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Extracellular signal-regulated kinase (ERK) signaling is required for function of the 

hypothalamic-pituitary-gonadal axis. This axis is regulated by interconnected 

hormonal feedback loops, permitting reproduction. Gonadotropin releasing hormone 

(GnRH) is secreted by the hypothalamus to act on the pituitary, resulting in 

gonadotropin secretion. The gonadotropins, luteinizing hormone (LH) and follicle 

stimulating hormone (FSH) are produced and secreted by pituitary gonadotropes, and 

act on the gonads, promoting steroidogenesis and gametogenesis. This dissertation 

focuses on two isoforms of ERK, ERK 1 and ERK 2. Although they do appear to have 

some redundant functions, ERK 1 is not able to compensate for loss of ERK 2. ERK1 

null mice are viable and fertile, whereas loss of ERK2 is embryonic lethal. Therefore, 

ERK 2 has to be knocked out in a tissue or time dependent manner. For the studies 

included here, we utilize a mouse model of GnRHR associated ERK loss. This model 

allows us to investigate the role of ERK in pituitary gonadotropin production and 

secretion. ERK loss significantly reduced gonadotropin production, and this model 

allowed us to characterize the effects of hypogonadotropism as animals aged. We 

followed those studies with an investigation into GnRHR localization and function in 

the murine placenta, and the effects of ERK loss on placentation, gestation, and 

parturition. These experiments revealed abnormal histology and vascularization, 
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prolonged gestation and dystocia, and absolute fetal mortality. Finally, we utilized 

unbiased screening techniques (RNA sequencing) to identify novel targets of GnRH 

signaling downstream of the ERK cascade. This revealed a bile acid receptor, TGR5, 

which has a functional role in gonadotropin production in the pituitary. Female TGR5 

knockout are subfertile, with a marked delay in the onset of puberty. The studies in 

this dissertation describe the role of ERK in multiple aspects of the HPG axis. All of 

the studies have clinical implications, either in the understanding and treatment of 

idiopathic hypogonadotropic hypogonadism (IHH) or in understanding links between 

puberty, nutrition, metabolism and fertility. 
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CHAPTER 1 

Literature Review 

 

Introduction 

The hypothalamic-pituitary-gonadal (HPG) axis controls reproduction via a series of 

hormones regulating gonadal function through interconnected feedback loops. 

Secretion of hypothalamic-derived gonadotropin-releasing hormone (GnRH) 

integrates inputs from higher brain centers to coordinate the activity of the pituitary 

gonadotrope and the biosynthesis and secretion of the gonadotropins which ultimately 

regulate gonadal function.
1
 Failure of GnRH to serve as the central integrator of this 

system has been associated with idiopathic hypogonadotropic-hypogonadism (IHH) 

and clinical infertility, while pharmacological application of GnRH analogs and 

gonadotropins has important implications of the treatment of such infertility.
2
 IHH is 

relatively rare, with a prevalence of 1 in 10,000 men.
3
 However, it has been estimated 

that up to 16 percent of couples suffer from infertility, causing huge economic and 

social implications.
4–6

 Further, the GnRH-GnRH receptor (GnRHR) system has been 

characterized in several types of cancer and may offer therapeutic possibilities in their 

treatment. Given the central role of GnRH action in the control of fertility, it is of 

paramount importance to understand the molecular basis of control of GnRH action in 

the pituitary gonadotrope, including new and novel alternate ways to modulate GnRH 

action and gonadotropin secretion. The goal of this review is to summarize established 

knowledge regarding the HPG axis and to discuss several new findings in this field 

focusing on novel regulators of GnRH action.  
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(A portion of this Chapter has been accepted as an invited review for publication in 

Seminars in Reproductive Medicine in a manuscript entitled “Novel insights into 

gonadotropin-releasing hormone action in the pituitary gland”.
7
  

 

Development and function of the pituitary in the hypothalamic-pituitary-gonadal 

axis 

The hypothalamic-pituitary-gonadal (HPG) endocrine axis regulates 

reproductive function. Hypothalamic neurons produce the decapeptide gonadotropin-

releasing hormone (GnRH), which is released by nerve terminals at the median 

eminence and travels through the hypophyseal portal vasculature to the anterior 

pituitary.
8
 The anterior pituitary (adenohypophysis) develops in conjunction with the 

intermediate and posterior pituitary (neurohypophysis), to form the functional pituitary 

unit. As a discrete endocrine organ, the anterior pituitary serves to control numerous 

physiological functions such as control of growth, stress, basal metabolism, lactation 

and reproduction. This is accomplished through the development of five endocrine cell 

lineages (gonadotropes, somatotropes, thyrotropes, lactotropes and corticotropes) that 

collectively function to control systemic homeostasis. Interestingly, these tissues 

derive from different embryonic origins; the neurohypophysis from neural ectoderm, 

and the intermediate and anterior pituitary from oral ectoderm.
9
 Rathke’s pouch, the 

embryonic origin of the anterior and intermediate pituitary, begins to form at 

embryonic day (e)7.5 in the mouse.
10

 There is a rudimentary pouch by e8.5, and the 

pouch is fully established at e12.5.
11–13

 This anatomic feature was first described in 

1830, by H. Rathke, and was further investigated by E. Frazer in 1911.
14,15

 Originally, 
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Rathke’s pouch was noted to be derived from both brain and gut tissue. Several of 

these researchers described the neuro- and adenohypophysis developing separately and 

fusing as the embryo develops.
9,16

 Further differentiation of specific cell lineages and 

expansion of the gland continues throughout gestation, regulated by factors such as 

bone morphogenic protein 4 (BMP4), fibroblast growth factor (FGF), sonic hedgehog, 

Wnt, BMP2, and others.
17,18

 Other transcription factors regulate the development of 

specific cell lineages. For pituitary gonadotropes, these include expression of NR5A1, 

Lhx3 and Lhx4, Egr-1, Pitx1, and several others.
19–22

 Gonadotropes, along with 

lactotropes, somatotropes, thyrotropes, and corticotropes make up the cell types within 

the anterior pituitary.
23

  

About 10-15 percent of cells in the anterior pituitary are gonadotropes.
24,25

 

These cells can be identified by the expression of 4 genes: the two unique 

gonadotropin subunits, luteinizing hormone β (LHβ) and follicle stimulating hormone 

β (FSHβ), their common glycoprotein hormone subunit (αGSU), and the GnRHR.
26

 

This specific signature is utilized in subsequent chapters of this dissertation to help 

define effects of various genetic interventions and treatments used in these studies. 

GnRHR, a G-protein coupled receptor (GPCR) is expressed on the surface of the 

gonadotrope cell lineage in the anterior pituitary.
27

 The receptor couples with GnRH 

released from the hypothalamus, in a highly evolutionarily conserved pairing. 
28

  

 

The GnRHR and GnRH signaling 

As mentioned previously, GnRHR is a rhodopsin-like GPCR with high 

specificity and affinity for its ligand, GnRH.
29,30

 Like most GPCRs, GnRHR has 7 
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transmembrane domains, with three intracellular and three extracellular loops. 

Broadly, there are three groups of GnRHRs, with only the first two being found in 

mammals.
31,32

 GnRHR I binds with GnRH I, and is the main regulator of the HPG 

axis. GnRHR II binds to GnRH II, but binds very poorly to GnRH I. Humans 

functionally only express GnRHR I; GnRHR II is not functional as it contains a 

frameshift mutation, leading to a stop codon.
31–33

 Unlike other GPCRs, GnRHR lacks 

an intracellular carboxyl terminal tail.
1,32,34

 These tails play a role in organizing 

receptor localization and desensitization following ligand occupancy. In other GPCRs, 

phosphorylation of the carboxyl terminal tail is involved in membrane internalization 

and desensitization of GPCRs; however, given the consipcious lack of a c-terminal 

tails, the GnRHR has been described as resistant to desensitization and 

downregulation.
35–37

 Additionally, only one percent of GnRHRs are found on the cell 

surface, but addition of a C-terminal tail increases this percentage between 10 and 50 

fold suggesting this portion of GPCRs coordinates trafficking and subcellular 

localization.
38,39

 The majority of GnRHRs are found in the ER. 
39,40

 Those receptors 

that are found on the cell surface are found exclusively in the membrane rafts. 

Membrane rafts are small domains within the plasma membrane that are enriched in 

cholesterol and sphingolipids.
41

 In normal conditions, the presence of GnRHR in the 

raft compartment is exclusive and constitutive. Further disruption of raft association 

uncouples GnRHR to normal cell signaling suggesting this localization is critical for 

GnRHR function. GnRHRs can be relocated to non-raft compartments of the plasma 

membrane if a C-terminal tail from a non-raft associated GPCR is fused to the 

GnRHR.
42

 GnRHR associates with many signaling complexes in the membrane raft, 
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such as Gαq, c-Raf kinase and the mitogen-activated protein kinase (MAPK) ERK1/2, 

confirming its involvement in this signaling cascade.
43

 GnRH/GnRHR involvement in 

MAPK signaling is described below. 

GnRH binds to the GnRHR, activating the heterotrimeric G protein Gαq which 

activates phospholipase Cβ (PLC).
38,44,45

 This leads to accumulation of PLC-derived 

diffusible second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol 

(DAG).
46

 These signaling intermediates facilitate calcium (Ca
2+

) release from 

endoplasmic reticulum and activation of protein kinase C (PKC), respectively, and 

PKC activation and membrane depolarization leads to activation of voltage-dependent 

L-type Ca
2+

 channels leading to influx of extracellular calcium.
47

 Release of internal 

calcium stores and calcium derived from extracellular sources via L-type Ca
2+

channels 

along with PKC activation activate key MAPK pathways necessary for the 

downstream effects of GnRH. These include the biosynthesis of gonadotropin subunits 

and modulators of MAPK signaling such as dual specificity phosphatases thought to 

regulate the activation kinetics (magnitude and duration) of MAPKs.
48–50

  

MAPK signaling in the HPG axis 

MAPKs are a large family of serine-threonine kinases that play important roles 

in the regulation of cell proliferation, differentiation, migration and apoptosis 

depending upon developmental and physiological context. They participate in well-

established phosphorylation cascades, starting with MAPKKK, which activate 

MAPKK, and finally phosphorylation of MAPK. The terminal kinases of the four 

main signaling cascades include extracellular signal-regulated kinase (ERK1/2), c-Jun 

N-terminal kinase (JNK), big MAPK (BMK), and the p-38 stress-activated protein 
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kinase.
51–54

 Our lab, and research reported within this dissertation, focuses on ERK1/2 

signaling. The canonical ERK signaling pathways is comprised of cRaf protein kinase, 

which phosphorylates MAP-ERK (MEK) kinases 1 and 2, which phosphorylates 

ERK1/2 on threonine and tyrosine residues to induce activation of these kinases.
55

 

After phosphorylation by MEKs, ERKs translocate from the cytoplasm to the nucleus, 

where they phosphorylate and activate transcription factors such as CREB, c-Fos, c-

Jun, Elk1, and Egr1.
56

 Despite a wealth of data supporting this canonical cascade, 

work in our lab has shown that other MAPKKKs may be involved in ERK1/2 

activation, as cRaf kinase phosphorylation is not required for ERK activation by 

GnRH.
57

 Thus, a definitive understanding of this signaling pathway is not yet 

complete. However, an intact MAPK cascade is necessary for proper function of the 

gonadotropes and gonadotropin release.
26,58

 

GnRH stimulation of pituitary gonadotropes is required for the biosynthesis of 

LH and FSH. These two glycoprotein hormones are heterodimers composed of αGSU 

and their respective β-subunits; the β subunits are requisite for the specific biological 

actions of the two gonadotropins. LH and FSH act upon the gonads to regulate 

gametogenesis and steroidogenesis and ultimately ovulation.
27

 Specific evidence for 

GnRH requirement comes from studies of the hypogonadal (HPG) mouse, a model 

with a naturally occurring loss-of-function mutation in the GnRH gene. The HPG 

mouse is infertile, with arrested germ cell development, and lacks GnRH, LH and 

FSH.
59

 Restoration of the GnRH gene restored gonadotrope cell function and fertility 

to these mice.
60

 This mouse has been a commonly used model system to understand 

the role of specific aspects of the HPG axis.
61,62
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GnRH and gonadotropin pulsatility 

LH is secreted by the pituitary gonadotropes in a pulsatile fashion coincident 

with pulsatile secretion of GnRH.
63

 A GnRH surge, and subsequent LH surge is 

required for ovulation.
64

 Several labs have shown the importance of the signaling 

cascades initiated by GnRH, including ERK, on LH production and secretion. 

Important factors include CREB binding protein (CBP), ERK, FOXP3, Pitx1, and 

Egr1
65–69

  

Another important signal in controlling gonadotropin secretion stems from 

steroid hormones and the feedback loops they participate in. Androgens inhibit LHβ 

transcription, while estradiol promotes LHβ transcription, the latter a likely function of 

estradiol’s ability to upregulate the GnRHR within the gonadotrope at times important 

to preparation for ovulation.
70,71

 GnRH stimulation has a direct link to LH release; 

pulsatile stimulation of GnRH from the hypothalamus in pituitary causes a LH pulse 

event in sheep.
72

 Multiple other factors contribute to this relationship, such as post-

partum interval and estradiol concentration.
73

 Fasting also decreased LH pulsatility, 

but leptin administration restored normal LH secretion, indicating a link between 

metabolic status, energy balance, and gonadotropins.
74

 Other factors that alter GnRH 

and LH secretion include endogenous opioid concentrations and photoperiod.
75

 

Like LH, FSH is impacted by GnRH pulse frequency, transcription factor 

expression, such as SMAD, Lhx3, Pitx1 and 2, and steroid hormone concentration.
76–

79
 However, it is also regulated by other hormones, such as inhibin, activin, and 

follistatin. Inhibin and activin are secreted locally in the pituitary, and act in both 

paracrine and autocrine fashions. They colocalize in granules with LH and FSH, and 
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are secreted simultaneously.
80

 Inhibin and activin are also secreted from the gonads, 

regulating the gonadotropes through systemic circulation as well as locally.
81

 Thus, 

while LH and FSH share a dependence on GnRH stimulation of the gonadotrope, FSH 

clearly requires additional integration by secreted factors that do not control LH 

biosynthesis and secretion. Studies in this dissertation focus on novel factors 

controlling the secretion of gonadotropins.  

For both gonadotropins, GnRH pulse frequency is a significant regulator of 

production and release. Early studies in primates by Knobil and colleagues revealed 

that continuous exposure to GnRH resulted in diminished gonadotropin synthesis and 

secretion while pulsatile administration elevated production and secretion of 

gonadotropins. Later studies by the Kaiser group and others more fully appreciated the 

impact of slow versus rapid GnRH pulses and the impact of variable interpulse 

interval on gonadotropin subunit gene expression; consistent with pulse frequencies 

observed during the menstrual and estrous cycles, slow GnRH pulse frequency 

favored FSHβ expression while more rapid pulses favored LHβ expression.
82–87

 More 

recently, GnRH-induced signals derived from such intermediates as Protein kinase A 

(PKA), cAMP response element binding protein (CREB), inducible cAMP early 

repression (ICER), PI3K and PI4K were found to greatly impact how differences in 

GnRH pulse frequency affected gonadotropin synthesis and secretion.
88

 These 

signaling intermediates are activated by GnRH stimulation at variable pulse frequency, 

and can be influenced by other hormones such as inhibin, activin, and steroid 

hormones which helps to produce and control gonadotropin production and 

secretion.
89

 The signaling relationship between PKA, CREB and ICER was 
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particularly intriguing since PKA activates CREB and ICER is a CREB repressor. 

Thompson and colleagues demonstrated that within the GnRH signaling network, slow 

GnRH pulsatility favored FSHβ expression and specific inhibition of PKA catalytic 

activity decreased GnRH-induced CREB phosphorylation, and subsequent FSHβ 

transcription.
90

 GnRH stimulation also increased ICER levels in gonadotropes; 

however, this increase was blocked with PKC and MEKI/II inhibitors suggesting 

GnRH-induced ICER levels were ERK dependent.
88

 Inhibition of PKA and CamKII 

did not inhibit ICER induction.
88

  

To determine a potential role of ICER on the impact of PKA/CREB, studies 

were conducted in LβT2 cells using variable pulse frequencies. Rapid pulses stimulate 

Lhb expression, and low pulse frequency known to regulate Fshb expression through 

CREB activation. ICER accumulation in gonadotropes was higher with high GnRH 

pulse frequency compared to low pulse frequency, and this response was blunted with 

MEKI/II-ERK pathway inhibition. It may be that low frequency GnRH pulses 

preferentially induce PKA activation and CREB phosphorylation, leading to 

preferential FSH biosynthesis and secretion.
90

 Rapid GnRH pulse frequency 

preferentially increases LHβ and ICER accumulation, effectively blocking a role for 

CREB on FSHβ under these conditions.  

 

Recent advances in our understanding of gonadotrope biology and GnRH action 

Due to the vital and dynamic role of the anterior pituitary-derived 

gonadotropins in controlling the reproductive axis, understanding gonadotrope 

regulation and function by GnRH and other factors are areas of active research. This is 
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an enormous field of study that has been reviewed extensively by many including our 

lab.  

 Clinical conditions such as IHH in humans may best characterize the absolute 

requirement for GnRH and GnRH signaling in the support of fertility. This condition 

is often caused by a failure in GnRH neuron migration from the olfactory placode to 

the hypothalamus, and when combined with anosmia, is referred to as Kallmann’s 

syndrome.
91

 This syndrome has been associated with multiple genetic mutations 

including those in FGF8, FGFR1, KAL1, SEMA-3A, GNRHR, PROK2, PROKR2, and 

KISSR, among others.
2,92

 Failure of the GnRH neuronal migration leads to a lack of 

GnRH stimuli to the gonadotrope and subsequent failure of the reproductive axis. 

These patients suffer from infertility and often are insensitive to GnRH stimulation.
93

 

However, the variation in phenotypes can even occur between siblings with the same 

genetic mutation.
94

 IHH patients who are treated for fertility often have variable 

responses to exogenous GnRH and gonadotropin treatment.
95–100

 Phenotypes involved 

include everything from infertility to weight gain, to miscarriage, deafness and 

anosmia.
91,101,102

 With multiple known mutations in GnRH and GnRHR that result in 

IHH, understanding the mechanisms and pathways of GnRH related signaling in 

multiple tissues can help lead to understanding and treatment of this condition.
95,101,103

 

Appropriately, GnRH and its agonists have come to play important roles in both 

fertility treatments and contraceptive regimens.
104,105

 

In addition to the role of GnRH/GnRHR in controlling fertility, more recent 

studies provide evidence that GnRH and GnRHR are important outside of the HPG 

axis. Tran et al recently explored local effects of FoxL2 deletion in the pituitary and 
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the testes, using a GnRHR associated Cre line.
76

 GnRHR is alsoexpressed in the 

ovary, oviduct and lymphocytes.
106–108

 In addition, GnRHR has recently been 

characterized in the placenta of multiple species, including humans, mice, and 

dogs.
109–111

 Knowledge of these extra-pituitary sites of GnRHR expression have 

important implications for my dissertation research and will be examined in 

subsequent chapters of this thesis. GnRH and GnRHR are associated with multiple 

types of cancer, including prostate, ovarian cancer, benign prostate hyperplasia, 

adrenal adenoma, leiomyoma, nasopharyngeal carcinoma, and gastric cancer. GnRH 

and its receptor may have roles in treatment, metastasis, prognosis and other aspects of 

cancer biology, both within and outside of the HPG axis.
112–118

 With these novel and 

emerging functions of GnRH, understanding its signaling and function is of paramount 

importance.  

 

GnRHR and spatially restricted Ca
2+

 signaling 

As described above, GnRH-induced calcium signaling in gonadotropes has 

long been established as a potent modulator of gonadotrope function and gonadotropin 

secretion.
119–121

 Calcium flux induced by GnRH signaling induces secretion of 

gonadotropins and activation of MAPK cascades, which lead to LH and FSHβ subunit 

gene and GnRHR transcription via extracellular signal–regulated kinases (ERK) and 

c-Jun N-terminal kinases (JNK), as well as changes in the actin cytoskeleton. These 

Ca
2+

 responses are particularly integral to ERK activation and subsequent 

gonadotropin release.
120,122

 GnRH-induced ERK activity is required for fertility in 

female mice, and genetic loss of both ERK isoforms conditionally in the gonadotrope 
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leads to an anovulatory infertility in female mice (a focus on my dissertation 

research).
65

 Two separate pools of calcium appear to govern the ability of GnRH to 

discriminate activity of MAPK signaling pathways; GnRH-induced ERK activation is 

regulated by calcium influx through L-type Ca
2+

 channels, while activation of JNK 

isoforms appears to require a much larger Ca
2+

 flux from intracellular stores.
120

 

Interestingly, these calcium spikes are not all equivalent but appear to correlate with 

the magnitude and duration of GnRH input to the gonadotrope. Low levels of GnRH 

cause small, irregular Ca
2+ 

transients, but larger amplitude GnRH pulses cause larger 

changes in Ca
2+

 signaling.
121

 Variation in frequency and amplitude of these transients 

help differentiate signals for FSH and LH production. For example, LH biosynthesis is 

tightly regulated by these Ca
2+

 signals, with an intense peak of production at the 

GnRH/LH surge, inciting ovulation. In contrast, FSH is produced at a more constant, 

basal level, without the supraphysiologic drive of a large secretory event.  

The hypothesis that local membrane-associated Ca
2+

 transients were necessary 

for GnRH-induced ERK activity was originally substantiated by pharmacological 

studies that disrupted the L-type channel; however, these studies did not provide 

important evidence that new elegant imaging strategies can provide.
48

 Understanding 

how calcium transients are controlled at local, spatially restricted levels within the cell 

would potentially inform pharmacological interventions that would be useful in the 

control of fertility. Using novel total internal reflection fluorescence (TIRF) 

microscopy, Dang and colleagues were able to visualize Ca
2+

 influx via L-type Ca
2+

 

channels following activation of GnRHR signal transduction. Recall that TIRF 

microscopy takes advantage of strategies of imaging of fluorescent activities directly 
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at the cell surface offering the opportunity to examine spatially restricted fluorescent 

signals rather than Ca
2+

 transients that occur more deeply within the cytosol. The 

spatially restricted Ca
2+

 flux was appropriately termed calcium “sparklets” that 

occurred at the surface of the gonadotrope when stimulated with GnRH.
120

 These 

sparklets were recapitulated with an L-type Ca
2+

 channel agonist FPL 64176, which 

also resulted in ERK activation reminiscent of GnRH stimulation. If these L-type Ca
2+

 

channels were blocked using nicardipine, or the cytoskeleton was stabilized 

pharmacologically, the sparklets and subsequent ERK activation was prevented, 

indicating spatially restricted calcium influx through L-type channels is a key calcium 

signal induced by GnRHR activation leading to ERK activation.
120

 ERK activation is 

known to occur through direct PKC activation to mimic GnRH action, and in 

accordance with that, a PKC agonist activated calcium sparklets in a manner 

consistent with GnRH or FPL 64176. Interestingly, GnRH-induced cytoskeletal actin 

reorganization also appears to be required for the induction of spatially restricted 

calcium sparklets and ERK activation.
120

 Pretreating cells with an actin stabilizer 

(jasplakinolide) effectively preventing actin reorganization followed by treatment with 

GnRH inhibited calcium sparklets and ERK pathway activation. Both intra-and 

extracellular calcium stores play key roles in gonadotrope function. 

 

GnRH action and the actin cytoskeleton 

An important role for GnRH-induced actin reorganization and LH secretion 

was recently described by our group.
123

 With GnRH stimulation, the actin-associated 

protein cortactin migrates to the leading edge of gonadotropes, localizing with actin 
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and actin-related protein 3 (Arp3), an effect mediated by phosphorylation of tyrosine 

kinases.
123

 Blocking either cortactin or ARP resulted in the loss of actin-dependent 

lamellipodia and membrane ruffles, as well as gonadotropin secretion. The actin 

remodeling necessary for response to GnRH is dependent on cortactin re-localization 

within the cytoskeleton, as is gonadotropin secretion.
123,124

  

Recent studies by Edwards and colleagues extended our understanding of the 

mechanisms of the role of actin cytoskeleton in GnRH signaling via L-type Ca2+ 

channels and ERK activation.
125

 Dynamin is a membrane-associated GTPase that is 

involved in membrane constriction, vesiculation and cell wall formation.
126

 Disrupting 

dynamin signaling in gonadotropes has long been known to disrupt GnRH signaling to 

the ERK pathway
127–129

, however, the mechanistic basis for this has not been fully 

appreciated. By creating a dynamin-GFP fusion protein and expressing it in clonal 

gonadotrope cells (αT3-1 cells), Edwards and colleagues were able to visualize the 

distribution and changes in localization of dynamin with or without GnRH 

stimulation. Dynamin localizes in the lamellipodia and membrane protrusions with 

actin and actin binding protein (ABP) after GnRH stimulation. Inhibiting the GTPase 

activity of dynamin via dynasore decreased ERK activation, but did not alter JNK 

phosphorylation. Dynasore treatment also led to inhibition of actin reorganization after 

treatment with GnRH, and subsequent decreases in L-type Ca
2+

 channel activity, as 

measured by TIRF microscopy described above. Either inhibiting dynamin or the L-

type Ca
2+

 channels decrease calcium influx at the membrane. Actin cytoskeletal 

remodeling, necessary for gonadotropin secretion, is dependent on cortactin 
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localization and these studies implicate dynamin signaling and calcium influx through 

L-type Ca
2+

 channels in this process.
125

  

 

A role for PI3K/PI4K signaling within the GnRH signaling network 

The role of phosphatidylinositol-3-, and phosphatidylinositol 4-kinases (PI3K 

and PI4K, respectively) in ERK activation was recently investigated by several 

groups.
130,131

 Clonal αT3-1 and LβT2 cells treated with phorbol ester, a PKC agonist, 

showed persistent ERK1/2 phosphorylation (pERK) consistent with a known role for 

PKC signaling in ERK activation in gonadotropes. Interestingly, pharmacological 

inhibition of PI3K or PI4K resulted in reduced ERK phosphorylation following GnRH 

and EGF treatments.
130

 The gonadotropin subunits were variably affected by inhibition 

of PI3K/PI4K. Common glycoprotein αGSU production was inhibited by PI3k/PI4K 

inhibition, LHβ production was unaffected, and FSHβ production was increased, 

underscoring the gonadotrope’s ability to differentially regulate FSH and LH 

production, likely via separate pathways.
130

 While complex, these studies supported 

the conclusion that PI3K/PI4K is involved in the regulation of ERK activity and 

gonadotropin production via the GnRHR in important gonadotrope cell lines and it 

will be critical to examine the role and requirement of these pathways in vivo using 

genetically modified mice to fully realize the impact of these pathways on fertility. 

 

A role for DICER in the gonadotrope 

Another important factor in gonadotrope cell function is the intracellular 

enzyme DICER. DICER is a member of the RNAse III family and functions to cleave 
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double stranded RNA molecules involved in the production of small interfering- and 

micro-RNAs in cells. Wang and colleagues created a novel gonadotrope-specific CRE 

mouse, using a Fshb promoter-Cre recombinase fusion to specifically target 

gonadotropes. Mating this CRE line with a conditional DICER
f/f

 allele resulted in the 

specific deletion of DICER in murine gonadotropes.
78

 Loss of DICER in gonadotropes 

reduced gonadotropin production, testes size, and resulted in complete infertility. In 

female mice, this deletion resulted in hypoplastic uteri and smaller ovaries; the ovaries 

lacked corpora lutea suggestive of ovulation failure; and these mice exhibited 

abnormal estrous cycles and low circulating levels of progesterone. The FSHβ-cre 

mouse line provides an important opportunity for specific Cre expression and 

conditional gene deletion in the pituitary gonadotropes since other gonadotrope-

specific Cre lines have the potential for mis-expression in tissues within the 

reproductive axis other than gonadotropes. Further, this new mouse model implicates 

an important role for DICER and RNA metabolism within the gonadotrope where loss 

of DICER results in a marked infertility.
78

 The implications for how DICER and RNA 

metabolism affect reproductive function is likely to be far-reaching due to the 

complexity of how individual microRNAs impact differentiated gonadotrope cell 

function.  

 

Relative effects of GnRH and a common agonist, Buserelin 

Both human and veterinary medicine utilize buserelin, a GnRH agonist, for 

treatment of infertility.
132–135

 However, there are known off-target effects, such as 

neuropathic enteritis associated with the use of this agonist in vivo.
135,136

 Nederpelt 
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and colleagues used whole cell impedence, as well as inositol phosphate accumulation 

assays to understand the differences between the effects of the native GnRH and the 

pharmacologically super active agonist buserelin. As anticipated, these studies 

revealed buserelin had a higher efficacy and potency, when compared to GnRH.
137

 

Along with higher efficacy, buserelin also had a longer binding duration than GnRH. 

When cells were treated with either ligand and washed, approximately 80% of 

buserelin treated cells remained active after washing, while only 30% of GnRH treated 

cells remained active.
137

 Understanding the differences between the pharmacokinetics 

of the endogenous ligand and the agonist can aid in creating treatment protocols and 

informing clinical decisions. Recent work has shown buserelin has a role in treatments 

besides fertility, and understanding its mechanism of action can help improve 

treatments for conditions such as cancer, embryonic mortality and cryptorchidism.
138–

145
  

 

Novel modulators of GnRH action 

Phoenixin 

  GnRH is the primary regulator of LH biosynthesis and secretion while GnRH 

and activin are important regulators of FSH.
81,146

 More recently other modulators of 

GnRH action have come to light. A potential role for Phoenixin was recently 

described by Yosten and colleagues.
147

 Using a genome-wide screen, this group 

identified novel protein sequences that were conserved across species. Phoenixin was 

identified in this screen, found in highest abundance within the magnocellular and 

parvocellular paraventricular nucleus, as well as the supraoptic nucleus in the 
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hypothalamus. When combined with GnRH administration, Phoenixin increased LH 

production and release, ostensibly through increasing expression of the GnRHR.
147

 In 

vivo, rats treated with siRNA to knock down Phoenixin expression displayed disrupted 

estrous cycle behavior and reduced GnRHR within the pituitary gland suggesting this 

peptide may play an important role within the neuroendocrine axis.
147

 

Treating hypothalamic derived GT1-7 cells with Phoenixin increased both the 

GnRH and GnRHR expression, indicating its potential importance within the HPG 

axis. Although speculative, Phoenixin appears to act on GPR173 in the hypothalamus, 

which also couples with a metabolite of GnRH (GnRH-(1-5)) to increase GnRHR 

expression.
148,149

 GPR173 is a G-protein coupled receptor linked to Gαs and cAMP 

signaling. Consistent with this observation, the Belsham group linked 

Phoenixin/GPR173 signaling to PKA/CREB and C/EBPβ activation and up-regulation 

of a number of gene targets including GnRH, GnRHR, Kisspeptin and Oct-1 

expression in hypothalamic neuronal cell lines.
150

 Coupled with evidence from 

knockdown studies described above, Phoenixin is emerging as an important regulator 

of reproductive function and a potential modulator of GnRH action.  

 

Intracellular reactive oxygen species (ROS) 

Kim and Lawson demonstrated in both the gonadotrope –derived LβT2 cell 

line and in primary pituitary cell cultures that GnRH stimulation increased 

intracellular reactive oxygen species (ROS) such as superoxide radicals, hydroxyl 

radicals and hydrogen peroxide.
151

 These free radicals are produced from NADPH 

oxidase (NOX) and dual oxidase (DUOX) enzyme family, which use NADPH as an 
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electron donor, and create ROS as a by-product.
152

 ROS signaling and NOX family 

members have been linked to control of the reproductive axis; however, their specific 

role(s) in the pituitary gonadotrope had not yet been elucidated.
152–155

 NOX/DUOX 

subunit mRNAs and protein levels were increased by GnRH stimulation in mouse 

pituitary cells in primary culture and gonadotrope cell lines.
151

 Pharmacological 

inhibition of NADPH oxidase decreased GnRH-induced ROS production indicating 

that the NOX/DUOX pathway is activated through GnRH signaling. Interestingly, 

NOX/DUOX enzymes appear to be necessary for JNK and ERK activation and 

subsequent regulation of the gonadotropin subunit genes; inhibition of NOX/DUOX or 

the use of a ROS scavenger decreased GnRH-induced JNK and ERK activation. 

DUOX1 and DUOX2 are both regulated by intracellular Ca
2+

 stores and inhibition of 

DUOX enzyme activity reduced calcium-induced ERK activation; interestingly, 

inhibition of NOX activity did not affect MAPK activation state induced by GnRH 

suggesting that DUOX activity may hold primary importance. DUOX inhibition also 

decreased GnRH-induced immediate early gene responses, which led to decreased 

gonadotropin subunit production and secretion.
151

 FSHβ appears to be preferentially 

mediated by Duox2. This important link between cellular metabolism and gonadotrope 

cell function may have important implications on how the reproductive system 

perceives and manages adverse metabolic conditions.
151

  

 

The GnRHR and extracellular ATP production 

The GnRHR is present within discrete plasma membrane domains termed 

membrane rafts within gonadotropes. Productive signaling between the GnRHR and 
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the ERK pathway requires localization of the GnRHR in rafts.
41,43,156

 Recently, our 

own lab carried out proteomic studies examining the co-localization of the GnRHR 

with other potential signaling proteins within the raft domain using 

immunoprecipitation of the GnRHR and flotillin 1 (a raft marker) followed by mass 

spectrometry.
157

 These studies revealed that the GnRHR and flotillin 1 colocalized 

with the F0F1 ATP synthase complex in the membrane rafts. The ATP synthase 

complex is normally found in the inner mitochondrial leaflet and is central to ATP 

production with a cell; the presence of the ATP synthase complex and subunits of the 

electron transport chain at the cell surface were unexpected. Using αT3-1 cells, 

subunits of the ATP synthase complex and electron transport chain were confirmed by 

immunoprecipitation, flow cytometry and cell surface biotinylation studies leading to 

the determination that the catalytic surface of the complex pointed outward into the 

extracellular space.
157

 This spatial configuration was confirmed by analyzing the 

production of extracellular ATP in the media when αT3-1 cells and whole mouse 

pituitary explants were treated with ADP as a substrate for synthase activity. 

Extracellular ATP synthesis could be inhibited by a number of inhibitors to the 

synthase, perhaps the most revealing was removal of inorganic phosphate from the cell 

culture media or with prolonged GnRH exposure which appeared to downregulated 

the ATP synthase from the cell surface of the gonadotrope. Using a sheep model, 

substrate for the ATP synthase (ATP/ADP) was detected in plasma from the 

hypothalamic-pituitary portal vasculature indicating that hypothalamic input into the 

system was possible. Extracellular ATP synthesis appears to plays a modulatory role 

in gonadotropin secretion. GnRH-induced LH secretion was increased in the presence 
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of extracellular ADP/ATP suggesting that extracellular ATP “tone” could modulate 

the LH secretion.
157

 While the in vivo implications of this finding are not entirely 

clear, extracellular ATP levels may be an important modulator of GnRH-induced LH 

secretion. 

 

Gonadotropin inhibiting hormone 

Gonadotropin inhibitory hormone (GnIH) is a hypothalamic decapeptide that 

inhibits the synthesis and release of gonadotropins, acting on both the hypothalamic 

GnRH neurons as well as pituitary gonadotropes.
158,159

 Originally, this peptide was 

found to be regulated by melatonin, and implicated in seasonal reproductive 

differences, especially in avian species.
158,160

 As research progressed, a link between 

environmental stimuli such as weather, stress, and GnIH was uncovered. This link was 

expanded to include poor reproductive performance during times of stress, where 

GnIH levels is an important modulator of the reproductive axis.
161

 This correlation 

was confirmed in an ovine model examining secretion of GnIH into the hypothalamic 

portal system. Release of GnIH from the median eminence (ME) occurs at higher 

levels during the nonbreeding season, ostensibly inhibiting reproduction.
162

 Testing 

the direct relationship between environmental stress and GnIH secretion, Clarke and 

colleagues subjected ewes to both long and short term stressors. Long term 

administration of adrenocorticotropin decreased LH secretion, increased the number of 

GnIH-containing neurons and GnIH mRNA levels in individual GnIH-neurons but did 

not affect the levels of GnIH detected in plasma at the ME. Moreover, these stressors 

appeared to increase the number of GnIH nerve fibers that occurred in proximity to 
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GnRH neurons. Interestingly, short-term stressors such negative auditory stimuli (dog 

barking) followed by induction of hypoglycemia with insulin or a separate stressor 

induced by LPS administration did not change GnIH levels at the ME, but increased 

neuronal activation of GnIH neurons and the contact fibers between GnIH and GnRH 

cells.
163

 These new studies provide compelling evidence that GnIH is a potent negative 

regulator of reproduction during times of chronic and acute stressors. Manipulation of 

the GnIH systems has clear and important implications as a pharmacological target for 

GnRH inhibition.  

 

CONCLUSIONS 

Understanding and controlling reproduction is critical in the face of a growing 

global population and sustainability of food supplies to support such a population. 

Conversely, issues related to infertility also strain health care, particularly in 

developed countries. These issues span human medicine and species barriers; for 

example, controlling pet populations and those of invasive species, while improving 

reproduction of critically endangered species has important relevance. Moreover, 

insuring adequate production of food and fiber often relies upon efficient reproductive 

strategies. GnRH, a potent regulator of reproduction as an integral and required part of 

the HPG axis; GnRH and the GnRHR are critical targets for manipulating 

reproduction. Thus, understanding the potential modulators and inhibitors of GnRH 

action in the pituitary and hypothalamus, as well as the function and intricacies of the 

intracellular signaling pathways increases the ability to modulate gonadotrope cell 

behavior. Similarly, understanding non-canonical signaling pathways from outside of 
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the HPG axis has helped to identify and characterize novel targets for 

pharmacological/medical intervention in the control of fertility.  

This introduction has worked to highlight recent advances in research 

involving GnRH and GnRHR action. This work has uncovered novel binding partners, 

activation mechanisms, functional behavior and signaling mechanisms regarding 

GnRH. However, more areas of research exist, especially in understanding the clinical 

implications and treatment of IHH. Specifically, understanding the progression of IHH 

and the result of long term loss of gonadotropin stimulation has been under 

investigated to this point. Additionally, the role of GnRH and GnRHR in the placenta 

has not been thoroughly explored, especially in the context of ERK signaling. IHH 

patients have difficulty with conception and throughout pregnancy, for reasons that 

have not been thoroughly elucidated (Chapter 3). In addition to understanding 

different facets and clinical implications of the loss of GnRH signaling, gonadotropins, 

and ERKs in various physiologic time points and tissues, we hoped to elucidate 

additional targets and modulators of GnRH signaling in the context of the ERK1/2 

deficient mouse model system (Chapter 2). My dissertation research seeks to define 

physiological mechanisms both in the context of the HPG axis and other aspects of 

reproduction, as well as modulators of GnRH action related to other areas such as 

metabolism and metabolic regulation of reproductive potential (Chapter 4). We 

hypothesize ERK1/2 signaling in GnRHR expressing cells is a central regulator of 

reproduction in multiple areas, including aging, pregnancy and metabolism. 
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ABSTRACT 

ERK (extracellular signal-regulated kinase) signaling regulates the 

reproductive axis, but specific mechanisms have yet to be completely elucidated. 

Conditional gene targeting allows isolation and analysis of ERK-dependent 

mechanisms controlling gonadotrope cell function. In the present study, an ERK1 null 

and ERK2 floxed mouse was combined with gonadotrope-specific Cre (GRIC) driver. 

The mice were characterized for reproductive abnormalities to understand the role of 

ERK signaling in the gonadotrope during aging. As observed previously using a 

different pituitary-specific Cre driver, female ERK double knockout (ERKdko) 

animals were hypogonadotropic, leading to infertility through altered estrous cyclicity 

and anovulation. Transcript levels of four gonadotrope specific genes (GnRHR, and 

the three gonadotropin subunits) were reduced in pituitaries at estrus. Further, post-

castration response to endogenous GnRH stimulation was blunted. As females aged, 

they exhibited abnormal ovarian histology, as well as increased bodyweight. ERKdko 

males were initially less affected, showing moderate subfertility up to 6 months of age. 

Male ERKdkos also displayed a blunted response to endogenous GnRH following 

castration. By 12 months of age, ERKdko males had reduced testicular weight and 

sperm production. By 18 months of age, the ERKdko males retained only 23% of 

sperm production occurring coincident with reduced testis and seminal vesicle weight, 

and marked seminiferous tubule degeneration. These studies support speculation that 

hypogonadotropism secondary to loss of ERK signaling within the reproductive axis 

has important impacts on reproductive competence in both sexes and shed new light 
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on the pathophysiology of aging in idiopathic hypogonadotropic hypogonadism 

(IHH).  

 

INTRODUCTION 

The hypothalamic-pituitary-gonadal (HPG) axis regulates reproduction 

through multiple interconnected endocrine feedback loops.
1
 The hypothalamus 

secretes gonadotropin releasing hormone (GnRH) from the median eminence, which 

travels through the hypophyseal portal system to act upon gonadotrope cells in the 

anterior pituitary.
2,3

 These gonadotrope cells are characterized by expression of GnRH 

receptor (GnRHR), and comprise approximately 10- 15% of the pituitary cells.
4
 In 

response to GnRH stimulation, the gonadotrope produces two peptide hormones: 

luteinizing hormone (LH) and follicle stimulating hormone (FSH).
5
 They are made 

from two gonadotropin specific subunits, LHβ and FSHβ, which combine with a 

common glycoprotein subunit (αGSU), to create bioactive gonadotropins.
6
 In turn, 

these hormones act upon the gonads to control steroidogenesis and gametogenesis.
7,8

 

Isolating the role of specific signaling pathways and genes in discrete tissues or 

cell types in the HPG axis aids in understanding both the function of the axis and can 

lead to increased ability to manipulate, augment or restrict reproductive endocrine 

function. To this end, we focused on the role of extracellular signal-regulated kinase 1 

and 2 (ERK1/2) in the pituitary gonadotropes. Whole body knockout of ERK2 results 

in embryonic lethality, but ERK1 null animals are viable and fertile.
9–11

 Therefore, 

understanding the role of ERK2 in reproduction requires a tissue specific knockout. In 

the pituitary, ERK is necessary for immediate early gene activation. Activation of 
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factors like early growth response protein 1 (Egr1), c-Fos, activating transcription 

factor 3 (ATF3), and Nur77, along with the gonadotropin hormone subunits, is crucial 

for appropriate response to GnRH stimulation and are all ERK signaling-

dependent.
12,13

 Thus, ERK1/2 signaling is an integral regulator of gonadotrope cell 

function, as well as the function of multiple parts of the HPG axis.
14–18

  

Multiple labs, including our own, have used gonadotrope specific models to 

understand the role of genes or signaling intermediates in the neuroendocrine axis.
19–21

 

Previously, Bliss et al used the αGSU promoter regulating Cre recombinase expression 

to understand the role of ERK1/2 in pituitary gonadotropes.
20

 While very useful, 

expression of GSU is not specific to pituitary gonadotropes, as the Cre was also 

expressed in thyrotropes. Alteration of the thyroid hormone axis has clear effects on 

reproductive potential leaving open questions of how exactly to interpret the role of 

ERK signaling within the reproductive axis. A novel gonadotrope specific Cre, the 

GnRHR IRES Cre (GRIC) mouse, has more recently been used to study ablation of 

specific genes in the pituitary gonadotropes.
4,22

 This Cre driver was knocked in 

downstream of the GnRHR coding region, along with an IRES sequence. This results 

in a bicistronic mRNA, and independent translation of the GnRHR and the Cre 

recombinase.
4
 GnRHR is activated at e13.5, markedly later than e9.5, when the αGSU 

Cre was activated, potentially accounting for some of the differences between the two 

models. 
20,22

 

Utilization of the GRIC model, in combination with an ERK1
-/-

, ERK2
fl/fl

 

background, provides specific ablation of ERK2 localized to the gonadotrope within 

the pituitary. However, this Cre has been shown to be expressed in the testes and 
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placenta as well
19

 (Unpublished data, Roberson lab). The current studies more fully 

characterize the reproductive phenotype of the ERK deficient males regarding the 

impact of ERK signaling loss on gonadotrope cell function and fertility. ERK 

signaling is altered in cellular aging, senescence, and oxidative damage, and alteration 

in ERK expression can change cellular response to these insults.
23–29

 Based upon these 

observations we investigated sex and age-related impacts of ERK1/2 loss within the 

reproductive system. 

Both males and females show changes in the HPG axis as they age. Changes in 

gonadotropins, steroid hormones and gonadal function have been documented in aging 

animals and humans. In rodent models, serum gonadotropins have been shown to have 

altered secretion and cyclicity in aging female animals, with decreased LH and 

increased FSH, 
30,31

 as well as altered steroidogenesis and decreased serum 

progesterone.
25

 Interestingly, these effects could be mitigated by repeated pregnancy 

or progesterone supplementation.
33

 Males also display the same alterations in 

gonadotropin levels, decreased quality and quantity of LH and increased FSH, 

corresponding inversely to sperm count.
33–35

 Although ERK’s role in reproduction has 

been well characterized, understanding the effects of ERK loss in the pituitary, and 

subsequent hypogonadism, as animals age could help to understand and mitigate the 

effects of IHH. 

We investigated the effects of ERK1/2 loss in aged animals, as well as those of 

reproductive age.
23–27

 The present studies show that loss of ERK signaling clearly 

impacts the timing of reproductive senescence in males and female that is likely 

attributable to loss of gonadotropic stimulation and or local effects of GRIC-medicated 
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ERK deletion in the testis. Collectively our studies provide valuable insights into the 

effect(s) of hypogonadatrophic hypogonadism on gonadal competence as mice and 

potentially human patients age.  

 

MATERIALS/METHODS 

ANIMALS 

ERK1 null (ERK1
-/-

), ERK2 floxed (ERK2
fl/fl

) and GnRH receptor IRES Cre 

(GRIC) mice have been described previously.
4,19,20

 ERK1/2 knockout animals were 

designated ERKdko (ERK1
-/-

, ERK2
fl/fl

, Cre
+/-

) and compared with Control animals 

(ERK1
-/-

, ERK2
fl/fl

, Cre
-/-

). Animals were handled in compliance with the Cornell 

University Institutional Animal Care and Use Committee. For breeding challenge, 

males of both genotypes were paired with one control and one ERKdko female. 

Females were checked daily for copulatory plugs, and monitored for changes in body 

weight and signs of pregnancy and parturition.  

 

GENOTYPING 

Genomic DNA was isolated from tail snips (3 mm), or an equivalent quantity 

of other tissues as indicated, using a E-Z Tissue DNA Kit (Omega Biotek, Norcross, 

GA) per manufacturer’s instructions. Routine PCR genotyping was performed on 

animals as previously described.
36

 PCR confirmation of ERK1 knockout, ERK2 flox, 

Rosa26 reporter, Stra8 cre, and GnRHR Cre alleles were performed with primers 

listed below.  
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Primer 
 

Sequence (5’ to 3’) 

Rosa26 

Reporter 

Rosa26 Forward TAA GCC TGC CCA GAA GAC TC 

Rosa26 Reverse AAA GTC GCT CTG AGT TGT TAT 

Rosa26 Common 
TCC AGT TCA ACA TCA GCC GCT 

ACA 

ERK1 
ERK1 Forward AAG GTT AAC ATC CGG TCC AGC A 

ERK1 Reverse AAG CAA GGC TAA GCC GTA CC 

ERK2 
ERK2 Forward AGC CAA CAA TCC CAA CCC TG 

ERK2 Reverse GGC TGC AAC CAT CTC ACA AT 

GnRHR 

GnRHR Forward GAA CTA CAG CTG AAT CAG TC 

GnRHR Reverse CTC TAA CAA ACT CTG TAC A 

GnRHR 

Homozygous 

CGG AAT TCA TCG ATC ATA TCA 

GAT CC 

Stra8 
Stra8 Forward GTG CAA GCT GAA CAA CAG GA 

Stra8 Reverse AGG GAC ACA GCA TTG GAG TC 

 

HISTOLOGY 

Tissues were fixed in 10% formalin, paraffin embedded, serially sectioned at 

4µm, and stained with hematoxylin and eosin using standard histological techniques. 

Sections were scanned and digitized using an Aperio Scanscope (Vista CA), and 

analyzed using ImageScope (Leica Biosystems, Buffalo Grove, IL). For 

characterization of the ovarian follicular population, every third section was examined 

microscopically for identification of luteal tissue in both ERKdko and control females. 

For characterization of the testicular tissues, every third section was examined 

microscopically for gross evaluation. The largest sections were chosen, choosing 4 

slides total, and 20 seminiferous tubules were chosen for analysis from each section on 

all slides in both ERKdko and control males. Tubule diameter was averaged between 

all slides and animals from each group.  
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VAGINAL CYTOLOGY 

The vaginal vault was swabbed to make a cytological smear. The smear was 

stained with Wright’s Giemsa stain, and examined with light microscopy. 100 cells 

were counted, and epithelial cells and leukocytes were differentiated on the basis of 

morphology. An animal was deemed to be in estrus with >85% superficial epithelial 

cells.  

 

EPIDIDYMAL SPERM COUNT 

After euthanasia, testes and epididymis were dissected free. The epididymis 

was placed in 1ml 4 percent BSA in PBS, and tubules extracted. The preparation was 

incubated (32
o
F) for 20 minutes. 480ul of 10% formalin was mixed with 20ul of the 

preparation, and placed on a hemocytometer, and sperm were counted to determine 

sperm numbers and assessed for morphology. 

 

GONADECTOMY 

Ovariectomy and castrations were performed under Avertin (Tribromoethanol, 

Sigma-Aldrich, St. Louis, MO) general anesthesia, with standard aseptic techniques. 

The castrations were performed with ventral midline incisions and the ovariectomies 

were performed with flank incisions. They were given ketoprofen postoperatively for 

pain control. The animals were euthanized 7 days post-operatively, and blood and 

pituitaries were collected.  
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SERUM PEPTIDE HORMONE ANALYSIS 

The blood was allowed to clot for 15 minutes, then centrifuged for 10 minutes 

at 2500 rpms. The serum was collected and frozen at -80 F. Pituitaries were snap 

frozen. Serum was analyzed at University of Virginia Ligand Core through RIA 

multiplex, in duplicate or using in-house FSH and LH assays as previously 

described.
37

 Testosterone was assayed using a commercially available kit (IBL, 

Minneapolis, MN) per the manufacturer’s instructions. 

 

RNA ISOLATION AND QUANTITATIVE PCR 

Tissues were collected and Trizol (ThermoFischer, Waltham, MA) extraction 

was performed per manufacturer’s instructions to isolate total RNA. Reverse 

transcription in 1000ug reactions was performed using the High-Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, Foster City, CA) according to 

manufacturer directions. qRTPCR was performed using SYBRGREEN 

(ThermoFisher, Waltham, MA) and primers listed below. Amplifications were carried 

out using a BioRad CFX96 Touch Real-Time OCR Detection System (BioRad, 

Berkeley, CA). RNA levels were standardized using the internal control Gapdh and 

assessed using ddCT methodology.
20

 

Primer Sequence (5’ to 3’) 

Glyceraldehydes-3-

phosphate 

dehydrogenase 

Gapdh forward ATGTTTGTGATGGGTGTGAA 

Gapdh reverse ATGCCAAAGTTGTCATGGAT 

Gonadotropin 

Releasing Hormone 

Receptor 

GnRHR forward TGCTCGGCCATCAACAACA 

GnRHR reverse GGCAGTAGAGAGTAGGAAAAGGA 
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Luteinizing Hormone 

β-subunit 

LHβ forward CTGAGCCCAAGTGTGGTGTG 

LHβ reverse GACCATGCTAGGACAGTAGCC 

Follicle Stimulating 

Hormone β-subunit 

FSHβ forward GCCATAGCTGTGAATTGACCA 

FSHβ reverse AGATCCCTAGTGTAGCAGTAGC 

α-Glycoprotein Subunit 

α-GSU forward TCCAGGGCATATCCCACTCC 

α-GSU reverse CATTTCCCATTACTGTGGCCTTA 

 

Β-Galactosidase in vitro assay 

For β-galactosidase in vitro assays, tissues were fixed in 4% 

paraformaldehyde/PBS for 1 hour at 4°C, then rinsed 3 times for 30 minutes each in a 

rinse buffer (100 mM sodium phosphate (pH 7.3), 2 mM MgCl2, 0.01% sodium 

deoxycholate, 0.02% NP-40 (by volume)). Sections were stained overnight in staining 

buffer (rinse buffer with 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, 

1 mg/ml X-gal). Sections were fixed overnight in 10% formalin, then washed with 

distilled water twice for 30 minutes. They were dehydrated by sequential ethanol 

washes (70%, 95%, twice in 100%, then washed in methyl salicylate until the tissue 

cleared. 

 

STATISTICS 

Pairwise comparisons were made by Student's t-test for most data. When 

appropriate, a one-way analysis of variance was used, with Tukey’s post-hoc test. All 

data are expressed as means ± standard error of the mean. A p value of <0.05 was 

considered statistically significant. 
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RESULTS: 

ERKdko females are infertile, hypogonadotropic, and anovulatory 

Female control and ERKdko mice were paired with control males and 

monitored daily for copulatory plugs. While 100 percent of control females exhibited 

copulatory plugs within the first 3 days of pairing, only 33 percent of ERKdko females 

exhibited copulatory plugs when paired with males for 30 days. All control females 

had litters at approximately 20 days post plug, while no ERKdko animals were 

observed to have litters (Table 1).  

Due to the complete infertility of ERKdko animals, vaginal cytology was used 

to assess dynamics of the estrous cycle. Control animals had a cycle length of 5.3 ± 

0.26 days. ERKdko animals had significantly longer interestrus interval, with 9.2 

±1.01 days between estrus (Table 1). The ERKdko animals showed normal diestrus 

and estrus cytology (Figure 1A and Table 1); however, both diestrus and estrus 

intervals were significantly prolonged, with a clear lack of normal periodicity seen in 

control females
20

. To better understand the relationship between estrous cycle 

behavior and ovarian activity, ovaries were collected at estrus and examined by 

histology. While both control and ERKdko animals showed ovarian follicles in 

various stages of maturation, control ovaries displayed an average of 6.3 corpora lutea 

per ovary compared to a conspicuous absence of CLs in the ERKdko ovaries, 

indicating an anovulatory phenotype (Figure 1B and Table 2). Body weight, uterine 

wet weight and ovarian weights at estrus were not significantly different between 

control and ERKdko animals at 6 months of age (Table 2).  
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To assess additional impacts of ERK deletion on gonadotrope cell function in 

female mice, we utilized qPCR to determine the abundance of the four genes known to 

define the gonadotrope cell lineage (LHβ, FSHβ, αGSU, and GnRHR). These studies 

demonstrate decreased mRNA expression of all four gonadotrope genes at estrus in 

ERKdko females, compared to control females (Figure 1C). This was consistent with 

basal levels of FSH and LH in circulation in ERKdko and control females (Figure 2A 

& B; sham).  

To determine the response of ERKdko and control females to endogenous 

hyper-stimulation by GnRH, animals were sham operated or ovariectomized and then 

euthanized after 5 days to analyze changes in serum gonadotropins. There was a 

significant increase in serum FSH and LH following ovariectomy in control animals 

which did not occur to the same extent in ovariectomized ERKdko females (Figure 

2A, B). These findings were generally consistent with previously published data from 

our group using the GSU Cre driver with the following exception.
20

 Current use of 

the GRIC Cre driver resulted in a more robust inhibition of response of FSH following 

castration which may reflect greater penetrance of the GRIC Cre in this model.  
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TABLE 1: ERKdko animals have significantly longer estrous cycles, spend more time 

in both diestrus and estrus, have smaller litters and are anovulatory compared to 

control animals  

 Control  GRIC ERKdko  

Estrous cycle 

length (d) 
5.3 + 0.3 

a

 

(n=5) 

9.2 + 1.0 
b

 

(n=5) 

Mean Litter size  7.0 + 0.6 
a

 

(n=3) 

0 
b

 

(n=6) 

Time in estrus (d)  1.4 + 0.1 
a

 

(n=5) 

3.2 + 0.5 
b

 

(n=5) 

Time in diestrus (d)  1.9 + 0.2 
a

 

(n=5) 

4.3 + 0.5 
b

 

(n=5) 

CL/ovary  6.3 + 1.3 
a

 

(n=6) 

0 
b

 

(n=6) 
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Figure 1: ERKdko are infertile due to hypogonadotropism and anovulation A) 
ERKdko animals exhibit irregular and prolonged estrous cycles compared to control 

animals. B) Ovaries from ERKdko animals showed no CLs, compared to 

approximately 6 per ovary for control animals. C) ERKdko animals had significant 

reduction in all four signature gonadotrope gene transcript levels (αGSU, LHβ, FSHβ, 

GnRHR) compared to control animals. (p<0.05) D) These transcript levels remained 

significantly lower in aged ERKdko animals (12 months), when compared to aged 

control littermates (p<0.05).  
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Table 2: Aged (12 month) ERKdko animals showed increased body weight, but 

decreased uterine and ovarian wet weight as a percentage of body weight  

 Control  GRIC ERKdko  

Body weight (gm; 6 

mos)  
24.3 + 1.4

a
 

(n=14) 

27.4 + 1.3
a
 

(n=21) 

Body weight (gm; 12 

mos)  
28.9 + 0.6

a
 

(n=23) 

36.3 + 1.2
b
 

(n=12) 

Ovarian WT/BW (mg; 

6 mos)  
3.0x10

-3
 + 0.1x10

-3a
 

(n=4) 

2.2x10
-3

 + 0.1x10
-3a

 

(n=4) 

Ovarian WT/BW (mg; 

12 mos)  
1.2x10

-3
 + 0.09x10

-3a
 

(n=13) 

0.8x10
-3

 + 0.1x10
-3b

 

(n=7) 

Uterine WT/BW (gm; 

6 mos)  
0.05 + 0.1

a
 

(n=4) 

0.03 + 0.003
a
 

(n=4) 

Uterine WT/BW (gm; 

12 mos)  
0.04 + 0.004

a
 

(n=13) 

0.02 + 0.001
b
 

(n=7) 
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Figure 2: ERKdko animals have a blunted gonadotropin response to castration. A) 

Control animals showed significant increases in LH following castration and 

maximized endogenous GnRH. This effect was blunted in ERKdko animals, who did 

not show a significant difference in LH levels between castrated and sham op females. 

B) Similarly, ERKdko animals showed a blunted FSH response to endogenous GnRH 

following castration. (p<0.05).  
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Female ERKdko animals show altered age-related changes in body weight and 

ovarian histology 

Female control and ERKdko animals were maintained until approximately 12 

months of age. These animals received identical access to food and water and were not 

given the opportunity to reproduce. At the time of weaning through 6 months of age, 

there were no differences in body weight between genotypes. At 12 months of age, 

body weight was ~25% higher in ERKdko females compared to control females 

(Table 2). Absolute ovarian and uterine weights were reduced in ERKdko older 

females and this was amplified when presented as ovarian and uterine weight/unit 

body weight compared to the control genotype (Table 2).  

Aged ERKdko females (12 months) also showed signs of abnormal ovarian 

histology presumable reflecting premature reproductive aging and senescence. 

Consistent with the younger ERKdko females, aged ERKdko animals showed an 

absence of CLs. Further, aged females showed loss of normal ovarian architecture 

with abnormal accumulations of extra-cellular matrix and regions of marked 

acellularity. Ovarian histology in control animals appeared unremarkable with 

multiple CLs present and normal architecture (Figure 3A & B). Comparison of uterine 

histology between genotypes in the aged females was unremarkable (data not shown) 

suggesting that changes in ovarian architecture were specific within the reproductive 

axis.  

To understand the changes in pituitary gonadotrope function, we performed 

qRT-PCR on pituitaries from 12 months old females. Transcript levels of the four 
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gonadotrope genes were not significantly different between 6 month old and 12 month 

old control animals. However, all of these transcript levels were significantly reduced 

in aged ERKdko animals. LHβ showed the most significant reduction, with an 11-fold 

decrease compared to control animals (Figure 1D). 
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Figure 3: Aged ERKdko animals show alterations in ovarian histology. A) 

ERKdko animals show abnormal accumulations of extra-cellular matrix and regions of 

marked acellularity. B) Higher magnification of areas of acellularity and ECM 

accumulation  
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Male ERKdko animals show moderate subfertility 

  Males of both genotypes were capable of producing copulatory plugs, and 

there was no difference between control and ERKdko males in days to first plug or 

number of copulatory plugs needed to produce a pregnancy (data not shown). 

However, ERKdko males sired smaller litters compared to control males (Figure 4A). 

There was no significant difference in testis weight between control and ERKdko 

males at 6 months of age, even when normalized to body weight (Table 3). However, 

ERKdko males displayed a mild, but statistically significant reduction in sperm count 

at 6 months of age (Table 3). This corresponded with a modest reduction in 

seminiferous tubule area (Figure 4B). Sperm morphology was grossly normal for both 

genotypes (data not shown).  

To assess the effect(s) of ERK deletion on gonadotropin subunit and GnRHR 

mRNA levels, qPCR was performed on pituitaries from control and ERKdko males at 

6 month of age (Figure 4C). Consistent with responses in ERKdko females at estrus 

(Figure 1C), ERKdko males displayed reduced expression of LH and FSH  mRNAs 

compared with control males. Common glycoprotein hormone  subunit and GnRHR 

mRNAs were not statistically different between genotypes.  
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Figure 4: ERKdko males show reduced fertility. A) ERKdko animals had a 

significantly reduced litter size compared to control animals (4.8 versus 7.1 pups per 

litter) B) ERKdko animals have significantly reduced seminiferous tubule area 

compared to control animals. C) 4 month old ERKdko animals have significantly 

reduced transcript levels of LHβ and FSHβ, compared to control animals. Reductions 

in αGSU and GnRHR were not significant. D) 18 month old ERKdko animals had 

significant reduction in αGSU, LHβ, and FSHβ transcript levels compared to controls. 

(p<0.05 for all significant differences)  
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Table 3: Male ERKdko animals show reduced testis to body weight ratio, seminal 

vesicle weight and sperm count as they aged, when compared to age matched controls  

 Control  GRIC ERKdko  STRA8 ERKdko  

Testis 

(mg)/BW (g) 

6 mos  

3.6x10
-3

+0.1x10
-3a

 

(n=7) 

3.4x10
-3

+0.4x10
-3a

 

(n=6) 

 

Testis 

(mg)/BW 

(gm) 

12 mos  

3.8x10
-3

+ 0.1x10
-3a

 

(n=14) 

2.5x10
-3

+0.1x10
-3b

 

(n=12) 

 

Testis 

(mg)/BW 

(gm) 

18 mos  

4.1x10
-3

+0.1x10
-3a

 

(n=14) 

2.8x10
-3

+0.2x10
-3b

 

(n=12) 

3.7x10
-3

+ 0.1x10
-3c

 

(n= 6) 

Seminal 

Vesicle (mg) 

6 mos  

288.2 + 22.3
a
 

(n=7) 

250.2 + 16.6
a
 

(n=6) 

 

Seminal 

Vesicle (mg) 

12 mos  

395.3+ 54.3
a
 

(n=14) 

258.4 + 29.6
a
 

(n=12) 

 

Seminal 

Vesicle (mg) 

18 mos  

362.7 + 24.8
a
 

(n=14) 

257.8+ 8.2
b
 

(n=12) 

429.3+ 60.5
c
 

(n= 6) 

Total 

epididymal 

sperm  

6 mos  

20.6x10
6
 + 

0.8x10
6a

 

(n=7) 

17.0x10
6
 + 

1.1x10
6b

 

(n=6) 

 

Total 

epididymal 

sperm  

 12 mos  

14.7x10
6
 + 

0.4x10
6a

 

(n=14) 

7.8x10
6
 + 0.2x10

6b
 

(n=12) 

 

Total 

epididymal 

sperm  

18 mos  

13.4x10
6
 + 

0.6x10
6a

 

(n=14) 

3.8x10
6
 + 0.4x10

6b
 

(n=12) 

5.3x10
6
 + 0.3x10

6c
 

(n= 6) 
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To assess the impact of hyper-stimulation with GnRH, male control and 

ERKdko animals were castrated or underwent a sham surgery and then euthanized 

after 7 days and serum concentrations of LH and FSH were measured. Again, 

consistent with control females, castration resulted in a marked increase in LH 

secretion compared to sham operated controls (Figure 5A). While castration resulted 

in a numerical increase in FSH in circulation, this change was not statistically 

significant (Figure 5B). Similar responses to castration on LH secretion were not 

evident in the ERKdko males (Figure 5A).  



 

91 

Figure 5: ERKdko males show blunted LH response to maximized endogenous 

GnRH stimulation post castration A) Control animals show a significant increase in 

serum LH concentration following castration. However, this response was blunted in 

ERKdko animals. B) Neither control nor ERKdko animals showed a statistically 

significant FSH increase in response to castration.  
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Males show premature reproductive aging, characterized by testicular dysplasia 

Control and ERKdko males were assessed at 6, 12, and 18 months of age for 

body weight, testis size, sperm count, and seminal vesicle weight (Table 3). By 12 and 

18 months of age, ERKdko animals had significantly lower sperm count and testis 

weight. Seminal vesicle weights in ERKdko animals were reduced in the 18 month 

group compared to controls. Aging related abnormalities were also evident in 

testicular histopathology (Figure 6). Testicular histology revealed evidence of 

testicular dysplasia in ERKdko animals at 18 months, but not in age matched control 

testes. The testes showed areas of marked testicular degeneration, calcification, 

aspermatic tubules and giant spermatid cells (Figure 6).  
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Figure 6: Aged ERKdko animals show loss of normal testicular histology. A) 

Testes of ERKdko animals showed grossly normal morphology until 18 months of 

age, where they display signs of testicular degeneration and dysplasia, such as 

calcification, aspermatic tubules, and giant spermatid cells. B) High magnification 

showing degeneration, calcification and loss of tubules.  
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The four signature gonadotrope gene transcript levels were assessed in pituitaries of 

males at 18 months of age. Neither control nor ERKdko animals showed significant 

changes in transcript levels within genotypes between 6 and 18 months. However, 

there was a significant decrease between Control and ERKdko animals at 18 months in 

LHβ, αGSU and GnRHR.(Figure 4D) Interestingly, we found no significant 

differences between genotypes or ages in circulating testosterone levels indicating that 

despite low levels of LH, these were sufficient to maintain testosterone levels in 

ERKdko males (data not shown). Serum LH and FSH assays were also performed. 

FSH levels were not significantly different between genotypes or ages at 6, 9, or 12 

months. However, aged ERKdko animals (18months) had a significant reduction in 

serum FSH, approximately a 3 fold decrease compared with 6 month animals and 

control animals at 18 months of age (Figure 7). 
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Figure 7: ERKdko animals showed a significant decrease in serum FSH at 18 

months of age (p<0.05).  
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Phenotype of aging ERKdko males is likely due to hypogonadotropism, not loss 

of testicular ERK signaling 

Other labs utilizing the GRIC Cre driver have reported Cre expression within 

the testes, specifically in the germ cell lineage.
19

 In order to parse out potential effects 

of gonadotrope-specific ERKdko versus lesions that might be attributable to loss of 

ERK signaling directly within the testes, we examined reporter activity in Rosa 26 

mice expressing a GRIC Cre allele using in situ β-galactosidase staining (Figure 8B). 

These studies supported the prediction from others that GRIC Cre activity is present 

within the testes but not the ovary.  

 To further understand the differential effects of ERK signaling in the pituitary 

and testes, we characterized aged males from a Stra8 Cre line on the same ERKdko 

background. Consistent with the GRIC-Cre driver, the Stra8 Cre driver is expressed in 

the spermatogonia, as well as in later stages of spermatogenesis.
38

 Analyzing testicular 

histology, as well as reproductive phenotype, of the Stra8 ERKdko males would allow 

us to understand whether the phenotype seen in the GRIC Cre ERKdko animals was 

specifically due to testicular or gonadotrope loss of ERK signaling. Histology of Stra8 

Cre ERKdko animals revealed minor degenerative changes at 18 months of age 

compared to control animals, consistent with the advanced age of the animals. By 

comparison, testicular degeneration was markedly more severe in the GRIC Cre 

ERKdko animals.(Figure 8C) Loss of ERK signaling in the Stra8 males showed a 

moderate decrease in sperm count, a severe decrease in litter size, but interestingly no 

significant change in testicular size, testes to body weight ratio, body weight or 

seminal gland weight compared to control animals. (Table3, Figure 8A) Aside from 
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the reduced sperm count, Stra8 ERKdko animals more strongly phenocopied the 

control animals than the GRIC ERKdko males, indicating the likelihood that the 

testicular degenerative phenotype seen in the GRIC ERKdko males was due to 

prolonged hypogonadotropism, not a direct effect of ERK signaling loss within the 

germ cell lineage of the testis. 
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Figure 8: Testicular degeneration in ERKdko animals is due to 

hypogonadotropism, not loss of testicular ERK A)Stra8 animals show significantly 

smaller litter sizes than control animals (7.1 versus 2 pups/litter). B) Both GRIC and 

STRA8 Rosa26 animals showed β- galactosidase expression in situ in the tubules of 

the testes. C) 18 month old Stra8 animals did not show the testicular degeneration seen 

in 18 month old ERKdko animals  
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DISCUSSION: 

Previous work in our lab has shown the role of ERK signaling within the 

pituitary is less essential to reproduction in males than in females; however, given the 

potential contributions of the thyrotrope lineage in these studies, the absolute role of 

ERK loss in the gonadotrope was unclear.
20

 We and others have attempted to 

understand the mechanisms and pathways involved in gonadotropin production using 

more specific gonadotrope Cre-mediated gene excision
19–21

. In the current studies, 

GRIC-mediated ERKdko animals of both sexes were hypogonadotropic, with a 

reduced response to endogenous GnRH stimulation. Both also showed reduced 

fertility at 6 months of age, with males being subfertile and females being infertile and 

anovulatory. We hypothesize this difference is due to the variation in LH and FSH 

requirements between males and females. In males, LH and FSH levels in ERKdko 

animals appear to be sufficient to maintain fertility, however, this is suboptimal. 

Females, on the other hand, have a notably more complex requirement for 

gonadotropins in reproduction, particularly in LH biosynthesis leading to the 

preovulatory surge and ovulation.
20

 Loss of ERK signaling in females precludes 

appropriate LH accumulation necessary for the LH surge. Although ERK signaling 

has been shown to be the primary pathway for gonadotropin biosynthesis, other 

signaling cascades have been proven to be able to create small amounts, which is 

likely how the ERKdko animals retain gonadotropin function. 
39–41

As the animals aged 

in this hypogonadotropic model, both sexes showed loss of normal gonadal histologic 

architecture, which was not seen in control aged animals or Stra8 Cre ERKdko aged 

males.  
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The requirement for pituitary ERK signaling in female mice in the present 

studies was generally similar to previous work done before in our lab by Bliss et al.
20

 

However, several points of comparison are noteworthy. The GRIC Cre excision 

appears to be exclusive to the pituitary gonadotrope, without expression in other 

pituitary cell lineages such as the thyrotrope
4
. Much like the αGSU Cre ERKdko 

animals, the loss of the ERK2 function in gonadotropes ablates the ability of female 

mice to produce a functional LH surge, capable of inducing ovulation. This was 

confirmed by the blunted LH serum levels in ERKdko females following castration. 

Interestingly, although FSH production was also blunted, females appeared to have 

similar numbers of follicles, including large antral follicles compared with control 

females suggesting that FSH levels were sufficient for normal ovarian 

folliculogenesis. As mentioned before, though the males also show blunted 

gonadotropin production in response to endogenous GnRH production, they only 

demonstrate moderate subfertility as young animals. There were some important 

differences between the models. The GRIC ERKdko females proceed through all 

phases of the estrous cycle, and are acyclic, instead of displaying anestrous similar to 

the αGSU females. One of the primary differences between the GSU and GRIC 

models of ERK deletion was in FSH production. Both males and female ERK 

deficient models, reduction in FSH transcript levels and secretion was more robust in 

the GRIC model. While the reasons behind this difference are not completely clear, 

this may be due to the timing of the onset of Cre recombinase activity and/or Cre 

penetrance. The αGSU was activated at e9.5, while the GRIC Cre is not active until 

e13.5.
42,43

 Multiple markers of pituitary and gonadotrope differentiation and function, 
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such as FGF, BMP4, BMP2, and the LIM homeodomain transcription factors, Isl1, 

Lhx3, and Lhx4, are expressed during that window, so loss of ERK in those cells could 

have broad impacts on pituitary lineage specification.
44

  

 Loss of ERK signaling, and subsequent hypogonadotropism caused age-related 

changes in gonadal histology, suggesting long term hypogonadotropism is detrimental 

to gonadal health and function. Females began showing abnormal ovarian histology at 

12 months of age, but the changes were not completely consistent with 

hypogonadotropism. Though they lacked CLs, one would expect a loss of mature 

follicles as the females aged, which was not seen.
30

 This was unsurprising, since the 

FSHβ levels were grossly unchanged from 6 months of age. Histology from young 

animals showed antral follicles as well, indicating sufficient FSH was present for 

follicle recruitment and maturation. By contrast, aged (18 month old) males displayed 

a severe reproductive phenotype including marked loss of sperm production, reduced 

testicular and seminal vesicle weight, as well as areas of moderate to severe testicular 

degeneration. This degeneration was localized to focal areas within the testis, not 

generalized throughout the testis. Interestingly, the testis weight and sperm count 

decreased between 6 and 12 months in males, but the decrease in seminal vesicle 

weight and the histological changes did not occur until 18 months of age. Although 

seminal vesicle weight is usually correlated with testosterone, it has been shown to 

have LH receptors, and the weight loss is likely associated with the precipitous drop in 

LH in 18 month old ERKdko males.
45

 At 18 months, males had only 22% of the sperm 

production seen at 6 months. While these males showed dramatic effects of testicular 

degeneration, it did not affect almost 80 percent of the tubules. This loss of sperm is 
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more than is expected with aging males in humans.
34

 Unlike human males, these mice 

did not show decreased testosterone with age. This is surprising, especially given the 

decrease in LH seen in the aged GRIC ERKdko males. In humans, blocking GnRH 

increases regularity of LH and testosterone secretion, as well as the feedback between 

them. However, age decreases these interactions, causing higher frequency of LH 

pulses, though lower pulse amplitude, and reduces the organization of the secretion of 

both hormones.
46,47

 Treating with GnRH seemed to correct the effects of aging, 

indicating the importance of an intact hypothalamic-pituitary relationship.
48

 Both male 

and female ERKdko animals showed increased body weight as they aged, likely due to 

decreased metabolic rate concomitant with loss of reproduction function. This is a well 

characterized phenomenon in human females during menopause, in castrated domestic 

animals, as well as in IHH patients
57–62

 

 We speculate that the phenotype seen in aged GRIC ERKdko animals is 

primarily due to hypogonadotropism, not hypogonadism or gonadal Cre excision. In 

female mice, there is no evidence the GRIC-Cre driver is expressed outside of the 

gonadotrope (except during pregnancy) suggesting that the anovulatory phenotype 

observed was due to hypogonadotropism. (Chapter III) Loss of gonadotropin 

production presumptively caused the absence of CLs, and studies in other chapters of 

this dissertation show that gonadotropin replacement is sufficient to induce ovulation 

and CL formation in ERKdko females. The histological degeneration within the ovary 

with increased age also appears to be due to the trophic effects of the gonadotropins 

and potentially secondary changes in ovarian steroids. Male ERKdko mice showed 

evidence of premature reproductive aging including a reduction in seminal vesicle 
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weight, and reduced testicular size. While we initially presumed this was associated 

with hypogonadism, testosterone levels were not significantly different between 

control and ERKdko animals suggesting either that the effects of ERK deletion might 

be local within the testes or that the reduced gonadotropins observed with the ERKdko 

males was sufficient to maintain testosterone production by Leydig cells.
49,50

  

ERKdko males also showed evidence of premature testicular degeneration, 

such as tubule vacuolation and calcification with increased age.
51,52

 These 

pathophysiological changes were not seen in littermate control males, and were 

apparently not associated with decreased testosterone levels.
53,54

 Since the GRIC Cre 

driver is expressed in the male germ cell lineage, we wanted to understand whether the 

histological effects we were observing were secondary to testicular ERK deletion or 

loss of gonadotrope cell trophic input to the testes. To assess this genetically, we 

developed a conditional ERKdko using the STRA8 Cre driver with specific ERK 

excision unique to the germ cell lineage, similar to the GRIC Cre driver. ERK 

deficiency induced by the STRA8 Cre driver did not phenocopy the GRIC ERKdko 

males suggesting that testicular degeneration was due to hypogonadtropism rather than 

a testicular loss of ERK signaling. This makes the GRIC ERKdko mouse an 

interesting model to study the specific effects of chronic hypogondotropism on the 

gonads with increasing age. This is not an area that has been well characterized in the 

literature in humans or model systems. IHH patients have been characterized with 

genetic deficiencies in GnRH production and/or secretion and treatment with GnRH or 

gonadotropins is a successful method to induce fertility and treat IHH in humans.
55,56
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Our mouse model responds appropriately to gonadotropins (Chapter XX), making 

them a potential model for treatment as well as the disease.  

.  
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CHAPTER 3 

 
 
 
 
 
 

 

 

Conditional loss of ERK1 and ERK2 results in abnormal placentation and 

delayed parturition in the mouse 
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ABSTRACT 

 

Extracellular-signal-regulated kinases (ERK) 1 and 2 regulate many aspects of 

the hypothalamic-pituitary-gonadal axis. We sought to understand the role of ERK1/2 

signaling in cells expressing the gonadotropin-releasing hormone receptor (GnRHR) 

using a conditional Cre allele regulated by the endogenous GnRHR gene promoter 

(ERK double knockout, or ERKdko). Previous studies demonstrate that female 

ERKdko mice were anovulatory. The present study examined if exogenous 

gonadotropins could rescue this phenotype, which lead to pregnancy in approximately 

one-third of the ERKdko females. Litters from ERKdko females were significantly 

smaller and pup weights at e18.5 were reduced, occurring coincident with prolonged 

gestation/parturition and 100% neonatal mortality. Interestingly, placental size was 

similar in control and ERKdko females indicating reduced placental efficiency. Based 

on this, we examined placental GnRHR expression during gestation in mouse 

implantation sites. GnRHR mRNA levels at e10.5 and e12.5 were comparable to 

pituitary GnRHR mRNA levels from adult female mice. Careful analyses of maternal 

decidua ate12.5 showed enrichment of GnRHR mRNA compared to the whole 

implantation site. Studies in Rosa26 reporter mice confirmed GRIC Cre activity, and 

ERKdko placentas showed reduced ERK2 protein levels. Histopathology revealed 

abnormalities in maternal vascular remodeling and architecture of the placental 

decidua (e18.5). Evidence of prominent regions of apoptosis at the decidual/uterine 

interface around the time of parturition (e18.5) was observed in control animals and 

reduced in ERKdko animals. These studies support a model of ERK-dependent 

signaling within the maternal decidua leading to loss of placental architecture, reduced 
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physiologic placental apoptosis necessary for placental detachment at parturition, and 

ultimately prolonged gestation and fetal mortality. 

 

INTRODUCTION: 

Mitogen-activated protein kinases (MAPKs) are signal transducing kinases that 

in general contribute to cell differentiation, survival and proliferation.
1,2

 MAPKs are a 

part of ubiquitous signaling cascades involving multiple intermediates associated with 

phospho-transfer including Raf-1 kinase, MEKK1, MEKs 1 and 2, and ERKs 1 and 2 

(MAPK3 and MAPK1, respectively).
3
 ERK1 and ERK2 have been long known to 

function integrally during embryonic development and in adult animals.
4,5

 ERK1 and 

ERK2 are believed to have divergent functions during development since ERK1 null 

mice are grossly viable and fertile while ERK 2 null mice are embryonic lethal.
6–8

 

Embryonic lethality of the ERK2 null mice appears to be strain-specific; some have 

reported evidence of failed early mesodermal differentiation while others report mis-

regulation of placental development.
9
 Both instances lead to early embryo mortality 

where ERK 1 does not appear to be compensatory. In adult animals, ERKs 1 and 2 

appear largely redundant helping to coordinate cellular responses to growth factors, 

peptide hormones and other ligands via a wide array of receptor subclasses controlling 

cell proliferation, differentiation and survival depending on the physiological context.  

Since ERK 2 null animals are embryonically lethal, a conditional approach to 

examining the specific role of ERK signaling in discrete cell types is necessary. In our 

original studies, we developed a pituitary specific conditional ERK double knockout 

using the ERK1 null and ERK2 floxed alleles combined with a Cre recombinase drive 
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regulated by the gene promoter for the  subunit to the glycoprotein hormones 

(GSU).
3,10

 These studies were instrumental in understanding the role and requirement 

for GnRH-induced ERK signaling to a cohort of immediate early response genes 

regulating gonadotropins in the pituitary. The resultant phenotype was female-specific 

anovulatory infertility due to a loss of LH subunit expression resulting in an inability 

to mount a preovulatory surge of LH. Further, we examined the specific role of Raf-1 

kinase in the regulation of GnRH-induced ERK activation finding that Raf-1 was 

dispensable for activation of this pathway. Similar studies of ERK double knockout 

conditionally in GnRH neurons did not impact fertility while loss of ERKs in the 

granulosa cell compartment revealed a requirement for ERK signaling in the ovarian 

follicle.
11

 Loss of LH-induced ERK activation in granulosa cells also resulted in 

infertility.
12

 Our original use of the GSU Cre driver was not without caveats, with 

GSU being expressed in thyrotropes and gonadotropes. The development of the 

GnRHR-IRES-Cre (GRIC) driver helped to resolve this caveat since Cre recombinase 

is knocked in to the endogenous GnRHR loci downstream of the GnRHR coding 

sequence.
13

 We have recently studied a similar ERK1/2 double knockout using the 

GRIC line examining the impact of this signaling loss in gonadotrope on male fertility 

and how these animals manage reproductive aging in a hypogonadal state (Chapter 2).  

In the present studies, we make use of conditional deletion of ERK 1 and 2 

using the GRIC driver to examine the hypothesis that these hypogonadotropic-

hypogonadal animals would respond to exogenous gonadotropins, ovulate and 

establish pregnancy. This question was of particular important since the GnRHR 

mRNA has been detected in tissues and cell types beyond the gonadotrope and GnRH 
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neurons including human trophoblast lineages and maternal decidua.
14,15

 However, it 

is presently unclear if Cre is expressed in these tissues in the GRIC model and if so, 

how specific loss of ERK signaling might impact pregnancy and parturition. GRIC-

ERKdko females were responsive to a standard superovulation paradigm with a subset 

of treated animals establishing and maintaining pregnancy without further 

gonadotropin therapy; however, gestation and parturition in these animals were 

markedly prolonged with all of the neonates dying before postnatal day 3. GRIC-

mediated gene excision was detected primarily in the maternal decidua and to a lesser 

extent in trophoblast cell populations later in gestation in the mouse. Loss of ERK 

signaling in this system resulted in dramatic histological changes in placental 

architecture, maternal artery remodeling and focal points of apoptosis normally 

associated with the initiation of parturition.  

 

MATERIALS and METHODS: 

ANIMALS  

 Animals were handled in compliance with the Cornell University Institutional 

Animal Care and Use Committee. ERK1 null (ERK1
-/-

), ERK2 floxed (ERK2
fl/fl

) and 

GnRH receptor IRES Cre (GRIC) mice have been described previously.
13,16,3

 To create 

gonadotrope specific ERK1/2 knockout animals, they were crossed and designated 

ERKdko (ERK1
-/-

, ERK2
fl/fl

, Cre
+/-

), or Control (ERK1
-/-

, ERK2
fl/fl

, Cre
-/-

). For 

experiments involving Cre visualization, ROSA26-GNZ KI mice were purchased from 

Jackson Laboratory These were crossed with GRIC animals, and designated ROSA26 

(GRIC
+/-

, ROSA
+/-

 or GRIC
+/+

, ROSA
+/+

). For timed matings, mice were paired and 
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checked for copulatory plugs daily. Pairs were separated after a copulatory plug was 

observed (embryonic day (e)0.5). On e10.5, e12.5 and e18.5, the dams were 

euthanized, and placentas were carefully dissected. For superovulation studies, 

females were injected with 100ug of pregnant mare serum gonadotropin (PMSG) 

intraperitoneally. 46-48 hours later, they were injected with 100ug human chorionic 

gonadotropin (hCG) intraperitoneally. For assessing CL and follicle formation, 

superovulated animals were euthanized 72 hours later, and ovaries were collected for 

histological examination. For induction of pregnancy, and assessment of parturition, 

superovulated control and ERKdko females were placed with a male and checked for 

copulatory plugs the following morning day. Following evidence of copulation, 

females were minimally handled until e18.5, at which point they were checked every 

12 hours. They were monitored for signs of initiation of parturition, contractions, 

distress, hiding, blood on the shavings, and pups. 

 

GENOTYPING 

 Genomic DNA was isolated from tail snips (3 mm), or an equivalent quantity 

of other tissues as indicated, using a E-Z Tissue DNA Kit (Omega Biotek, Norcross, 

GA) per manufacturer’s instructions. Routine PCR genotyping was performed on 

animals as previously described.
17

 PCR confirmation of ERK1 knockout, ERK2 flox, 

GnRHR Cre and Rosa alleles were performed with primers as listed below.  
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Primer 
 

Sequence (5’ to 3’) 

Rosa26 

Reporter 

Rosa26 Forward TAA GCC TGC CCA GAA GAC TC 

Rosa26 Reverse AAA GTC GCT CTG AGT TGT TAT 

Rosa26 Common 
TCC AGT TCA ACA TCA GCC GCT 

ACA 

ERK1 
ERK1 Forward AAG GTT AAC ATC CGG TCC AGC A 

ERK1 Reverse AAG CAA GGC TAA GCC GTA CC 

ERK2 
ERK2 Forward AGC CAA CAA TCC CAA CCC TG 

ERK2 Reverse GGC TGC AAC CAT CTC ACA AT 

GnRHR 

GnRHR Forward GAA CTA CAG CTG AAT CAG TC 

GnRHR Reverse CTC TAA CAA ACT CTG TAC A 

GnRHR 

Homozygous 

CGG AAT TCA TCG ATC ATA TCA 

GAT CC 

 

IMMUNOBLOTTING  

 Placentas were halved, with one half placed in formalin for histological studies 

or snap frozen for RNA analysis, and the other half homogenized in lysis buffer 

containing 20 mM Tris-HCl (pH 8.0), 130 mM NaCl, 10% glycerol, 1% Nonidet P-40, 

0.1% sodium dodecyl sulfate, 0.5% deoxycholate, 2mM EDTA, 5mM sodium 

vanadate, 0.2 mM phenylmethysulfonylfluoride, and 5 mM benzamidine. Protein 

concentrations of lysates were determined by Bradford assay. Samples were boiled for 

5 minutes in sodium dodecyl sulfate loading buffer, resolved by SDS-PAGE, and 

transferred to polyvinylidine difluoride membranes by electroblotting. Membranes 

were blocked with 5% nonfat dry milk in TBST (10 mM Tris-HCl, pH 7.5; 150mM 

NaCl; 0.05% Tween 20) and then incubated with specified antisera (anti-ERK2, anti-

βactin and horseradish peroxidase-conjugated secondary antibodies from Santa Cruz, 

Dallas, TX).
3
 Protein bands were visualized using enhanced chemiluminescence 

according to manufacturer’s instructions (BioRad, Berkeley, CA) and imaged on 
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ChemiDoc XRS (BioRad, Berkeley, CA) They were analyzed using Image Lab 

software (BioRad, Berkeley, CA). 

 

RNA ISOLATION AND QUANTITATIVE PCR 

Placentas were halved, and Trizol (ThermoFischer, Waltham, MA) extraction 

was performed per manufacturer’s instructions. Reverse transcription in 1000ng 

reactions was performed using the High-Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems, Foster City, CA) according to manufacturer directions. 

Amplifications were carried out using a BioRad CFX96 Touch Real-Time OCR 

Detection System (BioRad, Berkeley, CA). RNA levels were standardized using the 

internal control Gapdh and calibrated to corresponding transcript levels of a control 

group.
3
 

Primer  Sequence (5’ to 3’) 

Glyceraldehydes-3-

phosphate 

dehydrogenase 

Gapdh forward ATGTTTGTGATGGGTGTGAA 

Gapdh reverse ATGCCAAAGTTGTCATGGAT 

 GnRHR 
GnRHR forward TGCTCGGCCATCAACAACA 

GnRHR reverse GGCAGTAGAGAGTAGGAAAAGGA 

 

HISTOLOGY, IMMUNOFLUORESCENCE, and β-GALACTOSIDASE 

ASSAYS 

  Mice were paired and checked for copulatory plugs daily. Pairs were separated 

after a copulatory plug was observed (embryonic day (e)0.5). On e12.5 and e18.5, the 

dams were euthanized, and placentas were carefully dissected. For histological 

examination, tissues were fixed in 10% formalin, paraffin embedded, serially 

sectioned at 4µm, and stained with hematoxylin and eosin, terminal deoxynucleotidyl 
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transferase dUTP nick end labeling (TUNEL), isolectin or smooth muscle actin using 

standard histological techniques.
18

 Sections were examined with light microscopy. 

Sections were scanned and digitized using an Aperio Scanscope (Vista CA). Placenta 

area, area of decidua, junctional zone and labyrinth layers, along with luminal area of 

decidual vessels were quantitated using Aperio software. TUNEL was quantified using 

the Positive Pixel Algorithm on ImageScope (Leica Biosystems, Buffalo Grove, IL).  

For immunofluorescence labeling of GFP, placentas were embedded in Tissue-

Tek OCT media (Sakura Finetek, Torrence, CA) and maintained at -80°C in 2-

methylbutane for 24 hours. Sections (10µM) were cut using a cryotome and stored at -

80°C. Frozen sections were fixed with 4% paraformaldehyde, blocked for one hour, 

and stained with anti-GFP antibody (Abcam, Cambridge, United Kingdom) at 1:100 

overnight followed with a FITC goat-anti-rabbit secondary antibody (Vector 

Laboratories, Burlingame, CA). Sections were cover slipped with SlowFade Gold with 

DAPI (Life Technologies, Carlsbad, CA) and imaged on an AxioVision fluorescent 

microscope with Zen software (Zeiss, Oberkochen, Germany). Sections were also 

scanned and digitized using an Aperio Scanscope (Vista CA).  

For β-galactosidase in vitro assays, tissues were fixed in 4% 

paraformaldehyde/PBS for 1 hour at 4°C, then rinsed 3 times for 30 minutes each in a 

rinse buffer (100 mM sodium phosphate (pH 7.3), 2 mM MgCl2, 0.01% sodium 

deoxycholate, 0.02% NP-40 (by volume)). Sections were then stained overnight in 

staining buffer (rinse buffer with 5 mM potassium ferricyanide, 5 mM potassium 

ferrocyanide, 1 mg/ml X-gal). Sections were cleared using methyl salicylate, fixed 

overnight in 10% formalin, then washed with distilled water twice for 30 minutes. 
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They were dehydrated by sequential ethanol washes (70%, 95%, twice in 100%, then 

washed in methyl salicylate until the tissue cleared. 

For liquid β-Galactosidase Enzyme Assay System with Reporter Lysis Buffer 

(PROMEGA, Madison, WI) tissues were collected, and the assay was performed 

according to manufacturer’s instructions.  

 

STATISTICS 

Pairwise comparisons were made by Student's t-test. All data are expressed as 

means ± standard error of the mean. A p value of <0.05 was considered statistically 

significant. 

 

RESULTS: 

ERKdko animals can ovulate in response to exogenous gonadotropin stimulation.  

We previously reported a pituitary-specific conditional knockout of ERK1 and 

2 using the GSU Cre driver resulted in an anovulatory phenotype due to loss of LH 

biosynthesis.
3
 Those studies also characterized the ability of ERK deficient female 

mice to respond to exogenous gonadotropin stimulation and ovulate; however, we did 

not examine the possibility that gonadotropin stimulation and mating would lead to a 

viable pregnancy. We mated the ERK2
fl/fl

, ERK1
-/-

 animal with GRIC Cre animals to 

improve specificity of ERK ablation to the pituitary gonadotropes.
3,13

 In the present 

studies, these animals were designated ERKdko animals while control animals were 

designated ERK2
fl/fl

, ERK1
-/-

 , but Cre negative. Consistent with the GSU model 

system
3
, female ERKdko GRIC mice are infertile and anovulatory, with blunted 
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gonadotropin secretion in response to GnRH (Chapter 2). To better understand the 

gonadal response to exogenous gonadotropin stimulation in this model, female control 

and ERKdko animals were treated with either pregnant mare serum gonadotropin 

(PMSG) or a standard superovulation protocol of PMSG followed by administration 

of human chorionic gonadotropin (hCG) to induce ovulation.
19

 Three days later, 

control and ERKdko were euthanized and ovaries were collected and the number of 

antral follicles (AF) and corpora lutea (CL) were counted. As expected, addition of 

hCG in the superovulation paradigm resulted in the presence of CLs in both control 

and ERKdko females compared with PMSG alone (Figure 1A). No differences were 

detected in the number of antral follicles comparing control and ERKdko females 

receiving PMSG alone (Figure 1B). However, when treated with PMSG and followed 

by hCG, control animals had significantly more antral follicles compared to ERKdko 

animals (Figure 1 A, B). These data support the conclusion that the ERKdko females 

are fully capable of ovulation; however, due to the hypogonadotropic hypogonadism 

in this model, fewer ovarian follicles were stimulated by the superovulation paradigm. 
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Figure 1: ERKdko females respond appropriately to exogenous gonadotropin 

stimulation. A) Photomicrographs of ovaries from Control and ERKdko female mice. 

Both genotypes responded to gonadotropin administration. B) Fewer antral follicles 

were seen in ERKdko animals compared to Control with PMSG administration 

(p=.093). Following PMSG and hCG administration, ERKdko animals had 

significantly fewer antral follicles (1.6) when compared to control (4). There were no 

changes in the number of CL’s present between genotypes, following either treatment. 

The treatments were successful, as ERKdko animals are incapable of making CL’s 

without hCG stimulation.  
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ERKdko animals can maintain pregnancy, but show prolonged gestation and 

parturition 

 We next asked whether superovulated ERKdko females could establish and 

maintain a pregnancy to term with viable pups in the absence of ERK signaling within 

the gonadotrope. Control and ERKdko females were induced to ovulate, mated to 

control males and copulatory plugs were observed. Control and ERKdko females with 

a copulatory plug were allowed to proceed through gestation. Beginning at 19 days 

following detection of a copulatory plug, females were observed visually every 12 

hours and assessed for signs of parturition (hiding, contractions, and visible distress) 

or the presence of pups. All control and approximately 70 percent of ERKdko animals 

exhibited a copulatory plug after superovulation and were paired with fertile 

experienced males. Control animals gave birth normally around gestational day 20; 

however, ERKdko females did not give birth until nearly gestational day 24 (p<0.05; 

Table 1). In control females, parturition was complete within a 12 hour period; while 

ERKdko females showed continuous signs of labor for 2.3 days (p<0.05; Table 1) 

suggesting the possibility of abnormal parturition or dystocia. Finally, control animals 

had an average of 9 pups/litter; while litter size in the ERKdko females was 2.4 

pups/litter (p<0.05; Table 1) consistent with reduced antral follicle populations in the 

ERKdko females. Pups from ERKdko females were stillborn or died soon after birth; 

the percentage of live pups from the ERKdko females was zero compared with 85.7% 

in the control females (p<0.05; Table 1).  
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Table 1: Female ERKdko mice showed alterations in gestation and parturition, 

resulting in fetal mortality 

 Litter size (# 

of pups)  

% live pups 

on PN3  

Gestation 

length (d)  

Parturition 

length (d)  

  Control  9.0 + 1
a
 

(n=6) 

85.7 + 11.7
a
 

(n=3)  

20.3 + 0.25
a
 

(n=5)  

1.0 + 0.0
a
 

(n=4)  

ERKdko  2.4 + 1.3
b
 

(n=7)  

0
b
 

(n=7)  

23.9 + 0.55
b
 

(n=4)  

2.3 + 0.42
b
 

(n=4)  
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GnRHR is preferentially expressed in the placental decidua  

Perusal of the literature revealed reports of normal pups routinely born to 

wildtype females after superovulation protocols. This suggests administration of 

gonadotropins to induce ovulation was not likely a cause of prolonged gestation and 

fetal demise in our model system.
19–22

 Moreover, while ERKdko animals have been 

shown to display defects in gonadotropin production, no evidence in the literature 

directly links hypogonadotropism to delayed parturition and periparturient fetal 

mortality.
23–26

 We considered that the abnormal pregnancies may be a consequence of 

expression of Cre activity and subsequent loss of ERK signaling potential in the 

placenta, as GnRH and GnRHR have been detected in the placenta and decidua of 

several species.
14,27–30

 

We used qRT-PCR to detect GnRHR mRNA in placentas of embryonic (e)10.5 

and e12.5 mice and compared this directly with female pituitaries at estrus. Levels of 

GnRHR in the whole placental disk were similar to levels of GnRHR found in adult 

female pituitaries at estrus (Figure 2). To further validate these observations, we used 

the Rosa26 reporter mouse line mated to GRIC
+
 males. In this model, Cre-mediated 

gene excision results in expression of a β-galactosidase (gal)-green fluorescent protein 

(GFP) fusion protein. In-situ β-gal staining of whole mouse pituitaries and placental 

disks confirmed the presence of β-gal activity within both tissues (Figure3A-C). The 

highest density of -gal activity was found at the periphery of the placental disk, 

indicating enrichment within the maternal decidua (Figure 3B). Using placental tissues 

from ROSA26 control- and GRIC-mated animals obtained at e12.5, we then carried 

out an in vitro β-galactosidase assay to quantify relative β-gal expression in a cross 



 

 

135 

 

section of tissues. We compared GRIC
-
 and GRIC

+
 placental tissues along with GRIC

+
 

pituitary, hypothalamus, ovary, pancreas, liver and muscle from the same animals. 

Placenta lysates from ROSA26/GRIC
+
 animals revealed fourfold increase (P<0.05) of 

β-galactosidase activity compared with the Rosa26
 
animals without Cre expression. 

Interestingly, the placentas from ROSA26/GRIC
+
 animals also had higher (p<0.05) β-

gal activity compared with pituitaries from the same animals (midgestation female 

mice; Figure 3D).  

After establishing Cre expression in placentas using the Rosa26 reporter mice, 

we examined localization of expression within the placental disks to better understand 

the results of ERK2 loss. E12.5 placentas were dissected to carefully separate the 

decidua from the remainder of the placental disk including the chorionic plate and 

labyrinth. RNA was extracted and qRT-PCR was performed, allowing us to quantify 

enrichment of the GnRHR mRNA in the decidua versus remainder of the disk. 

GnRHR mRNA was more abundantly expressed in the maternal decidua compared to 

the remainder of the placenta disk (Figure 2E).  
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Figure 2: qRT-PCR was performed on placental disks from embryonic days 10.5 and 

12.5. Levels of GnRHR were comparable with those seen in adult female pituitaries 

collected at estrus
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Figure 3: A) Adult Rosa26
+
Cre

+
 female pituitary of stained for β-galactosidase in situ. 

β-gal staining indicates the presence of Cre activity. B) Placenta from e18.5 

Rosa26
+
Cre

+
 embryo, showing β-gal staining (indicative of Cre activity) in situ. C) 

Placenta from e18.5 Rosa26
-
Cre

-
 embryo, showing no autologous in situ β-gal staining 

. D) Liquid β-galactosidase assay confirmed Cre activity in Rosa26
+
Cre

+
 pituitaries 

and placentas, but baseline activity in Cre
-
 tissues (muscle, liver, pancreas) (p<0.05). 

E) qRT-PCR showed significant GnRHR mRNA expression in placental decidual 

lysates when compared to whole disk lysates (p<0.05). This indicates preferential 

expression of GnRHR and the associated Cre in the decidual compartments, instead of 

the entire placenta.  



 

 

139 

 

 



 

 

140 

 

GnRHR is expressed throughout the placenta at e12.5 and preferentially in the 

labyrinth at e18.5 

 Rosa26 animals were time mated, and euthanized at e12.5 and e18.5. Placentas 

were collected, snap frozen, serial sectioned and stained for GFP expression. At e 

12.5, GnRHR-GFP appears to be expressed throughout the placenta, but most strongly 

in the maternal decidua (Figure 4A). Punctate GnRHR expression surrounds nuclei in 

clusters of cell within the decidua. There is mild expression of GnRHR throughout cell 

cytoplasm of the labyrinth, but no areas of punctate expression were seen (Figure 4B).  

 At e18.5, the punctate expression seen in the decidua is no longer observed; 

however, the labyrinth showed marked up regulation of GnRHR expression when 

compared to e12.5 (Figure 4A,B). Larger foci of GFP expression are observed around 

the cell surface, and it additionally appears to be diffusely expressed throughout the 

cytoplasm (Figure 4B). Negative control showed decreased expression of both 

cytoplasmic and cell surface GnRHR. (Figure 4B) 
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Figure 4:Localization of GnRHR-GFP in the placenta at e12.5, e18.5 A) GRIC-

Rosa placentas at e12.5, stained for GFP. There is staining through out the placenta, 

but strongest around the periphery of the decidua and in clusters of punctate staining 

throughout the decidua and into the junctional zone. The labyrinth had lower basal 

staining, but lacked any punctate perinuclear expression. B) Rosa placentas at e18.5, 

stained for GFP. There is expression in the decidua and labyrinth, with focal areas of 

strong expression throughout the labyrinth. All sections are stained for DAPI. 
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GRIC Cre expression results in loss of placental ERK2  

Western blot analyses added additional confirmation of Cre-mediated ERK 

gene deletion (Figure 5). We specifically assayed for the abundance of ERK2 since 

our genetic model is ERK1
-/-

. For the remainder of the characterization, we separated 

the animals into three categories: control dam, control pup (control/control), ERKdko 

dam, control pup (ERKdko/control), and ERKdko dam, ERKdko pup 

(ERKdko/ERKdko). We observed ~30% reduction of ERK 2 protein levels in 

placentas from both ERKdko groups when compared to placentas from control dams 

(Figure 5). This suggests the genotype of the dam has a more significant impact on 

placental ERK expression than the genotype of the pup, again consistent with GnRHR 

localization and subsequent loss of ERK2 in maternal decidua.  
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Figure 5: A) Western blotting revealed loss of ERK2 expression in placental lysates 

in both control and ERKdko pups from ERKdko dams. This indicates functional Cre 

activity, excising the floxed ERK2 locus. B) Quantitation of ERK 2 protein levels 

show significant (p <0.05) decrease of ERK2 protein expression in placentas from 

ERKdko dams, regardless of fetal genotype. This again indicates preferential 

expression of the Cre in the maternal derived placental compartment (decidua) when 

compared to the fetal derived placental compartment (labyrinth).  
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Loss of ERK2 in decidua results in gross and histological abnormalities in the  

placental disk 

 

ERKdko and control animals were superovulated, mated, and euthanized at 

e18.5. Anecdotally, all pups from the ERKdko (and control) dams showed evidence of 

fetal viablity at this gestational age. ERKdko/Control and ERKdko/ERKdko pups 

displayed reduced fetal weight at e18.5 compared to control pups (p<0.05; Figure 6A). 

Consistent with earlier studies on ERK2 expression levels, reduced pup weight was 

accounted for by loss of ERKs within the decidua (maternal ERKdko). Intrauterine 

growth restriction seen in ERKdko/ERKdko pups could not be accounted for by 

changes in placental weight (Figure 6B) indicating that the fetal growth restriction 

observed was due to loss of relative placental efficiency, not placental size. Gross 

morphology of the placental disks revealed that ERKdko/ERKdko placentas appeared 

hemorrhagic with congested decidua and grossly exaggerated labyrinth compared to 

control/control placentas (Figure 6C, D). 
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Figure 6: A, B) e18.5 Control (left) and ERKdko/ERKdko placenta. The ERKdko 

placenta appears grossly congested and discolored. C) Pups from ERKdko dams, 

regardless of fetal genotype, are significantly smaller (p <0.05) than those from 

Control dams at e18.5. This indicates a potential IUGR, and again confirms the 

importance of the Cre activity in the maternal compartment of the placenta, regardless 

of fetal Cre status. D) Despite changes in pup weight, placental disk weight was 

unaffected by maternal or fetal genotype, indicating loss of placental efficiency, 

instead of loss of placental mass or cellularity. 
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Gross placental findings described above were consistent with histological 

assessment of these placentas at e18.5 (Figure 7). For these studies, placentas were 

dissected free from the uterine wall, fixed in formalin, then sectioned and stained with 

hematoxylin and eosin. Pups from ERKdko dams had abnormal placental architecture 

regardless of fetal genotype (Figure 7). Pathological findings indicated that placentas 

from ERKdko dams and control fetuses appeared histologically disorganized 

compared to control placentas. These placentas displayed variability in decidual 

thickness within a placenta, with increased mitotic index in trophoblast cells 

suggesting increased proliferation rate. These findings were not consistent with 

neoplastic changes, but more aligned with exuberant tissue growth. The trophoblast 

cytoplasm showed grossly increased vacuolation and a mild unusual cystic 

development. There were also fingerlike projections of the junctional zone into the 

labyrinth. Loss of ERK signaling resulted in the appearance of large acellular spaces 

within the junctional zone and increased numbers of large vacuolated cells. These 

findings were further exacerbated in the ERKdko/ERKdko placentas, with more 

severe cystic changes, especially in the decidua and junctional zone, consistent with a 

more robust disorganization of the normal placental architecture seen in the 

control/control placentas.  
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Figure 7: Photomicrographs of representative placentas from control/control, 

ERKdko/control and ERKdko/ERKdko dam/pup pairs, stained for isolectin. Loss of 

ERK2 results in vacuolation of the junctional zone, with loss of normal placental 

architecture and invaginations of the junctional zone into the labyrinth compartment. 

The ERKdko placentas showed cystic development and higher rates of mitotic figures, 

consistent with increased proliferation. To the right are insets showing increased 

magnification of areas of cystic development, vacuolation and projection into the 

labyrinth area.  
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 Figure 8A depicts the distribution of area of the labyrinth, junctional zone and 

decidua which again varied with genotype. Using Aperio image analysis software,  

placentas from control dams and control pups were characterized by approximately 49 

percent labyrinth, 26 percent junctional zone, and 17 percent decidua (with the 

remainder of the area attributed to chorionic plate). Placentas of ERkdko dams and 

ERKdko pups showed a significantly enlarged labyrinth area and a smaller decidual 

area (Figure 8A), compared to the control animals. Placentas from ERKdko dams and 

control pups showed an intermediate phenotype that was not significantly different 

from either of the other two genotypes (data not shown). Junctional zone areas did not 

significantly vary between any of the genotypes. As these zones all have variations in 

functions and vasculature, we next assessed changes in placental vascularization 

between genotypes. 

 

Histological changes in the placenta occur coincident with placental vasculature 

abnormalities 

Changes in placental vasculature have long been associated with placental 

pathology and disease states.
31–34

 We approached our assessment of the vasculature in 

two ways; isolectin staining to examine endothelial cell density and specific analyses 

of maternal arteries using smooth muscle actin staining in decidua. Staining tissues 

sections with isolectin (conjugated to Nova red) highlights the extracellular matrix of 

endothelial cells, allowing visualization of highly vascularized regions such as the 

labyrinth, junctional zone and the decidua.
35

 Both the number of isolectin positive 
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cells and the intensity of isolectin staining was blunted (p<0.05) in ERKdko/ERKdko 

placentas in both the decidua and junctional zone compared to control (Figure 8B,C). 
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Figure 8: A) ERKdko/ERKdko placentas show significantly smaller decidual zones 

and increased relative labyrinth area when compared to Control/Control placentas (p < 

0.05). B) Isolectin stained cells, highlighting endothelial cells, were significantly 

decreased in the maternal decidual and junctional zone compartments in 

ERKdko/ERKdko placentas, when compared to Control/Control placentas. There was 

no increase in isolectin staining in the fetal labyrinth compartment. C) Isolectin stain 

intensity was decreased in both the decidual and junctional zone compartments in 

ERKdko/ERKdko animals when compared to Control/Control animals. (p <0.05). This 

indicates loss of endothelial cell in these compartments, likely secondary to loss of 

ERK2 signaling.  
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 To assess specific changes in maternal vasculature remodeling within the 

decidua, E18.5 placental sections were stained for smooth muscle actin to reveal the 

size and location of maternal arteries in the placenta. Each artery identified was 

confirmed with the presence of non-nucleated erythrocytes in the lumen of the vessels, 

as previously described.
18

 ERKdko/ERKdko and ERKdko/control placentas had 

approximately 50% fewer maternal arteries in the decidua than the placentas of 

control/control pups (p<0.05; Figure 9A, B). Of the arteries present, the intraluminal 

area of maternal vessels in the ERKdko/ERKdko placentas were approximately 60 

percent smaller, than those in control/control placentas. There was no significant 

difference between intraluminal area of ERKdko/control placentas and either of the 

two other groups due to high variation in artery size (data not shown).  
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Figure 9: A) Photomicrograph showing loss of ERK2 in maternal decidua 

compartment results in smaller decidual spiral arteries in ERKdko/ERKdko placentas 

when compared to Control animals. B) ERKdko ERKdko placentas also show fewer 

maternal decidual arteries when compared to placentas from Control animals (p<0.05) 

C) ERKdko ERKdko placentas have significantly smaller artery lumens when 

compared to Control placentas (p <0.05, n = 23 arteries for Control, 26 

Control/ERKdko, 30 ERKdko/ERKdko). 
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Loss of ERK2 signaling in the placenta causes decreased parturition-associated 

apoptosis 

E18.5 placentas were stained with TUNEL to examine apoptosis. As expected, 

control/control placentas showed focal areas of apoptosis at the interface of the 

decidua and uterus, allowing for separation of the maternal/placental unit during 

parturition.
36–39

 ERKdko/control placentas had a smaller area of TUNEL positive cells 

around the edges of the decidua. The ERKdko/ERKdko placentas had reduced 

TUNEL positive staining around the edges of the decidua, indicating a loss of 

physiologic apoptosis associated with parturition (Figure 10A). Total placental 

TUNEL staining was reduced in ERKdko/ERKdko animals by nearly 25% (p<0.05, 

Figure 9B). Interestingly, most of this appeared to be localized to the periphery of the 

decidua. Control/control placentas showed positive TUNEL staining in approximately 

17 percent of the decidua, while ERKdko/ERKdko animals showed only 9 percent of 

the decidua to be positive for TUNEL staining at e18.5 (p<0.05, Figure 10C). TUNEL 

staining in placentas from ERKdko/control pups were not significantly different than 

either of the other two groups (data not shown). The loss of pro-apoptotic tone in 

ERKdko/ERKdko placentas correlates with prolonged gestation and delayed 

parturition, indicating lack of readiness to begin parturition at e18.5 in these animals.  
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Figure 10: A) Photomicrographs showing TUNEL positive staining, indicating 

apoptosis of placental decidua. B) Control animals showed approximately 17 percent 

of decidua beginning apoptosis, indicating the initiation of the events preceding 

parturition. ERKdko ERKdko animals showed significantly less TUNEL staining, 

with only approximately 9 percent of the decidua affected (p <0.05, n=5 

placentas/genotype). C) Quantifying the entire placenta for TUNEL staining showed a 

modest reduction in overall apoptotic tone in Control/Control placentas, when 

compared to ERKdko/ERKdko placentas (p<0.05).  
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DISCUSSION: 

While ERK loss has long been shown to be detrimental to the function of the 

hypothalamic-pituitary-gonadal axis as well as the placenta, this is the first report of a 

novel model of placental ERK deletion associated with expression of the GnRHR in a 

mouse.
3,13

 In the present studies, loss of pituitary gonadotropin production in the 

GRIC-ERKdko model was overcome through exogenous gonadotropin administration 

consistent with a standard superovulation protocol, allowing ERKdko animals to 

ovulate and become pregnant. The resulting pregnancy in ERKdko/ERKdko females 

was abnormal, characterized by prolonged gestation and parturition, and 100% fetal 

mortality. GnRHR-mediated Cre expression, and subsequent ERK excision was 

documented within the placenta. The loss of ERK signaling within the placenta also 

revealed abnormal developmental morphology of the decidua and junctional zones, 

characterized by an expanded labyrinth, reduced decidua, and reduced endothelial 

isolectin expression in the decidua and junctional zones. ERKdko placentas also 

showed reduced maternal decidual artery size and number. These placentas showed a 

significant reduction in physiologic apoptosis necessary for placental separation prior 

to parturition, consistent with the prolonged gestation phenotype observed. 

Collectively, these studies shed new light on the role of ERK signaling within the 

placenta in the mouse. 

GnRHR has been localized in the placenta of multiple species, including 

humans and canines. In humans, GnRHR, GnRH I and GnRH II are expressed in the 

first trimester of human pregnancy, and regulate both trophoblast invasion and hCG 

secretion. GnRHR localizes to the cytotrophoblasts and extravillous trophoblasts 
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(EVT) of the placenta, but less in the syncytiotrophoblasts.
40

 GnRH I and II localize to 

mononucleate villous, and EVTs, but GnRH I is also found in the multinucleated 

syncytial trophoblast layer in the chorionic villi during the first trimester of pregnancy. 

Interestingly, only GnRH I was found in the placenta at term.
41

 Recently, GnRHR has 

been described in the canine placenta as well. Similar to the human, GnRHR was 

expressed at higher levels in the uteroplacental tissues than in the areas of the uterus 

less associated with the placenta (i.e., between implantation sites in this litter bearing 

species). In the canine placenta, GnRHR was found in fetal trophoblasts and maternal 

decidual cells, and at the surface and glandular epithelial cells in the uterus.
28

 Again, 

this indicates the strong association with GnRHR and the maternal fetal interface in 

the placenta. Our studies provide a novel view of these expression profiles and the 

utility of the GRIC model to direct gene excision to these compartments.  

 GnRH and GnRHR regulate gene expression and gonadotropin secretion in the 

placenta.
42

 This occurs through protein kinase A and C pathways, and can be blocked 

using inhibition of GnRH.
43,44

 Treatment with GnRH or an analog has been shown to 

increase placental GnRHR mRNA and causes phosphorylation of PKC, ERK1/2, and 

JNK.
27,43,44

 Activation of transcription factors increases in GnRHR transcription and 

hCG secretion indicates that GnRH is an important regulator of placental function, 

potentially acting in both paracrine and autocrine fashions.
45

 Although human and rat 

pregnancy is affected by local placental and systemic hCG or LH secretion, 

respectively, no evidence exists for gonadotropin regulation of murine 

pregnancy.
14,23,26,46–49

 This indicates the phenotype described above is likely due to 

loss of ERK2 signaling in the placenta, potentially affect secreted factors that regulate 
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placental morphogenesis and or vascularization. Other studies have shown that loss of 

ERK2 in the null animals causes catastrophic defects in the mouse placenta, so 

understanding the function of ERK signaling in a specific subset of placental cells is 

very informative.
50

 

Loss of placental ERK2 resulted in reduced vascularization, expression of 

isolectins within the endothelial compartment, and placental abnormalities that may 

have contributed to reduced fetal weight in the current studies. We speculate that 

expression of GnRHR (and Cre) and subsequent loss of ERK signaling during the 

formation of the decidua prior to e12.5 is a likely cause of the changes in placental 

histology seen at e18.5.
51

 Either the change in architecture or loss of ERK2 signaling 

could impact EVT invasion and subsequent maternal spiral artery remodeling, 

reducing the number and intraluminal areas of arteries seen in the decidua.
44

 

Additionally, matrix metalloproteases, which are also regulated by GnRH/GnRHR in 

the placenta, are involved in maternal spiral artery remodeling, leading to another 

hypothesis for reduced decidual vascularization; however, the specific role of ERK 

signaling in this situation is not clear.
44,52

 Reduction of endothelial cell populations or 

function in the decidua and junctional zone likely reduces placental transfer and 

efficiency between mother and fetus. This results in reduction of fetal size and may 

account for reduction in litter size if the loss of ERK signaling at the maternal/fetal 

interface caused placental insufficiency. Loss of normal placental architecture, large 

cystic areas, general disorganization of the decidua and junctional zone, along with 

reduction in vascular tone could result in loss of efficient nutrient exchange between 

the fetus and dam, resulting in a fetal IUGR and possibly fetal distress/death. 



 

 

165 

 

Prolonged gestation and parturition stem from loss of placental ERK 2 and 

causes periparturient mortality in pups. Multiple factors initiate parturition, including 

fetal cortisol, maternal drop in progesterone, oxytocin, prostaglandin F2α and other 

endocrine facotrs.
53–56

 Loss of either maternal or fetal ERK-dependent inputs could 

cause failure to initiate or sustain parturition, as seen in this model. This loss may stem 

from reduction in signaling between dam and fetus due to loss of vascular reduction or 

placental abnormalities. Hypogonadism in the ERKdko mice may also cause a 

reduction in baseline progesterone due to losses of LH support to the ovary. (Chapter 

2) Progesterone withdrawal is a contributing factor to initiation of parturition and the 

possibility exists that the baseline reduction in progesterone in our model system does 

not occur at a level to initiate parturition.
57

 Loss of ERK signaling in GnRHR 

expressing cells may ostensibly blunt or abrogate the release of PGF2α, thus 

contributing the delayed onset of parturition.
58

 Alterations in oxytocin release is likely 

not related to the delayed parturition since this peptide is not implicated as an 

important factor in the onset of parturition in mice.
59

 The loss of TUNEL staining at 

e18.5 indicates that ERKdko animals are not undergoing normal changes within the 

placenta in preparation for parturition. This indicates loss of some sort of signal to 

initiate focal apoptosis at the uterine/decidual interface. Future studies will need to 

focus on specific contribution of ERK signaling within the maternal fetal interface to 

determine the precise mechanisms involved. 

The GRIC model holds interesting potential as a model of human disease. 

GnRHR has been shown to be important in placental development and function; it is 

even expressed at the implantation sites of ectopic pregnancy.
40

 Although multiple 
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mouse models have been used to recapitulate idiopathic hypogonadal hypogonadism 

(IHH), none have focused on loss of function in cells expressing GnRHR and how 

ERK signaling may be functioning in these tissue compartments.
3,16,60

 Up to 40 

percent of IHH patients suffer from a GnRHR mutation, which could alter placental 

function as well.
61

 Work by Janet Hall’s lab has indicated that although some women 

with IHH respond appropriately to gonadotropin supplementation and are able to carry 

a normal pregnancy, others are not.
62,63

 Some of these women suffer from multiple 

miscarriages, most often early in gestation. Not all patients with these mutations 

showed early pregnancy losses, indicating a non-genetic component, such as 

alterations in placental function as a contributing factor.
62,64,65

 Further investigation of 

this model system may elucidate missing links and help improve assisted reproduction 

in women with IHH.  
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CHAPTER 4 
 
 
 
 
 

 

 

 

GnRH induces ERK-dependent expression of the bile acid receptor TGR5 in the 

pituitary gonadotrope 
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ABSTRACT 

ERK1/2 regulates reproduction in multiple parts of the hypothalamic-pituitary-gonadal 

(HPG) axis. Previously, our lab has shown ERK1/2 signaling to be integral to pituitary 

gonadotrope function. To identify novel downstream targets of GnRH and ERK1/2, 

we performed RNA sequencing on pituitaries with and without GnRH stimulation. 

These unbiased screens revealed a novel relationship between a G-protein-coupled 

receptor (GPCR), TGR5, ERK1/2 and GnRH signaling. TGR5 is a bile acid receptor 

that regulates metabolic signaling including glucose homeostasis. Treatment with 

GnRH increased TGR5 mRNA at both one and four hours post stimulation, which was 

lost with conditional loss of gonadotrope ERK1/2 signaling. This finding was 

validated in in vivo mouse models, as well as in vitro cell culture systems. Cholic acid 

(a hydrophilic bile acid) stimulation of αT3-1 cells induced CREB phosphorylation. 

Primary pituitary cultures treated with GnRH, cholic acid (CA) or a TGR5 agonist 

(INT777) all induced secretion of LH. TGR5ko mice are mildly subfertile compared to 

control animals. Loss of TGR5 resulted in delayed puberty, prolonged estrus cycles, 

smaller litters at longer inter-litter intervals, lower uterine and ovarian weights, and 

had lower levels of gonadotropin subunit mRNAs. In control animals, pituitary TGR5 

mRNA varied based on estrus cycle stage, and superovulation with INT777 caused 

ovarian luteal formation, indicating TGR5 agonists can drive an ovulatory LH surge. 

These studies indicate TGR5 is a modulator of the HPG axis. A known regulator of 

metabolism, TGR5 shows promise as a link between obesity, metabolic disorders, and 

reproduction, including issues of alterations in onset of puberty. 

.  
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INTRODUCTION 

Work from our lab, and many others, has established the role of ERK1/2 

signaling in the HPG axis, and specifically the pituitary.
1–4

 Both Bliss et al, and 

research reported earlier in this dissertation, highlight the specific role of ERK in the 

pituitary gonadotrope (Chapter 2).
1
 Briefly, loss of ERK signaling reduces or 

eliminates gonadotropin production in females, leading to infertility due to 

anovulation (Chapter 2). The mitogen activated protein kinase (MAPK) cascade is 

well established upstream of ERK1/2. 
5–8

 This kinase cascade activates immediate 

early genes, such as c-Fos, c-Jun and Egr1 and is an integral regulator of many 

biological processes, such as LH secretion, meiosis and placental formation.
9–13

 Due to 

ERKs ubiquitous expression, ERK signaling is likely involved in regulating 

reproduction through unknown mechanisms as well as those already discovered.
13–16

 

To help elucidate some of these mechanisms in the pituitary, we utilized the GRIC 

mouse. The GRIC mouse (GnRH Receptor IRES Cre) allows gonadotrope specific 

excision of a target gene. We combined this mouse with an ERK1
-/-

, ERK
f/f

 mouse, to 

excise ERK2 specifically in the gonadotrope. We then conducted an unbiased screen 

to identify novel targets of GnRH stimulation that are ERK dependent.
17,18

  

 While a plethora of targets were identified through this screen, a few stood out 

as exceptionally intriguing. One of these targets, which was GnRH responsive and 

ERK dependent, was a bile acid receptor, TGR5, also known as GP-BAR1. This G-

Protein coupled receptor (GPCR) was first identified in 2002, and has since been 

characterized as a regulator of metabolism.
19,20

 TGR5 shows over 80 percent 

homology between multiple species, including humans and rodents.
21

 This receptor is 



 

 

180 

 

preferentially activated by hydrophobic bile acids, and shows greatest response to 

taurine-conjugated lithocholic acid (TLCA), followed by lithocholic acid (LCA), 

deoxycholic acid (DCA), chenodeoxycholic acid (CDCA) and cholic acid (CA).
20

 

Interestingly, several steroid hormones have shown activation of TGR5, including 

pregnandione.
20

 It has been localized to multiple hepatic cell types, specifically 

sinusoidal endothelial cells and Kupffer cells, as well as the pancreas, macrophages, 

the gallbladder, the gastrointestinal tract, enteric nervous system, brown adipose 

tissue, muscles and others.
21–24

 As expected for a widely expressed receptor, TGR5 

has multiple functions. Primarily, it was recognized for its role in the gallbladder, 

promoting bile production, gallbladder filling, and smooth muscle relaxation.
25

 It 

serves protective functions against hepatocellular carcinoma and cholestatic injury in 

the liver.
21,23

 This protection is likely secondary to one of its other known effects; 

TGR5 reduces inflammatory reactions. Activation of TGR5 suppresses NF-κB 

phosphorylation and binding activity, inhibits macrophage reactivity and cytokine 

production, including tumor-necrosis factor α, IL-1α, IL-1β, and IL-6.
21,26–29

 TGR5 

activation increases metabolism and energy expenditure, without increasing activity or 

decreasing food intake.
21

 Activation of TGR5 also increases glucose tolerance and 

intracellular ATP/ADP ratio. These effects are suspected to be secondary to an 

increase in glucagon-like peptide (GLP)-1 stimulation, which up regulates liver and 

pancreatic function.
24,30

 Bile acid signaling through TGR5 also activates 2-

iodothyronine deiodinase, which converts inactive thyroxine (T4) to tri-iodothyronine 

(T3), which is biologically active.
20,31–33

 The improvement in metabolism following 
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bariatric surgery is hypothesized to be a function of increased bile acids and TGR5 

stimulation.
34

 

 TGR5 has also been implicated in reproduction. Both bile acids and TGR5 

were found in the testes, ovary and adrenals. Taurocholic acid (TCA), and CA were 

identified in all three tissues, while DCA was only found in the testis and ovary.
35

 

Most of the characterization of the impact of bile acids on reproduction has been done 

in males, specifically focusing on testicular effects. Males fed a diet supplemented 

with 0.5% cholic acid showed reduced fertility, characterized by rupture of the blood-

testes barrier, increased spermatid apoptosis, germ cell sloughing, and reduced 

testosterone. These effects are likely due to bile acid activation of TGR5 signaling in 

the germ cells and farnesoid receptor 1 (FXR) signaling in the Leydig cells.
36,37

 

Similar symptoms were seen in male mice suffering from obesity and metabolic 

syndrome when treated with bile acids.
38

 Finally, bile acids and their receptors have 

been implicated in puberty. Male rats who underwent a bile duct ligation prior to 

puberty had alterations in liver size and liver enzymes, but also had smaller testes and 

seminal vesicle size, indicating a defect in normal pubertal maturation.
39

 Multiple 

other labs have shown alterations in the bile pool around puberty in both humans and 

mice.
40–42

 In humans, females bile acid pools displayed greater changes than males 

during puberty.
42

 Since the bile acid pool is responsive to hormonal changes during 

puberty, it seems logical that the pool may be affected by other changes in the 

hormonal milieu, like pregnancy.
43

  

 We investigated the function of the bile acid receptor TGR5 in the pituitary, 

and its role in reproduction, focusing on female mice. These studies show that TGR5 
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is not only expressed in the pituitary, but plays an active role in reproduction and 

when activated, is capable of inducing gonadotropin production. Loss of TGR5 causes 

minor reproductive deficits in female mice. These studies indicate that TGR5 is a 

functional link between reproduction and metabolism, and may be implicated in the 

link between delayed puberty and obesity or as a mechanism related to diabetic or 

obesity related infertility.  

 

MATERIALS AND METHODS 

ANIMALS 

ERK1 null (ERK1
-/-

), ERK2 floxed (ERK2
fl/fl

) and GRIC mice have been 

described previously.
1,17,44

 To create gonadotrope specific ERK1/2 knockout animals, 

they were crossed and designated ERKdko (ERK1
-/-

, ERK2
fl/fl

, Cre
+/-

), or Control 

(ERK1
-/-

, ERK2
fl/fl

, Cre
-/-

). TGR5 Knockout, TGR5
-/-

, (TGR5ko) animals were the 

generous gift of the Dr. Kristina Schoonjans and the Auwerx lab and have been 

described previously.
27,45

 Animals were handled in compliance with the Cornell 

University Institutional Animal Care and Use Committee. 

Female TGR5ko and control animals were checked every 24 hours after 

weaning (day 21) for evidence of vaginal opening as previously described.
46

 Inter-

litter interval and litter size was collected from data from harem bred animals over an 

8 month period. For all experiments, animals were humanely euthanized via CO2 

asphyxiation, and blood, pituitaries, hypothalamus, ovaries, uterus, and liver were 

collected. Uterus and ovaries were carefully dissected from the surrounding fat, and 

weighed. Hypothalamus, pituitary, one ovary, half of the uterus, and a small amount of 
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liver were snap frozen. The remaining uterus and ovary were fixed overnight in 10 

percent formalin. 

 

GENOTYPING 

Genomic DNA was isolated from tail snips (3 mm), or an equivalent quantity 

of other tissues as indicated, using a E-Z Tissue DNA Kit (Omega Biotek, Norcross, 

GA) per manufacturer’s instructions. Routine PCR genotyping was performed on 

animals as previously described.
47

 PCR confirmation of ERK1 knockout, ERK2 flox, 

GnRHR cre, and TGR5ko were performed, with primers as listed below.  

Primer Sequence (5’ to 3’) 

TGR5 KO 

TGR5 rec GAT GGC TGA GAG GCG AAG 

TGR5 Common AGA GCC AAG AGG GAC AAT CC 

TGR5 Wildtype TGG GTG AGT GGA GTC TTC CT 

ERK1 
ERK1 Forward AAG GTT AAC ATC CGG TCC AGC A 

ERK1 Reverse AAG CAA GGC TAA GCC GTA CC 

ERK2 
ERK2 Forward AGC CAA CAA TCC CAA CCC TG 

ERK2 Reverse GGC TGC AAC CAT CTC ACA AT 

GnRHR 

GnRHR Forward GAA CTA CAG CTG AAT CAG TC 

GnRHR Reverse CTC TAA CAA ACT CTG TAC A 

GnRHR Homozygous 
CGG AAT TCA TCG ATC ATA TCA GAT 

CC 

 

RNA Sequencing Screen 

 To assess changes in the transcriptome regulated by GnRH and ERK signaling, 

adult female control and ERKdko mice were passively immunized against endogenous 

GnRH using a sheep anti-GnRH antiserum (generously provided by Dr. Terry Nett, 

Colorado State University) as previously reported.
48

 Three days following passive 

immunization, animals received saline or dAla6-GnRH, an analog of GnRH not bound 

by the passive immunoneutralization. Animals were euthanized at time 0, 1, and 4 
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hours following dAla6-GnRH administration. Pituitaries were dissected free and 

pituitary RNA was isolated using Triazol (ThermoFischer, Waltham, MA) per the 

manufacturer’s instructions. RNA samples (n = 3/genotype/treatment) were sent to the 

Weill Cornell Genomics and Epigenomics Core facility for library preparation and 

sequencing on a HiSeq 2000. The data were analyzed through a previously described 

computational pipeline and differentially expressed genes were analyzed using 

network analysis databases Reactome and KEGG.
49,50

 

 

RNA ISOLATION AND QUANTITATIVE PCR 

Tissues were collected and Trizol (ThermoFischer, Waltham, MA) extraction 

was performed per manufacturer’s instructions. Reverse transcription in 1000ug 

reactions was performed using the High-Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems, Foster City, CA) according to manufacturer directions. qRTPCR 

was performed using SYBRGREEN (ThermoFisher, Waltham, MA) and primers 

listed below. They were run on a BioRad CFX96 Touch Real-Time OCR Detection 

System (BioRad, Berkeley, CA).  

Primer Sequence (5’ to 3’) 

Glyceraldehydes-3-

phosphate 

dehydrogenase 

Gapdh forward ATGTTTGTGATGGGTGTGAA 

Gapdh reverse ATGCCAAAGTTGTCATGGAT 

Gonadotropin 

Releasing Hormone 

Receptor 

GnRHR 

forward 
TGCTCGGCCATCAACAACA 

GnRHR reverse GGCAGTAGAGAGTAGGAAAAGGA 

Luteinizing Hormone 

β-subunit 

LHβ forward CTGAGCCCAAGTGTGGTGTG 

LHβ reverse GACCATGCTAGGACAGTAGCC 
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Follicle Stimulating 

Hormone β-subunit 

FSHβ forward GCCATAGCTGTGAATTGACCA 

FSHβ reverse AGATCCCTAGTGTAGCAGTAGC 

α-Glycoprotein 

Subunit 

α-GSU forward TCCAGGGCATATCCCACTCC 

α-GSU reverse CATTTCCCATTACTGTGGCCTTA 

TGR5 

TGR5 forward GCTCCTGTCAGTCTTGGCCTAT 

TGR5 reverse TTCCTCGAAGCACTCGTAGACA 

Farnesoid receptor 1 
FXR forward CGA AGA CTC CCT CAC AGT TG 

FXR reverse ACC TCT ACT TCA TCT CCT TCA CT 

 

SUBCELLULAR MEMBRANE RAFT FRACTIONATION 

 Membrane raft fractions were isolated from T3-1 cells and whole mouse 

pituitaries as described previously.
18,51,52

 Briefly, T3-1 cells and whole mouse 

pituitaries were lysed in a buffer containing low concentrations of non-ionic detergents 

and membranes were subjected to centrifugation in a discontinuous sucrose gradient. 

Low buoyant density membrane fractions were identified using the marker Flotillin 1 

and compared to non-raft fractions of higher density. In some studies, membrane 

fractions (low and high density) were subjected to digestion with PNGaseF to cleave 

glycosylation moieties. The digested membrane samples were resolved by SDS PAGE 

and probed with antibodies directed against TGR5.  

 

IMMUNOBLOTTING 

 Cells were homogenized in lysis buffer containing 20 mM Tris-HCl (pH 8.0), 

130 mM NaCl, 10% glycerol, 1% Nonidet P-40, 0.1% sodium dodecyl sulfate, 0.5% 
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deoxycholate, 2mM EDTA, 5mM sodium vanadate, 0.2 mM 

phenylmethysulfonylfluoride, and 5 mM benzamidine. Protein concentrations were 

determined by Bradford assay. PNGase F treatment was performed according to 

manufacturer’s instructions (New England Biolabs, Ipswitch, MA). Samples were 

boiled for 5 minutes in sodium dodecyl sulfate load buffer, resolved by SDS-PAGE, 

and transferred to polyvinylidine difluoride membranes by electroblotting. Membranes 

were blocked with 5% nonfat dry milk in TBST (10 mM Tris-HCl, pH 7.5; 150mM 

NaCl; 0.05% Tween 20) and then incubated with specified antisera (anti-TGR5, 

Abcam, Cambridge, UK; anti-CREB, anti-pCREB, Millipore, Billerica, MA; anti-

Flotillin-1, BD, Franklin Lakes, NY; horseradish peroxidase-conjugated secondary 

antibodies from Bio-Rad, Hercules, CA).
1
 Protein bands were visualized using 

enhanced chemiluminescence according to manufacturer’s instructions (BioRad, 

Berkeley, CA) and imaged on ChemiDoc XRS (BioRad, Berkeley, CA) They were 

analyzed using Image Lab software (BioRad, Berkeley, CA). 

 

CELL CULTURE 

αT3–1 cells, an immortalized mouse gonadotrope cell line (generously 

provided by Dr Pamela Mellon, University of California, San Diego, CA), were 

cultured as described previously.
53,54

 αT3–1 cells were maintained in DMEM 

containing 2mM glutamine, 100-U penicillin/mL, 100µg streptomycin/mL, 1x 

nonessential amino acids, 10% fetal bovine serum. Cells were grown in 5% CO2 in air 

at 37°C in a humidified environment. Buserelin (des-GLY10 [D-Ser(t-But)6]-LH-RH 

ethylamide; referred to as GnRHa) was obtained from Phoenix Pharmaceuticals Ltd. 
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All other chemicals were obtained from Sigma. In all experiments, GnRHa was used 

at 10nM. Cholic acid was dissolved in DMSO and used at 1, 10, and 100µM 

concentrations. INT-777 was used at 10uM, and GW4064 was used at 1, 10, and 

100µM. Cells treated with U0126 (Promega), a MEK inhibitor, were incubated for 30 

minutes prior to other treatment. 

 

PITUITARY PRIMARY CULTURE 

Primary pituitary culture was performed as previously described.
52

 Pituitaries 

were subjected to collagenase digestion (1.5 mg/mL) with periodic trituration using a 

sterile Pasteur pipette. The dispersed cells were transferred to complete media, 

pelleted, and resuspended. They were aliquoted to 24-well plates pretreated with poly 

L-lysine at a density of approximately 750,000 cells/well. Primary pituitary cells were 

incubated in complete media at 37°C in a humidified atmosphere (5% CO2, 95% O2) 

overnight. The following day, the cells were gently washed in serum-free DMEM for 

2 hours. The cells were treated with buserelin, cholic acid, INT777 or GW4064. The 

media was harvested 4 hours later and assayed for LH. The pituitary cells remaining in 

the wells were lysed to assay for total protein using the Bradford assay. 

Concentrations of LH were determined using a commercially available ELISA per the 

manufacturer’s instructions (Genway Biotechnology), and LH concentration was 

standardized by protein content of the specific wells. 
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SUPEROVULATION 

Females were injected with 5 IU of pregnant mare serum gonadotropin 

(PMSG) intraperitoneally. 46-48 hours later, they were injected with either 5IU human 

chorionic gonadotropin (hCG), 0.1ml of saline, or 30mg/kg of INT777 

intraperitoneally. For assessing CL and follicle formation, they were humanely 

euthanized 72 hours later, and ovaries were collected for histological examination.  

 

HISTOLOGY 

For histological examination, tissues were fixed in 10% formalin, paraffin 

embedded, serially sectioned at 4µm, and stained with hematoxylin and eosin using 

standard histological techniques. For characterization of the ovarian follicular 

population, every third section was examined microscopically for identification of 

follicular and luteal tissue. For post-superovulation, ovaries were step-sectioned at 

20µm and examined for identification of luteal tissue. Sections were scanned and 

digitized using an Aperio Scanscope (Vista, CA). 

 

VAGINAL CYTOLOGY 

The vaginal vault was swabbed, which was used to make a cytological smear. 

It was stained with Wright’s Giemsa stain, and examined with light microscopy. 

Epithelial cells, parabasal cells and leukocytes were differentiated on the basis of 

morphology. An animal was deemed to be in estrus with >85% superficial epithelial 

cells. Estrus interval was calculated as the days from the onset of estrus until the onset 

of the subsequent estrus. 
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STATISTICS 

Comparisons were made by Student's t-test. All data are expressed as means ± 

standard error of the mean. A p value of <0.05 was considered statistically significant. 

 

RESULTS 

Unbiased RNA sequencing screen revealed the presence of bile acid receptors as 

a target of GnRH action in the gonadotrope 

GnRH action and signaling via ERKs 1 and 2 are required for fertility in 

female mice
1
 (see Chapter 2 in this dissertation). In the absence of ERKs in the 

gonadotrope (ERKdko), female mice display hypogonadotropic hypogonadism and 

anovulatory infertility. To gain more mechanistic insight into how GnRH-inducible, 

ERK dependent signaling controls gonadotrope cell function, we performed an 

RNAseq screen in mice receiving carefully timed administration of GnRH. For these 

studies, control and ERKdko female mice were immunoneutralized against GnRH. 

They were injected with either vehicle or dAla6-GnRH, and euthanized after either 1 

or 4 hours. Pituitaries were collected and submitted for RNA sequencing. Data sets 

were analyzed for differential mRNA expression. Differentially expressed genes were 

then subjected to KEGG and Reactome network analyses to determine 

interrelationships between groups of differentially expressed transcripts (Figure 1 and 

Tables 1 and 2). Network analyses revealed transcript changes within a cohort of 

GPCRs at the 1 and 4 hour time points. This cohort of genes suggested that several 

GPCRs were GnRH inducible and required ERK signaling for up-regulation at either 1 
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or 4 hours following dAla6-GnRH administration. Table 2 identified Gpbar1 (G-

protein membrane bile acid receptor)/TGR5 as a GPCR robustly regulated by GnRH in 

an ERK signaling dependent manner. 
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Figure 1: Strategy for preparation of RNA sequencing samples. Animals were 

immunoneutralized against GnRH. We waited three days, then treated them with 

dAla
6
 or saline, and were euthanized at 0,1, or 4 hours after treatment.  
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Table 1. Outcome from network analysis of RNAseq data set emphasizing signaling 

via GPCRs. (NS=non-significant) 

Reactome gene 

networks  

ERKdko vs 

Control  

(p value @ T0)  

ERKdko vs 

Control  

(p value @ 1 h) 

ERKdko vs 

Control  

(p value @ 4 h) 

GPCR 

Downstream 

Signaling 

NS NS
 
 0.00021

 
 

GPCR Ligand 

Binding  

NS 0.097
 
 0.00085

 
 

Signaling by 

GPCRs 

NS 0.045 0.0016 
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Table 2. Changes in Gpbar1/TGR5 mRNA levels following 1 and 4 hours of GnRH 

treatment comparing control and ERKdko female mice. (NS=non-significant) 

Transcript 

ERKdko  vs 

Control  

(log fold @ 0 h)  

ERKdko  vs 

Control  

(log fold @ 1 h)  

ERKdko  vs 

Control  

(log fold @ 4 h)  

Gpbar1/ 

TGR5 

NS -5.11 

(p = 0.027) 

-7.51 

(p = 0.001) 
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Bile acid receptors are expressed in multiple tissues in the hypothalamic-

pituitary-gonadal axis 

Given the surprising finding that TGR5 was expressed and regulated within the 

gonadotrope, we next sought to determine the expression profile of TGR5 and an 

additional bile acid receptor within the reproductive axis. To accomplished this, we 

obtained TGR5 null mice (a generous gift from Dr. Kristina Schoonjans, IFPL) to 

better confirm expression profiles. Pituitary, hypothalamus, uterus, ovaries, testes and 

liver were collected from wild type and TGR5ko animals and were assessed for TGR5 

and farnesoid X receptor (FXR) mRNA abundance (Figure 2). TGR5 was found at 

highest levels in the liver of wildtype animals, but was also detected in male and 

female pituitaries, testes, uterus and ovaries. TGR5 was below the detectable limits in 

tissues from TGR5ko animals and the preoptic area of the hypothalamus (Figure 2A). 

FXR was found at high levels in both male and female pituitaries, ovaries, and 

hypothalamus. Highest levels of FXR were found in the testes, and it was found at 

similar levels to TGR5 in the liver (Figure 2B). These studies revealed the 

comprehensive expression of bile acid receptors within the reproductive axis. We next 

focused on potential mechanisms that bile acid signaling may influence within this 

endocrine axis initially focusing on the gonadotrope since this was the original tissue 

investigated in our RNA screen.  
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Figure 2: Identification of tissues expressing TGR5 transcripts. Dotted line represents 

the lower detectable limit of the assay. A) TGR5 is expressed in pituitaries of both 

male and female mice, as well as the testes, ovaries, uterus and liver. It was not 

expressed in the pituitary or liver of TGR5ko mice, or in the hypothalamus. B) FXR is 

expressed in the male and female pituitaries, in both wildtype and TGR5ko mice. It is 

also expressed in the testes in very high levels, as well as the ovary and hypothalamus. 

It is not expressed in the uterus.  
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TGR5 is GnRH responsive and ERK1/2 dependent in pituitary gonadotropes 

TGR5 mRNA was induced strongly at one and 4 hours following GnRH 

administration; this regulation was negated with deletion of ERK1/2 signaling in the 

pituitary gonadotropes (Table 2). Using the immortalized pituitary gonadotrope cell 

line, αT3-1 cells, these results were validated. GnRHa (buserelin) treatment for four 

hours caused significant upregulation of TGR5 mRNA in these cells. This increase 

was completely ablated with the addition of U0126, a MEK inhibitor (Figure 3A). 

Confirmation that TGR5 was GnRH responsive and ERK dependent in vitro caused us 

to investigate whether TGR5 protein was absent in pituitary in the ERKdko model in 

vivo (Chapter 2). Pituitaries were collected, and subjected to membrane raft 

fractionation to more clearly examine membrane localization of TGR5. Membrane 

fractions were subjected to immunoblotting for TGR5 in both high and low density 

fractions from discontinuous sucrose gradients. TGR5 was detected in the high and 

low density fraction of control animals, but was not seen in any membrane fractions of 

ERK1/2 knockout animals, confirming the importance of ERK signaling in TGR5 

regulation (Figure 3B). Flotillin 1 was used as a marker of membrane raft 

fractionation. 

The observation that TGR5 was localized to low buoyant density fractions in 

whole mouse pituitary prompted us to examine the membrane localization of this 

GPCR in more detail in T3-1 cells (Figure 3A). Membrane raft fractions were 

resolved using SDS PAGE and immunoblotted with the TGR5 antibody. In some 

fractions, digestion with PNGaseF (a deglycosylase) was used to determine membrane 

localization of TGR5 as a function of TGR5 glycosylation state. In mock digested 
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fractions, TGR5 was detected as 95 kDa, 68 kDa and 35 kDa bands in high buoyant 

density membrane fractions, presumably reflecting variation in glycosylation state of 

the receptor. In low buoyant density raft fractions, the 68 kDa band was enriched 

while the 95 kDa and 35 kDa bands were reduced. PNGaseF treatment resulted in 

detection of the 35 kDa band in the raft fractions supporting speculation that in 

membrane rafts, only the glycosylated form of TGR5 was present (Figure 3C).  
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Figure 3: In vitro and in vivo verification of RNA sequencing results A) αT3-1 cells 

show significant increase in TGR5 transcript levels after 4 hours of treatment with 

GnRHa. This increase was negated with pretreatment with the MEK inhibitor U0126. 

B) TGR5 western blot of membrane raft fractions from pituitaries of control and 

ERKdko mice. ERKdko mice lacked TGR5 expression in the pituitary. C) TGR5 

expression in membrane raft fractions from αT3-1 cells. In low density fractions, 

TGR5 appears to be preferentially glycosylated, while in high density, non-raft 

fractions, TGR5 exists in both glycosylated and nonglycosylated states  
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TGR5 is functionally active in pituitary gonadotrope cells in vitro 

After confirming the presence and GnRH/ERK regulation of TGR5 in the 

pituitary, we sought to determine the functional activity of the receptor, initially 

utilizing αT3-1 cells. Cells were treated with vehicle, a TGR5 agonist, cholic acid , or 

a GnRH agonist, buserelin , for 15 minutes. Cells were collected and lysates were 

immunoblotted for cAMP response element binding protein (CREB), or 

phophorylated-CREB (pCREB). At 15 minutes of stimulation, both cholic acid and 

buserelin induced CREB phosphorylation consistent with the observations of others, 

indicating TGR5 is likely coupled to adenylyl cyclase (Figure 4A).
55,56

 These studies 

supported the conclusion that TGR5 is functionally active in an in vitro gonadotrope 

cell model.  

To confirm that TGR5 is functionally active in fully differentiated gonadotrope 

cells, male and female control mice were euthanized and pituitaries were collected. 

Pituitaries were dispersed into primary culture and plated overnight. The cells were 

then treated with either buserelin , cholic acid , the TGR5 agonist INT777 , or the FXR 

agonist, GW4064. Media was collected after 4 hours of treatment, and LH 

concentrations in the media were determined.  

Primary culture from male animals showed LH secretion following GnRH 

stimulation, as well as cholic acid and INT777 stimulation. There was no LH 

production following Gw4064 stimulation (data not shown). Interestingly, females 

showed much lower LH response to Cholic acid and INT777 stimulation than males, 

but still showed no LH production from GW4064 (Figure 4B, C). Together, this data 

indicate that not only does TGR5 have a functional role in phosphorylation of CREB 
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in pituitary gonadotropes, it also plays a potentially important physiological role in the 

regulation of LH secretion. Stimulation of pituitary cells with TGR5 agonists causes 

LH secretion, though the threshold and response appears to vary between males and 

females. Interestingly, although FXR does appear to be present in the pituitary, it does 

not appear to be functional, as treatment with FXR agonist did not induce LH 

secretion. 
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Figure 4: Pituitary TGR5 expression has functional significance A) Immunoblot 

showing CREB phosphorylation after treatment with GnRH and cholic acid. Total 

CREB shown as lane loading control. B) Primary pituitary culture treated with cholic 

acid (100µM) or GnRHa (10nM), buserelin, showed increased LH production 

compared with vehicle treated cells. C) Primary pituitary culture showed greater 

sensitivity to the specific TGR5 agonist INT-777 than cholic acid, secreting more LH 

in response to a lower concentration (10µM)  
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TGR5 alters gonadotropin transcript level and secretion  

Following our observations that TGR5 agonists could incite gonadotropin 

secretion in vitro, we assessed the in vivo effects of bile acid stimulation on 

gonadotropin secretion. Wildtype C57/B6 animals were treated with pregnant mare 

serum gonadotropin (PMSG), followed by either saline, INT777, or human chorionic 

gonadotropin (hCG) 46 hours later. We speculated that since INT777 and cholic acid 

could induce LH secretion in vitro, this treatment might induce ovulation in PMSG-

treated mice. Ovaries were collected 72 hours after the second treatment, serially 

sectioned and assessed for the presence of corpora lutea. Luteal tissue was observed in 

both ovaries from PMSG/hCG and PMSG/INT777 treated animals, but it was not seen 

in PMSG/saline treated animals. This indicates that treatment INT777, a TGR5 

agonist, can initiate an LH surge capable of inducing ovulation and subsequent CL 

formation in female mice (Figure 5). 
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Figure 5: Treatment with INT-777 as part of a superovulation protocol induces 

ovulation. Control female mice were given PMSG (FSH agonist), then either saline 

(negative control), hCG (LH agonist) or INT-777 (TGR5 agonist) 48 hours later. 

Ovaries were collected 72 hours following the second injection, and assessed for 

follicular and luteal structures. A) Animals in the saline group showed no luteal 

formation, but displayed large antral follicles, an indication they did not ovulate, as 

expected. B) Animals in the hCG group showed multiple CL’s in each ovary, 

indicating successful induction of ovulation. C) Animals treated with INT-777 showed 

a mix of CLs and antral follicles, indicating that INT-777 is capable of producing an 

LH surge commensurate with that needed for ovulation.  
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Since a TGR5 agonist was capable of inducing gonadotropin production, we 

assessed baseline gonadotrope function in control and TGR5ko animals. Females of 

both genotypes were followed through the estrous cycle via vaginal cytology, and 

euthanized at proestrus. Pituitaries were extracted, and assessed for transcript levels of 

signature gonadotrope genes (GnRHR, FSHβ, and LHβ). GnRHR and LHβ were 

significantly reduced in TGR5ko animals compared to control animals at estrus 

(p<0.05). There was a trend towards FSHβ transcript reduction, (p<0.1), which was 

likely associated with small sample size and individual variation. (Figure 6) 
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Figure 6: TGR5ko animals display blunted gonadotropin subunit transcript 

levels. TGR5ko females display about 20 percent lower levels of GnRHR, 

approximately a 30 percent decrease in Lhβ levels (p<0.05 for both). There was an 

approximately 50 percent reduction in FSHβ transcript levels, but this was not 

significant (p<0.1), due to high variability and small sample size.  
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TGR5ko mice show mild subfertility 

 Blunted gonadotrope transcript levels in TGR5ko animals lead us to assess 

them for a reproductive phenotype. While these animals are fertile, they display 

notable deficits in their reproductive capacity. Initially, TGR5ko females displayed a 

mildly prolonged inter-estrus interval, 4.1 days in controls compared to 6.7 days in 

TGR5ko animals (Figure 7B). The prolonged estrus interval may have contributed to a 

nearly 50 percent prolonged inter-litter interval in TGR5ko animals as well (Figure 

7C). TGR5 transcript levels appeared to vary in the female pituitary throughout the 

estrous cycle; reaching a nadir at diestrus and a significantly higher level at estrus 

(Figure 7D). As TGR5 stimulation causes gonadotropin release (Figures 4, 5), loss of 

TGR5 in the pituitary during estrus could alter the hormonal milieu significantly 

enough to reduce the reproductive capacity of TGR5ko mice, as indicated above. 

There was no significant difference in body weights between TGR5ko and wildtype 

animals (data not shown). 
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Figure 7: Female TGR5ko animals show reduced reproductive characteristics A) 

TGR5ko animals had an approximately 4 day delay in vaginal opening (day 25.2 

versus day 28.8) B) TGR5ko animals had a significantly inter-estrus interval of 5.5 

days, compared to 4.7 days in control animals. C) They also displayed a longer 

interval between litters, with an average of 45 days, while control animals had a litter 

on average every 33 days. D) TGR5 showed significantly higher expression of 

transcript levels during estrus than diestrus. For all panels, p<0.05.  
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TGR5 transcript levels are altered with puberty 

 Bile acid pools have been shown to be altered during puberty, and conversely 

changes in bile acid metabolism can impact the onset of puberty and fertility in rats.
39–

42
 TGR5 transcript levels were assessed in the pituitary and liver of control mice 

before, during and post-puberty. Liver TGR5 transcript levels remained below 

detectable levels until after puberty. In the pituitary, TGR5 mRNA levels decreased 

from pre-pubertal (post natal day 18) levels during puberty, but increased three fold 

above pn18 levels after puberty (Figure 8A, B). This indicates that changes in TGR5 

transcript levels during puberty are likely related to either changes in GnRH signaling 

or alterations in metabolism and bile acid pool that occur during puberty. Confirming 

physiologic importance of TGR5 in puberty onset, female TGR5ko mice displayed 

delayed puberty, by about 4 days, as assessed by day of vaginal opening (Figure 7A). 

This was independent of body weight (data not shown). 
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Figure 8: TGR5 transcript expression varies throughout puberty A) TGR5 

transcript expression in the pituitary of control animals decreases from pn18 through 

puberty (pn25, 30) and increases significantly by adulthood. B) TGR5 transcript levels 

in the liver remain under the detectable limit of the assay until pn30, as defined by the 

level found in tissues from TGR5ko animals. This level increases significantly after 

puberty (>pn50).  
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TGR5ko females show evidence of reduced HPG axis function 

Coincident with changes previously characterized, female TGR5ko mice 

showed evidence of reduced gonadotropin and steroid hormone levels. They had a 30 

percent reduction in uterine weight, and a nearly 50 percent reduction in ovarian 

weight, which can be associated with a decrease in estradiol levels (Figure 9B, C). The 

reduction in ovarian weight is likely due to loss of normal ovarian structures and 

activity; the TGR5ko females showed significantly fewer antral follicles (Figure 9D), 

which is consistent with the reduction of FSHβ transcript levels (Figure 6). The 

reduction in follicle count, in turn, appeared to lead to significantly smaller litters 

(Figure 9A).  
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Figure 9: TGR5ko females show evidence of reduced gonadotropin and steroid 

hormone function. A) TGR5ko females have an average of 5.1 pups per litter, while 

control animals have an average of 7.4, significantly more. B) They also an 

approximately 30 percent decrease in uterine wet weight (average of 72mg), compared 

to control animals (average 109mg). C) Ovarian weight in TGR5ko animals was also 

significantly reduced at 5.0mg, compared to 6.5mg in control animals. D) Finally, 

TGR5ko animals displayed fewer antral follicles (4.0) than control animals (5.6). For 

all data in this figure, p<0.05.  
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DISCUSSION  

TGR5, a GPCR bile acid receptor, is known to have roles in inflammation, 

liver and biliary disease, gastrointestinal physiology, and fertility.
21,57,58

 An unbiased 

RNA sequencing screen found hypophyseal TGR5 to be GnRH responsive in an ERK 

dependent manner. This was confirmed in vitro and in vivo. TGR5 transcript 

expression was seen in the pituitary and the gonads. Activation of TGR5 by either the 

endogenous ligand, cholic acid, or a synthetic, specific TGR5 agonist, INT777, 

induced CREB phosphorylation in αT3-1 cells, and LH secretion in primary pituitary 

cells. It also induced ovulation in female mice as part of a superovulation protocol.  

 In vivo, TGR5ko females had reduced transcript levels of gonadotrope specific 

genes, GnRHR, LHβ and FSHβ. They also showed delayed puberty, prolonged estrus 

cycles, and had smaller litters at longer intervals. They displayed reduced ovarian and 

uterine weights, and had fewer antral follicles. Interestingly, TGR5 levels in the 

pituitary seemed to vary throughout the estrus cycle; they were significantly higher in 

estrus than in diestrus, indicating hormonal regulation of TGR5. Corroborating this 

hypothesis of hormonal regulation of bile acid signaling, pituitary TGR5 transcript 

levels fluctuate significantly throughout puberty. These findings add to our 

understanding of TGR5, and provide evidence it can act as a functional modulator of 

female reproduction.  

 To our knowledge, this is the first time a bile acid receptor has been implicated 

in gonadotropin production. Our studies show that bile acid stimulation causes LH 

secretion in pituitary primary culture, but bile acids can also cause a significant 

enough LH surge to induce ovulation and formation of corpora lutea in mice. The bile 
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acid pool changes with changes in steroid hormone milieu, such as pregnancy, 

indicating at least responsiveness to hormone concentrations. We know treatment with 

bile acids can induce LH production; so conversely, female TGR5ko animals may 

have reductions or alterations in LH synthesis and release. These changes could 

account for the reproductive deficits seen in those animals. Unfortunately, due to assay 

limitations, we do not know if bile acid treatment causes induction of FSH as well. 

Reduction of FSH would lead to the reduced antral follicles. Reduction in 

gonadotropin levels has been associated with reduction in litter size, estrus interval, 

ovarian and uterine weight (Chapter 2). Further evidence GnRH and gonadotropin 

signaling modulate TGR5 expression is demonstrated by the upregulation of TGR5 

transcript levels during estrus. This could be due to induction by GnRH signaling. 

With an increase in TGR5, similar bile acid levels are likely to result in an increased 

signaling response and could contribute to the LH surge. In humans, the total amount 

of bile acids in enterohepatic circulation is known as the bile acid pool. The 

composition of this pool can vary, altering the percentage of the different types of bile 

acids.
59

 Although the size of this pool doesn’t alter throughout the menstrual cycle in 

humans, alterations in the composition could increase the activation of TGR5. 

Alternately, receptor upregulation could cause an increase in TGR5 signaling, without 

a change in the pool size. 
43

 

Supplementing male mice with cholic acid caused infertility, germ cell 

apoptosis and decreases in testosterone. These changes appear to be mediated through 

both TGR5 and FXR, via CAR, SHP, and Dax1 signaling.
38,60

 TGR5ko males did not 

show these phenotypes when supplemented with CA.
36

 Contrarily, our data indicates 



 

 

223 

 

that loss of TGR5 in females causes subfertility. Our only bile acid supplementation 

was an acute exposure to CA, while the male animals were exposed over time to a 

0.5% supplementation. There also could be differences in male and female metabolism 

of bile acid. In our studies, female pituitary primary culture was less responsive to CA 

and INT777 than male pituitary primary culture. Additionally, males did not show 

changes in bile acid saturation, or the levels of cholesterol within the bile acid pool 

with puberty, although females did.
42

 Similarly, in rats, females had a larger bile acid 

pool than males during puberty, though it was similar to males at other time points.
41

 

These indicate there is sex specific bile acid regulation, which could explain the 

differences noted between our studies and those of the Volle group.
36–38,60

  

 Due to the multitude of studies displaying alterations in bile signaling through 

puberty and the direct impact of bile duct ligation on reproductive function, we chose 

to investigate the relationship of TGR5 transcript level and puberty.
39–42,61

 

Interestingly, TGR5ko animals showed a delay in puberty, and TGR5 transcript levels 

fluctuated before and after puberty: they increased 3fold from pre-pubertal levels post-

puberty The alterations during puberty could be part of the link between nutrition, 

metabolism and reproduction, since changes in body mass and body composition are 

known to regulate onset of puberty.
62–65

. Signaling in the HPG axis alters during 

puberty as well. GnRH pulsatility increases and estradiol changes from inhibition of 

the pituitary permissive of gonadotropin production.
66,67

 While kisspeptin and KNDY 

neurons have been implicated of the pubertal transition, it is possible that TGR5 and 

bile acid signaling may also contribute.
68
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 Our data identifies a novel regulator of gonadotropin production in the 

pituitary, bile acid receptor TGR5. Reduced reproductive capacity of TGR5ko females 

indicates that TGR5 and bile acids could be used as a modulator of reproductive 

function. This has potential implications for management and treatment of obesity and 

diabetes related infertility. Additionally, TGR5 and bile acid metabolism may be 

implicated in alteration of the onset of puberty.
69–73

 Further studies should focus on the 

mechanisms and clinical implications, along with long term effects of bile acid 

supplementation and the effects on female reproduction.  
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CHAPTER 5 

 

Conclusions and Future Directions 

 

 

 

Introduction 

 

Gonadotropin-releasing hormone (GnRH), released from the median eminence 

of the hypothalamus, is transported directly to the pituitary through the hypophyseal 

portal system.
1
 There, it binds to the GnRH receptor (GnRHR), activating pituitary 

gonadotropes and stimulating the secretion of gonadotropin hormones, follicle 

stimulating hormone (FSH) and luteinizing hormone (LH). These peptide hormones 

are heterodimers, composed of unique β-subunits (LHβ and FSHβ), and a common 

glycoprotein hormone α-subunit (αGSU). 
2
 The gonadotropins act upon the gonads, 

promoting gametogenesis and steroidogenesis.
3
  

GnRHR is a G-protein coupled receptor (GPCR) that lacks the intracellular C-

terminal tail associated with GPCRs, which renders it resistant to down regulation and 

desensitization.
4–9

 Ligand (GnRH) binding activates a signaling cascade beginning 

with Gαq, and phospholipase C β (PLC). The signaling cascade results in intracellular 

calcium release and extracellular calcium influx.
10–13

 This increase in intracellular 

calcium initiates mitogen activated protein kinase (MAPK) cascade activation.
14–16

 

 The MAPK cascade involves serial phosphorylation of subsequent serine-

threonine kinases.
17–20

 While there are multiple MAPK cascades, the studies in this 

dissertation focus on understanding the role of ERK1/2 signaling in reproduction, 

using transgenic mice. ERK1 knockout (ko) mice have been shown to be viable and 

fertile, but ERK2ko is embryonically lethal.
21–24

 To circumvent this difficulty, we 
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utilized multiple Cre drivers, most notably GRIC (GnRH Receptor IRES Cre), which 

causes Cre expression specifically in cells expressing GnRHR.
25

 Utilizing this mouse 

model, we worked to understand the role of ERK1/2 signaling in the reproductive axis, 

specifically in cells expressing GnRHR. This led us to investigate the role of GnRHR 

and ERK in aging, pregnancy and aspects of metabolism.  

 

ERKs, GnRHR, and gonadotropins in aging 

 The first set of studies described in this thesis focused on understanding and 

describing the deleterious effects of chronic hypogonadotropism on gonadal aging, 

reproductive characteristics and body weight. Our lab, among others, has shown the 

importance of ERK in gonadotropin production and signaling.
26–28

 Utilizing the GRIC 

mouse, we excised ERK2 in pituitary gonadotropes. Our studies revealed a phenotype 

similar to that described by Bliss et al, and displayed the absolute requirement for 

ERK signaling in gonadotropin production and secretion. (Table 1) 
26

 Briefly, at 6 

months of age, the females were infertile, anovulatory, and acyclic, while the males 

displayed mild subfertility. 
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Table 1: Summary of reproductive characterization of ERK deletion using the 

αGSU and GRIC Cre mice 

 
αGSU cre Gric Cre 

Female 

  Estrous cycle Anestrous Prolonged cycle 

Female fertility Infertile  Infertile 

Ovarian histology No CLs No CLs 

LH serum levels NS from control Reduced from controls 

FSH serum levels NS from control Reduced from controls 

Castration response 

Blunted LH response, normal 

FSH response Blunted LH/FSH response 

Response to exogenous 

gonadotropin Ovulation, not paired 

Ovulation followed by 

pregnancy 

Spontaneous copulatory 

plug None 33% 

   Male  

  Male fertility Normal Subfertile 

Castration response NS from control Blunted LH/FSH response 

LH serum levels NS from control NS from control  

FSH serum levels NS from control Trend lower, NS from control 

Testes histology Normal Reduced tubule size 

*NS: No significant changes  
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These mice, with Cre excision of GnRHR associated ERK signaling, are a 

potential model for idiopathic hypogonadotropic-hypogonadism (IHH). To this end, 

we studied changes in the HPG axis in the ERK double knockout (ERKdko) mice over 

time. Reduction of pituitary gonadotrope function resulted in premature gonadal aging 

and profoundly reduced reproductive capacity as they aged. Despite similar 

gonadotrope related transcript levels, at 12 months old, ERKdko females displayed 

altered ovarian histology, including areas of tissue disorganization and acellularity. 

The ERKdko animals were also significantly heavier than control animals, as they 

aged indicating a link between metabolism and loss of reproductive potential. Aged 

(18 month old) ERKdko males displayed evidence of testicular degeneration, 

including deteriorating or degraded tubules, tubule calcification, and giant spermatid 

cells. These animals also had marked reduction in sperm count, and testicular and 

seminal vesicle weight, and the males showed increased body weight at 9 and 12 

months compared to control animals. 

 One of the hypotheses for these phenotypes was alterations in serum peptide 

and steroid hormones. Though we assayed male serum for FSH and testosterone 

levels, serum LH assays are underway. For females, quantifying the steroid hormone 

levels in serum from young and aged females, and peptide hormones in aged animals 

would give us a better understanding of the impact of gonadotrope ERK loss on 

steroidogenesis and whether gonadotropin secretion decreases with age in these 

animals.  

Additionally, characterizing females at more advanced ages would provide 

information on the effects of long term hypogonadotropism, as the phenotype 
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progresses with age in males. . Testes from ERKdko animals did not show a 

histological phenotype until 18 months, but ovaries showed changes at 12 months. 

Ovaries from 18 month old animals may show a more severe phenotype, which would 

elucidate requirements for gonadotropin secretion for maintenance of the HPG axis. 

This effect appears specific to hypogonadotropism, due to the lack of similar 

phenotype in age matched Stra8 ERKdko males. 

 

Loss of ERK signaling in the placenta results in delayed parturition and fetal 

mortality 

 Even more striking than the gonadal degeneration phenotype seen in these 

animals was their inability to maintain a pregnancy and produce viable pups, 

indicating the requirement for ERK signaling throughout pregnancy. Again using the 

GRIC model, we assessed female ERKdko animals’ response to exogenous 

gonadotropin administration. Though they formed CLs in response to a superovulation 

protocol, only one third of treated females became pregnant. Along with poor 

conception rates, ERK signaling seems to be of paramount importance for pregnancy 

termination as well. These animals not only suffered from prolonged gestation and a 

dystocia, but they had absolute fetal mortality.  

 The data reported in this dissertation supports the conclusion that this dramatic 

neonatal mortality phenotype may be due to loss of ERK signaling in GnRHR 

expressing cells in the placenta. The placentas from ERKdko animals showed 

abnormal cystic areas in the decidua and junctional zone, along with other histological 

abnormalities, including decreased vascularization and peri-parturient decidual 
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apoptosis. Placental ERK signaling in decidual cells and in later gestation in 

trophoblasts regulates placental growth and its loss abrogates the normal cascade to 

initiate parturition. ERK signaling is required for normal placentation, and total loss of 

ERK2 signaling results in catastrophic placental failure and embryonic lethality.
29

 Our 

model indicates that even partial loss of ERK signaling can have drastic consequences.  

 Although the studies in this dissertation served to characterize the pregnancy 

and placental phenotype seen in the GRIC mouse, there are several areas for further 

study. Understanding the respective maternal and fetal contributions to the phenotype 

observed in Chapter 3 is a prime area of interest. Recall, in the current studies on 

ERKdko females all the pups died before PN day 3 and the causality of this fetal loss 

remains a gap in our knowledge. Do these neonates die due to ERK loss or insufficient 

maternal care? Performing terminal cesarean sections on ERKdko dams at term, and 

cross-fostering the pups to a surrogate dam would allow us to assess pup viability in 

relation to ERK status in the pups. Staining the placentas from these pups for TUNEL 

would show whether the loss of apoptosis resulted from a delay in parturition initiation 

or loss of signal to initiate placental separation. A more elegant approach would be to 

use embryo transplantation, taking embryos from ERKdko dams and transplanting 

them into Control females, and conversely, embryos from Control dams into ERKdko 

females. We would expect the ERKdko fetuses to grow normally and not exhibit this 

placental phenotype. When performing the reverse experiment (control embryos 

transferred into ERKdko dams), we would expect to recapitulate the prolonged 

gestation phenotype. These studies would allow us to understand the basis of the 

changes in pregnancy, parturition and placentation. We could then use this model 
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system to examine various pharmacological approaches to initiation of parturition to 

rescue the delayed parturition phenotype. For example, supplementing the ERKdko 

animals at e20 with pharmacologic agents known to be involved in parturition, such as 

calcium, oxytocin, dexamethasone, or PGF2α, could help elucidate the mechanism 

behind the dystocia phenotype. These types of studies could have important 

implications regarding how IHH patients may be treated under similar circumstances. 

While these experiments would explain the clinical effects and rescue the phenotype, 

unbiased screening (RNA seq, or proteomics) of the ERKdko and Control animals 

would provide insight into the molecular basis of the phenotype. Comparing these 

results with the RNA seq (Chapter 4) and proteomics previously performed in our lab 

could illuminate additional ERK targets.
30

  

 An additional set of experiments would investigate the endogenous levels and 

effects of hormone supplementation throughout pregnancy. Anecdotally, many of the 

ERKdko mice seem to undergo abortions during the course of gestation. Measuring 

changes in estradiol, progesterone, LH and FSH throughout pregnancy could aid in 

understanding the cause behind these losses. Blunted progesterone upregulation 

throughout pregnancy could contribute to embryonic losses, and is an important 

differential diagnosis for spontaneous abortions. Monitoring the changes in 

gonadotropins throughout gestation in ERKdko animals and comparing them to 

control levels might help identify key time periods of required gonadotropin signaling. 

If these hormones are found to be at deficient levels, supplementation throughout 

pregnancy in ERKdko animals may help rescue the phenotype observed. We 

analyzed placental development, histology, and vascularization at e18.5 and GnRHR 
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expression at e12.5 and e18.5, but performing serial assessments throughout the 

course of gestation would help elucidate the origin of the histological changes seen at 

e18.5, and the changes in GnRHR localization between e12.5 and e18.5. Assessing 

fetal development (weight, crown-rump length, fetal resorption sites) and placentation 

(histology, GnRHR expression, ERK loss) in ERKdko dams at additional time points 

would provide increased clarity on the mechanisms underlying the phenotype. 

Identifying the day of Cre activation in the placenta could help elucidate specific cell 

types affected and identify the functional role of ERK and GnRHR in placental 

development. Historically, it was believed women with IHH suffer from infertility due 

to hormonal abnormalities.
31

 This model elucidates another possible avenue to 

consider, especially in patients with GnRHR mutations.  

 

Pituitary bile acid receptor, TGR5, modulates reproduction  

 Although our previous studies had illuminated novel roles of ERK signaling in 

aging and placental formation and function, they focused on the clinical outcomes and 

physiologic importance of the intact signaling cascade. In contrast, our third set of 

studies focused on a known location and role of ERK signaling in pituitary 

gonadotropes and identification of different gene transcripts regulated by GnRH and 

ERK. 

Again, using the GRIC mice, we conducted unbiased screens (RNA 

sequencing) to identify ERK-dependent targets downstream of GnRH signaling in the 

pituitary. These screens revealed a multitude of targets, including the GPCR bile acid 

receptor, TGR5. We confirmed TGR5’s presence in the pituitary, along with 
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upregulation in response to GnRH and negation of this effect in the absence of ERK. 

After confirming both the localization of TGR5 and its response to GnRH, we treated 

primary pituitary culture cells with a TGR5 agonist. Amazingly, this treatment 

resulted in LH secretion. Subsequently, female mice treated with PMSG and a TGR5 

agonist resulted in ovulation and CL formation in a manner consistent with a 

superovulation paradigm. TGR5ko females were found to be subfertile and displayed 

delayed onset of puberty. Together, these data indicate TGR5 plays a functional role in 

the HPG axis, modulating fertility and onset of puberty.  

 One caveat of the studies described above is the loss of TGR5 is not tissue-

specific, and the phenotypes observed could be due to TGR5 expression and signaling 

in multiple parts of the HPG axis. To this end, we have procured a TGR5floxed 

(TGR5
f/f

) mouse, and plan to cross these animals with several Cre lines already 

established in our lab to provide tissue-specific knockouts. These include GRIC Cre 

(pituitary gonadotropes), Kisspeptin Cre (hypothalamus), Stra8 Cre (testis) and ZP3 

Cre (ovary). Characterization of the progeny of these crosses will allow analyses of 

the isolated effect of loss of TGR5/ERK signaling in various tissues within the 

reproductive axis and more carefully dissect the role of bile acid signaling on 

reproductive potential.  

 Delay of puberty by 4 days in TGR5ko animals was a significant finding. 

Hypothesizing that bile acids and TGR5 signaling helps modulate the timing of 

puberty, we plan to feed prepubertal control females a TGR5-specific agonist INT777 

supplemented diet. Since this would constitutively activate TGR5 signaling in various 

tissues including within the reproductive axis, we hope it may cause puberty to occur 
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earlier with TGR5ko females as a negative control. Measuring LH and FSH after 

INT777 supplementation would allow quantification of changes in gonadotropin 

production and secretion by TGR5. Additionally, adding more time points to the study 

assessing TGR5 transcript levels during the pubertal transition might help elucidated 

the precise changes in timing of bile acid and TGR5 signaling during puberty. 

 Despite the plethora of data indicating TGR5 is functional in the gonadotrope, 

we have not yet localized this receptor within the pituitary. We are collaborating with 

the IHC core at Cornell to develop IF conditions for colocalization of TGR5 and LH in 

pituitary gonadotropes and potential other endocrine cell lineages.  

 TGR5 is preferentially activated by hydrophobic bile acids, compared to 

hydrophillic. Treating either αT-31 cells or primary pituitary cells with bile acids of 

different hydrophobicities and assessing TGR5 activation through CREB 

phosphorylation or LH secretion would further our understanding of the mechanisms 

behind this phenomenon. If TGR5 agonist-induced gonadotropin secretion occurs 

independently from GnRHR signaling, cholic acid or other TGR5 agonists could be an 

integral part of a fertility treatment regimen. To assess this, we would treat primary 

cells with antide, a GNRH antagonist, and a TGR5 agonist, to understand if it is 

independent of GnRHR signaling.  

 The three data chapters in this dissertation describe three exciting and novel 

roles for ERK2 signaling in the context of GnRH signaling. These roles confirm the 

diversity of ERK expression and the requirement for ERK signaling in routine 

function and normal tissue proliferation. Investigating the role of ERK signaling in a 

variety of tissues and cell types the HPG axis provides insight into GnRH signaling, 
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the role of gonadotropins in maintaining gonadal health over time, and GnRHR’s role 

in the placenta. Additionally, we have identified a novel target of GnRH signaling, 

TGR5, which shows promise to be a link between nutrition, metabolism, reproduction 

and puberty.  

 Although the field of reproduction has been well studied in many aspects, the 

studies included in this dissertation show that ERK signaling has far wider 

implications than those already described in the literature. All three manuscripts 

describe novel roles of GnRH associated ERK signaling with important clinical 

implications. Understanding the role of hypogonadotropism in gonadal aging and the 

role of ERK in placentation could help improve fertility for those with IHH, 

Kallmanns syndrome, or other GnRHR associated mutations. Identification of TGR5 

as a key regulator of reproduction opens new avenues into understanding the 

interconnected processes of reproduction and metabolism, especially in the context of 

puberty. It is possible that the alterations in body weight in the ERKdko animals as the 

aged (Chapter 2), could be related to reduced TGR5 expression and function in the 

pituitary gonadotropes (Chapter 4). Identifying the mechanisms such as these, which 

control the basic regulation of reproduction, hold promise for improving clinical 

fertility and contraceptive treatments.  
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Figure 1: Loss of ERK1/2 signaling in the reproductive axis has wide ranging and 

disastrous consequences for reproductive potential 
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