7
7
7
7
7
7
7
5

:

The energy function de�ned this way is regular, in the sense that all projections

into two variables are regular. We formalize this observation in the theorem below.

Theorem 13 The Categorical Edge Clustering objective for rank-3 hypergraphs

with two categories induces a regular energy function.

We proceed to construct a graphG0 in a manner similar to that described

in the preceding subsection which will allow us to optimize the Categorical Edge

Clustering objective through a minimums-t-cut on G0. After appending the source

and sink nodess and t to G0, we perform the procedure of the previous section for

all edgese 2 E. For the remaining hyperedges of rank 3, we follow the procedure

outlined by Kolmogorov and Zabih [114, Section 4.1]. This is a special case of

the more general approach we present in Section 2.3. In particular, depending on

45

the hyperedge color, we use one of the two directed tree structures in Fig. 2.1.

The fact that the minimum s-t cut on G0 thus constructed induces a partition of

the nodes inE which minimizes the Categorical Edge Clustering objective follows

from a proof similar to that presented in the graph case. The actual proof is the

specialr = 3 case of the main proof in Section 2.3. Finally, we can establish the

following theorem.

Theorem 14 Let C� be a two-colored clustering that is the solution of thes-t-

mincut problem on the graphG0 constructed using the procedure above. ThenC�

also optimizes the Categorical Edge Clustering objective for the original hypergraph

G.

2.7 Discussion

We have developed a computational framework for clustering nodes of hypergraphs

when edges have categorical labels that signal node similarity. With two categories,

our clustering objective can be solved in polynomial time. For general problems,

our linear programming relaxations provide 2-approximation or even better guar-

antees, which are far tighter than what is seen in the related literature on corre-

lation clustering. This method is also extremely e�ective in practice. Amazingly,

our LP-round algorithm often actually minimizes our NP-hard objective (certi�ed

through integral solutions) on hypergraphs with tens of thousands of edges in just

tens of seconds. The approach also works well in problems when performance is

measured in terms of some sort of ground truth labeling, outperforming baselines

by a substantial margin.

46

(a) Graphs: Varying Noise w (b) Graphs: Varying # Clusters

(c) Hypergraphs: Varying Noise w (d) Hypergraphs: Varying # Clusters

Figure 2.3: (a){(b): Performance of algorithms on a synthetic graph model for
chromatic correlation clustering [36]. Across a range of parameters, ourLP method
outperforms competing methods in predicting the ground truth label of the nodes.
(c){(d): In experiments on synthetic 3-uniform hypergraphs,LP performs well for
most parameter regimes but there is some sensitivity to the very noisy setting.

47

(a) Label Accuracy (b) ARI Scores

Figure 2.4: LCB and CB are primarily designed for settings whereK is much larger
than L. Despite this, our LP method always obtains better label assignment scores,
and often obtains better ARI cluster identi�cation scores, when we �xL = 20 and
let K vary from 50 to 500.

(a) Email-Eu-core (b) Walmart-Products

Figure 2.5: Accuracy in clustering nodes in real-world datasets when edge labels
are a noisy signal for ground truth node cluster membership. For both an email
graph (a) and a product co-purchasing hypergraph (b), ourLP-Round method
consistently outperforms other methods.

48

(a) Normalized Cut (b) Inner edge time di�erence

Figure 2.6: Results forLP and Graclus in clustering a temporal network. Our
LP method is competitive for Graclus's objective (normalized cut; left), while
preserving the temporal structure of network much better (right).

(a) Edge Satisfaction (b) Unused ingredients

Figure 2.7: As� increases, we discard fewer high-degree ingredients before cluster-
ing the rest. Our method always \makes" more recipes (higher edge satisfaction)
and \wastes" fewer ingredients (smaller number of unused ingredients).

49

CHAPTER 3

DIVERSE AND EXPERIENCED GROUP DISCOVERY VIA

HYPERGRAPH CLUSTERING

In forming teams or groups, one often aims to balance expertise in a main

focus area while also encouraging diversity of skills in each team. In this paper

we model the problem of �nding diverse groups of individuals who have expertise

in a given task as a clustering problem on hypergraphs with heterogeneous edge

types. Here, the hyperedge types encode past experience types of groups, and the

output of the clustering is groups of individuals (nodes). Unlike complementary

problems that seek to �nd fair or balanced clusters (e.g., in terms of some protected

node attributes), our model encourages diversity of pastexperiencewithin these

groups by striking a balance between experience and diversity with respect to node

participation in edge types. We show that naive objectives lead to no diversity-

experience tradeo�, which motivates our re�ned model based on regularizing an

edge-based hypergraph clustering objective. While optimizing our objective is NP-

hard, we design a 2-approximation algorithm that works for a more general class of

problems where each node is allowed to have a preference for a particular cluster,

and illustrate a technique for computing regularization strength bounds that reveal

meaningful diversity/experience tradeo� regimes. We illustrate the utility of our

framework on several real-life datasets { most notably to online review platform

data { to curate sets of reviews for a given type of product which exhibit a tradeo�

between reviewer experience, or familiarity with a product type, and experience,

or the reviewer's tendency to also review related product types. In the setting

allowing for node preferences, we show that our framework discovers sets of reviews

sensitive to user preference.

50

3.1 Introduction

Team formation within social and organizational contexts is ubiquitous, as success

often relies on forming the \right" teams. Diversity within these teams, both with

respect to socioeconomic attributes and expertise across disciplines, often leads to

synergy, and brings fresh perspectives which facilitate innovation. The study of di-

verse team formation with respect to expertise has a rich history spanning decades

of work in sociology, psychology and business management [81, 104, 127]. In this

paper, we explore algorithmic approaches to diverse team formation, where \di-

versity" corresponds to a tendency of individuals to have a variety of experiences.

In particular, we present a new algorithmic framework that focuses on forming

groups which arediverse and experiencedin terms of past group interactions. As

a motivating example, consider a diverse team formation task in which the goal is

to assign a task to a group of people who (1) already have some level of experience

working together on the given task, and (2) are diverse in terms of their previous

work experience. As another example, a recommender system may want to display

a diverse yet cohesive set of reviews for a class of products.

Here, we formalize diverse and experienced group formation as a clustering

problem on edge-labeled hypergraphs. In this setup, a hyperedge represents a set

of individuals that have participated in a group interaction or experience. The

hyperedge label encodes thetype or category of interaction (e.g., a type of team

project). The output is then a clustering of nodes, with cluster labels corresponding

to hyperedge types. The goal is to form clusters whose nodes are balanced in

terms of experienceand diversity. By experiencewe mean that a cluster with

label ` should contain nodes that have previously participated in hyperedges of

type `. By diversity, we mean that clusters should also include nodes that have

participated in other hyperedge types.

51

Our mathematical framework for diverse and experienced clustering builds on

an existing objective for clustering edge-labeled hypergraphs [14]. This objective

encourages cluster formation in such a way that hyperedges of a certain label tend

to be contained in a cluster with the same label We add a diversity-encouraging

regularization term governed by a tunable hyperparameter� � 0 to this objective

encouraging clusters to contain nodes that have participated in many di�erent hy-

peredge types. Although the resulting objective is NP-hard in general, we design

an LP algorithm that guarantees a 2-approximation for any� . We show that cer-

tain values of � reduce to extremal solutions of the diversity-regularized objective

with closed-form solutions where just diversity or just experience is maximized. In

order to guide a meaningful hyperparameter selection, we show how to bound the

region in which non-extremal solutions occur by leveraging LP sensitivity tech-

niques. Furthermore, we show that our approximation actually applies to a larger

class of optimization problems, where each node has a preference distribution for

cluster assignments. The diversity regularization framework is then the special case

where a node's preference for a cluster is inversely related to its past experience

for participating in that cluster.

We demonstrate the utility of our framework by applying it to team formation of

users posting answers on Stack Over
ow, and the task of aggregating a diverse set

of reviews for categories of establishments and products on review sites (e.g., Yelp

or Amazon). We �nd that the framework yields meaningfully more diverse clusters

at a small cost, and that our approximation algorithms produce solutions within a

factor of no more than 1.3 of optimality empirically. A second set of experiments

examines the e�ect of iteratively applying the diversity-regularized objective while

keeping track of the experience history of every individual. We observe in this

synthetic setup that regularization greatly in
uences team formation dynamics

52

over time, as increasing� leads to more frequent role swapping.

3.1.1 Related work

Our work on diversity in clustering is partly related to recent research on algo-

rithmic fairness and fair clustering. These results are based on ideas that machine

learning algorithms may make decisions that are biased or unfair towards a subset

of a population [22, 54, 56]. There are now a variety of algorithmic fairness tech-

niques to combat this issue [110, 136]. For clustering problems, fairness is typically

formulated in terms of protected attributes on data points | a cluster is \fair" if it

exhibits a proper balance between nodes from di�erent protected classes, and the

goal is to optimize clustering objectives while adhering to balance constraints on

the protected attributes [7, 6, 51]. These approaches are similar to our notion of

diverse clustering; in both cases, the clusters are more heterogeneous with respect

to node attributes. While the primary attribute addressed in fair clustering is the

protected status of a data point, in our case it is the \experience" of that point. In

this sense, we have similar algorithmic goals, but our approach targets discovering

diverse groups with respect to past experience.

There is also research on algorithmic diverse team formation [111, 168]. How-

ever, this research largely focuses diversity with respect to inherent node-level

attributes, without an emphasis on diversity of expertise; our work is the �rst to

explicitly address this issue.

Our framework also facilitates a novel take on diversity within recommender

systems. An application we study in Section 3.4 is selecting expert, yet diverse

sets of reviews for product categories. This di�ers from existing recommendation

paradigms on two fronts: First, the literature focuses on user-centric recommenda-

tions; for us, a set of reviews is curated for acategoryof products that allows any

53

user to glean both expert and diverse opinions regarding it. Further, recommender

systems research has de�ned diversity for a set of objects based on dissimilarity

derived from pairwise relations [48, 134]. There are some set-proxies for diverse

recommendations [49, 156], but they do not deal explicitly with higher-order

interactions among objects. In contrast, our work encourages diversity in rec-

ommendations through an objective that captures higher-order information about

relations between subsets of objects.

3.2 Clustering with Diversity and Experience

After introducing notation for edge-labeled clustering, we analyze a seemingly

natural approach for clustering based on experience and diversity that leads to

only trivial solutions. This motivates us to develop a more meaningful objective

through regularization of the categorical edge clustering objective, to which the

rest of the paper is devoted.

Notation. Let G = (V; E; L; `) be a hypergraph with labeled edges, whereV

is the set of nodes,E is the set of (hyper)edges,L is a set of edge labels, and

` : E ! L maps edges to labels, whereL = f 1; : : : ; kg and k is the number of

labels. Furthermore, let Ec � E be the edges with labelc, and r the largest

hyperedge size. Following graph-theoretic terminology, we often refer to elements

in L as \colors"; in data, L represents categories or types. For any nodev 2 V,

let dc
v be the number of hyperedges of colorc in which nodev appears. We refer

to dc
v as the color degree ofv for color c.

We seek a clusteringC, where each node is assigned to exactly one cluster, and

there is exactly one cluster for each color inL, so that it outputs a color for each

node. We useC(i) to denote the nodes assigned to colori . A target clustering

promotes both diversity (clusters have nodes from a range of colored hyperedges),

54

and experience (for alli 2 L, C(i) contains nodes that have experience participating

in hyperedges of colori).

3.2.1 A
awed but illustrative �rst approach

We start with an illustrative clustering objective that will prove to be useful in

the rest of the paper. For this, we �rst de�ne diversity and experience scoresfor

a color i , denoted D(i) and E(i), as follows: D(i) =
P

v2C(i);c6= i dc
v ; E(i) =

P
v2C(i) di

v: In words, D(i) measures how much nodes in clusteri have participated

in hyperedges that arenot color i , and E(i) measures how much nodes in cluster

i have participated in hyperedges of colori . A seemingly natural but ultimately

naive objective for balancing experience and diversity is:

maxC
P

i 2 L [E(i) + �D (i)]: (3.1)

The regularization parameter� determines the relative importance of the diver-

sity and experience scores. It turns out that the solutions to this objective are

overly-simplistic, with a phase transition at� = 1. We de�ne two simple types of

clusterings as follows:

ˆ Majority vote clustering: Nodev is placed in clusterC(i) wherei 2 argmaxc2 L dc
v,

i.e., nodev is placed in a cluster for which it has the most experience.

ˆ Minority vote clustering: Nodev is placed in clusterC(i) wherei 2 argminc2 L dc
v,

i.e., nodev is placed in a cluster for which it has the least experience.

The following theorem explains why (3.1) does not provide a meaningful trade-

o� between diversity and experience.

Theorem 15 A minority vote clustering optimizes (3.1) for all � > 1, and a

majority vote clustering optimizes the same objective for all� < 1. Both are

optimal when� = 1.

55

Proof Assume w.l.o.g. that colors 1; 2; : : : ; k are ordered so thatd1
i � � � � � dk

i for

nodei . Clustering i to color 1 addsd1
i + �

P k
j =2 dj

i to the objective, while clustering

it to color c 6= i adds dc
i + �

P
j 6= c dj

i . Sinced1
i � � � � � dk

i , the �rst contribution

is greater than or equal to the second if and only if� � 1. Hence, majority vote

is optimal when � � 1. A similar argument proves optimality for minority vote

when � � 1. 2

Objective (3.1) is easy to analyze, but has optimal points that do not provide

a balance between diversity and experience. This occurs because a clustering

will maximize the total diversity
P

c2 L D(c) if and only if it minimizes the total

experience
P

c2 L E(c), as these terms sum to a constant. The following observation

formalizes this.

Observation 3.2.1
P

c2 L [E(c)+ D(c)] is a constant independent of the clustering

C.

We will use this observation when developing our clustering framework in the next

section.

3.2.2 Diversity-regularized categorical edge clustering

We now turn to a more sophisticated approach: a regularized version of thecate-

gorical edge clusteringobjective [14]. For a clusteringC, the objective accumulates

a penalty of 1 for each hyperedge of colorc that is not completely contained in the

cluster C(c). More formally, the objective is:

minC
P

c2 L

P
e2 Ec

xe; (3.2)

wherexe is 1 if hyperedgee 2 Ec is not contained in clusterC(c), but is zero oth-

erwise. This penalty encouragesentire hyperedges to be contained inside clusters

of the corresponding color. For our context, this objective can be interpreted as

56

promoting group experience in cluster formation: if a group of people have par-

ticipated together in task c, this is an indication they could work well together

on task c in the future. However, we want to avoid the scenario where groups of

people endlessly work on the same type of task without the bene�ting from the

perspective of others with di�erent experiences. Therefore, we regularize objec-

tive (3.2) with a penalty term �
P

c2 L E(c). Since
P

c2 L [E(c) + D(c)] is a constant

(Observation 3.2.1), this regularization encourages higher diversity scoresD(c) for

each clusterC(c).

While the \all-or-nothing" penalty in (3.2) may seem restrictive at �rst, it

is a natural choice for our objective function for several reasons. First, we are

building on recent research showing applications of Objective (3.2) on datasets

similar to ours, namely edge-labeled hypergraphs [14], and this type of penalty

is a standard in hypergraph partitioning [28, 98, 122]. Second, if we consider an

alternative penalty which incurs a cost of one for every node that is split away

from the color of the hyperedge, this reduces to the \
awed �rst approach" in

the previous section, where there is no diversity-experience tradeo�. Developing

algorithms that can optimize more complicated alternative hyperedge cut penalties

is an active area of research [130, 176]. Translating these ideas to our setting

constitutes an interesting open direction for future work, but here we focus on

the standard hyperedge cut penalty. Our experimental results indicate that this

approach produces meaningfully diverse clusters on real-world and synthetic data.

We now formalize our objective, which we calldiversity-regularized categorical

edge clustering(DRCEC), that will be the focus for the remainder of the paper.

57

We state it as an integer linear program (ILP):

min
P

c2 L

P
e2 Ec

xe + �
P

v2 V

P
c2 L dc

v(1 � xc
v)

s.t. for all v 2 V:
P k

c=1 xc
v = k � 1;

for all c 2 L, e 2 Ec: xc
v � xe for all v 2 e;

for all c 2 L, v 2 V, e 2 E: xc
v; xe 2 f 0; 1g:

(3.3)

The binary variable xc
v equals 1 if nodev is not assigned labelc, and is 0 otherwise.

The �rst constraint guarantees every node is assigned to exactly one color, while

the second constraint guarantees that if a single nodev 2 e is not assigned to the

cluster of the color ofe, then xe = 1.

A polynomial-time 2-approximation algorithm. Optimizing the case of� =

0 is NP-hard [14], so DRCEC is also NP-hard. Although the optimal solution

to (3.3) may vary with � , we develop a simple algorithm based on solving an LP

relaxation of the ILP that rounds to a 2-approximation for every value of� . Our

LP relaxation of the ILP in (3.3) replaces the binary constraintsxc
v; xe 2 f 0; 1g

with linear constraints xc
v; xe 2 [0; 1]. The LP can be solved in polynomial time,

and the objective score is a lower bound on the optimal solution score to the NP-

hard ILP. The values ofxc
v can then berounded into integer solutions to produce

a clustering that is within a bounded factor of the LP lower bound, and therefore

within a bounded factor of optimality. Our algorithm is simply stated:

Algorithm 1

1. Solve the LP relaxation of the ILP in (3.3).

2. For eachv 2 V, assignv to any c 2 argminj x j
v.

The LP relaxation gives a 2-approximation:

Theorem 16 For any � � 0, Algorithm 1 returns a 2-approximation for Objec-

tive (3.3).

Proof Let the relaxed solution bef x �
e; x � c

v ge2 E;v 2 V;c2 L and the rounded solution

58

be f xe; xc
vge2 E;v 2 V;c2 L . Let yc

v = 1 � xc
v and y� c

v = 1 � x � c
v . Our objective evaluated

at the relaxed and rounded solutions respectively is

S� =
X

e

x �
e + �

X

v2 V

X

c2 L

dc
vy� c

v , S =
X

e

xe + �
X

v2 V

X

c2 L

dc
vyc

v:

We will show that S � 2S� by comparing the �rst and second terms ofS and S�

respectively. The �rst constraint in (3.3) ensures thatxc
v < 1=2 for at most a single

color c. Thus, for every edgee with xe = 1, x � c
v � 1=2 for somev 2 e. In turn, x �

e �

1=2, soxe � 2x �
e. If xe = 0, then xe � 2x �

e holds trivially. Thus,
P

e xe � 2
P

e x �
e.

Similarly, since xc
v = 1 (yc

v = 0) if and only if x � c
v � 1=2 (yc�

v � 1=2), and xc
v = 0

otherwise, it follows that yc
v � 2y� c

v . Thus,
P

v2 V

P
c2 L dc

vyc
v � 2

P
v2 V

P
c2 L dc

vy� c
v .

2

3.2.3 A general preference-regularized objective

In fact, Algorithm 1 o�ers a 2-approximation for a much larger class ofpreference-

regularizedcategorical edge clustering (PRCEC) objectives. This happens because

Objective (3.3) still admits a 2-approximation via Algorithm 1 if we replace the

color degree distribution [d1
v; : : : ; dk

v] of node v with an arbitrary preferencedis-

tribution [p1
v; : : : ; pk

v]; where each non-negative componentpc
v represents nodev's

reluctance to be in cluster c. Formally, the PRCEC objective is

min
P

c2 L

P
e2 Ec

xe + �
P

v2 V

P
c2 L pc

v(1 � xc
v) (3.4)

with the same constraints as in Objective (3.3). We can prove that we obtain a

2-approximation for the PRCEC objective by replacingdc
v with pc

v throughout the

proof of Theorem 16. This generalized result opens the door to a host of other

applications, such as forming experienced teams while at the same time attempting

to satisfy team assignment preferences.

59

3.2.4 Extremal LP and ILP solutions at large enough val-

ues of �

In general, Objective (3.3) provides a meaningful way to balance group experience

(the �rst term) and diversity (the regularization). However, when � ! 1 , the

objective corresponds to simply minimizing experience, (i.e., maximizing diver-

sity), which is solved via the minority vote assignment. We formally show that the

optimal integral solution (3.3), as well as the relaxed LP solution under certain

conditions, transitions from standard behavior to extremal behavior (speci�cally,

the minority vote assignment) when� increases past the maximum degree in the

hypergraph. In Section 3.3, we show how to bound these transition points numer-

ically, to ensure meaningful solutions.

We �rst consider a bound on� above which minority vote is optimal. Letdmax

be the largest number of edges any node participates in.

Theorem 17 For every � > d max , a minority vote assignment optimizes(3.3).

Proof Let f xe; xc
vg encode a clustering for (3.3) that is not a minority vote solution.

This means there exists at least one nodev so that xc
v = 0 for some colorc =2

argmini 2 L di
v. If we move nodev from cluster c to some clusterm 2 argmini 2 L di

v,

then the regularization term would decrease by� (dc
v � dm

v) � � > d max , since

degrees are integer-valued anddc
v > d m

v . Meanwhile, the �rst term would increase

by at most
P

e:v2 e xe = dmax < � . So deviating from the minority vote assignment

cannot be optimal when� > d max . 2

A slight variant of this result also holds for the LP relaxation. For a nodev 2 V,

let M v � L be the set of minority vote clusters forv, i.e., M v = argmin c2 L dc
v

(treating argmin as a set). The next theorem says that for� > d max , the LP places

all \weight" for v on its minority vote clusters. We call this arelaxed minority

60

vote LP solution, and Algorithm 1 will round the LP relaxation to a minority vote

clustering.

Theorem 18 For every � > d max , an optimal solution to the LP relaxation

of (3.3) will satisfy
P

c2M v
(1 � xc

v) = 1 for every v 2 V. So the rounded so-

lution from Algorithm 1 is a minority vote clustering.

Proof Let f xe; xc
vg encode an arbitrary solution to theLP relaxation of (3.3),

and assume that it isnot a minority vote solution. For every v 2 V and c 2 L,

let yc
v = 1 � xc

v. The yc
v indicates the \weight" of v placed on clusterc, with

P
c2 L yc

v = 1. Since f xe; xc
vg is not a minority vote solution, there exists some

v 2 V and j =2 M v such that yj
v = " > 0.

We will show that when � > d max , we obtain a strictly better solution by

moving this weight of " from cluster j to a cluster in M v. Choose anym 2 M v,

and de�ne a new set of variables ^yj
v = 0, ŷm

v = ym
v + ", and ŷi

v = yi
v for all other

i =2 f m; j g. De�ne x̂c
v = 1 � ŷc

v for all c 2 L. For any u 2 V, u 6= v, we keep

variables the same: ^yc
u = yc

u for all c 2 L. Set edge variables ^xe to minimize the

LP objective subject to the ŷc variables, i.e., for c 2 L and every e 2 Ec, let

x̂e = maxu2 e x̂c
u.

The new variables take" weight from cluster j and move it to m 2 M v. This

improves the regularization term by at least�" : �
P

c2 L dc
v[yc

v � ŷc
v] = �d m

v (ym
v �

ŷm
v) + �d j

v(yj
v � ŷj

v) = � �d m
v " + �d j

v" = �" (dj
v � dm

v) � �":

Next, the �rst part of the objective increases by at most"dmax . To see this, note

that for e 2 E j with v 2 e, x̂e � 1 � ŷj
v = 1 =) x̂e = 1 and xe � 1 � yj

v = 1 � " .

Therefore, for e 2 E j , v 2 e, we know x̂e � xe = 1 � xe � 1 � (1 � ") = " .

For e 2 Em with v 2 e we know x̂e � xe � 0, sincex̂e = max u2 e(1 � ŷm
u) and

xe = maxu2 e(1 � ym
u), but the only di�erence between ym

u and ŷm
u is that ŷm

v =

ym
v + " =) (1 � ŷm

v) < (1 � ym
v). For all other edge setsEc with c =2 f m; j g,

61

x̂e = xe. So
P

e:v2 e[x̂e � xe] � "dmax . So when� > " , we improve the objective by

moving weight yj
v = " from a non-minority vote cluster j =2 M v to somem 2 M v.

Hence for everyv 2 V,
P

c2M v
yc

v = 1 at optimality. 2

Theorem 18 implies that if there is a unique minority vote clustering, then it

is optimal for both the original objective and the LP relaxation when� > d max .

Whether or not the the optimal solution to the LP is the same as the ILP one,

the rounded solution still corresponds to some minority vote clustering that does

not meaningfully balance diversity and experience. The bound� > d max is loose

in practice; our experiments show that the transition occurs for smaller� . In the

next section, we use LP sensitivity analysis to better bound the phase transition

computationally.

3.3 Bounding Hyperparameters that Yield Extremal Solu-

tions

In order to �nd a meaningful balance between experience and diversity, we would

like to �rst �nd the smallestvalue of� , call it � � , for which � > � � yields a minority

vote clustering. After, we could consider the hyperparameter regime� < � � . Given

that the objective is NP-hard in general, computing� � exactly may not be feasible.

However, we will show that we canexactly computethe minimum value �̂ for which

a relaxed minority vote solution is no longer optimal for the LP relaxation. This

has several useful implications. First, when the minority vote clustering is unique,

Theorem 18 says that this clustering is also optimal for the ILP for large enough

� . Even when the minority vote clustering is not unique, an integral minority vote

solution may still be optimal for the LP relaxation for large enough� ; indeed, we

later observe this in real datasets. In these cases, we know that� � � �̂ , which

62

allows us to rule out a wide range of parameters leading to solutions that e�ectively

ignore the experiencepart of our objective. Still, even in cases where an integral

minority vote solution is never optimal for the LP relaxation, computing �̂ lets

us avoid parameter regimes where Algorithm 1 does not return a minority vote

clustering.

Our approach for computing�̂ is based on techniques for bounding the optimal

parameter regime for a relaxed solution to a clustering objective [86, 143]. We

adapt these results for our regularized objective.

The LP relaxation of our regularized objective can be written abstractly in the

following form

min
x

cT
e x + � cT

d x s.t. Ax � b; x � 0; (3.5)

where x stores variablesf xe; xc
vg, Ax � b encodes constraints given by the LP

relaxation of (2.4), andce; cd denote vectors corresponding to the experience and

diversity terms in our objective, respectively. In this format, the LP-relaxation

is a parametric linear program in� . Standard results on parametric linear pro-

gramming [3] guarantee that any solution to (3.5) for a �xed value of� will in

fact be optimal for a range of values [� ` ; � u] containing � . The optimal solutions

to (3.5) as a function of � correspond to a piecewise linear, concave, increasing

curve, where each linear piece corresponds to a range of� values for which the

same feasible LP solution is optimal.

We begin by solving this LP for some� 0 > d max , which is guaranteed to produce

a solution vectorx0 that is at least a relaxed form of minority vote (Theorem 18)

that would round to a minority vote clustering via Algorithm 1. Our goal is to

�nd the largest value �̂ for which x0 no longer optimally solves (3.5). To do so,

de�ne cT = cT
e + � cT

d so that we can re-write objective (3.5) with� = � 0 as

min
x

cT x s.t. Ax � b; x � 0: (3.6)

63

Finding �̂ amounts to determining how long the minority vote solution is \sta-

ble" as the optimal solution to (3.6). Consider a perturbation of (3.6),

min
x

c(�)T x = cT x � � cT
d x s.t. Ax � b; x � 0; (3.7)

where � = � 0 � � for some� < � 0, so that (3.7) corresponds to our clustering

objective with the new parameter� . Sincex0 is optimal for (3.6), it is optimal

for (3.7) when� = 0. Solving the LP below provides the range� 2 [0; � +] for which

x0 is still optimal for (3.7):

maxy ;� � s.t. A T y � c � � cd; bT y = cT x0 � � cT
d x0: (3.8)

Let (y � ; � �) be the optimal solution to (3.8). The constraints imply that (x0; y �)

satisfy primal-dual optimality conditions for the perturbed LP (3.7) and its dual,

and the objective function seeks to �nd the maximum value of� such that these

conditions hold. Thus, � � = � + , and � = � 0 � � + will be the smallest parameter

value such thatx0 is optimal for the LP relaxation.

Finally, after entering a regime wherex0 is no longer optimal, the objective

function strictly decreases. Again, by Theorem 18, for large enough� , the relaxed

LP solution is a (relaxed) minority vote. Since we �nd the minimizer of the LP,

the solution is the (relaxed) minority vote solution with the smallest objective.

Thus, moving to the new parameter regime will no longer correspond to minority

vote, either in the LP relaxation or in the Algorithm 1 rounding.

3.4 Numerical Experiments

Here we present three sets of experiments on real-world data to demonstrate our

theory and methods. The �rst uses the diverse clustering objective to measure

the quality of the LP relaxation and our bounds on�̂ ; we �nd that regularization

64

Table 3.1: Summary statistics of datasets. The computed̂� bounds using the tools
in Section 3.3 are much smaller than thedmax bound in Theorem 18.

Dataset jV j jE j L dmax �̂

music-blues-reviews 1106 694 7 127 0.50
madison-restaurants-reviews 565 601 9 59 0.42
vegas-bars-reviews 1234 1194 15 147 0.50
algebra-questions 423 1268 32 375 0.50
geometry-questions 580 1193 25 260 0.50

Table 3.2: Summary statistics of datasets with hyperedges based on product rat-
ings. Fast runtimes indicate the scalability of our approach.

Runtime (seconds)

Dataset vol. jV j jE j � = 0:00 0:07 0:14 0:21

software 11.1K 1.82K 2.00K 0.82 0.58 0.26 0.23
beauty 26.6K 3.81K 3.45K 0.55 2.33 0.5 0.47
pantry 126K 14.2K 11.2K 2.22 4.52 4.07 2.77
digital-music 137K 16.5K 17.7K 3.26 59.21 3.24 3.48
instruments 209K 27.5K 21.7K 6.19 10.08 6.74 6.52
arts 419K 56.2K 41.8K 15.22 18.77 16.6 15.39
o�ce 714K 101K 59.9K 30.15 83.97 23.38 22.74
patio 714K 103K 73.4K 40.93 80.19 29.57 25.33
grocery 1.02M 127K 88.7K 38.31 188.05 78.9 38.36
automotive 1.56M 194K 156K 62.9 112.98 74.87 66.83

costs little while greatly improving diversity within clusters. Further, we show

that we can use diversity regularization to discover diverse sets of reviews within

product categories. The next set of experiments involves clustering regularized by

user preference, and we �nd that we can satisfy a high percentage of preferences

at a small cost. The last set of experiments studies what happens if we apply

the diversity-regularized clustering interatively. Here, we see a clear e�ect of the

regularization on team dynamics over time. An implementation of our algorithm,

and all code and datasets used to run these experiments is found athttps://

tinyurl.com/diverse-and-experienced-groups .

65

3.4.1 Datasets and algorithm scalability

The datasets we use come from online user reviews sites and the MathOver
ow

question-and-answer site. We procure two distinct types of datasets. In in �rst

case, the nodes are users on the given site while hyperedges are groups of users

that post reviews or answer questions in a certain time period. Table 3.1 contains

summary statistics for these datasets. In the second case, nodes are still users

while hyperedges now link groups of reviewers who gave the same rating to the

same product for a given Amazon product category. Table 3.2 shows summary

statistics and runtimes for these datasets.

Hyperedges based on posting time.

1. music-blues-reviews. This dataset comes from a crawl of Amazon product

reviews [142]. We consider all reviews on products that include the tag \regional

blues," a subset of vinyl music. We partition the reviews into month-long segments.

For each time segment, we create hyperedges of all users who posted a review for a

product with a given sub-tag (hyperedge category) of the regional blues tag (e.g.,

Chicago Blues).

2. madison-restuarants-reviews, vegas-bars-reviews. These datasets are derived

from reviews on Yelp1 for restaurants in Madison, WI and bars in Las Vegas,

NV. We perform the same time segmentation as the music-blues-reviews dataset,

creating hyperedges of groups of users who reviewed a place with a given sub-tag

(e.g., Thai restaurant for Madison) in a given time segment.

3. algebra-questions, geometry-questions. These are derived from users answering

questions on MathOver
ow that contain the tag \algebra" or \geometry". We

use the same time segmentation and hyperedge construction as for the reviews

datasets. The sub-tags are given by all tags matching the regular expressions

1https://www.kaggle.com/yelp-dataset/yelp-dataset

66

Figure 3.1: Various performance metrics as a function of� . Dots mark the corre-
sponding�̂ .

algebra or *geometry* (e.g., lie-algebras or hyperbolic-geometry).

Hyperedges based on product ratings.

1. software, beauty, pantry, digital-music, (musical)-instruments, arts, o�ce, pa-

tio, grocery, automotive. Here, hyperedges connect all reviewers who gave a par-

ticular rating (1{5 stars) to a product in one of 10 Amazon product categories.

We chose 10 medium/large categories among the total 29 to keep the list of results

manageable and runtimes/computational expenses reasonable, as we ran the code

on a laptop computer.

Here, a diverse clustering of users from a review platform corresponds to com-

posing groups of users for a particular category that contains both experts (with

reviews in the given category) and those with diverse perspectives (having reviewed

other categories). The reviews from these users could then be used to present a

\group of reviews" for a given category. A diverse clustering for the question-and-

67

answer platforms joins users with expertise in one math topic with those who have

experiences in another topic. This serves as an approximation to how one might

construct experienced and diverse teams, given historical data on experiences.

Scalability. The datasets in Table 3.2 are arranged in order of increasing volume.

We can see that runtimes for hypergraphs with hundreds of thousands of nodes

and hyperedges are on the order of a minute on a laptop computer. These results

indicate good scalability of our method across all regularization strengths. Run-

times for the �rst set of (smaller) datasets is on the order of 1 second or less, and

are omitted for brevity.

3.4.2 Diversity regularization

Here, we analyze the performance of Algorithm 1 on datasets with hyperedges

constructed based on posting time (Table 3.1) and those constructed based on

product ratings (Table 3.2).

I. Hyperedges based on posting time. Here, we examine the performance

of Algorithm 1 for various regularization strengths� and compare the results to

the unregularized case (Figure 3.1). We observe that the regularization only yields

mild increases in cost compared to the optimal solution of the original unregularized

objective. This \cost of diversity" ratio is always smaller than 3 and is especially

small for the MathOver
ow datasets (Figure 3.1, top left). Furthermore, the ratio

between the LP relaxation of the regularized objective and the LP relaxation of

the unregularized (� = 0) objective has similar properties (Figure 3.1, top right).

This is not surprising, given that every node in each of the datasets has a color

degree of zero for some color, and thus for very large values of� , each node is

put in a cluster where it has a zero color degree, so that the second term in the

objective is zero. Also, the approximation factor of Algorithm 1 on the data is small

68

Figure 3.2: f within for within-cluster reviews/posts.

(Figure 3.1, bottom left), which we obtain by solving the exact ILP, indicating

that the relaxed LP performs very well. In fact, solving the relaxed LP often

yields an integral solution, meaning that it solves the ILP. The computed̂� bound

also matches the plateau of the rounded solution (Figure 3.1, top left), which we

also expect from the small approximation factors and the fact that each node

has at least one color degree of zero. We also examine the \edge satisfaction",

i.e., the fraction of hyperedges whose nodes are clustered to the same color as

the hyperedge [14] (Figure 3.1, bottom right). As regularization increases, more

diversity is encouraged, and edge satisfaction decreases. Lastly, we note that the

runtime of Algorithm 1 is small in practice, taking at most a couple of seconds.

Within-cluster diversity. Next, we examine the e�ect of regularization strength

on diversity within clusters. To this end, we measure the average fraction of

within-cluster reviews/posts. Formally, for a clusteringC; this measure, which

we call f within , is calculated as follows:f within =
P

i 2 L jC(i)j=jV j
P

v2C(i) di
v=dv: In

computing this measure, within each cluster we compute the fraction of all user

reviews/posts having the same category as the cluster. Then we average these

fractions across all clusters, weighted by cluster size. Figure 3.2 shows thatf within

decreases with regularization strength, indicating that our clustering framework

yields meaningfully diverse clusters.

69

Figure 3.3: (Left) Distribution of node (reviewer) majority categories within the
Mexican restaurant review cluster. (Right) The fraction (experience homogene-
ity score) of user reviews in the Mexican cluster that were written in that same
category.

Case study: Mexican restaurants in Madison, WI. We now take a closer

look at the output of Algorithm 1 on one dataset to better understand the way in

which it encourages diversity within clusters. We cluster each reviewer in madison-

restaurant-reviews to write reviews of restaurants falling into one of nine cuisine

categories. After that, we examine the set of reviewers grouped to review Mexi-

can restaurants. To compare the diversity of experience for various regularization

strengths, we plot the distribution of reviewers'majority vote assignment categories

in Figure 3.3 (left). In other words, the majority category is the one in which they

have published the most reviews. We see that as� increases, the cluster becomes

more diverse, as the dominance of the Mexican majority category gradually sub-

sides, and it is overtaken by the Chinese category. At� = 0 (no regularization),

95% of nodes in the Mexican reviewer cluster have a majority category of Mexi-

can, while at � = 0:04; only 20% still do. Thus, as regularization increases, we see

greater diversity within the cluster, as \expert" reviewers from other cuisines are

clustered to review Mexican restaurants.

Similarly, as � increases we see a decrease in the fraction of users' reviews that

are for Mexican restaurants, when this fraction is averaged across all users assigned

70

Figure 3.4: (Left) Average cluster reviewer score for cluster 1. (Middle left) Re-
�ned average cluster reviewer score for cluster 1. (Middle right) Distribution of
average cluster reviewer score in the Amazon Pantry product category. (Right)
Distribution of re�ned average cluster reviewer score in the same category.

to the Mexican restaurant cluster (Figure 3.3, right side). We refer to this ratio

as the experience homogeneity score, which for a cluster C(i) is formally written

as experiencehomogeneityscore(C(i)) =
P

v2C(i) di
v=dv: This measure is similar

to f within except that we look at only one cluster. However, this score does not

decrease as much as the corresponding fraction in Figure 3.3 (left side), falling

from 91% to 38%, which illustrates that while the \new" reviewers added to the

cluster with increasing � have expertise in other areas, they have also reviewed

some Mexican restaurants in the past.

II. Hyperedges based on ratings: �nding diverse review sets. Here, we

assess the quality of solutions given by Algorithm 1 for the diversity-regularized

objective on the 10 Amazon product category datasets shown in Table 3.2. To

do this quantitatively, for each hypergraph we assign to reviewerv a reviewer

71

score r v, equal to the average rating that this reviewer gave to products in the

dataset. This provides a measure of how negative or positive the reviewer tends

to be when rating products, on a scale from 1 to 5. We can in turn use these

scores to provide an aggregate measure of how positive or negative an entire clus-

ter C(i) of reviewers tends to be. This is accomplished by averaging reviewer

scores: averagecluster reviewerscore(C(i)) = 1 =jC(i)j
P

v2 C(i) r v: This score is

plotted in Figure 3.4 for the 1-star review cluster,C(1). For low � , the average

score of the cluster is closer to 1 while tending to 5 with increased� . This sug-

gests that without regularization, clusterC(1) is simply bringing together review-

ers that tend to give low ratings to all products. On the other hand, increasing

� means more positive reviewers are assigned to the 1-star cluster (the average

cluster score increases), revealing products that receive low ratingseven from re-

viewers who otherwise tend to give more positive scores. However, this measure

does not distinguish whether the score increases because ofwholehyperedges (i.e.,

products) are placed in the 1-star cluster, or because a handful of positive individ-

uals were pulled from di�erent hyperedges in order to improve the regularization

term in our objective. To see whether more whole hyperedges are indeed being

placed in the 1-star cluster, we de�ne a re�ned cluster reviewer score given by

re�ned score(C(i)) = 1
jE internal (i) j

P
e2 E internal (i)

�
1=jej

P
v2 e r v

�
; whereE internal (i) =

f e 2 E s.t e � C(i); `(e) = ig. In words, for eachi -star hyperedge, we average

the reviewer scores in that hyperedge, and then average that value across all hy-

peredges in the cluster. Figure 3.4 (top right) shows that this score increases with

regularization for the 1-star cluster, meaning that we isolate 1-star products that

have received poor reviews even from reviewers that are otherwise positive.

72

Figure 3.5: Metrics for preference regularization.

3.4.3 Preference regularization

Here, we show that our objective is able to accommodate user preferences at a low

cost. Figure 3.5 shows the preference satisfaction score (fraction of nodes assigned

to their preferred category) for a majority vote (assignpc
v=0 for one majority

color and the rest to 1) preference distribution (top left), and a random preference

distribution (top right) based on the solution given by Algorithm 1. As� increases

these scores increase in both cases but the increase is even more profound in the

case of a random preference distribution. This is intuitive since a majority vote

preference is symbiotic with the \edge" part of the objective, while a random

preference distribution almost surely competes against it. At the same time, the

cost of the preference-regularized solution from Algorithm 1 in terms of the cost of

the optimal solution to the unregularized objective (Figure 3.5 (bottom left) and

Figure 3.5 (bottom right)) is comparatively very modest (never more than 3) even

73

Figure 3.6: Color assignments over time for a subset of nodes and tags in the
geometry-questions dataset for di�erent regularization parameters� (from left to
right and top to bottom: � = 0, 0.07, 0.1, 0.2, 0.4, 0.7).

in the case of a random node preference distribution.

3.4.4 Dynamic group formation

Here, we consider a dynamic variant of our diversity-regularized framework where

we iteratively update the hypergraph. More speci�cally, given the hypergraph up

to time t, we (i) solve our regularized objective to �nd a clusteringCand (ii) create

a set of hyperedges at timet + 1 corresponding toC, i.e., all nodes of a given color

create a hyperedge. At the next step, experience levels of all nodes change. This

mimics a scenario in which teams are repeatedly formed via Algorithm 1 for various

types of tasks. We only track the experiences from a window of the lastw time

steps; in other words, the hypergraph just consists of the hyperedges appearing

in the previousw steps. We initialize node histories based on the aforementioned

datasets. After, we run the iteration for w steps to \warm start" the dynamical

process, and consider this state to be the initial condition. Finally, we run the

iterative procedure forT times.

When � = 0 (i.e., no regularization), after the �rst step, the clustering will

74

Figure 3.7: Mean number of node exchanges.

create new hyperedges that increase the experience levels of each node for some

color. In the next step, no node has any incentive to cluster with a di�erent

color than the previous time step, so the clustering will be the same. Thus, the

dynamical process is entirely static. At the other extreme, if� > d max at every

step, then the optimal solution is a minority vote assignment by Theorem 18. In

this case, after each step, each nodev will increase its color degree in one color,

which may change its minority vote solution in the next iteration. With randomly

broken times, this leads to uniformity in the historical cluster assignments of each

node asT ! 1 .

For several datasets, we ran the dynamical process forT = 50 steps. We

say that a nodeexchangesif it is clustered to di�erent colors in consecutive time

steps. Figure 3.7 shows the mean number of exchanges. As expected, for small

� , nodes are always assigned the same color, resulting in no exchanges; for large

enough� , nearly all nodes exchange in the minority vote regime. Figure 3.6 shows

the clustering of nodes on a subset of the geometry-questions dataset for di�erent

regularization levels. For small� , nodes accumulate experience before exchanging.

When � is large, nodes exchange at every iteration. This is the large-� regime in

Figure 3.7.

75

3.5 Discussion

We present a new framework for clustering that balances diversity and experience

or preference and experience in cluster formation. We cast our problem as a hyper-

graph clustering task, where a regularization parameter controls cluster diversity,

and write an algorithm that achieves a 2-approximation for any value of the reg-

ularization parameter. In numerical experiments, the approximation algorithm is

e�ective and �nds solutions that are nearly as good as the unregularized objective.

Managing hyperparameters is generally daunting. Remarkably, we are able to

characterize solutions for extremal values of the regularization parameter and also

compute intervals for which it provides a meaningful tradeo� for our objective. As

the regularization parameter changes from zero to in�nity, our problem transitions

from being NP-hard to polynomial time solvable. In future work, we plan to

explore how and when this transition occurs, and whether we can obtain better

parameter-dependent approximation guarantees.

76

Part II

Methods for hypergraphs with

special structure

77

Often, higher-order networks have special structure. Methods for such networks

that take the special structure into account produce better and more interpretable

results. In Chapter 4, we examine hypergraphs that exhibit a \core-fringe" struc-

ture where only interactions of core nodes are recorded. We take advantage of this

structure to devise a principled and scalable algorithm that outperforms known

baselines for recovering the planted core nodes.

78

CHAPTER 4

PLANTED HITTING SET RECOVERY IN HYPERGRAPHS

In various application areas, networked data is collected by measuring interac-

tions involving some speci�c set ofcore nodes. This results in a network dataset

containing the core nodes along with a potentially much larger set of fringe nodes

that all have at least one interaction with a core node. In many settings, this type

of data arises for structures that are richer than graphs, because they involve the

interactions of larger sets; for example, the core nodes might be a set of individ-

uals under surveillance, where we observe the attendees of meetings involving at

least one of the core individuals. We model such scenarios usinghypergraphs, and

we study the problem of core recovery: if we observe the hypergraph but not the

labels of core and fringe nodes, can we recover the \planted" set of core nodes in

the hypergraph?

We provide a theoretical framework for analyzing the recovery of such a set of

core nodes and use our theory to develop a practical and scalable algorithm for

core recovery. The crux of our analysis and algorithm is that the core nodes are

a hitting set of the hypergraph, meaning that every hyperedge has at least one

node in the set of core nodes. We demonstrate the e�cacy of our algorithm on a

number of real-world datasets, outperforming competitive baselines derived from

network centrality and core-periphery measures.

4.1 Core and fringe nodes in networks

The data that we collect in practice is typically incomplete in several fundamental

and recurring ways, and this is particularly true for graph and network data model-

ing complex systems throughout the social and biological sciences [92, 97, 115, 118,

121]. One common type of incompleteness arises from a particular data collection

79

Figure 4.1: Hypergraphs and planted hitting sets.(Left) A 3-uniform hypergraph
on the top and a minimal hitting set on the bottom (with hyperedges superimposed
to facilitate comparison to the hypergraph). (Right) A planted hitting set (red
nodes) in a hypergraph, constituting thecore nodes. Hyperedges are illustrated
by ellipses encompassing nodes, which include both core and non-core (fringe)
nodes. We study how well we can recover the core (red) nodes if they are not
identi�ed.

procedure where one wants to record all interactions involving a set of core nodes

C. This results in what is sometimes called a \core-fringe" structure [29], where

the resulting network structure contains the core nodes along with a (potentially)

much larger set of fringe nodesF that are observed in some interaction with a

node in C. For example, in survey data,C might represent a set of respondents,

and F a set of individuals with whom they interact; this is a common scenario in

snowball and respondent-driven sampling [92, 95, 101]. Another situation arises

in restrictions on surveillance. For example, the Enron [112] and Avocado1 email

datasets are common data sources for email and networks research. Both datasets

come from collecting emails involving a coreC representing the employees of a

company. Through this process, the data includes emails involving a fringeF of

people outside the company who receive email from or send email to members of

C. However, we would not have access to emails sent between people outside the

company. We will see in our data analysis later that the size of the fringe is often

much larger than the size of the core in these datasets.

1https://catalog.ldc.upenn.edu/LDC2015T03

80

One can imagine similar scenarios in a variety of settings. In intelligence data,

one might record all of the attendees at meetings that involve at least one of a

set of individuals under surveillance. In a similar manner, telecommunications

providers can observe group text messages where only some of the members of

the group are subscribers. Furthermore, measurements of Internet structure from

service providers at the IP-layer from individual service providers provide only

a partial measurement [174], and large-scale Web crawls do not encapsulate the

entire network structure of hyperlinks [31, 32].

While a dataset may be equipped with labels of which nodes are members of

the core and which are members of the fringe, there are several situations in which

such labels are unavailable. For example, consider the email datasets described

above. Such data could be released by a hacker from outside the organization, or

a leaker from inside it, who has collected email from a set of core accounts but not

released the identity of the accounts [102]. Similarly, in the case of intelligence data

that records attendees of meetings, the data could be released with the identities

of the individuals under surveillance redacted. In other cases, the metadata may

be lost simply to issues of data maintenance | such concerns are central to the

research areas of data provenance and preservation [43, 135, 165, 172].

The question of recovering the identity of the core nodes in a dataset with core-

fringe structure is therefore a fundamental question arising in di�erent applications,

and for multiple di�erent reasons.

Core-Fringe Recovery in Hypergraphs. Here, we study the problem of iden-

tifying the set of core nodes, when the labels of which nodes are core and which

are fringe are unavailable and the data is represented by ahypergraph, i.e., a set of

nodes along with a set ofhyperedgesthat each connect multiple nodes. Figure 4.1

illustrates this model. The hypergraph model is apt for many of the scenarios de-

81

scribed above, including emails, meeting attendees, and group messages. While the

hypergraph model is richer than a more standard graph model, the higher-order

structure also presents challenges. If a hyperedge connects a (latent) core node

and several fringe nodes, an algorithm trying to identify the core has to consider

all nodes in the hyperedge as possible candidates.

We �rst provide theoretical results that motivate the development of an algo-

rithm for recovery of the core. The key structural property of our analysis is that

the core nodes constitute ahitting set, meaning every hyperedge in the hypergraph

has at least one node in the core (Fig. 4.1). This property comes from how the data

is measured | every included hyperedge comes from an interaction of a member

of the core with some other set of nodes. We thus think of the core as a \planted"

hitting set that we must �nd in the data. Our �rst theoretical results rely on two

assumptions (both relaxable, to some extent): the planted hitting set correspond-

ing to the core is (i) minimal, that is, no node could be removed to make the hitting

set smaller; and (ii) relatively small, i.e., bounded by a constantk. We analyze

how large theunion of all minimal hitting sets, denotedU(k), can be. We build

upon results in �xed-parameter tractability [61, 62] to show that jU(k)j is �(kr)

in the worst case, wherer is the size of the largest hyperedge. Importantly, this

bound is independent of the hypergraph's size, andU(k) is guaranteed to contain

our planted hitting set if it meets the modeling assumptions.

Furthermore, we prove that a classical greedy approximation algorithm for set

cover relates to partial recovery of the planted hitting set, even in cases where the

above assumptions do not hold. Speci�cally, in a hypergraph wherer is the size

of the largest hyperedge, we show that the output of the algorithm must overlap

with the planted hitting set by at least a O(1=r) fraction of the nodes, provided

that the hitting set size is within a constant factor of the minimum hitting set size.

82

Motivated by these two main results, we design a core recovery algorithm, which

we call the union of minimal hitting sets (UMHS). This algorithm is practical

and scalable, using only simple subroutines and having computational complexity

roughly linear in the size of the data. The idea is to run the greedy algorithm

multiple times with di�erent random initializations to �nd several minimal hitting

sets and then to simply take the union of these hitting sets. The �rst part of

our theory says that the output should not grow too large, and the second part

of our theory says the output should also overlap the planted hitting set. We

show that our method consistently outperforms a number of baselines derived

from network centrality and core-periphery structure for hypergraphs on several

real-world datasets.

Our approach to the planted hitting set problem is purely combinatorial. This

contrasts with typical planted problems such as the stochastic block model [1, 66,

149] and planted clique recovery [11, 68], which are based on probabilistic structure.

Thus, the methods we use are fundamentally di�erent than what is common for

these types of problems. Moreover, we show that if random block-model-type

structure exists for our problem, then the problem becomes substantially easier.

4.2 Problem setup and theoretical results for core recovery

We start with some formal de�nitions to facilitate our presentation of the theoreti-

cal results. A hypergraphG consists of a set of nodesV and a set of hyperedgesE,

each a subset ofV of size at least two. Therank r of a hypergraph is the maximum

size of any hyperedge, i.e.,r = maxe2 E jej. A hypergraph is calledr -uniform if all

hyperedges have cardinality equal tor .

In our setup, there is some unidenti�ed subsetC � V that is designated as the

set of \core nodes." Our goal is to �ndC, knowing that C is a hitting set of G

83

(i.e., for everye 2 E, there is somev 2 e\ C). We say that C is planted since we

do not know its identity. Absent any additional information, we are helpless | it

could be that C = V. However, we can do better by assuming two properties ofC

(both relaxable): (i) C is a minimal hitting set in G and (ii) C is bounded in size,

i.e., jCj � k. Under these constraints, it is certainly true thatC is contained in

the union of all minimal hitting sets having at most k nodes, which is a principle

object of our analysis:

De�nition 19 Given a hypergraphG, U(k) is the union of all minimal hitting

sets ofG of size at mostk.

We next show bounds onjU(k)j that are independent of the size of the graph.

This says that C is contained in a relatively small set if it satis�es the conditions.

Furthermore, we can �nd U(k) in time exponential in k but polynomial in the size

of the graph [61]; however, we develop more practical algorithms in Section 4.3.

After, we relax the assumptions on minimality and get results onpartial recovery,

i.e., algorithms that are guaranteed to �nd a part ofC. Finally, we show how these

results improve under a random hypergraph model.

4.2.1 Minimal hitting sets

First let us suppose that we are givenG and asked to �nd C, where we know that

C is minimal and jCj � k. We ask the following question: is it possible to �nd

a small setH � G, whose size is independent ofG, such that C � H ? In this

section, we answer the question in the a�rmative.

We at least know that the union ofall minimal hitting sets of size at mostk,

denotedU(k) (Theorem 19),must contain C. But how large can this set be? The

following result says thatU(k) actually cannot be too large.

84

Lemma 20 In a hypergraph of rankr , U(k) has size�(kr) in the worst case.

Damaschke and Molokov established most parts of this result using sophisti-

cated techniques from parameterized complexity theory [61, 62]. Chitnis et al.

independently established similar (albeit looser) results for streaming data appli-

cations [52]. Here, we provide a concrete, complete characterization and proof

that should be accessible to anyone familiar with basic graph theory by using the

celebrated sun
ower lemma of Erd•os and Rado [77]. A consequence of Theorem 20

is the following theorem about how small of a set we can �nd that is guaranteed

to contain the core:

Theorem 21 Let C be a planted minimal hitting set withjCj � k in a hypergraph

of rank r . Then we can �nd a setD of sizeO(kr) that is guaranteed to containC.

We begin by providing a self-contained proof of the upper bound in Theorems 20

and 21. Namely, letG be a hypergraph of rankr , and let U(k) be the union of all

minimal hitting sets in G of size at mostk. We will �nd a function g(r; k) = O(kr)

so that jU(k)j � g(r; k). To �nd such a function, we use a combinatorial structure

called a sun
ower [34]. A collection ofr sets f X 1; X 2; ::::; X r g is an r -sun
ower

if for all pairs of distinct sets X i , X j , the pairwise intersectionX i \ X j is equal

to the mutual intersection
T r

i =1 X i . The term comes from the fact that we can

think of the X i as the \petals" of the sun
ower: they share a \center"
T r

i =1 X i and

are otherwise pairwise disjoint from each other. A famous theorem of Erd•os and

Rado asserts that every su�ciently large collection of sets must contain a large

sun
ower.

Lemma 22 (Sun
ower Lemma [77]) De�ne the function � (r; k) = r !(k � 1)r .

Any collection of more than� (r; k) sets, each of size at mostr , must contain a

k-sun
ower.

85

We use this result to �nd the desired functiong(r; k) = O(kr). Later, we will

establish an asymptotically matching lower bound. We now state and prove the

upper bound.

Lemma 23 Let G be a hypergraph of rankr . Then jU(k)j = O(kr).

Proof We assume thatG has at least one hitting set of size at mostk, as otherwise

the statement of Theorem 23 holds withU(k) equal to the empty set. We modify

G according to the following iterative procedure, which operates in discrete phases.

We start by de�ning H0 = G, and produce a succession of hypergraphsH1; H2; :::,

with H t the hypergraph at the end of phaset. For each hypergraphH t , let C(H t)

denote the set of all hitting sets of size at mostk in H t , and let C� (H t) denote

the set of all minimal hitting sets of size at mostk in H t . We will establish by

induction that each hypergraphH t has at least one hitting set of size at mostk.

At the start of phase t, we ask whetherH t � 1 has more than� (r; k + 1) hy-

peredges, where� is the function from Theorem 22. If it doesn't, we declare the

procedure to be over. If it does, then we �nd a (k + 1)-sun
ower in the set of

hyperedges, consisting of hyperedgesX t;1; X t;2; : : : ; X t;k +1 .

Now, the core of the sun
ower found in phaset, which we will denote by

Yt =
T k+1

i =1 X t;i must be non-empty, for if it were empty, thenH t � 1 would con-

tain k + 1 pairwise disjoint hyperedges, and hence could not have a hitting of size

at most k. We de�ne H t as follows: starting fromH t � 1, we remove the hyper-

edgesX t;1; X t;2; : : : ; X t;k +1 and add the hyperedgeYt . We observe the following

properties.

1. Every hitting set in H t � 1 of size at mostk must intersect Yt .

2. C(H t � 1) = C(H t), and henceC� (H t � 1) = C� (H t).

86

To see Property (1), By the de�nition of a sun
ower, the setsX t;i nYt are pairwise

disjoint for i = 1; 2; : : : ; k + 1. Thus, if C is a set of size at mostk that doesn't

contain any nodes ofYt , then it must be disjoint from at least one of the setsX t;i ,

and hence it can't be a hitting set forH t � 1. The de�nition of H t is as follows:

starting from H t � 1, we remove the hyperedgesX t;1; X t;2; : : : ; X t;k +1 and add the

hyperedgeYt . SinceH t � 1 and H t are hypergraphs on the same node sets, their

respective collections of hitting setsC(H t � 1) and C(H t) are also over the same sets

of elements.

Now, let C 2 C(H t � 1). Then by Property (1), it must intersect Yt . Since

Yt is the only hyperedge inH t but not H t � 1, it follows that C is a hitting set

for H t , and henceC 2 C(H t). Conversely, let C0 2 C(H t). Since Yt � X t;i for

i = 1; 2; : : : ; k+1, it must be that C0 intersects eachX t;i . SinceX t;1; X t;2; : : : ; X t;k +1

are the only hyperedges inH t � 1 but not H t , it follows that C 2 C(H t � 1). Thus,

C(H t � 1) � C (H t) � C (H t � 1), and so they are equal as sets.

We apply the same process in each phase, producingH1 from G = H0, then

producing H2 from H1 and so forth. By induction using Property (2), sinceH t � 1

contains at least one hitting set of size at mostk, so doesH t , as required. Since

the procedure reduces the number of hyperedges in each phase, it must eventually

terminate, in some phaset � . We write H � = H t � and by applying Property (2)

transitively,

C� (H) = C� (H �): (4.1)

We say that a node is isolated if it does not belong to any hyperedge. LetT �

be the set of non-isolated nodes ofH � . Since the procedure stopped when faced

with H � , H � had at most � (r; k + 1) hyperedges. Since each hyperedge has most

r elements, we have

jT � j � r� (r; k + 1) = r � r !kr ; (4.2)

87

Figure 4.2: The hypergraphT2 (r = 3) used in the proof of Theorem 24 with
hyperedges identi�ed by dotted shapes.

and hencejT � j is bounded byO(kr). Finally, recall that U(k) is the union of all

minimal hitting sets in G of size at mostk. We can write U(k) =
S

C2C� (H) C, and

by Eq. (4.1), U(k) =
S

C2C� (H �) C. No minimal hitting set C in H � can contain an

isolated nodev, since thenC � f vg would also be a hitting set inH � . From this,

U(k) � T � , and jU(k)j � j T � j = O(kr) by Eq. (4.2). 2

Next, we show asymptotic tightness for constant hypergraph rankr , by con-

structing a family of hypergraphs for whichjU(k)j =
(kr). The following lemma

combined with Theorem 23 proves Theorem 21.

Lemma 24 For each constantr � 2, there exists an in�nite family of rank-r

hypergraphsG and parametersk, with both the number of nodes inG and k going

to in�nity, for which jU(k)j =
(kr).

Proof

For a parameterb, consider a graph �b that consists ofbdisjoint completeb-ary

trees of depthr . We will refer to the roots of theb trees in � b as the root nodes

of � b, and to the leaves of the trees in �b as leaf nodes. LetTb be the hypergraph

on the node set of �b whose hyperedges consist of all root-to-leaf paths in �b, from

the root of one of theb trees in � b to a leaf of the corresponding tree (the example

88

of T2 for r = 3 is in Fig. 4.2). All edges inG have sizer . Let � be any function

that maps nodes of �b to numbers in f 1; 2; ::::; bg with the following properties: (i)

� is a bijection from the roots of �b to f 1; 2; : : : ; bg; and (ii) for each non-leaf node

v in � b, � is a bijection from the children ofv to f 1; 2; ::::; bg. For each nodev, we

will call � (v) its label (with respect to �), and we will say that � is a consistent

labeling if it satis�es (i) and (ii). Let v�
� be unique leaf node for which all the nodes

on the root-to-leaf path have the labelb.

For a consistent labeling� , let C� be the set of all nodesv satisfying two

properties: (i) � (u) = b for all nodesu on the unique path from a root of �b to

v (other than v itself), and (ii) � (v) 6= b. Let C �
� = C� [f v�

� g. We observe the

following two facts.

1. For every consistent labeling� , the set C �
� is a minimal hitting set for Tb.

2. Every node v of Tb belongs to at least one set of the formC �
� for some

consistent labeling� .

To prove (1), we claim that C �
� is a hitting set. Consider any hyperedgeX of

Tb, consisting of a root-to-leaf pathP in � b. If all nodes onP have labelb, then

the leaf node ofP is v�
� , and henceX intersectsC �

� . Otherwise, consider the �rst

node v on the path P that has a label unequal tob. Thus, v 2 C �
� , and againX

intersectsC �
� and C �

� is a hitting set. We now argue that it is minimal. If we delete

v�
� from C �

� , then C �
� n f v�

� g would be disjoint from the hyperedgeX consisting of

the root-to-leaf path to v�
� . If we delete some otherv�

� , then a hyperedgeX that

passes throughv does not pass through any other node ofC �
� on its way from root

to leaf, and soC �
� n f vg would be disjoint from X .

To prove (2), we simply choose any consistent labeling� such that � (u) = b

for all nodesu on the unique path from a root of �b to v (other than v itself), and

� (v) 6= b.

89

Now, we consider the size of a set of the formC �
� . SinceC �

� containsb� 1 nodes

from each of the �rst r � 1 levels of the trees in �b, and b from the lowest level, we

have

jC �
� j = (r � 1)(b� 1) + b:

We de�ne k = (r � 1)(b� 1) + b. Since each setC �
� is a minimal hitting set of

sizek, from (2) we see that the unionU(k) of all minimal hitting sets of sizek is

the entire node set ofTb.

The number of nodes inTb is greater than br , and hencejU(k)j > br . Since

k � br, we have that jU(k)j > br � (k=r)r = r � r kr . 2

These theoretical result establish justi�cation for why a set of core nodes might

be identi�able | if the core is a minimal hitting set, it is certainly contained in a

set that has size independent of the graph. Next, we consider the case when the

core may not be a minimal hitting set.

4.2.2 Non-minimal hitting sets

Here we present results on which types of nodes in a planted hitting setC must

be contained inU(jCj) when the hitting set is itself not minimal. This matters in

practice, whenC may not be minimal.

Greedy matchings intersect the planted hitting set

One �rst results are based on �nding hitting sets with a greedy algorithm for the

set cover problem. The classical algorithm is simple (Algorithm 3): loop through

each hyperedge and if no vertex in the current hyperedge is in the current cover

S, add all of the nodes in the hyperedge toS. The greedy algorithm produces a

set that is both a hitting set and a maximal matching. To see that it is a hitting

set, suppose that all nodes in a hyperedgeh were not added. Thenh would have

90

Algorithm 3 Maximal matching r -approximation to the minimum hitting set
that intersects the core.

1: Input : Hypergraph G = (V; E) of rank r
2: Output : Set coverS with jSj � rk � .
3: S ;
4: for (u1; ::::; ui) 2 E do
5: if u1; ::::; ui =2 S then
6: S S [f u1; ::::; ui g
7: end if
8: end for
9: return S

been added toS at the time the algorithm processed it. The output is a maximal

matching because if we could append another hyperedgeh to S, then h would have

already been added toS when the algorithm processed it.

Let k� be theminimum hitting set size (the smallest size of all minimal hitting

sets). The output of Algorithm 3 is anr -approximation if the hypergraphG is an

r -uniform hypergraph: in the worst case, any hitting set contains at least one of

r nodes from each hyperedge, and we therefore havek� � j Sj=r. It turns out that

this greedy algorithm must also partially overlap with the planted hitting set. We

formalize this in the following lemma.

Lemma 25 Let jB j � bk� for some hitting setB . If the input to Algorithm 3 is

a rank-r hypergraph, then the outputS satis�es

jB \ Sj=jB j �
1
rb

:

Proof Let r1 be the number of vertices in the hyperedge containing the least

vertices. The setS contains within itself all vertices from h hyperedges whereh

satis�es h � j Sj=r1 � rk � =r1. SinceB is a hitting set, it must contain at least one

vertex from each of theh hyperedges inS. From this, we obtain jS \ B j � h �

k� =r1 � 1
br jB j. 2

91

Lemma 25 guarantees that the greedy algorithm will output a result that overlaps

any hitting set, including the planted one. Thus, we immediately get the following

corollary.

Corollary 26 If the planted hitting setC has sizejCj � ck� then the output of

Algorithm 1 is a setS with jS \ Cj=jCj � 1
cr , i.e., S intersects at least a fraction

of 1
cr of C.

We can process the hyperedges in any order within Algorithm 3, and this will

be important for our practical recovery algorithm that we develop later. Another

immediate corollary of Theorem 25 says that regardless of the processing, the

outputs must be fairly similar.

Corollary 27 Any two outputs S1 and S2 of Algorithm 3 satisfy jS1 \ S2j �

1
r 2 max(jS1j; jS2j).

Classes of nodes that must be in U(jCj)

Our next results are on nodes that must appear inU(jCj). First, a node in C must

be in U(jCj) if there is a hyperedge containingu where all of the other nodes in

the hyperedge are not inC.

Lemma 28 Let G be a rank-r hypergraph with planted hitting settingC. If u 2 C

and there exists a hyperedge(u; v1; ::::; vi) with i � r � 1 with v1; : : : ; vi =2 C, then

u 2 U(jCj).

Proof We perform a pruning ofC as follows. Check whether there exists a node

w with C n f wg still being a hitting set of smaller cardinality. If this is the case,

update C to C n f wg and continue pruning. Upon termination, the remaining set

is a minimal hitting set C0 � C. Clearly, jC0j � j Cj so that C0 � U(jCj). However,

u 2 U(jCj) since (u; v1; : : : ; vi) is a hyperedge wherev1; : : : ; vi =2 C. 2

92

The above lemma provides a class of nodes in a planted hitting set which are

guaranteed to be in the union of minimal hitting sets of size no more than that of

the planted hitting set itself. Although this lemma is purely combinatorial, it will

be useful for analyzing random hypergraphs in Section 4.2.3.

Next, we show that nodes adjacent to other nodes deeply integrated intoC

must also be inU(jCj). We do not use this result anywhere else in the text, but we

include it for theoretical interest and intuition about unions of minimal hitting sets.

Formally, de�ne a nodev to be in the interior of a hitting set C if all hyperedges

containing v are comprised entirely of nodes inC. Our next result is that a node

in C must appear inU(jCj) if all the other nodes in a hyperedge containingu are

in the interior of C.

Lemma 29 Let G be a rank-r hypergraph with planted hitting setC. If u 2 C

and there exists a hyperedge(u; v1; : : : ; vi) wherev1; : : : ; vi are in the interior of C,

then u 2 U(jCj).

Proof Sincev1; : : : ; vi are in the interior of C, C0 = C n f v1; : : : ; vi g is a hitting

set as well. Now perform pruning onC0 as in the previous proof, the output of

which is C0 � C0, and since clearlyjC0j � j Cj, we must have that C0 � U(jCj).

Clearly u was not deleted during pruning since (u; v1; : : : ; vi) is a hyperedge with

v1; : : : ; vi =2 C, so that u 2 C0 � U(jCj). 2

Thus far, we have made no assumptions on the structure of the hypergraph. In

the next section, we show that assuming a stochastic-block-model-type hypergraph

structure gives substantial improvements in recovery results.

93

4.2.3 Recovery in a random hypergraph model

In this section we show that if we make additional assumptions on the structure

of the problem, it becomes much easier. Most research that studies guarantees on

planted structure recovery in graphs (e.g., community detection or planted clique

detection) already makes these types of assumptions in order to make the problem

feasible. The fact that we can do anything without such assumptions is quite

remarkable.

More speci�cally, we show here that under certain stochastic-block-model-like

assumptions for 3-uniform hypergraphs laid out in this section | which would

already be standard in other graph recovery problems| we can reduce the size of

the union of minimal hitting sets (and hence of the upper bound of the size of

the output of our algorithm) from O(k3) in the general case toO(k2 logk) in this

special structured case.

We emphasize that our main results and the algorithms we use for analyzing

data are purely combinatorial, making no assumption on this type of probabilistic

structure. And the algorithms we develop later perform extremely well even when

no such structure is assumed. Instead, we simply wish to highlight that some of

our bounds can be improved under random hypergraph models. We also have an

additional goal of introducing our problem to the rich literature on �nding planted

structure in random graphs.

Let us assume that the hyperedges are generated according to a stochastic

block model (SBM) for hypergraphs [90]. One block will be the coreC and the

other the fringe nodesF . We assume that there is zero probability of a hyperedge

containing only nodes inF . Explicitly, we will state that the probability of a

hyperedge between nodes inC is p while the probability of a hyperedge containing

at least one node inC and at least one node inF is q.

94

We �rst provide a lemma on the independence number of hypergraphs drawn

from the hypergraph SBM. This will help us control the size ofjU(jCj)j.

Lemma 30 Let � (G) be the independence number of anr -uniform hypergraphG

drawn from the SBM onn vertices. Then

Pr(� (G) < k) � 1 � n� 1
2 (3r ! ln n

2p +(r � 1)); k =
3r ! ln n

2p
+ (r � 1)

Proof We follow a proof technique common in the combinatorics literature [116].

Let z =
� jGj

k

�
, S1; : : : ; Sz the size-k subsets of vertices ofG, and X i an indicator

random variable forSi being an independent set ofG, soX i = 1 only happens when

all
� k

r

�
possible hyperedges among the vertices ofSi do not appear in the hyperedge

set of G. Note that this happens with probability (1 � p)(
k
r) = (1 � p)

k ���� (k � r +1)
r ! �

(1 � p)
k (k � r +1)

r ! . Thus,

Pr(� (G) � k) = Pr(
P

i E(X i) � 1) �
P

i E(X i) =
� n

k

�
(1 � p)(

k
r)

�
� n

k

�
(1 � p)

k (k � r +1)
r ! � nk

�
(1 � p)(k� r +1) =r !

� k

� (ne� p(k� r +1) =r !)k

= n� 1
2 (3r ! ln n

2p +(r � 1))

so that Pr(� (G) < k) � 1 � n� 1
2 (3r ! ln n

2p +(r � 1)), as desired. 2

This lemma helps us prove a result for 3-uniform hypergraphs.

Theorem 31 For 3-uniform hypergraphs,

Pr
�
jU(jCj)j � O(jCj2 lnjCj + jCj2x) + o(jCj3)

�
� 1 � n� 1

2 (9 ln j C j
p +2);

with x as de�ned in [62].

Proof First, � (G) = jGj � k� [99, Theorem 3.15], so� (C) = jCj � k� and

k� = jCj� � (C) � j Cj� 9 lnjCj=p� 2, where the inequality follows from Theorem 30

95

and the inequality holds with probability at least 1� n� 1
2 (9 ln j C j

p +2). For 3-uniform

hypergraphs,jU(k)j � 1
4k� (k2 � (k�)2 + 2k� x) + o(k3) [62, Theorem 18]. 2

Theorem 31 enables us to �nd a small setJ that contains the coreC with high

probability.

Theorem 32 Let C with jCj = k be a planted hitting set in a 3-uniform hypergraph

drawn from the SBM parameterized byp and q with ck nodes for somec � 1. Then

with high probability in k, we can �nd a setJ with jJ j � O(k2 ln k + k2x) + o(k3)

that is guaranteed to containC.

Proof The number of ways to link a vertex in the core to two nodes outside the

core is
� k(c� 1)

2

�
so that the probability of a node having at least one hyperedge to

two nodes outside the core isw = 1 � (1 � q)(
k (c� 1)

2). Thus wk is the probability of

each of the nodes in the core having at least one hyperedge to two nodes outside the

core. This probability tends to 1 ask ! 1 , so by using Theorem 28,C � U(jCj)

with probability tending to 1. Setting J = U(jCj) and using Theorem 31 gives the

result. 2

Of course, the above theorem is only useful if we have a bound on the quantity

x since only in that case are we able to improve our bound on the size ofJ from

O(k3) to O(k2 logk). Absent any additional information, x � k� [62].

In the following section, we build a practical algorithm for recovery of planted

hitting sets based on the union of minimal hitting sets, the theory for which has

been examined so far.

96

4.3 Union of Minimal Hitting Sets (UMHS): A practical

core recovery algorithm

Based on the theoretical results described above, we now develop a practical algo-

rithm for recovering a planted hitting set in a hypergraph. To put our theory into

practice, we place several of our theoretical results in context. First, Theorem 25

says that Algorithm 3 produces outputs thatmust overlap with the planted hitting

set. Moreover, this was trueregardless of the order in which Algorithm 3 processed

the hyperedges. Thus, the basic idea of our algorithm is straightforward: we �nd

many hitting sets S from Algorithm 3 and take their union.

By Theorem 26, if the planted hitting setC is close to a minimum hitting set,

then any output from Algorithm 3 will recover a large fraction of it. Furthermore,

by Theorem 27, the outputs of Algorithm 3 must overlap by a modest amount, so

taking the unions of outputs cannot grow too fast. To limit growth further, we

can prune the output of Algorithm 3 to be a minimal hitting set (this also tends

to give better results in practice). Now, Theorem 21 says that the union of pruned

outputs will be bounded, provided the graph is large enough and that the outputs

are small enough. This turns out to be the case in our experimental results, as we

will see in the next section. To summarize, our procedure is as follows:

(i) Find a hitting set S from Algorithm 3, processing the hyperedges in a random

order;

(ii) Prune S to be a minimal hitting set S0; and

(iii) Repeat steps (i) and (ii) several times and output the union of theS0 found

in step (ii).

This method is formalized in Algorithm 4. Again, the key rationale is that Theo-

rem 25 holds regardless of the ordering in which the hyperedges are processed. A

97

Algorithm 4 Union of Minimal Hitting Sets (UMHS) algorithm

1: Input : Hypergraph G = (V; E) and number of iterationsN
2: Output : Approximation S0 to the planted hitting set in G
3: S0 ;
4: for n 2 f 1; ::::; Ng do
5: S Algorithm1(G)
6: Prune S to be minimal hitting set of G
7: S0 S0 [S
8: end for
9: return S0

similar algorithm for the special case of 2-uniform hypergraphs (i.e., graphs) was

recently analyzed [29].

The output of Algorithm 4 is by construction a union of minimal hitting sets

(UMHS) of the input hypergraph G, and we will refer to the algorithm as UMHS.

The theoretical guarantees from Section 4.2.1 apply here. Speci�cally, under the

assumption that the planted hitting set C is itself minimal, we are guaranteed

full recovery with su�cient iterations. However, planted hitting sets are rarely

minimal in practice (in fact, they are not for the datasets we consider). However,

Theorem 21 still guarantees that the output of the algorithm will not grow very

quickly, and our experiments verify that this is the case in practice.

Importantly, Algorithm 4 runs in time linear in the number of hyperedges.

In particular, suppose the input is a hypergraphG = (V; E) of rank r with a

minimum hitting set of sizek� and that we invoke Algorithm 3 N times. Then the

algorithm produces an output inO(Nr 2k� jE j) time. This happens because every

call to Algorithm 3 takes O(r jE jj) time, while pruning H to be a minimal hitting

set ofG requiresO(r 2k� jE j) time in the worst case (in practice, it is much faster).

Thus, in the worst case, pruning to a minimal hitting set takes more time than

one iteration of the greedy algorithm. However, this increase in processing time

is not prohibitive since it only increases by the constant factorrk � . Nonetheless,

98

Table 4.1: Summary statistics of core-fringe hypergraph datasets. We construct
r -uniform hypergraphs from six corpora for rankr = 3; 4; 5 along with non-uniform
hypergraphs where the rank is at most 25. The DBLP and Math tags datasets are
collections of 50 hypergraphs, so we report the value range. The fringe tends to
be much larger than the core in these datasets.

number of nodes size of core (jCj) number of hyperedges

r = 3 = 4 = 5 � 25 = 3 = 4 = 5 � 25 = 3 = 4 = 5 � 25

Enron 1,283 976 869 4,423 84 73 77 132 2,361 1,048 614 15,653
Avocado 5,521 3,510 2,965 36,244 227 218 211 243 21,690 12,455 6,973 96,966

W3C 1,778 749 308 14317 353 237 125 1,509 1,882 389 88 19,821
DBLP 3{875 4{514 5{261 2{2,277 3{114 4{90 5{55 2{142 1{753 1{265 1{78 1{1,547

Math tags 93{1,180 97{1,239 121{1,153 432{1,370 3{15 4{15 5{15 2{15 112{13,771 128{17,424 98{13,410 2,098{42,585

pruning is crucial as in practice we �nd that it drastically reduces the output size.

4.4 Experimental results

We now test Algorithm 4 on a number of real-world datasets and compare to sev-

eral baselines derived from network centrality and core-periphery structure. We

�nd that it consistently outperforms these baselines. Lastly, we show that we do

not need too many iterations within Algorithm 4 (the parameterN) for our per-

formance levels. The code and datasets we used to perform these analyses are all

available at

https://github.com/ilyaamburg/Hypergraph-Planted-Hitting-Set-Recovery .

4.4.1 Data

The �ve datasets we use broadly fall into three broad classes based on the types

of planted hitting problems we derive from them. The �rst group is three email

datasets (Enron, Avocado, and W3C), where the planted hitting set is a group

of people at an organization, and hyperedges come from emails involving multiple

addresses. Next, in the DBLP dataset, a planted hitting set is a set of authors

who publish at the same conference in a given year, and we consider several such

99

conferences. Finally, in the Math Stack Exchange tagging dataset, the core is a one-

hop neighborhood of a node, which is a hitting set for the two-hop neighborhood

of the node; again, we consider several hitting sets. In this sense, the DBLP and

tagging datasets are collections of hypergraphs with core-fringe structure. We now

provide additional details, and Table 4.1 lists summary statistics of the datasets.

Enron [112], Avocado, 2 and W3C [57]. The hyperedges in these datasets are

emails, where the nodes are the sender and all receivers (more speci�cally, their

email addressses). Repeated hyperedges are discarded. In the Enron data, the

core is a set of 150 employees whose email was made public when the company

was under United States federal investigation. The Avocado corpus comes from a

now-defunct technology company, where the core are employee email accounts (we

exclude email accounts associated with conference rooms or mailing lists from the

core). Finally, the the W3C dataset comes from emails on mailing lists related to

W3C; the core is all email addresses with aw3c.org domain.

DBLP. DBLP is an online computer science bibliography. We construct a hyper-

edges from coauthorship data in conference proceedings. We randomly sampled

50 conferences and constructed a set of core nodesC from the authors of a given

conference in a randomly selected year. We then took the core-fringe hypergraph

to be all hyperedges involving at least one of these authors. In total, we have 50

core-fringe hypergraphs.

Math tags [27]. This dataset comes from tags applied to questions on the Math

Stack Exchange web site.3 Hyperedges are sets of tags that have been applied

to the same question. We sampled 50 tags with relatively small cores and then

formed a core set of nodesC from the one-hop neighborhood of that tag, i.e., from

the tag and all tags that appear as co-tags with the tag. The setC is then a

2https://catalog.ldc.upenn.edu/LDC2015T03
3https://math.stackexchange.com/

100

planted hitting set for the two-hop neighborhood of that tag (i.e., all hyperedges

containing at least one tag from the planted hitting setC). In total, we again have

50 core-fringe hypergraphs.

We constructed two types of �ltered hypergraph datasets. First, we constructed

3-, 4-, and 5-uniform hypergraphs (derived as sub-hypergraphs). By imposing

uniformity, we can facilitate comparison of UMHS performance to that of other

centrality-based algorithms which work on only uniform hypergraphs (in particu-

lar, H- and Z-eigenvector centrality). This also lets us study the performance of

our algorithm as we change the rank of the hypergraph. In addition, since our

algorithm naturally handlesnonuniform hypergraphs, we also constructed nonuni-

form sub-hypergraphs of rank 25 (in the Stack Exchange data, posts have at most

5 tags, so we include the entire hypergraph for this data). Limiting the rank to

25 cuts out outliers. In particular, it removes large mailing lists in email data and

specialized papers with many authors. This subsampling omits a relatively small

fraction of hyperedges|11% for the Enron dataset, 1% for the Avocado dataset,

and 0.2% for the W3C dataset.

4.4.2 Recovery results

We tested the UMHS algorithm on several datasets, and it outperforms other

algorithms consistently. For baselines, we use two techniques. First, we use notions

of network centrality developed for hypergraphs with the idea that nodes in the

core could be identi�ed via large centrality scores. Speci�cally, we compare against

(i) hypergraph degree centrality (the number of hyperedges in which a node

appears) [107];

(ii) clique graph eigenvector (eigenvector centrality on the weighted clique graph,

wherewij is the number of hyperedges containingi and j) [24];

101

Table 4.2: Planted hitting set recovery performance for our algorithm and com-
petitive baseline algorithms. We compare our proposed union of minimal hitting
sets (UMHS) method against �ve hypergraph centrality measures | degree [107],
clique-motif graph eigenvector [24], a projected-graph version of PageRank central-
ity [146], Z-eigenvector [24], H-eigenvecgtor [24] | as well as two core-periphery
measurements | Borgatti-Everett [38] and k-core [164]. Each method produces
an ordering of vertices, and we measure performance by precision at the core size
(fraction of top-jCj ranked nodes that are inC) and area under the precision-recall
curve for r -uniform hypergraphs (r = 3; 4; 5), as well as nonuniform hypergraphs
with r � 25 nodes in each hyperegde. The DBLP and tags datasets are collec-
tions of 50 hypergraphs, and we report the mean and standard deviation for these.
UMHS scores outperforming all baselines by at least an 8% relative improvement
are bold. Any method's score outperforming UMHS by at least 8% is also bold.
Our UMHS method performs he best on all the non-uniform hypergraphs and
many of the uniform cases.

Dataset r UMHS Degree Clique-eigen PageRank Z-eigen H-eigen Borgatti-Everett k-core

P@jCj Enron 3 0.52 0.33 0.14 0.36 0.11 0.13 0.14 0.33
4 0.53 0.33 0.21 0.36 0.18 0.16 0.19 0.33
5 0.49 0.25 0.16 0.35 0.14 0.17 0.14 0.17

� 25 0.64 0.35 0.17 0.37 - - 0.16 0.33

Av. 3 0.91 0.60 0.56 0.62 0.54 0.58 0.59 0.58
4 0.82 0.57 0.52 0.60 0.33 0.53 0.52 0.56
5 0.72 0.56 0.49 0.62 0.34 0.50 0.49 0.33

� 25 0.98 0.62 0.54 0.64 - - 0.14 0.17

W3C 3 0.51 0.38 0.20 0.46 0.11 0.21 0.19 0.35
4 0.43 0.43 0.30 0.54 0.30 0.31 0.30 0.40
5 0.30 0.42 0.31 0.59 0.34 0.33 0.33 0.41

� 25 0.60 0.28 0.13 0.31 - - 0.12 0.24

DBLP 3 0.59� 0.15 0.63� 0.15 0.44� 0.24 0.66� 0.14 0.42� 0.28 0.41� 0.26 0.41� 0.26 0.44� 0.21
4 0.48� 0.15 0.58� 0.17 0.40� 0.27 0.63� 0.18 0.36� 0.29 0.39� 0.28 0.38� 0.31 0.40� 0.22
5 0.39� 0.15 0.65� 0.22 0.56� 0.31 0.63� 0.20 0.59� 0.35 0.57� 0.31 0.56� 0.31 0.56� 0.25

� 25 0.72� 0.13 0.60� 0.13 0.24� 0.18 0.64� 0.13 - - 0.24� 0.21 0.24� 0.16

Tags 3 0.80� 0.14 0.58� 0.13 0.43� 0.15 0.53� 0.14 0.41� 0.14 0.45� 0.13 0.50� 0.14 0.43� 0.12
4 0.71� 0.18 0.48� 0.12 0.38� 0.12 0.51� 0.12 0.31� 0.14 0.39� 0.11 0.31� 0.10 0.38� 0.11
5 0.61� 0.19 0.40� 0.10 0.33� 0.10 0.42� 0.13 0.24� 0.11 0.32� 0.10 0.31� 0.10 0.33� 0.10

� 25 0.83� 0.10 0.47� 0.13 0.33� 0.12 0.47� 0.13 - - 0.30� 0.11 0.34� 0.12

AUPRC Enron 3 0.18 0.15 0.08 0.17 0.07 0.07 0.08 0.15
4 0.16 0.16 0.10 0.18 0.09 0.09 0.10 0.16
5 0.17 0.13 0.10 0.18 0.10 0.10 0.10 0.10

� 25 0.33 0.14 0.05 0.16 - - 0.05 0.13

Av. 3 0.43 0.38 0.33 0.40 0.31 0.36 0.37 0.36
4 0.38 0.35 0.30 0.38 0.15 0.31 0.30 0.34
5 0.34 0.34 0.28 0.39 0.16 0.28 0.27 0.33

� 25 0.69 0.39 0.29 0.41 - - 0.29 0.35

W3C 3 0.36 0.27 0.20 0.32 0.19 0.20 0.20 0.25
4 0.40 0.37 0.31 0.44 0.31 0.31 0.31 0.35
5 0.41 0.41 0.38 0.52 0.38 0.38 0.38 0.41

� 25 0.40 0.15 0.11 0.17 - - 0.11 0.14

DBLP 3 0.57� 0.17 0.52� 0.18 0.39� 0.24 0.54� 0.16 0.40� 0.28 0.38� 0.25 0.37� 0.25 0.47� 0.23
4 0.47� 0.19 0.46� 0.17 0.36� 0.26 0.53� 0.19 0.35� 0.27 0.36� 0.26 0.36� 0.29 0.39� 0.22
5 0.54� 0.23 0.57� 0.24 0.53� 0.31 0.53� 0.22 0.58� 0.34 0.54� 0.31 0.54� 0.31 0.58� 0.26

� 25 0.57� 0.18 0.41� 0.17 0.15� 0.15 0.45� 0.18 - - 0.16� 0.18 0.22� 0.16

Tags 3 0.68� 0.18 0.36� 0.14 0.21� 0.13 0.31� 0.14 0.19� 0.12 0.23� 0.12 0.27� 0.14 0.26� 0.12
4 0.56� 0.20 0.25� 0.11 0.17� 0.11 0.28� 0.12 0.12� 0.11 0.17� 0.09 0.11� 0.07 0.17� 0.10
5 0.48� 0.21 0.18� 0.08 0.13� 0.07 0.20� 0.11 0.08� 0.07 0.12� 0.06 0.11� 0.06 0.14� 0.07

� 25 0.70� 0.15 0.24� 0.12 0.13� 0.09 0.24� 0.13 - - 0.11� 0.07 0.16� 0.10

102

(iii) PageRank on the weighted clique graph [146];

(iv) Z-eigenvector hypergraph centrality [24]; and

(v) H-eigenvector hypergraph centrality [24].

Second, we use notions of network core-periphery decompositions, where we

expect that nodes inC will be identi�ed as \core" in this sense. We use two

algorithms:

(i) Borgatti-Everett network core-periphery scores [38] in the weighted clique

graph; and

(ii) the k-core decomposition [164] based on hypergraph degree.

All of these methods work equally well for uniform and non-uniform hyper-

graphs, except for Z-eigenvector and H-eigenvector eigenvector centrality, which

are only designed for uniform hypergraphs. All of these methods also induce an

ordering on the nodes. We induce an ordering on the output of Algorithm 4 by de-

gree and then sort the remaining nodes (those not in the output of Algorithm 4) in

order by degree. With an ordering on the nodes, we measure performance in terms

of precision at core size, i.e., the fraction of the �rstjCj in the ordering that are in

C, as well as area under the precision-recall curve (AUPRC). We use AUPRC as

opposed to area under the ROC curve due to class imbalance [65]; namely, most

nodes are not in the core.

Table 4.2 reports the results of all methods on all datasets. In the case of

nonuniform hypergraphs, UMHS is superior to all other baselines in terms of both

precision at core size and AUPRC by substantial margins. With regards to the

uniform sub-hypergraphs, UMHS out-performs the baselines by wide margins on

the Enron, Avocado, and Math tags datasets for all uniformitiesr in terms of

precision at core size. UMHS also does well for the 3-regular W3C hypergraphs.

103

Figure 4.3: Planted hitting set recovery improves with more iterations before lev-
eling (top row), and similarly, size increases with more iterations before leveling
(bottom row). Fewer than 50 iterations typically reaches peak performance in our
email datasets. The leveling of the output size is consistent with Theorems 21
and 26, which say that our algorithm's output cannot grow too large.

On DBLP and the other W3C hypergraphs, projected PageRank and the simple

degree heuristic seem to perform well, although our algorithm still outperforms

them on a large share of samples. There are similar trends in terms of AUPRC,

with UMHS performing the best on the same set of datasets from above; and in

this case, UMHS is more competitive even for the datasets where it is weakest |

the 4-uniform and 5-uniform W3C hypergraphs, and even the DBLP hypergraphs.

Overall, the performance of many algorithms degrades as we increase the uni-

formity of the hypergraph. This makes sense in general, as the core nodes are

increasingly hidden in larger hyperedges. In the case of UMHS, we have a more

speci�c interpretation of what this means. As the hyperedges get larger, there may

be cases of hyperedges that contain just one node in the coreC, and the rest in the

fringe. However, by the greedy structure of Algorithm 3, we would put all nodes

in the hitting set. Furthermore, the bounds in Corollaries 26 and 27 also degrade

as we increase the uniformityr . Nevertheless, our proposed UMHS algorithm still

104

outperforms the baselines at an aggregate level.

4.4.3 Recovery as a function of output size

Our UMHS algorithm (Algorithm 4) has a single tuning parameter, which is the

number of iterations N , i.e., the number of calls to the sub-routine for greedy

maximal matching (Algorithm 3). Here we examine performance of UMHS as a

function of N . Speci�cally, we analyze:

(i) the fraction of core nodes in the planted hitting set that are recovered and

(ii) the output size of Algorithm 4 as a function of the number of iterations

Figure 4.3 shows these statistics for the three email datasets.

We highlight a couple of important �ndings. First, we only need around 50

iterations to achieve high recovery rates. Each iteration is fast, and the entirety of

the algorithm's running time takes at most a few minutes on the larger datasets.

Second, the union of minimal hitting sets size tends to increase sharply with a

few iterations and then levels o� sharply. These results are consistent with our

theory: Theorems 21 and 26 both provide theoretical justi�cation for why the

output should not grow too large.

4.5 Related work

On the theoretical side, our problem can be thought of as an instance of a \planted"

problem, where a certain type of graph structure is planted or hidden in an a

graph and one must recover the latent structure given the graph. Well-studied

problems in this space include the planted clique, where one tries to �nd a clique

placed in a sample from aGn;1=2 graph [11, 67, 68, 78]; and the planted parti-

tion or stochastic block model recovery, where a random graph is sampled with

105

probabilities dependent on latent labels of nodes, and the goal is to recover these

labels [1, 138, 149, 175]. These planted problems are based on some random way

in which the graph was sampled. In our case of planted hitting sets, the graph was

deterministic, although we could improve our results under a random hypergraph

model. Most related to our results is recent work on planted vertex covers; this is

a special case of hitting sets for the case of graphs (which mathematically are the

same as 2-uniform hypergraphs) [29]. As discussed above, the hypergraph model

is more realistic for many datasets (especially email), given its ability to represent

groups of more than two individuals at a time.

Within the �eld of network science, the idea of a small planted hitting set

�ts with two related ideas: node centrality and core-periphery structure. The

former concept deals with �nding important nodes (or ranking them) based on

their connections, often modeled as a graph [33, 35, 93]. Nodes in hitting sets are

central to hypergraphs almost by de�nition | every hyperedge must contain at

least one of these nodes. Thus, we expect them to be \central" in some sense.

However, we found that existing measures of node centrality in hypergraphs did

not recover planted hitting sets at the same levels as our union of minimal hitting

sets algorithm.

Core-periphery structure is a mesoscale property of many networks, where

there is a densely connected core set of nodes along with a loosely connected

periphery [59]. Such a composition has been studied in sociology [74, 133] and

international trade [167], where the core-periphery structure is due to di�erential

status. Now, core-periphery identi�cation is a broader tool for identifying struc-

ture in general networks [96, 103, 151, 157]. The planted hitting set that we aim

to recover corresponds to an extreme type of core-periphery structure; due to the

way in which we assume the hypergraph is measured, nodes on the periphery (the

106

\fringe nodes") cannot be connected without a core node as an intermediary in a

hyperedge.

Finally, core-fringe structure itself has received some attention. For example,

the behavior of a core group of employees at a hedge fund has been analyzed in

the context of their relationships with contacts outside of the company [152], and

the core-fringe structure has been shown to in
uence graph-based link prediction

algorithms [23]. Our research highlights additional richness to the problem when

the underlying data model is a hypergraph.

4.6 Discussion

Network data is a partial view of a larger system [121]. A common case is when the

interactions of some speci�ed set of actors or nodes are under surveillance. This

provides a \core-fringe" structure to the network | we can see all interactions

involving the core but only the interactions of the fringe with the core. When data

is leaked or metadata is lost over time due to data provenance issues, we would like

to be able to recover these core and fringe labels for security or data maintenance

purposes.

Here, we have studied this problem where the network data is a hypergraph,

so the core is a hitting set. This setting is common in email data or situations

in which groups of people are meeting. We used co-authorship as a proxy for the

latter situation, but one can imagine situations in which one records the groups

of attendees of meetings involving someone under surveillance. Theoretically, we

showed that the union of minimal hitting sets cannot be too large and that the

output of the well-known approximation algorithm for minimum hitting sets has

to somehow overlap the core.

Using these results as motivation, we developed an extremely simple algorithm

107

for recovering the core: take the union of minimal hitting sets that are output

by randomly initialized instances of the approximation algorithm. This method

out-performed several strong baselines, including methods based on centrality and

core-periphery structure.

However, our simple algorithm opens several avenues for improvement in future

work. For instance, our model assumed an undirected and unweighted hypergraph

structure. There are models of directed and weighted hypergraphs [85], as well

as other hypergraph generalizations [53], that could be used to improve the re-

covery algorithm in practice. In addition, theory on the number of calls to the

approximation algorithm subroutine would be useful. In practice, only a few calls

is su�cient and perhaps assuming particular structure on the hypergraph could

yield additional theoretical insight.

108

Part III

Higher-order methods for graphs

with metadata

109

Graphs often come with special edge attributes that could be used to infer

higher-order interactions. For example, in telecom networks the attributes could

be net call volumes between regions. In Chapter 5, we represent these networks

as simplicial complexes, where the presence of a \�lled-in" triangle is dictated

by the strength of edge
ows among the three underlying nodes. We develop a

topologically-based framework that is highly scalable and allows us to identify

coverage holes in telecom networks better and many orders of magnitude faster

than state-of-the-art methods.

110

CHAPTER 5

LOCALIZATION IN HARMONIC VECTORS OF SIMPLICIAL

COMPLEXES

5.1 Introduction

Many networks, such as trade
ow or cellular communication networks, naturally

have a spacial signal component, and it is important to take this layer of informa-

tion into account during any analysis. While graphs provide a principled way of

analyzing network data where the underlying interactions are pairwise, they fail

to capture higher-order interactions among entities, and traditional graph meth-

ods usually do not shed any light on the spacial component. Simplicial complexes

allow for inferring higher-order interactions from edge signal networks and allow

researchers to leverage rich theory from topology to analyze the \shape" of net-

works. However, there is a lack of principled approaches for applying the simplicial

model to these kinds of networks, a major problem being that the \holes" found

by topological analysis are not localized, due to high-dimensionality of the kernel

of a characteristic Laplacian matrix encoding the network. The ability to sharply

localize these \holes" is crucial in many application areas { for example, in sig-

nal processing, non-localized holes mean inferior coverage hole detection, while in

topologically-aware community detection schemes this means being unable to dis-

tinguish communities. Standard eigenvector methods do not address this problem

of degeneracy in the nullspace, and existing specialized localization techniques ei-

ther a) do the localization \by hand" or b) result in vectors which are no longer

harmonic, and the resulting localization is inferior.

Before we proceed further, let us examine a toy harmonic vector, and a real-life

harmonic vector arising from a telecom dataset to gain some intuition regarding

111

[1]

[4]

[3]

[2]

[1; 2]

[2; 3]

[1; 3]

[3; 4]
[2; 4]

[1; 2; 3]
� 1

1

2
� 3

3

Figure 5.1: The harmonic vector components (in red) superimposed upon the edges
of a simple simplicial complex.

Figure 5.2: (Left). A sample harmonic vector induced by telecom data. (Right).
Harmonic vector output by our proposed algorithm.

localization. In Figure 5.1, we show a tiny simplicial complex with the harmonic

vector components superimposed in red on its edges. The harmonic components

are noticeably larger in magnitude around the hole, rendering the vector local-

ized around just that hole. Figure 5.2, left, presents a real-life telecom grid, with

raw harmonic vector components projected onto the corresponding edges. Bolder

shades of blue represent higher component magnitude. We observe that the har-

monic vector components close to the apparent \holes" in the complex have rela-

tively larger values. However, the harmonic vector is not localized around justone

hole. The algorithm we present in this paper produces the output in Figure 5.2,

112

right, where the \separated" harmonic vector is localized around just one hole.

Here, we propose a principled, scalable framework for localizing harmonic vec-

tors that produces higher quality localization orders of magnitude faster than state-

of-the-art algorithms. We start by theoretically showing that harmonic vector com-

ponents of several families of complexes with simple hole patterns (structures which

we show are similar to a large variety of complexes derived from real-life edge sig-

nal network datasets) exhibit sharp localization around these holes. Furthermore,

we demonstrate a family of complexes where harmonic localization never occurs,

and argue why we do not expect to see such con�gurations in real-life geographical

datasets. Next, we empirically show that many classes of real-life datasets exhibit

orthogonal cone structure in their corresponding harmonic vectors, implying that

our algorithm works well on them. Next, we introduce a generative model to facil-

itate creating life-like simplicial complexes and show that the corresponding har-

monic vectors also exhibit such structure. We show that on the real-life datasets,

our algorithm produces higher-quality (more localized) solutions than state of the

art algorithms, and does it orders of magnitude faster. We �nish by illustrating the

immense utility of localized \separated" harmonics by showing improved perfor-

mance on real-life datasets for 1) temporal hole tracking, 2) topologically-informed

spectral clustering, 3) coverage hole detection and localization, and 4) supervised

machine learning tasks.

5.1.1 Related work

Here, we brie
y outline work in analyzing edge signal networks though simplicial

complexes and identify the way in which our works �ts in and extends existing

methods.

113

Topological analysis of edge
ows

The past few years have seen an increase of research in modeling networks with edge

signals through simplicial complexes. [160] proposes a random walk interpretation

for simplicial complex Laplacian-based analytics, [20, 162, 161] propose topological

signal processing frameworks for simplicial complexes, [158] studies simplicial

synchronization in edge signal networks, and [89] proposes a framework for using

topological analysis of edge signal networks to identify tie strength. These papers

all identify the importance of harmonic vectors, and [89, 160, 162, 161] point out

that harmonics tend to be localized around holes. However, our work is the �rst

to explicitly study the localization properties of harmonic vectors in simplicial

complexes induced by edge signal networks.

Minimal cycles over Z=2

The problem of �nding minimal homology representative cycles overZ=2 has been

extensively studied [70, 69]. However, these results are not applicable in edge
ow

analysis since it requires working over the reals to represent the signal faithfully.

Furthermore, these tightest cycles will not in general beharmonic and will not

separate the support of the output so that each vector is localized around just one

hole. To the best of our knowledge, our framework is the �rst to analyze methods

for localizing harmonics over any �eld instead of homology class representatives.

Hole localization using a linear programming approach

Hole localization methods for edge signal networks were �rst proposed in [140, 171],

where an LP-based algorithm �nds a heuristically tight cycle around holes in the

induced simplicial complex. However, this algorithm does not return a harmonic

solution and runs several orders of magnitude slower than our approach. As we will

114

see in this paper, the harmonic property is important for many tasks, so it is impor-

tant for the output to retain that property. Furthermore, our algorithm produces

solutions that are quantitatively more localized than this LP-based algorithm.

Topologically-informed clustering of networks

[76] develops a notion of \harmonic clustering" by embedding the edges into the

harmonic space of the 1-Hodge Laplacian. However, they explicitly state that

often, the harmonic vectors are not \well separated" and rotate them into a basis

\by hand" where it is easy to discern which edge
ow should be clustered to

which hole. Our approach could be used to automate the crucial rotation step. A

notion of \up/down" clustering developed by considering the nonzero spectrum of

q-Hodge Laplacians is presented in [117]. There, the authors explicitly mention

that in the presence of symmetry in the complex, degeneracies in the resulting

embedding often make it di�cult to distinguish communities from one another.

Our approach presents a scalable solution for this problem.

Other analyses of edge signals

Many analyses of edge signals rely on examining the spectrum of the graph Lapla-

cian. For example, Fourier transform techniques are popular [155, 50]. However,

these methods do not address the problem of hole localization. Further, they do

not fully exploit the higher-order information that could be inferred from the edge

signal network by encoding it as a simplicial complex.

5.2 Background on algebraic topology

We begin with a review of prerequisite notation and theory [100, 132], outlining

the basics of algebraic topology that we use throughout.

115

5.2.1 Simplicial complexes and orientation

In the most basic terms, a simplicial complexK is a set of sets that is closed under

the subset operation. A particular set within a given simplicial complex is called a

simplex { and if its cardinality is q+ 1 then it has dimension q. We denote the set

of all q-dimensional simplices ofK by K q. A q-simplex � q = f v0; : : : ; vqg always

contains q + 1 subsets of dimensionq � 1 obtained by removing one element (^vi)

of the form � q� 1 = f v0; : : : ; v̂i ; : : : ; vqg, called faces of � q, that are simplices onto

themselves (� q� 1 2 K). In turn each of theseq+ 1 simplices is acofaceof � q. We

may view 0-simplices as points (nodes), 1-simplices as lines (edges), 2-simplices as

triangles and so on.

In order to analyze signals on edges with real coe�cients, we need to introduce

orientation on the simplices. We choose the lexicographic ordering induced by

the numbering of the vertices as the default ordering, and write ordered simplices

using square brackets:� q = [v0; : : : ; vq]; where v0 � � � � � vq: Two orderings are

equivalent if they di�er by an even permutation; otherwise they di�er by a minus

sign. We write � q � � q+1 if the orientation of � q is compatible with that of � q+1 .

5.2.2 Boundary maps and homology

Denote by Cq(K) the real vector space onK q, meaning that elements ofCq(K),

called q-chains, are linear combinations of theq-dimensional simplices ofK with

real coe�cients. Next, we de�ne a linear operator fromCq(K) to Cq� 1(K) called

the boundary map, given by

@q((v0; : : : ; vp)) =
pX

i =0

(� 1)i (v0; : : : ; v̂i ; : : : ; vq)

and taking C� 1(K) = 0 and C0(K) = 0 for completeness.

It is easy to see that@q � @q+1 = 0, and this is the famous notion that the

116

Figure 5.3: From edge signals to projected harmonic vectors.

boundary of a boundary is zero. Formally, this means thatC� (K) is a chain

complex. We refer to elements of im@q+1 asq-boundaries and of ker@q asq-cycles.

The q-th homology space of the chain complex is then

Hq(K) = ker @q=im @q+1

Elements of the homology space are thenq-chains that are q-cycles, but not q-

boundaries; i.e., cycles that do not bound. See Figure 5.3 for some visual intuition,

where the orange \hole" in the right-most diagram forms a tightest-cycle homology

representative.

5.2.3 Hodge Laplacian

We derive the Hodge Laplacian by starting with an inner product. We de�ne our

inner product ash�; �i : Cq(K) � Cq(K) ! R given by

h� (1)
q ; � (2)

q i =

8
>><

>>:

1 if � (1)
q = � (2)

q

0 otherwise

We de�ne the coboundary map@�
q : Cq� 1(K) ! Cq(K) as the adjoint of the

boundary map:

h@�
q � q� 1; � qi = h� q� 1; @q� qi

The q-Hodge LaplacianL q : Cq(K) ! Cq(K) is then given by

L q = @�
q � @q + @q+1 � @�

q+1

117

Note that this �rst composition is referred to as the \down" or \lower" q-Hodge

Laplacian while the second part is the \up" or \upper" q-Hodge Laplacian.

5.2.4 A matrix representation of (co)boundary maps and

the q-Hodge Laplacian

Since the boundary map is a linear operator, it is possible to encode it concretely

as a matrix. In particular, @q is encoded as

Bq(i; j) =

8
>>>>>><

>>>>>>:

1 if � (i)
q� 1 � � (j)

q and � (i)
q� 1 � � (j)

q

� 1 if � (i)
q� 1 � � (j)

q and � (i)
q� 1 6� � (j)

q

0 otherwise

and the coboundary map@�
q is encoded as simplyB T

q .

It is clear that then L q has a matrix representationLq as follows:

Lq = B T
q Bq + Bq+1 B T

q+1

In this paper, we will only focus on the case whereq = 1 since all the spacial

datasets we examine in this paper are two-dimensional. That is, we focus on

simplicial complexes where the largest simplex is a triangle. We can view a 1-

chain s1 as an edge signal or
ow, where the component ofs1 corresponding to

edgee, s1[e], is the strength of the signal/
ow on that edge. In this context, the

boundary operators applied to the edge signal reveal the \divergence" and \curl"

of the signal. In particular,

div(s1) = B1s1

and

curl(s1) = B T
2 s1:

118

Here, the i th component of the divergence corresponds to the net
ow through

node i while the j th component of the curl corresponds to the net circulation

around the edges of trianglej .

5.2.5 Harmonic vectors

We assume that the complex at hand hasn nodes, m edges, andt triangles.

A vector h 2 Rm is harmonic if Lqh = 0; i.e., h 2 null Lq. It is clear that

h 2 Hq(K); and it is actually an L2 minimal representative of the homology class.

SinceB T
1 B1 = 0 (so that hB T

1 B1h = 0 =) jj B1hjj = 0), we haveB1h = 0, so that

h is divergence free; similarly, sinceB2B T
2 h = 0 we haveB T

2 h = 0; so that h is also

curl free. It is easy to see that the converse is also true. This property is in direct

analogy to the curl- and divergence free-property of harmonics in the continuous

case. These remarkable properties mean that the harmonic vectors encode a lot of

the topological information in the simplicial complex contained between dimension

q and the next dimension. See Figure 5.3 for an intuitive example, which illustrates

the construction of harmonic vectors associated with edge-
ow networks.

5.2.6 Betti numbers

In network science, one of the celebrated results is that the dimension of the

nullspace of the graph LaplacianL = D � A, where A is an adjacency matrix

and D the diagonal matrix with node degrees on the main diagonal, corresponds

to the number of connected components in the network. The careful reader will

readily see that L = L0; the 0-Hodge Laplacian. It turns out that the higher-

order Laplacians each also reveal something interesting about the shape of the

underlying simplicial complexK . In particular, the dimension of the nullspace

of L1 reveals the number of \holes", that ofL2 reveals the number of \voids",

119

and in general dim kerLq reveals the number of voids in the complex at theqth

dimension. In each case the void is contained inside aq� 1 dimensional cycle that

is not the boundary of someq chain. The number of such voids is called theqth

Betti number, denoted� q.

5.2.7 Harmonic localization around holes and orthogonal

cone structure

Note that dim ker L1 corresponds precisely to the number of linearly independent

harmonic vectors { but this is also precisely the number of \holes" in the complex!

However, any linear combination of harmonic vectors is still harmonic, so we do not

a priori expect the harmonic vectors to reveal anything about the location of the

holes. However, as we show in this paper, for a large class of simplicial complexes

arising from real-life data, the harmonic vectors exhibit localization around the

holes. Given an orthonormal harmonic basisV 2 Rm� k , we treat each rowV[i; :]

as an \edge
ow" vector ei ; with its j th componentei [j] = V[i; j] representing the

corresponding
ow component on edgei in the j th harmonic vector. Formally, for

any of these edge
ow vectorsei ; we can de�ne a cone centered atei with width

parameter ! as the set of points

C! (ei) = f x 2 Rm s.t.
xT ei

jjei jj 2jj xjj 2
� 1 � ! g:

In this context, the fact that the harmonic vectors are localized around holes im-

plies that they exhibit orthogonal conestructure [163], where edge
ows with large

magnitude serve as cone centers, and it is easy to identify which cone most edge

ows belongs to. We will not need need a detailed criterion for orthogonal cone

structure for our purpose, and this heuristic de�nition will su�ce. [64] makes

the connection between orthogonal cone structure in eigenvectors associated with

120

graphs and clustering. For us, the challenge is that despite this orthogonal cone

structure, the support of any single generically-computed harmonic vector is usu-

ally spread among the boundaries of many holes and is not localized around only

one hole (refer to Figure 5.2). As we will see, this kind of separation is crucial

for a host of applications, such as topologically-aware spectral clustering, coverage

hole detection in cellular communication networks, tracking temporal hole evolu-

tion, and supervised learning on edge signal networks. Before proceeding, let us

formalize this concept of separated harmonics.

De�nition 33 Given an orthonormal basisV for the harmonic space, a harmonic

vector h is separated with separation strength� 2 [0; 1] if for every other vector

g 2 V, jhjT jgj � 1 � � , where the absolute value is taken componentwise. Further,

given an arbitrary orthonormal harmonic basisU for another complex, we say that

a procedureP separatesU with strength � if it outputs another orthonormal basis

W such that all of its vectors are separated with separation strength at least�:

5.3 Theory

Here, we demonstrate several families of complexes, which have con�gurations we

would expect to see in real-world edge signal network datasets, that exhibit strong

localization properties. We derive analytical results which unequivocally demon-

strate the decay rate of harmonic vector components away from holes. These

results mean that complexes where each hole exhibits the kind of structure found

in the families we identify exhibit strict orthogonal cone structure. As a result

we expect the harmonic vectors of real-world edge signal networks to also possess

orthogonal cone structure, falling into the regime where our framework works well.

We �nish by presenting a family of complexes that does not admit harmonic local-

ization, and explain why we do not expect to encounter such behavior in simplicial

121

complexes derived from real data.

5.3.1 Localization in the plane

Many real-world simplicial complexes derived from edge signal networks are nearly

planar [160, 162, 79, 80], and the holes generally tend to either a) be well-separated,

or b) be clustered rather tightly together. This makes intuitive sense since, for

example, low-density areas with low telecom activity tend to be spread across

multiple neighboring regions, leading to clustered holes; while large geographical

obstacles such as open �elds, which have zero telecom activity, are well-separated

in space, leading to large and well-separated holes. See Section 5.5 for experimental

evidence of these properties. In the current section, we demonstrate that strong

localization happens in both regimes.

Clustered holes In our experimental analysis, we will see that holes are often

clustered together in simplicial complexes of real-world networks. Here, we show

that a family of complexes exhibiting this kind of con�guration has perfect local-

ization properties. As a result, we expect real-life complexes that have clustered

holes to exhibit strong localization around each cluster of holes, making it easy

for our algorithm to identify each cluster. Before we dive in to the details, let us

de�ne perfect localization.

De�nition 34 A harmonic vectorh is perfectly localized around a hole (or a clus-

ter of holes) if at least one edge of the hole (or cluster) has nonzero harmonic edge

ow and there exists a subcomplex containing that hole (or cluster) which admits

a nontrivial harmonic vector such that all edge
ows on the outer boundary of the

subcomplex are zero.

Before proceeding, let us also de�ne localization with a given decay rate, as we

122

will need the de�nition later on, when we examine such trends in real datasets.

De�nition 35 A harmonic vectorh is localized around a hole with decay ratef (x)

if there exists a harmonic basis such that the components of the vector decay as

f (x) with distancex from the center of the hole, wheref is a function �tted to the

data (or some transform of the data, if necessary) using a simple least-squares �t.

0

0

0

0

� 1

1 2

2

� 1

1

1

1

� 1 � 1

Figure 5.4: A simplicial complex characteristic pattern, the 4-pinwheel, exhibiting
perfect localization of harmonic values away from the cluster of holes. Values in
red indicate the harmonic vector components of the associated edges.

We will use the characteristic pattern in Figure 5.4, which we call the 4-

pinwheel, to show the existence of a family of complexes which also exhibit perfect

localization.

We can use the 4-pinwheel pattern as a basic building block to obtain:

1. Perfect localization around a cluster of holes and no
ow anywhere else.

This is accomplished by taking a triangulated plane and replacing any two

triangles that share a side with the characteristic pattern.

2. An arbitrarily large number of clusters of holes with perfect localization

around them and zero
ow elsewhere. This is accomplished by taking a

triangulated plane and replacing a the desired number of pairs of triangles

that share an edge with the characteristic pattern.

123

Theorem 36 Any member of the family of simplicial complexes constructed using

the above procedure admits a harmonic vector exhibiting the respective properties

outlined in the preceding discussion.

Proof

First, the 4-pinwheel in Figure 5.16 admits a perfectly-localized harmonic vector

whose components are shown in red in the �gure (it is easy to explicitly check that

the curl and divergence is zero everywhere). In 1, a vector that has
ow zero

on all edges outside the inserted 4-pinwheel and has magnitudes as prescribed in

Figure 5.4 will clearly be harmonic, since the zero
ow and divergence condition

is satis�ed within the pinwheel, and trivially satis�ed for all �lled triangles and

nodes outside the 4-pinwheel. In 2, we repeat the same logic the desired number

of times. 2

Furthermore, it is easy to de�ne a family of characteristic patterns, which we call

n-pinwheels, that can be used to create families of simplicial complexes in the plane

that admit perfect localization in their harmonic vectors. The construction of an

n-pinwheel is shown in Figure 5.5.

0

0

0

0
� 1

1
2

2

� 1

1

1

1

� 1

� 1

Figure 5.5: A simplicial complex exhibiting perfect localization of harmonic values
away from the holes, called then-pinwheel. Values in red indicate the harmonic
vector components of the associated edges.

124

0

0

0

0

� 1

1 2

2

� 1

1

1

1

� 1 � 1

0

0

0

0
� 1

1
2

2

� 1

1

1

1

� 1

� 1

Figure 5.6: The 4-pinwheel (left) andn-pinwheel (right) without �lled-in internal
triangles.

It is easy to extend Theorem 36 to use any combination ofn-pinwheels for any

(even) integersn as the characteristic patterns instead of using the 4-pinwheel as

the sole characteristic pattern.

Theorem 37 We can use any combination ofn-pinwheels as the characteristic

patterns to construct families of simplicial complexes using a procedure analogous

to that in Theorem 36 that satisfy the conditions outlined therein.

Proof The reasoning of the proof of Theorem 36 remains intact, except instead

of replacing neighboring triangles and edges thereof in the triangulated plane with

the characteristic pattern, for eachn-pinwheel we carve out enough triangles and

edges thereof so that the resulting hole hasn edges, and then paste then-pinwheel

to �ll that hole. 2

Lastly, we note that we can modify the family ofn-pinwheels to exclude all the

�lled triangles, so long as the triangulated plane on which it is inserted has at least

one �lled triangle, which makes the characteristic pattern look even more like a

\block" of clustered holes. This pattern is depicted in Figure 5.6.

In the next subsection we present a family of complexes where the localization

125

happens around a single hole, which is possible since the characteristic pattern

\building block" has � 1 = 1:

Perfect localization in a nonplanar family of complexes In the previous

subsection we introduced a family of planar complexes where the characteristic

pattern building block exhibited perfect localization but had � 1 � 3: Here, we

present an example of a family of complexes where the characteristic pattern has

� 1 = 1. It is shown in Figure 5.7 below, and we refer to it as the cusp. Note

that we simply attach the building block along one edge (the one having 0
ow

component in the harmonic vector) while all harmonic edge
ows in the plane are

zero.

2

1
1

1 1

0

0

Figure 5.7: A nonplanar simplicial complex exhibiting perfect localization of har-
monic values away from the holes. Values in red indicate the harmonic vector
components of the associated edges.

Similar to the previous planar example we can \stick" the cusp on edges in

the in the triangulated plane, and take out triangles in the plane as necessary to

obtain:

1. Perfect localization around a hole and no
ow anywhere else

2. Arbitrarily many holes with perfect localization around them and zero
ow

elsewhere

126

Observation 5.3.1 The results of Theorem 36 extend to the setting of the cusp,

where the only modi�cation in creating families of simplicial complexes is that we

don't have to remove a neighboring pair of triangles each time we paste in a cusp,

since we can simply attach a cusp to any edge of the triangulated plane.

A similar observation holds for any combination ofn-pinwheels and cusps.

Observation 5.3.2 The results of Theorem 36 extend to the setting where we use

any combination ofn-pinwheels and cusps to create the families of complexes.

In Section 5.4 we will see that our approach is always able to fully recover the

perfectly localized basis for the harmonic space given any orthonormal basis for

any complex from the second class in the above discussion.

Non-localization in fractal simplicial complexes Here we show that a cer-

tain class of fractals with one copy at each level do not admit decay in the harmonic

components.

1

2

3

4

5

67

8

� 2

� 2

2

22

22

2

� 1

� 1

� 1

� 1

1

1

1

Figure 5.8: (Left). First two stages of construction of the 4-star fractal simplicial
complex. (Right). Harmonic
ow on �rst stage of fractal.

Theorem 38 The 4-star fractal complex presented in Figure 5.8 admits no de-

cay in the harmonic components. Further, the same holds for anyn-star fractal

complex.

127

Proof It is easy to see that since the
ow presented in the right of Figure 5.8 is

curl and divergence free, then it must be harmonic. Note that since the fractal

pattern continues repeating at every level, the
ow pattern will repeat analogously

and there will be no decay at any stage.

2

2

1

3

4

n

n + 1

� 2

1
� 1

� 1

1

� 1

1

2

2

2

2

� 2

2

2

2

� 1

1

1

� 1

Figure 5.9: harmonic
ow on �rst stage of construction of then-star fractal com-
plex.

The above argument generalizes easily to then-star fractal simplicial complex

(Refer to the harmonic
ow components shown in Figure 5.9 on the �rst stage

of its construction). There is no decay because at each stage of the construction,

the
ow pattern of the harmonic vectors around the \hole" in the current step

of fractal construction perfectly matches the
ow pattern required for the pattern

to keep repeating at the next stage of the construction, with the \inner" edges of

the previous step serving as the outer edges of the next step. This construction

facilitates self-similarity not only in the fractal complex itself, but also in the

components of the resulting harmonic vectors.

128

We do not expect to see this kind of behavior in harmonic vectors of simplicial

complexes induced by real-life geographical datasets. In constructing the fractal

simplicial complex, at each stage we add an exact, smaller self-copy of the con-

struction at the �rst step in order to induce a harmonic vector that will have the

same
ow components on the added part of the complex. Simplicial complexes

induced by real-life geographical datasets, on the other hand, are usually created

by removing �lled triangles, and sometimes the corresponding edges, from some

triangulated plane. This construction does not admit fractal self-similarity since

all simplices are on the same physical scale. As a result, we do not expect to come

across a complex that admits harmonic
ow like that in Figure 5.9.

5.3.2 Perturbation analysis

In this section we analyze the way in which adding or removing triangles impacts

an existing harmonic vector. We demonstrate that any harmonic vector is still

harmonic after triangle removal.

Observation 5.3.3 Suppose a simplicial complexK has a harmonic vectorh.

Then under arbitrary triangle deletions (so long as at least one triangle remains

in the complex)h is still harmonic.

Proof

Note that the edge con�guration remains the same after the deletion. As a

result h is still divergence free. The circulation around the remaining triangles is

still zero. As a resulth is still harmonic. 2

The above result implies that localization within harmonic vectors is completely

preserved under triangle deletions. In particular, ifh were localized around a hole,

then in the new harmonic basis there is still some linear combination of vectors

129

hnew = h having identical localization properties with respect to that hole. In terms

of applications, this means that if we compute the harmonic basis for a simplicial

complex derived from a \coarse" �ltering of the triangles, then we are guaranteed

the same localization properties of harmonic vectors around the remaining holes

in a more \�ne" �ltering where more triangles are excluded. This suggests that

we should work work top-down, instead of bottom-up, computing and separating

the harmonic basis for the most \coarse" �ltering desired { after which we have

information about localization of the harmonics around the original holes in any

�ner �ltering.

5.4 A principled, scalable algorithm for harmonic basis

separation

As we have seen in the previous section theoretically, and will see empirically in

the next section, simplicial complex representations of edge signal networks tend

to exhibit localization of harmonic vectors around holes in the network { in other

words they tend to exhibit orthogonal cone structure. Again, the challenge is that

an arbitrary basis for the nullspace is not guaranteed to \separate" this localization

in a way where each harmonic vector is localized around just its corresponding hole.

In this section we present an algorithm that takes advantage of the orthogonal cone

structure to construct a basis where the harmonic vectors are \far away" from each

other, so that their support does not overlap too much, resulting in the desired

separated localization properties with high separation strength.

130

=)

SCDM

Points are edge
ow vectors in Rk (k = 2) In the rotated basis,
easy to tell which "cones" points belong to

Figure 5.10: Orthogonal cone structures allows us to rotate harmonic
ow vectors
into a basis where each harmonic
ow vector is localized around just one compo-
nent.

The idea is simple: we �rst perform column-pivoted QR (CPQR) on the trans-

pose of the nullspace basis to �nd edges that could serve as centers of cones. We

only keep the index setC of the �rst k columns selected by the decomposition, as

the corresponding edge
ow vectors make good candidates for \centers" of cones.

Intuitively, since we expect harmonic vectors to have large components on edges

close to holes, the column with the largest norm selected by CPQR will have a

good chance of corresponding to an edge close to a hole. Next, CPQR orthogonal-

izes all other edge
ow vectors against the previously chosen one, and since edges

that \belong" to the hole corresponding to the previously chosen vector will tend

to have similar edge embeddings, the remaining columns that have large norm are

expected to correspond todi�erent cone centers, and so to a di�erent hole. Next,

we take the columns ofV T corresponding toC and perform a polar decomposi-

tion to rotate the cone center vectors into a more sparse basis where each edge

ow vector is localized around only one component. Figure 5.10 illustrates the

intuition behind this step. Lastly, we use the resulting rotation matrix to \rotate"

the entire harmonic basisV to the new basis dictated by the rotation where we

should be able to tell membership of an edge with respect to a particular hole

simply by looking at the largest component in the corresponding edge
ow vector,

so that each vector is localized around just one hole. We collect these steps in

131

Algorithm 5 SCDM algorithm
1: Input: harmonic space basis ofL1 represented byV 2 Rm� k

2: Output: \localized" harmonic basisW
3: Compute CPQR decomp.V T � = QR
4: . � is m � m perm., Q is k � k orth., R is k � m upper triang.
5: Set C = index of �rst k columns selected by the CPQR
6: Compute polar decomp.V T [:; C] = UH
7: . U is k � k orth. \rotation," H is k � k p.s.d. \magnitude"
8: Output W = V U . the rotated nullspace basis

Algorithm 5. Our algorithm is based on a novel framework designed to localize

orbitals in quantum chemistry [63].

A fascinating consequence of the use of CPQR and polar decomposition is that

when the harmonic basis has perfect orthogonal cone structure, our algorithm is

able to perfectly recover a basis where each vector is localized around only one

hole. We formalize this result in the theorem below.

Theorem 39 Given a simplicial complex that admits a harmonic basisV 2 Om� k

where each vector (column) has pairwise disjoint support (perfect orthogonal cone

structure), SCDM exactly recoversV, up to column permutations, from any har-

monic basisU 2 Om� k of the complex.

Proof

We have that U = V � for some� 2 Ok� k sinceU is also a harmonic basis. To

see that � is orthogonal note that I = UT U = � T V T V � = � T �; where the third

equality follows sinceV is orthonormal. We can write each column ofUT as

cp =

2

6
6
6
6
4

P k
l=1 � [l; 1]V [p; l]

...
P k

l=1 � [l; k]V [p; l]

3

7
7
7
7
5

for p 2 f 1; : : : ; mg. By the complete localization property ofV we know that for

132

every p 2 f 1; : : : ; mg that V[p; l] 6= 0 for at most one l = lp. As a result we have

cp = V[p; lp]

2

6
6
6
6
4

� [lp; 1]
...

� [lp; k]

3

7
7
7
7
5

Any other edgeq 6= p has edge
ow vectorcq in the direction of cp if and only if

q has a corresponding nonzero
ow in the harmonic vectorV[p;:], which follows

since� is orthogonal. So the CPQR step will select an index setC of k columns

of UT so that X = UT [:; C] has orthogonal columns. The polar decomposition

will �nd a dilation D = diag(f V [c; lc]gc2 C) and a rotation R (with columns simply

corresponding to rows of� chosen by the index setC) such that

X = RD

so that the output of the algorithm is W = UR such that

W� = V

where � is a column permutation that sends columnlc to column c for c 2 C. 2

The result of Theorem 5.4 illustrates why we expect SCDM to work well if there

exists an orthonormal harmonic basisV such that every vector inV is separated

with a high separation strength� .

Furthermore, SCDM still works well in the presence of hole clusters. In par-

ticular, suppose there arek � s \well-separated" holes and the rest are clustered

together in one unit (each shares at least one edge with another), and the har-

monic basis is such that only thek � s holes have mutually disjoint harmonic

support. Then the argument in the proof of Theorem 5.4 still holds for thosek � s

holes, while the remaining vectors ofW will reveal the location of the cluster cor-

responding to the remainings clustered holes. In particular, any of the remaining

133

s columns ofW will still tell us the location of at least one hole of the cluster,

which if we treat the cluster as aunit means we have identi�ed its approximate

location.

Note that Theorem 5.4 applies as well in higher dimensions, with the word edge

replaced by e.g. triangle fork = 2 and so on. As a consequence we expect that

SCDM will work well in separating harmonic
ows in higher dimensions as long as

they exhibit orthogonal cone structure. Conversely, the procedure is also agnostic

to the fact that we dealt with nullspace vectors of the Laplacian, and we are able

to get the analogous result for nonzero eigenvectors of the Laplacian. We expect

our algorithm to work well if these vectors exhibit localization, and exploring these

localization properties is fertile ground for future work.

Spectral projector interpretation of SCDM In quantum chemistry, elec-

tron structure computations have been made more e�cient by reformulating the

corresponding discretized Hamiltonian problems in terms of the density matrix

M = 		 � ; where 	 is a matrix representing the system's eigenstates. [30] studies

the structure ofP and the way in which o�-diagonal decay of this spectral projector

leads to linear-time computations. Our situation with harmonic vectors is similar,

with the nullspace basisV playing the role of 	. In fact, we can interpret SCDM

through the lens of the spectral projectorP = V VT : In particular, consider the

following procedure, which is equivalent to Algorithm 5: 1) Pickk columnsC of

the projector V VT so that (V VT)[:; C] forms a well-conditioned basis for rangeV.

2) Find an orthonormal basisV U \closest" to the well-conditioned basis from step

1. It is apparent that this procedure is equivalent to Algorithm 1 when we point

out that step 1 could be done in practice by running CPQR onV T to pick out the

columns with the largest remaining norms (yielding the desired well-conditioned

basis), while polar decomposition in fact �nds the orthonormal basisV U closest

134

to (V VT)[:; C] in the sense thatU satis�es

U = arg minX s.t. X T X = I jjV X � (V VT)[:; C]jj 2

The above observation allows us to make a connection between the structure

of the simplicial complex and that of the spectral projector. For example, if there

exists a harmonic basisV where each vectorh has disjoint support, is localized

around just one hole, and has decay ratef h; then there exist row and column

permutations of the corresponding spectral projector where we can identify square

blocks, with each blockM h corresponding to a single harmonic vectorh, where the

elements ofM h decay asf h o� the diagonal of M h. In fact, this structure persists

approximately if we relax the disjoint support condition and instead only require

steep decay ratesf h along with su�cient separation of holes.

Runtime considerations Overall, the runtime is O(mk2): This implies linear

scaling with the number of edges in the complex and quadratic in the number of

holes. In Section 5.7.2, we see that in practice, the algorithm runs faster than

baseline algorithms by several orders of magnitude. If even more scalability is

desired, it is possible to create a randomized version of the algorithm that re-

duces the CPQR step cost, which tends to be the the bottleneck in practice, to

O(k3 log(k)) [64].

5.5 Structure of harmonic vectors of real-life simplicial com-

plexes

In this section we demonstrate that harmonic vectors associated with simplicial

complexes of edge signal networks from many real-life domains exhibit orthogonal

cone structure. Furthermore, we demonstrate that the holes in these complexes

135

Dataset jV j jE j

county-county migration 3108 8222
county-county commute 3108 8610
Milan phone 10000 39253
Trentino phone 11466 23040

Table 5.1: Dataset statistics

tend to be either a) well-separated in space or b) clustered together, which involves

multiple holes sharing at least one node. In particular, we examine telecomminca-

tion networks, commute networks, and migration networks. Summary statistics for

these networks are shown in Table 5.1. We conclude by showing that in telecom-

munications datasets, large holes tend to correspond to unpopulated areas such as

�elds or mountain ranges. Before proceeding to these results, we present a brief

overview of how we generated simplicial complexes from the associated edge signal

networks.

Generating simplicial complexes from edge signal networks We operate

with a signal threshold parameter� for detecting potential higher-order informa-

tion (to be encoded as a 2-simplex) implied by the edge signals in the underlying

edge signal network. In particular, we \�ll-in" a two simplex whenever the edge

signal values on all three edges of an open triangle exceed�: In addition, we only

allow connections between adjacent regions. This construction implies keeping

only local interactions.

Dataset descriptions and qualitative results In this paper we concentrate

on analyzing four edge signal datasets. The datasets come from two domains:

telecommunications and movement of people across borders.

136

Figure 5.11: Power-law decay of harmonic vector components away from a hole in
the Milan dataset.

Milan telecom [21] This dataset provides a temporal record of call volumes

over the course of November and December of 2013 in the Milan, Italy area. The

area is discretized into a 100� 100 grid, and net phone communication volumes

among the regions are reported in 10 minute intervals.

We report a sample raw harmonic vector which shows evidence of localization

of the vector's components around holes (Figure 5.12, left). Zooming in on one of

these holes and plotting the
ow magnitude as a function of the distance from the

hole, we see that the components decay with a roughly power-law trend away from

the center of the hole (Figure 5.11). This is a prime example of orthogonal cone

structure in real data. All other harmonic vectors exhibit similar properties.

Next, we compare (qualitatively) the output of SCDM (Figure 5.12, right) to

that of the baseline tightest cycle LP (Figure 5.12, middle) and the raw harmonic

vector. We observe that SCDM is able to separate out just one hole, so that

the vector is completely localized around it. We observe that multiple \cycles"

are present in the baseline's output, meaning it fails to separate out the input

harmonic vector into localized parts the way SCDM does. Further, the output is

no longer harmonic.

137

Figure 5.12: (Left). A sample harmonic vector induced by the Milan data. (Mid-
dle). Output of the LP baseline. (Right). SCDM output. We observe that SCDM
is the only solution localized around just one hole.

Figure 5.13: Power-law decay of harmonic vector components away from a hole in
the Trentino dataset.

Trentino telecom [21] This dataset provides a temporal record of call volumes

over the course of November and December of 2013 in the Trentino, Italy area.

The area is discretized into a 98� 117 grid, and net phone communication volumes

among the regions are reported in 10 minute intervals.

Just like for the Milan telecom dataset, we report a sample raw harmonic vector

showing evidence of localization (Figure 5.14, left). Zooming in on one of these

holes, we see that the components decay with a roughly power-law trend away from

the center of the hole (Figure 5.13). This is another prime example of orthogonal

cone structure in real data. All other harmonic vectors exhibit similar properties.

138

	Biographical Sketch
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Overview
	Joint authorship
	Background on higher-order networks
	Pairwise networks
	Hypergraphs for higher-order interactions
	Simplicial complexes for higher-order networks
	Analysis of networks: clustering
	Hypergraphs with multiple connection types
	Hypergraphs with special structure
	Inferring higher-order structure from pairwise interactions

	I Methods for edge-labeled hypergraphs
	Clustering in graphs and hypergraphs with categorical edge labels
	Introduction
	Preliminaries and related work
	Categorical edge clustering objective
	Relation to Correlation Clustering
	Additional related work

	The case of two categories
	An algorithm for graphs
	An algorithm for hypergraphs

	More than two categories
	NP-hardness of Categorical Edge Clustering
	Algorithms based on LP relaxations
	Algorithms based on multiway cut
	Approximation through a linear objective

	Experiments
	Analysis on Real Graphs and Hypergraphs
	Categorical Edge Community Detection
	Temporal Community Detection
	Analysis of the Cooking Hypergraph

	Connection to energy minimization
	Graphs with two categories
	Rank-3 hypergraphs with two categories

	Discussion

	Diverse and experienced group discovery via hypergraph clustering
	Introduction
	Related work

	Clustering with Diversity and Experience
	A flawed but illustrative first approach
	Diversity-regularized categorical edge clustering
	A general preference-regularized objective
	Extremal LP and ILP solutions at large enough values of

	Bounding Hyperparameters that Yield Extremal Solutions
	Numerical Experiments
	Datasets and algorithm scalability
	Diversity regularization
	Preference regularization
	Dynamic group formation

	Discussion

	II Methods for hypergraphs with special structure
	Planted hitting set recovery in hypergraphs
	Core and fringe nodes in networks
	Problem setup and theoretical results for core recovery
	Minimal hitting sets
	Non-minimal hitting sets
	Recovery in a random hypergraph model

	Union of Minimal Hitting Sets (UMHS): A practical core recovery algorithm
	Experimental results
	Data
	Recovery results
	Recovery as a function of output size

	Related work
	Discussion

	III Higher-order methods for graphs with metadata
	Localization in harmonic vectors of simplicial complexes
	Introduction
	Related work

	Background on algebraic topology
	Simplicial complexes and orientation
	Boundary maps and homology
	Hodge Laplacian
	A matrix representation of (co)boundary maps and the q-Hodge Laplacian
	Harmonic vectors
	Betti numbers
	Harmonic localization around holes and orthogonal cone structure

	Theory
	Localization in the plane
	Perturbation analysis

	A principled, scalable algorithm for harmonic basis separation
	Structure of harmonic vectors of real-life simplicial complexes
	Structure of synthetic simplicial complexes
	Better solution quality and ten-thousandfold speedups
	Much-improved solution quality
	Much faster than the state-of-the-art

	Separated harmonic vectors are useful
	Coverage hole detection
	Hole tracking
	Spectral clustering
	Use in supervised learning

	Discussion

	Bibliography

