Exploiting Replication*

Kenneth P. Birman
Thomas A. Joseph

TR 88-917
June 1988

Department of Computer Science
Comell University
ithaca, NY 14853-7501

" This work was supported by the Defense Advanced Research Projects Agency (DoD) under ARPA order
6037. Contract NOO140-87-C-8904, and also by a grant from the Siemens Corporation. The views, opinions,
and findings contained in this report are those of the authors and should not be construed as an official
Department of Defense position, policy, or decision.






Exploiting Replication*

Kenneth P. Birman
Thomas A. Joseph

Department of Computer Science
Cornell University
Ithaca, NY 14853

June 1, 1988

Thisisap:epﬁmofmmialﬂmﬂappearinthecolleetedlecmnomfrmnArctic&!.An
Advanced Course on Operating Systems, Tromso, Norway, July 5-14, 1988. The lecture notes will appear
in book form later this year.

* This work was supported by the Defense Advanced Research Projects Agency (DoD) under ARPA order 6037, Contract
N00140-87-C-8904, and also by a grant from the Siemens Corporation. The views, opinions and findings contained in this report are
those of the authors and should not be construed as an official Department of Defense position, policy, or decision.






Arctic 88 Course Outline

1. Introduction
1.1. Evolution of Distributed Systems
1.2. Five perspectives on Distributed Systems
1.3. Architecture
1.4, Distribution transparency
1.5. An architecture for selecting transparency
1.6. Modelling systems

2. Technology
2.1. Hardware Substrates and relevant software
2.2. Networks

3. Communication
3.1. Interprocess Communication
3.2. Reliable Broadcast protocols
3.3. Remote Procedure Call

4. Naming and Protection
4.1. Naming

4.2. Cryptography
4.3. Protection

5. Concurrency and Consistency,
5.1. Transactions
5.2. Using transactions in distributed applications
5.3. Theory of (nested) transactions
5.4. Using replication to enhance availability and fault-tolerance in distributed systems
5.5. Virtual synchrony for building distributed systems

6. File Systems
6.1. Basics
6.2. Why distributed file systems?
6.3. Brief history
6.4. Clarification of nomenclature
6.5. Andrew File System
6.6. Context
6.7. Design
6.8. Future

7. System Management
7.1. Management Architectures
7.2. Debugging, Reconfiguration control
7.3. Accounting
7.4. Effects of scale

8. Formal methods
8.1. The tools of formal logic
8.2. Representing behaviour in LOTOS
8.3. High-level specifications for distributed programs

9. Conclusions



15

Exploiting replication in distributed
systems

K.P. Birman and T. A. Joseph

15.1. Replication in directly distributed systems

This chapter examines techniques for replicating data and execution in what we
will refer to as directly distributed systems: those in which multiple processes interact
directly with one another while continuously respecting constraints on their Jjoint
behavior. Directly distributed systems are often required to solve difficult prob-
lems, ranging from management of replicated data to dynamic reconfiguration
in response to failures. Here, we will see that these problems reduce to more
primitive order-based consistency problems, which can be solved using primitives
such as the reliable broadcast protocols discussed in Chapter 14. Moreover,
given a system that implements reliable broadcast primitives, a flexible set of
high-level “tools” can be provided for building a wide variety of directly distri-
buted application programs.

15.1.1. Using replication to enhance availability and fault-tolerance

Replication is often central to solving distributed computing problems. For
example, modularity and price-performance considerations argue for decentrali-
zation of software in factory automation settings. However, many factories con-
tain devices controlled by dedicated processors that require realtime response.
Any delay imposed on the controllers by the network must be bounded. In a
system where data is not replicated or cached, this would be hard to guarantee
because of possible packet loss and unpredictable load on remote servers. Distri-
buted realtime systems thus need ways to replicate information that may be
needed along time-critical paths.

339



340 K. P. BIRMAN AND T.A. JOSEPH

Replication can be a powerful tool for solving other types of problems. For
example, in a factory automation setting distributed execution may be used by
applications that need to subdivide tasks by concurrently allocating multiple
processes (or multiple devices) to a single piece of work. In order to distribute
the execution of a single request over a set of high-speed processes, however, one
must also replicate any information that they use to coordinate their actions. A
centralized “coordinator” would represent a single point of failure and a poten-
tial performance bottleneck.

Fault-tolerance requirements are another major reason for replicating data.
In a non-distributed setting a failure rarely affects anything but the user of the
crashed program or machine. In a network, the effects of a crash can ripple
through large numbers of machines. A program that will survive the failures of
programs with which it interacts must have access to redundant copies of critical
resources and ensure that its state is never dependent, even indirectly, on infor-
mation to which only the failed program had access. It may also be necessary
to maintain backup processes that will take over from a failed process and com-
plete time-critical computations or computations that have acquired mutual
exclusion on shared resources.

15.1.2. The tradeoff between shared memory and message passing

At the heart of any distributed system that distributes or replicates information is
the problem of transferning information between cooperating processes. Broadly
speaking, this can be done in one of two ways: by permitting the processes to
interact with some common but passive resource or memory, or by supporting
message exchange between them. There are advantages and disadvantages asso-
ciated with each approach, hence the most appropriate style of information
transfer for a particular problem must be determined by an analysis of the
characteristics of that problem. For example, most database systems use the
shared memory paradigm. In other settings, however, a shared resource might
represent a bottleneck that could be avoided using replication and direct
message-based interactions between the processes using that resource.

This point is important because the approach used to replicate data depends
strongly on way in which processes will interact. For example, considerable
recent work (Rashid et al., 1987) has been invested in the development of distri-
buted virtual memory schemes, an approach introduced in the Apollo Domain
operating system (Apollo, 1985). Synchronization in such systems is often based
on transactional approaches, such as the database replication techniques
described in Chapter 12. The shared memory approach to replication and syn-
chronization thus leads to a whole school of thought concerning distributed pro-
gram design and development.

As noted earlier, in this chapter we will be particularly interested in applica-
tions in which processes interact directly with one another and where the actions
taken by one process may be explicitly coordinated with those taken by another
process. The style of distributed programming needed to support this sort of



15. EXPLOITING REPLICATION IN DISTRIBUTED SYSTEMS 341

application, and the most appropriate tools for implementing it, are substantially
different than for the shared memory and transactional case.

Below, we start by identifying a set of characteristics of problems that call for
direct interactions or cooperation between the processes that solve that problem.
This characterization leads to a list of services that a directly distributed system
may require. Next, we look at a number of systems in order to understand how
they address the problems in this list. Finally, we examine a particular model
for solving these problems in a message-passing environment and a set of solu-
tions that can be easily understood in terms of this model.

15.1.3. Assumptions and limitations

Although this chapter explores a number of approaches to replication and distri-
buted consistency, we do make some assumptions that limit the applicability of
the treatment. Our model is intended to match a typical local area network or
a loosely coupled multiprocessor. The programs and computers in such systems
fail benignly, by crashing without sending out incorrect messages. Processors do
not have synchronized clocks, hence the failure of an entire site can only be
detected unreliably, using timeouts. Message communication is assumed to be
reliable but bursty, because packets can be lost and may have to be retransmit-
ted.

Two major problems that arise in LAN settings will not be considered here.
The first is network partitioning, where the network splits into subnetworks
between which communication is impaired (for example, if a LAN bridge fails).
Providing replication that spans partitions is a difficult problem and an active
rescarch area. Secondly, we will not look at problems that place realtime con-
straints on distributed algorithms or protocols. Realtime issues are hard to iso-
late; once they are introduced, the entire system must often be treated from a
realtime perspective. That is, although our methods are potentially useful in sys-
tems for which a realtime constraint leads the designer to dedicate a computer to
some device, we will assume that the realtime aspects of such problems do not
extend beyond the control program itself.

15.2. Consistent distributed behavior in distributed systems

When processes cooperate to implement some distributed behavior, an important
issue is to ensure that their actions will be “mutually consistent”. Not surpris-
ingly, the precise meaning that one attaches to consistency has important impli-
cations throughout a distributed systems that presents coordinated behavior. As
we have seen in previous chapters of this text, transactional serializability is a
widely accepted form of consistency. In intuitive terms, a transactional system
acts as if processes execute one by one, with each process modifying data objects
in an atomic way that can be isolated from the actions taken by other processes.
This leads to a natural question: should a/l types of distributed consistency be



342 K. P. BIRMAN AND T.A. JOSEPE

viewed as variant forms of transactional consistency, or are there problems tha;
can only be addressed using other methods?

Looking at the factory automation setting, one finds that whereas shared
shared memory problems fit well into the standard transactional framework,
directly distributed problems generally do not. Consider the following two
examples:

® Build software for monitoring job status and materials inventovies. Updates will be
done by the warehouses (quantities on hand), “cell controllers” (requests for materials
mdchargahjobm),mdﬁunaanudmagmm(chmgnﬁm,
delwenes from suppliers, changes n job prionities, etc). Quertes will be done from
managerial offices throughout the factory complex.

CDewbp:ojhmforacellmmllerMautqfdrdh. Each dnill is indepen-
dently controlled by a dedicated microprocessor. The cell as a whole recetves a prece of
unrkmdo,togahcrwdhalmofbmﬁm,:'uamd(okrmﬁrthchob:wbc
drilled. It must efficiently schedule this work among the drills. Drnills can go offiine for
mabmnmawbecamqu&:bnakhg,wmm&uwhdcthcallbm,hmw
scheduling problem ts dynamic. Sowéill:mbm:rmiudtohmzplow-pnakim
work, while others are suttable for lighter high-precision work. Fnally, it is onitical
thatahnl:mbedn'lledaoia,mng'fadn'llbitbnaksbeﬁnitirﬂllydri[lc¢beme
this would result in a very low precision. Instead, an accurate list of partially drilled
hoks:huddbcpmd‘adﬁrahummudmiahnwdudmdndnﬂmll}.

These two problems illustrate very different styles of distributed computing,
and distributed consistency means something different for each. The former
clearly lends itself to a transactional shared memory approach. One would
configure the various programs into a “star”, with a database at the center,
perhaps replicated for fault-tolerance. Programs throughout the network
interact through the database. Transactions are the natural consistency model
for this setting. The essential observation to make is that the processes share
data but are independent. By adopting a transactional style of interaction, they
can avoid tripping over one another. Moreover, transactions provide a simple
way to ensure that even if failures occur, the database remains intact and con-
sistent.

Now consider the second problem. A star configuration seems much less
natural here. The processes in a decentralized cell controller will need explicit
knowledge of one another in order to coordinate their actions on a step-by-step
basis. They need to reconfigure in response to events that can occur unpredict-
ably, and to ensure the consistency of their views of the system state and one-
another’s individual states. When a control process comes online after being
offline for a period of time, it will have to be reintergrated into the system, in a
consistent way which may have very little to do with its state at the time of the
failure. When a process goes offline, the processes that remain online need to
assume responsibility for finishing any incomplete work and generating the list of
holes to be manually checked. Moreover, it is not reasonable to talk about
“aborting” partially completed work, since this could result in redrilling a hole.



15. EXPLOITING REPLICATION IN DISTRIBUTED SYSTEMS 343

What should consistency mean in problems like this? All of the above con-
siderations run contrary to the spirit of a transactional approach, where the goal
is serializability — non-interference between processes. A process in a transac-
tional system is encouraged to run as if in isolation, whereas the cell controller
involves explicit interactions and interdependencies between processes. Transac-
tions use aborts and rollback to recover from possibly inconsistent states, but in
this example rollback is physically impossible. On the other hand, although the
kind of consistency here may not be transactional, one would not want to go to
the extreme of concluding that there is no meaningful form of consistency that
applies in this setting. Certainly, there should be a reasonable “explanation” for
what each control process is doing, and this explanation should be in accordance
with the cell controller specification. However, the explanation should be one
that holds continuously, not just for “committed” operations as in case of transac-
tions. That is, a set of drills that operate concurrently should behave in mutu-
ally consistent ways at all times.

This leaves us with two choices. One option is to look at how the transac-
tional model could be extended to cover these new requirements. The idea of
extending transactions is hardly a new one, and has previously led to mechan-
isms like top-level transactions' (Liskov et al., 1987), mixtures of serializable and
non-serializable behaviors (Herlihy, 1986a; Lynch, Blaustein, and Siegel, 1986),
and specialized algorithms for concurrently accessing data structures like B-tree
indexes. The trouble is that these introduce complexity into a model that was
appealing for its simplicity. Moreover, these methods have been around for
some time, and have proved appropriate only for a narrow set of problems. The
second option, pursued here, is to develop a different style of distributed compu-
tation better matched to problems like the ones arising in a cell controller. The
focus of this style of computation will be on enabling programs to reason con-
sistently about one-another’s states and actions.

15.3. A toolkit for directly distributed programming

One can think of a system that implements transactions as a collection of tools
for solving problems involving shared data. These tools provide for synchroniza-
tion, data access and update, transaction commit, and so forth. In this section,
we approach the problem of building directly distributed software by postulating
a set of tools for helping directly distributed processes to coordinate their actions,
Later, we will examine a variety of systems, asking how close they come to solv-
ing these problems.

! Atop-lcveluamacdoni:mendaﬂyawayof:endinganmgeﬁm“within”d:csoopcofanun-
committed transaction to other transactions running outside that scope. It provides an escape from
the shared memory paradigm into the message pasing one. The fact that such a mechanism is
nwddﬁmmmmmmhmgMMeMMdnglcappmhaddmautypad



3¢ K. P. BIRMAN AND T.A. JOSEPH,

15.3.1. Components of the toolkit

What sorts of tools would the builder of a directly distributed system need?

Although not exhaustive, the list of tools that follows is intended to be fairly

extensive.

Process groups:
A way to form an association between a set of processes cooperating to solve
a problem.

Group communication:
A location-transparent way to communicate with the members of a group
or a list of groups and processes. In some systems, group communication
consists only of a way to find some single member of the named group. In
others, communication is broadcast-oriented? and atomic, meaning that all
members of the destination group receive a given message unless a failure
occurs, in which case either all the survivors receive it or none does. A
problem that must be addressed is how group communication should work
when the group membership is changing at the time the communication
takes place. Should the broadcast be done before the change, after it, or is
it acceptable for some group members to observe one ordering and some the
other? Should message delivery to an unresponsive destination be retried
indefinitely, or eventually interrupted — with the attendant risk that the
destination was just experiencing a transient failure and is actually still
operational? We will see that the way in which a systemn resolves these
issues can limit the type of problems that process groups in the system can
be used to solve.

Replicated data:
A mechanism permitting group members to maintain replicated data. Most
approaches provide a 1-copy consistency property, analogous to 1-copy seri-
alizability.

Synchronization:
Facilities for synchronization of concurrent activities that interact through
shared data or resources.

Distributed execution:
Facilities for partitioning the work required to solve a problem among the
members of a process group.

State monitoring mechanisms:
Mxhani:rmformmﬁtoringthcstated'thcsystmandthcmcmbenhipof
process groups, permitting processes to react to the failure of other group

? A group broadcast should not be confused with a hardware broadcast, A group broadcast pro-
vidaawaytocamnuniwewithaﬂmcmbend'mgroup. It might or might not make use of
hardware facilities for broadcasting to all the machines coanected to a local area network. Here, un.
less we explicitly indicate that we are talking about a hardware broadcast, the term broadcast will

always mean broadcast to a group.



15. EXPLOITING REPLICATION IN DISTRIBUTED SYSTEMS 345

members.
Reconfiguration mechanisms:
Faciliies with which the system can adapt dynamically to failures,
recoveries, and load changes that impact on work processing strategies.
Recovery mechanisms:
Mechanisms for automating recovery, which could range from a way to res-
tart services when a site reboots to facilities for reintegrating a component
into an operational system that is actively engaged in distributed computa-
tions.

15.3.2. Consistency viewed as a tool

Let us return to the issue of consistency. In the context of a set of tools, a
mechanism that provides for consistent behavior can also be understood as a sort
of tool, but it is a more abstracted one than the sorts of “tools that do specific
things” listed above. For example, in a shared memory setting consistent
behavior generally means that the accesses made to the data by client programs
- are serializable (Bernstein and Goodman, 1981), and that some invariant holds
on the state of programs themselves. Serializability is thus a tool for building
transactional systems. In an directly distributed setting, we don’t have a data
manager or shared data items, hence the serializability constraint is lost.
Nonetheless, one needs a way to establish that the processes in the system, taken
as a group, satisfy some set of system-wide invariants in addition to local ones on
their states.

Any notion of distributed consistency will be incomplete unless it takes into
account the agmchronous nature of the systems in question. In particular, a
definition of consistency based on respecting global properties or invariants must
somehow take time into account. When one says that two actions taken at
different locations are in accord with a global predicate, that statement will have
no meaning untw it is decided when the predicate should be evaluated. This
temporal dependency is particularly striking if the notion of consistency changes
while the system executes. Thus, consistent behavior in an idle cell controller is
quite different from consistent behavior while work is present. Taking a more
extreme example, consistent behavior of a distributed program for controlling a
nuclear reaction means one thing during normal operation, but something
entirely different if a cooling pump malfunctions. Since the switch from one rule
to another cannot occur instantancously, we need a notion of consistency that is
simple, but at the same time “dynamic”.

Distributed systems designers have approached the consistency issue in several
ways. Much theoretical work starts with a rigorous notion of distributed con-
sistency. However, this work often relies on simplified system models that may
not correspond to real networks. For example, the theoretical study of Byzantine
agreement establishes limits on the achievable behavior of a distributed agree-
ment protocol. The failure modes permitted include malicious behaviors that







































































































































