
A PARALLEL IMPLEMENTATION OF
HIERARCHICAL BELIEF PROPAGATION

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

by

Yuan Tian

May 2013

c© 2013 Yuan Tian

ALL RIGHTS RESERVED

ABSTRACT

Though Belief Propagation (BP) algorithms generate high quality results for

a wide range of Markov Random Field (MRF) formulated energy minimiza-

tion problems, they require large memory bandwidths and could not achieve

real-time performance when applied to many real-life inference tasks. There

is an increasing demand for efficient parallel inference algorithms as the size

of problems increase and computer architectures move towards multi-core. In

this work, we proposed a new high speed parallel computational structure for

hierarchical Belief Propagation on shared memory architecture, which is based

on a modification and generalization of the hierarchical BP algorithm presented

by Felzenszwalb and Huttenlocher. Our parallel hierarchical belief propagation

(PHBP) computational structure supports arbitrary grouping of nodes in multi-

scale computation and works for graphs in general topologies (including non

grid structure graphs). Secondly, a fully parallel framework of hierarchical BP

using sequential asynchronous message updating scheme (accelerated message

updating) is developed. We achieved parallelization of both pre-computation

portion and computational intense message passing portion. Lastly, we empiri-

cally evaluated the performance of algorithm on several computer vision tasks

where we achieved nearly linear parallel scaling and outperform other alterna-

tive algorithms. Specifically, for the task of restoring a 608*456 noisy image with

16 gray levels, our PHBP takes around 100ms while a comparable result needs

around 30s using Parallel Splash on a same 8 core shared memory system.

BIOGRAPHICAL SKETCH

Yuan Tian was born and raised up in a happy family in Wuhan, which is the

most populous city in Central China. When she was young, she was a curious

girl showing a strong fascination for drawing and building blocks. During her

school years in Wuhan No.3 Middle School, she was outstanding in both mathe-

matics and writing. Upon graduation from high school, she enrolled at Zhejiang

University in Hangzhou and luckily started her 4 year journey as a member of

Chu Konchen Honors College. Starting from her junior year, she joined Col-

lege of Electrical Engineering and focused her study on Power Electronics and

Integrated Circuit Design. With an interest in power electronic devices, she con-

ducted related research on high breakdown voltage devices and finished her un-

dergraduate thesis on simulation and characterization of high-current gain SiC

planar BJTs from working with Prof.Kuang Sheng. During the same time, she

applied and was very luckily accepted by the School of Electrical and Computer

Engineering at Cornell University with the honor of Olin Fellowship. Starting

from the fall of 2010, she flew half of the hemisphere to reach town of Ithaca and

started her dream there.

iii

To my dearest family and friends. Thank you for being supportive all the time.

iv

ACKNOWLEDGEMENTS

I would like to acknowledge, particularly, the patient guidance and support

from my advisor, Prof. Rajit Manohar. It is him who gave me the opportunity

to start my research project on hardware implementation of Graphical Models

and led me to the spectacular field of asynchronous VLSI design and architec-

ture and walked all the way with me reaching here at this point. I also would

like to give special thanks to my special committee members Prof.Jose Martinez

and Prof. Tsuhan Chen for giving me precious guidance and advice on paral-

lel computer architecture field and computer vision filed respectively. Specially,

Prof.Jose Martinez taught me many about parallel programming and how to

think in a multi-core system. I am especially grateful to all my committee mem-

bers for offering me the precious opportunity of involvement in Intel Science

and Technology Centers (ISTC) research community.

I would like to express my sincere thanks to Prof.Edwin Kan for granting

me the opportunity of joining Cornell and offering me generous advice on my

graduate studies. And thanks to all my fellow graduate students Benjamin Hill,

Nabil Imam, Rob Karmazin, Stephen Longfield, Carlos Tadeo Ortega Otero,

Benjamin Tang, Jonathan Tse, Kyle Wecker and all dear CSL members for your

supports and efforts making our offices and labs a wonderful place for research

and live.

Of course, my dearest mom and dad, always be the people I should appreci-

ate most.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi
List of Tables . viii
List of Figures . ix

1 Introduction 1
1.1 Probabilistic Graphical Models . 2

1.1.1 Probabilistic Graphical Models and Inference in Graphical
Models . 2

1.1.2 Energy Minimization Methods for MRF 3
1.1.3 Belief Propagation Algorithm 4

1.2 Thesis Overview . 6

2 Problem Formulation 8
2.1 Pairwise MRF Model . 8
2.2 Energy Model . 11
2.3 Belief Propagation Algorithm . 13
2.4 Energy Minimization Using Belief Propagation 17

3 Related Work 19
3.1 Reduce Iteration Numbers . 20
3.2 Reduce Number of Message Updates Per Iteration 22
3.3 Revisit: Message Update Schedule and Message Representations 24
3.4 Hierarchical Belief Propagation . 27
3.5 Parallelism Opportunities in Belief Propagation 28

4 Implementation and Results 31
4.1 Data Structures and model construction 31
4.2 Parallel Hierarchical Belief Propagation Implementation 39

4.2.1 Message Updating and Graph Partitioning 39
4.2.2 Parallel Algorithm . 43

4.3 Experiment Setting . 51
4.4 Results . 52

4.4.1 Speed Analysis . 52
4.4.2 Computation Time Breakdown 52
4.4.3 Comparison of Parallel Hierarchial BP with Other Parallel

BP . 56
4.4.4 Quality Analysis . 62

4.5 Discussion . 62

5 Conclusion 66

vi

A Co-processor design for Belief Propagation 68
A.1 Introduction . 68
A.2 Baseline Design . 70
A.3 Alternative Designs . 70

A.3.1 Overview and breakdown of belief propagation algorithm 71
A.3.2 Architecture design of Co-processor 72
A.3.3 processor/coprocessor interface 73
A.3.4 processor and coprocessor/memory interface 74
A.3.5 Data Flow driven Message Updating Engine 75

A.4 Evaluation: Initial Results . 77

Bibliography 81

vii

LIST OF TABLES

4.1 Computation time breakdown for processing one frame of video
input using 8 processors. First two columns are the execution
results from parallel hierarchical BP using asynchronous mes-
sage updating (PHBP-A) with three levels and three iterations of
message updating per level (L3I3). The next two columns are for
PHBP-A L3I2. The last two columns are results from PHBP-A
L3I1. 55

4.2 Comparison of number of updates for image restoration task of
”sun” image. 61

4.3 Error in disparity estimation for Middlebury dataset. 62

A.1 Comparison of cycle counts and number of instructions for base-
line bypass processor design and alternative coprocessor design
in different array lengths (which is L shown in Algorithm 7).
This shows how coprocessor design is scaling for applications
of different complexities. 78

viii

LIST OF FIGURES

2.1 Pairwise MRF (a very common graphical model used for vision
applications). The joint probability over all variables factorizes
into a form like P(X | Y) = 1

P(Y)

∏
p φp(xp, yp)

∏
(p,q) ψ(xp, xq) 10

2.2 A diagrammatic representation of computation of message vec-
tor mpq(fq) sending from node p to node q. The ”min” showing
next to source node p indicates that we are using the minimum
component of RHS (over fp) as the newly calculated message
value. 15

2.3 A diagrammatic representation of computation of belief vector
bp(fp) at node p: adding together all incoming messages msp(fp)
and the data vector Dp(fp). 16

3.1 A diagrammatic representation of updating two sets of messages
alternatively at iteration t (shown in left) and at iterative t + 1
(shown in right) for a bipartite graph. 23

3.2 An illustration of grid structure graphs at level i (shown in left)
and at level i+ 1 (shown in right). Every super-node at level i+ 1
is a group of 2 × 2 nodes from level i. 28

4.1 An example of initializing message vectors at level i from coarser
level i+1. Every father node at level i+1 has 2×2 children nodes
from level i. The correspondence between father node 1i+1 and
children nodes 1i, 2i, 5i, 6i are shown with arrowed pointers. The
arrows which represent messages are showing how the message
vectors (”right” and ”down”) at level i are inherited from coarser
level i + 1. For example, message vectors from 1i to 2i, from 2i to
3i, from 5i to 6i and from 6i to 7i are initilized with the message
vector values from 1i+1 to 2i+1 calculated at level i + 1. 35

4.2 An illustration of a 16-node graph’s linked list representation at
level i (shown in left) and at level i + 1 (shown in right). Every
super-node at level i + 1 is a group of 2 × 2 nodes from level i. . . 36

4.3 A noisy image where a large portion are expected to have similar
label values. 37

4.4 An example of aribitrary grouping of a grid structure graph from
level i (16-node, shown in left) to level i+1 (5 super nodes, shown
in right). The nodes pi ∈ Pi at level i are shown as white circles.
The nodes pi+1 ∈ Pi+1 at level i + 1 are shown as dashed circles.
These super nodes at level i + 1 have different numbers of chil-
dren nodes. 37

ix

4.5 An example of computation work partition in a grid structure
graph. Left image is showing two processors responsible for pro-
cessing one row in the original graph respectively. Right image
is showing a certain part of the adjacency list which is going to
be written to by a specific processor. p1 and p2 denote processor
1 and processor 2 respectively. 38

4.6 One iteration for two processors using round robin asyn-
chronous message updating belief propagation (BP-A) in grid
structure. Every iteration is consisted of four phases, where mes-
sages in ”right”, ”left”, ”up”, ”down” directions are updated re-
spectively. For first two phases where messages in ”right” and
”left” direction get updated, we cut the grid structure graph in
x direction so that the distributed work for two processors are
independent. Similarly we cut the grid structure graph in y di-
rection for ”up” and ”down” phases. 42

4.7 An illustration showing how adjacent nodes are tagged with Di-
rectionKey. Adjacent nodes shown in yellow are tagged with a
same Direction Key signifying that the directions of messages
sent from their source nodes to them are the same (or we ”de-
fine” them to be the same). 45

4.8 An illustration showing how adjacent nodes in different levels
are tagged with Direction Key out of a direction key set. Adja-
cent nodes shown in yellow are tagged with a Direction Key sig-
nifying that the messages sent from their source nodes to them
are in ”right” while green stands for ”down”. 46

4.9 Speed-up for parallelized hierarchical belief propagation with
round robin (sequential) asynchronous message updating
(PHBP-A). Asynchronous message updating is performed in an
up-down-left-right manner. HBP-A is used as a sequential base-
line here. 53

4.10 Computation time breakdown for processing one frame of video
input using 8 processors. All results are obtained from PHBP-A. 55

4.11 Image segmentation task with different number of iterations.
First one is the input. Results from PHBP-A with L3I3, L3I2, L3I1
are shown from (b) to (d). 56

4.12 Energy of stereo solutions as a function of running time. Both
PHBP-A and PBP-A are parallel versions working on 8 shared-
memory processors. 57

4.13 Image restoration task with ”sun”. (a) noisy picture. (b) clean
picture. (c) Our outputs with PHBP-L3I2-P8. Average message
update counts per processor is 363888. (d) Outputs with Paral-
lel Splash when set residual to 0.02. Average message update
counts per processor is 636780. 59

x

4.14 Outputs of four stereo pairs from Middlebury datasets. From top
to bottom: Tsukuba, Teddy, Cones, Venus. Three columns are
outputs of parallel HBP-L3I1-P8 (hierarchial belief propagation
with 3 levels and1 iteration per level, 8 processors), outputs of
parallel HBP-L3I2-P8, and corresponding ground truth respec-
tively. 60

4.15 Image segmentation experiment for frame29 and frame35 im-
ages. Column one is original scene captured by Kinect. Column
two is the output using PHBP-A (Parallelized HBP with Asyn-
chronous Message Updating) output performed with 3 levels, 3
iterations/level (L3I3) on 8 processors. Number of labels is set
to 3: 0 stands for hands(target), 1stands for body, 2 stands for
background. 61

4.16 (a) is showing the Non-occluded regions (white) and boarder re-
gions (black) for the Venus image. (b) is showing the distribution
of bad pixels (with an absolute disparity error larger than 1) in
the PHBP-P8-L3I1 output of Venus. 63

A.1 A diagram representation of message engine with val-rdy inter-
face. 79

A.2 A diagram representation of interface between processor, copro-
cessor and memory. 79

A.3 Data flow graph for message engine. Circles represent logic or
arithmetic operators. Rectangles represent operators with states.
Rounded rectangles represent token(rdy,val) flow operators. . . 80

xi

CHAPTER 1

INTRODUCTION

With probabilistic graphical models serving as a powerful visual representation

of statistical dependencies between variables, problems in different fields such

as computer vision, artificial intelligence, speech and image process can all be

reformulated as the computation of marginal probabilities on graphical models.

This computation process is often referred to as inference. The belief propaga-

tion (BP) algorithm is an efficient way to solve these problems which would give

an exact solution when the factor graph is a tree structure, while lead to approx-

imation outputs when the it is a cyclic graph. Though graphical model based

global methods often generate high quality results, they usually takes long time

to converge. For classical synchronous BP, for example, we often need to set the

number of iterations to be equal to half of the largest dimension (of the graph)

to get a reasonable result. In order to generate high quality outputs as fast as

possible, we would like to speed up inference tasks in graphical modes without

losing accuracy through designing an effective parallel computation structure.

As computer architectures move towards multi-core era, a large number of ap-

plications are gaining advantage from exploring the parallelization possibility

lying inside their computation expensive portions. It would be very interesting

to see how much performance improvement we can gain from doing parallel in-

ference in graphical models, which would make it possible to perform inference

tasks in real time and finally to map those applications onto mobile or embed-

ded devices.

In this thesis, I focus on exposing the parallelism to iterative Belief Propaga-

tion algorithms which can be represented by passing messages (partial marginal

1

probabilities) in graphs. Especially, I present a parallel approach for applying

belief propagation algorithm to graphs hierarchically. This parallel hierarchical

BP computation works in two steps: first is to build up a multi-scale graph set

based on the original graph that was given to infer in a parallel manner; Second

to apply parallel BP to each graph out of the graph set in a coarse to fine manner

and finally finalize the outputs on the original finest graph. This parallel imple-

mentation is designed to provide an algorithm that can be executed in clusters

of computers or multiprocessors in order to reduce the total execution time. For

the rest of this chapter, I would first briefly review the important concepts in

Probabilistic Graphical Models and belief propagation algorithms, then I would

provide a road map of this thesis.

1.1 Probabilistic Graphical Models

1.1.1 Probabilistic Graphical Models and Inference in Graphi-

cal Models

Probabilistic graphical models, a diagrammatic representation of probability

distributions, is a very useful way of representing the statistical relationships

between random variables of a concrete problem. A graph comprises nodes

connected by edges. In a probabilistic graphical model, each node represents

a random variable (or a group of variables), and each edge represents proba-

bilistic relationship between variables. There are two types of graphical mod-

els. The first one is directed graphical models (Bayesian networks), in which

the links carrying particular directions express causal relationships between

2

random variables, and the second major class is undirected graphical models,

which is often known as Markov random fields (MRF), in which the edges ex-

press soft constraints between random variables.

Given a graphical model, the most fundamental task (which is also quite

challenging) is to compute the marginal distribution of variables or subsets of

variables. This task is often referred to as inference. In an inference problem,

some of the nodes in a graph are clamped to observed values, while we wish to

compute the posterior of some subsets of other nodes.

As a powerful visualization of dependencies and an useful facility to obtain

factorizations of the probability distributions, graphical models are widely used

in various problem domains, such as statistical physics, computer vision, error-

correcting coding, artificial intelligence and general optimization.

1.1.2 Energy Minimization Methods for MRF

During this section, we are going to take stereo vision problem as an example

and explain how a corresponding energy minimization problem would be built

and solved. Stereo technique is based on finding a correspondence between the

pixels of two (or several) images taken from different view points. This is called

the correspondence problem and an optimization process needs to be applied

in order to find the best correspondence between pixels. In a stereo matching

problem, we are expected to find out the best label value for each pixel given all

the information we collect from two (or several) images.

The stereo matching problem can be solved with Markov random fields

3

(MRF) based models. Generally, MRF models provide a robust framework for

early vision problems, including stereo, optical flow and image restoration [1].

Unfortunately, most problems built on MRF models usually lead to an NP-hard

energy minimization problem in the end. The development of energy minimiza-

tion algorithms for pixel-labeling tasks is one of the most exciting advances in

early vision field. Although it has been known for decades that these early vi-

sion problems such as depth or texture computation can be efficiently expressed

using Markov random fields, the resulting energy minimization problems is

usually intractable [2]. During the last decade, two inference algorithms - Be-

lief Propagation (BP) and graph-cuts have been proposed and studied to get an

approximate solve for this NP-hard optimization problem. These methods are

demonstrated to be powerful in the sense that they lead to a low minimized

global energy value over ”large neighborhoods” and in the sense that they pro-

duce accurate results in various benchmarks. Despite the decent results belief

propagation and graph-cuts could get, both methods are too slow for practical

use. This comes from the fact that global methods are inevitably computational

expensive and thus too slow for real-time applications. We will talk more about

the speed problem in the parallelization motivation section.

1.1.3 Belief Propagation Algorithm

Belief Propagation is a widely recognized method for solving graphical model

inference problems. It is applied to two different types of situations: (1) to max-

imize the marginal probabilities for every variable using the minimum mean

square error(MMSE) estimator, and (2) to estimate the best (most probable)

states of all variables in the problem (compute the maximum a posteriori (MAP)

4

estimator). These two algorithms are often referred to as sum-product algorithm

[3] and max-product (or min-sum when working with the negative logarithm of

probabilities) algorithm respectively. The Belief Propagation[4] algorithm is a

local message passing algorithm which would converge to a fixed point on

graphs with no loops (for example, tree structure) while would provide an ap-

proximated (but often good) solution on graphs with loops. Through message

passing in max-product BP algorithm the most probable values of the unob-

served variables given the observed ones can be obtained through assignment

based on the fixed (approximated) points.

The main characteristic of the Belief Propagation algorithm is that the infer-

ence is calculated using iterative message passing between nodes. Each node

sends and receives messages until a stable situation is reached. Messages, lo-

cally calculated by each node, comprise statistical information concerning one

node’s neighbor nodes.

To tackle the problems in early vision, a scheme of running BP on grid struc-

ture (which is a cyclic graph) needs to be used. This approach is known as loopy

Belief Propagation, which is an approximate inference in graphs with loops. The

idea is to apply the sum-product algorithm even though there is no guarantee

of yielding good results. This approach is possible because the message pass-

ing rules for the sum-product algorithm are purely local. However because the

graph has cycles, information can flow many times around the graph. For some

models, loopy belief propagation would converge at some point, whereas for

others it will not. BP algorithm has been provided to be efficient on tree struc-

tures; And many experiments have shown good approximate results for some

applications when applying loopy BP to cyclic graphs such as grid structures.

5

In order to apply loopy belief propagation to problems containing cyclic

graphs, we need to define ”pending” messages [3]. We will say there is a ”pend-

ing” message on the edge from node a to node b if node a has received any

message on any of its other edges since the last time it send a message to b

. For graphs having a tree structure, any message schedule that only sends

pending messages will eventually terminate once a message has traveled across

every edge in both directions. Because there are no pending messages, the prod-

uct of the received messages at every variable would give the exact marginal.

However, for graphs containing cycles, the algorithm may never terminate be-

cause there might always be pending messages. For most applications, loopy

BP is generally found to converge within a reasonable iteration times, or once it

has been stopped when reaching the stopping criteria, the (approximate) local

marginals can be computed using the most recently incoming messages to each

node and generate (approximate) outputs.

1.2 Thesis Overview

The focus of this work is to provide a general parallel computational structure

supporting the effective hierarchical BP computation for general graphical mod-

els. The rest of our discussion is organized as below. Chapter 2 shows how

a real-world computer vision problem can be formulated as a labeling prob-

lem using pairwise Markov Random Field framework. Specifically, Chapter 2

guides readers through the process of defining energy functions for pairwise

MRFs and using the iterative belief propagation algorithm to minimizing the

defined energy function. Chapter 3 reviews existing research efforts for speed-

ing up BP from different perspectives. Some recent research have been focusing

6

on exploring the scheduling of messages in BP algorithms which has a large in-

fluence on both convergence speed and convergence possibility, such as resid-

ual message updating proposed by Elidan et al.[5], residual splash for paral-

lelizing BP proposed by Gonzalez et al. [6]. While some other research are

more focusing on reducing the memory storage and bandwidth requirements

of BP which limit the performance of BP in hardware implementations. These

efforts include storing beliefs at each node rather than on edges proposed by

Larsen et al. [7], efficient message representation presented by Yu et al. [8] and

etc. Chapter 4 starts with a description of our representation of graph models,

and then presents how our parallel hierarchical Belief Propagation is going to

work on MRFs. Specifically, we present how graph partitioning is performed

in our parallel computational model using sequential asynchronous message

updating and show how this computational structure supports general graph

and arbitrary grouping of nodes in multi-scale computation. Finally through

testing with several real-world tasks in computer vision, Chapter 4 evaluates

the performance of this parallel algorithm on cyclic graphical models where

it achieves linear parallel scaling and outperform alternative implementations,

which demonstrates that our parallel hierarchical BP is a good candidate for

real-time applications. Chapter 4 also discusses and compares different opti-

mizations for BP. Chapter 5 concludes our work and possible future efforts.

7

CHAPTER 2

PROBLEM FORMULATION

2.1 Pairwise MRF Model

Many low-level computer vision (early vision) problems are about estimating

some spatially varying quantities such as disparity or intensity from the data

we are given. Problems such as image segmentation, image restoration or dis-

parity estimation in stereo can all be formulated as labeling problems in the

MRF framework. The labels correspond to quantities that we are desired to es-

timate at each node, such as intensities for image restoration and disparities for

motion or stereo.

Throughout this thesis, we would focus on early vision problems, where a

pairwise MRF provides attractive theoretical models. Typically only pairwise

MFR are used for these problems because considering more neighbors quickly

makes inference on MRF computationally intractable. Although the compata-

bility functions are defined over two neighboring nodes in a pairwise MRF, each

node is still able to influence all nodes in the MRF [9]. To take a concrete exam-

ple, we would describe a max-product belief propagation algorithm for stereo

vision problems, such as computing the depth or disparity of pixels in a refer-

ence image by matching them with pixels in the supporting image(s) capturing

the same scene from different positions.

In the pairwise MRF model, the set of nodes V is comprised of two subsets:

Y = {y} representing the observed quantities corresponding to every node con-

sisting the image and X = {x} representing hidden quantities corresponding to

8

every node consisting the underlying scene, which is the labeling f we are try-

ing to resolve. The set of edges E represent the dependencies between pairs of

these nodes (variables). For each pixel p or a small patch of pixels in the image,

there would be a corresponding observed node yp and a hidden node xp, with

(xp, yp) ∈ E. All hidden nodes in {x} are connected in a grid structure thus we

have (xp, xq) ∈ E over any two nearest neighbors p and q in the grid structure.

For these two types of node pairs (edges) in E, we have defined local evidence

φ(xp, yp) representing the joint probability of hidden node xp and its correspond-

ing observed node yp, and compatability function ψ(xp, xq) representing the joint

probability of two neighboring hidden nodes xp and xq. The MRF is said to be

”pairwise” because this compatability function is only dependent on pairs of

positions p and q. Writing p, q as a short hand for edge (xp, xq), the overall joint

probability of a scene X and an observation Y would be

p({x}, {y}) =
1
Z

∏
p

φp(xp, yp)
∏
(p,q)

ψ(xp, xq) (2.1)

where Z is a normalization constant. We can consider the observed nodes Y =

{y} to be fixed and write φp(xp) as a short hand for φp(xp, yp). Then the joint

probability for the set of hidden variables X = {x} can be written as

p({x}) =
1
Z

∏
p

φp(xp)
∏
(p,q)

ψ(xp, xq) (2.2)

A graphical depiction of this model is shown in Fig 2.1. The shaded nodes

represent the observed quantities Y = {y}, while the white nodes represent the

hidden quantities X = {x} we are trying to infer. This MRF is pairwise because

the compatability functions only exist between pairs of node xp and node xq.

We can define the energy function E({x}) using Boltzmann’s law in statistical

physics p({x}) = 1
Z e−E({x})/T . In our context, the ”temperature” T is just a parame-

9

Figure 2.1: Pairwise MRF (a very common graphical model used for vision
applications). The joint probability over all variables factorizes
into a form like P(X | Y) = 1

P(Y)

∏
p φp(xp, yp)

∏
(p,q) ψ(xp, xq)

ter that changes the scale of units for the energy, and for simplicity, we choose

our units and set T = 1 [10]. Energy function can also be viewed as the neg-

ative log probability of the postereior distribution of an MRF. The energy of a

pairwise MRF can be expressed as

E({x}) = −
∑

p

lnφp(xp) −
∑
(p,q)

lnψ(xp, xq). (2.3)

In this context, φp(xp) and ψ(xp, xq) can be viewed as potentials.

In this MRF framework, each node xp can take one of k values (one of k

discrete states), which are often called labels. These labels are in accordance with

the properties that we are trying to solve in a specific task. In stereo matching,

for example, the labels stand for possible disparities at one point and we would

have fp ∈ {0, 1, · · · , k − 1}, which is the full set of all possible label values. We

are expected to compute the most probable assignment of labels for every node

xp given φp(fp) representing the probability that node xp is labeled with fp and

ψ(fp, fq) = ψ(xp = fp, xq = fq) representing the probability that node xp is labeled

10

with fp while node xq is labeled with fq.

2.2 Energy Model

As shown from the previous section, an energy function can be defined corre-

sponding to every problem formed in the MRF framework. Now we are going

to focus on the MRF defined in terms of energy functions. Let’s denote the set

of nodes (hidden nodes to be solved) as P and the set of labels as L. Also, we

would use p (or q) to denote one node in P. The goal is to find a labeling f that

assigns a label fp ∈ L to every node p ∈ P. The best labeling (most probable state

of all variables) is found by maximizing a joint probability shown in 2.2, which

becomes minimizing the energy function which can be viewed as negative log

of joint probability. Thus optimal label assignment f can be obtained through

minimizing the energy function given by

E(f) =
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

Vp,q(fp, fq) (2.4)

whereN is the set of all neighboring node pairs in the graph. Dp(fp) is a function

derived from observed data representing the cost of assigning the label fp to the

node p, which is often referred to as the data cost. In other words, Dp measures

how well label fp fits node p given the observed data for p. For example, in

image restoration, the labels represent gray levels and Dp(fp) is normally (fp −

Ip)2, where Ip is the observed gray level intensity of p. In stereo problems, the

labels are disparities and the data term Dp(fp) is some function of the intensity

difference between the pixel p in the primary image and the pixel p + fp in the

comparing image. Vp,q(fp, fq) measures the cost of assigning labels fp and fq to

two neighboring nodes p and q, and is often referred to as the discontinuity cost.

11

In vision problems, at the borders of objects, adjacent pixels should often have

different labels and it is important that energy E does not over-penalize such

labellings. Finding the labeling with a minimum energy in an appropriately

defined MRF is the goal of our problem.

Generally, we can represent the energy function as the the sum of data en-

ergy Edata and smoothness energy Esmooth with

E(f) = Edata(f) + Esmooth(f). (2.5)

Properties in early vision problems such as disparities or depth levels often vary

smoothly almost everywhere, but change dramatically at object boundaries. In-

tuitively, data energy Ed measures the disagreement between the labeling as-

signment f and the observed data, and smoothness energy Es coming from the

negative log probability of the prior represents the extent to which our labeling

assignment f is not piecewise smooth.

To find the labeling assignment for Equation 2.4, we first need to determine

the forms and parameters for V(fp, fq), Dp(fp) respectively. In stereo problems,

for example, we use the following data cost function for a pixel p = (x, y),

Dp(fp) = min(|Il(x, y) − Ir(x − fp, y)|, t), (2.6)

where t denotes a truncation value for data cost. For discontinuity cost, we can

choose V(fp, fq) = T (fp , fq) where T (x) is defined to be 1 when x is true and 0 if

x is false, which is often referred to as Potts Model [11]. The Potts Model captures

the piece-wise smooth assumption of labels for neighboring node: we penalize

two neighboring nodes choosing different labels. Another class of discontinuity

cost functions are dependent on the difference between two labels. Since in

some applications the label values may not smoothly changing everywhere, the

12

cost function should become constant at some point as the difference of labels

between neighboring nodes becomes large. By doing so, our energy function

would not over-penalize such not smoothly changing labellings such as at the

borders of objects. One example of such cost function is the truncated linear

model, where the cost is proportional to the difference between two labels fp

and fq up to the truncated value,

V(fp, fq) = min(s| fp − fq|, d), (2.7)

where s represents a scale factor for the discontinuity cost, and d represents the

truncation threshold value.

In the next section, after converting problems to the corresponding MRF,

a powerful approximate inference algorithm, loopy belief propagation can be

used to approximate the posterior probability.

2.3 Belief Propagation Algorithm

Loopy Belief Propagation applies to graph with loops. BP is an exact inference

for graphs without loops. For cyclic graphs, such as the hidden variables orga-

nized in grid structure as shown in Fig. 2.1, loopy BP is not guaranteed to give

the global optimal solution, but it serves as a good approximation inference

which runs in a linear time proportional to the total number of hidden nodes.

Belief Propagation algorithms specific to Bayesian networks, pairwise MRF’s

and factor graphs (consisted of nodes representing variables and nodes repre-

senting functions of variables) have all been developed and these different ver-

sions are all mathematically equivalent [10]. The difference between them arises

13

from the the fact that in factor graph there are two types of nodes and thus two

types of messages, and in Bayesian networks arrows lead to different kinds of

messages. We would focus our discussion on applying Belief Propagation to

pairwise MRF without loss of generality.

The max-product BP algorithm is an efficient way used to find a low cost

labeling for a specific energy function in MRF framework. This algorithm is de-

fined to maximize a joint probability distribution for the unknown variables xp

shown in Equation 2.2. When we are working with negative log of probabili-

ties, an equivalent computation can be performed, where the max-product BP

becomes a min-sum BP. Energy function shown in equation 2.4 is in the negative

log domain and the min-sum BP can be performed directly to find the labeling

f which gives the minimum energy cost.

In the BP algorithm, we introduce variables such as mpq(fq), which can intu-

itively be understood as a ”message” information from a hidden node p to its

neighboring hidden node q about what state (label) node q should be. A message

in Belief Propagation is a reusable partial sum for the calculation of marginal

probability. The message vector mpq(fq) has the dimensionality of node q’s label

value set (number of possible states), with each element proportional to how

probable node p thinks node q should choose the corresponding label. The max-

product BP works by passing messages around graph. mt
pq denotes the message

from node p to node q at time t. In negative log domain, all m0
pq(fq) are initial-

ized to zero (all messages are initialized to uniform distributions). The message

vector mt
pq is defined over each label fq by

mt
pq(fq) = min

fp

Dp(fp) + V(fp, fq) +
∑

s∈N(p)\q

mt−1
sp (fp)

 (2.8)

where N(p)\q is all the neighboring nodes of node p except node q. All mes-

14

Figure 2.2: A diagrammatic representation of computation of message
vector mpq(fq) sending from node p to node q. The ”min” show-
ing next to source node p indicates that we are using the mini-
mum component of RHS (over fp) as the newly calculated mes-
sage value.

sages are defined self-consistently by this update rule. A graphical depiction of

message update rules in BP algorithm is shown in Fig.2.2.

In BP algorithm, estimated marginal probabilities are called belief s. The be-

lief at node p is proportional to the sum of data cost Dp(fp) (a reflection of the

local evidence at that node φp(xp))and all messages coming into that node. Af-

ter T iterations of message updating, a belief vector bp for each node p ∈ P is

computed through

bp(fp) = Dp(fp) +
∑

s∈N(p)

mT
sp(fp) (2.9)

Finally, the label f ∗p corresponding to the minimal element of vector bp is selected

as the minimum cost label for node p. A graphical depiction of the computa-

tion of belief vector bp(fp) for node p is shown in Fig 2.3. Dp(fp) represents the

cost of assigning label fp to node p given its observed quantities at yp. In this

grid structure, each node p has four neighbors, corresponding to four messages

15

Figure 2.3: A diagrammatic representation of computation of belief vector
bp(fp) at node p: adding together all incoming messages msp(fp)
and the data vector Dp(fp).

coming from 4 directions to node p.

In conclusion, BP algorithm works in two steps: (1) update messages until

convergence (or stopping criteria) (2) calculate beliefs for each node.

As mentioned before, given observations in a certain problem, we are de-

sired to find the state of some hidden variables, where we can choose from opti-

mizing for maximizing the joint posterior p(X|Y) (maximum a posteriori (MAP)

estimator), or for the marginal posterior of each hidden variable p(xs|Y) respec-

tively (minimum mean square error (MMSE) estimator), or for some other point

estimator. The max-product BP algorithm we have shown here are trying to op-

timize for the MAP. As shown in [9], sub-pixel accuracy can be obtained through

using sum-product BP (MMSE solution) in disparity or motion estimation prob-

lems. Both max-product BP and sum-product BP can be used in different con-

texts for different applications.

16

2.4 Energy Minimization Using Belief Propagation

Using the fact that for a wide range of models built for various applications,

including Bayesian networks (directed graphical model), error-correcting codes

and factor graphs can all be converted into a pairwise MRF framework to define

an energy function, BP can be efficiently used to minimize the energy function.

The success of BP is exciting because that it systematically and efficiently han-

dles many different kinds of problems which seemed to be difficult, involving

graphs with many nodes and loops [10]. The approximation to energy that BP is

effectively implementing is more accurate and sophisticated than ”mean-field”

approximations, providing a principled framework for propagating informa-

tion between nodes in a graph.

The standard implementation of max-product BP runs in O(Nk2T), where N

is the number of nodes to be resolved, k is the number of possible label values

for each node, and T is the number of iterations. During every iteration, it cal-

culates O(N) messages. In grid structure, for example, there would be 4N mes-

sages (up, down, left, right) per iteration. For every message, it takes O(k2) time

to compute Equation 2.8, where we need to calculate the message component

corresponding to every fq while visiting k (number of possible fp’s) possible val-

ues. This is much better than the brute-force calculation of marginal probability,

which has a complexity of O(kN).

For some specific discontinuity functions we are able to decrease the com-

putational complexities shown in O(k2) . For example, for discontinuity cost

function using truncated linear model as shown in Equation 2.7, Felzenszwalb

and Huttenlocher [1] proposed that every message can be computed in O(k)

17

time instead of O(k2) time through computing messages in two passes over the

full set of labels. This optimization is applicable because for most early vision

problems, the discontinuity cost is only relevant to the difference between two

labels fp and fq rather than the particular values of (fp, fq).

18

CHAPTER 3

RELATED WORK

In this chapter, we are going to review past research efforts towards the goal

of speeding up belief propagation algorithms and mapping BP to hardware for

real time performance. Some research have been conducted to decrease the

computation complexity (or data redundancies) in BP algorithm thus decrease

iteration times while some works are trying to minimize the memory and band-

width requirement which would be promising for further adaption to real-time

hardware implementations. Ideally we would like to incorporate all possible

optimizations and improvements into our final parallel implementation. As

mentioned in the previous chapter, the overall complexity of BP algorithm is

O(Nk2T), where N is the number of nodes to be resolved, k is the number of pos-

sible label values for each node, and T is the number of iterations. Therefore,

from the computationally complexity view, we can work from three aspects (N,

k, and T) to decrease the running time. By distributing the computation work

to several processors, we are actually trying to decrease the number of nodes N

for each processor. We should always bear in mind that in order to get the most

speedup from this parallelization implementation, our distributed calculation

framework should not hurt iteration time T too much and should produce a

reasonable output (have a convergence). In order to get a better understanding

of how different optimizations would affect both the performance and quality of

the algorithm, we are going to review recent research efforts towards speeding

up Belief Propagation algorithm.

19

3.1 Reduce iteration time T : message update schedules lead to

fast convergence.

From the time dimension perspective, we can try to decrease the iteration time

T term in the complexity given by O(Nk2T). This can be achieved through op-

timizing the message update schedule. Ideally, we are looking for a message

update schedule which leads to convergence quickly for a certain graph. The

message update schedule determines when a message sent to a node would be

used by that node to compute messages for the node’s neighbors.

In synchronous message updating (BP-S), all messages are updated in par-

allel. Once every node has computed the messages for all its neighbors(4 mes-

sages for a 4-neighbor grid structure) in one iteration, all the messages produced

in this iteration are used in next iteration to generate new messages sending

from each node. For iteration times, it is noted in [9] that setting the number of

iterations to be equal to half of the largest dimension is suitable. Synchronous

message updating BP would be denoted as BP-S in the successive discussions.

Sequential asynchronous message updating (BP-A), which is also referred to

as accelerated message updating because of its fast convergence in chain and

grid structure, is an efficient schedule for a serial processor. The most important

property of BP-A is that a newly computed message can be used to compute

another message immediately (or inside current iteration) and do not need to

wait until next iteration. In grid structure, for example, message updating can

work in this manner: (1) The first node in a row, p would send a message to

node at its right, p + 1. (2) Node p + 1 would use this message immediately,

along with the messages it had previously received from above and below, to

20

compute a new message to node p + 2. (3) Once this has been completed for

every row, the same procedure occurs in the right, up, down direction.We can

see in this update scheme each constructed message is immediately consumed

in building the next message in the same direction. Here we can define that one

iteration is consisted of four phases: update all right messages, update all left

messages, update all down messages, update all up messages.

The advantage of BP-A is that information (messages) is quickly propagated

across long distances in graphs. For a synchronous update schedule on an im-

age with width W (pixels), theoretically it would take W iterations for informa-

tion from one side of the image to reach the other. However, the asynchronous

schedule would only require one iteration to converge very quickly.

Another advantage of BP-A is that the we can break the whole graph into

pieces and process pieces sequentially since intuitively messages are propagat-

ing sequentially. BP-A enables the exploration of the possibility of exploiting

data reuse in hardware implementations. In tile based BP proposed in [12], they

only keep boundary messages in-between processing tiles to reduce memory

and bandwidth cost (originally, memory requirement for BP is O(Nk), band-

width complexity is O(NkT)). Because boundary messages in one direction

would always be reused by the successive tile, we can keep these messages in

on-chip memory and save 25$ bandwidth when switching tiles. Besides, a se-

quential order of message updating is also perfect for pipelining in architecture

designs[12] and can reduce the total running time of BP.

One last thing to note is that strict synchronous message updating means

that we need to double the storage space for messages because we need to hold

both message values at iteration t and at iteration t+1, which is too expensive for

21

hardware implementations. On the opposite, in asynchronous message updat-

ing scheme, every newly calculated message value would be written to a certain

memory location immediately and message values from last iteration would al-

ways be overwritten. The checkerboard alternative updating shown in Fig.3.1

is not a pure synchronous message updating since not all messages get updated

during every iteration. Due to the fact that we are always updating different

message sets at iteration t and the successive iteration t + 1, we do not need to

worry about the overwritten problem. We just need allocate storage space ac-

commodating all messages (no need to double the space). However, even we

can manage the storage problem using checkerboard updating, we still need an

iteration number in the order of the size of image to reach convergence.

3.2 Reduce Number of Message Updates Per Iteration

In order to reduce the number of message updates per iteration (which is re-

flected in N in O(Nk2T)), we are trying to decrease the number of messages es-

sential to drive the information flow. The idea behind this is that we are expect-

ing to drive the flow of information in BP when discarding some messages.

It was noted by Felzenszwalb and Huttenlocher [1] that for a bipartite graph

BP can be efficiently performed through updating two sets of messages alter-

natively. In a bipartite graph, all nodes can be split into two sets so that every

edge is connecting two nodes belonging to different sets. If we denote two sets

of nodes as A and B, any messages is either sent from xp ∈ A to xq ∈ B or from

xq ∈ B to xp ∈ A. Given messages sent from xp ∈ A at iteration t, we can calculate

all messages sent from xq ∈ B at iteration t + 1, and then again we can calculate

22

Figure 3.1: A diagrammatic representation of updating two sets of mes-
sages alternatively at iteration t (shown in left) and at iterative
t + 1 (shown in right) for a bipartite graph.

all messages sent from xp ∈ A at iteration t + 2 without calculating them at it-

eration t + 1. This ”checkerboard” message updating scheme changes the total

number of messages needed to be updated from O(N) to O(N/2) without hurt-

ing the total iteration number T . Two plots in Fig. 3.1 are showing how we are

alternatively updating messages from iteration to iteration. One thing to notice

is that the bipartite property can also be expanded to block/cluster based MRF,

which means that we can if we have break the large graph into blocks (clusters

of nodes), we can process in a checkerboard manner on block level, while in-

side each block (cluster), we can still use sequential message updating or other

message updating schemes.

Larsen et al. [7] proposed to store beliefs (which has been compressed to

2 values at each node) at each node rather than message vectors on the edges

between pairs of nodes. In this work targeting for handling strong occlusion

effects in multiple-view reconstruction, the belief probability density functions

has been compressed into a single pair of values to represent the current best

23

estimate label value for that node and confidence in that label value. Though

this simplified approximate formulation of BP is targeting for occlusion, it also

illustrates the idea of compressing computation work.

Ogawara[13] proposed to average outgoing messages from each node into

one message vector to reduce both computation time and the required amount

for memory. Both computation time and memory had been reduced at the price

of loss of accuracy when evaluated against the Middlebury stereo benchmark.

3.3 Is there an optimal sequential message updating order

which benefits both convergence speed and number of nec-

essary message updates?

As we can see from previous discussions, these two types of approaches focus-

ing on convergence speed and amount of computation respectively always have

effects on both properties. Or in other words, these optimizations or estimations

which try to change (reduce) the number of message updates (computation) ev-

ery iteration in BP usually also have some influence on the total number of the

iterations (convergence speed), and vice versa. This means that we should look

at how to benefit both convergence speed and computation (or definition) of

messages. One natural thought would be observing how messages from nodes

in different regions of the image are changing and evolving from initial values

to converged values and how different scheduling would affect the convergence

speed while giving different amount of computation.

For example, in order to pursue the ”optimal” sequential message updating

24

order, the residual splash belief propagation[6] is giving higher updating pri-

ority to a node which has produced larger amount of new information (send-

ing out meaningful messages) during last update (vertex residual) and sched-

ule message updates in the whole graph according to the vertex residual or-

der. They first show that there exists a lower bound of convergence for chain

graphical models. Then they generalizes it to general cyclic graphical mod-

els, where they proposed splash operation on a tree centered at one node to

mimic the optimal sequential ordering for chain structure. This generalization

aims at improving convergence speed through pursuing an ”optimal” sequen-

tial ordering of message updating for cyclic graphs. As is shown in the orig-

inal paper of residual BP [5], when compared with round robin asynchronous

message updating and sequential tree-reweighted message updating which was

first proposed by Wainwright in [14], residual message updating, where mes-

sage update order is determined as the algorithm process, lead to a decrease in

the number of message updates (calculations) by 40 60 percent in their crafted

models in different sizes. This means that residual based message updating

(dynamic asynchronous message schedules) can approximately cut the calcula-

tion work by half when compared with static (round robin and tree-reweighted)

asynchronous message updating scheme. However, there are several reasons

why residual based dynamic message updating (including residual splash BP)

may not be favored for inference tasks in embedded device where both memory

requirement and speed are important concerns. First, we could not ignore the

fact that this dynamic message schedule would lead to an increase in both calcu-

lation work of residuals and memory requirement, also the maintaining of pri-

ority queen is probably also linear to the scale of graph. If this is unfortunately

the case, the advantage of ambitiously doing message updating for ”important”

25

nodes may not be that apparent. Second, as we would show in experiment re-

sults in late chapters, despite the fact that we can cut down the total number

of message updates by around half (still the same order), the contribution to

speeding up convergence is not comparable with (in the same order as) what

we could achieve through using hierarchical BP. Plus, the exploration of paral-

lelism for dynamic message updating in the work parallel residual splash belief

propagation [6] shows that the maintaining of a priority queue is necessary for

multiple processors working together, which is apparently much more compli-

cated and expensive than an implementation which makes use of the natural

parallelism lying in round robin asynchronous message updating scheme. We

would illustrate more details in respect to this comparison in Section 4.2.2.

Lastly, one noted difficulty for implementing BP (especially in hardware

such as GPU, FPGA) is the large memory requirement for handling a large num-

ber of message vectors. Quantitatively, the memory size needed for storing all

messages would be O(s ∗ N ∗ k∗), where s is the size of neighborhood (which

would be 4 in the case of a grid structure), N is the number of nodes (which

would be number of pixels for early vision applications) and k is the number

of labels (size of the label set). There are also some research conducted on sim-

plifying or altering each message vector. For instance, in order to reduce the

intra-message redundancies, Yu et al. [8] applied compression techniques to the

messages in BP algorithm to both save memory space and reduce read/write

bandwidth. It is noted [8] that through applying Envelope Point Transform

(EPT) and predictive code to messages in BP algorithm, 8 times of compression

can be achieved without much loss of depth accuracy for dense stereo recon-

struction applications. The advantage of doing EPT is that we have flexible

control of compression ratio, however, EPT itself is a nonlinear operation so lin-

26

ear operations such as message addition cannot be carried out directly in the

compressed domain. Another example is simplifying message updating com-

putation through reducing the number of labels in some of message vectors

(targeting for k shown in O(Nk2T)) , which is referred to as constant space belief

propagation [15]. In their proposed algorithm, they hierarchically reduce the

number of labels (size of label sets) as the spatial resolution increases.

3.4 Hierarchical Belief Propagation

Different from previous discussions focusing on optimizing for computation

on the original graphical model built from problem directly, Felzenszwalb and

Huttenlocher proposed to build a set of coarser graphs based on the problem-

level graph and do computation and estimation in a coarse to fine manner. This

hierarchical (multi-scale) BP scheme updates messages in coarse levels (smaller

graphs), then pass message values down to finer levels (larger graphs) and use

computational results from coarse levels as initialized values for the finer levels.

This hierarchical BP scheme dramatically decreases the total number of itera-

tions T thus contributes to the running speeding of BP. Intuitively, all messages

are updated in parallel at every iteration. This implies that it would take many

iterations for information to travel large distances in the grid structure since it

can only propagate one ”step” (edge) every iteration.

In hierarchical BP scheme, we started with computing and propagating mes-

sages in the coarsest level I. After T iterations the resulting messages calculated

at level i are always used to initialize messages at level i − 1 (finer level) un-

til we reached convergence at level 0, which is the original node-based graph.

27

Figure 3.2: An illustration of grid structure graphs at level i (shown in left)
and at level i + 1 (shown in right). Every super-node at level
i + 1 is a group of 2 × 2 nodes from level i.

This would make messages converge faster since messages in finer levels are

initialized closer to the fixed point they are expected to converge to. Intuitively,

this construction helps us to achieve convergence much more rapidly because

long range interactions inside the original grid graph can now be replaced by

short distance propagation in coarser levels, where messages are propagated in

smaller scale graphs consisted of groups of nodes. Fig. 3.2 illustrates two levels

of grid structure graphs when grouping 2i × 2i nodes into one super-node in

each level i. We would revisit this hierarchical BP scheme give a more detailed

description of it in 4.

3.5 Parallelism Opportunities in Belief Propagation

The convergence speed of inference tasks for probabilistic graphical models is

still a practical challenge in large domains, especially for mapping certain ap-

28

plications to mobile devices where real time performance is often desired. As

computer architecture transition towards ever increasing parallelism, we would

like to explore the possibility of parallelism at fundamental level in the inference

algorithms.

Ideally we would like to expose parallelism throughout different applica-

tions using graphical models by developing a few core parallel algorithms.

Graphical models can also be viewed as a common language for represent-

ing statistical models in a various application domains. Inference, the process

of calculating probability distributions in the model, is the primary computa-

tionally intense portion in reasoning and learning in graphical models. Thus

through providing an efficient parallel implementation for inference algorithms,

we could expose parallelism to a wide range of different applications such as

machine learning, computer vision and image processing. As discussed before,

while there are many popular inference algorithms (including graph-cut and

belief propagation), belief propagation is one of the most popular one. There-

fore, an efficient parallel algorithm for the message-passing belief propagation

would provide a solid basis for various inference tasks in graphical model.

Ideally, a good combination of approaches we have discussed in previous

sections could be applied to pursue the best convergence speed while main-

taining a relatively small memory and bandwidth requirement. Different from

all the optimizations which focus on either a specific type of message schedule

or an optimized/estimated message expression and representation, the focus

of our work is to find an optimal parallel framework which nicely describes a

general graphical model for a given problem, leads to the best performance of

BP running on graphical models while also suitably accommodating all these

29

optimization efforts we have discussed here.

Based on all the discussion, hierarchical computational model of BP which

reduces the complexity of the problems and leads to a dramatical performance

improvement for different inference tasks from real world is an ideal candi-

date for serving as the baseline algorithm for a parallel implementation. This

hierarchical computation model is general enough for different graphical mod-

els, especially when the size of problems goes up, doing multi-scale computa-

tion can always makes a larger problem faster to solve. Also we can always

choose to apply different message updating scheduling and message represen-

tation/computation optimizations inside the computation of graphs from each

level. Thus, we would keep the focus of this work to be providing a general par-

allel computational model supporting the hierarchical BP for general graphical

models.

In next chapter, we would talk about how how a graphical model can be built

in our framework, how we are building a parallel framework of hierarchical BP

and how different considerations of optimization have been incorporated.

30

CHAPTER 4

IMPLEMENTATION AND RESULTS

We propose a modification and generalization of the hierarchical BP algo-

rithm presented by Felzenszwalb and Huttenlocher [1] which targets for four-

connected grid structure graphs (early vision problems). First, our implementa-

tion of hierarchical belief propagation is based on adjacency list representation

of graphs, which (1) allows for arbitrary grouping of nodes in multi-scale com-

putation through linking father node (in a higher level) with its children nodes

(in a lower level), (2) would work for graphs in any general topologies (includ-

ing non grid structure graphs) since the graph in each level is a direct descrip-

tion of nodes (node structure) and its neighbor nodes (adjacent node structure)

and does not require every node to have a same number of neighbors (which

is true for grid structures). Second, we adopt sequential asynchronous message

updating scheme (accelerated message updating) which has been shown to be

good for further expansion to hardware implementations. Third, a fully par-

allel framework of hierarchical BP is developed. This achieves (1) paralleliza-

tion of pre-computation parts node initialization, edge initialization, message

initialization in every level, (2) parallelization of message passing scheme in

different message update schedules. Lastly, we would like to do a comparison

between our proposed implementation and other implementations (specifically,

we would look at residual based Parallel Splash BP).

4.1 Hierarchical BP Built on Adjacency List

An algorithm is essentially manipulation of data in a suitably chosen data struc-

ture. The underlying data structure is a vital foundation in the design and anal-

31

ysis of algorithm implementations. Making good use of structural properties of

certain data structures would yield efficient implementations for various prob-

lems. BP is performed on MRF in our context, thus an efficient representation

for nodes (which are associated with data costs) and its neighborhood (which

are associated with the messages sent out from this node) in undirected graph

is needed.

In this section we would first briefly review the hierarchical max-product

BP implementation [1] which originally targets for four-connected grid struc-

ture graphs (early vision problems) was implemented in their work. Then we

would demonstrate how adjacency list structures would provide a solid foun-

dation and generalization ((1) irregular node grouping and (2) general graph

structures) for this hierarchical BP scheme.

In hierarchal BP, when we group several nodes pi at the finer level i into a

group of nodes b at the coarser level i + 1 (an example grouping of four nodes

into one super-node on a grid structure is shown in Figure 3.2) the data cost of

assigning a label fb to super node b at level i + 1 can be expressed as

Db(fb) =
∑
pi∈b

Dpi(fb). (4.1)

We would refer this cost computation for every super node b at coarser levels

as node initialization in our context. A summation of costs is equivalent to a

product of probabilities. Thus the interpretation for Db can be the probabilities

of all children nodes pi choosing the label fb. Let’s denote the finest level, which

is the pixel based graph as level 0 and the coarsest level as I. After node ini-

tialization from level 1 to level I, the hierarchical BP would start the message

computation shown in Equation 2.8 in level I where all messages have been ini-

tialized to zero. After TI iterations of message updating in levels I, all resulting

32

message values at level I would be used to initialize message values at the next

finer level I−1. The same message initialization and message updating compu-

tation would be performed in every level below I until we reach convergence

at level 0. For four-connected grid graph, there are four types (directions) of

messages sent from each node: down, up, le f t, right. When we denote these mes-

sages sent to four directions as d, u, l, r, messages sent from node pi at level i are

inherited from messages sent from super node b at level i + 1 following

{ l, r, d, u } 0
pi

(f) = { l, r, d, u}Ti+1
b (f). (4.2)

where lt
p represents a message vector that node p sends to its left at iteration t,

and similarly rt
p, d

t
p, u

t
p represents the message vector sent right, down and up,

respectively.

In the original implementation, at each level, five 2-dimension arrays in the

same size (cost, down, up, le f t, right) are used to represent data cost vectors cor-

responding to every node and four message vectors sending from every node.

For example, cost[p] represents the data cost vector of node p, cost[p][fp] repre-

sents the data cost value when node p chooses the label fp, down[p] represents

the message vector sent from node p to the node sitting below it (let’s denote

this node as q) and down[p][fq] represents the message value sending from p to

the node q when the label value for q is f q. This implementation is valid as long

as the grouping or correspondence between every father node and its children

nodes are following the same rule in a 4-connected grid structure graph. For

example, Figure 3.2 is showing a grouping where every super node is consisted

of the same number (four) children nodes.

In order to provide wide support for more general graphs in different topolo-

gies (not just grid structure graphs we have used for computer vision) and the

33

flexibility for irregular grouping, we propose an adjacency list based construc-

tion of graphs where the graph at each level is consisted of nodes and adjacent

nodes and every father node is linked with its children nodes crossing succes-

sive levels of graphs (used in hierarchical BP). Data cost information is stored

in every node structure since every node is associated with a range of possible

label values and their corresponding costs. Message information is stored in ev-

ery adjacent node. The illustration of message updating in hierarchical BP and

the data structure supporting this operation is shown in Figure 4.1 and Figure

4.2. As shown in Figure 4.2, in level i, adjacent node 2 (circle shape) in node 1’s

(square shape) list would store the message vector sent from node 1 to node 2

(the ”right” direction message vector sent from node 1).

To better understand the reason why adjacency list is chosen to be used to de-

scribe every node (represented with node structures) the collection of its neigh-

boring nodes/edges (represented with adjacent node structures) in our imple-

mentation, let’s first look at the common operations that one can perform on a

list, which are:

1. FIND(member): check if the member is in the list and if so give its location

2. INSERT(new): inset ”new” member into a certain location in the list

3. DELETE(old): delete ”old” member from a given location in the list

These operations make linked list a good candidate for describing a node’s

neighborhood since (1) it would be convenient for us to access a certain node’s

neighbor node(s) and it would be performed in a constant time per neighbor

node; (2) It is straightforward to add or delete a node or edge in a certain graph;

(3) Through the use of array of pointers, the upper bound on the list length can

34

Figure 4.1: An example of initializing message vectors at level i from
coarser level i + 1. Every father node at level i + 1 has 2 × 2
children nodes from level i. The correspondence between fa-
ther node 1i+1 and children nodes 1i, 2i, 5i, 6i are shown with
arrowed pointers. The arrows which represent messages are
showing how the message vectors (”right” and ”down”) at
level i are inherited from coarser level i + 1. For example, mes-
sage vectors from 1i to 2i, from 2i to 3i, from 5i to 6i and from 6i

to 7i are initilized with the message vector values from 1i+1 to
2i+1 calculated at level i + 1.

be removed, which means that every node can have different numbers of neigh-

boring nodes (represented with adjacent nodes) and we can always add a new

node to the original graph through inserting a new member in the correspond-

ing linked list.

Recall from previous discussion in Section2.4 which explains that the mo-

tivation behind hierarchical BP is to facilitate long range flow of information

across the MRF and thus to lead to faster convergence, a rigid grouping such as

always grouping 4 nodes into one super node shown in Figure 3.2 may not be

a good choice in many specific situations. For example, in an image restoration

35

Figure 4.2: An illustration of a 16-node graph’s linked list representation
at level i (shown in left) and at level i+1 (shown in right). Every
super-node at level i + 1 is a group of 2 × 2 nodes from level i.

task for the image shown in Figure 4.3, we probably would like to group one

half of the pixels together into a large super-node and increase the convergence

speed. Another example would be that when we have different emphasis on

different parts of the graph, we might need to group nodes into super-nodes

in different sizes. For an MRF built on adjacency lists which supports irregular

grouping of nodes such as the example shown in Figure 4.4, when perform BP

on this graph representation we are granted the flexibility of laying different

emphasis on different portions of the graph model. This flexibility in grouping

makes adjacency list structures a very good support for general hierarchical BP

computation.

Another advantage we can obtain from using adjacency list is that it would

36

Figure 4.3: A noisy image where a large portion are expected to have sim-
ilar label values.

Figure 4.4: An example of aribitrary grouping of a grid structure graph
from level i (16-node, shown in left) to level i+1 (5 super nodes,
shown in right). The nodes pi ∈ Pi at level i are shown as white
circles. The nodes pi+1 ∈ Pi+1 at level i + 1 are shown as dashed
circles. These super nodes at level i + 1 have different numbers
of children nodes.

37

Figure 4.5: An example of computation work partition in a grid structure
graph. Left image is showing two processors responsible for
processing one row in the original graph respectively. Right
image is showing a certain part of the adjacency list which is
going to be written to by a specific processor. p1 and p2 denote
processor 1 and processor 2 respectively.

be very easy for computation (workload) partition. This makes adjacency list

data structures a good foundation for message updating/passing in belief prop-

agation a parallel style. Figure 4.5 is showing how different processor (compu-

tation unit) is in charge of accessing and writing to different portions of the

adjacency list structure.

38

4.2 Parallel Hierarchical Belief Propagation Implementation

4.2.1 Message Updating and Graph Partitioning

In this section, we are going to give a detailed description of our parallel hier-

archical belief propagation implemented in C for shared memory architecture,

where all communication between processors is accomplished through access-

ing shared memory space. First, we would present why asynchronous message

updating would be a good choice for parallelized BP. Then we would provide

a detailed description of the design of our parallel hierarchical belief propaga-

tion. Specifically, our algorithm is mainly consisted of two parts: (1) paralleliza-

tion of pre-computation parts including node initialization, edge initialization,

message initialization in every level, (2) parallelization of message passing (it is

possible to use different message updating schedules).

As discussed in Chapter 3, many optimization methods, especially different

message-update schedules have been proposed to accelerate the convergence

speed, and some optimizations are also trying to reduce or control the memory

or bandwidth requirement while speeding up the convergence to a fixed point.

Sequentially asynchronous message updating (BP-A) scheme, where each up-

dated message is immediately consumed for the calculation of next message,

usually leads to a faster information flow and has been shown to converge to

a unique fixed point under conditions similar to those that guarantee the con-

vergence of BP using synchronous message updating [5]. Many results have

shown that BP-A is much faster than the synchronous message updating (BP-

S) (BP-S in combination with checkerboard style mention in Section 2.4). One

intuitive way of understanding BP-A is that any new computation is triggered

39

when new information arrives. Our research has shown that once applying BP-

A to hierarchical BP, a stable results can be obtained at a very promising speed,

which makes hierarchical belief propagation algorithm an ideal candidate for

further adaption to realize real-time inference applications in embedded de-

vices. Therefore, we use it one of the baseline designs for the performance com-

parison.

Any ordinary message update schedule can be used for a parallel imple-

mentation of BP, but we find that round robin BP-A (asynchronous message

update schedule) best for adaption into a parallel algorithm considering both

performance and implementation cost such as memory storage requirement.

The graph level parallel abstraction relies on the partitioning, so we would like

to (1) minimize the communication/dependency, (2) balance computation and

storage. One example of performing our parallel message computation with

round-robin asynchronous belief propagation using two processors is shown in

Figure 4.6. Now we would explain the rationale behind our parallel scheme in

three aspects.

First, we can distribute the computation work between different processors

in a certain way thus the information flow would be not cut, which guaran-

tees the ”sequential” property of asynchronous message schedule. The reason

why the ”sequential” property is important is because while messages may be

computed in any order (in synchronous message updating, for example, every

message is computed once in every iteration), information is alway propagated

sequentially. As we can see from Figure 4.6, updating of messages in the same

direction in different rows (or columns) are independent to each other. Thus we

can alway partition the graph in the same direction as the messages (informa-

40

tion flow) to make sure that every processor is doing meaning work contribut-

ing to the final convergence to a fixed point.

Second, the synchronization problems in round-robin BP-A are easy to solve.

As shown in Figure 4.6, all processors are simultaneously updating messages

in the same direction in the same phase. For the first two phases (i.e, ”right”

and ”left”), we do not need to force any orders for synchronization purpose

on these two processors since each processor only reads from memory space

which is not written by any processors in these two phases (”up” and ”down”

message values) and only writes to its own memory district. Similarly, there

is no load-store memory consistency problem for the last two phases (i.e, ”up”

and ”down”).

Third, cache locality has been explored through exposing parallelism to

round-robin BP-A where messages newly updated by one processor would

be consumed by this processor immediately. This efficient memory accessing

comes from the fact that we choose to use asynchronous message updating

schedule where the calculation is performed in a sequential order. Also, since

we are always updating messages sent from nodes in a specific order here, we

might be able to make more use of a specific memory access pattern.

41

Figure 4.6: One iteration for two processors using round robin asyn-
chronous message updating belief propagation (BP-A) in grid
structure. Every iteration is consisted of four phases, where
messages in ”right”, ”left”, ”up”, ”down” directions are up-
dated respectively. For first two phases where messages in
”right” and ”left” direction get updated, we cut the grid struc-
ture graph in x direction so that the distributed work for two
processors are independent. Similarly we cut the grid structure
graph in y direction for ”up” and ”down” phases.

42

4.2.2 Parallel Algorithm

Algorithm 1 is showing how parallel hierarchical belief propagation is working

in a big view. The computation can be divided into two phases. The first one

would be node initialization which has been shown in details in Algorithm2

and the second phase is edge/message initialization (shown in Algorithm 3 and

Algorithm 4) and iterative message passing calculation which is the the most

computation intensive part (shown in Algorithm 5).

Message initialization in hierarchical BP

As mentioned in previous discussions, our implementation provides with the

flexibility for passing messages (initializing messages) from coarser levels to

finer levels in arbitrary graphs. In order to identify the correspondence be-

tween messages in different levels, DirectionKey is used to tag every message

vector (stored in Adjacent Nodes) with a direction property. Direction Keys are

attached to adjacent nodes in paraGraphInitAdj() and checked later in para-

GraphInitMessg() for message initialization from coarser levels to finer levels.

Figure 4.7 is showing how we are tagging messages in the same direction (or

defined to be in the same direction) with a Direction Key. Figure 4.8 is showing

how messages (stored in Adjacent Nodes) in different levels are defined using

a common Direction Key set. In grid structure, for example, the value of Direc-

tionKey would be 0(up) or 1(down) or 2(left) or 3(right).

43

Workload distribution

The balance of workload distribution is very straightforward in grid structures.

Since there is a same number (four) of messages emanating from each node, we

can always partition the graph into subgraphs with very balanced total number

of nodes and thus guarantee that every processor has the same amount of mes-

sage updates. However, the graph partitioning (workload distribution) may not

be that straightforward in other cases, especially for irregular graph structures.

Also, for a general graph, DirectionKey needs a specific definition from the al-

gorithm designer. For irregular graphs, we should always try to partition the

graph in a manner which avoids cut down the sequential information flow (car-

ried by messages) just like what we have done in Figure 4.6 for a regular graph

(grid structure). With a well defined DirectionKey, it would be easy to do mes-

sage inherited from coarser levels to finer levels in any general graphs in our

framework provided in Algorithm 3 and Algorithm 4.

Synchronization: memory locks and barriers

In order to guarantee the correctness and efficiency of our message passing com-

putation conducted by several processors, we need to force some ordering con-

straint on memory operations in execution. Such memory fences are necessary

because from a programmer’s perspective, we have some exceptions or assump-

tions on the order to read and write operations of some shared variables (in a

shared memory model, those variables are stored in shared memory). Changes

in these ordering would either cause race condition (where locks and unlocks

can be used to grant access to only one processor) or an unexpected result.

44

Figure 4.7: An illustration showing how adjacent nodes are tagged with
DirectionKey. Adjacent nodes shown in yellow are tagged with
a same Direction Key signifying that the directions of messages
sent from their source nodes to them are the same (or we ”de-
fine” them to be the same).

In our implementation, a pair of lock and unlock might be needed in para-

GraphInitNode() depends on the graph partitioning. In line 17 out of Algorithm

2, we are writing to every super node in level k and the computation is parti-

tioned on nodes in level k-1. For example, if we happen to have both node q1

and q2 grouped into one super node gk, and node q1 is distributed to processor

1 while node q2 has been distributed to processor 2, we need to guarantee that

the situation of both processor 1 and processor 2 are writing to gk structure’s

memory space simultaneously would never happen.

As shown in algorithm 1, several barriers are used to synchronize between

threads. The first barrier Barrier : initnode is used to make sure that we would not

proceed to the next level’s node initialization until the initialization of all nodes

in current level has finished. Similarly, Barrier : initad j is used to wait until the

initialization of all messages are finished before start the message updating in

45

Figure 4.8: An illustration showing how adjacent nodes in different levels
are tagged with Direction Key out of a direction key set. Ad-
jacent nodes shown in yellow are tagged with a Direction Key
signifying that the messages sent from their source nodes to
them are in ”right” while green stands for ”down”.

46

paraBPA(). We do not need a barrier between the last iteration of paraBPA() and

the successive paraGraphInitAdj() because the graph partitions we have done in

paraGraphInitAdj() and paraBPA() in the same way so that processor i is respon-

sible for the same subset of messages calculated (written) in paraBPA() and used

(read from) in paraGraphInitAdj().

Algorithm 1: A pseudocode for parallel hierarchical belief propagation:
paraHBP()

1: Every processor executes in parallel
2: for level k=0 to LEVELS (fine to coarse) do
3: if it is level 0 then
4: paraGraphInitNode(level=0);
5: . Initialize nodes and load precomputed data costs
6: else
7: paraGraphInitNode(level=k);
8: . Initialize nodes and calculate data costs from the finer level
9: Barrier(initnode, procs)

10: end if
11: end for
12:
13: for level k=LEVELS to 0 (coarse to fine) do
14: if it is level LEVELS then
15: paraGraphInitAdj(); . Initialize adjacent nodes
16: else
17: paraGraphInitAdj(); . Initialize adjacent nodes
18: paraGraphInitMessg(level=k);
19: . Initialize messages using coarser level = k − 1 calculatoin results
20: end if
21: Barrier(initad j, procs)
22:
23: for iteration from 0 to IT ERk do
24: paraBPA();
25: end for
26:
27: end for
28:
29: Barrier(bp, procs)
30: paraChooseLabel(level=0);

47

Algorithm 2: A pseudocode for parallel node initialization: function
paraGraphInitNode(level = k)

1: Every processor executes in parallel
2: if it is level 0 then
3: Graph node partition: define blocks of nodes in level = k for processor Pi

4: for every node in level k in my block do
5: Initialize/allocate node structure
6: load precomputed data costs
7: end for
8:
9: else . coarser levels

10: Graph node partition: define blocks of nodes in level = k for processor Pi

11: Graph node partition: define blocks of nodes in level = k−1 for processor
Pi

12: for every node in level = k in my block do
13: Initialize/allocate node structure
14: end for
15: for every node q in level = k − 1 in my block do
16: Specify q’s father-node gk in level = k
17: Update node gk’s data cost, children node list
18: . A lock implementation might be needed for node gk’s update
19: end for
20: end if

Algorithm 3: A pseudocode for parallel message initialization: function
paraGraphInitAdj()

1: Every processor executes in parallel
2: Graph edge partition: define the block of node pairs for processor Pi

3: for every edge in my block do
4: GraphCreatePair(DirectionKey)
5: . For node pair (p, q), create adjacent node q(p) in the neighbor list of node

p(q) and link it with node q(p).
6: end for

48

Algorithm 4: A pseudo-code for parallel edge initialization: function para-
GraphInitMessg()

1: Every processor executes in parallel
2: Graph node partition: define blocks of nodes in level = k for processor Pi

3: for every node g in my block do
4: for every child node p (in level k-1) of node g do
5: compare and match p’s and g’s AdjNodes usingDirectionKey
6: Initialize messages sent from p using calculated message values sent

from g (for matched DirectionKey cases)
7: end for
8: end for

49

Algorithm 5: A pseudo-code for parallel belief propagation using round
robin asynchronous message updating in grid structure:
function paraBPA()

1: Every processor executes in parallel
2: Graph node partition in x direction: define the blockx (rows of nodes) for

processor Pi

3: Graph node partition in y direction: define the blocky (columns of nodes) for
processor Pi

4: for every row in my blockx do
5: for every node in current row (left to right) do . right
6: Update message vector
7: end for
8: end for
9: for every row in my blockx do

10: for every node in current row (right to left) do . left
11: Update message vector
12: end for
13: end for
14:
15: BARRIER(bpDirection, procs)
16:
17: for every row in my blocky do
18: for every node in current column (down to up) do . up
19: Update message vector
20: end for
21: end for
22: for every row in my blocky do
23: for every node in current column (up to down) do . down
24: Update message vector
25: end for
26: end for

50

4.3 Experiment Setting

We evaluate our hierarchical belief propagation implementation in sequen-

tial and shared-memory multi-core settings on a variety of graphical models.

Specifically, we tested our code on 4*10 core Intel Xeon Processors (2.1GHz).

Comparisons against other popular parallel implementations are provided.

For all experiments for stereo vision problems, we use truncated linear

model for discontinuity costs, V(fp, fq) = min(s| fp − fq|, d), where d denotes a

truncation value for discontinuity cost. We use the following data cost function

for a pixel p = (x, y),

Dp(fp) = λmin(|Il(x, y) − Ir(x − fp, y)|, t) (4.3)

where t denotes a truncation value for data cost and λ denotes the relative

weight of data costs. These three parameters d, t, λ are provided accordingly.

For all experiments for image restoration problems, discontinuity cost is

given by V(fp, fq) = min(| fp − fq|
2, d) and data cost fuction for one pixel vari-

able(node) p is represented with Dp(fp) = λmin((I(p) − fp)2, t).

One thing to notice here is that we can always change our data cost, discon-

tinuity cost models and parameter settings which would lead to a better results

for a specific problem later and the same computation procedure described here

would still fit nicely in applying belief propagation to solving a specific MRF.

There are some other more complicated models for computing data cost terms

(Dp(fp)), like window-based normalized cross-correlation (NCC) would proba-

bly work better than this single pixel matching cost we are using here, especially

for applications where the quality of stereo image pairs are not as good as Mid-

dlebury images due to intensity changes.

51

However, the point here is that programmers are granted the freedom of

choosing their own definition of data cost terms (and/or smoothness terms)

based on the kind of problem they are trying to solve. And we are focusing on

the energy function optimization part once these parameters have been defined.

4.4 Results

4.4.1 Speed Analysis

speedup(n, p) =
Time to solve using the best serial algorithm

Time to solve using p processors
(4.4)

In real speedup measure, the parallel execution time is compared against the

execution time needed by the fastest serial algorithm for the application. Since

for many applications ,we may not know the fastest one, or no one algorithm is

the fastest for all examples, the run time of the sequential algorithm that is used

in ”practice” is chosen to be the comparison baseline. In Figure 4.9, hierarchical

belief propagation using round robin asynchronous message updating is used

as a sequential baseline for comparison. An almost linear speed-up is achieved

here due to the natural graph partitioning we have achieved with round robin

asynchronous message updating.

4.4.2 Computation Time Breakdown

We have also tested our parallel hierarchical BP code with image segmentation

tasks. The results are represented in Figure 4.15. Specifically, we compared

the computation time breakdown for different phases in parallel hierarchical

52

Figure 4.9: Speed-up for parallelized hierarchical belief propagation with
round robin (sequential) asynchronous message updating
(PHBP-A). Asynchronous message updating is performed in
an up-down-left-right manner. HBP-A is used as a sequential
baseline here.

BP scheme when using different numbers of iterations inside every level. Ta-

ble 4.4.2 is showing the numbers and percentage execution time breakdown for

one image using 8 processors and Figure 4.4.2 provides a visualization of this

time breakdown. As we can see from these numbers and figures here, the most

time consuming part is level 0 (task-level) iterative belief propagation, which

is more than half of the total computation time for L3I3 (three levels and three

iterations of message updating per level). Level 0 iterative BP is still around 40

percent of the total execution time even when only one iteration of message up-

dating is performed (for L3I1). The reason why level 0 (task level) iterative BP

is time consuming is because that at level 0 the number of nodes is exactly the

same as the name of variables we are solving, which is probably a huge num-

ber. For example, the number of nodes (pixels) would be 307200 for a typical

640*480 image. For the optimal/ideal case, we might just need to visit every

node once or twice (I1 or I2) and then obtain and finalize the marginal infor-

53

mation for every variable in the task level. We should bear in mind that this

visiting-every-variable at least once is inevitable because no matter how better

our initial guesses have been made through computation in higher levels, we

always have to come down to level 0 to compute for each node and finalize

information for each node.

As shown in Figure 4.11, for the image segmentation task of one frame from a

video input, we could achieve a pretty reasonable output with L3I1 whose total

execution time is around the half of the total execution time for L3I3. The reason

why we did not lower it down to one third (from L3I3 to L3I1) is because we

always need to spend around the same amount of time for initial computation of

costs and for each level’s edge construction and message initialization. This also

hints that once a hierarchical framework has been built for a relatively complex

graphical model (a large number of nodes), it is not very expensive to perform

more message updating inside each level.

54

Image Segmentation L3I3 L3I2 L3I1
PHBP-P8 Time (us) Percent Time (us) Percent Time (us) Percent
Total node/cost Init 11210 5.1 % 10259 6.3 % 10470 8.9 %
Level 2 Graph Init Edge 1413 0.6 % 1079 0.7 % 1291 1.1 %
Level 2 BP 7734 3.5 % 5494 3.4 % 3389 2.9 %
Level 1 Graph Init Edge 4276 2.0 % 4148 2.6 % 3988 3.4 %
Level 1 Init Message 2610 1.2 % 2602 1.6 % 2734 2.3 %
Level 1 BP 29495 13.5 % 20889 12.9 % 10395 8.8 %
Level 0 Graph Init Edge 15342 7.0 % 16997 10.5 % 14517 12.3 %
Level 0 Init Message 11320 5.2% 11077 6.8 % 11072 9.4%
Level 0 BP 125960 57.8 % 85612 52.8 % 44887 38.0 %
Final Label Choose 7857 3.6 % 7805 4.8% 6911 5.8 %
Total calculation 217964 162250 118157

Table 4.1: Computation time breakdown for processing one frame of video
input using 8 processors. First two columns are the execution
results from parallel hierarchical BP using asynchronous mes-
sage updating (PHBP-A) with three levels and three iterations
of message updating per level (L3I3). The next two columns are
for PHBP-A L3I2. The last two columns are results from PHBP-
A L3I1.

Figure 4.10: Computation time breakdown for processing one frame of
video input using 8 processors. All results are obtained from
PHBP-A.

55

(a) (b)

(c) (d)

Figure 4.11: Image segmentation task with different number of iterations.
First one is the input. Results from PHBP-A with L3I3, L3I2,
L3I1 are shown from (b) to (d).

4.4.3 Comparison of Parallel Hierarchial BP with Other Parallel

BP

Figure 4.12 shows how the energy function is minimized (optimized) in two

versions of parallel belief propagation using round robin asynchronous mes-

sage schedule. As we can see from this plot, hierarchical version (PHBP-A) can

actually achieve a decent energy value using less than 1/5 of the time than the

flat version (BP-A). And this is not just the case for Tsukuba images.

We have tested for four stereo matching problems provided in Middlebury

56

Figure 4.12: Energy of stereo solutions as a function of running time.
Both PHBP-A and PBP-A are parallel versions working on 8
shared-memory processors.

stereo datasets. The solutions of using L3I1 (3 levels, 1 iteration per level) and

L3I2 (3 levels, 2 iterations per level) are shown in Figure 4.14. Based on both the

energy function values we have achieved and the observed output images, we

could tell whether the chosen iteration time is enough for a certain application.

For our PHBP-A scheme, even with L3I1, a pretty reasonable output is derived

for all four Middlebury benchmarks. This result leads to an interesting compar-

ison against Parallel Splash framework which is based on the theory that once

we have visited and updated every message (or node) once a residual (updat-

ing priority) could be calculated and used to tell whether and when we need to

update this message again in the future. However, if we only need one itera-

tion, which is one visit to every message vector in level 0 (which is the ”variable

node” or ”pixel” based real problem level) to reach convergence, there would be

no need for computing residuals and schedule a revisit for the future at all. In

order to get a quantitative sense about the convergence speed comparison of our

hierarchy based implementation versus dynamic (residual based) asynchronous

57

message updating based implementations, we choose to do an experiment on

image restoration of a ”sun” image using both our implementation and Parallel

Splash implementation [6].

For both parallel hierarchical BP (PHBP) and parallel splash BP (PSBP) im-

plementations, we tested them on a same shared memory 8 core system. It took

around 950 ms to solve an image segmentation task using PHBP and the a com-

parable results took about 45s using PSBP. The corresponding outputs of the

image restoration tasks using both our parallel hierarchial belief propagation

and parallel splash implementations are shown in Figure 4.13.

Since the execution time might be dependent on the efficiency of specific

implementations, it may not be very intuitive to compare the execution time di-

rectly. In order to do a more direct and fair comparison with the Splash Parallel

framework proposed in Residual Splash for Optimally Parallel Belief Propa-

gation [6], we choose to compare the total number of updates needed for one

image restoration task instead of the execution time. Table 4.4.3 illustrates that

for a noisy image (608*456), PHBP-A needs to update 90k nodes while Parallel

Splash needs to update 636k ”splashes”, where each splash is consisted of sev-

eral nodes. Since the size of splash is changing dynamically in Parallel Splash

BP, it is hard to estimate the actual size of average splash here. For a best case,

the size of each splash would be one (depth of tree is one), which means that

every splash is consisted of 5 nodes in a grid structure graph. We would see a

90k VS 3180k comparison between PHBP-A and Parallel Splash BP.

58

(a) (b)

(c) (d)

Figure 4.13: Image restoration task with ”sun”. (a) noisy picture. (b) clean
picture. (c) Our outputs with PHBP-L3I2-P8. Average mes-
sage update counts per processor is 363888. (d) Outputs with
Parallel Splash when set residual to 0.02. Average message
update counts per processor is 636780.

59

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)
L3I1

(k)
L3I2

(l)
GroundTruth

Figure 4.14: Outputs of four stereo pairs from Middlebury datasets. From
top to bottom: Tsukuba, Teddy, Cones, Venus. Three columns
are outputs of parallel HBP-L3I1-P8 (hierarchial belief prop-
agation with 3 levels and1 iteration per level, 8 processors),
outputs of parallel HBP-L3I2-P8, and corresponding ground
truth respectively.

60

total number of updates PHBP-A Parallel Splash BP
image size (608*456) 90k 636k*splash size
image size (608*456), if splash size=1 90k 3180k

Table 4.2: Comparison of number of updates for image restoration task of
”sun” image.

(a) (b)

(c) (d)

Figure 4.15: Image segmentation experiment for frame29 and frame35 im-
ages. Column one is original scene captured by Kinect. Col-
umn two is the output using PHBP-A (Parallelized HBP with
Asynchronous Message Updating) output performed with 3
levels, 3 iterations/level (L3I3) on 8 processors. Number of
labels is set to 3: 0 stands for hands(target), 1stands for body,
2 stands for background.

61

Stereo Problem Tsukuba Venus Teddy Cones
Nonocc All Nonocc All Nonocc All Nonocc All

PHBP-P8-L3I2 1.99 3.80 1.33 2.42 22.0 30.0 17.8 24.8
PHBP-P8-L3I1 1.94 3.88 1.39 2.49 23.0 30.9 20.2 26.9

Table 4.3: Error in disparity estimation for Middlebury dataset.

4.4.4 Quality Analysis

Table 4.4.4 shows the percentage of bad pixels (errors) in disparity estimation.

If the difference between the estimated disparity and the ground truth is more

than one, it is marked as an error, or bad pixel. ”Nonocc” stands for the ratio of

the erroneous pixels in non-occluded regions, while ”all” stands for this error

ratio for all pixels. Figure 4.16 is showing the definition of non-occluded region

for a ”Venus” image and one example of the distribution of bad pixels in an

disparity output of ”Venus” image pairs.

As shown in Table 4.4.4, we achieved pretty promising results for Tsukuba

and Venus, however our results for Teddy and Cones are not very ideal. One

thing to note here is that the focus of our work is to demonstrate how our par-

allel hierarchical computational structure of BP is supporting the energy min-

imization problems in MRF. In order to show this, we just choose to use the

simplest data cost function and discontinuity cost functions.

4.5 Discussion

Belief propagation offers parallelism opportunities on both graph level, where

messages from different nodes can be computed in parallel, and message vector

62

(a) (b)

Figure 4.16: (a) is showing the Non-occluded regions (white) and boarder
regions (black) for the Venus image. (b) is showing the distri-
bution of bad pixels (with an absolute disparity error larger
than 1) in the PHBP-P8-L3I1 output of Venus.

level, where the computation for each message vector over different label val-

ues can be expressed as matrix operations and then parallelized easily. In our

discussion, we would focus on graph level parallelism since the message vector

level trick is straightforward and we can always add it later.

Synchronous belief propagation is inherently parallel, where given all mes-

sages from last iteration, all messages in current iteration can be computed in-

dependently and simultaneously without any communication. As shown in[6],

natural parallel synchronous BP is highly inefficient since in most cases, on ev-

ery iteration, only a few newly computed messages increase awareness (infor-

mation propagation) while the rest are wasted. This can also be intuitively un-

derstood through thinking about the fact that while messages may be computed

in any order (in synchronous message updating, every message is computed

once in every iteration), information is alway propagated sequentially. Many

computations in synchronous message updating in earlier iterations would be

63

obsolete and useless towards convergence.

In Parallel Splash framework proposed in [6], the local forward backward

scheduling in a chain structure has been generalized to a forward backward

scheduling on artificially constructed spanning trees rooted at nodes. For the

problem level graph (eg. pixel-based graph for computer vision problems),

splash algorithm has decreased the amount of message updating calculation

at the expense of residual calculation and extra storage. However, when adopt-

ing a hierarchical calculation style using our data structure in a parallel frame-

work, the simplest round-robin asynchronous message updating gives us an

very ideal convergence speed and decent outputs with a straightforward graph

partitioning, little extra calculation (no maintaining priority queue) and small

memory requirement (no residual calculation/storage is needed). All these ben-

efits provided by using round-robin asynchronous message schedule in a hier-

archical BP framework prove it to be a better parallel algorithm than Parallel

Splash in both performance and memory storage for some tasks. Or in other

words, the advantage of using a dynamically aggressive (informed) message

updating schedule as Splash is no longer alluring when the powerful hierarchi-

cal computation is adopted in a parallel framework.

Similarly in Yang’s fast-converging BP [16], they updated only the messages

of the non-converging pixels to get a computational complexity sub-linear in T.

They showed that the GPU implementation of HBP can achieve near video rate

(16 FPS) with low resolution images (320*240) ans small number of disparities

(16). Several methods have been proposed to reduce the memory requirement

of BP but mostly at the cost of increasing either the running time of message

computation or the execution time for data cost computation.

64

Another high speed hierarchical work we have talked about in previous

chapters is constant-space BP proposed by Yang [16]. In this work, unlike previ-

ous memory reduction methods focusing on the original spatial resolution, they

hierarchically reduce the disparity range to be searched. This reduction in dis-

parity range basically reduces the computational complexity through decrease

theN in O(Nk2T) (which would be O(NkT) for truncated linear discontinuity cost

model) . As we have shown from our time breakdown, BP computation in level

0 (original spatial resolution) graph is most computational intense since we

have a large N in level 0. This hierarchical disparity range reduction is very ef-

fective when k is also very big. Thus ideally we would like to incorporate this

hierarchical disparity range reduction in our PHBP when k is very big for some

applications with high resolution (large k).

65

CHAPTER 5

CONCLUSION

In this work, we identified and addressed the challenges in the design and im-

plementation of high speed efficient parallel belief propagation solving infer-

ence tasks in undirected graphical models in shared memory architecture. Es-

pecially, we propose a modification and generalization of the hierarchical BP

algorithm presented by Felzenszwalb and Huttenlocher [1] which targets for

four-connected grid structure graphs (early vision problems). Our implemen-

tation of hierarchical belief propagation is based on adjacency list representa-

tion of graphs, which (1) allows for arbitrary grouping of nodes in multi-scale

computation through linking father node (in a higher level) with its children

nodes (in a lower level), (2) would work for graphs in any general topologies

(including non grid structure graphs) since the graph in each level is a direct de-

scription of nodes and its neighbor nodes and does not require graph to have a

regular pattern. Second, we adopt sequential asynchronous message updating

scheme (accelerated message updating) which has been shown to be good for

further expansion to hardware implementations. And we have shown that the

round robin asynchronous is easy to implement and lead to balanced workload

distribution in parallel framework. Third, a fully parallel framework of hier-

archical BP is developed. We achieved parallelization of both pre-computation

parts and computational intense message passing portion.

Through comparisons with other parallel frameworks, out implementation

outperforms residual based Parallel Splash in both performance and memory

cost. Also, the flexibility and extension to general graphs and the support for ir-

regular grouping in multi-scale computation makes our parallel hierarchical be-

66

lief propagation very promising for a variety of applications in the future. One

possible improvement in the future would be incorporating dynamical group-

ing of nodes in the multi-scale computation thus we could adaptively decide

the ”scale” of computation we would like to perform in each level. Another

possible direction would be instead of using the same number of iterations and

same scales (searching space) of messages for computation in different levels,

we could do more computation/exploration in higher levels where the compu-

tational cost is lower while lay less computational cost in lower levels where the

computation is very expensive.

67

APPENDIX A

CO-PROCESSOR DESIGN FOR BELIEF PROPAGATION

In my course project for Complex ASIC Design, I explored a co-processor design

focusing on the message computation in Belief Propagation. Especially, I imple-

mented a data-flow style message engine co-processor for the generation of each

message in Belief Propagation. Further future research exploration would be

using several message engine in parallel using a specifically designed memory

(node) accessing pattern for achieving better performance.

A.1 Introduction

While transistor counts continue to double every generation, the power dissipa-

tion per transistor is only improving slightly. Given the limited chip-level power

budget, the breakdown of voltage scaling is calling for a limitation of the per-

centage of transistor that can switch at full frequency. Therefore, while the tran-

sistor density continues to increase, the power efficiency has become the domi-

nant limiting factor in processor design. Recent research efforts such as Quasi-

Specific Cores, Conservation Cores (synthesized from application source code),

Dynamically Specialized Execution [17] all demonstrate that customized hard-

ware specification provides higher energy efficiency compared with general-

purpose computer architectures.

With probabilistic graphical models serving as a powerful visual represen-

tation of statistical dependencies between variables, problems in different fields

68

such as computer vision, artificial intelligence, speech and image process can

all be reformulated as the computation of marginal probabilities on graphical

models. And this computation process is often referred to as inference. In this

project, we choose to focus on belief propagation (BP) algorithm which has been

shown in Algorithm 6, which is one of the most powerful inference algorithms

for solving problems built on probabilistic graphical models. Specifically, we

would aim at BP performed on a grid structure graph, which means every node

has four neighbors. Inside belief propagation, the most time-consuming com-

putation part is called message passing (shown in Algorithm 7), which is required

to be executed for each edge in the graph for many iterations. The computation

complexity can be expressed as O(Nk2T), where N is the number of nodes to be

resolved, k is the number of possible label values for each node, and T is the

number of iterations. We would talk about this in details in Section A.3.

This project aims to carry out a study of both the benefits and trade-offs

of employing application specific circuits in terms of performance, power and

area as compared to a general-purpose PARCv2 processor. In order to do this, I

started from the belief propagation algorithm written in C and then partitioned

this application such that some portions would be compiled for use on the gen-

eral purpose processors (GPPs) and some other portion (eg. message updating

operation represented with function textbfmsg) will be implemented on copro-

cessor. The coprocessor is optimized to execute that particular segment of code

in companion with processor. Specifically, since this message updating function

(which is going to be built as a message engine in our design) is called in a way

that memory addresses are accessed in a specific pattern, we could explore dif-

ferent possibilities in a architecture level to achieve higher performance and en-

69

ergy efficiency through instantiating different number of message engines and

organise them in different ways.

A.2 Baseline Design

The baseline Deisgn would be the bypassed PARCv2 processor. After rewriting

and adapting the belief propagation C code into a suitable version for further

compilcation and evaluation, the complied assembly code in PARC ISA could

be executed using the bypassed PARCv2 processor. This means that this PARC

procesor is capable of executing our application benchmark (BP) and serving as

a suitable baseline for comparison with the alternative design.

Specifically, as shown in Algorithm 6, function msg are called by four times

consecutively. In order to do further comparison with our higher level architec-

ture design with several message engines, we would generate two numbers in

baseline design: (1) the cycle counts for one message updating function (2) the

cycle counts for four message updating function as a whole.

A.3 Alternative Designs

After making analysis on the results of running the assembly version of BP al-

gorithm on PARC processor (baseline design) with respect to cycle time, cycle

70

counts, we identified the segment of code (execution) which should go to co-

processor. Now we are going to show how we are building up the whole design

incrementally and hierarchically.

A.3.1 Overview and breakdown of belief propagation algo-

rithm

Upon analysis on belief propagation algorithm code, we can find that the com-

putationally intensive portion (function bp) lies inside the outermost loop which

would be called from iteration to iteration (let’t denote the number of iterations

as T). A pseudo-code of belief propagation function is shown in the Algorithm6

below. With a closer look into the computation of function bp, a natural thought

would be dividing this computation into two parts: the first one is the gen-

eration of memory addresses for accessing four message arrays (u,d,l,r) and

one cost arrays (cost); the second part is accessing those memory locations in

a specific order and then perform a series of computation (function msg). The

pseudo-code of message updating function msg is shown in Algorithm 7. In

next section, we would look at this msg algorithm in details and analyze the

data flow graph (DFG) of our loop kernel.

71

Algorithm 6: Belief propagation function bp(u, d, l, r, cost)

1: for every node do
2: //Address generation
3: nodeu = node −W; //node sitting above
4: noded = node +W; //node sitting below
5: noder = node + 1; //node sitting in the right
6: nodel = node − 1; //node sitting in the le f t
7:
8: //Message updating in four directions
9: msg(u[noded], l[noder], r[nodel], cost[node], u[node]);

10: msg(d[nodeu], l[noder], r[nodel], cost[node], d[node]);
11: msg(l[noder], u[noded], d[nodeu], cost[node], l[node]);
12: msg(r[nodel], u[noded], d[nodeu], cost[node], r[node]);
13: end for

Algorithm 7: Message updating function msg(s1, s2, s3, s4, dst, L,DIS CK)

1: for value = 0 to L(every label) do
2: dst[value] = s1[value] + s2[value] + s3[value] + s4[value];
3: if dst[value] < min then
4: min = dst[value];
5: end if
6: end for
7: min = min + DIS CK;
8: for value = 0 to L do
9: if min < dst[value] then

10: dst[value] = min;
11: end if
12: end for

A.3.2 Architecture design of Co-processor

The processor would communicate with co-processor via a val-rdy interface.

There would be a command queue between processor and each co-processor.

Inside co-processor, configuration registers would be set up to hold all the val-

ues the co-processor needs during its computation. For setting up each con-

figuration register, one mtvps instruction would be called to move a specific

72

value (corresponding to one argument in the C code of msg) from processor to

co-processor before launching the computation in co-processor. Specifically, the

mtvps instruction creates a message packet containing the co-pocessor register

address and data which get enqueued onto the command queue. The go in-

struction sets the co-processor busy bit in processor and it is also sent through

this command queue. This busy bit gets cleared when the co-processor execu-

tion is finished.

In our message engine, we need to use 7 configuration registers (serv-

ing as constants values during one complete execution of message engine) :

{s1 · · · s4, dst}BaseAddress, constant DIS CK and the length of array length. All above

are about one message engine’s architecture. After successfully realizing this

message updating unit, I would move forward to pipeline this design.

A.3.3 processor/coprocessor interface

In order to answer the question of when and how would the co-processor know

it should start computing(Leave IDLE state and enter CAL state), we are go-

ing to use a similar interface as last year’s application specific loop accelerator

(ALSA) project’s interface between ALSA and control processor. Basically, we

would have one instruction which sets up all co-processor registers by moving

those values from general purpose register spaces. All our message engine ar-

gument including base addresses for arrays, data constants and array lengths

would be passed from processor using this moving instruction.

73

After all arguments are moved to coprocessor registers, the processor would

execute a go instruction to start this coprocessor (message engine for now). We

might need a bit in processor signifying that the coprocessor is in use through

the usage of go instruction. Upon completion of execution of the coprocessor,

program flows would be redirected to the instruction after this go instruction.

Since we are going to have more than one message engines, we need to ex-

pand and add some extra controlling logic to this coprocessor configuration

manager. Specifically, we would test and compare the trade-offs of having sev-

eral message engines working simultaneously versus pipelining the message

engine. For having several message engines, we only clear the busy bit when all

message engines have completed calculation.

A.3.4 processor and coprocessor/memory interface

Here we are trying to answer questions like (1) How would storing/loading

to/from data memory be performed? (2) Will there be a consistency problem

if both of them having access to shared memory resource? Or in other words,

should we allow the processor to work while the coprocessor is in execution

(busy)?

For question (1), an architecture of arbitrating access to memory resources

shared by processor and co-processor (two requesters) is developed. Upon re-

ceiving a request to access the shared memory resource from a first requester,

we grant and lock access to memory to the first requester such that no other

74

requesters may be granted the access. Fig A.2 is showing the interface between

processor, co-processor and memory. A memory manager shown with dashed

rectangle needs to be implemented in RTL.

For questions (2), in my BP application, once the memory accessing ad-

dresses have been calculated, the message engine would be launched for four

times continuously, and then it proceed to the next group of address generation,

and message updating for 4 directions again. Basically, it is repeating this pro-

cess. For simplicity, I would choose to stall the processor when the co-processor

is busy. If everything is working fine, I would proceed to a more aggressive

design choice of having processor and co-processor working concurrently.

A.3.5 Data Flow driven Message Updating Engine

We chose to design a data driven architecture for our message updating engine.

Our message updating engine is going to be built from a set of modules. As

proposed in [18], self loop pipelining can be naturally achieved through repli-

cating cyclic hardware structures (which are responsible for the control of loop

iterations) and then get them autonomously executed in order, with synchro-

nization being achieved by the data flow. Their scheme can also be applied to

nested loops requiring less aggressive pipeline balancing efforts than usual soft-

ware pipelining techniques. We would first use a similar technique to our inner

loop: message updating engine. In order to do this, we are going to use a similar

duplicating cyclic hardware structure scheme. The data flow graph is shown in

Figure A.3.

75

As shown in Algorithm 7, the computation in one message engine is con-

sisted of two loops: the first loop is calculating and storing the temporary re-

sults for every element in array dst while trying to find the minimum value of

an array; The second loop is comparing every temporary result against a certain

threshold value which was derived from minimum value found in loop1. For

the second loop, one input (the temporary values of dst’s elements) comes from

a large queue whose size is decided at design time, and another input (threshold

value for comparison) comes from one value min calculated at the end of loop

one. Thus we can construct the whole data flow diagram with two paths: one

for the calculation of min, another for the temporary values of elements in dst

array. The data flow graph is shown in Figure A.3.

For the first loop, first 5 address generators are used for loading s1, s2, s3, s4

from memory and writing calculation results dst back to memory. In order to

find the minimum value in the temporary dst array, we use one module Loop-

Init to hold the current minimum value. Every time when there is a new value

popped out from ADD4 , current minimum value is used to compare against it.

LoopInit is designed in the way that for the very first comparison it is initial-

ized to be INF, and for the sucessive comparisons, it is always providing the last

comparison round’s output, which is held by a state variable inside this oper-

ator. A Split operator is controlled by a Loopdone operator which counts and

redirects(controls) Split when it counts up to LoopCount. Through connecting

in this way, the Split would always feed the current minimum back to the Com-

pare operator when the first loop is not finished yet and sends down the final

76

minimum value when the first loop is finished.

Now we have temporary dst elements computed from line 2 in Algorithm

7 held in the big queue. The size of this queue needs to be decided at design

time and this limits the maximum length of the array that this message engine

can deal with. We also have one threashold value coming from adding the min-

imum value together with constant DIS Ck as shown in line 7 in Algorithm 7.

For the comparison operation(line 9 in Algorithm 7) in second loop, we need to

generate the min threshold token for LoopCount times in order to consume the

LoopCount dst elements provided from the big queue. Thus a Generate operator

is used here to generate the min threshold token for LoopCount times.

We have several AddrGen operators in this message engine, which shows

the idea presented in [18] which said that through duplicating the hardware

structures responsible for the control of loop iterations, a natural loop pipelin-

ing can be achieved.

A.4 Evaluation: Initial Results

Table A.4 shows a performance comparison between co-processor and proces-

sor for a specific message updating function benchmark. The baseline design

is evaluated with the BP algorithm implemented in C with msg function also

declared in C. The co-processor design is is evaluated with the BP algorithm im-

plemented in C with msg function declared with assembly instructions which

77

length=2
Processor Coprocessor

NumCycles 104 31
NumInstructions 86 27
bpmsgCycles 12
IPC 0.83 0.87

Table A.1: Comparison of cycle counts and number of instructions for
baseline bypass processor design and alternative coprocessor
design in different array lengths (which is L shown in Algo-
rithm 7). This shows how coprocessor design is scaling for ap-
plications of different complexities.

sets up configuration registers in co-processor and then evokes the computation

in co-processor.

78

Figure A.1: A diagram representation of message engine with val-rdy in-
terface.

Figure A.2: A diagram representation of interface between processor, co-
processor and memory.

79

Figure A.3: Data flow graph for message engine. Circles represent logic
or arithmetic operators. Rectangles represent operators with
states. Rounded rectangles represent token(rdy,val) flow op-
erators. 80

BIBLIOGRAPHY

[1] P. Felzenszwalb and D. Huttenlocher, “Efficient belief propagation for early
vision,” Proceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004., vol. 1, pp. 261–268, 2006.

[2] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agar-
wala, M. Tappen, and C. Rother, “A comparative study of energy mini-
mization methods for Markov random fields with smoothness-based pri-
ors.” IEEE transactions on pattern analysis and machine intelligence, vol. 30,
no. 6, pp. 1068–80, Jun. 2008.

[3] F. Kschischang, “Factor graphs and the sum-product algorithm,” IEEE
transactions on Information Theory, vol. 47, no. 2, pp. 498–519, 2001.

[4] Y. Weiss and W. Freeman, “On the optimality of solutions of the max-
product belief-propagation algorithm in arbitrary graphs,” IEEE Transac-
tions on Information Theory, vol. 47, no. 2, pp. 736–744, 2001.

[5] G. Elidan, I. McGraw, and D. Koller, “Residual belief propagation: In-
formed scheduling for asynchronous message passing,” Proceedings of the
Twenty-second Conference on Uncertainty in AI (UAI), 2006.

[6] J. Gonzalez, Y. Low, and C. Guestrin, “Residual splash for optimally paral-
lelizing belief propagation,” International Conference on Artificial Intelligence
and Statistics, vol. 5, 2009.

[7] E. Larsen and P. Mordohai, “Simplified belief propagation for multiple
view reconstruction,” 3D Data Processing, 2006.

[8] T. Yu, R.-S. Lin, B. Super, and B. Tang, “Efficient Message Representations
for Belief Propagation,” 2007 IEEE 11th International Conference on Computer
Vision, pp. 1–8, 2007.

[9] M. F. Tappen and W. T. Freeman, “Comparison of graph cuts with belief
propagation for stereo, using identical MRF parameters,” Proceedings Ninth
IEEE International Conference on Computer Vision, pp. 900–906 vol.2, 2003.

[10] J. Yedidia, W. Freeman, and Y. Weiss, “Understanding belief propaga-
tion and its generalizations,” International Conference on artificial intelligence,
2003.

81

[11] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimiza-
tion via graph cuts,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 23, no. 11, pp. 1222–1239, 2001.

[12] C.-C. Cheng, C.-T. Li, C.-K. Liang, Y.-C. Lai, and L.-G. Chen, “Architecture
design of stereo matching using belief propagation,” Proceedings of 2010
IEEE International Symposium on Circuits and Systems, pp. 4109–4112, May
2010.

[13] K. Ogawara, “Approximate Belief Propagation by Hierarchical Averaging
of Outgoing Messages,” 2010 20th International Conference on Pattern Recog-
nition, no. i, pp. 1368–1372, Aug. 2010.

[14] M. Wainwright, T. Jaakkola, and A. Willsky, “Tree consistency and bounds
on the performance of the max-product algorithm and its generalizations,”
Statistics and Computing, no. Bertsekas 1995, pp. 143–166, 2004.

[15] Q. Yang, L. Wang, and N. Ahuja, “A constant-space belief propagation
algorithm for stereo matching,” 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 1458–1465, Jun. 2010.

[16] Q. Yang, L. Wang, R. Yang, and S. Wang, “Real-time global stereo matching
using hierarchical belief propagation,” 3DPVT, pp. 798–805, 2006.

[17] E. Magdaleno, J. P. Lüke, M. Rodrı́guez, and J. M. Rodrı́guez-Ramos, “De-
sign of belief propagation based on FPGA for the multistereo CAFADIS
camera.” Sensors (Basel, Switzerland), vol. 10, no. 10, pp. 9194–210, Jan. 2010.

[18] J. Cardoso, “Dynamic loop pipelining in data-driven architectures,” Pro-
ceedings of the 2nd conference on Computing, pp. 106–115, 2005.

82

