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ABSTRACT  
 

Trans-10, cis-12 conjugated linoleic acid (CLA) is a fatty acid intermediate 

produced during rumen biohydrogenation of dietary linoleic acid, and it is a potent 

inhibitor of milk fat synthesis in the cow.  Inhibition of milk fat synthesis by CLA has 

also been demonstrated in rodent models.  The objective of the present study was to 

determine whether dietary fat level affects the response of the mammary gland to CLA in 

lactating mice.  Wild type C57Bl/6J mice (n = 31) nursing 6-8 pups were fed semi-

purified diets containing either 4% fat (LF) or 24% fat (HF) starting 4-6 d after 

parturition.  High oleic acid sunflower oil was substituted for corn starch to increase the 

fat content of the HF diet.  After a 2 d pretreatment period, lactating dams were orally 

dosed with either water (control) or trans-10, cis-12 CLA (20 mg/d, divided among three 

equal doses) for 5 d.  CLA treatment decreased growth of the nursing litter similarly for 

both diets; no effect of dietary fat or interaction with CLA was observed.  Dam energy 

intake was decreased by CLA, but this effect was partially attenuated by increased dietary 

fat.  Milk fat percent was increased 16-17% by the HF diet and decreased 12-13% by 

CLA.  Both CLA and the HF diet reduced the proportion of short and medium chain fatty 

acids in milk fat.  These fatty acids originate from de novo synthesis in the mammary 

gland.  Conversely, the milk fat concentration of fatty acids >16 carbons in length was 

increased 62-63% by the HF diet, and substantial incorporation of dietary oleic acid into 

milk fat was observed.  In conclusion, CLA caused a reduction in milk fat percent and 

litter growth that was not overcome by increased dietary fat.  
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6PGDH 6-phosphogluconate dehydrogenase 
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INTRODUCTION 

 

The inhibition of milk fat synthesis by isomers of conjugated linoleic acid (CLA) 

is a well-studied and physiologically relevant example of nutritional genomics, the 

modulation of gene expression by specific bioactive dietary components.   Originally 

recognized in dairy cows, these unique fatty acid isomers are produced in the rumen 

under conditions of altered biohydrogenation and cause a coordinated downregulation in 

the expression of genes for key lipogenic enzymes (1).  The result is a specific reduction 

in milk fat, commonly known as milk fat depression.  Recent research has examined the 

mechanism by which CLA isomers inhibit milk fat synthesis, and the sterol response 

element binding protein (SREBP) transcription factor system and the nuclear protein 

thyroid hormone responsive spot 14 have been implicated (2).  To investigate the 

mechanism further, our lab has validated a lactating mouse model to allow for nutritional 

genomic investigation (3).  Oral administration of trans-10, cis-12 CLA, the first CLA 

isomer shown to inhibit milk fat synthesis, caused a dose-dependent decrease in milk fat 

in the mouse and a shift in fatty acid profile comparable to that observed in the dairy cow 

(3).  Although the reduction in milk fat involves fatty acids of all chain lengths, the 

greatest decrease is seen for short and medium chain fatty acids that are synthesized in 

the mammary gland by the process of de novo lipogenesis. 

The interaction of CLA and diet is an important factor in further understanding 

the regulation of milk fat synthesis by CLA.  Whereas the range of possible dietary 

interventions is limited in the cow by the necessity of maintaining an appropriate 

environment for rumen microorganisms, a mouse model provides more freedom to 
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manipulate diet composition.  Of particular interest is the potential role of dietary fat in 

affecting the response of the mammary gland to CLA.  Altering the amount and source of 

fat in the diet is known to affect the quantity and composition of milk fat in rodents (4-7).  

This raises the question of whether the changes in milk fat percent and fatty acid profile 

in response to CLA are modulated by the fat content of the diet, and that is the focus of 

this thesis.   

 

REVIEW OF LITERATURE 

 

CLA studies in dairy cows: the milk fat depression story 

CLA has been studied most extensively in the dairy cow, where it is linked to the 

phenomenon of milk fat depression (MFD).  First described in 1885, MFD is 

characterized by a reduction in milk fat and a change in fatty acid composition (8).  This 

effect is specific to fat; milk protein and yield are not affected.  MFD is observed with 

certain diets, particularly diets that are low in forage or supplemented with 

polyunsaturated fatty acids.  Although many theories have been proposed to explain the 

incidence of diet-induced MFD, most have proven inadequate (8).  However, the 

“biohydrogenation theory” proposed by Bauman and Griinari (9) has gained widespread 

support in recent years.  It proposes that low fiber diets cause changes in the rumen 

environment that alter the pathways of biohydrogenation, leading to the production of 

unique fatty acid isomers that inhibit milk fat synthesis.  This idea grew out of studies 

from the 1960’s that identified an increase in the milk fat content of trans 18:1 fatty acid 

isomers in milk fat-depressed cows (8).  These trans fatty acids are indicative of 
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incomplete biohydrogenation by rumen bacteria, and it was suggested that they might 

directly inhibit milk fat synthesis (9).  Later experiments linked MFD with a specific 

increase in trans-10 18:1 rather than trans 18:1 isomers in general (10).  A putative 

pathway for the formation of trans-10 18:1 was then proposed (Figure 1).  Dietary 

linoleic acid is normally isomerized to cis-9, trans-11 CLA, which is then reduced to 

trans-11 18:1 and finally stearic acid (9).  Under conditions of MFD, a minor pathway 

comes into play in which linoleic acid is instead converted to trans-10, cis-12 CLA and 

trans-10 18:1 before reaching stearic acid.  This alternate pathway has been supported by 

the isolation of rumen bacteria capable of producing trans-10, cis-12 CLA (11)  or trans-

10 18:1 (11, 12).  Ruminal infusions of trans-10, cis-12 CLA result in elevated plasma 

trans-10 18:1, providing additional evidence for the precursor/product relationship of 

these two fatty acids (13). 

 

  

 
 
 
 
 
 
 
 

 
FIGURE 1.  Pathways of rumen biohydrogenation of linoleic acid.  Adapted from 
Bauman and Griinari (9). 
 

 

The first specific inhibitors of milk fat synthesis identified were isomers of CLA.  

This was discovered in a study investigating the possibility of enhancing the CLA content 
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of milk to exploit the known positive health effects of CLA (14).  A mixture of CLA 

isomers was abomasally infused, with the unexpected consequence of a 55% reduction in 

milk fat yield.  One of the isomers was trans-10, cis-12 CLA, which was subsequently 

demonstrated to cause MFD when infused as a 90% pure preparation (15).  Two more 

biohydrogenation intermediates have since been shown to inhibit milk fat synthesis, cis-

10, trans-12 CLA (16) and trans-9, cis-11 CLA (17).  Others are suspected, but the 

limited availability of pure isomers has hampered the investigation of bioactive fatty 

acids. 

 A number of studies involving the abomasal infusion of trans-10, cis-12 CLA 

have yielded similar shifts in the fatty acid composition of milk as those seen during diet-

induced MFD.  In both cases, the yield of fatty acids of all chain lengths is reduced; 

however, the decrease in de novo synthesized fatty acids is most prominent (8).  As a 

result, these short- and medium-chain fatty acids constitute a smaller proportion of the 

total fatty acids.  High doses of trans-10, cis-12 CLA (≥7 g/d) inhibit the activity of 

stearoyl CoA desaturase (SCD) (18), an enzyme in the mammary gland that introduces a 

cis-9 double bond in fatty acids.  This also affects the fatty acid composition of milk by 

increasing the ratios of several SCD substrate/product pairs, including C14/C14:1, C16/C16:1, 

and C18/C18:1 (18).  These ratios are often used as a proxy for SCD activity.  Changes in 

the desaturase index are not consistently observed with lower doses of trans-10, cis-12 

CLA or during diet-induced MFD (19).  Thus the inhibition of milk fat synthesis does not 

necessarily require a reduction in desaturase activity (18). 
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Mechanism of CLA-induced milk fat depression 

 Both low fiber diets and trans-10, cis-12 CLA cause downregulation in the 

expression of a number of genes encoding key lipogenic enzymes in the mammary gland.  

These are involved in the uptake and transport of fatty acids from the circulation 

(lipoprotein lipase [LPL]and fatty acid binding proteins [FABP]), de novo synthesis of 

fatty acids (acetyl CoA carboxylase [ACC] and fatty acid synthase [FASN]), and 

triglyceride synthesis (glycerol phosphate acyltransferase [GPAT] and acylglycerol 

phosphate acyltransferase [AGPAT]) (20, 21).  Expression of SCD is also reduced, as 

noted above.  The wide range of enzymes affected is consistent with the observed 

reductions in the yield of fatty acids derived from both de novo synthesis and uptake of 

preformed fatty acids from the blood.   

The coordinated down-regulation of genes involved in milk fat synthesis 

suggested the role of a global regulator of gene expression.  The sterol regulatory element 

binding protein (SREBP) family of transcription factors was identified as a candidate 

system (20).  This was supported by the fact that all of the CLA-responsive genes named 

above contain sterol regulatory elements (SRE) and are thus potentially responsive to 

SREBP (20).  Proteolytic cleavage of SREBP is required to produce the nuclear fragment 

(nSREBP) that binds to the SRE of target genes and stimulates transcription (22).  

Treatment of bovine mammary epithelial cells with trans-10, cis-12 CLA reduced the 

level of nSREBP without the altering the amount of the precursor protein, suggesting that 

CLA inhibits the proteolytic cleavage of SREBP1 (22).  In vivo, the abundance of 

SREBP1 mRNA was decreased during diet-induced MFD and treatment with trans-10, 

cis-12 CLA (2).  The expression of several proteins involved in the proteolytic activation 
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of SREBP1 was also reduced in one or both conditions.  These observations support the 

role of the SREBP transcription factor system in the regulation of milk fat synthesis 

during diet-induced MFD and trans-10, cis-12 CLA treatment. 

Another gene, thyroid hormone responsive spot 14 (S14), has also been 

implicated in the regulation of gene expression by trans-10, cis-12 CLA (2).  S14 is 

associated with de novo fatty acid synthesis, and its mRNA abundance is well correlated 

with the lipogenic rates of the tissues in which it is expressed (23).  Little is known about 

its biochemical function, but S14 is a nuclear protein (24) that interacts with transcription 

factors (25).  Its promoter contains a SRE (26), making S14 expression responsive to 

nSREBP (27).  Indeed, mammary gland mRNA abundance of S14 is reduced during diet-

induced MFD and treatment with t10, c12 CLA (2).  The role of S14 in lipogenesis has 

been supported by experiments using an antisense oligonucleotide to inactivate S14 

mRNA.  This decreased the expression of lipogenic enzymes in rat hepatocytes and 

diminished triglyceride synthesis (28).  Additional evidence came from a S14 knockout 

mouse model in which de novo fatty acid synthesis in the mammary gland was reduced 

and the milk fat percent was lowered (23).  Interestingly, S14 is used as a marker for 

aggressive breast cancers (29), which are noted for their high rates of lipid synthesis (30).  

The suppression of S14 expression and lipogenesis by trans-10, cis-12 CLA provides a 

link to the observed anticarcinogenic properties of CLA (31).  

 

CLA studies in rodents 

 Supplementation of CLA as 0.5-2.0% of the diet has been demonstrated to reduce 

body fat accretion in mice (32, 33), and most rodent studies of CLA examine this anti-
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obesity effect.  In contrast, the effects of CLA on lactation in rodents occur at much lower 

doses; as little as 6.5 mg trans-10, cis-12 CLA per day (equivalent to 0.07% of the diet) 

has been shown to inhibit milk fat synthesis in mice (3).  However, relatively few studies 

have investigated the effects of CLA in lactating rodents.   

 The earliest rodent studies of the effects of CLA on milk fat synthesis employed 

supplements containing a mixture of isomers of CLA (34-36).  There are over 20 

geometric and positional isomers of CLA (37), and little is known about the biological 

effects of most of them.  Of the eight CLA isomers that have been abomasally infused as 

pure preparations, three have been demonstrated to inhibit milk fat yield in the dairy cow 

(1).  As mentioned previously, these are trans-10, cis-12 CLA, trans-9, cis-11 CLA, and 

cis-10, trans-12 CLA.  The CLA supplements that have been fed to lactating rodents 

contain a wide range of CLA isomers, but trans-10, cis-12 CLA, cis-11, trans-13 CLA, 

cis-9, trans-11 CLA, and trans-8, cis-10 CLA have predominated in the two studies that 

reported the composition of the CLA supplement used.  These four isomers accounted for 

65% of the mix used by Ringseis et al. (35) and 91% of the total CLA fed by Hayashi et 

al. (36).  In these studies, the supplement provided trans-10, cis-12 CLA as 0.47% (36) or 

0.56% of the diet (35).   

In both cases, CLA supplementation in lactating rats decreased milk fat and litter 

growth and shifted the fatty acid composition of the milk (35, 36).  These changes were 

more extensive for Ringseis et al. (35), who reported greater reductions in milk fat (46% 

vs. 33%) and litter weight or growth (35% vs. 21%) than Hayashi et al. (36).  Whereas 

changes in the fatty acid profile reflected decreased de novo lipogenesis in both studies, 

the decrease in short and medium chain fatty acids reported by Ringseis et al. (35) was 
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greater (28% vs. 12%); additionally, the incorporation of trans-10, cis-12 CLA into milk 

fat was also considerably greater (2.5% vs. 0.6%) despite similar doses of this isomer.  

These differences may be attributable to variation in the composition of the CLA 

supplement used and the interval of treatment.  Hayashi et al. (36) fed their CLA 

supplement for the first 16 d of lactation, whereas the rats studied by Ringseis et al. (35) 

were treated for several weeks prior to breeding, throughout pregnancy, and up to 17 d 

following parturition.  This longer treatment period may have resulted in greater 

incorporation of CLA isomers into adipose and liver triglycerides during growth.  

Mobilization of these lipid stores during lactation and uptake by the mammary gland 

could have contributed to the greater concentration of trans-10, cis-12 CLA in the milk.  

However, compared to other species, mobilization of body fat to support lactation 

typically plays a less substantial role in the adaptation of rodents to the metabolic 

demands of lactation, as rodents increase their feed intake greatly to supply substrates for 

milk production (38). 

In contrast to these two studies, Chin et al. (34) did not observe an inhibitory 

effect of CLA supplementation on pup growth.  During pregnancy and the first 10 d of 

lactation, rats were fed a supplement providing 0.25% or 0.5% total CLA as a percentage 

of the diet.  The authors did not provide the isomer composition of the CLA supplement.  

A 9% increase in average pup weight was observed for the 0.5% CLA group, but there 

was no significant difference at the 0.25% dose.  Mean pup weight was numerically 

increased for rats fed 0.5% CLA only during lactation, but this difference was not 

significant.  Milk fat percentages were not reported in this paper, but the authors 

indicated by personal communication that no differences were found.  Without 
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information on the CLA isomers fed by Chin et al. (34), it is difficult to explain the 

conflicting observations of this study and those by others (35, 36).  It is quite possible 

that the supplements contained different proportions of trans-10, cis-12 CLA and other 

isomers that inhibit milk fat synthesis.  Also, the highest CLA dose used by Chin et al. 

(34) was roughly a third of total concentration of CLA isomers fed in the other two 

studies.  Nevertheless, had the supplement contained as little as 10% trans-10, cis-12 

CLA (0.05% of the diet), a decrease in pup growth would be expected based on the 

response to treatment with pure trans-10, cis-12 CLA at 0.07% of the diet (3).   

All three studies employing CLA mixtures in lactating rats attest to the 

relationship of milk fat and pup growth.  When a reduction in milk fat was reported, a 

decrease in pup growth was also seen.  This association between milk composition, 

particularly fat content, and pup growth is consistently observed in conditions other than 

CLA treatment.  For instance, Del Prado et al. (39) altered milk fat concentration by 

feeding diets with varying fat content and noted corresponding effects on pup growth.  

Additionally, parameters of pup growth were positively correlated with milk fat across 

four strains of mice (40).  Although other components of milk are responsive to dietary 

manipulations, the fat content of milk is of particular importance to the nutrition and 

growth of pups because fat is the primary energy source in milk (38). 

Studies of pure isomers of CLA in rodents are even more limited.  Loor et al. (41) 

compared the effects of trans-10, cis-12 CLA (0.91% of diet) and cis-9, trans-11 CLA 

(0.96% of diet) in lactating mice between days 4 and 15 of lactation.  Consistent with 

abomasal infusion studies in dairy cows (15, 42, 43), cis-9, trans-11 CLA had no effect 

on milk fat or litter weight whereas trans-10, cis-12 CLA decreased these parameters by 
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29% and 25%, respectively.  A shift in milk fatty acid profile characteristic of decreased 

de novo lipogenesis was also observed.  Additionally, the authors noted that two of the 

six mice treated with trans-10, cis-12 CLA drastically reduced their feed intake and 

stopped lactating.  This observation may be related to the dose of trans-10, cis-12 CLA 

used, which was nearly twice the amount fed in the studies employing mixtures of CLA 

isomers.   

A study in our lab involving administration of pure trans-10, cis-12 CLA at 

varying doses to lactating mice also provided evidence of impairment of lactation due to 

high doses of CLA (3).  Mice were orally dosed with 6.5, 20, or 60 mg/d of trans-10, cis-

12 CLA for a period of 5 d starting at day 6-8 of lactation.  Based on the recorded feed 

intake for each treatment group, these doses were equivalent to 0.07%, 0.23%, and 0.77% 

of the diet, respectively.  The 60 mg dose produced a 49% reduction in pup growth, but 

no change in milk fat percent was observed.  However, mammary lipogenesis, as 

measured by the rate of incorporation of 14C-labeled glucose into lipid by tissue explants, 

was decreased by 40%.  The considerable reductions in pup growth and lipogenesis 

without any decrease in milk fat percent were interpreted as evidence for a general 

inhibition of lactation.  A reduction in lactose synthesis would depress milk yield, thus 

affecting the concentration of other milk components including fat.   

 Whereas high doses of trans-10, cis-12 CLA appear to impair lactation, low to 

moderate doses (0.07-0.23% of diet) cause a specific and dose-dependent reduction in 

milk fat and consequently pup growth (3).  The 6.5 mg dose corresponding to 0.07% of 

the diet produced numerical decreases in lipogenesis and milk fat.  Pup growth and the 

percent of fat in milk clots collected from the stomachs of the pups were significantly 
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decreased by 20% and 13%, respectively.  The 20 mg dose of trans-10, cis-12 CLA 

caused significant reductions in milk fat (20%), clot fat (16%), lipogenesis (30%), and 

pup growth (19%).  All three doses altered the composition of milk fat; the proportion of 

short and medium chain fatty acids derived from de novo lipogenesis was progressively 

decreased in a dose-dependent manner. 

Studies of CLA in rodents have also reported decreases in the mRNA abundance 

and activity of several key lipogenic enzymes in the mammary gland.  Changes include 

reduced mRNA expression and activity of FASN (3, 35, 36, 44) and ACC (44), two 

enzymes involved in de novo lipogenesis.  Also, Hayashi et al. (36) reported decreased 

activity of glucose 6-phoshphate dehydrogenase (G6PDH) and 6-phosphogluconate 

dehydrogenase (6PGDH) in mammary tissue.  These enzymes are part of the pentose 

phosphate pathway, which generates reducing equivalents for fatty acid synthesis.  

However, NADPH is also derived from the malate pathway, and activity of the key 

enzyme NADP-malate dehydrogenase (NADP-MDH) was unchanged.  The authors 

suggested that NADPH production appeared to not be the rate limiting factor in de novo 

lipogenesis (36).  Enzymes involved in other processes related to milk fat production are 

also downregulated.  Decreased abundance of LPL mRNA (35) and decreased mRNA 

abundance and activity of SCD (44) have been observed in response to treatment with 

CLA.   

 

Effects of dietary fat on rodent lactation 

 A number of studies have examined the effects of varying the content and 

composition of dietary fat on milk fat, mammary lipogenesis, and pup growth.  Results 
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from rodent studies have been somewhat mixed.  Several studies have reported that high 

fat diets increase milk fat percentage (4, 39, 45, 46), while others have found no change 

(5, 47-50) or even a decrease in milk fat (51).  There is also disagreement over whether 

high fat diets increase pup growth (5, 39, 45) or have no effect (6, 47, 48, 51, 52).  Of the 

studies that measured mammary lipogenesis, most observed a decrease (4-6), whereas 

one found no change (46). 

 These differences may be attributable to variations in methodology, percent of 

dietary fat in the control and high fat diets, treatment period, fat source, species, and/or 

other factors.  For instance, lipogenesis assays were either conducted in vivo using 

tritiated water (4-6) or in vitro using mammary explants (46).  The latter method 

measures the lipogenic capacity of mammary tissue in the presence of abundant 

substrates for fatty acid synthesis, whereas in vivo measurements reflect rates of fatty acid 

synthesis that are occurring as a consequence of the availability of precursors for de novo 

lipogenesis.  High fat diets ranged from 15 to 55% fat and were compared to control diets 

containing 0 to 12% fat.  Some investigators substituted additional fat for carbohydrates 

in the diet; others merely added fat to the control diet.  The latter approach changes the 

proportion of protein and other essential nutrients on a dry matter basis, which can affect 

the nutritional status of the dam and pups independently of the fat content of the diet.  

Studies also differed in the period over which the experimental diets were fed; the 

feeding duration for the experimental diet varied from as little as 3 d to several months.  

In one case, dams were raised on the high and low fat diets from birth (50).  Long term 

feeding of a high fat diet has been demonstrated to induce obesity and impair mammary 

development and lactogenesis in mice (53).   
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 Different sources of dietary fat can also contribute to the variation among studies.  

Common fat choices were corn oil (4, 39, 46, 51) and lard (48, 49, 52).  Two studies 

compared high fat diets of different compositions and observed that the response varied 

based on the source of dietary fat.   In the experiments of Grigor and Warren (5), rats 

were fed diets containing 20% oil that represented peanut oil, coconut oil, or linseed oil; 

these high fat diets all reduced the rate of mammary lipogenesis in vivo, although the 

reduction was greatest for the peanut oil diet.  The peanut oil diet was also the only one to 

produce a significant increase in pup growth.  Souza and Williamson (6) found differing 

responses to diets consisting of 20% tristearin, sunflower oil, triolein, or medium chain 

fatty acids.  Compared to a control diet containing 4% fat, the reduction in mammary 

lipogenesis, assessed in vivo using tritiated water, ranged from 57% for the medium chain 

fatty acid diet to 92% for the sunflower oil diet.  Medium chain fatty acids decreased pup 

weight by 35%, but no changes were observed for the other diets.  Energy intake by the 

dam also varied by diet; it was significantly increased in the tristearin group and 

decreased in the medium chain fatty acid group.   

 Differences in the physiological properties of fatty acids affect their metabolic 

disposition and their impact on milk fat synthesis.  Unlike long chain fatty acids, medium 

chain fatty acids are not re-esterified and packaged into chylomicra following absorption 

in the gut (54).  As a result, these fatty acids are extensively oxidized for energy in the 

liver, decreasing their availability for incorporation into milk fat.   This is illustrated by 

the observation of Souza and Williamson (6) that 65% of 14C-labeled octanoate (8:0) 

supplied in a meal was oxidized to 14CO2, and only 0.2% of the absorbed dose was 

recovered in mammary tissue.  In comparison, 38% of 14C-triolein (18:1) added to the 
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diet was oxidized, and 3.2% ended up in mammary lipids. Dietary polyunsaturated fatty 

acids such as those found in sunflower oil and peanut oil are known to inhibit lipogenesis 

by regulating gene transcription (55).  These bioactive fatty acids therefore modulate the 

activity of lipogenic enzymes not just as substrates but also by controlling gene 

expression.  This may account for the more pronounced inhibition of mammary 

lipogenesis by high fat diets containing polyunsaturated fatty acids from peanut oil or 

sunflower oil. 

 The reduction in mammary lipogenesis typically observed due to high fat diets 

shifts the fatty acid profile of milk fat (e.g. 4).  The proportion of short and medium chain 

fatty acids decreases, reflecting reduced de novo synthesis, and long chain fatty acids 

comprise a greater percent of the total (4).  These fatty acids are derived from the uptake 

of preformed fatty acids from plasma lipoproteins or circulating nonesterified fatty acids.  

Since rodents adapt to lactation by dramatically increasing feed intake, many of these 

long chain fatty acids originate from the diet.  Consequently, the fatty acid profile of milk 

fat reflects the fatty acid composition of the diet.  This is particularly evident when 

dietary fat sources are compared (5, 7, 50).   

 A crossover study by Teter et al. (50) demonstrated that isomers of trans-18:1 

appear in milk fat within 6 h of switching from a diet consisting of predominantly cis 

fatty acids to one high in trans isomers.  The concentration of trans fat in milk reached a 

stable plateau within 2 d and dropped dramatically within 1 d when trans fatty acids were 

removed from the diet.  Teter et al. (50) also compared cis and trans fat diets at different 

levels of total dietary fat.  The authors did not observe an effect of fat level on milk fat, 

but the presence of a high concentration of trans fatty acids in the diet decreased milk fat 
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percent for mice fed both low fat and high fat diets.  No interaction was found between 

the amount of fat in the diet and the proportion of cis or trans fatty acids.  The trans fat 

diets contained partially hydrogenated fat from margarine, which has been demonstrated 

to contain a range of isomers of CLA (56).  Some of these CLA isomers may have 

contributed to the observed effects on milk fat, but the hydrogenation process generates a 

number of other unusual fatty acids that are potentially bioactive.  To the best of our 

knowledge, the effect of dietary fat level on the ability of pure trans-10, cis-12 CLA to 

inhibit milk fat synthesis in lactating rodents has not been examined.   

 

OBJECTIVE 

 

 The overall goal of this thesis was to investigate the interrelationship between 

dietary fat and bioactive fatty acids in the regulation of milk fat synthesis.  The specific 

objective of the present experiment was to examine the effect of dietary fat level on the 

ability of the trans-10, cis-12 isomer of CLA to inhibit milk fat synthesis in a lactating 

mouse model. 

 

MATERIALS AND METHODS 

 

Animals and treatments 

 C57Bl/6J mice were obtained from The Jackson Laboratory (Bar Harbor, ME), 

and maintained in accordance with the National Institutes of Health guidelines for animal 

care.  Experimental procedures were approved by the Cornell University Institutional 
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Animal Care and Use Committee.  Females were bred in groups to wild type males and 

subsequently housed individually in shoe box cages with continuous access to food and 

water.  Mice were fed a commercial pelleted diet containing 5% fat (Harlan Teklad, 

Madison, WI) during pregnancy and early lactation.  Litters born to dams in their first (n 

= 17), second (n = 13), or third (n = 1) lactation were adjusted to 6-8 pups by cross-

fostering within 2 d of parturition.  Dams were randomly assigned to one of four 

treatments in a 2x2 factorial design.  Mice were fed diets either low or high in fat (4% 

and 24%, respectively) and received oral doses of either water (control) or trans-10, cis-

12 CLA (20 mg/d).  Thus the treatments were low fat diet control (LFCON), low fat diet 

with CLA (LFCLA), high fat diet control (HFCON), and high fat diet with CLA 

(HFCLA).  Experimental diets were provided ad libitum starting between days 4-6 of 

lactation.  CLA treatment began 2 d later and lasted for a period of 5 d.   

 Pelleted semi-purified diets were prepared by Research Diets (New Brunswick, 

NJ).  The high fat (HF) diet was formulated by substituting Trisun high oleic sunflower 

oil for cornstarch in the low fat (LF) diet (Table 1).  Diet fatty acid composition (Table 

2) was determined by the method of Sukhija and Palmquist (57).  Briefly, ground feed 

samples were heated in 5% methanolic HCl at 70° C for 2 h as part of a one-step method 

to extract and esterify feed fatty acids.  A triglyceride composed of 17:0 was used as an 

internal standard.  Fatty acid methyl esters were quantified by gas chromatography using 

a fused-silica capillary column (CP-Sil 88; 100 m x 0.25 mm internal diameter; Varian, 

Inc., Walnut Creek, CA) as described by Perfield et al. (17). 

 CLA was administered by pipette into the mouth of the dam in three equal doses 

per day (0900, 1700, and 2400 h).  Control mice received a similar volume of water at 
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each time point.  The CLA stock (Natural ASA, Norway) was in free fatty acid form and 

contained 89.0% trans-10, cis-12 CLA, 2.0% linoleic acid, and <0.9% of any other 

individual fatty acid.  CLA and other fatty acids were purified from the stock solution by 

hexane:isopropanol extraction according to Hara and Radin (58). 

 

TABLE 1 
Diet composition 

  Low fat diet (LF) High fat diet (HF)
  g% a kcal%b g%  kcal% 
Casein, 80 Mesh  18.96 19.72 23.31 19.72
L-Cystine  0.28 0.30 0.35 0.30
Corn starch  47.39 49.30 16.97 14.35
Maltodextrin 10  9.48 9.86 11.65 9.86
Sucrose  9.48 9.86 11.65 9.86
Cellulose, BW200  4.74 0 5.83 0
Soybean oil  2.37 5.55 2.91 5.55
Trisun high oleic sunflower oil  1.90 4.44 20.68 39.39
Mineral mix S10026  0.95 0 1.17 0
Dicalcium phosphate  1.23 0 1.51 0
Calcium carbonate  0.52 0 0.64 0
Potassium citrate, 1 H2O  1.56 0 1.92 0
Vitamin mix V10001  0.95 0.99 1.17 0.99
Choline bitartrate  0.19 0 0.23 0
FD&C yellow dye #5  0.002 0 0.003 0
FD&C red dye #40  0.002 0 0 0
FD&C blue dye #1  0 0 0.003 0
Protein 19.2 20.0 23.7 20.0
Carbohydrate 67.3 70.0 41.4 35.0
Fat 4.2 10.0 23.6 45.0
Total kcal/g 3.85  4.73
  
a  g/100 g of diet (dry weight) 
b  % energy of diet 

17 
 



TABLE 2 
Fatty acid composition of experimental diets 

a  c, cis 

 Low fat diet (LF) High fat diet (HF) 
Fatty acida g/100 g total fatty acids
8:0 0.03 0.01
10:0 0.07 0.02
12:0 2.25 1.35
14:0 4.06 0.68
14:1c9 0.01 0.33
16:0 7.12 3.70
16:1c9  0.11 0.08
18:0 3.01 2.52
18:1c9  45.93 78.41
18:2c9,12  30.01 10.49
18:3c9,12,15 2.64 0.64
Others 4.76 1.77
  

 

 

Data and sample collection 

 Dams, litters, and feed were weighed daily between 0900 and 1000 h for temporal 

analysis of litter growth and dam energy intake.  Average litter growth rate and energy 

intake for the last 3 d of treatment were also used for determination of treatment effects.  

Following day 5 of CLA treatment, pups were euthanized by CO2 asphyxiation at 1130 h, 

and milk clots were collected from their stomachs.  Clots were composited by litter, 

freeze-dried, and stored at -80° C.  Later the same day, dams were anesthetized and 

milked at 1430 h.  Oxytocin (7 USP; VEDCO, St. Joseph, MO) was administered IP 5 

min prior to IP injection of 0.2 mL of a solution of either tribromoethanol (32 mg/mL; 

Avertin, Sigma-Aldrich, St. Louis, MO) or ketamine/xylazine (10 mg/mL ketamine 
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[Ketaset, Fort Dodge Animal Health, Fort Dodge, IA], 1 mg/mL xylazine [Anased, Ben 

Venue Laboratories, Bedford, OH]).  Dams were milked by manually massaging the 

mammary glands to express droplets of milk, which were collected into a 2 mL 

siliconized microcentrifuge tube (ISC BioExpress, Kaysville, UT) with the aid of a 

vacuum source.  The milking apparatus and procedure are described more completely by 

Harvatine et al. (3).  Milk samples were immediately diluted 1:1 with isotonic saline and 

sonicated to improve pipetting ease.  Aliquots of diluted milk were stored at -80° C until 

analysis.  After milking, dams were euthanized by cervical dislocation while under 

anesthesia, and tissues were collected.  The liver was weighed, and a #3 mammary gland 

was fixed in 10% neutral buffered formaldehyde.  Mammary tissue was embedded in 

paraffin, sectioned, and stained with hematoxylin and eosin by the Cornell Veterinary 

School Histology Lab (Ithaca, NY).   

 

Sample analysis 

 Fat content and fatty acid profiles were determined for milk obtained from dams 

and milk clots collected from pup stomachs.   Lipids were extracted in duplicate from 

approximately 60 mg diluted milk or 20 mg freeze-dried clot using hexane:isopropanol 

(58).  Two internal standards, a triglyceride containing 17:0 and 19:0 fatty acid methyl 

ester, were added prior to extraction for determination of fat concentration.  Milk fatty 

acids were transmethylated and quantified by gas chromatography as described 

previously (17).  A dual methylation procedure was used for clot lipids; fatty acids were 

first methylated overnight at 40° C in 1% methanolic sulfuric acid (59) and subsequently 

transmethylated and quantified as described for milk fat.   
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Statistical analysis 

 Endpoint variables were analyzed by the fit model procedure of JMP (Version 

7.0; SAS Institute, Cary, NC).  The model included the effects of diet (LF vs. HF), CLA 

(control vs. CLA), and the interaction of diet and CLA.  Initial litter weight was added as 

a covariate in the models for litter weight gain and dam energy intake, and initial dam 

body weight was used as a covariate in the liver weight model.  Effects of diet and CLA 

were considered significant at p < 0.05, and interactions were considered significant at p 

< 0.10.  Preplanned contrasts tested the differences between LFCON and LFCLA and 

between HFCON and HFCLA.  Data points with Studentized residuals >2.5 were 

excluded as outliers.   

 Temporal responses of litter weight gain and dam energy intake were analyzed by 

the mixed procedure of SAS (Version 9.1; SAS Institute, Cary, NC) using a repeated 

statement.  The model included the fixed effects of treatment (LFCON, LFCLA, 

HFCON, or HFCLA), the interaction of treatment and time, and in the model of energy 

intake, the covariate initial dam body weight.  Repeated measures over time were 

calculated using the autoregressive covariance structure [AR(1)], and denominator 

degrees of freedom were estimated using the Kenward Rogers method.  Data points with 

Studentized residuals >3 were excluded from analysis.  Preplanned contrasts tested the 

differences between LFCON and LFCLA and between HFCON and HFCLA at each time 

point. 
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RESULTS 

 

Production parameters 

 CLA treatment decreased litter growth by 19-21% (p < 0.001; Table 3).  No 

effect of diet or interaction between diet and CLA was observed (p = 0.18 and 0.69, 

respectively).  Temporal analysis indicated that the reduction in litter growth due to CLA 

was evident for all 5 d of treatment for mice on the LF diet and for days 2-4 for mice on 

the HF diet (p < 0.05; Figure 2A).  Energy intake was increased for dams on the HF diet 

(p < 0.01) and decreased by treatment with CLA (p < 0.0001; Table 3).  An interaction 

between diet and CLA was observed (p < 0.01); the reduction in voluntary intake due to 

CLA was greater for mice on the LF diet (27%) than those on the HF diet (14%).  Energy 

intake by dams on the HF diet was nearly double that of dams on the LF diet for the first 

day that the experimental diets were offered (Figure 2B).  Energy intakes on the 

following day were similar.  CLA decreased energy intake for the entire 5 d treatment 

period for mice on the LF diet but only for days 2 and 4 for mice on the HF diet (p < 

0.05).  Administration of CLA to dams resulted in weight loss (p = 0.04), but dam live 

weight was only numerically decreased for dams on the LF diet (Table 3).  Dam liver 

weight was increased 2-4% for mice on the HF diet (p < 0.01), but CLA had no effect on 

liver weights (Table 3).   
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TABLE 3 
Effect of dietary fat level and trans-10, cis-12 conjugated linoleic acid (CLA) on 

production and milk fat concentration of lactating C57Bl/6J mice 
 Treatmenta SEM P 

 LFCON LFCLA HFCON HFCLA  Diet CLA Diet*CLA 

Litter growth, g/db 2.84 2.30d 3.11 2.45e 0.08 0.18 <0.001 0.69 

Dam energy intake, kcal/db 36.23 26.45d 36.24 31.26 e 0.36 <0.01 <0.0001 <0.01 

Dam weight change, g/dc -0.01 -0.15 0.07 0.07 0.04 0.58 0.04 0.63 

Liver weight, g 1.88 1.92 1.65 1.72 0.03 <0.01 0.35 0.78 

Milk fat, % 19.92 17.44d 23.25 20.29e 0.38 <0.001 <0.01 0.75 

Pup stomach clot fat, % 58.89 49.07d 59.16 55.38 0.75 0.04 <0.001 0.05 

         
a  Treatments were LFCON (4% fat diet, no CLA), LFCLA (4% fat diet, 20 mg/d CLA), 

HFCON (24% fat diet, no CLA), and HFCLA (24% fat diet, 20 mg/d CLA).  Diets 
were fed to dams for 7 d in midlactation; CLA was orally administered for the last 5 d 
of the treatment period.  Values are LS means; n = 7 for LFCON, and n = 8 for all other 
treatments. 

b  Average for last 3 d of treatment period 
c  Average for last 3 d of treatment period 
d  Significantly different from LFCON (p < 0.05) 
e  Significantly different from HFCON (p < 0.05) 
 

 

Milk and clot fat content and composition 

 Milk fat percent was increased 16-17% for the HF diet (p < 0.001) and decreased 

12-13% by CLA (p < 0.01; Table 3).  No interaction was observed between diet and 

CLA.  The percent of fat in milk clots collected from the stomachs of pups nursing dams 

on the LF diet was decreased 17% by CLA; a lesser reduction (6%) was observed for 

pups of dams on the HF diet (interaction: p = 0.05; Table 3).  Considering both control 

and CLA-treated animals, the overall effect of the HF diet was an increase in clot fat 

percent (p = 0.04).  However, this was primarily due to the less dramatic reduction in clot 

fat percent due to CLA when the HF diet was fed; clot fat percent was similar for the 
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LFCON and HFCON treatments.  Milk clots from pups nursing HFCLA dams contained 

a greater percent of fat than those of pups nursing LFCLA dams, but both had lower clot 

fat percents than the controls.  

 

 

FIGURE 2.   Temporal response of litter growth (A) and dam energy intake (B) in 
lactating C57Bl/6J mice fed low fat (4% fat; LF) or high fat (24% fat; HF) diets and 
orally dosed with water (control; CON) or trans-10, cis-12 conjugated linoleic acid (20 
mg/d; CLA) in the specified combinations for the intervals indicated.  Litter growth rates 
were significantly different (p < 0.05) between LFCON and LFCLA on days 1-5 and 
between HFCON and HFCLA on days 2-4.  Energy intakes were significantly different 
(p < 0.05) between LFCON and LFCLA on days 1-5 and between HFCON and HFCLA 
on days 2 and 4.  Values are LS means; n = 7 for LFCON, and n = 8 for all other 
treatments. 
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Increased dietary fat and treatment with CLA both altered the fatty acid profile of 

milk fat (Table 4).   The HF diet decreased milk fat concentrations of 8:0, 10:0, 12:0, 

14:0, 16:0, and 16:1c9 and increased the concentrations of 18:1c9, 18:2c9,12, 

18:3c9,12,15, and 20:0.  In particular, the milk fat content of 18:1c9 was increased from 

29.29 to 56.46 g/100 g of fatty acids for control mice fed the HF diet.  CLA decreased the 

concentrations of 12:0, 14:0, 16:0, and 18:3c9,12,15 and increased the concentrations of 

18:0, 18:1c9, 18:2c9,12, and 20:0.  Trans-10, cis-12 CLA was not detected in the milk of 

control mice but composed 0.61 and 0.36 g/100 g of fatty acids in the milk of LFCLA 

and HFCLA mice, respectively.  The concentrations of individual fatty acids in clot fat 

differed somewhat from their concentrations in milk fat, but similar patterns of changes 

were observed in response to the HF diet and CLA treatment (Table 5).  In both milk fat 

and milk clot fat, interactions between diet and CLA were observed for several fatty acids 

(Tables 4 and 5).  Those that were consistently seen were for 10:0, 16:1c9, and 20:0.  

CLA increased the concentrations of 10:0 and 16:1c9 when the LF diet was fed but not 

when the HF diet was fed.  The concentration of 20:0 was significantly increased by CLA 

for both diets, but the magnitude of the increase was greater for the LF diet.  
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TABLE 4 
Effect of dietary fat level and trans-10, cis-12 conjugated linoleic acid (CLA) on milk 

fatty acid profile of lactating C57Bl/6J mice 
 Treatmenta SEM P 
 LFCON LFCLA HFCON HFCLA  Feed CLA Feed*CLA 
Fatty acid, g/100 gb

   8:0 0.18 0.28 0.18 0.13 0.02 0.02 0.43 0.04 
   10:0 4.07 5.80d 3.26 2.20 0.26 <0.001 0.53 0.01 
   12:0 8.99 7.96 5.57 2.90e 0.24 <0.0001 <0.001 0.09 
   14:0 12.91 7.60d 6.59 2.65e 0.22 <0.0001 <0.0001 0.13 
   14:1c9 0.42 0.32 0.21 0.27 0.04 0.09 0.83 0.27 
   16:0 21.29 17.76d 11.03 7.97e 0.17 <0.0001 <0.0001 0.48 
   16:1c9 3.07 3.68d 0.71 0.68 0.03 <0.0001 0.22 0.08 
   18:0 1.66 2.11d 1.69 2.04e 0.05 0.84 <0.001 0.61 
   18:1c9 29.36 32.33d 56.46 65.39e 0.47 <0.0001 <0.0001 <0.01 
   18:2c9,12 8.47 10.11d 7.60 8.84e 0.00 <0.0001 <0.0001 0.91 
   18:3c9,12,15 1.84 1.27d 1.88 1.56e 0.03 0.01 <0.0001 0.03 
   20:0 0.03 0.10d 0.05 0.10e 0.62 <0.0001 <0.0001 <0.0001 
   t10, c12 CLA 0.00 0.61d 0.00 0.36e 0.03 0.02 <0.0001 0.02 
Total by source, g/100 gc

   <16 carbons 26.63 22.17d 15.88 8.20e 0.63 <0.0001 <0.0001 0.21 
   16 carbons 25.28 21.49d 11.74 8.66e 0.20 <0.0001 <0.0001 0.39 
   >16 carbons 41.45 48.25d 67.77 78.39e 0.56 <0.0001 <0.0001 0.10 

         
a  Treatments were LFCON (4% fat diet, no CLA), LFCLA (4% fat diet, 20 mg/d CLA), 

HFCON (24% fat diet, no CLA), and HFCLA (24% fat diet, 20 mg/d CLA).  Diets 
were fed to dams for 7 d in midlactation; CLA was orally administered for the last 5 d 
of the treatment period.  Values are LS means; n = 7 for LFCON, and n = 8 for all other 
treatments. 

b  c, cis; t, trans 
c  Total by source: fatty acids <16 carbons are derived from mammary de novo 

lipogenesis; fatty acids >16 carbons are taken up preformed from plasma; fatty acids 16 
carbons in length originate from both sources. 

d  Significantly different from LFCON (p < 0.05) 
e  Significantly different from HFCON (p < 0.05) 
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TABLE 5 
Effect of dietary fat level and trans-10, cis-12 conjugated linoleic acid (CLA) on the fatty 

acid profile of milk clots from the stomachs of C57Bl/6J pups 
 Treatmenta SEM P 
 LFCON LFCLA HFCON HFCLA  Feed CLA Feed*CLA 
Fatty acid, g/100 gb

   8:0 0.03 0.01 0.03 0.03 0.00 0.30 0.45 0.53 
   10:0 3.60 4.72d 2.82 2.30 0.10 <0.0001 0.15 <0.001 
   12:0 11.11 11.16 6.58 3.97e 0.14 <0.0001 <0.001 <0.0001 
   14:0 16.24 11.48d 7.96 3.54e 0.16 <0.0001 <0.0001 0.59 
   14:1c9 0.23 0.11d 0.06 0.04 0.01 <0.0001 <0.0001 <0.001 
   16:0 27.45 18.75d 12.26 7.66e 0.16 <0.0001 <0.0001 <0.0001 
   16:1c9 2.64 2.82 0.61 0.43e 0.03 <0.0001 0.97 0.01 
   18:0 1.85 1.96d 1.62 1.87e 0.02 <0.001 <0.0001 0.06 
   18:1c9 22.17 30.39d 55.78 66.69e 0.42 <0.0001 <0.0001 0.12 
   18:2c9,12 7.88 10.43d 7.50 8.81e 0.08 <0.0001 <0.0001 <0.001 
   18:3c9,12,15 1.16 1.25d 1.71 1.59e 0.01 <0.0001 0.66 <0.001 
   20:0 0.11 0.39d 0.18 0.30e 0.01 <0.001 <0.0001 <0.0001 
   t10, c12 CLA 0.00 0.37d 0.00 0.28e 0.01 0.07 <0.0001 0.107 
Total by source, g/100 gc

   <16 carbons 31.55 27.55d 17.52 10.02e 0.35 <0.0001 <0.0001 0.02 
   16 carbons 30.19 21.59d 12.87 8.09e 0.17 <0.0001 <0.0001 <0.0001 
   >16 carbons 33.27 44.62d 66.85 79.70e 0.45 <0.0001 <0.0001 0.41 

         
a  Treatments were LFCON (4% fat diet, no CLA), LFCLA (4% fat diet, 20 mg/d CLA), 

HFCON (24% fat diet, no CLA), and HFCLA (24% fat diet, 20 mg/d CLA).  Diets 
were fed to dams for 7 d in midlactation; CLA was orally administered for the last 5 d 
of the treatment period.  Values are LS means; n = 7 for LFCON, and n = 8 for all other 
treatments. 

b  c, cis; t, trans 
c  Total by source: fatty acids <16 carbons are derived from mammary de novo 

lipogenesis; fatty acids >16 carbons are taken up preformed from plasma; fatty acids 16 
carbons in length originate from both sources. 

d  Significantly different from LFCON (p < 0.05) 
e  Significantly different from HFCON (p < 0.05) 
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 The HF diet and CLA treatment both decreased the proportion of fatty acids 

derived from de novo lipogenesis, i.e. those <16 carbons in length (p < 0.0001; Tables 4 

and 5 and Figure 3A).  The sum of 16C fatty acids was also reduced in milk fat and milk 

clot fat by both treatments (p < 0.0001).  Conversely, the proportion of long chain fatty 

acids (>16C) was increased by the HF diet and CLA treatment (p < 0.0001).  Changes in 

fatty acid distribution due to diet were typically greater in magnitude than those due to 

CLA treatment.  Interactions between diet and CLA were observed for clots; CLA caused 

greater reductions in <16C and 16C fatty acids when the HF diet was fed than when the 

LF diet was fed (p = 0.02 and p <0.0001, respectively). 

 To take into account the possible dilution of short and medium chain fatty acids in 

milk fat by an increase in long chain fatty acids, fatty acid distribution was also expressed 

as the total content of fatty acids by source in whole milk rather than milk fat (Figure 

3B).  This parameter was obtained by multiplying the concentrations of <16C, 16C, and 

>16C fatty acids in milk fat by the milk fat percent of the dam.  This analysis revealed 

that the HF diet and CLA both decreased the proportion of <16C and 16C fatty acids (p < 

0.0001 for diet and CLA effects on both <16C and 16C fatty acids), whereas only the HF 

diet increased the proportion of >16C fatty acids in milk (p < 0.001 for diet, p = 0.78 for 

CLA).  The HF diet and CLA reduced the content of <16C fatty acids in milk by 30-31% 

alone and 68% in combination.  The proportion of >16C fatty acids in milk was increased 

90-92% by the HF diet.  No interactions between diet and CLA were observed.   
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FIGURE 3.   Effect of dietary fat level and trans-10, cis-12 conjugated linoleic acid 
(CLA) on concentrations of fatty acids of varying chain length in milk fat (A) and whole 
milk (B) of lactating C57Bl/6J mice.  Treatments were LFCON (4% fat diet, no CLA), 
LFCLA (4% fat diet, 20 mg/d CLA), HFCON (24% fat diet, no CLA), and HFCLA (24% 
fat diet, 20 mg/d CLA).  Diets were fed to dams for 7 d in midlactation; CLA was orally 
administered for the last 5 d of the treatment period.  Fatty acids <16 carbons are derived 
from mammary de novo lipogenesis, and fatty acids >16 carbons are taken up preformed 
from plasma.  Fatty acids 16 carbons in length originate from both sources.  Values are 
LS means + SEM; n = 7 for LFCON, and n = 8 for all other treatments. 
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Comparable analysis of the fatty acid distribution in whole clots revealed that 

both the HF diet and CLA significantly altered the clot content of <16C, 16C, and >16C 

fatty acids (p < 0.001; data not shown).  However, CLA increased the proportion of >16C 

fatty acids by only 11-12%, compared to a 101-102% increase due to the HF diet.  The 

concentration of >16C fatty acids in clots was decreased 37% by the HF diet alone, 46% 

by CLA alone, and 70% by the HF diet and CLA in combination.  An interaction between 

diet and CLA was observed such that CLA caused a lesser reduction in 16C fatty acids in 

combination with the HF diet than alone (p < 0.0001). 

 

Histology 

 Mammary tissue from a subset of dams (n = 4) from each treatment group was 

examined, and no discernable differences in tissue architecture, prevalence of cell 

populations, or cell morphology were observed among treatments (data not shown).   

 

DISCUSSION 

 

 Consistent with previous studies investigating the effects of CLA isomers on 

rodent lactation (3, 35, 36, 41), treatment with trans-10, cis-12 CLA decreased milk fat 

percent in lactating mice (Table 3).  However, the magnitude of this reduction was less 

than expected based on a previous dose-response experiment completed in our lab (3).  In 

the present study, oral administration of 20 mg/d of CLA caused a 12% decrease in milk 

fat percent and the incorporation of CLA into milk fat at a concentration of 0.61 g/100 g 

of fatty acids for mice on the LF diet (Tables 3 and 4).  In contrast, in our earlier study, 
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the same dose previously produced a 20% decrease in milk fat percent and the 

incorporation of CLA into milk fat at 1.35 g/100 g (3).  The response in the present 

experiment was more similar to that when mice were treated with a lower dose of 6.5 

mg/d of CLA, which decreased milk fat by 11% and resulted in 0.47 g/100 g CLA in 

milk fat (3).  The length, timing, and method of CLA treatment were the same in both 

studies.  In the dose-response experiment (3), mice were fed a chow diet containing 5% 

fat, compared to a semi-purified diet containing 4% fat in the current study (Table 1).  

Although the nutrient composition of the diets was similar, the absorption of fatty acids 

may be influenced by whether they are supplied in conjunction with a semi-purified diet 

or a chow diet.  An additional difference is that in the present study, the CLA stock was 

further purified before administration by extraction using hexane:isopropanol.  This 

process may have removed salts or other compounds that aid the absorption of fatty acids 

in the gut.  This could have reduced the absorption of CLA in the intestine such that the 

effective dose was lower in the present experiment.  This is supported by the fact that the 

magnitude of the reduction in milk fat percent due to CLA treatment was consistent with 

the degree of incorporation of CLA into milk fat based results obtained when a lower 

dose of CLA (6.5 mg/d) was administered (3).   

A reduction in short and medium chain fatty acids was primarily responsible for 

the decrease in milk fat due to treatment with CLA (Table 4 and Figure 3).  These fatty 

acids are derived from de novo lipogenesis in the mammary gland, which involves the 

enzymes acetyl CoA carboxylase (ACC) and fatty acid synthase (FASN).  ACC catalyzes 

the first and rate-limiting step in fatty acid synthesis, the conversion of acetyl CoA into 

malonyl CoA, and FASN is a multi-enzyme complex that catalyzes a sequence of seven 
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reactions in which two-carbon units from malonyl CoA are added to the growing fatty 

acyl chain (38).  The mammary activity and expression of ACC and FASN are reduced 

by CLA treatment in rodents (3, 35, 36, 44) and cows (2, 20).  As noted previously, the 

expression of genes encoding these key lipogenic enzymes and others is regulated by the 

transcription factor SREBP1c, and CLA is thought to inhibit the proteolytic cleavage of 

SREBP1c that is required for it to function as a transcriptional activator (22).  Thus, CLA 

treatment appears to decrease de novo lipogenesis by inhibiting the activation of 

SREBP1c, which results in a reduction in the transcription of lipogenic genes such as 

ACC and FASN. 

A decrease in the synthesis of short and medium chain fatty acids would result in 

an increase in the proportion of long chain fatty acids that are incorporated into milk fat.  

This was indeed observed in response to CLA treatment (Figure 3A), but after accounting 

for the decrease in milk fat percent, the total content of >16C fatty acids in whole milk 

was not affected by CLA (Figure 3B).  This is in contrast to observations in the cow that 

the reduction in milk fat yield due to CLA treatment involves fatty acids of all chain 

lengths (8).  Conclusions based on milk fat yield are not strictly comparable to those 

based only on milk composition, but in the cow, treatment with CLA does not affect milk 

yield (8).  Thus, the contribution of different fatty acids to milk fat yield should reflect 

their concentrations in whole milk.  To the best of our knowledge, the effect of CLA on 

milk production in mice has not been determined due to the greater difficulty of 

measuring milk yield in rodents.  If milk yield is indeed unaffected by CLA as it is in the 

cow, the lack of a reduction in >16C fatty acids in milk may represent a lesser effect of 
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CLA on the incorporation of preformed long chain fatty acids into milk fat in the mouse 

than in the cow.   

An important enzyme in this process is lipoprotein lipase (LPL), which cleaves 

fatty acids from circulating lipoproteins to allow their uptake into cells and subsequent 

re-esterification for secretion in milk fat.  Transcription of the gene encoding LPL is 

stimulated by SREBP1c, and LPL expression is downregulated in cows treated with CLA 

(2, 22).  Measurements of gene expression in the rodent mammary gland during treatment 

with CLA found no difference (3) or a decrease (35) in the abundance of LPL mRNA.  

Replication of these measurements as well as determination of LPL activity and the 

expression of fatty acid binding proteins (FABP) would help elucidate whether the uptake 

of preformed fatty acids by the mammary gland is less responsive to CLA in rodents than 

in cows. 

The decrease in milk fat percent due to CLA treatment was accompanied by 

reductions in the growth rate of the nursing litter and the energy intake of the dam (Table 

3 and Figure 2).  These responses are probably a direct result of the decreased energy 

content of the milk.  Fat is the major energy source in milk, and its synthesis presents a 

significant energetic cost to the lactating dam (1).  Assuming no change in milk yield, 

any treatment that decreases milk fat percent would thus be expected to decrease pup 

growth and the energy requirement of the dam.  This would in turn decrease energy 

intake, as this parameter is highly correlated with energy demand in lactating rodents.  

For instance, decreasing the energetic cost of lactation by artificially reducing litter size 

leads to a decrease in energy intake (60), and increasing maintenance energy 

requirements by keeping mice in a cold environment results in greater energy intake (61).  

32 
 



Similarly, pup growth is positively correlated with milk fat percent across mouse strains 

(40) and when milk fat percent is altered by varying the fat content of the diet (39). 

As increased intake of dietary fat often results in greater milk fat percent, we 

sought to determine whether feeding a high fat diet would overcome the reduction in milk 

fat induced by CLA treatment.  The fat content of the experimental diet was increased by 

substituting high oleic sunflower oil for cornstarch to keep the density of other nutrients 

such as protein constant when expressed on an energy basis (Table 1).  Soybean oil was 

included in both experimental diets to provide essential fatty acids.  High oleic acid 

sunflower oil was chosen as the primary fat source to provide fatty acids that could be 

readily incorporated into milk fat but that lacked significant bioactive properties.  Oils 

rich in medium chain fatty acids were avoided because these fatty acids are extensively 

oxidized in the liver, reducing their availability to the mammary gland (6, 54).  An oil 

low in polyunsaturated fatty acids was desired because some of these fatty acids are 

reported to regulate gene transcription (55).  The sunflower oil selected contained 

approximately 85% oleic acid; oleic acid thus comprised 46% and 78% of the fatty acids 

by weight in the LF and HF diets, respectively (Table 2).  With the exception of oleic 

acid and 14:1c9, all fatty acids measured were found in greater proportion in the LF diet 

than in the HF diet. 

The HF diet resulted in an increase in milk fat percent (Table 3), and the 

composition of milk fat reflected that of dietary fat (Tables 2 and 4).  The observed 

increase in oleic acid in milk fat was particularly striking; it rose from 29 to 56 g/100 g of 

fatty acids in the control mice when the HF diet was fed (Table 4).  This increase was 

predominantly due to incorporation of dietary oleic acid into milk fat, as long chain fatty 
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acids are not synthesized in the mammary gland.  In addition to an increase in the 

proportion of fatty acids taken up preformed from plasma, the fatty acid profile of milk 

fat also reflected a reduction in the proportion of fatty acids derived from de novo 

lipogenesis (Table 4, Figure 3A).  Accounting for the increase in milk fat percent 

revealed that this was not merely due to dilution of short and medium chain fatty acids by 

an increase in long chain fatty acids (Figure 3B).  Thus an inhibition of de novo 

lipogenesis was likely, as has been demonstrated by decreased rates of mammary 

lipogenesis in rodents fed high fat diets (4-6).  Inhibition of ACC by non-esterified fatty 

acids has been proposed as a mechanism for the reduction in lipogenesis due to increased 

dietary fat (38). 

 Although the HF diet increased milk fat percent, litter growth rate was only 

numerically increased (Table 3).  Several studies have reported the similar results (6, 47, 

48, 51, 52), whereas others have observed significant increases in pup growth (5, 39, 45).  

As discussed previously, differences in methodology may have contributed to this 

inconsistency.  An increase in energy intake was seen for dams on the HF diet (Table 3).  

This was may have been related the greater palatability of the diet, as mice were observed 

to overeat when first offered the HF diet (Figure 2B).  Energy intake on the second day 

was closer to that of mice on the LF diet, but it remained elevated for the duration of the 

treatment period.  Del Prado et al. (39) compared milk fat synthesis and litter growth for 

lactating rats fed low or high fat diets ad libitum or pair fed the high fat diet on an equal 

energy basis to rats consuming the low fat diet.  They found that elevated fat content in 

the diet increased milk fat percent and litter growth irrespective of energy consumption.  
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Therefore, the observed increase in milk fat content for dams on the HF diet in the 

present experiment was likely not solely a consequence of increased energy intake.   

Although increased dietary fat intake caused an increase in milk fat percent, it was 

unable to overcome the CLA-induced inhibition of milk fat synthesis (Table 3).  Milk fat 

content was decreased equally by CLA for mice fed either diet.  Whereas the HF diet 

increased the incorporation of dietary long chain fatty acids into milk fat, it inhibited the 

synthesis of short and medium chain fatty acids to an equal or greater extent than did 

CLA treatment (Figure 3B).  Transfer of dietary fatty acids to milk fat was, therefore, not 

enough to compensate for the reduction in lipogenesis, so no interaction was found 

between diet and CLA (Table 3).  Interactions were observed for other parameters, such 

as energy intake (Table 3).  The greater palatability of the HF diet presumably caused the 

CLA-treated dams to consume energy in excess of their requirements.  Consistent with 

this hypothesis, the body weight of HFCLA dams changed by +0.07 g/d during the 

treatment period compared to a change of -0.15 g/d for the LFCLA dams (Table 3).  

However, variation in recorded weights was high due to movements of the dams during 

weighing, so neither treatment significantly differed from its respective control.  

Interactions between feed and CLA were also noted for the concentrations of multiple 

fatty acids in milk fat and clot fat, but in only three cases (10:0, 16:1c9, and 20:0) was the 

same effect observed for the same fatty acid in both milk and clot fat (Tables 4 and 5).  A 

reason for these interactions is not apparent.   

In general, effects of diet and CLA on the fatty acid profile of milk clots reflected 

changes in milk fatty acid composition, but differences in the concentrations of individual 

fatty acids were observed (Tables 4 and 5).  These are thought be related to circadian 
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patterns of feed consumption and lipogenesis as well as differences in the timing of milk 

and clot collection with respect to the photoperiod and the final CLA dose.  Feed intake 

by lactating rodents is greatest at night, and this is associated with a peak in mammary 

lipogenesis due to the greater availability of substrates for fatty acid synthesis (39).  

Dams in the present experiment were milked in the afternoon, which coincides with a 

period of lower feed intake and lipogenesis.  In contrast, milk clots from the stomachs of 

pups provide a composite of milk samples over time; labeled milk can be recovered from 

clots up to 20 h after its ingestion by rat pups (62).  Therefore, the fatty acid profile of 

clots exhibits less diurnal variation.  Indeed, the proportions of >16C and 16C fatty acids 

in clot fat were greater than those in milk fat, since clots presumably reflected the fatty 

acid composition of milk synthesized during the period of greater lipogenesis during the 

preceding night rather than just during the day (Tables 4 and 5).  The concentration of 

CLA in clot fat was less than that measured in milk fat (Tables 4 and 5).  This was also 

related to the timing of milking and clot collection.  Clots were recovered 2-3 h after the 

final dose of CLA was administered, leaving little time for ingested CLA to be absorbed 

by the dam, incorporated into milk fat, and consumed by the pups.  Thus the milk most 

recently ingested was produced toward the end of the interval between CLA doses and 

likely contained less CLA.  On the other hand, dams were milked 5-6 h after the last CLA 

dose, so the composition of milk fat reflected greater availability of absorbed CLA for 

incorporation into milk fat.    

Biological effects of CLA isomers have been observed in many tissues and cell 

types, and a number of mechanisms have been investigated.  The reductions in body fat 

accretion and carcinogenesis attributed to isomers of CLA have been linked to increased 
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apoptosis of adipocytes (63) and neoplastic mammary epithelial cells (64).  High 

concentrations of trans-10, cis-12 CLA have been shown to induce apoptosis in cultured 

bovine mammary epithelial cells, and this has been proposed as a mechanism for the 

effects of CLA on lactation (65).  Increased cytokine expression and macrophage 

infiltration have also been observed in adipose tissue of rodents treated with CLA (66).  

In the present study, examination of mammary tissue from mice treated with CLA 

yielded no signs of inflammation or increased apoptosis.  No gross differences were 

discernable among treatments, thus, these mechanisms were unlikely to have contributed 

to alterations in milk composition.  

In conclusion, treatment of lactating mice with trans-10, cis-12 CLA decreased 

milk fat percent and growth of the nursing litter.  This was not overcome by increased 

intake of dietary fat, although milk fat percent was greater for mice fed a high fat diet 

than those fed a low fat diet.  Both CLA treatment and consumption of a high fat diet 

resulted in changes in the fatty acid profile of milk fat that suggested depressed de novo 

lipogenesis in the mammary gland.  The high fat diet, but not CLA, increased the 

incorporation of preformed fatty acids derived from plasma into milk fat.  These long 

chain fatty acids originated primarily from the diet, and substantial transfer of dietary 

oleic acid to milk fat was observed for mice fed a high fat diet rich in oleic acid.  The 

composition of milk clots collected from the stomachs of nursing pups reflected that of 

milk, but some differences were noted.  Histological observations of mammary tissue did 

not support CLA-induced inflammation or apoptosis of mammary epithelial cells as 

potential mechanisms for the observed decreases in lipogenesis and milk fat percent in 

response to CLA treatment.  Alternatively, a mechanism was discussed involving reduced 
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activation of the transcription factor SREBP1c, resulting in decreased expression of genes 

encoding key lipogenic enzymes in the mammary gland. 
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