MACHINE SCIENCE
AUTOMATED MODELING OF DETERMINISTIC AND STOCHASTIC
DYNAMICAL SYSTEMS

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
In PartialFulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Michael DouglasSchmidt
January 2011

© 2011 Michael DouglasSchmidt

MACHINE SCIENCE
AUTOMATED MODELING OF DETERMINISTIC ANDSTOCHASTIC
DYNAMICAL SYSTEMS

Michael DouglasSchmid{ Ph. D.
Cornell University2011

The work presented here advances the technology to analyze experimental data and
automatically hypothesize about explanatory models and physical laws that help
explain doservations. Automated Modeling, sometimes referred to as Symbolic
Regressioror System Identificationis the process of searching a possibly infinite
space of mathematical expressions in order to optimize various objettif@s
example, identifying thesimplest possible nonlinear equation that captures the

observed dynamics of a system.

Traditionally, the task of formulating analytical models and theory has remained
entirely within the purview of human expertise, and also human limitation. However,
the development of Evolutionary Algorithms, and more recently Genetic
Programming, has made searching for analytical models automatically a possibility.
The work presented here focuses on advancing the algorithms and techniques for
Automated Modeling to shim t hi s #Areal ity gap, 0 and

various real and experimental systems for the first time.

The specific contributions of this work fall into four categories: search methods and

algorithms, model representations and the types of systems that can be analyzed,

af

techniques for interpreting solutions and results, and applications in science and

enginering fields.

The most important contribution in the search methods is the Fitness and Rank
Prediction algorithm, which enables utilizing exceedingly large data sets with low
computational effort. This algorithm is based on the idea that, at any givenoumty

a small number of carefully selected data points are necessary to discriminate among
candidate models, allowing large reductions in computational effort. In model
representations, the most important contribution is the principle for identifying
meaningful invariant quantities amongst the infinite number of trivial invariant
expressions. This principle enables searching for physical laws and conservations
directly from experimental measurements. In the interpretation of results, the most
important catribution is Parameter Mapping technique, which relates an
automatically inferred model to a previous model through repeated regressions.
Finally, the most important contribution in applications is the analysis of yeast
Glycolytic oscillations, which demmstrates and compares several techniques in order
to identify a complete nonlinear ordinary differential equation model directly from

data.

BIOGRAPHICAL SKETCH

Michael Schmidt was born in La Crosse, Wisconsin on December 6, 1981 to Mary and
Douglas Schmidt. His mother was a school teacher who later started a direct mailing
business. His father was a mechanical engineer who later started a software company.

Mi chael 6s mot her i ntroduced him to art an
many ceative pursuits throughout his childhobdarticularly painting and playing

piana Mi ¢ h a e | dirst infroduced diim to engineering and mathematictor
exampleteaching him to estimate the distance a model rocket would drift when lost to

the wind.Michael went to public school as a child. secondary schoohe tutored

math and physicstudentsand represented the school in a few academic competitions

He also played baseball and hockelyut his primary interest eventuallyurned to
computersPogr ammi ng became Miasthaimdmétsurgeomee at i v e
in the 1990sHe taught himself to program with his best fridndworking on several

nefarious projects especially writing tools to exploit flawsin early operating
systemsand craslother usersAfter being banned by various service providers in the

late 90s he shifted interestsabruptly to more affableprojects, such agamesand

graphicswhich he continue¢hroughhigh schoal

At Cornel |l University, e veab laaphlazard. Hewas er gr a
bored in earlyComputer Science courses aneventuallyopted for Electrical and
ComputerEngineering. His junior year, he accepted a nine month engineeriog co

position with General Electric where he worked on data servers &ns® andalso

coached little league basebdh his senior year, he gav@®mputerScience another

try, taking elective courses in machine learning and artificial intelligence. In
particular, a course on evolutionary computatiosing simulateevolution to explore

openended intractable problemngriggered a lasting curiosity. His instructor,

Professor David Delchamps, later introduced Michael to Professor Hod Lipson.
Shortly after,Michael graduated with Bachelorof Engineering degrem Eledrical
and ComputerEngineeringin 2005 followed by aMaster of Engineeringlegreein
Computer Sciencein 2006 That same yearMichael was accepted intthe Ph.D.

program and commenced the work presented here.

For Mary Westlund

ACKNOWLEDGEMENTS

l 6d |i ke to thank my medrectismoandhdHaamhbilito pson f
exploremany fruitful andchallengingtopics. 6 d al so | i ke t o, thank
the Cornell Computational Synthesis L& creative discussions on projects, and my
committee advisors Professor Steven Strogatz and Professor Stephen Eliner for their

valuableacademic and professional discussions and advice.

| was fortunate to besupported by two graduate fellowships during myCPhthe
Integrative Graduate Education and Research Traineestap07, and the National

Science Foundation Graduate Research Fellowst#p08.

More personall vy, Il 6d | i ke to thank sever al
my Ph.D.Thanks to Leti@m Rojas for her unwavering moral support and inspiration to
enjoy life. Thanks to Evan Malone for his help and support on everything from
discussing physicdo bulding custom serverracks. Thanks to Michael Tolley,
Jonathan Hiller, and Daniel Cohen foeir friendship and supportsideand outside

of the lab. Thanks to Jonas Neubert, John Am&uahert MacCurdy, and Jeffrey
Lipton for many needed distractions and discussions. Thanks to Stdpbastantin,
Nicolas Lassabe, and Simon Fivat for their ridship and help building dozem
servers.Thanks to Brian Herold for moral support and first introducing me to
programming.Thanks to Aaron Lenfesty and Daniel Ly for thigichnicaladvice and
coding discussionsAnd finally, thanls to my parents, Maryestlund and Douglas
Schmidt, fortheir love and support, and providinge freedom to pursue many

opportunities throughout life.

Vi

TABLE OF CONTENTS

BIOGRAPHICAL SKETCH... oottt eeeme e e e e e e eaand ili
(D] =1 (@7 AN I []\ PSRRI v
ACKNOWLEDGEMENTSottt eeeme et e e et e e aaans Vi
TABLE OF CONTENTS ...t e e e e eaa e e enans Vil
LIST OF FIGURES.ottt et e r et e enenes Viii
LIST OF TABLES.ottt e e et e e e e anns XXV
PREFACE. ... e e et e e e et eneneea e e eaaeees XXVi
SECTION IT INTRODUCTION......uiiiiiiciiieeee et ceeee ettt e e e e e ssmmmre e eeaaeeees 1
CHAPTER 1. GOALS. ..ottt eenme e e e e e e e e eees 1
CHAPTER 2. MOTIVATION ..ottt eenme e e e e 1
CHAPTER 3. BACKGROUND.......cctiiiiiiieeeee et 3
SECTION IIT SEARCH METHODS......... oot eeeeeeennn]
CHAPTER 4. FITNESS PREDICTION......ctuiiiiiiiiiiiiiee e eemeeee e e 7
CHAPTER 5. RANK PREDICTION......iiiiiiiiiiiiie e ceeee e evmens 48
CHAPTER 6. META-OBJECTIVES IN EVOLUTONARY SEARCH............ 63
CHAPTER 7. PRIOR MODELS AND SEPBINGcccooiiiiiieiiiee e 79
CHAPTER 8. IDENTIFYING A DOMAIN ALPHABETcccocvveiiiiiieeeeiieeees 98
SECTION IIT MODEL REPRESENTATIONS.......ooiiieeeeieeeeveee e 117
CHAPTER 9. DYNAMICAL SYSTEMS.......oi i 117
CHAPTER 10.IMPLICIT EQUATIONS.......ccoiiiiie e 126
CHAPTER 11.NATURAL LAWS ... oot eeeme e 142
CHAPTER 12.SYMBOLIC NOISE SOURE MODELS...........ccveevevvieeeee 173
CHAPTER 13.STOCHASTIC REACTIONMODELS........c.cooevevieeeeeveeeeeee, 188
CHAPTER 14.TREE AND GRAPH ENCODING........ccooeeevveeeeieee e, 204
SECTION 1T INTERPRETING RESULTS......ouiiiiieeeee e 218
CHAPTER 15.PARAMETER MAPPING.......coooiiiiiii e 218
CHAPTER 16.PARAMETER MODELS........ccotiieeie e 248
SECTION IVT APPLICATIONS.... .ottt e e e vemmr e e e 251
CHAPTER 17.METABOLIC NETWORKS........cooi it 251
CHAPTER 18.INSECT WING BUILDINGBLOCK ANALYSIS.......cc.......... 294
CHAPTER 19.USER PREFERENCE MODHNG........c.cccccvveeeiiieeeieemeenane. 308
CHAPTER 20.PUBLIC GOODS GAMES........oiii e 332
CHAPTER 21.0OPTICAL FILTERS. ...ttt 345
CONTRIBUTIONS.ottt e e e e e e mmmr e e e e e e eataa e e e eeesbnnns 360
REFERENGCES ..ottt ereee e e e et e 366

vii

LIST OF FIGURES

Figure 4.1. HigHevel overview of the coevolution of solutions and fithess predictors
= 1[0 [0] 110 0 T PPPP 17

Figure 4.2. Pseudocode for the two threads in the algorithm that coevolve solutions
and predictors. Trainers are chogemiodically in the predictor thread................ 20

Figure 4.3. Pseudocode for pruniimactive expressions in randomly generated test
problems to improve the complexity estimate for problem difficulty................. 22

Figure 4.4. The expected point evaluations before convergence versus the number of
samples in the fitness predictor. Error bars show the standard deviation........ 26

Figure 4.5. Histogram of training samples selected by the best fitness predictor during
evolution to convergence dfx)=e¢"sin(x). Some samples are selected significantly
MOre Often than OtNEIS.........ooiiii e 27

Figure 4.6 The expected number of point evaluations before convergence versus the
effort (percent of point evaluations) while training the fitness predictors averaged over
50 trials. Error bars show the standard errQr...............eeevvvivieeeiiiiiiiiieniiiieeeeeeenn. 29

Figure 4.7. The training data of the three target functions experimented on. The
horizontal axis shows the input valuwesThe vertical axis shows the output training
VAIUBT(X). ottt e e emr ettt e e e e e e e e e e e e e mnne e e e e e 31

Figure 4.8. Thdest set fitness during evolution for target functidg), f2(x), and
f3(X) respectively. Results are averaged over 50 trials. Error bars show the standard

Figure 4.9. Test set fitness versus evaluations averaged over 100 test rii69.for
Error bars Show Stalard €IT0r...........coouvuuiii i e e 36

Figure 4.10. The Chksquare pvalues for significance of conkgence versus
complexity between the coevolution algorithm and each compared algarithm39

Figure 4.11. The percent of successful convergence after 10 million point evaluations
versus the target function complexity (the number of nodes in the binary expression
LU= TR PP PRSP PPPPPPPPPRPPPPPPNY” O

Figure 4.12. Improvement factor in convergence of coevolution overother
algorithms verses complexity for random target functions.................cccevveeeenn. 42

Figure 4.B. Fitness and percent of runs converged versus generations throughout
evolution on the functiori,(X). Error bars show the standard error. Note that exact
evaluations are performing significantly more computational effort per generat@n.

viii

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028650
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028650
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028651
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028651
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028652
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028652
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028653
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028653
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028654
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028654
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028654
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028655
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028655
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028655
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028656
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028656
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028656
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028657
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028657
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028657
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028658
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028658
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028659
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028659
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028660
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028660
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028660
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028661
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028661
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028662
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028662
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028662

Figure 4.14. The size of the best solution during evolutioia(xf averaged over 100
testruns. Error bars show the standard error........coovveveeiiceeeeeeeeee A4

Figure 4.15. The bloat of finatonverged solutions averaged over 500 randomly
generated target functions. Error bars show the standard ertar....................... 45

Figure 5.1. The generation of random test problems for symbolic regression. We start
by picking a random number of inputs, between one and ten. We then generate a
random equation using these inputs and simplify the sguékefore measuring its
complexity (the number of nodes in the binary tree). We then generate a random
training data set by sampling the input variables around the origin and evaluating the
target equation on these data points. We then generate a validata set in a similar
fashion, but with a wider range around the origin to test if the solutions extrapolate to
the @XACT SOIULION.......oiiiiiiiiiiei e 55

Figure 5.2. The fitness and convergence rate to the exact solution of each algorithm
versus the total computational effort of each trial. The fitness (left) is the normalized
mean absolute errornothe validation data set. Convergence to the exact solution
(right) represents the percent of the trials that identify solutions that have less than
epsilon error on the validation data set. Error bars indicate the standard error. The
performance of thelgorithm without using prediction at all is several order of
magnitude higher in computational effort and is not shown.................ccceveeeee.. 58

Figure 5.3. The computational effort required when the exact solution was found
versus the target equation complexity (left) and the number of variables in the dataset
(right). Each algorithm found the exaclgmon with different frequencies; these plots
show the computation effort for when the algorithms did find the exact solution. The
error bars indicate the standard erfQr..........cccccvviiiiiieeciii e 59

Figure 5.4. The mean solution bloat of the best solution versus the computational
effort. Solution bloat is defined as the binary tree size of the bestduodivin the
population minus the size of the target solution. Error bars indicate the standard error.

Figure 6.1. The novelty objective of a solution. Here, the novelty of equation #4 is
equal to the maximuroorrelation of its residual errors with its two nearest neighbors
T IR 0 0 ESR 0 111 =TS PSS 67

Figure 6.2. The Agé&itness Pareto Population algorithm (A) considers a single
population of individuals moving in a twdimensional Age-itness Pareto space.
Individuals are selected for if they simultaneous have higher fithess values and lowe
age than other individuals. Ages increase every generation, or are inherited during
crossover, and new random individuals are added with zero age. In tHeapeyed
Population Structure (ALPS) algorithm, there are several layers of populations for
each age group. New individuals are injected to the youngest population, and
individuals migrate to older populations as their age increases...................... 69

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028663
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028663
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028664
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028664
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028666
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028666
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028666
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028666
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028666
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028666
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028666
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028667
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028667
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028667
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028667
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028667
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028668
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028668
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028668
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028668
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028669
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028669
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028669
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670

Figure 6.3. The fitness and convergence rate to the exact solution of the compared
algorithms versus the total computational effort of the evolutionary search. The fitness
is plotted (left) is he normalized mean absolute error on the validation data set.
Fitness is normalized by the standard deviation of the output values. Convergence to
the exact solution (right) is percent of the trials which reach epsilon error on the
validation data set. Therror bars indicate the standard errar..............ccccccceeeee.. 72

Figure 6.4. Solution bloat overdltourse of the evolutionary search. Solution bloat is
defined as the binary tree size of the best individual in the population minus the binary
tree size of the target solution. The error bars indicate the standard. errar....... 73

Figure 6.5. The performance of each combination of the multiple secondary objectives
on random symbolicegression problems. Pane (A) shows the mean absolute error on
the test data set of the best solution found by each algorithm. Pane (B) shows the
convergence rate, the percent of times each algorithm identified the exact solution.
Pane (C) shows the pertage of the Pareto space, defined by solution error and
solution complexity (the two metrics of interest in the Symbolic Regression), that each
algorithm eXPlOred.............eiiiiie e e 75

Figure 6.6. The convergence (percent of problems where each method identified the
exact solution) versus the problem complexity. These results are split into these pa

to make the differences more easily identifiable. Pane (A) shows the results for
combinations of two objectives plus the single error objective. Pane (B) shows the
results for three objectives plus the best 2 objective method and error objective. Pane
(C) shows the best of the previous panes with the 4 objective method............ 7

Figure 7.1. Example seed equations for each method (left) and an example randomly
generated target equation plotted next to the automatically generated approximate
EQUALION (FGNT)-e et eeeieeee e ee e e e e eeeer e e 82

Figure 7.2. The expected time for the evolutionary search to converge to the exact
target equation for each seeding method measured in function emadugtins that
did not converge omitted). Error bars show the standard errar........................ 89

Figure 7.3. The mean fitness (top) and convergence rate (bottom) for each method
measured over each evolutionary trial. Error bars show the standard .error.....90

Figure 7.4. The logistic trends of each seeding method in convergence rate versus
target equation complexity (top), and linear trends in convergence versus the error of
the approximate seed equation from the target equation (bottom). Error bars show the
range based on the standard errors of the trend fit parameters....................... 92

Figure 7.5. The solution bloat of the top ranked solution over the evolutionary runs.
Bl oat is measured as the top ranked equat
complexity.Error bars show the standard errar................vciiiccceeeevvveenneiennn. a5

Figure 8.1. We distill the common mathatical language needed to describe a group

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028671
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028671
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028671
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028671
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028671
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028671
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028672
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028672
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028672
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028673
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028673
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028673
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028673
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028673
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028673
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028673
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028674
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028674
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028674
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028674
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028674
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028674
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028675
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028675
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028675
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028676
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028676
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028676
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028677
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028677
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028678
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028678
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028678
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028678
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028679
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028679
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028679
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028680

of systems using symbolic regression and analysis of their model accuracy/complexity
Pareto fronts. We generate experimental data from several related systems such as
spring and mass mechanical systems (leftg. #¥#en use symbolic regression to find
several accurate models at varying complexity of equations (middle). Finally, we
discompose models on these fronts to individual terms and building blocks. The most
frequently used terms and building blocks form aregant alphabet for describing
models of this group of systems (NHgRL).........ccoovviiiiiiii e, 99

Figure 8.2. Example equation (a), its binary parse tree (b), and all possible building
blocks of the equation (c). Building blocks are common-exfressions or internal
components of a system that simplify building a full mathematical maodel......102

Figure 8.3. Summary of the mechanical systems, the collected data of their dynamics,
and the resulting models found using symbolic regression on the equation accuracy
and complexity Pareto front. Each system was simulated numerically. The symbolic
regression algorithm generates a small set of equations for each system. This set is a
Pareto front, showing the most accurate equation found for different sizes
(complexities) of equations. These equations are used to distill a common
mathematical alphabet of building blocks for modeling mass, spring, and pendulum
MECNANICAl BVICES........coi ittt e e bbb e e e e e e e e e e e e e e 109

Figure 8.4. The building blocks found for the domain alphabet based on the harmonic
ocillator, simple pendulum, and 2D spring pendulum Pareto front models. The most
frequent and complex building blocks correspond to the kinetic energy terms for

moving masses and potential energy terms for springs and pendula. Building blocks
with zero fregiency on the Pareto fronts of other systems are omitting and not

included inthe alphabel................ooniiii e 111

Figure 8.5. The impact of using a domain alphabet obtained from simple systems, the
harmonic oscillator and simple pendulum, to find the model of a more complex
system, the 2D spring pendulum. The alphabet in (top) shows the commomduildi
blocks found from the Pareto analysis of only the harmonic oscillator and simple
pendulum systems. Allowing symbolic regression to use these terms substantially
accelerates the modeling of the more complex 2D spring pendulum system (bottom).
Error barsshow the first standard error about the mean over ten independent irals.

Figure 10.1. Many datasets exist that do not have explicit dependent variables, such as
an elliptic curve shown here. Instead, this type of data must be modeled with an
implicit equation. We explore using symbolic regression to infer these types of
10T = PP 128

Figure 10.2. Implicit derivatives can be estimated from unordered,uffiezh data,
nonparametrically by fitting a hyperplane or higreder surface to neighboring
points. After fitting the neighboring points, simply take any of the implicit derivatives
of the locally fit SUIACE............euiiiii e e 134

Xi

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028681
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028681
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028681
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028683
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028683
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028683
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028683
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028683
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028683
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028684
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028684
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028684
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028684
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028684
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028684
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028684
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028685
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028685
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028685
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028685
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028686
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028686
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028686
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028686

Figure 10.3. Data sampled from six target implicit equation systems. Data is collected
uniformly for the geometrisystems. In the dynamical systems, the data is a single
simulated trajectory from a random initial condition.............ccccceeiiiiicceeeeeeeenn. 136

Figure 10.4. Fitness of the symbolic regression algorithm using the implicit
derivatives fitness for each of the six systems. Results are the top ranked solution
versus time, averaged over 20 independent trials. Erreribdicate the first standard

Figure 10.5. The fitness and equaticomplexity Pareto fronts found for each of the

six systems. The exact solutions are the simplest equations to reach near perfect
fitness. More complex solutions show elaborations on the exact solution, improving
fitNess oNly MargiNally.........ooeeiiiiiiii e 140

Figure 11.1. Mining physical systemdale captured the angles and angular velocities

of a daotic doublependulum (A) over time, using motion tracking (B), then
automatically searched for equations that describe a single natural law relating these
variables. Without any prior knowledge about physics or geometry, the algorithm
found the conservain law (C), which turns out to be the douplee ndul umés
Hamiltonian. Actual pendulum, data and result shown..............cccevvvieeeeeeeen. 143

Figure 11.2. The computational approach for detecting conservation laws from
experimentally collected data. (A) First, calculate partial derivatives between variables
from the data, then search for equations that may describe a physical invariance. To
measure how well an equation describes an invariance, derive the same partial
derivatives symbolically to compare with the data. Finally, return the most
parsimonious equatiorfer the hypothesized physical laws. (B) The representation of

a symbolic equation in computer memory is a list of successive mathematical
operations. (C) This list representation corresponds to a graph, where nodes represent
mathematical building blocks drleaves represent parameters and system variables.
Both (B) and (C) correspond to the equatféiy)=17.7194.77t *+4.714cosq)i
¥2cosfl). To search for conservation equations, the algorithm mutates and recombines
these structures to search the SpacEOABONS.................evvvvviiiiiieeeiiiiiiiieeeeee 146

Figure 11.3. Summary of laws inferred from experimental dataatetl from physical
systems. Depending on the types of variables provided to the algorithm, it detects
different types of laws. Given solely position information, the algorithm detects
position manifolds; given velocities the algorithm detects energy ;layxgen
accelerations, it detects equations of motion and sum of forces laws. These laws
contain bUlK ParameterS..... ...t ee et 149

Figure 11.4. Parsimony vs. accuracy, and performance. (A) The Pareto front (solid
black curve) for physical laws of the doullendulum and the frequency of sampling
during the invariant equation search (grayscale). The Pareto front shows thefftrade
betveen equation complexity (or parsimony) and ability to model a predictive
invariance. At a critical complexity of ~32, there is a strong point of inflection. The

Xii

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028687
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028687
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028687
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028688
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028688
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028688
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028688
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028689
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028689
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028689
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028689
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028690
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028690
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028690
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028690
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028690
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028690
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028692
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028692
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028692
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028692
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028692
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028692
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028693
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028693
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028693
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028693
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028693

equation at the inflection corresponds to the exact energy conservation law of the
doublependilum, highlighted. A second momentum conservation law encountered is
also highlighted. (B) The computation time required to detect different physical laws
for several systems. The computation time increases with the dimensionality, equation
complexity, andnoise. A notable exception is the bootstrapped double pendulum,
where reuse of terms from simpler systems helped reduce computational cost by
almost an order of magnitude, suggesting a mechanism for scaling higher
(070 0] 0] 1= [T 152

Figure 11.5. Ancestor trajectories in equation space while searching for the equation
of an ellipse.Dots indicate crossover and mutation events while lines represent
parameter tuning over time. (A) Several initially random equations with varying
predictive ability evolve independently before coalescing toward the exact solution
over the running time othe algorithm. (B) The ancestors also vary in equation
complexity T measured as the number of nodes in their expression trees. Initial
equations tend to have higher complexity, but simplify over time toward the exact
solution. (C) The same trajectories fdal over predictive ability and complexity
shows the ancestor trajectories converge toward a simple and high predictive ability
neighborhood before finding the correct equation structure whose parameters can be
tuned to the eXact SOIULIQN............ueuiiiiie e e e 160

Figure 11.6. Sequence of solutions as they evolve to model the equation of an ellipse.
This sequence represents a single trajectory in Figure 11.5. Small mutations and
crossover events during the evolutionary search slowly converge this sequence onto
the eXaCTt EQUALION.ooi ittt e e e e e e e e e e e e 161

Figure 11.7. Two equival en
4. 771A¥2 +71 42 AKddtAdc.os(Al) Th a ewlVeg equatiadnh m st o
represented by a |i st o f floating point
operation can load a variable, load a parameter, or perform an mathematical operation

on any previous operation. Unused lines have been omitted foy.c(&)tThe raw list

can be interpreted more intuitively by an acyclic graph where severdtemsare

reused by multiple terms. Both (A) and (B) represent the same equation......163

t represéntati or

Figure 11.8. The accuracy/complexity Pareto front of the double pendulum. The
Pareto front shows the tradeoff between equation complexity and its &bitigrive
accurate partial derivative. At some minimum complexity (32 nodes), predictive
accuracy jumps rapidly. Equations almost twice as complex improve the accuracy
only marginally. These high complexity equations tend to contain the simpler exact
equaton, but add many smaller terms to compensate noise. The parsimonious and
accurate equation at the inflection is the Hamiltonian and Lagrangian of the double
0= 1T 111 (1] o o TP 168

Figure 11.9. The mean predictive ability on a withheld test set of the best equations
detected versus the amount of normally distributed noise in the data set for the
simulated double linear oscillator. Error bars show the standard error. The percent

Xiii

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028695
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028695
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028695
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028695
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028696
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028696
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028696
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028696
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028696
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028696
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028696
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028698
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028698
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028698

noiseis the ratio of the standard deviation of the noise and the standard deviation of
the OrigiNal SIGN@l..........coooiiiiiiee e 169

Figure 12.1. Three basic examples where a stochastic element hides or distorts
analytical features of the system to different extents. Blue dots show the observed
system output, the red line shows the expectation of the owtpdtthe green line
show the target analytical model with stochastic elements remaved............. 177

Figure 12.2. Pseudocode for evaluating a model with stochastic noise sources to
estimate the noise envelope or distribution (top), and pseudocode for calculating the
resulting fitness metric for the candidate model (bottom).................cvvvieeennees 179

Figure 12.3. An example binary expression tree (a) for the funiftipr €'sin(x), and
a similar tree modeling a stochastic element (b) for the fundtign= €'sin(x + R()).

Figure 12.4. The fitness objective for explaining training data with a with model that
has stochastic elements and output distribution. If a training point falls inside the
model distribution, the objective is to minimize the height of the distribution. If the

point falls outside, the objective is to minimize the distance of the point to the
(0 15T T o 101 [0 o TSR PPPRPRT 182

Figure 12.5. The best model found at three points during regressifg of10 sir{x

+ R). The green points show the training data, the greea s hows t he mo
distribution, and the blue line shows the analytical model with stochastic elements

1] 04101V = o SO 185

Figure 12.6. The best model found at three points during regressig) o5 sin(x +

R). The green points indicate the training
distribution, and the blue line indicat¢he analytical model with stochastic elements
1] 04101V = o SO 185

Figure 12.7. The best model found at three points during regressipn of(x + R) -
15X. The green points are the training dat
and the blue line is the analytical model with stochastic elements removed..185

Figure 13.1. Overview of the modeling problem. A stochastic system earivesact
behavior over time shown in blue. Periodically, the state of system can be measured
(shown in red dots), a sample of the exact time evolution of the system. The task is to
infer a maximum likelihood stochastic model (right) for this system froesd
periodic measurements. Actual data and solution shown.................ccceceu..... 189

Figure 13.2. Tie encoding of a solution representing a stochastic model of discrete
reactions. A series of chemical reactions (top) are represented by corresponding
integer coefficients and real valued rate constants for each reaction (battam}93

Figure 13.3. Comparing a candidate model with the experimental data. The left pane

Xiv

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028699
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028699
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028699
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028699
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028700
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028700
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028700
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028701
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028701
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028701
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028702
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028702
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028702
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028702
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028702
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028703
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028703
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028703
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028703
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028704
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028704
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028704
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028704
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028705
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028705
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028705
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028706
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028706
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028706
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028706
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028706
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028707
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028707
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028707
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028708

shows the hypobietical exact behavior of a system in blue, and two known
measurements of the system at red dots. The candidate model is simulated multiple
times, starting from the first measurement foseconds, in order to estimate a
probability distribution of the model (right). The state of the second measurement is
then compared with this distribution to evaluate the quality of the model to reproduce
thE MEASUIEMIENLL......uiiiiiiiiiiiiiii ettt nnne s 196

Figure 13.4. The search performance of the three compared fithess metrics. The top
panes show performaneéen data points appear in rapid succession with short gaps
in time. The bottom panes show performance when there are long gaps of time
between data points. The left panes show the likelihood score of the best model during
the search. The right panes shih& percent of runs that identified the exact solution

for the amount of computational effort. Error bars indicate the standard.err0d.98

Figure 13.5. The relationships between the distance metric of a model and its
corresponding likelihood given the experimental data. Each point in the plot is a
random candidte model during the likelihood search.............cccoevvviiieecinnnnee. 200

Figure 13.6. Traits of the best o over time during the evolutionary search. The top
left plot shows the genotypic age of the best solution (the number of generations any
part of the solution existed in the population). The top right shows the novelty of the
best solution (how different is from the rest of the population). The bottom pane
shows the bloat of the best solution (ratio its complexity with the target solution
complexity). Error bars indicate the standard error...........cccovvvvvveeeeeeeeeeeee, 201

Figure 14.1. Example expressionsf@) = (x + 1)* in the tree encoding (a) and graph
encoding (b). The graph encoding reuses redundane)quiessions but is more
susceptible to deleterious variation...............ccceeiii i eeeeiiiciiiee e eeeeen 207

Figure 14.2. Bloat of converged solutions fevdriable functions (a), and\&riable
functions (b). Each point is averaged over 50 randomly generated target functions.
Error bas show the standard errQr.................oiiiiiiieceeiiriee e eeeee e 212

Figure 14.3. Test set convergence versus tdigection complexity for dvariable
functions (a), and -8ariable functions (b). Each point is corresponds to 50 randomly
generated target FUNCHONS............uii i 213

Figure 14.4. The number of point evaluations before convergence on the training set
versus the target function complexity forvariable functions (a), and-\@ariable
functions p). Points are averaged over 50 randomly generated target functions. Error
bars show the standard errQr..............uuuuuiiiiiiccee e 214

Figure 14.5. The rate of beneficial crossovers versus target function complexity for 1
variable functions (a), and-\&ariable functions (b). Results are averaged over 50
random test problems. Error bars show the standasd.ert.................ccccevveeeenn. 215

Figure 14.6. The point evaluations per second versus the fucctoplexity........ 216

XV

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028709
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028709
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028709
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028709
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028709
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028709
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028710
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028710
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028710
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028711
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028711
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028711
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028711
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028711
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028711
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028712
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028712
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028712
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028713
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028713
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028713
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028714
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028714
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028714
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028715
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028715
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028715
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028715
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028716
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028716
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028716
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028717

Figure 15.1. Manuallgerived versus automaticalgenerated iblogical models and

the mapping challenge. Most biological models are derived by hand using expert
knowledge of the system, related systems, and qualitative understandings of the
underlying biology (left). When large amounts of experimental data areableil
empirical models can be inferred automatically by a computational search for the most
parsimonious model that accurately predicts the dynamics (right). The automatically
generated model potentially provides new insight into the system but doesvaeot ha
any accompanying explanation. Our solution to this problem is to additionally learn a
mapping from the known biological model to the automatiegéiyerated model,
identifying which understood parameters collapse to simpler explanations in the
automatially-generated solution. Actual models and data shdand S represent

the protein concentration levels GomK and ComS respectively.U and b terms
correspond to the basal and maximum rates of protein expression, respecvely.
denotes the linearnd U the enzymatic degradation rates @dmK and ComS The
meanings of the parameters on the right are unknQwn..............ccccovveeevvvnnnnes 221

Figure 15.2. Transient and oscillatory dynamics of competence events in Bingle
subtilis cells. Filmstrips in panels A and B show overlays of phase contrast and two
color fluorescence images. Blue and orange calepict the reporter for competence
PcomGand negative feedback loop componegt,p respectively. Panel A shows a
single wild type cell that differentiates into the competence state and then exits
(indicated in blue). Panel B, shows cells containingaified competence circuit

(for details see text and SOM) that give rise to oscillations in competence where cells
undergo consecutive events. Panels C and D depict time traces of promoter activity
obtained from quantitative image analysis of fluorescespiorters during the
competence events shown in panels A and B respectively. Blue and orange colors
utilized in the graphics are consistent with the colors depicted in the filmstrips and
time traces, where blue indicates competence and orange theyaaftithe negative
feedback loop necessary for exit from competence.............cccoovvvvieeeei e 224

Figure15.3. The automated modeling method attempts to model multiple cells with a
single equation, and then identify a nonlinear mapping to a previous understood
model. These equations contain symbolic parameters which vary for each cell, rather
than constantaefficients. The algorithm searches for the most parsimonious equation
which accurately predicts the dynamics observed in the experimental data using an
evolutionary search. We then attempt to identify a mapping of this model to the
currently understood syem model by varying parameters of the manwdigved
model, simulating it numerically to generate new data, and then fitting the
automaticallygenerated model to the generated data. We then search for a nonlinear
relationship between the parametershef two models............oeeeeiiiiiiiiceennnnn. 226

Figure 15.4. The automaticalenerated conserved quant{A) maps onto a small

set of parameters in the manuallgrived model (B) which correspond to the
degradation ofComK and production of2omS(C). When evaluating the conserved
guantity on data collected from two different typesBofsubtilisstrains (D) a sort
duration strain (black) and a longer duration strain (red), the magnitude of the

XVi

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028721
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028721
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028721
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028721
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028721

conserved value separates into two different groups (E), suggesting the conserved
guantity is tied to the duration of competence events..............cccceevvveeeeeeeeennn. 229

Figure 15.5. The mapping between the mant@disived model and the automatically
generated dynamicahodel connects the simpler dataven model with the current
biological understanding. The bipartite graph (B) shows the linear correlation
strengths between model parametemutomaticallygenerated model parameters are
on the left side, manuaHlgerived model parameters are on the right side. The
nonlinear mapping (C) shows that multiple parameters of the mayeiyed model
collapse to those in the simpler automaticgignerated model. The parameter plots
(A) show that the mapping is in strong agreent with the automaticallyenerated
model over a wide range of parameter Values..............eeevviviieeeiiiiiiiiiiiiieeeeeenn. 232

Figure 15.6. Collected data and the fit of the automatigmlyerated dynamical
model. ComK florescence (AFU) is shown in blue do@omsSflorescence (AFU) is
shown in reddots, and the automaticalenerated model is shown in black for each.
The automaticalhgenerated model was found using data from the top four rows. The
bottom row shows that the model generalized to other behaviors such as oscillating
COMPELENCE BVENTS.....eiiii it erier e e e rr e e e e e e e e eneeas 238

Figure 15.7. The parameter mapping relating the parameters of the leipegtcal

model and the automatically identified dynamical model. The left plots show the
predicted parameter value in the automatiegbiyerated model based on the
parameters of the expert model versus the actual best fit parameter of the
automaticallygenerated model. The parameter equations found are shown to the right.
The percent shown for each term indicates the percent of the variance explained by
(<7 Tod B = 1 0 PRSPPI 240

Figure 15.8. The parameter mapping relating the parameters of the expert biological
model to the automaticalyferred conserved quantity. The left plots show the
predicted parameter value in the conserved quantity of the mapping versus the actual
best fit parameter of the conserved value. The parameter equations found are shown to
L =24 | o PP PP PP 242

Figure 15.9. The clusters of coefficient values of the unknown conserved quantity
equation colored by the B. subtilis strain. Each plot shows agiion onto a different
Pair Of COBMICIENTS.... ..o e e e 244

Figure 15.10 Verifying the perturbations of the models with the physical changes in
the wild (black) and mutated (red) strains. Pertubing only the parameters that
correspond to production @omSin the simulated model produces similar changes to
thOSE SEEN IN EXPEIENL.......oiiiiii i eeeee e seeer e e e e e e e eeanes 246

Figure 17.1 Automated analytical modeling: Noisy time series dalacting
anaerobic metabolism concentrations over time are automatically translated into a set
of coupled analytical differential equations without prior knowledge of the system

XVii

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028723
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028723
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028723
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028723
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028723
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028723
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028724
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028724
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028724
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028724
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028724
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028724
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028724
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028725
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028725
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028725
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028725
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028725
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028726
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028726
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028726
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028727
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028727
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028727
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028727
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028728
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028728
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028728

(actual data and EQUALTIONS).........couiiiiiiiiimeee e e ee bbb 252

Figure 17.2. Analytical model representations for NADH in the cell glycolysis model

a tree encoding (left pane) and agn encoding (right pane). Both panes encode the
same equation, but while the tree encoding is simpler to manipulate algorithmically
(e.g., alter subexpressions), it requires redundant subtrees and is prone to produce
large equations that may not accunatetpresent the biological system. The graph
encoding couples subtrees, thereby biasing equations to preserve simpler shared
Lo (0T3S [0 S VPP SPURRR 258

Figure 17.3. The pareto front of model accuracy versus its simplicity. There is an
inherent tradeff between complexity and accuracy to the training data. Many
complex functions have very Higaccuracy, however the exact solution lies at the
sharp inflection near 28 nodes, balancing high accuracy and simplicity......... 262

Figure 17.4 The coevolution of models through symbolic regression and fithess
prediction, and experiments by the estimasxploration algorithm. Candidate
solutions compet to explain current experimental data, and experimental initial
conditions compete to maximize disagreement in the predictions of the various
solutions. This process of synthesizing coherent models and controversial experiments
continues until a single duinant solution €Merges.........ccccceeeeeeeiiiiieeeic e, 264

Figure 17.5. The residual squarexdor after Less smoothing versus the magnitude of

the noise and the density of features relative to the noise frequency (sample rate) for a
sinewave signal and its numerical derivative. The signal error is most sensitive to the
noise magnitude but more robust to thenber of features. In contrast, the error on

the numerical derivative has much higher sensitivity to the number of features. The
state of the art of what the symbolic regression algorithm can handle with Loess
smoothing is roughly the mediubiue to darkblue regions...............cccoervveeeeene. 266

Figure 17.6. Reaction networks for anaerobic metabolismyeaat cell. Left: The

exact model includes membrane transport of glucose and pyruvate/acetaldehyde.
Reactions in red involve ATP production/usage, and reactions in blue involve redox
species production/usage. Middle: The impaired model does not prodihez ei
glycerol or ethanol. Right: The overspecified model has an additional sink for
pyruvate/acetaldenyd&a).oooorriiiiiiiii e 275

Figure 17.7. The fit to the data of the highest ranked solution during regression for
each glycolysis variable. The blue series show the correlation coefficient to the
training data, and the red to the test data. Thieihg data contain 10% noise while

the test data have none. The test data contain a larger range of allowed state variables
(i.e., sampled with weaker constraints) to measure whether the model can extrapolate

Figure 17.8. The exact black box model and inferred model integrated over time. The
inferred model shown in Table 17.5 differs from the exact model by a slight mass

xviii

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028729
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028729
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028729
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028729
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028729
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028729
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028729
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028730
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028730
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028730
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028730
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028731
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028731
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028731
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028731
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028731
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028731
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028732
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028732
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028732
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028732
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028732
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028732
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028732
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028733
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028733
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028733
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028733
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028733
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028733
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028734
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028734
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028734
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028734
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028734
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028734
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028735
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028735

imbalance. Integrated over 10 minutes, the inferred model captures the same behavior.
While small differences in derivative values tend to accumulate during integration, the
inferred model captures the integrated behavior remarkably well. The inferred model
predicts early behavior accurately and exhibits the same qualitative dynamics later in
time, differing only slightly in the phase.............cccoiceei e 280

Figure 17.9 The glycolysis systenear the stable limit cycle in the course of a single
experiment, with colors representing frequency with which the fithess predictor
examines each point within a single tHEEXIES...........cccoevvviiieeviiieeee e 281

Figure 17.10. The initial condition experiments (red) chosen by the algorithm to
differentiate solutions in comparison to a random distributbnnitial conditions
(blue). The algorithm tends to focus on nonlinear states away from the limit cycle
(dashed black line) within the experimental constraints imposed upon the estimation
eXploration algOrtNML. ... 282

Figure 17.11. (A) The rate of successful inference of the exact differential equation for
each stateariable versushie observation noise in the system after one hour of
regression. The convergence rate is calculated from ten independent trials on each
equation at each noise level. (B) The rate of successful inference of the exact
differential equation for all variablegersus the total amount of data given to the
system. The error bars indicate the standard deviation in convergence among the seven
V22 L= 1] PP RPPPPPPP 284

Figure 17.12. Performance comparison between symbolic regression, nonlinear
regression, and neural network regression. Results are averaged over 10@triails

bars repesent the standard error. Training data performance (top pane) shows that all
algorithms accurately explain the training data. The negative slope of the correlations
when the results from the training regression are applied to the test data indicates
varying degrees of overfitting. Note that symbolic regression uses more point
evaluations in the same amount of running time because it is a parallel search, whereas
nonlinear regression and neural network bpixkpagation use serial updates...287

Figure 17.13. Correlations of the various regressions averaged overidl80otr
equationS, i error bars represent the standard error. (A) The correlations between the
training data and each initial model before the model is regressed to the training data
by the corresponding algorithm. Symbolic regression and neural netegmssion

must model the system from scratch and initially have zero correlation. The impaired
and overspecified models are close approximations to the exact model and therefore
have positive correlations. (B) The mean correlation of the best solutiortdromans

of each algorithm to the training data. The training data contain 10% random noise,
which results in slight variancés most notably in the neural networks. The best
solution from each algorithm correlates well to the training data with low aténd
error. (C) The mean correlation of each method to the test data. The assumed
structures of the impaired and overspecified models limit their ability to model a wider
phase domain. The neural network appears limited by noise in the system, but does

XiX

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028736
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028736
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028736
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028737
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028737
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028737
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028737
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028737
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028738
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028738
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028738
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028738
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028738
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028738
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028738
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740

achieve a higher correlation on average with the test set than do the impaired and
oVerspecified MOUEIS...........uuieiie e eeee s e e e e e e e e e eeeaaneee 290

Figure 17.14. Performance comparison of symbolic regression when correcting a
hypothesized model. Results are averaged over 100 iriafsor bars represent the
standard error. The blue curves represent the performance dfdthnighan to theS,

equation without any prior model. For the other two pairs of curves, the symbolic
regression algorithm was seeded with an incorrect hypothesized model (black =
impaired, red = overspecified) and the algorithm had to modify the seeded tmdidl

the original training data. The graph shows the performance for both the training data
used for the regression (top pane), and the test data (bottom pane) used to evaluate the
e U gL (o L= | (=251 (o] o T PP PUPPPPPP PP 291

Figure 18.1. The tracked position of the fly (top pane) and the correpsonding angles of
the right wing (bottom pane). Thaata was recorded over approximately 34 flapping
periods during 140 milliseconds of flight...............oooiiiiieee e 296

Figure 18.2. The three dimensional plot (left pane) of the right wing ardgleb,(and

ds). There is slight variation among the periods but overall they line up nedtity. A
chopping up the periods, there is covariance between different peaks of each angle
(o | L o= T =) RS SESPP 297

Figure 18.3. Phase plots of the three angles of the right wilglt(gs. d), in order

(dy, b, andds). The first angle appears to be a simple harmonic oscillator, whereas the
other two angles show more complex swles, lkely containing higher order
building blocks in their physical model............ccoooooiiiiiiieeeiii e, 298

Figure 18.4. Functional linear models based on the period number explains much of
the variation between periods. The linear coefficients (left), the fit and description of
the drift (middle), andRZ SCOres (HGNT)........ocoovevivrveeeeeeeeeeeses e en s e 299

Figure 18.5. The registration method slices the data into each periods, scaling length
of each slice to hae the same period (left pane). The method optimizes the positions
of the slices in order to maximize the correlation among all the periods (right pane).

Figure 18.6. The registered data (left pane) and the shifts in periods after optimizing
the slice positions (right pane). The periods over time drift slowly, correlating vath t
slight drift in the position of the fly in Figure 18.1............ccoooviiiiiiiceene e, 301

Figure 18.7. A equation modelindd?dy(t) and its individual building blocks. This
equation was generated by an algorithm, so we are interested in testing whether its
building blocks also show to be useful individually using the function linear model
PIOCEUUIE.. ...ttt ettt e e e eeet e e e e e e e e e e e e e e e e e eenenaeaeeaeaaeees 303

Figure 18.8. The crosslidation error of the functional linear model ngivarious
building blocks forD?dx(t), (red lines) shown in Fig. 8 and the null functional linear

XX

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028742
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028742
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028742
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028743
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028743
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028743
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028743
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028744
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028744
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028744
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028744
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028745
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028745
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028745
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028746
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028746
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028746
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028746
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028747
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028747
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028747
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028748
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028748
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028748
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028748
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028749
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028749

model (dashed black lines) versus the smoothing peadhyeach case the null model
is dominated by the building block model for all coefficient smootpiealties..304

Figure 18.9. Crossalidation error of several poor buildindplbks (solid red) and the
null model (dashed black). The poor building blocks fail to either achieve lower
minimum error or tolerate higher smoothing penalties. The poor building blocks, other

thant, were also building blocks generated by the modelingrighgn.................. 305
Figure 19.1. Example comparision between two pen drawings..................... 312
Figure 19.2. The user interface presented to the.User.............coeeeeeeeeeeennnn. 313
Figure 19.3. Example comparison relational graph of six individuals............. 314

Figure 19.4. Example Pareto front plot of eight potential comparison pairs...315
Figure 19.5. The basic structure of an individual comparator user model......316
Figure 19.6. The structure of a neural network user madel..................ccceeee... 317

Figure 19.7. The comparator model based interactive evolution algorithm basic
(o TU 111 01O 319

Figure 19.8. The prompts given to the user and the resulting top three guesses over six
(141 7= 11 0] 0 0PRSS PP 324

Figure 19.9. The number of user prompts expected between therednabgorithms
to find @ SqQuAre Shape...........uuuiiii i 325

Figure 19.10. The prompts given tfte user and the resulting top three guesses over
YL N1 (=] = L[] LSO 327

Figure 19.11. The number of user prompts expected between the compared algorithms
to find the target star Shape............oooiiiiiic 328

Figure 19.12. The clock time fitness landscapes calculated over six user pr3apts.

Figure 20.1. The Logistic Function squashes all inputs to the range from zero to one.
This function is used in the model structures because we are modeling a fraction value
(e.g. the fraction of money invesdten the public good). The input to the logistic
function then has an interpretation of a strength toward zero (large negative values) or
one (large POSItIVE VAlUBS)......ccocvuiiiie i 335

Figure 20.2. The model obtained fok an i nc
in the normal Public Goods Game. The left pane shows the correlatioa ofaitel

predictions with the data. The right pane shows the predictions of the model (the 3D
surface) next to the experimental data (the blue dots). The model suggests that a player

XXi

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028750
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028750
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028750
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028750
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028751
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028752
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028753
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028754
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028755
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028756
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028757
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028757
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028758
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028758
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028759
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028759
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028760
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028760
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028761
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028761
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028762
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028763
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028763
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028763
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028763
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028763
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028764
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028764
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028764
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028764

is less likely to contribute if they have high cumulative earnings relétithe group,
however they are more likely to contribute if others in the group contribute. The fitted
parameters ard= 3.51853p = 6.210759=5.08922.......ccceeevveeeiiiiiiiiiiiceneaeenn. 336

Figure 20.3. The fitness landscape for an individual against the field assuming that the
group behaves according t o t he model . T
increasing group contribution (grouy)(and decreasing individual contributior).(

Thus, the model predicts that players will contribute less and less, tending toward zero

(o0] 011] o011 o] o PP PP PP PP PPPPRRR 338

Figure 20.4. The model obtained fok an i nc
in the tugof-war version of the game. The left par®ws the correlation of the

model predictions with the data. The right plane shows the predictions of the model

(the 3D surface), next to the experimental data (the blue dots). This model suggests if

the player is doing well in cumulative earnings and leejat/or competed an amount

previously, she/he is less likely to contribute. The fitted parameters showh=are

1.625520 = 4.618820= 1.37634.....cccceieiiiiieietieeee e annnr s 339

Figure 20.5. The model obt ay)imthetugbfovar an i n
version of the game. The right pane shows the correlation of the model with the data.

The modeépredictions (the 3D surface) is plotted next to the experimental data points

(blue dots). The model suggests that if the group is contributing, the player is less

likely to keep. However, if the player has been successful in total earnings and kept in

the previous round, she/he is more likely to continue keeping. The fitted model
parameters shown ak= 0.0319059p = 4.524399=1.9055B......c..cccevevveenen. 340

Figure 20. 6. The model obtained for an in
(2) in the tugof-war version of the game. The left pane shows the linear correlation of

the model predictions with the data. The right pane shows the model predictions (the

3D surface) next to the experimental data. The model suggests that if the group is
keeping and the player kept on the previous round, she/he is less likely to compete.
Secondly, if the group is contributing and the player competed in the previous round,

she/he is more likely to compete again. The fitted model parameters shoWrrare

0.81949H = 1.448820 = 4.38L1A......ooeiiee et 342

Figure 20.7. The effective fithess landscape for an individual playing against the field,
assuming the group plays accordinghte xn+1 and yn+1 models, and in the previous
round the group played 50% in contributiog)(and 50% in competitionz{). The
optimal behavior for the individual in this circumstance is to play similarly: investing
at least 50% in competition and the restontribution. The fitness surface predicted
by the model looks similar for other group conditions, most with optirza=ai00%.

Figure 21.1. Ringesonator device structure. Each component contributes to the final
(=1 510 01K (o] o VPP PPPUP PP 346

XXii

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028765
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028765
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028765
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028765
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028765
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028766
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028766
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028766
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028766
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028766
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028766
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028766
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028767
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028767
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028767
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028767
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028767
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028767
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028767
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028769
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028769
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028769
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028769
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028769
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028769
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028769
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028770
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028770

Figure 21.2.. Example filter encoding with a maximum of three devices. Each device
consists of seven independent parameters and a flag to include or omit the device from
the final series. In this figure, device #2 is flagged as omitted........................ 351

Figure21.3. Evolved lowpass filter. The target transmission is shown as a dotted line
and the best evolved solution is shown in solid. This solution used three devices in its
encoding, shown in the right pane..............cooovvviiieee e 352

Figure 21.4. Evolved box filter. The target is shown as a dotted line, the best evolved
solution is shown in solid. This sdlon used five devices in its encoding, shown in
the MIgNT PANE......o e 353

Figure 2..5. Evolved bangbass filter. The target transmission is shown as a dotted
line, the best solution is shown in solid. This solution used four devices in its
encoding, shown in the right pane..............cooooviiiiee e 353

Figure 21.6. Evolved ramp filter. The target transmission is shown as a dotted line, the
best evolved solution is shown in solid. Thidusion used two devices in its encoding,
ShowN iN the MgNT PANE........cooiiiieee e 353

Figure 21.7. A damaged fiv@evice filter.Thes, U, 0 o, R, andG parameters are offset
by 10% random manufacturing error. The qualitative-fiber transmission function
has been restored however some precision is still JoSt..............ccccoiiieeeennnnnns 354

Figure 21.8. Recovering a damaged devit®x, LPF, and ramp filters. The left pane
shows the errorfdhe best filter being evolved before fabrication. 10% random error is
then added to all fixed parameters on all devices. The right plane shows the best filter
being evolved to recover from manufactured errors. Errorbars show the standard error.

Figure 21.9. Inferring the physical parameters ofde¥ce filter. The inferrednodel
matches the hidden system to within very low error. Note that the order of devices and
the gain levels of each individual device cannot be determined due to algebraic
properties of multiplying the transmission of each device. The total gain iseiferr
correctly however (1.312*0.784 = 1.002*1.026 = 1.0028)..........cceveeerrerrummmnns 357

Figure 21.10Reverseengineering random-device filters give precise transmission

measurements (blue) and noisy transmission measurements (green). Error bars show
(0[S =TT b= T o I =T 4 o PP 358

xxiii

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028771
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028771
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028771
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028772
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028772
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028772
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028773
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028773
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028773
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028774
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028774
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028774
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028775
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028775
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028775
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028776
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028776
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028776
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028777
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028777
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028777
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028777
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028777
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028778
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028778
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028778
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028778
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028778
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028779
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028779
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028779

LIST OF TABLES

Table 4.1. Summary of the Compared Algorithms.............cccuevvviimemniciiiiiiienee. 30
Table 4.2. Performance comparison to published methods................ccccceee... 35
Table 4.3. Example functions and COMPIEXILES...........eeeriiiiiiiieeeiiiiiiiieeeeeeeeeeens 37

Table 4.4. ChiSquare Significance of Convergence Rates Compared to the

Coevolution AlGOFTNML........ooiiii e 38
Table 9.1. Fitness prediction algorithm parameters...............ccvvvieeieeeeennnnns 119
Table 9.2. Inferring various physical and biological dynamical models.......... 123
Table 10.1. A summary of direct methods and their difficulties...................... 132

Table 11.1. The predictive ability and Pareto fronts of several synthetic manifolds and
simulated dynamical systentstror bars denote the standard error of predictive ability

Table 11.2. Ssnmary of Detected Approximations with Missing Building Blockg'1

Table 12.1Summary of EXpPeriment SetUD.........ccuviiiiiieiiiiiec s 183
Table 14.1. Summary of Experiment Setup..........cccceeeieiiiicccciiiiicee e, 209
Table 17.1. Raw encodings of glycolysis differential equations faund........... 260

Table 17.2. The chemical species in the model (NM, IM, and OS are the normal,
impaired, and overspecified models, respectively).............cooviiiiiicee e 268

Table 17.3. Description of the reaction fluxes and their kinetic coefficients...269

Table 17.4. Model variables, the allowed range of initial states for the tralaiaget,
and the standard deviation of the limit cycle used to compute the amount of added

Table 17.5. The differential equations describing glycolytic oscillation of the
generating model (left pane) and the inferred model from the training data, which had
109% NOISE (NGNL PANE)......u it erme e e 277

Table 17.6. Seven snapshots of the best solution during regresSpnrbé solution
is plotted in red and theg/stems limit cycle is shown in blue............................. 285

Table 17.7. The equations for, yruvate and acetaldehyde pool) for the exact,
impaired, and overspecified models shown in Figure 17.6. The exact values for the

XXIV

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028780
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028781
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028782
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028783
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028783
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028784
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028785
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028786
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028787
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028787
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028787
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028788
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028789
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028790
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028791
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028792
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028792
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028793
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028794
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028794
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028794
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028795
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028795
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028795
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028796
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028796
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028797
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028797

parameters ang = 16,k; = 100, andAP/V =13 ..o 288

Table 19.1. Neural Network Training ParameterS..........cccoeeeevvviieeeeee e, 320
Table 19.2. Evolution Parameters...........ccccuuiiiiiiiimeeiiiieieee e 321
Table 20.1. Model symbol definitionNS...........ccoiiieiiiie e e 333
Table 20.2. Model Symbols for group averages..........ccooovvvviiiiiccceeeeee e 334

Table 21.1. Range of parameters describing each doubled ring resonator. The
parameters controlled externally by-afitical effects aré; and/,. 347

Table 21.2. The parameters for the ring device with transmission function shown in
Figure 2 as the dotted line. We simulatenofacturing errors on this device by adding
10% random errors to all parameters. The damaged transmission function is shown in
Figure 2 as a dashed lINe.............uuuueiiiii e 348

XXV

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028798
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028799
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028800
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028801
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028802
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028802
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028803
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028803
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028803
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028803

PREFACE

The area of automated modeling contains many unexplored directions, and | had to
work on a breadth of topics as they came up over the course of my Ph.D. While
compiling this text, | had some initial concern that thegte was too long. | thought
carefully about excluding large portions. However, | decided to keep the text complete
so that it could serve as a comprehensive record of my work. Thedfgsartation
comprises all of my research related amtomatedmodeling during my Ph.D. It
includes both topics that | have published on and also smaller unpublished Tésaults.
chapters span a breadth of wpand severalexplore significant depth into various
problems. Still, there are many remaining questions to beesed in this growing

field. | hope this text may inspire others in future directions.

XXVi

SECTIONI T INTRODUCTION

CHAPTER 1.GOALS

The central goal of this work iso advance new technology to accelerate scientific
discovery.In particular, this work focuses on Automated Modeling ardtificial
Intelligence for analyzing experimental dataservedn a physical systerm order to
hypothesize about its analytical rul@sdintrinsic relationshipsultimately helping to

transformdata into scientific knowledge.

Scientific discovery often progressas stages,from making observationsand
performing experiments(data) to modeling and predicting the outcome of
experimentgpredictions) to identifying the symmetries and rules oéthhenomenon
(laws), and finally to developingtheoriesand understandingneaning) The work
presented here explores computational methods to move from data to laws, leaving

humans to take the last step.

This work addresseghe task in four core areas:improving search methods and
algorithm performance, improving model representations and expanding the types of
solutions that can be modeled, interpreting results and connectihgrnuoprevious

knowledge, and finallprovingthese techniques to realisticssgms.

CHAPTER 2. MOTIVATION

In 2006,Josh Bongard, Viktor Zykov, and Hod Lipsdevelopeda continuous self
modeling robo{Bongard, Zykov et al. 2006) a robot thatould, usingonly raw data
from its internalsensos, deduce its own configuratiofror examplethe robot could

determinethat it had four legs of specific lengths and orions.Even aftera leg of

the robot was broken qfthe robotwould refine its model and design a new gait to

continue its locomotion.

This work begged the questiorcould a similar robot also model external
phenomenop This conceptled Bongardand Lipson to pioneer new research in
automated modeling of dynamical sysgfBongard and Lipson 200,7and formeda
basis forfuture work inautomated mdelingof dynamical systemsncluding the work

presented here

Automatedmethoddor generating, collecting and storing data frerperimentave
become increasingly precise aefficient over the past decad€lery and Voss 2005;
Szalay and Gray 2006But the technologyto make hypotheses @onvertdata irto
meaningfulanalyticalrelationshasnt kept paceAs a result, there is increasing interest

in new forms of automated analysis, and automating tasks which traditionally required

human labor and expertise.

Many methodslreadyexist for modeling scienii data: from fixeeform parametric
models derived from expert knowledge to statistical models aimed exclusively at
prediction. However, there exist very few methods for creating humedarstandable

models of nonlinear systems from experimental data.

Recantly, the ongoing research t@address this problerhas accumulatedseveral
different namesfrom i Ma c hi n e (ESans anch Rzhetskyri Aut omat i on
Sci e Walz and Buchanan 20099 i T h e Ro b o t(Kin§,dMhalam etials t 0
2004) The actual machines comprising these systems remain less glamorous than
thar names imply (e.g. a rack of servensa data cent@r But, there isincreasing
debate(Gianfelici 2010; Haufe, Elliott et al. 2010; Leonelli 202Bat our concept of

science, and what it means to do science, may be chaihjiicgell 2009)

Of coursenot everyone agredsPhilip Anderson and Elihu Abrahanhsveclaimed
that there igino mechanism by which [machines] could create a Kuhnian revolutio

and thereby establish new physical é&nderson and Abrahams 2009)

Regardles®f the variougpredictionson the futurethis is acritical question that must

be answered. Andt is the motivating factor for the work presented here.

CHAPTER 3.BACKGROUND

This section briefly describes essential information describackground concepts
and previous researdhat are referenced in several chapters of the text. It covers
evolutionary computation and symbolic regressilwlividual dhaptersalso contain
their ownspecific background topicshe following topics are common to almost all

chapters.

Evolutionary Canputation

An evolutionary algorithm is ra optimization algorithmoriginally inspired by
biological evolution and Darwinian selection. A typical algorithm maintains a
population of individuals (candidate solutions to a problem) that compete to survive in
a simulated evolution. Solutions in the population emigally randomand typically
survive by maximizingsome heuristiqFogel, Owens et al. 1966Yhe algorithm
utilizes stochastic operations inspired by biological evoluiiosuch as mutatig
recombination, and selectiérto vary the population, recombine néwdividuals,and

rewardoptimal solutions.

In a typical algorithm, eaclteration (or generation)of the algorithmgenerates a
successive population by selecting, crossing, and mgtdtdividuals from the

previous population. The selection proc#ssn picks individuals which perform the

best to be crossed and recombined with other individuals to create offspring for the
next generation. Additionally, offspring undergo mutation whaclis variation and

diversity to the population. Mutation and crossover occur with some predefined
probability. This allows some individuals to produce identical copies, mutated copies,

crossed children, or crossed and mutated children.

Often, he best cadidate solution in the population is tracked over each generation to
measure progress. After the best solution has reached some desired level of

performance, the solution is said to be converged, and the solution is returned.

Symbolic Regression

Symbolic regression is the problem of identifying the analytical mathematical
description of a hidden system from experimental datagusto and Barbosa 2000;
Duffy and Engé-Warnick 2002) Unlike polynomial regression or related machine
learning methods that also fit data, symbolic regression is a system identification
method, whichattempts to reconstruct the representative structure of a system
Symbolic regression idasely related to general machine learning problems however,

it remains an opeended and discrete problem that cannot be saliredtly.

Symbolic regression is an Niard problem, however, we can use Erolutionary
Algorithm to find solutions(Koza 1992; Schmidt and Lipson 2008; Schmidt and
Lipson 2009) More specifically, the standard algorithm usedymbolic regression is
genetic programing (Koza 1992) an evolutionary algorithrapecialized for evolving
computer programs andree structuresi for example, searchinga space of
mathematicakxpressions computationaypndminimizing various errometrics. Both

the parameters and the form of the equation are subject to search. In symbolic

regression, many initially random symbolic equations compete to model experimental

data in the most parsimonious way. It forms new equations by recombiningysrevi
equations and probabilistically varying their sedpressions. The algorithm retains
equations that model the experimental data well while abandoning unpromising
solutions. After an equation reaches a desired level of accuracy, the algorithm
terminates returning the most parsimonious equations that may correspond to the

intrinsic mechanisms of the observed system.

In symbolic regression, the gegpe or encoding repsents symbolic expressions in

computer memory. Often, the genotype is a binary treglgebraic operations with

numerical constants and symbolic variables at its leéMe&ay, Willis et al. 1995;

Edwin and Jordan 2003pther encodings include acyclic gragBshmidt and Lipson

2007) and treeadjunct grammargNguyen, McKay et al. 2001)The fitness of a

particular genotype (a candidate equation) is a numerical measure of how well it
agreeswith he data, such as t he -erqgrwihtraspectt®s corr

the experimental data.

The operations can be unary operations suabgexp andlog, or binary operations
such asadd sub, muliply, anddivide. If some prior knowledge othe problem is
known, the types of operations available can be chosen ahead dftigesto and
Barbosa 2000; Soule and Heckendorn 2001; Duffy and Bigleick 2002) The
terminal values available consist of the function's input variables and the function's

evolvedconstant value@erreira 2002)

Mutation in a symbolic expression can change an operator in the binary tree (e.g.
changeadd to sub), change the arguments of aperation (e.g. changerc to x+x),
delete an operation (e.g. changex to x), or add an operation (e.g. changex to

x+(x*x)). If the operator is changed from a binary operation to a unary operation, for

example, one of the two child branches (chosewlomly) is discarded.

Crossover of a symbolic expression exchangestreds in the binary trees of two
parent expressions. For example, crossifig = x* + ¢ andfy(x) = x* + sin) + x
could produce a childy(x) = x* + sin). In this example, the leaf node was

exchanged with the six)term.

SECTION IIT SEARCH METHODS

CHAPTER 4.FITNESS PREDICTION

Summary

We present an algorithm that coevolves fitness predictors, optimized for the solution
population, which reduce fithess ewation cost and frequency while maintaining
evolutionary progress. Fitness predictors differ from fithess models in that they may or
may not represent the objective fitness, opening opportunities to adapt selection
pressures and diversify solutions. The v$ coevolution addresses three fundamental
challenges faced in past fithess approximation research: (1) the model learning
investment, (2) the level of approximation of the model, and (3) the loss of accuracy.
We discuss applications of this approach dathonstrate its impact on the symbolic
regression problem. We show that coevolved predictors scale favorably with problem
complexity on a series of randomly generated test problems. Finally, we present
additional empirical results that demonstrate theiefs prediction can also reduce

solution bloat and find solutions more reliably.

Introduction

The chapter proposed the conceptitrfelss predictiofi a technique to replace fitness
evaluations in evolutionarglgorithms with an exceedingly coarggproxmation that
adapts with the solution population. A closely related concept to fithess prediction is
fitness modeling where a predefined model or simulation is used to approximate
fitness in cases where the exact fithess requires an expeasivdationor physical
experiment(Jin, Olhofer et al. 2001; Ong, Nair et al. 2008jtness predictors
however, cannot approximate the entire fitness landscape, but instead shift their focus

throughoutevolution.

Fitness approximations have been used in other situations as well, such as smoothing
rugged fitness landscapes, mapping discrete fitmalses to continuous values, and
diversifying populations through ambiguifyin 2005) In this chapterwe show that
coevolving fitness predictors may also offer further benefits by destabilizing local

optima and by resisting bloated solutions

Recent research in fitness modeling and prediction has focused on approximation
methods and strategies for use of approximated fitness dine2005) We review

significant advances and challenges found in recent work and motivate a
coevolutionary approach. We suggest that coevolution can resolve three fundamental

difficulties faced in many fithess approximation applications:

1. Model training effort: Often significant computational effort is required to
train the desired fitness model.
2. Level of approximation: It is often unclear what level of approximation is
accurate enough to achieve desired results.-Higllity approximations
provide greater accuracy, but require more computation -dueality
approximations are less accurate, but require less computation.
3. Loss of accuracy:Similarly, even highquality approximations are bound to
have some loss of accuracy due to either the modeitste itself or the data
available to tune it. In the worst case, this effect can hide or even change the
global optimuni in which case, exact fitness calculations are still needed to
find the optimal solution.
The goal of thischapteris to address these issues through coevolution. In the general
framework, there are three populations: (1) solutions to the original problem,
evaluated using only fitness predictors, (2) fithess predictors of the problem, and (3)

fitness trainers, whosexact fitness is used to train predictors. Solutions are evolved to

maximize their predicted fithess using a predictor from the predictor population.
Fitness predictors are evolved to maximize prediction accuracy using trainers selected
from the solution ppulation. Trainers are evolved or selected to create discrepancies
between predictors in order to address their weaknesses. Solution and predictor
populations start with random solutions and random fitness predictors, respectively.
The trainer populationsi initialized with random solutions and their exact fitness

values.

In the following sections, we first review preliminary topics and current research in
coevolution and fithess approximation. We then propose a coevolutionary algorithm
based on a generalaimework and discuss its application in example domains. This
algorithm is then adapted to the symbolic regression benchmark problem in genetic

programming to measure its impact.

The experimental part of thishapteris structured as follows. First, we ropare
performance using three other fithess approximation methods to test what role
coevolution plays in performance. We then duplicate experiments in recent symbolic
regression literature and compare their results. We then test predictor performance as
function of complexity on randomly generated target functions, in order to measure
how the fitness prediction algorithms scale with respect to increasingly difficult
problems. Finally, we discuss empirical trends demonstrating how coevolving fitness
predictas can improve reliability and the quality of final solutions, even when the

advantages of computational cost reduction are ignored.

Related Work

Coevolution

In a coevolutionary algorithm, the fithess metric for one individual becomes a function

of otherindividuals, possibly including itself. More precisely, one individual can
affect the relative fitness ranking between two other individuals in the same or a
separate populatioHillis 1992). As a result, the fithess presssirand incentives

imposed on the solutions may change throughout evolution.

Coevolution is often applied to problems in which no explicit fithess objective is
known in advance, or where the objective is abstract. For example, one may wish to
find a solutio that competes well against other solutions. In this example, competition
between individuals imposed by coevolution can continuously expose weak
individuals and refine successful individuals, until a dominant solution emerges

perhaps.

Several studies havbeen devoted to the application of coevolution to enhance
problem solving(Rosin 1997; Rosin and Belew 1997; Potter and De Jong 2000; Ficici
and Pollack 2001; De Jong and Pollack 2004; Ficici 2004; Stanleivakkulainen

2004; Zykov, Bongard et al. 2005; Schmidt and Lipson 20@6h the main goal of
controlling coevolutionary dynamics that often result in a lack of progress or progress
in unanticipated direction&liff and Miller 1995; Pagie and Hogeweg 1997; Watson
and Pollack 2001t.uke and Wiegand 2002; Bucci and Pollack 200%re we use a
specificform of coevolution(Bongard and Lipson 2005; Bongard and Lipson 2005)

which addresses many of thedallenges.

The aim of coevolving fitness predictors is to allow both solutions and fitness
predictors to enhance each other automatically until an optimal problem solution is
found. The solution population benefits from the fithess predictor populdtiongh

reduction in computational cosar(d other benefits such as reduced bloat discussed

laten. The fitness predictor population benefits from the solution population by

10

refining its approximation in the most useful areas of the fitness domain.

FithessModeling
Fitness modeling has become an active area in evolutionary computation with many
varying approaches and resulin 2005) Here we discuss the motivations, methods,

and challenges of fithess modeling.

Motivation

There are several reasons for utilizing fithess approximation through modeling. The

first, and most common, is to reduce the computational complexity of expensive

fitness evaluations. However, approximation can be used advantageously in other
problems as well. Fitness models have been applied to handle noisy fitness functions,
smooth mulimodal landscapes, and define a continuous fitness in domains that lack

an explicit fitness (e.g. evolving art and musi¢Jin 2005) Here we discuss

motivations for fithess modeling and example applications.

1. Reducing omplexity: Many applications of evolutionary algorithms are in
high-complexity or intractable domains where the fitness calculation can be
prohibitively time consuming. For example, fithess modeling has been applied
to structural design optimizatio@@in, Olhofer et al. 2001; Jin, Olhofer et al.
2002; Mutoh, Nakamura et al. 2003; Ong, Nair et al. 2003; Jin and Sendhoff
2004; Regis and Shoemaker 2004; Regis and Shoemaker 2@@5pften
requires timeconsuming finite element calculations. Often the resolution
provided by the exact fitness objective is unnecessary for evolutionary
progress.

2. No explicit fitness: Many domains do not have a computable fithess. For

example, in human interactive evoluti¢hakagi 2001)(e.g. evolution of art

11

and music), a human user must select favorable individuals. Fitness models
have been applied in these domains to reduce user fatigue and define a
computable fitness landscape that candzeched while waiting for the user to

give more feedbaciPoli and Cagnoni 1997; Johanson and Poli 1998; Schmidt
and Lipson 2006)

3. Noisy fitness:Some fitness functions are very noisy. To produce stablessitne
rankings, algorithms typically average many evaluations, but this can greatly
increase the computational cqstrnold 2001) An alternative approach may
be to develop a statistical mod8&ano and Kita 2000)

4. Smoothing landscapesAlmost all evolutionary domains suffer from muilti
modal landscapes that are often dense with local optima. Fitness apgifori
can greatly reduce the frequency and severity of local optima. Landscape
smoothing has been observed with interpolation, kernels, and fitness clustering
(Yang and Flockton 1995; Audet, Dennis et al. 2000; Regis and Shoemaker
2004; Regis and Shoemaker 2Q05)

5. Promoting diversity: When models smooth fitness landscapes, they often
flatten local optima or produce different regions with similar fitness. While this
is undesirable when using a single model throughout evolution, it can be
advantageous for proding diversity as long as the fitness model continuously

adapts, as is proposed in thisapter

Despite their benefits, the use of fithess models can create new problems. Currently, it
is not always clear when the benefits of fitness modeling outweighasts. In the
following sections we overview basic fithess modeling approaches and their tradeoffs.

We then discuss our approach to resolving these tradeoffs through coevolution.

12

Methods

The technique of fitness modeling falls naturally in the field of hivee learning.
Depending on the structure of solution encodings, many different machine learning
approaches such as neural nets, support vector machines, decision trees, Bayesian
networks, knearesheighbor, and polynomial regression can be trained to map
individuals in order to approximate fitnegalues efficiently(Jin and Sendhoff 2004,
Schmidt and Lipson 2006)Modern approaches utilize boosting, bagging, and
ensemble learning to produce accurate models. A major drawback of these approaches
is that it is often unclear which approach will work best for a given prolglem

2005)

Subsampling of training data is also a common way to reduce the cost of fitness
evaluation(Pagie and Hogeweg 1997; Albert and Goldberg 20@2nany problems,
fitness is calculated by evaluatimgdividuals on training cases and combining the

total error. With a sulsample, only a fraction of the training data is evaluated.

Evolutionaryspecific fithess modeling methods include fitness inheritance, fitness
imitation, and partial evaluation. Irtrfiess inheritancé€Smith, Dike et al. 1995; Sastry,
Goldberg et al. 2001; Chen, Goldberg et al. 2p0f)ess values are transferred from
parents to children during crossover (similar parent passing on a legacy or
education). A form of fitness inheritance for estimation of distribution algorithms
(Larrafiaga and Lozano 200BDAs) builds a model of the fitness function based on
the structure of the probabilistic model used in the algori(Relikan and Sastry
2004) In fitness imitation(Jin and Sendhoff 2004)jndividuals are clustered into
groups based on a distance metric. The fitness of theaterdividual of each cluster

is then evaluated in full and assigned to all individuals in that cluster. In partial

evaluation(Ochoa and Soto Ortiz 199#he fitness of some individuals are calteth

13

exactly, while others are modeled or inherited.

Once a fitness model has been chosen, there are many ways to incorporate it into the
evolutionary process. It can be used simply to initialize the population, guide
crossover and mutation, or replace (sfritness evaluation@in 2005) For example,

a fitness predictor such as a neural network is used to select offspring from all
potertial crossovers of two paren{dMutoh, Nakamura et al. 20Q3)n this chapter
however, we focus only on replacing actual fitness evaluations with the fitness

predictor.

Challenges
The use of an approximate fitness model comes at a cost and with potentially

unacceptable consequences.

1. Training the model: Fitness models like neural nets, SVMs, and Gaussian
processes require significant overhead to train. When advanced methods like
bagging, boosting, and ensemble methods are used, this investment becomes
significantly larger. In addition, a significant ameéusf exact fitnessalues
must be calculated for training and validation data to effectively learn any type
of model ahead of time.

By using coevolution, we can train the:¢
solutions. As shown irfYyang and Flockton 1995karly stages of evolution

only require coarséitness models. As the solution population progresses, so

do the fitness models. In this fashion, coevolution retains an automatic
6coarseness adjust ment 0 without t he
approximations in advance.

2. Level of approximation: How powerful must the fithess model be to facilitate

14

progress throughout evolution? If a single fithess model is used, it may need to
be quite complex in order to model all possible solutions in the fithess
landscape.
When fithess models are coevolved, the n@dan be optimized for only the
individuals in the current population. The models do not need to encapsulate
the entire landscape, but only a subset, so the chosen method can be
significantly less complex.

3. Loss of accuracy:In most applications, the comjational advantage of using
a fitness approximation comes at a cost in fitness accuracy. In the worst case,

the global optima may be removed entirely from the fitness landscape.

Similar to adapting the level of approximation, the optimization of the maddelse
current population can keep the subjective fitness of current candidate solutions
pointed toward the global optima in an active learning fasfiBmmgard and Lipson
2005) Solutions will evolve to exploit their fithness model. In coevolution, the fitness
model can adapt through the selection of trainers to redirect solutidghatsbey are

consistent with the true optima.
Fitness Predicton Algorithm

General Framework
In this section we present a simple framework before describing our implementation.
A conventional evolutionary algorithm can be viewed as an optimization to find the

most fit solution. In this sense, the optimal solut®h,is defined as:

st = argn;;:gx fitnesqs)
whereSis the set of all possible candidate solutions to the problerfitapdgs) is the

15

exact computed fitness of solutien

In the coevolutionary algorithm, we replace all fitness evaluations with a fitness
predictor, p. In this instancethe solution objective is a function of the predictor

instead of the exact fithess:

s* = argmaxp(s)

wherep is the fithess predictor used.

We coevolve the fithess predictors in a second population to makeaccurate as
possible for the currentokition population. A third population of fitness trainers is
used to evaluate how closely fitness predictors are approximating the exact fitness.
Fitness trainers are chosen from the solution population periodically that have the

highest prediction variae (e.g. lowest confidence).

The objectives for each population are summarized below, where asterisks specify an

optimal result that is being seaettfor in each population.

S = argMaX Peq(s)

(Solutions)
* =arg max-— a (p(s) -%))2 (Trainers)
9% Ny Rur
p* =arg minl a |fitnesg) -) (Predictors)
PP Ny

cur

whereSis the set of all problem solution§, is the current solution populatioR,is

the set of all possible fithess predictdPs,, is the current predictor populatiofy IS

the current trainers populatiop,estis the highest ranked predictor g, and p(s) is

16

Start

‘ Select New Trainer ‘

Evolve SolutionsD

Evolve Predictors‘j

Check
Convergence

no
yes

Finished

Figure 4.1. High-level overview of the coevolution of solutions and fitnes
predictors algorithm.

the average predicted fitness of solutsamong the current predictors. It is important
to note that all three populations are evolved in parallel and their objectives will be

dynamt and changing over each generation.

To summarize the framework, the solution population evolves to maximize the fitness
of the current best fithess predictor. Trainers are solutions chosen from the solution
population that produce the most variance irdmtions among the predictor
population. The fitness predictor population evolves to minimize the difference

between exact and predicted fithgasues of the current population.

Algorithm
Summary
The algorithm presented in thehapterhas three populations: Problem solutions,
fitness predictors, and fitness traigefThis section outlines the basics needed to

implement this coevolutionary approach based on this general framework. A high

17

level algorithm overview is given ifrigure4.1.

At the start, solutions, fitness predictors, and trainers are randomly initialized. The
algorithm then chooses an individual from the solution population to measure its exact
fitness for usen training the fitness predictors (elaborated upon in next section). The

algorithm then evolves the solution population using the highest ranked fitness
predictor, and evolves the predictors using the fitness trainers. Finally, the highest
ranked individial is tested for convergence (described below), and the algorithm

completes if successful. Pseudocode for evolving each populatiprovaded in

Figure4.2.

Evaluatng Exact Fitness Values

The objective of this step is to select an individual from the solution population that

will help the fitness predictors optimize to the current solutions. Therefore, we want to

choose an individual whose fitness can be predictéldl the least confidence. To do

this efficiently, we select the individual that has the highest variance in predicted

fitness among predictors in the predictor population. Variance has a strong correlation
with reducing uncertainty(Jin and Branke 2005pand with improving evolved

individuals(Bongard and Lipson 2005)

I n many model types, it is often beneficize
in orde to allow simple predictor encodings to specialize in only the current and other
recently observed solutions. In our implementation, we store only the most recent

trainers, discarding the oldest as new trainers are evaluated.

Removal of old trainers caalso speed up predictor evaluation, but could lead to
cycling. For example, removing a trainer may remove pressure to explain an important

part of the fithess domain. In which case, solutions and predictors that modeled this

18

region well could drift away taporarily while learning other regions. To prevent this
effect, we could opt to keep all trainers for an additional computational dngtwe

did not find cycling to be prohibitive in our experiments.

Evolving the Populations
Candidate solutions and fees predictors are coevolved in parallel using two threads.
Pseudocode is shown Higure 4.2. Fitness trainers are selected periodically in the

predictor thread.

The solution thread begins by randomizing the population of candidate problem
solutions. The main loop then evolves the solution population. Variation is introduced
using single point crossover with probabilgyand mutation with probabilitp,. The
highestranked fitness predictor is then used to estimate the fitness of each child and
selected to form the next generation. Finally, the top ranked solution is tested for

convergence (described in the next section) and exits.

The predictor thread begins by randaing the fitness predictor and fitness trainer
populations. The main loop then evolves the predictors and periodically adds new
trainers to the trainer population. Variation is introduced using single point crossover
with probability p. and mutation withprobability p,,. The fithess of each predictor is
calculated by the mean absolute error between the fitness prediction and the exact

fithess for each fithess trainer.

19

Solutions Thread
Randomize solution population

Repeat
Cross solution s with probability Pc
Mutate solutions with probability Pm

Let pred = the top ranked fithess predictor

Predict fitness valu es for solutions using pred
Perform selection

Sort population

If top - ranked solution error < epsilon
Return solution and Exit
End if
End repeat

Predictor Thread
Randomize predictor population
Randomize trainer population
Repeat forever

If computational effort > 5% of total
Wait

End if

Cross predictors with probability Pe

Mutate predictors with probability Pm

Evaluate fitness values of predictors
Perform selection
If time to add new fithess trainer
Let v; =the variance in fithess
predictions of all predictors for
solution i
Add solution i with the highest v, to
the trainer population
Calculate the exact fitness of the new trainer
End if
End repeat

Figure 4.2. Pseudocode for the two threads in the algorithnthat coevolve
solutions and predictors. Trainers are chosen periodically in the predictor
thread.

Lightweight fitness predictors tend to evolve much faster than the solutions and

therefore do not require as much computational effort. To reduce computational effort,

20

we artificially slow evolution of the predictor population by introducing a delay. If the
computational #ort (measured in point evaluatidl)sused to evolve the predictors
exceeds some percentage of the total effort of all populations (5% in our experiments),
the predictor thread is delayed. The specific choice of effort allocation is likely
problemdependat; havever, we have observed that the 5% ratio performs aveit

a relatively wide range of valueasshown in the results section beJow

New fitness trainers are chosen from the solution population periodically. Fitness
trainers are solutions that ethfitness predictors optimize to predict. In our
implementation, we choose a new trainer to add to the trainer population every 100
fitness predictor population generations. This augmentation of the trainer population
provides time for the fitness predicsato adjust their approximation and is related to
the speed at which predictors converge. Alternatively, new trainers could be selected

continuously, or whenever the progress of the predictor population slows.

Convergence Test

The convergence tedetermines when the algorithm should terminate by testing the
solution in the current population that has the highest predicted fithess. For symbolic
regression, we define convergence as havi
examples. If the bésolution has not converged at this step, a new trainer is added
(Figure4.1) and evolution continues; otherwise, the best solution is returned and the
program terminates. As in any machine learning algorithm, the final solution

performance must be cresalidated agast an unseen test set.

! Here and elsghere in this chapter, we measure performance as function of number of point
evaluations, instead of number of generations or number of fitness evaluations. We use this metric in
order to perform fair comparisons between methods that use different cdonmltatfforts per
evaluation.

21

Experiments in Symbolic Regression
We evaluated our proposed approach using symbolic regression as an example
application of fitness predictor coevolution. Symbolic regression serves as a good

benchmark since it is a wedtudied @main with diverse applications.

We first experiment on simple functions, then duplicate experiments from recently
published research, and finally experiment on thousands of randomly generated

symbolic target functions of increasing complexity.

We generated random target functions by building a random tree of operations. The

Initialize:
Func = binary tree of random depth [1,12]
Func.Randomize_Operators()
Runc.Remove_Random_Child_on_Unary_Operators()

Branch Prune:
Test = Func
For each Nodel, Node2:
Test.Remove(Nodel, Node2)
If Max_Output_Difference(Func, Test) < EPSILON:

Func = Test
Else:
Test = Func
End for
Node Prune:

Testl = Test3 = Test3 = Test4 = Func
For each Nodel, Node2:
For each Child1 in Nodel and Child2 in Node2:
Testl.Nodel = Nodel.Child1
Testl.Node2 = Node2.Child2
If Max_Output_Difference(Func, Testl) < EPSILON:
Func = Testl
End for
End for

Figure 4.3. Pseudocode for pruning inactive expressions in randomly
generated test problems to improve the complexity estimate for problen
difficulty .

22

tree is binary, with the exception of unary oggers which only have a single child.

We then prune combinations of nodes in the function's tree that result in leg$=than
1% change in function output across a target rabgeveen2 and?2 inclusive for our
experimenty using the code below. We d®&f the complexity of the resulting
function as the number of nodes in the pruned tree. Example randomly generated

functions and their respective complexities are showiraliie4.3.

Symbolic Regression Overview

Symbolic Regression Encoding

For experiments in thishaptey we represent functional expressions as a binary tree of
primitive operationgKoza 1992; Augusto and Barbosa 2000; Eggermont and Hemert
2000) See the descriptio i n t h 8ymisokcdRegressian fio n 4 forangoee

detail.

The fitness objective of a symbolic regression solution is to minimize error on the
training set(Eggermont and Hemert 2000; Dolin, Il et al. 2002; Hoai, McKay et al.
2002; Keijzer 2003)There are many ways to measure the error such as squared error,
absolute error, etc. For experiments in ghaptey we use the mean absolute error for

fitness measurement:
1N
fitnesgs) = N asx)- v
i=1

wheres(x) is output of acandidate solutios evaluated on input;, the valuey; is the

correspondingutput andN is the number of training examples in training data set.

Coevolution in Symbolic Regression

Coevolving training examples is a wsludied approach in symbolic regression

23

(Pagie and Hogeweg 1997; Dolin, Il et al. 2Q0Rast research has competitively
coevolved training examples to exploit errors, an approach similar to boosting
methods in machine learning. Coevolving examples to diversify solutions and

moderate purely competitive pressures have also been studied.

Very little work, however, has been done in fithess prediction or modeling in symbolic
regression. In our experimetitm, we coevolve a subset of the total training data
examples that approximates fithess measurement over the complete training data. The
setds objective is to guide evolution as

set, but at a reduced comatibnal cost.

Sub-sample Fitness Predictors

Fitness Predictor Encoding

Training data in symbolic regression typically consists of hundreds to thousands of
data points (e.g. experimental measurements) providing output values for a sample of
inputs. In oursymbolic regression experiments, the fitness predictor is a small subset
of these points. Instead of measuring the exact objective fithess of candidate solutions,
a subjective fitness is obtained by measuring the error on the select handful of data

pointsof a given fitness predictor.

The fitness predictor is encoded as a small array of indexes to the full training data set
(size discussed in the next section). Ea
reference any points in the training data examaiescan repeatedly sample point if it

likes (thus over emphasizing an area). The predicted fitness is calculated as:

predicted_fitneds) = %a Is(%) - Vi
i=1

24

Here,n is the number of samples in the predictand symbolss, x;, andy; are the

same as above

Mutation in the fithess predictor can randomize an index in its array to index a
different training point. An example point mutation would(be41, 53, 92fhanging
to (1, 78, 53, 92 where the sample 41 switched to 78.

Crossoveexchanges the samples of two parent fitness predictors. For our purpose, we
use a single point crossover. A random crossover pogithosen, the first indexes
are copied from the first parent and the remaining indexes are set from the second

parent.

Size and Complexity of the Fitness Predictor

There is an inherent tradeoff between predictor size (subset size) and overall
performance. Using a small number of samples in the fitness predictor allows for more
generations while maintaining the same comppuital effort, at the cost of less
accurate prediction. We empirically examined the sensitivity of the number of samples
in the training subset fitness predictor using an arbitrary fundtiefisin(x). This
function is a simple netinear function that &s two local minima approximations that
make finding the exact solution difficult. In following sections we also use this
function as a benchmark for some empirical experimentation because, although it

evolves rapidly, it is clearly netmivial.

25

5.E+07 45000

o 40000 -
[}
S 4E+07 - =
5 : @ 35000
o =
g5 £ 30000 -
5 © 3.E+07 - 38
P o 25000
22 I
e 2 2 20000 H
S € 2.E+07 - S
og 8 15000 -
5~ :
S 1E+07 & 10000 -
5000 -
0.E+00 ‘ ‘ ‘ ‘ ‘ 0
4 8 64 2 4 8 16 32 64
Fitness predictor size Fitness predictor size
(# of samples) (# of samples)

Figure 4.4. The expected point evaluations before convergence versus the nun
of samples in the fitness predictor. Error bars show the standard deviation.

When the fitness predictor only has two sampldseéis evaluations are extremely
light-weight but the evolutionary process requires many more generations, as evident
in Figure4.4. The larger subsets are sufficigrtrge for accurate modeling but do not
greatly reduce the number of generations nedeigdre4.4 also suggests that there is
some minimum number of samples neeftgda given target function or the available
training data. We hypothesize that the optimal number of samples is higher for
complex functions with more detailed features, but we have yet to see this number
increase dramatically even with high complexitynétions (over 30 nodes in the

expression tree) as tested later in tapter

In our symbolic regression experiments, we use asarB8ple subset for all
experiments. Although it may not be the optimal choice for all target functions, these
results suggéghat it will not have a dramatic impact on final performance. Varying
the number of samples from eight did not appear to have a strong impact on the
performance on several other target functions tested, even in the cases of high

complexity multivariablefunctions involved in ofgoing research.

26

Fitness Predictor Behavior

Here we preview how fitness predictors may behave in symbolic regression. The
fitness predictors used here are small subsets of the training set and are optimized by
trainers chosen frorthe solution population. Thus, the types of subsets evolved are
determined by how the solutions evolve and are likely to vary over different problems
and even different runs. However, a few empirical trends can be seen in this type of

fitness predictor.

Figure4.5 shows a histogram of the training points used by the best fithess predictor
up to convergence on the functitsee®sin(x). For this run, there are seveigltly used
training points which are used in 20% to 40% of generations up to convergence.

Notice that the most used points tend to lie to the sides of local minima and maxima in

45% r 15
F
Usage
40% T o * f(x)
°
P T+ 10
1 °
35% ° L4
* .
L o
530% T L4 °. ° T 5
3 [] (J .(. []
S o) .. °
o | ° e
oC_25% ° S S : .
° 3 ° L) ° [} [} ‘.o’ o ° [} °) e 0
> ° Cecee® J
@ 4) (00 [) ° °
§oo% . - & s o
— e.0 []
€ ° « ° °
S °
015% 1 i) T -5
[(] ()
® .
10% T o0 (]
(]
O -10
5% -
o O
0% f f f f f = -15
3 2 1 0 1 2

Figure 4.5. Histogram of training samples selected by the best fitness predic
during evolution to convergence off(x)=€*sin(x). Some samples are select
significantly more often than others.

27

the training data. This may indicate an effective way to capture features dataset
without overestimating the averaged error. In particular to this function, these points
may be necessary to fleune candi date solutions to ma

structure.

Experimental Settings

For each independent run, all symbolignession parameters were held constant, and
only the type of predictor was varied. We used a solution population size of 128, a
fitness predictor population size of 8, and a trainer population size of 10. For evolution
we use deterministic crowding selecti(Mahfoud 1995) 0.1 mutation probability,

and 0.5 crossover probability.

The operator setwas (add subtract multiply, divide, exmnent, logarithm, sine,

cosne) and the terminal set consists of the input variable and one evolved constant. In
practice,a priori knowledge could be applied to choose a more useful operator and
terminal sets. For example, the experimenter may not be interested in expressions that
use many evolved constants, or solutions that involve trigonometric functions.
However, in our experiments, we use the same parameters throughout testing and the
terminal and operator sets are ovepresentative for all targets (e.g. more operators

are availale than needed to regress the function).

Computational Effort Distribution Among Populations

For experimental purposes, we control how much effort is spent training the fitness
predictors in relation to the solutions so that we can compare algorithnosdrageeir

total overall computational effort. Note that in practice, the ratio is not vital to the

algorithmdébs performance since each popul at

Figure4.6 shows the impact that the effort ratio has on convergence time with the test

28

1.E+08 60000
g 8
2 c
S 1E+08 - @ 50000 -
< dry =
g5 S
= S 8.E+07 - € 40000 -
Sl 8
o=
o S6.E+07 £ 30000 -
22 2
S c o
i5 S 4.E+07 1 5 20000
=i 2
S 2.E+07 T 10000 -
= Q

0E+00 +——t =L L1 1L — 0

0.01% 15% 30% 45% 60% 75% 0.01% 15% 30% 45% 60% 75%

Effort training predictors (%) Effort training predictors (%)

Figure 4.6. The expected number of point evaluations before convergence ver

the effort (percent of point evaluations) whiletraining the fitness predictors
averaged over 50 trials. Error bars show the standard error.

functionf=e"sin(x). Ratios in the range 5% to 30% of effort spent training the fitness
predictor population all yield approximately optimal convergence tilhditness

predictors are given extremely low computational effort, overall performance suffers

greatly since the fithess approximation never adapts.

Spending excessive effort training fitness predictors tends to add no extra benefit. The
computational dbrt increases, but solution generations remain approximately the

same.

In summary, the fitness predictors need some minimal amount of effort so that they
are able to adapt with the solutions. Thus, the relative rates of evolutionbaeed
considered before choosing a minimal effort ratio so that they have similar time
scales. Since fitness predictors are expected to be simple ardigiht, they should

require only a fraction of the effort that the solutions require.
Experimental Results

Examining Behavior on Test Problems

Here we compare four fitness algorithms in symbolic regression listédhle 4.1.

29

Table 4.1. Summary of the Compared Algorithms

Fitness Calculation Sample Size SampleSelection
Coevolved Predictor Samplg 8 Evolved subset
Static Random Sample 8 Random subset chosen at runtin
Dynamic Random Sample 8 Changing random subset
Exact Fitness 200 Use all training data

These algorithms are used as null hypatkdse elicit the effect of coevolution.

The Static Random Sample algorithm uses a single fithess approximation throughout
evolution. Eight random samples are chosen from the training data at run time, and
solutions are evolved using only this sample. Higorithm tests the hypothesis that

the performance improvement is made simply from reducing point evaluations.

The Dynamic Random Sample algorithm is similar to $atic algorithm, but now
the sample is reandomized at every generation of the solutions. This algorithm tests
the hypothesis that performance improves not only because of reducing point

evaluations but also because of allowing the sample to change.

The Exact Fitness Algorithm is given for the purpose of baseline comparison. The
solutions are evolved using the exact objective fitness, as is usually practiced in
symbolic regression resear¢Bggermont and Hemert 2000; Dolin, lll et al. 2002;

Hoai, McKay et al. 2002; Keijzer 2003)

30

In this section, we test on three different target functions that elicit different behaviors
from the four #orithms. The training data, shown HKigure 4.7, are 200 evenly
spaced samples of the target function. The test set contains 200 additional random
samples. Each expment is repeated 50 times independently, and the fitness for each

run is recorded over evolutionary time.

The performances on these three functions for each algorithm are shown versus the

number of point evaluations Figure4.8.

The polynomial functiory(X) is very simfe and coevolution, static random, and exact
fitness all rapidly converge. The coevolution and static random methods make similar
improvements over exact fitness, suggesting that the improvement is chiefly due to the

reduction in function evaluations.

Behavior on fy(x) is different however. The static and dynamic random sample
algorithms perform very poorly on average, and the exact fithess algorithm
outperforms them. However, coevolution still makes a substantial improvement over

exact fitness.

— — Xl i .
f1—1.5(2'X3 fz—el |S|n(X) f3: Xzes'n(x)+X+S|n(p/4_X3)
200 20 180 .
150 % 15 % st
“ 0 *, . 130 | ot
w0 [y A I I i
50 A (VR) o...owo o. P 80 1 : ‘1
0 S < H]
] e . < :
-10 ° 30 |
-50 A .15 %
-100 : * 20 : ‘ 20 ‘
-5 0 5 -3 -1 1 3
X X -10)(2 10

Figure 4.7. The training data of the three target functions experimented on. Tt
horizontal axis shows the input values x. The vertical axis shows the outj
training value f(x).

31

0

-50 A
rg -100 + —0— Coevolution
5 ---0--- Static
ﬁ -150 A — &— - Dynamic
b= —>»— Exact
L -200 -

-250 A

-300

1.31E+05 5.24E+05 2.10E+06 - 8.39E+06 3.36E+07
Total Effort (point evaluations)
0

_20 i
g 40 | —— Coevolution
5 ---0--- Static
ﬁ -60 — 4&— - Dynamic
=
L -80 A —¢— Full

-100 A

-120

1.31E+05 5.24E+05 2.10E+06 8.39E+06 3.36E+07
Total Effort (point evaluations)

Ny
o
\

—— Coevolution

N
o
\

----- Static
— &— - Dynamic

—X— Exact

Fitness (-error)
(2]
(@]

o
S
\

-100

-120

1.31E+05 5.24E+05 2.10E+06 8.39E+06 3.36E+07 1.34E+08
Total Effort (point evaluations)

Figure 4.8. The test set fitness during evolution for target functiond;(x), f2(x),

and f3(x) respectively. Results are averaged over 50 trials. Error bars show t
standard error.

32

In contrast, functiorfs(xX) gives an example in which the dynamic random sample
performs very well. It is able to find the large features of the function as quickly as

coevolution; however, it fails on the final sine feature.

We can make several conclusions from these result, Ehe static random sample
shows performance can be improved on a simple functiori;([esimply by using a
small subset for fitness calculation. On more complicated functions however, a small
constant subset alone cannot adequately represent feafune®re complicated

functions likef,(x) or f3(x).

Conversely, the dynamic random sample algorithm can greatly improve performance
on some more complicated functions suchf#£s%). Using a sample that changes
randomly can accelerate finding large featuoéghe data but may fail on simple

features as ify(x), f2(x), or the sine term ify(x).

For these basic test cases, coevolution performs the best in each case. We can reject
the hypotheses that the performance improvement is due only to usingargié or

a randomly changing stdample. Thus, the effect of coevolution must play an
important role. Later in thizhapterwe compare the convergence rates of these

algorithms over randomly generated functions to observe more general trends.

Comparison toPreviously Published Methods

In this section, we compare the coevolution algorithm with four recently published
symbolic regression techniques: Stepwise Adaptive Weights (S&gHermont and
Hemert 2000) Grammar Guided Genetic Programming (GG@R)ai, McKay et al.
2002) TreeAdjunct Grammar Guided Genetic Programming (TAG@HRai, McKay

et al. 2002) Coevolution with Tractable Shared FitnegXolin, Il et al. 2002)

Distinction Fitnesg(Dolin, Il et al. 2002) and random samplin@Dolin, 1l et al.

33

2002) We did not ramplement these algorithms. Instead, we ran our algorithm on the
same test problems reportedhe original papers, using the same convergence criteria

used in the original paper.

We compare computational performance based on point evaluations, defined by the
total number of times the output of any symbolic expression is evaluated. The

coevolutbn algorithm is stopped based on the number of point evaluations that the

compared algorithm made during each experiment. In the compared algorithms, we
assume that each individual's fitness is measured every generation. Likewise, we force
the coevolutionalgorithm to calculate fitness for every generation, even though

different selection algorithms do not require it.

Many of these experiments are on simple functions but are stopped at a very low
number of point evaluations. Thus, finding the target functjoickly is the highest
priority. The cosine identity and the Gaussian function experiments are noticeably

more challenging to regress based on parameters specific to these experiments.

Qualitative improvements iTable 4.2 are shown in bold text. The coevolution
algorithm has slightly higher convergence than the PSAW and GGGP algorithms on
polynomial problems. The TAG3P algorithm performs the best on simple
polynomids; however, there is a qualitative difference when applied to a harder
problem: regressing the double angle cosine identity. Coevolution makes a 40%
improvement in convergence for the trigonometric identity experiment. The
comparison with coevolved tratle, shared, and random sampling algorithms show
coevolution can make substantial improvements in regressing a Gaussian function,
traditionally a very challenging problem for symbolic regression in which over 90% of

the data pointie on the tail(Dolin, 11l et al. 2002)

34

Table 4.2. Performance comparison to published methods

. . g . g Published Coevolved
Algorithm | Target Function Metric Results Predictors
PSAW | f(x)=x°T 2¢+x | Convergence | 85.9% 93.9%

f(x) =x%7 2x* +x¢ | Convergenct | 81.8% 86.9%
y 4l 92%, 64%, 100%, 86%
A 0, 0,
GGGP P2, P3, P4, P5 Convergence 48%, 28% 620, 52%
f(xX) = cos(2x)** ConvergencféA 20% 76%
A Al 100%,100%, 100%, 86%,
TAG3P P2, P3, P4, P5 Convergenc% 96%., 84% 629%, 52%
f(X) = cos(2x)** Convergenc%A 36% 76%
Coevolved Gaussian Evaluation§ */ 3.384e7 2.107e7
Tractable
gpey olyed Gaussian Evaluation§ /4 5.070e7 2.107e7
istinction
gando_m Gaussian Evaluation§ */ 6.006e8 2.107e7
ampling

* P3, P4, P5 etc. refer to polynomiatsHc+x, X1 HE+x, XKHHCHé+x, €)
** The operator set does not include the cos() function, a trigonometric identity
~ be found

A The percent of successful convergences from 100 test runs

A Thepercent of successful convergences from 50 test runs

8 This target function and metric was used in the original paper

A AN he maximum number of evaluations before convergence for 100 test runs

Next, we make an empirical comparison with fitness inheritd8caith, Dike et al.
1995; Sastry, Goldberg et al. 2001; Chen, Goldberg et al. 2@@2nentioned in
above fitness inheritance is a fithessodelingapproach that evaluates exact d&s
values for a fraction of the population and allows the inheritance of fithess values
during crossover for remaining individuals. We implemented fitness inheritance in

symbolic regression by tagging 10%, 25%, and 50% of individuals each generation to

35

use exact fitness calculations and the rest to use their inherited fithess (or last exact

fitness).

Figure4.9 compares performance by the computational effort. Inetkperiment, runs
were stopped after 20,000 generations. Exact fithess and fitness inheritance use more

point evaluations and therefore show more data points on the plot.

Fitness inheritance appears to behave very similarly to the exact fithess algorithm in
symbolic regression. Using 50% exact evaluations in fitnes&ritance does
accelerate over exact fitness on several runs; however, further attempts to reduce

evaluations worsen the average performance.

This result is consistent with other work involving fitness inheritance. In related work
(Jin, Olhofer et al. 2002}he authors conclude that 50% of fithess evaluations need to
be based on exact fitness to ensure reliable convergence. In contrast, fitness prediction

distributes a small fraction of puievaluations to estimate the fitness of all individuals

o

-10 A P

-20 A Vid
— -30 4 K ,X —O— Coevolution
o P
3 -40 - 4 —>— Exact
” ---0--- FI1 50%
@ 50 ’
£ ---A--- FI 25%
L -60 A

---X--- FI 10%

-70 A
-80 A
-90 A

-100
1.31E+05 5.24E+05 2.10E+06 8.39E+06 3.36E+07 1.34E+08 5.37E+08

Effort (point evaluations)

Figure 4.9. Test set fitness versus evaluations averaged over 100 test runs
f2(x). Error bars show standard error.

36

Table 4.3. Example functions and complexities

Random Function Complexity
f(x) = x 1
f(x) =x° 7 x 5
f(x) = sin(cos())Qexp{) - cos)) 11
f(x) = exp((kl + expk)))/((exp) + sin(x))- [(/x)]) 23
f(x) = log(cosk + (exp(sink)x|)Asinddg(x)) + exp(cos)))))) 37

in every generation, the equivalent of roughly 5% full evaluations per generation in
this experiment. This demonstrates that a compromise between exact fitness
evaluations and approximated fithegslues can yield performance increases with

similar convergence rates.

Testing Scalability on Randomly Generated Test Problems
The experiment presented in this section explores the behavior of the coevolution

algorithm when solving for randomly generateddtions of varying complexity.

We generate random target functions by building a random binary tree of operations.

We then perform a rough simplification Isystematically pruning combinations of

nodes in the function's binary tree and then testing for a significant change in the
functions6é6 outputs (see Appendi x A). Next
over the range-2, 2] to generate the trainingata and then randomly sampled to

produce the test set.

37

We

Table 4.4. Chi-Square Significance of ConvergencRates Compared to the

def i

Coevolution Algorithm

Chi-Square p-value
Complexity| Static Dynamic Exact

1 1 1 1

3 1 1 1

5 1 1 1

7 0.315692 0.315692 0.080181
9 0.095581 0.052926 1.54E-05
11 1.08E05 0.000536 1.96E10
13 9.56E06 0.002441 7.75E17
15 4.1E07 0.000281 9.57E18
17 3.92E05 0.001073 5.17E20
19 0.000431 0.001726 4.75E-32
21 0.007439 0.040599 2.57E34
23 0.000303 0.000303 4.84E-25
25 0.001503 0.004607 4.32E16
27 0.002755 0.044423 1.91E13
29 0.049535 0.049535 1.19E-09
31 0.003649 0.0161 2.14E23
33 1.71E19 0.002359 1.71E19
35 1.23E08 0.022948 1.23E08
37 0.172386 0.172386 1.94E05

ne the Acomplexityo

n

t his

exper |

generating target function. Examples of randomly generated functions and their

respective complexities are shownTiable4.3.

We generate 5000 random target functions for this experiment in order to produce

training and test datasets of various complexities. Functions are uniformly spaced on

odd-numbered complexities from40.

38

Coev-Static Coev-Dynamic Coev-Exact

1.2 1.2 12
o 1 [eee o 1 feee o 1 feee
L 0.8 A 0.8 - 0.8 A
T 06 T0.6 Co.6
3 04 - B0.4 P04
U.) 0.4 . (i) . . @o.
c 0.2 A P £ 0.2 A * <02 A
e O Ol _eic-— - _ ©) | & ___
O 0 F——"000004606 000 — 0 L 0 "'::::“‘ “““ 0000
0 20 40 0 20 40 0 20 40
Complexity (# of nodes) Complexity (# of nodes) Complexity (# of nodes)

Figure 4.10. The Chi-square pvalues for significance of convergence vers
complexity between the coevolution algorithm and each comped algorithm.

The four fitness algorithms described in the first experiment were tested on the
randomly generated target symbolic functions. For each run, all algorithms were
initialized with the same initial populations and control parameters. We used the same

experimatal setup and controls as in the previous experiments.

Each run is stopped after 10 million function evaluations. Then the best individual is
tested for a perfect fit to the test data, and a tally of the successful convergences is
recorded for each compigy. The percent of successful convergences versus

complexity for each alternative algorithm is plottedrigure4.11.

We have performed a CHliquare statistical test between coevolution and each
algorithm. The difference in convergence is found to be statistically significant (p <
0.05) for all complexities between 9 and 37. More samples at higher congslexi

needed to conclude the significance at 37.

A Chi-Square pvalue < 0.05 is shown to indicate statistical significance. At low
complexities, all algorithms have 100% convergence and have no statistical
difference. The jalues for higher complexitte show that coevolution has
statistically significant higher convergence than the other three algorithms compared.

More samples are needed to show significance at complexities 37 and higher.

39

100 A

—— Coevolution

---O0--- Static
| 0
80 N — £&— - Dynamic

—X— Exact

60

w0 | \
N\
\ B

“h
20 1 \ \\"zx
‘\) \!x-r.;{}\,\

—

Success Rate (%)

M=
\><-—-><\x\fi'_\ PR=
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
Target Complexity (# of nodes)

Figure 4.11. The percent of successfuconvergence after 10 million poin
evaluations versus the target function complexity (the number of nodes in t
binary expression tree).

We see that all algorithms have a very high probability of sscdes simple
functions. Furthermore, all algorithms experience a drop in success with an increase in

the complexity of the function, but at different rates.

The coevolution algorithm has the highest success rate in general. It maintains a 5
10% higher convergence rate over the other fitness algorithms involving the 11 to 27
complexity functions. Most notably, coevolution maintains424 advantage over the

29 to 37 complexities where the other algorithms hax8%@successful convergence

overall.

The static and dynamic fitness approximation algorithms perform significantly better

in comparison to the exact fitness algorithm with the 9 to 37 complexity functrons

40

the previous experiment, we saw that the exact fithess algorithm achieves higher
fithessvalues, but here we are only measuring convergence, and the fitness prediction
algorithms converge significantly more on average over random functions. The exact
fitness algorithm achieves many fewer generations for the same number of point
evaluations and may simply be lacking some amount of exploration from crossovers

and mutations to converge on the final solution.

Next we look at the improvement factor in ordercompare coevolution paivise
with the other three approaches. The improvement factor is the ratio of convergence of

coevolution to the compared algorithm, over complexity:

% convergeneof coevolution
Improvement Factor = -
% convergeneof comparedlgorithm

An improvement factor of one indies the two algorithms have the same
performance. A factor of less than one indicates that coevolution performed worse.
Greater than one indicates coevolution performed better. For example, a factor of two

indicates coevolution had twice the convergenaegven complexity.

Though all algorithms decrease in convergence with increasing complexity functions
(Figure4.11), the improvement factor for coevolution tendsriorease Kigure4.12).
Statistical testingKigure 4.10 and Table 4.4) demonstrates this growth as significant
for complexities 11 and higher. Based on this observation we conclude that

coevolution may offer greater tolerance to growing clexipy.

41

100%
05 95%
— S 90%
S 2 85% |
(D) (&)
L5 S 80%
A ; o .
a , —O— Coevolution = 75% - —o— Coevolution
[=E >
T S 70% -
LL @]
} i —x—Exact —_——
2.5 O 6506 | & x— Exact
3 +—H 0% A]
0 5000 10000 15000 0 5000 10000 15000 e
Generations Generations

Figure 4.13. Fitness and percent of runs converged versus generatic
throughout evolution on the function fy(x). Error bars show the standard error.
Note that exact evaluations are performing significantly more computation:
effort per generation.

Improving Solution Reliability

One important effect ditness prediction is the adaptation of fithess pressures, which
causes the evolutionary focus to change throughout evolution. In this section, we
examine how this effect impacts the solutions found by comparing performance by
generation, rather than contptional effort. We also examine the difference in

solution bloat when using coevolved fitness predictors.

Comparing Performance by Generation

We measure the fitness and convergence of 100 runs versus the number of generations
(not point evaluations as lme€). Note that in our previous experiments, coevolution
achieves many more generations with the same number of point evaluations

(computational effort) by utilizing the fitness predictor.

The experiment is ihtical to the previous experiments; however, we run the -exact
fitness algorithm out to billions of point evaluations so that we can compare

performance based on the number of generations rather than the amount of

42

computational effort.

Figure4.13 shows the performance of each algorithm over 20,000 generations while
regressing(x). This is sufficiently long enough for both algorithms to achieve 90%

convergence dnigher.

The exact fitness algorithm starts with a clear lead over coevolution in both fithess and
convergence in early generations. However, at approximately 4000 generations
coevolution begins to dominate the exact fitness algorithm over the averagesstl00

runs.

This empirical result ory(X) suggests that coevolution outperforms the use of exact
fithness measurements even when ignoring the high cost of exact fraless. There

are several possible explanations for this. Fitness approximation carsdhutions to
unexplored areas of the domgiooker, Dennis et al. 1999; Regis and Shoemaker
2005) perhaps increasingconvergence. Additionally, adapting the fitness
approximation can destabilize local optima solutions, as also notg@agye and
Hogeweg 1997; Jin 2005When individuad converge to local optima in the fitness
predictor, predictors react to approximate the region more accurately. The better the
local optima solutions are, the more stable they will be during the predictor transition.
Since the predictions shift data poarhphasis, the improvement may also be related
techniques such as boosting or adaptive weighting. Although this behavior may be an
important advantage of coevolved predictors, understanding it is beyond the scope of

this chapter

Reducing Bloat
A challenging problem in many genetic programming domains is dealing with bloat.

Bloated solutions are those that are excessively complicated. In relation to machine

43

l earning, bl oat can be thought of as fndove

structures that do not exist in the real system.

Bloat can also be problematic in symbolic regressiigure 4.14 shows the size of

the best solution during evolution 6ix) averaged over 100 test runs. Functig)

is a very simple nonlinear target function that has two difficult local optima. This is a
good first example because the local optima may be cause for extra bloat during

evolution. Later we compare bloa randomly generated functions.

In this instance, size, defined dse number of nodes on the binary tree, is

synonymous with the complexity metric used earlier.

On average, coevolution maintains significantly less complex solutions during
evolution than the algorithm using exact fitness calculations. The exact fitness

sdutions balloon near 5000 generations while coevolution experiences solution sizes

35

33

31

29
27 1
25 Q
23

21

Solution Size (# of nodes)

19 A

—O— Coevolution

17 —X— Exact

15

0 5000 10000 15000
Generations

Figure 4.14. The size of the best solution during evolution of;(x) averaged ove
100 test runs. Error bars show the standard error.

44

20
T
L

o
N
) 15 + 1
o) 1
o
©
|_
1 10 1
(0]
N
(7))
=
(=) i
& 5
T
o
m

0

Coevolution Exact

Figure 4.15. The bloat of final converged solutions averaged over 500 randon
generated target functions. Error bars show the standard error.

that are both lower and more consistent.

This preliminary result fronf(X) suggest fitness prediction is less susceptible to bloat.
To get an idea if this could be a gemetrend, we compared solution sizes of both
algorithms on randomly generated target functions where both algorithms are allowed

to fully converge.

Figure 4.15 shows he bloat of final solutions of both algorithms on 500 randomly
generated target functions. Coevolution yields less bloated solutions on average for
randomly generated functions as well. Here we define bloat as the solution size minus
the target function ge. Each algorithm is tested on the same target functions and only
target functions in which both algorithms converged are considered. Note that bloat
reduction can also improve computational performapee point evaluationsince

smaller expressions cée evaluated faster.

Coevolutionary bloat reduction is anpartant observation for thishaptey but deeper

45

analysis is beyond the current scope. One hypothesis is that the fithess landscape
imposed by fithess prediction is simpler and therefore inherently biased towards
simpler solutions. In the case of a subseddictor as used here, the sample is less
likely to encompass fine detail in training data features, thereby reducing pressure to
explain detail or noise features until the solutions have converged on the larger trends

first. However, we leave deeper ayms to future work.

Conclusions

This chapter proposed a coevolution algorithm to address three fundamental
challenges faced when using fitnes®deling in evolutionary algorithms: (1) the
model training investment, (2) choosing a level of approximatiod, (8) loss of
accuracy. The coevolutionary framework uses three populations: Problem solutions,
fitness predictors, and fitness trainers. Solutions evolve to maximize their predicted
fitness, fitness trainers are selected to cause the most inconsistetaiesn fitness
predictors, and finally fitness predictors evolve to minimize error in predicting the

fitness trainers.

For the problem of symbolic regression, we have shown the following advantages:

4. Computational performance improvement: Coevolution proudes
substantial performance improvement over exact fithess, random sample, and
dynamic sample fitness algorithms. On simple manually designed test
problems, coevolution achieves higher average fitmakges and more reliable
convergence with significaytl less computational effort in each case.
Coevolution also performs competitively with other recently published
symbolic regression methods. In these experiments, coevolution achieves

significantly higher convergence on challenging experiments such as

46

trigonometric derivations and has a similar performance on simple experiments
such as polynomial targets.

5. Scaling: In experimentation on randomly generated benchmarks, coevolution
shows higher performance over all solution complexities tested. The factor of
improvement increases as complexity rises.

6. Performance by generation Empirical results show that coevolving fitness
predictors can yield higher fithess solutions compared to the exact fitness
algorithm even when disregarding savings in computational efints
suggests that the transformation of the fitness landscape is in itself beneficial.

7. Bloat reduction: Empirical results suggest that, on average, coevolution yields

less bloated solutions for randomly generated target functions.

Finally, fitnessprediction is a technique that can be applied in many domains and
general problems. Certain problems that have traditionally been poorly suited for
fitness approximation (e.g. symbolic regression) or coevolution could benefit from this
coevolutionary apprachi such as increasing computational performance, scaling to

higher complexity problems, improving convergence, and reducing bloat.

a7

CHAPTER 5.RANK PREDICTION

Summary

Many applications of evolutionary algorithms utilize fithess approximations, for
example coarsgrained simulations in lieu of computationally intensive simulations.
Here, we propose that it is better to learn approximations that accurately predict the
ranks of individuals rather than explicitly estimating their rgalued fithess values.

We present an algorithm that coevolvesrank-predictor which optimizes to
accurately rank the evolving solution population. We compare this method with a
similar algorihm that usesfitnesspredictors to approximate reatalued fitness
values. We benchmark the two approaches using thousands of rargiemeated test
problems in Symbolic Regression with varying difficulties. The rank prediction
method showed a-fold redwction in computational effort for similar convergence

rates. Rank prediction also produced less bloated solutions than fitness prediction.

Introduction

In practice, many applications of evolutionary computation involve expensive fitness
calculations(Jin, Olhofer et al. 2001; Ong, Nair et al. 2008Bpr example, some
problems involve simulating the performance of evolved roboticguctstes. Others

commonly involve evaluating a solution over a large dataset.

One method to address the computational difficulty of fithess calculation is fithess
modeling and approximation(Jin 2005) Fitness models are often coarse
approximations of the full fithess calculatidnfor example, a coarse simulation, or

subset of the datasiethosen ahead of time to replace the full §sé&inction.

One general method to improve performance using fithess approximations in arbitrary

applications is the Coevolution of Fitness Predictors algorif®ommidt and Lipson

48

2006; Schmidt and Lipson 2006; Schmidt and Lipson 20@8je, the concept of a
fitness predictor is to estimate the exact fitness value of an individual with an
extremely coarse and liglteight approximation. Instead of specifying the
approximation ahead of time, fithess predictors are coevolved, optimi@irgability

to estimate the exact fitnegalues of the current solution population.

A surprising result from this method is that it can improve performance even with
extremely coarse fithess approximations. For example, in the symbolic regression
(Koza 1992)roblem, the fitness predictors can maintain an objective fitness gradient
by evaluating solutions on as few as four data points in a data set of thousands of
points andtens of variablegSchmidt and Lipson 2007)n such extreme sas, the
fitness approximations are almost certainly inaccurate, but still allow evolutionary

progress on the objective fitness.

In this chapter we propose that the primary mechanism by which fitness
approximations improve performance is by providing eateurankings of individuals,

rather that accurate fitness values as originally intended. Furthermore, we suggest that
performance can be improved even further by selecting approximations that are

optimized to rank solutions, rather than model their fardieectly.

To test this idea, we use two implementations of the Coevolution of Fitness Predictors
algorithm for symbolic regressiq®chmidt ad Lipson 2008) The first is the standard
fitness predictor algorithm which coevolves a small subset of the total training data to
measure error. The second is identical, however fitness predictors are replaced with
rank predictors, which are optimizéa rank solutions, rather than model their fitness
values. We then test the performance of these two algorithms on thousands of

generated test problems and observe their differences over varying problem

49

difficulties.

In the remaining sections, we descrildated work in fithess approximation and
introduce the basic algorithm for coevolving fitness or rank predictors. We then detail
our experiments and test problems on the symbolic regression problem and present

results. Finally, we conclude with discussamd final remarks.

Background

Mentioned above, fithess modeling is the technique of using a predefined model or
coarse simulation to approximate the fitness calculation in evolutionary algorithms;
especially in cases where the exact fitness requires pansixe simulation or
physical experiment. In contrast, fithness predictors are a type of fitness model that is
SO coarse that they cannot approximate the entire fithess landscape. Instead fithess

predictors must be adapted throughout evolution.

In this chegpter, we use a subampling of training data for the predictor structure. For
the fitness predictor, the sigample is optimized to match the fitness of the entire data
set, while the rank predictor simply picks points that accurately rank the solutions. |
both cases, the sample is optimized in a second coevolving popy@&abmidt and

Lipson 2008)

Algorithm

Fitness and Rank Predictors

The objective of a fitness predictor is to approximate the expensive, exact fitness
calculation of an evolving problem solution. The objective of a rank predictor however
is to provide a ranking of solutions that corresponds to their ranking based on their

exact fitness values.

50

These two types can be very similar in implementation. A fithess predictor does in fact

produce a ranking of solutiofisa ranking based on the predicted fitness values.

In fact, in our implementation, we represent rank and fithessgboesl identically.
The primary difference is the objective they are optimized for: producing an accurate

ranking or a representative fitness value.

Both rank and fitness predictors produce a numeric value. For the fitness predictor,
this value is optimied to match the exact fithess value of the solutions in the current
population. The numeric value produced by the rank predictors has no discernable
scale or magnitude; it is simply a value that is likely correlated with the exact fitness.
Furthermore, theank predictors are optimized such that if this value is used to rank
the solution population, it produces a similar ranking to that based on the exact fitness

values.

In our experiments, we compare the two methods on the symbolic regression problem
where fitness is measured by error on a dataset. Here the fithess and rank predictors
are encoded as a small subset of the total training data. The subset indicates to
evalude the solutions and measure error only on these data points. We used a fixed

subset size of 16, where the total training data set size is 500.

Fitness and Rank Trainers

Because fithess and rank predictors are very coarse approximations, they need to be
optimized to approximate for the current solution population. Therefore, we need to
calculate the exact fitness (error on all data points) of some solutions from the current
generation in order to train the predictors. These example solutions are known as

fitness trainers.

51

Fitness trainers are selected in order to help predictors optimize to the current
solutions. To do this, the algorithm chooses a solution whose predicted rank or fithess
has the least confidence. For example, we select the solutiorheithighest variance
(Bongard and Lipson 2005; Jin and Branke 20@bpredicted fithess, or highest

variance in predicted rank, among the current rank or fitness predictors.

Additionally, old trainers are discarded to keep the predictors optimizing to only
recent solutions. I f the popul ation diver.
to optimize the prdictors on those solutions any longer. In our experiments, we

discard trainers older than 1000 generations.

The population of trainers allows us to define a fitness, or optimization criterion, for
the predictors. In the case of fithess predictors, whepans the set of trainers, this

metric is:
"N a | fitnesg(i) - prediction(i)|

Very simply, this rewards the fitness predictors to accurately reproduce the exact

fitness value.

In the case of the rank predictor, wherandj span the set of pairs of trainers, the

meric is:

1 €0 iandj orderedcorrectly
N? i,i%irs:' 1 otherwise

This rewards rank predictors for correctly ordering pairs of soluiimrsequivalently,

correctly ranking all trainers.

52

Coevolution Algorithm

The coevolution algorithngSchmidt and Lipson 2008phat we modifyin this chapter

has three populations: Problem solutions, fitness predictors, and fitness trainers. As
described earlier, fitness trainers are a set hitisos chosen to train the fithess and

rank predictors on.

The algorithm chooses individgafrom the solution population toalculateexact
fitness values in order to trairthe fitness or rank predictors. The algorithm then
evolves the solution populatiausing the highest ranked fitness or rank predictor, and

evolves the predictors using the fitness trainers

Experimental Setup

In this section we detail our experimental methods to test the impact of using rank
predictions rather than fitness approximasoWe perform identical experiments on
two algorithms: (1) the coevolved rank predictor algorithm, and (2) the coevolved

fithess predictor algorithrfSchmidt and Lipson 2008)

We experiment on the Symbolic Regression problem because it is a ubiquitous and
important problem in genetic programmi(i§oza 1992) Additionally, we can easily

vary the problem complexity and the problem dimensionality.

Symbolic regressiofKoza 1992)is the problem of identifying the simplest equation
(Grinwald 20003hat most accurately fits a given set of data. Symbolic regression has
a wide range of applications, such as prediction, classification, modeling, and system

identification.

Recently, symbolic regression has been used to detedensed quantities data

representing physical laws of natf&chmidt and Lipson 2009infer the differential

53

equations in dynamical systerfiongard and Lipson 2007)

Symbolic Regression

See the description in the secti@®@ymbolic Regressighon pages.

Test Problems

We measured performance of each algorithm on randomly generated test problems. To
generate a random problem in symbolic regression, wplgineed a random target
equation to find and a set of data corresponding to that equation for the fitness error

metric.

We experiment varying two characteristics of the random symbolic regression

problems: (1) the dimensionality of the data (i.e. the lmemof variables in the data

set), and (2) the complexity of the target

parse tree). Both of these characterist.i
dimensionality increases the base set afsfile variables for the equation may use,

while increasing complexity increases the chances of couples nonlinear features.

The first step in our random test problem generation is to randomly sample the
dimensionality of the problem. We pick a random numiifevariables between one

and ten.

Next, we generate a random equation which can use any of these variables. We
generate a random equation in the same fashion that we generate random individuals

in the evolutionary algorithm.

Many randomly generated eqioats may have compressible terms. For exaniptg,
=4.211 + 0.93 + 1.23 is equivalent tf(x) = 0.93x* + 5.441. Therefore, we perform

a symbolic simplification on the randomly generated equation in order to get an

54

C S

accurate measure of the target emurest complexity. We measure complexity of the
problem as the total nodes in the binary tree representation of the equation. For

example, the complexity of the equation just above is 5.

We repeat this step as necessary in order to get a uniform distribution of problem
complexities. We continue generating and simplifying equations in order to uniformly

sweep the problem complexities between 1 and 32.

Next, we randomly sample the input was of the equation 500 times to create a
dataset. These variables are sampled from a normal distribution around the origin,
with standard deviation of two. The equation is then evaluated on these variables in
order to get the target output value. Sevesamples of training data are shown in

Figure5.1.

Finally, we also generate a separate validation data set of 500 points. The validation

data set is created in thensa fashion as the training data set, however the input

Simplify Expression

)

Generate Training Dat

Figure 5.1. The generation of random test problems for symbolic regression. V
start by picking a random number of inputs, between one and ten. We th
generate a random equation using these inputs and simplify the equation bef
measuring its complexity (the number of wdes in the binary tree). We the
generate a random training data set by sampling the input variables around ti
origin and evaluating the target equation on these data points. We then gener
a validation data set in a similar fashion, but with a wider ange around the
origin to test if the solutions extrapolate to the exact solution.

55

variables are sampled with a standard deviation of three. By using a broader input
sampling, we can use the validation dataset to test whether solutions extrapolate in

their predictions to unseen data.

We also use this to measure the percent of times the algorithms find the exact solution
T if the algorithm achieves near zero error on the extrapolated validation dataset. Since
we are not adding any noise to the dataset, we expect the algorithmshaeeac

error on the generated data, if the exact solution is in fact found.

Measuring Performance
We tested each algorithm on 1000 randomly generated symbolic regression problems.

Each evolutionary search was performed on a single quad core computer.

Evolution was stopped if the algorithm identified a zero error solution on the
validation data set (i.e. less than®l8ormalized mean absolute error), or when the

algorithm reached one million generations.

Throughout each search, we log the best equatisrfitmess (i.e. normalized mean
absolute error) on the training and validation sets, its complexity, and the total
computational effort. We measure computational effort as the total equation

evaluations performed in fitness calculations.

The fitness of tB normalized mean absolute error is normalized using the standard
deviation of the target output values. The normalized fitness allows comparing fitness
values between evolution runs and detecting convergence to the exact target solution
more easily. In &lfigures, we show the fitness on the validation data set (i.e. the

normalized mean absolute error on the validation data).

56

Algorithm Settings
We use the symbolic regression algorithm describé@ahmidt and Lipson 200&)s
the basis for our implementation. We simply swap out the fitness criterion for the

fitness predictor for the rank predictor criterion, described earlier.

We use determinig crowding selection(Mahfoud 1995) with 1% mutation
probability and 75% crossov@robability. The encoding is aacyclic graph of 64
operations/node¢Schmidt and Lipson 2007)The operation setllowed addition,

subtraction, multiply, divide, sine, and cosine rgpens.

Experimental Results
This section summarizes the experimental results comparing the two algorithms: (1)

the standard fitness prediction algorithm, and (2) the rank predictor algorithm.

Fitness and Convergence
We first observe the fitness of eaclyaithm over the course of the evolutionary
search, with the time measured in computational efféine total point evaluations of

all equations in fitness calculations, predictions, or rank predictions.

The fitnessvalues plotted inFigure 5.2 show both algorithms have similar trends on
the randomly generated test problems, suggesting that the algorithms experience
similar optima during their searches. Despite this, see a clear difference in the

fithess performance over time, with rank predictors achieving lower error.

This may also reflect the difference in convergences to the exact problem solution,
also plotted inFigure5.2. Here we notice that the fitness predictor algorithm begins
finding exact solutions slightly sooner than the rank predictor algorithm. However, it

is quickly overcome by the rank predictor algorithm.

57

| ——Rank Predictors
—=— Fitness Predictors

—— Rank Predictors
—=— Fitness Predictors

N
T

=
o

computational
effort

=)
T

=
o

Fitness [mean absolute error]
Exact Solution Found [%)]
w
o

X
T

=
o

10° 10* 10° 10*°
Computational Effort [evaluations] Computational Effort [evaluations]

Figure 5.2. The fitness and convergence rate to the exact solution @act
algorithm versus the total computational effort ofeach trial. The fitness (left) i
the normalized mean absolute error on the Viaation data set. Convergence t
the exact solution (right) represents the percent of the trials that identify
solutions that have less tharepsilon error on the validation data setError bars
indicate the standard error. The performance of the algorithm without using
prediction at all is several order of magnitude higher in computational effort an
is not shown.

Later in the evolutionary searches, the rank predictor algorithm shows a clear trend of
finding the exact problem solution more offemeaching55% average convergence

rate in less than 1/5 the time than that of the fithess predictor method.

Computational Effort

We also compared the total computational effort each algorithm required to find the
exact problem solutiori in cases where the algdnh did indeed find the exact
solution. Here, we looked at the computational effort versus the complexity of the

target solution and the dimensionality of the datasets for each evolutionary search.

In response to increasing target solution complexity, showifrigure 5.3, both
algorithms show very similar trends. We do see a small difference, where the fitness
predictor algorithm tended to find the exact solution sligfdster for the simplest

problems. At higher complexities, the difference is less noticeable, however rank

58

(N
o
T

=

o

o ~ o)
T T T

=
o
©

IN
T

w
T

Computational Effort [evaluations]
Computational Effort [evaluations]
[$))

T

—=— Rank Predictors —=— Rank Predictors

N
T

—=— Fitness Predictors —=— Fitness Predictors
0 10 20 30 40 0 2 4 6 8 10 12
Solution Complexity [tree size] Number of Variables

Figure 5.3. The computational effort required when the exact solution was four
versus the target equation complexity (left) and the number of variables in tl
dataset (right). Each algorithm found the exact solution with differen
frequencies; these plots show the coropation effort for when the algorithms did
find the exact solution. The error bars indicate the standard error.

predictors tended to require slightly less effort at most higher complexities than the

fitness predictors.

There is a similar trend found in thengputational effort to find the exact solution
versus the number of variables in the problem databegsiré 5.3). Computational
effort tended to increase with dimensionality for both algorithms. Again, fithess

predictors tended to require slightly less effort on average for the lower dimensions.

Solution Bloat
Finally, we looked at the solution bloat that both algorithms experienced over the

course of the evolutionary searches.

We defire bloat as thelifference between thiginary tree size of the best solution in
the populatiorandthe target solution. Therefore, the bloated solutions have positive

bloat values, andnderfitsolutions have negative bloat values.

The bloat resultsHigure 5.4) show that both algorithms begin with highly bloated

59

[E
N
T

[Eny
o
T

—— Rank Predictors
—=— Fitness Predictors

Solution Bloat [tree size]
o]

10° 10
Computational Effort [evaluations]

Figure 5.4. The mean slution bloat of the best solution versus the computation
effort. Solution bloat is defined as the binary tree size of the best individual in t
population minus the size of the target solutionError bars indicate the standarc
error.

solutions, which decrease over the search toward the target solution on average.

Interestingly, fithess predictors are slightly more bloated on average than the rank
predictors. This is only true however later during the evolutionary searches. However,

itdéds unclear i f thi s ofithefittkss@redicors.t he | esser

Discussion
The results in the previous sections show several interesting trends which highlight the

difference between the two algorithms.

Most significantly, we found that the rank predictor algorithm found the exact solution
more often on the hardest problems which took the most computational effort to solve.
The rank predictor algorithm also found solutions with higher objective fithess on

average, despite only being evolved to onl

Overall, resuls in computational effort, for both the test problem complexity and the

60

number of variables in the dataset, were similar. This suggests that there was not great
difference in speed to find the exact solution between the two algorithwhen it is
indeed bund. Instead, the benefit must be arising from finding the exact problem

solution more often.

Interestingly, the fitness predictor algorithm achieved slightly higher performance than
the rank predictors early in the evolutionary searches, and for thelesirest
problems. Additionally, the fitness predictor algorithm experienced more bloat on
average than the rank predictor algorithm. This suggests that fithess predictors may be
placing stronger pressure to fit detailed features in the data set. Ine stegtl
problems, this may boost convergence to the exact solution. In more difficult problems

however, it could result in excessive bloat.

This may be the primary reason rank predictors outperformed the fitness predictors.
By optimizing solution rankingiather than explicit fitness values, they may not need

to emphasize large errors or detailed features to create accurate fithess values. They
only need to emphasize the points of disagreement between solutions in order to find

an effective ranking.

Concluson

In summary, many applications in evolutionary computation rely on fitness
approximation and modeling. Instead of using fithess models which approximate the
absolute fitness value, we proposed optimizing rank predi¢toapproximations

which can accutely rank solutions in correspondence with the absolute fitness.

We compared the difference between optimizing modeled fitness values and
optimizing solution rankings using a coevolutionary algorithm which optimizes either

fitness predictors or rank pretties with the evolving problem solutions. We tested

61

both methods on the symbolic regression problem using thousands of test problems,

varying in problem complexity and number of variables.

Our results found rank predictors strongly outperform fitness gigdi achieving
higher fithess on average and identifying the exact problem solution more often.
Interestingly, when solutions are found by both algorithms, both algorithms used
similar amounts of computational effort to find solutions, suggesting thmeapyi
benefit from rank prediction comes from identifying the exact solution more often (i.e.

more reliably).

62

CHAPTER 6.META-OBJECTIVES IN EVOLUTONARY SEARCH

Summary

In this chapter we explore the impact of metdojectivesi optimizing secondary
objectivesi in an evolutionary search. Ordinarily, evolutionary algorithms attempt to
optimize a primary objective, such as minimizing error. Here, we consider three other
secondary objectives: genotypic age, genotypic novelty, and solution complexity.
Recent research hgeown eaclof these traits to be important in evolutionary search
individually. Here, we examine the impact of optimizing all combinations of these
objectives simultaneously, to improve the original primary objective, in an explicit
multi-objective searchWe first compare an explicit mulbbjective algorithm that
optimizes error and age objectives with the existing singjective age algorithm on

the Symbolic Regression problem. Results show that the -ohjéctive approach
identifies the exact targetolution more often thrathe agelayered population and
standard population methods. The muaobiective method also performs better on
higher complexity problems and higher dimensional dataseéisling global optima

with less computational effort. Nextwe repeated this experiment for each
combination of the four objectives. Results show that age yields the greatest
improvement in performance for a single extra objective. Performance improves even
more when additionally optimizing for age and noveltyti@izing for complexity

tended to only improve the Err@omplexity Pareto volume performance.

Introduction

A common problem in many applications of evolutionary algorithms is when the
progress of the algorithm stagnates and solutions stop improving.ndirge
additional computational effort in the evolution often fails to make any substantial

progress. This problem is known pemature convergend&enneth Alan De 1975;

63

Louis and Rawlins 1992; Conor 1996)

A common method for dealing with premature convergence is to perform many
evdutionary searches, randomizing and restarting the search multiple (theresen

2002; Auger andHansen 2005)This approach can be wasteful however, as the entire
population is repeatedly thrown out. There is also the difficulty of deciding when to
restart, and the possibility that the converged population could continue improving

with additionaldiversity.

One of the best performing methods in the genetic programming literature for
addressing premature convergence is the-lbayered Population Structure (ALPS)
method(Hornby 2006; Hornby 2009ALPS uses a special notionadei how long
genotypic material has existed in the populatiom order to partition the evolving
population into age layers (sdéigure 6.2). The algorithm adds new random
individuals into the youngest population layer throughout the search, and layers evolve
independently of others. As a result, the youngest layers, do not immediately compete
with the oldest and most fit solutions. Impientation of the ALPS algorithm,
however, requires new parameters, such as how to pick age layer cutoffs and how

many solutions to keep in each layer, etc.

The concept of age in the ALPS algorithm is an example of a secondary objective. The
ALPS algorithmuses this objective to partition the population to significantly improve

search performangglornby 2006; Hornby 2009)

In this chapterwe first consider using the ALPS concept of age as a fundamental
property in the evolutionary optimization. Rather than using age to partition the
population into layers, we use age as an independent dimension in -@byadtive

Pareto front optimization. In this context, a solution is selected for if it has both higher

64

fithess and lower genotypic age than other solutions.

A completely multiobjective approach allows us to consider adding other secondary
objectives. Our hypothesis is that, based on the impact of age, other seemingly

unrelated objects may further improwerformance.

We consider explicitly optimizing two other objectives in addition to age: solution
complexity and genotypic novelty. We test the impact that optimizing all possible
combinations of these objectives has on the overall performance on theyprima

objective.

Heuristics
Here we introduce the secondary objective metrics. In all experiments we use a

primary objective (minimize error), with zero or more secondary objectives.

Complexity

Complexity is a commonly used secondary objective in genetic progranfMarg,
Guido et al. 2007; Schmidt and Lipson 200@pmplexity generally measures the size
or content of a solution. Many algorithms explicitly minimize, or penalize for
complexity in order to reduce blo@Banzhaf and Langdon 2002)the tendency to

evolve exeedingly complex solutions.

Often, complexity is incorporated as a penalty in the primary fithess objective when
solutions become large enough. This effectively establishes a fixed tradeoff between
complexity and fitness. When used in muakijective optnization instead, the
complexity metric biases the search toward simpler solut{&asvin and Jordan

2003) Simple solutions are favored because they aredoomnated in age.

In our experiments in symbolic regression, we measure complexity as the trée size

65

the number nodes in the expression's binary tree representation.

Age

Interestingly, the concept of genotypic age as used in ALPS has shown to be one of
the best approaches for avoiding premature convergence and improving results
(Hornby 2009) Our goal in this chapteiis to develop this idea further by utilizing

genotypic age as a fundamental search trait.

The age of a solution is generally measured in generations, or alternatively
computational effort measured in fithess evaluations for sts@dy algorithms

(Hornby 2009)

All randomly initialized individuals start with age of one. With each successive
application of a variation operator, the age of an individual is incremented by one.
This alone measures the amount aidian individual has existed in the population.

However, we are more interested in the age of the genotype.

To measure the age of the genotype, we need to pass on ages during crossover and
mutation events. There are several options, such as taking tlo¢ gagemost similar
parent, taking the average age of the parents, etc. The best method reported in the
literature(Hornby 2009) and the method we use, is to inherit the maxinage of the

parents.

Therefore, the age is a measure of how long the oldest part of the genotype has existed

in population.

Novelty
Novelty is a measure of how new or original a solution is, or how densely the search

has explored on similar genotypes. #shalso been suggested as a primary search

66

A | Equation#1
Equation #2
Equation #3

Rankb |:]

Primarg Equation #5 Maximum correlation of

Objectivel _ residual errors of the

Equation #6 nearest fitness neighbor
i 7

Novelty=

\/

Equation #n

Figure 6.1. The novelty objective of a solution. Here, the novelty of equation #
is equal to the maximum correlation of its residual errors with its two nearest
neighbors in terms of fitness.

objective (Lehman and Stanley 2010Where the population is evolved in order to
maximize novelty. Maximizing novelty has the effect of increasing the search
coverage, ensuring a high degree of exploratioor even a maximum amount of

explomation versus the computational effort.

Novelty can also be thought of as a diversity metric. The higher novelty values in a
population, the greater the diversity. Therefore, novelty will also prevennhatare

convergence, but in a more direct way than age.

In our experiments, we measure novelty as the correlation of a solution with other
solutions of similar fitness. The higher the correlation, the less novel the solution is.
We first sort all solutions by their fithess (the primary objective, such as error on a
data set). We then calculate the correlation coefficients of each solution with its
closest fitness neighbor. We then define novelty measure as one minus this correlation

value.

Random Objectives

In our experiments, we also use random objectives in ordendie accurately

67

measure the impact of each secondary objective. If a particular combination does use
one of the three secondary objectives, the objective is replaced with a random

objective.

Each new solution is given a random score on each random wéjedten initialized.
The random scores are inherited during crossover. This allows some solutions to be

nondominated by chance, but otherwise implies no other metric of the solution.

In effect, this allows us to measure the impact of each objective ae@dam noise
objective, since an algorithm may otherwise have sensitivity to the dimensionality of

the multrobjective optimization.

Algorithm

Age-Fitness Algorithm

As in the ALPS method, random individuals are added into the population at each
generation Rather than flowing up the age layers, they flow through a two
dimensional space of fithess and age (Biggire 6.2). Young solutions exist in the
same population abke oldest and most fit, but persist because they arelommated

on the age dimension of the Pareto space.

A key benefit of the proposed approach is that it does not require a population
partitioning or structuring. For example it does not constragrnmediate layer sizes,
the number of total layers, or layer partitions. These variations all exist within the
larger Pareto space of the search, allowing thefitgess distributions to vary

dynamically.

Like ALPS, this approach makes no assumptions talloe underlying solution

representation. Therefore, it can be applied to nearly any evolutionary search problem

68

A B Population #5

Population #4

i Population #3

Fitness Age opulation

[generations] :

Population #2

Random Population #1
Individuals | ® T

Age [generations] | Random Individuals|

Figure 6.2. The AgeFitness Pareto Populationalgorithm (A) considers a singl
population of individuals moving in a two-dimensional AgeFitness Pareto spac
Individuals are selected for if they simultaneous have higher fithess values ¢
lower age than other individuals. Ages increase every generati, or are inherited
during crossover, and new random individuals are added with zero age. In t
Age-Layered Population Structure (ALPS) algorithm, there are several layers «
populations for each age group. New individuals are injected to the young
population, and individuals migrate to older populations as their age increases.

to improve the optimization performance.

Multi -objective Optimization
There are a number of ways to implement rroitfiective evolution(Ekart and
Németh 2001; Kalyanmoy and Deb 2001; Zhang and Rockett 200#)is chapter

we use the simple random mating with tournament selection method.

Each generation, we select random pairs of individuailssscand mutate them
probabilistically, and add them to current population. Additionally, a new random

individual is added to the population each generation.

We specify a target population sizeanalogous to the population size in a traditional
evolutiorary algorithm. The goal of the selection is to remove dominated individuals

from the population until the target population size is reached.

69

We used the SPEA2 (Strength Pareto Evolutionary Algorithm) for sele@itater,
Laumanns et al. 2001pPEAZ2 is one of the most popular mualkjective methods. It
scores and selects solutions basedchow many other solutions dominate it. Non
dominated solutions on the Pareto frontier are always selected. If the number of
solutions on the Pareto frontier are larger than the target population size, SPEA2

iteratively removes the solution with the closesighbors.

Experiments
We compare several combinations of ALPS and multiple objectives on the Symbolic

Regression problem. Here we describe the experimental setup.

Symbolic regression

See the description in the secti@yinbolic Regressidron pages.

Random test problems
We tested each algorithm on 1000 randomly symbolic regression problems. Each
evolutionary search was performed on a single gueaed computer.The testing

procedure was the same as described in the se@t@st Problemson pageb4.

Algorithm Settings

We used standard algorithm settings for symbolic regressidb% crossoverl%
mutation. We used a population size of 1000. This was large enough such that the
Pareto frontier always fit inside the population in all experiments. Solutions were
allowed to use add, subtract, multiply, divide, sine, cosine, a variable, or antonsta

coefficient.

Results

Results are split into sections: the dileess optimization algorithm, and the

70

combinations of multiple objectives.

Age and Fitness Objectives
This section summarizes the experimental results comparing the three algorithms: (1)
the ALPS algorithm, (2) Agé€itness Pareto algorithm, and (3) the Deterministic

Crowding algorithm with randomized individuals.

Our first observation is that the fitness trends versus the computational effort of each
algorithm are quite similarHgure 6.3). On average, the ALPS algorithm has the
lowest error early on while the Adgatness Pareto algorithm has the highest error.
This difference, however, does not appeambe significant due to the overlapping

standard errors.

Later into the evolution, all algorithms converge to similar fitness trends. This
suggests that the algorithms are reaching common local optima. The deterministic
crowding method does clearly pemfio worse here as it is the last to converge on to
this trend. Near the end however, the average fitness values are very similar, as most

runs for all algorithms do converge to the exact solution.

Figure 6.3 also shows the rate that each algorithm identifies the exact target solution.

Here we have clear difference and rawerlapping standard errors for each algorithm.

The ALPS algorithm again has the highest exacttisoiuate early on in evolution.
All algorithms show the standardskaped convergence rates where computational

effort increases greatly for the hardest of the test problems.

Late in the searches, the algorithms begin to plateau at different ratesling fihe
exact solution. The AgEitness Pareto algorithm performed the best, finding the exact

solution approximately 5% more often than the ALPS algorithm.

71

60 . =
— 10" ——ALPS
g < 50]] +Age-Fitnes§ Pareto :
o = —— Det. Crowding : :
L 2 : 3
2 10% - 3 40¢ S
8 ——ALPS p 3xthe
c —— Age-Fitness Pareto 8 30 computational
8 —+— Det. Crowding 2 effort
£ 2 200 ‘
o 10T = /S — R
2 x5 16x the
i 10t computational
Y effort
ot ’ 8 r10 0 8 r1o
10 10 10 10
Computational Effort [evaluations] Computational Effort [evaluations]

Figure 6.3. The fitness and convergenceate to the exact solution of the compare
algorithms versus the total computational effort of the evolutionary search. Tt
fitness is plotted (left) is the normalized mean absolute error on the validatic

data set. Fitness is normalized by the standard d&tion of the output values
Importantly, Figure 6.3(right) further demonstrates that the hardest problems solved
by ALPS were solved by the Aggtness Pareto algorithm using a third of the

computational effort.

The deterministic crowding algorithm, witthe added randomized individual per
generation, performed worst of the three algorithms. Here, deterministic crowding
identified the exact target solution approximately 5% less often than the ALPS

algorithm, and approximately 10% less often than the-Rigeess Pareto algorithm.

The deterministic crowding algorithm used a randomized individual each generation.
However, it still performed significantly worse that the other algorithms. This suggests
that the performance improvement is not coming solely fraoreased diversity

through random individuals. Therefore, the genotypic age is playing an important role.

Finally, we looked at the amount of solution bloat experienced by each algorithm over

the course of the evolutionary searcheBigure6.4.

72

We define bloat as the binary tree size of the best solution in the population minus the
binary tree size of the target solution. Therefore, the most bloated solutions have

positive bloat values, and overly simple solutions have negative bloat values.

In these results, all algorithms started with high amount of bloated solutions early on
in the evolutionary searches. @werage, the bloat decreased as the search progressed,

and the algorithm converged toward exact solutions.

Interestingly, the deterministic crowding algorithm dropped the most in solution bloat.
This suggests that the algorithm is unfiging i it is stagnating at simple local

optima.

In contrast, the ALPS and Adétness Pareto algorithms have similar, mooenplex
solutions on average, which converge toward slightly bloated solutions. On average,
ALPS was the least bloated early on in the evolutiosagyches, but bloated the most

as the searches progressed.

On average, the deterministic crowding algorithm experience the least bloat,

121 = ——ALPS
= —— Age-Fitness Pareto
—=— Det. Crowding

Solution Bloat [tree size]
»

Computational Effort [evaluations]

Figure 6.4. Solution bloat over the course of the evolutionary search. Soluti
bloat is defined as the binary tree size othe best individual in the populatior
minus the binary tree size of the target solution. The error bars indicate tt

73

suggesting that could be under fitting, stagnating at low complexity local optima. The
ALPS and AgeFitness Pareto algthhms instead tended toward slightly bloated

solutions on average, which may reflect their higher performance overall.

Multi -objective Combinations

Here we compare the performance of all combinations of secondary objectives: Age,
Complexity, and Novelty. Aie primary objective is Error. This results ii 2 8
compared methods. We abbreviate each combination with the letters "E" for Error,

"A" for Age, "C" for Complexity, and "N" for Novelty.

For each algorithm we track the best solution over time, and ret®réinal
performanceFigure 6.5, summarizes the performance of each on all problems. We
consider the error of the best solution (the mean absolute error ondatteset), the
convergence (the percent of times that the algorithm identified the exact known
solution), and the Pareto volume. The Pareto volume measure the percent of the Pareto
space explored by the algorithm. Here, we measure the percent of the
Error*Complexity Pareto space, which are of most interest in the Symbolic Regression

problem.

Our first observation fornfigure 6.5 is that using the error objective alone ("E")
performed the worst for all metrics. This is cousteuitive; it shows that investing
computational effort in any of the three secondary objectives improved performance

on error.

Adding complexity to the eor objective ("EC") slightly improved convergence and
Pareto volume, but otherwise has little impact. Adding novelty objective to error
("EN") we see a substantial improvement in all metrics. Similar to results in the

previous experiment, adding age to #reor objective ("EA") had the largest impact

74

A Error B Convergence

80.00%
70.00%
60.00% I I— — -
5000% % @ | -
4000%+—N—H—H-—B-HBHH-
3000 M—H—H— BB B BB
2000%f — — — — — — — -
10.00% - — — I — I — I — I — I — -
0.00%
E EC EN EA ECN EAC EANEACN E EC EN EA ECN EAC EANEACN

C Pareto Volume

Error & Complexity

98.2
98.1

98
97.9
97.8 4
97.7 4
97.6
97.5 7
97.4 ~

Objectives:

E: Error

A: Age

C: Complexity
N: Novelty

E EC EN EA ECN EAC EANEACN

Figure 6.5. The performance of each combination of the multiple secondary
objectives on random symbolic regressioproblems. Pane (A) shows the mean
absolute error on the test data set of the best solution found by each algorithm.
Pane (B) shows the convergence rate, the percent of times each algorithm
identified the exact solution. Pane (C) shows the percentage of tRareto space,
defined by solution error and solution complexity (the two metrics of interest in
the Symbolic Regression), that each algorithm explored.

for a single secondary objective.

Interestingly, combining error, complexity, and novelty ("ECN") improves the
performance over novelyEN") or complexity ("EC") alone. Combining complexity

with age ("EAC") however had no visible change form age alone ("EA").

The two best combinations were error, age, novelty ("EAN") and using all four

75

objectives ("EACN"). These two methods had equafgomance in terms of test set
error and convergence. However, adding complexity and using all four yielded slightly

higher performance in Pareto volume.

Results inFigure 6.6 show the convergence rate of all combinations versus the
problem complexity. The results are split into three panes to better display the

difference between the results.

We can see that the performance drops for all algorithms as the problestexioyn
increases. However, some drop later than others. The differences at the lower
convergence rates appear smaller, but the relative difference between the algorithm is
actually quite large, with some algorithms achieving 10 times or higher convergence

than others.

For one and two objectives Figure 6.6A), the age objective ("EA") stands out
showing large improvement over all complexity of problems. Error al@mtonns

worst.

For combinations of three objectiveSidure 6.6B), error, age, complexity ("EAC")
roughly matches the performance of error and age ("EA"). The condmiradterror,
age, novelty ("EAN") however makes substantial improvement. The improvement also

increases with the problem complexity up to complexity of 33.

Finally, all four objectives Kigure 6.6C), ("EACN") performs well, approximately

equal to the error, age, novelty combination ("EAN").

An interesting observation from these results is that age has such a large impact.
Combining neelty and complexity improves performance, but combining age and

complexity has none. However, combining age and novelty does. This suggests that

76

A

100
90
80

Exact Solution Found [%]

20+
10
O;

701
60
50
40
30+

1-2 Objectives

Exact Solution Found [%]

1001 ==
90
80+
701
60
50+
40
30+
20+
10

1-3 Objectives

0

C

5 10 15 20 25 30 35 40 45
Solution Complexity [tree size]

5 10 15 20 25
Solution Complexity [tree size]

30

35

1-4 Objectives
100
90
— 80 i ; . mmm—— E
= 70l Objectives: A
2 ok E: Error — EN
i — EC
§ sor A: Age —— EAC
8 4of C: Complexity —— ECN
5 gl . EAN
5 N: Novelty EACN
1 1.
10 I
i H‘H»;- :

0

5 10 15 20 25 30 35 40 45
Solution Complexity [tree size]

Figure 6.6. The convergence (percent of problems where each method identifie
the exact solution) versus the problem complexity. These results are split into
three panes to make the differences more easily idefirable. Pane (A) shows the
results for combinations of two objectives plus the single error objective. Pane
(B) shows the results for three objectives plus the best 2 objective method and
error objective. Pane (C) shows the best of the previous panes wthe 4
objective method.

age is somehow capturing the benefits of complexity and partially the benefits of

novelty on its own.

Complexity only appeared to impact the performance of the Pareto volume. Therefore,
it may still be useful as a secondary objective for identifying parsimonious solutions

and discouraging bloat.

77

Conclusions
This chapter looked afising secondary objectives to improve the performance of
optimizing a primary objective. Previous research has shown that traits such as

genotypic age can be used to greatly improve performance in genetic programming.

We first tested explicitly optimizigp for age in a multdbjective search. The Age
Fitness Pareto algorithm selected solutions based on both low error and low genotypic
age. Results on randomly generated symbolic regression problems indicate that this
approach finds the exact target solutienbstantially more often than previous

methods over a range of target problem complexities and dataset dimensions.

We then looked at two other secondary objectives: complexity and novelty. We tested
the performance when combining all combinations of kineet secondary objectives.
Results showed that the age objective had the largest impact for a single objective.

Performance improved slightly more when using novelty and age.

The two best combinations were error, age, novelty and using all four objectives
These to combinations were similar in performance, but adding complexity slightly

improved the percentage of the Pareto volume explored.

78

CHAPTER 7.PRIOR MODELS AND SEBING

Summary

We investigated several methods for utilizing expert knowledge in evolutionary
sarch, and compared their impact on performance and scalability into increasingly
complex problems. We collected data over one thousand randomly generated
problems. We then simulated collecting expert knowledge for each problem by
optimizing an approximatedersion of the exact solution. We then compared six
different methods of seeding the approximate model in to the genetic program, such as
using the entire approximate model at once or breaking it into pieces. Contrary to
common intuition, we found that serting the complete expert solution into the
population is not the best way to utilize that information; using parts of that solution is
often more effective. Additionally, we found that each method scaled differently based
on the complexity and accuraof the approximate solution. Inserting randomized
pieces of the approximate solution into the population scaled the best into high
complexity problems and was the most invariant to the accuracy of the approximate
solution. Furthermore, this method produtieel least bloated solutions of all methods.

In general, methods that used randomized parameter coefficients scaled best with the
approximate error, and methods that inserted entire approximate solutions scaled worst

with the problem complexity.

Introduction

A common challenge in genetic programming is how to take advantage of prior
knowledge and expert knowledge. Utilizing expert knowledge could be used to find
solutions that are more interpretable or reliable in their applicafMosre and White
2006; Casey, Bill et al. 2008Perhaps most importantly however, expert knowledge

could be used to scale genetic programs to solve increasingly complex problems

79

(Banzhaf and Miller 2004)) freeing new evolutionary runs from having to reinvent all

past knevledge from scratch over and over.

In this chapter we explore one of the more general forms of expert knowledge:
reusing established or prior solutions to solve a related problem at hand. For example,
if we had a model of the metabolic network in a yea$f how could we reuse this
model to find the metabolic network of a mammalian cell using an evolutionary
search? We can generalize this task in genetic programming as the problem of reusing
any previous solution that has the same basic problem stracttnee encoding for a

new problem.

We defineseedingas the reuse of a prior knowledge solution by introducing all or any
part of its encoding into the population during a new evolutionary run. By injecting
genes from a prior knowledge solution, seedigffectively biasing the evolutionary
search toward solutions that use ubiquitous features of the related solution
(MohammaedReza and Mohammad 199&ven though solutions to the new problems

may look very different at a higher level.

There are many potential approaches to seed the solutions in an evolutionary search.
Here, we examine six general seeding approaches: injecting prior solutions in their
entirety into the population, injecting pieces of the prior solution, injecting entire
solutions but with randomly rearranged and shuffled versions of the prior solution, and
finally each of these the methods again with either the optimized parameter values

from the prior solution or randomized parameters.

We measure the impact of each noetron randomly generated problems over one
thousand evolutionary runs each. We simulated expert knowledge for these random

problems by simplifying and approximating their exact solutions.

80

In the following sections, we overview back ground information inmbwlic
regression and seeding, describe each seeding method in greater detail, compare their

results in fithess, convergence, and bloat, and end with discussion and conclusions.

Background

Symbolic Regression

See the description in the secti®yimbolic Regressighon paget.

Equation Complexity
We define thecomplexityofan equati on to be the number
binary parse tree. More complex equations are more difficult to find because the

evolutionary search must build and optimize a larger solution.

Past results show that the performance of symbolic segnme depends heavily on the
complexity of the exact target equatig8chmidt and Lipson 2005Schmidt and
Lipson 2006; Schmidt and Lipson 2008herefore, we consider the complexity of the
problems in our experiments dumow the performances of different methods change

as target complexity increases.

Convergence
We define convergence in symbolic regression as when the evolutionary search
identifies the exact target solution as the top ranked solution in the populathauvi

overfitting.

We test for convergence when generating our final results using a cross validation
dataset. The validation dataset has a much wider range of input values than the
training dataset used for fitness calculations. This helps distinguialedie overfit

solutions and exact fits. If the error on the wider cross validation dataset is near zero,

81

we consider the equation to be converged.

The concept of convergence assumes that there is an exact and general equation
underlying the system produgrnhe experimental data. There may be cases however,

where no underlying equation exists.

Seeding Methods

There are many different forms of expert knowledge and ways of incorporating it into
an evolutionary searc{Moore and White 2006; Casey, Bill et al. 2008ere, we
consider one general form of prior knowledge where we have a prior solution to a

simpler problem, or an approximate solution to a ncoraplex problem.

We consider six different policies for using a prior approximate solution: seeding the
population with the full solution, seeding with random shuffles of the full solution, a
mutation operator for injecting buildiAgiocks of the approxrnate solution into the
population, and finally, using either randomized or optimized parameters for each of

these methods (séggure?.1).

Optimized Randomized
Coefficients | Coefficients

400 A : A :
350l 5.249x +2.000x2 1 2 X sin(x)

- 3001 5.284x + 1.257x21 0.507
Whole | ¢)= 13335¢ | f(x) =Ux2 X X!

Equation N . 2501
Seed cosik i 0.4232) | coski b) 200
x
= 150]-
S{;‘Sg'@i f (0= (X7 0.4232] F()=(xi O | 100l
2
Seed cos(1.3335°) cosp x) s0l-
0;
- (x7 0.4232), xi 0, 50 : : : : :
Building cos(1.3335), | cos(Ux?), s 0 5 oo 18
Block Seed 2) X
1.0x Ux

Figure 7.1. Example seed equations for eacimethod (left) and an exampl
randomly generated target equation plotted next to the automatically generate
approximate equation (right).

82

No seeding
In the no seedig case, we use and ordinary evolutionary search with a completely
random initial population and operators. Variance is introduced solely through random

mutation and crossover, and individuals are selected based only on their fitness.

Approximate EquationSeed

In the approximate equation seed, we introduce exact copies of the approximate into
the initial population. Only a few equations are seeded to maintain the initial
population diversity. In our experiments, we introduce one approximate equation copy

for every 10 random initial solutions.

This is the most straigtiorward method for using a prior model. The idea is that
evolution will use the seeded equations if it likes and will adapt it to the exact model

of the system.

There is a potential danger toig method however, in that the approximate solution
may trap the evolutionary search in local optima; particularly if the seeded equation is
a local optima itself. In the worst case, the evolution fixates on the seeded solution,

losing diversity, and isnable to improve upon it.

Shuffled Equation

Instead of seeding with the exact approximate equation, we could instead introduce
slightly randomized and rearranged version of the approximation. In the case where
the approximate equation is a local optima solution, randomly shuffling its sub
expressioa would effectively produce random solutions; but random solutions

composed of the same parts of the approximate solution.

Random shuffles of the approximate solution should have roughly the same fitness

83

distribution as ordinary random solutions, but vatill introduce all parts of the
approximate equation into the initial population. The idea is that the evolutionary
search can recompose these shuffled solutions if beneficial, but will not be

immediately placed into a local optima solution.

We implementthe shuffling by performing two random shuffles of the approximate
solution (or until the fitness changes since shuffles could be neutral). A shuffle
consists of picking two random stbr ees of the equationbds b

exchanging them.

Thoughshuffled equations are less likely to push the evolution into local optima, it
may not be the best use of the approximate equation. The random shuffles could
destroy important parts of the solution, or may be deleterious to the other shuffled

components @king them difficult to evolve from.

Building block Mutation
The third method we consider is injecting only individual parts of the approximate
equation into the population. We call these parts the building blocks defined by the

approximate equation.

We ddine the set of building blocks for a particular equation to be aHtiés (sub

expressions) of the equationdés binary par s

We define a new type of mutation operator using the set of building blocks defined by
the approximate equation. In additito typical genetic programming mutations, the
algorithm can now replace a seRpression with one of the building blocks at

random.

The idea behind this method is that it may be easier to reuse individual pieces of an

84

expert model rather than adapt #mire equation at once. This operation provides a
more granular method for the evolutionary search to pick and choose the useful

components of the approximate equation.

One possible danger of this approach is it could produce more bloated solutions,

therdoy inhibiting finding a general and parsimonious solution.

Parameter Constants
Finally, for each of the three seeding methods, we can choose to keep the exact

coefficient values used in the approximate solution, or randomize these coefficients.

Randomizng the coefficients is one way to deter or delay the possibility of falling into
a local optima based on the seed, such as in the whole equation and shuffled equation

seed.

The downside of randomizing the constants, however, is that the evolutionaty searc
must always refit them if used. So, randomizing the parameter coefficients does

discard some of the prior information contained in the approximate equation.

Experiments

Test Problems

We used randomly generated problems to evaluate the performance cleedoiy
method. While random equations do not always resemblevaéd applications of
genetic programming and symbolic regression, they do provide a base or average case
for comparison. Additionally, we can vary and control the complexity of the eqgati

and effectively the difficulty of the evolutionary search.

85

For symbolic regression, we can produce a random equation in the same way we
generate initially random population of equations. We generatedliorensional
equations and then sampled them rotke range {,2] to produce synthetic
experimental data as would ordinarily be used with symbolic regression. Additionally,
we generated a larger test data set over the raf@elQ]. We use this data set for

reporting the performance and convergentesraf each method in our results.

We generated 100 random symbolic equations and corresponding datasets. We then

ran each method on the same random problems ten times for each equation.

We also generated the random target equations such that their xitiegplevere
evenly distributed. We measure the complexity of an equation as the number of nodes
in its binary parse tree. We also perform symbolic simplification of the equation
beforehandso that redundant or cancelling terms do not exaggerate the camplex

measure.

The random target functions are then evenly distributed between complexities 5 to 35
(or 5 to 35 nodes). Therefore, each seeding method evolves to solve each complexity

of target equation approximately 30 times.

Expert Knowledge in Random Phdems

We are using random target equations to generate random problems for testing our
seeding methods. Therefore, we need a method for producing expert knowledge for
each randomly generated problem. Since we are generating the random problems with
a randon equation, we know the exact solution to each problem. This allows us to
generate approximate models that are equivalent to an @qered approximate

model, or perhaps an expert derived model of a slightly simpler problem.

86

We generate the expert kn@slge model based on the randomly generated target
equation. We first want to approximate thi
answer for every problem. To do this we take a randomly generated target equation,

and select a random selpressiorthat contains at least one operation and is not a

leaf node. We then set this sekpression equal to a random constant.

This creates a simpler and distorted version of the exact target function; however, the
output of this function may be drastically @ifént. To be considered an expert
knowledge equation, the equation should at least also mimic the general features in the

output of the exact target equation.

To mimic an expert derived approximation, we take this simpler equation and refit all
of its paraneters via nonlinear regression so that it fits the more complex target

eqguation as closely as possible.

The end result is a simpler, but useful approximate model that resembles the target
equation that should still have a good initial fithess during élesiuAn example is
plotted inFigure 7.1. This equation still contains much of the exact structure of the

target equation, and is potentially useful for the evolatigrsearch.

Experimental Setup

We used the fitness prediction algoritHi®chmidt and Lipson 2005; Schmidt and
Lipson 2006; Schmidt and Lipson 200@®) search the space of symbolic equations.
Deterministic crowdingwas used for selectioMahfoud 1995) with 1% mutation
probability and 75% crossover probability. The encoding is an operation list acyclic
graph with 64nodes(Schmidt and Lipson 2007 he operation set containaddition,

subtraction, multiply, sine, and cosine operations.

87

The fitness predictor population contains 1280 preds¢tdistributed over 80 cores.
The fitness predictor subset size is H2@a points Predictors are also evolved using

deterministic crowding, but with 10% mutation and 50% crossover.

Results

We executed 1000 trials per seeding method over 100 randoméraged target
equations. We tracked the best solution in each generation, measuring its fitness,
convergence, and bloat over the evolutionary run. Fithess and convergence were
calculated using a withheld test dataset that spanned a larger input rangkethan

training data set.

Time to Convergence

The time to convergence is the total computational effort for each method to find the
exact target solution in the evolutionary seafgure7.2 compares the convergence
time for each seeding method, averaged over all target equations and evolutionary

runs.

Time to convergence measures only the runs that did indeed converge. Therefore, it is
a measure of the best casesdach method; comparing, potentially, how much the
evolution can be sped up with each seeding method. It is important to note however

that fast convergence is not always good; but, it is a measure of the evolvability.

The ordinary evolutionary runs withoséeding were the slowest to convergg(re

7.2) on average. This suggests that all of the seeding methods can speed up the
convergence. The next slowest are theffiddi equation seeding methods. This
indicates that evolving the randomly shuffled seed equations is the most difficult, but

still faster than no seeding at all.

88

The fastest method to converge is the building block seeditguwéal closely by the
whole equation seeding. This suggests whole equations and the equation building
blocks are easier to evolve than equations from scratch or randomly shuffled equation

seeds.

The time to convergence appears to be invariant to usingreiimdomized or
optimized parameter constants in the seed. This is particularly interesting because
randomized coefficients must always belearned or refit. The invariance to the
coefficient method indicates that the evolvability and convergence tdepsnd

primarily on finding the structure of the equation in the average case.

Convergence Time [evaluations]

I No Seeding

I Approximate Equation (Randimized Coefficients)

[Building Block Operator (Randomized Coefficients)
|:|Approximate Equation (Optimized Coefficients)

[1Building Block Mutation (Optimized Coefficients)

[I shuffled Approximate Equation (Randimized Coefficients)
[Ishuffled Approximate Equation (Optimized Coefficients)

Figure 7.2. The expected time for theevolutionary search to converge to the exa
target equation for each seeding method measured in function evaluations (run
that did not converge omitted). Error bars show the standard error.

89

:Ti % —. | 1
ﬁ:y{h R
10"+ 1 |

£EEESSIRS2S

b

Fithess [-error]

10° 10° 10"
Computational Effort [evaluations]

T T T

90

T

80

\I
o
T

Convergence [%]
NWH 01T O
OO O O
T T T T [

H
O
T

e :
10 10 10"
Computational Effort [evaluations]

—0—No Seeding
—— Approximate Equation (Randimized Coefficients)
—+— Building Block Operator (Randomized Coefficients)
—+— Approximate Equation (Optimized Coefficients)
—— Building Block Mutation (Optimized Coefficients)
Shuffled Approximate Equation (Randimized Coefficients)
—v— Shuffled Approximate Equation (Optimized Coefficients)

Figure 7.3. The mean fitness (top) and convergence rate (bottom) for each
method measured over each evolutionary trial. Bor bars show the standard
error.

90

Fitness Over Time
We also tracked the fitness of the top ranked equation over all runs for each method on

the withheld cross validation dataset.

We can see that the methods that use whole equations for seeding (thenagpr
equation and shuffled equation seeding methods with optimized constants) have
higher initial fithess as should be expectédygre 7.3). However, these methsdre

overcome by the randomized versions later in evolution.

The standard error in fitness increases over time, making it difficult to discriminate
between the methods. However, we can pick out some additional general trends. All
seeding methods appearstoictly dominate the no seeding method. Also, the most fit

solutions at the end tend to be the least fit solutions early on.

Convergence Over Time

The convergence rates over time are more stable than the fitness, making it easier for
comparing betweeaach seeding method. The convergence rate shows the percentage
of runs that found the exact target solution versus the time (or computational effort)

into the evolutionary runHigure7.3).

All runs start with zero convergence and increase gradually on a sigmoid trend to their
maximum convergence performance. Again, all seeding methods dominate the
ordinary nonseeding methadThe next worst is the shuffled approximate equations.

The highest convergence methods are the building block and equation seed methods.

The building block seeding method with optimized constants stands out the most in
Figure7.3. It converges the soonest, and is tied for the highest convergence rate at the

end of each trial with the building block seeding with randomized constants.

91

Convergence [%]

Convergence [%]

100

80+ (eatel .

70+ v o

60+

10 15 20 25 30
Target Complexity [nodes]

o
(6]

—_—

©
o

Qo
(&)}

80 :
0 0.5 1
Approximate Model Error [error ratio]

— No Seeding
Approximate Equation (Randimized Coefficients)
— Building Block Operator (Randomized Coefficients)
Approximate Equation (Optimized Coefficients)
— Building Block Mutation (Optimized Coefficients)
Shuffled Approximate Equation (Randimized Coefficients)
— Shuffled Approximate Equation (Optimized Coefficients)

Figure 7.4. The logistic trends of each seeding method in convergence rate ver:
target equation complexity (top), and linear trends in convergence versus the
error of the approximate seed equation from the target equation (bottom)rror
bars show the range based on the standard errors of the trend fit parameters.

92

Scaling with Complexity

So far we have only looked at the average performances of each seeding method over
all equations. However, the impact of seeding may depend diffiieent traits of the

target functions. Here we break down the performance of each method based on the

complexity of the target equation.

Breaking the performances up by the target equation complexity makes the
performance trends noisier. Therefore, wee wa trend fit to help visualize the

differences between each method.

For the convergence versus the target equation complexity, we fit a sigmoid trend

curve to each methodrigure7.4). A sigmoid trend is appropriate for this data since

the convergence rate ranges between 0 and 100% depending on the problem difficulty
(such as complexity). The sigmoid trend curve has two parameters, the origin slope

and the origin offset, making it aw variance trend model.

Based on the sigmoid trends, we want to see which methods drop off in convergence

the latest with increasingly complex target equations.

Shown inFigure7.4, the norseeding method drops of the fastest. The best performing
methods are the building block seeding methods. The remaining methods- fall in
between. This result suggests that building block seeding scales the best with the

problem comfexity; solving the most complex problems more reliably on average.

Scaling with Seed Equation Error
Next, we look at the convergence rates plotted against the error of the approximate
model that is used for seeding. We can view this as the dependerieecamtidence

or quality of our expert knowledge equatioffior example, how does the performance

93

vary between highly accurate approximate seed equations and inaccurate seed

equations.

For this data we fit a linear trend to help visualize the differene¢ween each
method Figure 7.4). This is the most appropriate trend to fit because the seeding
equation error does have a dominating influence over the convergéeseSa, we

can only pick out the local general trends.

We first notice that there are three methods that appear to be invariant to the
approximate model error: no seeding, shuffled equation with random coefficients, and
building block with random coeffients Eigure 7.4). This is not surprising for the
nonseeding method since it does not use the seed equation. The performance of the

other two has the same slope, bigiher convergence.

This suggests that the randomized coefficient building block seed and shuffled

eguation can use parts of the seeding equation even when it is a poor approximation.

It is interesting to note that even the rsreding method has a s$ligdecreasing trend

in convergence with the error of the seed equation, despite not using the seed equation.
We generate the seed equation by approximating the exact equation. Therefore, there

is a secondary trend in this figure, which is the target eguad s s ensi t i vi
approximations. An equation that is difficult to approximate accurately may contain

more complex features, thereby making the target equation more difficult to fit in

general.

Solution Bloat Over Time
Finally, we examined the bloat tfie top ranked solution of each method in each

evolutionary run. We define the bloat as the complexity of the equation (the number of

94

nodes in the equations binary parse tree) minus the complexity of the target equation.
Equations with positive bloat ararger than they need to be while negative bloat

means the equation is too small.

We can see that the whole equation seeding methods start off with higher bloat on
averageigure7.5). This means the seed equations tend to be more complex than the
average randomly generated equations. However, all methods converge in complexity

toward the target equation complexity ovierd.

Overall, none of the methods experienced an excessive amount of bloat over time.

Solution Bloat [nodes]

r r r

10 10° 10"
Computational Effort [evaluations]

—0—No Seeding
—=— Approximate Equation (Randimized Coefficients)
—+— Building Block Operator (Randomized Coefficients)
~—+ Approximate Equation (Optimized Coefficients)
—— Building Block Mutation (Optimized Coefficients)
Shuffled Approximate Equation (Randimized Coefficients)
—v— Shuffled Approximate Equation (Optimized Coefficients)

Figure 7.5. The solution bloat of the top ranked solution over the evolutionary
runs. Bloat is measured as thetopranked quat i onés compl e
equation complexity. Error bars show the standard error.

95

However, we can pick out some general trends.

The nonseeding method has the most bloated solutions, and the highest variance in
bloat i particularly near the end of thevolution. The building block seeding, in
comparison, has the least amount of bloat. This is surprising because the mutation
operator with the building blocks provides a means to create additional bloat.
Therefore, we suspect that the benefits of the isgeitself dominate this metric,

resulting in more exact results on the target solution.

Conclusions

We have explored the effects of incorporating expert knowledge into evolutionary
search. We considered a general expert knowledge case, where the expértige
consists of an approximate solution or a related solution to the problem at hand. We
investigated six seeding methods for utilizing this type of prior expert knowledge:
seeding with the whole solution, the randomly shuffled solution, pieces of the
solution, and using random or optimized parameter coefficients in each of these three

methods.

Our results show that each seeding method can substantially improve the convergence
and fitness performance over not seeding. However, different methods scaled

differently based on the different traits of the target function.

We found that the building block mutation seeding method converged the fastest
among all methods and achieved the highest convergence rates on average for all
problems. It also maintained theyhest convergence rates for the most complex target

eguations, and was the most invariant to the error and quality of the seeding equation.

We also found that the seeding methods that used whole equations (no seeding, whole

96

equation seeding, and shutflequation seeding) scaled the worst with the target
equation complexity. Additionally, the methods that used the optimized parameters
(rather than randomized parameters) of the seed equation were the most sensitive to

decreasing quality and accuracy of geeding equation.

While many other possible types of expert knowledge may exist for genetic
programming, we conclude that in the case of seeding with a prior solution, it is best
to seed with the building blocks of the prior solution, and to randomé¶meter

coefficients before seeding.

97

CHAPTER 8.IDENTIFYING A DOMAIN ALPHABET

Summary

A key to the success of any genetic programming process is the use of a good alphabet
of atomic building blocks from which solutions can be evolved efficiently. An
alphabet hat is too granular may generate an unnecessarily large search space; an
inappropriately coarse grained alphabet may bias or prevent finding optimal solutions.
Here we introduce a method that automatically identifies a small alphabet for a
problem domainWe process solutions on the complexagptimality Pareto front of a
number of sample systems and identify terms that appear significantly more frequently
than merited by their size. These terms are then used as basic building blocks to solve
new problemsn the same problem domain. We demonstrate this process on symbolic
regression for a variety of physics problems. The method discovers key terms relating
to concepts such as energy and momentum. A significant performance enhancement is
demonstrated when tbe terms are then used as basic building blocks on new physics
problems. We suggest that identifying a problgpecific alphabet is key to scaling

evolutionary methods to higher complexity systems.

Introduction

Critical to the success of any genetic prognang system is the use of a good
alphabet of building blocks from which solutions can be evolved efficiently.
Typically, GP practitioners will choose generic building blocks based on prior domain
knowledge, but this choice may have profound performanpédations. An alphabet

that is too granular may generate an unnecessarily large search space, while an
inappropriately coarse grained alphabet may bias or even prevent finding optimal
solutions. Here we investigate a method that identifies an alphabeipappe for a

specific problem domain automatically.

98

‘(lybu) swaisAs Jo dnoib siyy
- sjopow Buliguosap o) 19geyde uabiawa ue wio) s)o0|q Bulpjing pe swua) pasn Ajuanbal) 1sow ayl "s¥20|q Buipjing
SWwIIa] [enpIAIpul 0] SJUOJ) 8Say] UOo S|apow asodwoasip am ‘Ajreuld “(ajppiw) suonenba jo Alxajdwod Buikrea 1e sjapow
100k [RJBASS pul} 01 uoissalbal dljoqwAs asn uayl apA (U3]) SwalsAs |edlueyodsgsew pue Bulds se yons swalsAs
218) [elaAas wod) elep [eluswliadxa arelauab ap\ Sluoll 01aied Alxajdwod/Aoeindde |jppow 1yl JO SISAjeue pue
21621 o1j0qwiAs Buisn swasAs Jo dnolb e aquosap 01 papaau abenbue| [eanewaylew uowwod ayl |[nsip 9\ ‘T'8 ainbi4

(9) (@) ()

[sapou-] Auowisreq
0 0oT- (4 0g-

o
hi

.
©
Erl

<
-

ABisua enuajod ou
[euonenne.d e I

D
e

A

N

Abisua X 1,
renuajod Buuds | < A ﬂ

@
<

<
(=]

[1oue-6of] Agy aAndipaid

N
<

oo 10

ABisus enuajod

_ [sapou-] Auowisred

[euonenneid xB w r e r e s w v g
N ¢ X
[S9pou-| Auowisie, T N
AbBisua AW — 0 Sormuliiousea N 3
anauy Jeaul T H e
w ro- g
80- 3]
H zo- &
N . 90~ wm ! . . o
ABiaua 2% X W 1 e
anauy Jejnbue T o3
° 0

LV ICARIPEVREIR SY20[g bUIp|INg oO1a1ed SUISISAS [edTUBOa N

99

As an example, consider the problem of evolving mathematical expressions that model
data collected from an experimental system. If the system is meahaiig
expressions are likely to contain various combinations of trigonometric terms or
kinetic energy terms. If the system is biological, then trigopnometric terms are unlikely
to appear at all; instead, reaction rates and chemical gradient terms sHidh as
functions are likely to appear. The availability of appropriate building blocks greatly
simplifies both the search space for mathematical models of more complex systems, as
well as our conceptual understanding of the reghltdland 2000) A large portion of
scientific inquiry has been devoted to unraveling these building blocks by hand. Here,
we propose @omputational method to explore and learn the language and rules of a

problem domain automatically.

Any mathematical equation, or mathematical model, can be decomposed into various
combinations of simpler building blocks, such as monomials or trigononetnts.

All of these building blocks are candidates for a common mathematical alphabet of
other related systems. Therefore, to build a domain alphabet automatically, we must be
able to both generate physically meaningful mathematical models, and be able to

identify the nontrivial building blocks from these models.

We use symbolic regression and Pareto analysis to find physically meaningful
mathematical models from experimental data. We are interested in finding the most
accurate equation at different eqoaticomplexities; for example, finding the most
accurate model that uses no more than six mathematical operations. These equations
are special in the sense that they are both accurate and parsim@uotarschek,

Smits et al. 2008) often consisting of different approximations or elaborations of the

physical description of the system.

100

We break down the models found on the symbolic regression Pareto front into
individual terms and ualding blocks to form a list of candidates for a domain
alphabet. The building blocks are extracted by iterating through altreed (sub
expressions) of the equations. Many of these building blocks may not be useful for
other systems, such as termstthee overfit to the data or numerical coincidences.

Therefore, we need a way to discriminate among the various building blocks.

In order to determine which building blocks generalize to other systems in a scientific
domain, we need to compare models io v more systemg-{gure8.1a). We repeat

the automated modeling and Pareto analysis to generate candidate building block lists
for multiple systemsHigure 8.1b). Finally, we calculate the frequencies that each
building block is used in a different system. By considering the frequency and the
complexity of a building block itselfwe distill the nontrivial building blocks that are

the most ubiquitous to return the alphabet of the donfagu(e8.1c).

Background

Genetic Building Blocks

Building blocks (Holland 1975; Goldberg 1989are simple expressions which
comprise a more complicated solution. While building blocks are most commonly
associated with genetic algorithms, they can also refer ttreeb in genetic programs
(O'Reilly 1994; Rosca 1995For example in symbolic regression, the letvievel
building blocks are typically algebraic operations such as add, subtract, multiply, and
divide. However, we can also define higher order building blocks such as squaring and

multiplying with a constant.

We think of a solution, or equation, as tigeicomposed of various types of building

blocks (McPhee, Ohs et al. 2008jor example, if we think of an equation as a binary

101

Building Blocks:

() X
X2
k
f(X1,X2) = (X1 T 3) e @ .
. (X1 T ky)
sin(x, + -7)
RE (+) (X2 + ko)
sin(Xz + ky)
X, -7 X1 Bin(X; + k)
kiBinXx; + ko)
(a) (b) (c)
Figure 8.2. Example equation (a), its binary parse tree (b), and all possible
building blocks of the equation (c). Building blocks are common sukxpressions

or internal components of a system that simplify building a full mathematical
model.

parse tree of mathematical operatioRey(re 8.2), the set of building blocks fdahat

particular equation contains all stiees (sulexpressions) of the tré®'Reilly 1994)

Knowing the building blocks for a partiarl problem simplifies human conceptual
understanding of the problem (and related problems) by giving higher order meanings
and interpretations of the systembés mecha
rather than working with cosine operations arsktof variables, a cosine of an angle

building block could allow us to work instead with a more meaningful concept, such

as the vertical position of a swinging pendulum.

Knowing the basic building blocks of a system ahead of time also greatly simplifies
searching for or building a mathematical model to explain its behavior and
experimental dat&a such as done in symbolic regression. Rather than having to re
derive common terms from scratch, over and over again for each model, the algorithm
could benefit fom the coarser search of assembling higher order building blocks.

There are an infinite number of potential building blocks however.

102

Domain Alphabet

While there are an infinite number of possible building blocks for any system, we
define adomain alphabeas the set of building blocks specific to a particular problem,
domain, or class of systems that generalize to many similar systems. Domain alphabet
building blocks are typically physically meaningful, and are useful for building new

models.

Determining the most useful building blocks can be considered to fall under the
Acredit assignmento problem in machine | e
the task of deciding how to score or weight the importance of individual components

of a modelwhen only given entire systen(Grefenstette 1988)

One difficulty to deteding meaningful building blockis thatsomebuilding bloclks
may arise by chance due to overfitting the datagtbernumerical coincidenee For

exampleconsider the following equations for two different systems:
f= x*coski 1.01) + 2
g=>xcoski 1.02)i sin(x) +x

We would like to be able to identify a term suahx@acosk i 1) as a building block

given onlyf, g, andx values over time (wed on 6t know the eiquati on
while rejecting others that are less commonly generated during modeling. The more
systems we look at, the less and less likely such a complex building block we be
rediscovered repeatedly by chance during evolutioeréfbre, finding large repeated

building blocks is a strong indication the building block is a norribuilding block

useful throughout the problem domain.
With such information on useful physical terms, the algorithm could reuse them for

103

analyzing futwe systems, bootstrapping its knowledge into higher complexity
systems. Rather than needing to rediscover common features repeatedly, the algorithm

can simplify the problem to the assembly of solutions within the domain alphabet.

Pareto Front

When generiing potential building blocks, we consider tRareto front(Fonseca and

Fleming 1993; Fonseca and Fleming 1988&)duced by symbolic regression which
represents the tradeoff bet ween a model 0s
ability for the experimental dat&/e define prsimony as the inverse of number of

terms in the expressi@ndthe predictive accuracy #seerror on unseen data.

If we consider the relationship between equation complexity and accuracy of fitting
the experimental data, there are there two qualitative extremes: extremely complex
equations with near perfect accuragnd simple models withpoor accuracy.
Equations inbetween these two extremare the most difficult tadentify, but their

structure tends to be the most meanin{ffidtanchek, Smits et al. 2008)

At certain minimum complexities, the predictive ability tendsntrease substantially

and then plateau. In other words, there is often a relatively simple model or equation
that captures some intrinsic relationships of the system (but perhaps not peiactly).
parsimony arguments, we can reason simpler equations to likely be approximations
and more complex equations to be more precise refinements and elaborations of the

exact model or overfit solutions to the data.

Though we canoét k n benexaeatiphydical medel isaitiisfikely to wh a t
exist at least partially on this Pareto front. Therefore, when detecting what building
blocks may form a general physical alphabet, we consider all building blocks on the

Pareto front as candidates for inclusinrthe alphabet.

104

Symbolic Regression

See the description in the secti@®@ymbolic Regressighon pagel.

Alphabet Algorithm

Our goal is to identify the primary mathematical building blocks of a particular
problem or domain of systems, thereby building a domain alphabet automatically from
experimentally collected data. Our mary challenge is distilling the nontrivial
building blocks that generalize to other physical systems for inclusion in the domain

alphabet.

Our method has three main steps: (1) finding several mathematical models for two or
more related systems, (2) dequsing these models into their constituent building
blocks, and (3) identifying the most useful and meaningful building blocks for

inclusion in the domain alphabet.

Modeling Groups of Systems

Our first task is to find several system models that define ncangidate building
blocks. We collect data from several related physical systdfigaré 8.1a) by
observing their behavior and dynamics over time. The group of sysshould

represent qualitatively different dynamics within the same problem domain.

Next, we employ a symbolic regression algoritfichmidt andLipson 2008)to
generate several hypothesized mathematical models of each system for varying model

complexities.

The output of our symbolic regression algorithm is a small set of equations that lie on
the equation accuracy and equation complexitytBdrent for each particular system

(Figure8.1b). The equations on this front are nontrivial in the sense that they represent

105

the maximum accuracy a model of a givere or complexity can achieve to explain
the systembés dat a. The equations on the

approximation or elaborations of the exact physical system

Extracting Building Blocks

Now that we have several equations modeliaghesystem, we decompose them into

buil ding bl ocks. For each equation found
through every sultree (or sukexpression) of the equation, adding the-sek to our

list of potential building blocksHigure8.2).

During this process, we abstract away the bulk constants found in each equation and
subexpression to symbolic parameters. For example, we would convert-a sub
expressiorsuch ax + 1 . 4 &) Tok& e kEos). This allows us to later match
building blocks between different systems that may only vary by their embedded

coefficients.

Additionally, we abstract away variable types based on their units. For example, we
consider variables of angles to be equivalent to variables of lengths, but not equivalent
to velocities. This allows us later to match building blocks between systems with

differences in variable names.

Distilling the Alphabet
We now have a long list of labuilding blocks found for each system and must distill
this list down to a domain alphabet. We need to identify which are the nontrivial and

meaningful building blocks within this list.

If a particular building block exists repeatedly on the Pareto fronts of other systems, it

is a strong indication that it is a meaningful building block for the domain alphabet. At

106

the very least, the building block is certainly useful for forming a parsious model
in more than one system. This observation forms the basis for identifying the domain

alphabet.

If a building block was simply a result of overfitting to the data, it is unlikely to be
repeated on the Pareto front of other systems or diffetatatsets because overfit
solutions are very sensitive to perturbations and noise in the data. Similarly, if the
building block is the result of a numerical coincidence for modeling a particular
dataset, it is unlikely that the same coincidence existsheraystems and in their

datasets.

Therefore, we can use the frequency that a building block is used on the Pareto fronts
as a principle for its generality and importance for a domain of systems. To do this we
iterate through all building blocks and couheir total occurrences on the Pareto

fronts of every other system, and number of times each building block was matched by

another.

We form the initial alphabet by rejecting all building blocks that have zero frequency

on the Pareto fronts of the othgsgems.

The second criterion we can use to gauge the importance of a candidate building block
is its complexity. Very complex building blocks are much less likely to reoccur by
chance or numerical coincidence than simple building blocks. Therefore, we als

consider the complexity of the building block when adding it to the domain alphabet.

After calculating the frequencies and complexities of all potential building blocks we
examine them graphically to verify the results. We plot each building block @ista p

on a second type of Pareto space: the building block frequency versus the building

107

block complexity. As we discovery later, the building blocks on this chart that are both

complex and frequently used comprise the physically meaningful domain alphabet.

Experiments

The Mechanical Systems

We explore the alphabet building approach using a few simple mechanical systems: a
harmonic oscillator, a simple pendulum, and a 2D spring pendulum. These systems are
known to have weltlefined mathematical models, allmg us to generate data and

verify our results. Schematic diagrams of these systems are shévwguia8.3.

The harmonic oscillatorF{gure 8.3) is a simple conservative system with one degree

of freedom. The variables are the massos
velocity over time. The symbolic regression algorithm tdes several equations

model i ng t he systemos ki netic and pot e

accuracy/ complexity Pareto front, includir

The simple pendulum F{gure 8.3) is a similar system, but with nonlinear
trigonometric terms. The massodés position
the velocity is the pendul umdéds angul ar vel

equations modeling the angular energies over time.

The third system is the more complex 2D spring pendulkigu(e 8.3). Here, the
system has two degrees of freedom, two positions, and two velocities measured over
time. The dynamics of this systems are more complex, but still tractable with the

symbolic regresion algorithm.

108

Data Pareto Front of Models

6 Ko X + ko X V2T Ky X3
0 . L e e ,-l.<1x+k2x?'|' ks V2
ab § 02 2k V2 +sin(k, X)
L4
j=2)
2 204 2C08(X) + sincogk v))
E o kx+v2
206
0)
2
S -08
) 3 kx+v
o g . . X+V
-20 -15 -10 -5 0
Parsimony [-nodes]
¥2+k cogd)
0 . . o ¥2cogd)
E -0.2
@
& 0.4
o
=-0.6
=
f’(-0.8
[
2 -1
S
=l
-1.2
§ o ¥ sin(cogd))
1.4 o ¥ cogd)
o d+x¥
1.6 ; -

8 7 6 5 -4 3 =2
Parsimony [-nodes]

©

ko X T ko V2T kg X2+ Kk, x cos@l) T ks ¥271 kg x2¥2

) OF o o=e ok XT kyV2T kyX2+ K, X COSE) T kg X2¥2
i — -0.2
. <]
X 9 [
g -04 Ky X2+ ky V2 + X2 ¥ 21k X cos)
_/ 0 208/ 1 '
d z o 0OSH) + ki X V2T ky cOSE) +ks X ¥2
£ L3
s 0.8 GosE) i ky X +k, v+ cosiks X ¥)
v 5 o -1
2 °
Q 1
) ol e 3 1.2 ®e—ed+xikyv
—w [rad/s] o .14+
B o d+¥ x+cosf)
R / . x : 16 *
5 10 15 20 25 : y [r
Time [sec] -40 -30 -20 -10 0

Parsimony [-nodes]

Figure 8.3. Summary of the mechanical systems, the collected data of th
dynamics, and the resulting models found using symbolicegression on the
equation accuracy and complexity Pareto front. Each system was simulat
numerically. The symbolic regression algorithm generates a small set
equations for each system. This set is a Pareto front, showing the most accu
equation found for different sizes (complexities) of equations. These equatic
are used to distill a common mathematical alphabet of building blocks ft
modeling mass, spring, and pendulum mechanical devices.

The Pareto front of these systems (showRigure8.3) summarizes the equations that
maximize parsimony and accuracy for modeling the experimental data. The terms in

the equations are in this sense useful, and may congc@mon physical language.

109

We simulated these systems numerically by integrating their differential equations.
We save the position coordinates and the velocities of each component of the system

as the experimental data for use in the symbolic regreakjonthm (inFigure8.3).

ExperimentalSetup

Our experimentaused the fitnesprediction algorithm described i(Schmidt and
Lipson 2005; Schmidt and Lipson 2006; Schmidt and Lipson 2@®&earch the
space of symbolic equationIhe selection method wadeterministic crowding
(Mahfoud 1995) with 1% mutation probability and@5% crossover probability. The
encoding is an acyclic grapf 64 operations/nodg$Schmidt and Lipson 200@nd
used sgle-point crossoverThe operation setllowedaddition, subtraction, multiply,

sine, and cosine operations.

We allowed solutions to use up 8@ nodes, each possibly representing five types of
mathematical operations, two to four variables, or a parameter congtaring the
possible real values of coefficienthis space containughly 16* parameterized

genotypes.

We distributed the sybwolic regression evolution over 20 quad core computers (80
total cores)(Christian, Marc et al. 2003; Francisco, Giandomenico et al. 200%)
distribution techniquepartitions thetotal population of solutions intemall local
populations residing on each computer (or cdeeyiodically(every1,000 generations

in our experiments)the total population isandomly shuffld solutions across all

computers to better simulaassingle large populatian

The fitness predictor population contains 1280 predictors, distributed over 80 cores.
The fitness predictor subset size is 128 indices to the full training data set. Predictors

were evolved using deterministic crowding, with 10% mutation and 50% crossover.

110

Our fitness calculation rewards equations for modeling the systems kinetic and
potential energies as described(8chmidt and Lipson 2009s measured over the
dataset. The predicted fitness values only calculate over the smaller subset of a fithess

predictor rather than the entdata set.
Results

A Mechanical Alphabet
After building the equation accuracy/complexity Pareto fronts for each system using
symbolic regression and decomposing the building blocks for each equation in each

system, we plot the frequency of each building block versus its compl(&kgyre

8.4).

10 ¢

s kx
® 3
g kv
g 10« (o] k v2

Vv
S kcogd) ©
2 o
< k x2
S kcogv) e
S 102 ksin(d)o
) ¥ kv cogd) K ko \2
S o , COS(d) + k, v
o ki x + Kk, Vv °
LL

°
-3 r r r r klx + Ir(z V2

10

0 1 2 3 4 5 6 7
Term Complexity [nodes]

Figure 8.4. The building blocks found for the domain alphabet based on the
harmonic oscillator, simple pendulum, and 2D spring pendulum Pareto front
models. The nost frequent and complex building blocks correspond to the kinet
energy terms for moving masses and potential energy terms for springs and
pendula. Building blocks with zero frequency on the Pareto fronts of other
systems are omitting and not included irthe alphabet.

111

We can see that single variable terms are the most common building blocks, as well as
being the simplest possible building blocks. Not showigure8.4 are the numerous

build blocks that were only found within a single system having zero frequency.

Moving to the next most frequent building blocks, we find dpafdk x,. These are

pendulumand spring potential energies respectively.

Interestingly, the higher complexity building blocks Figure 8.4 are the result of
matches between inexact equationsween the different systems. For example,
kicos@) + koV? is an exact building block for the simple pendulum system, but also an

approximate solution to the harmonic oscillator.

There are two building blocks iRigure 8.4 which are not exact building blocks for
any of the systems, though they are potentially useful approximate building blocks;
namely,k cosf{) andk sin(d). Thek cos{) term approximates a kinetic engrgnd the

k sin(d) term approximates a single variable term. These terms are both low
complexity and low frequency however. This hints that these are approximate building

blocks and we could elect to reject them after manual inspection.

This result suggestthat the terms that are both frequently used and complex tend to
be more physically meaningful for inclusion in the domain alphabet, such as
trigonometric terms representing potential energies or squared velocities representing

kinetic energies.

Utilizing the Alphabet
One application of the domain alphabet is to simplify the search for forming models of
more complex systems. We demonstrate this idea by using an alphabet formed from

just the harmonic oscillator and simple pendulum systems to find a nicithel more

112

complex 2D spring pendulum system.

If we repeat the Pareto building block analysis, but now only with the harmonic
oscillator and simple pendulum building blocks we obtain the building blocks shown

in Figure8.5a.

There are many ways we could utilize these building blocks in the symbolic regression
algorithm. We could introduce them as new functions in the operator set.
Alternatively, we could seeithe initial population using random combinations of these

building blocks.

We chose to introduce a mutation operator that could mutate-expubssion of an
evolving equation to be a random building block frbrgure8.5a. The constant terms

in each building blockk § were set to normally distributed random constants at the
mutation event. This approach allows the building blocks to be consistently introduced
during evolution, but also adapted if necessary. In the case that an alphabet building
block is approximate, the evolution can still benefit from using it early on, and adapt

its structure later to fit the exact system model.

There are likely much better mettsodor utilizing the alphabet building blocks in
symbolic regression as well as other types of expert knowledge. For the scope of this
chapter we want to show the proof of concept using a simple modification to the

program.

Figure 8.5b compares the symbolic regression of the 2D spring pendulum over time
with and without the building block alphabet obtained from the harmonic oscillator
and simple pendulum. The fithessshown versus the number of function evaluations,

averaged over ten independent trials.

113

Fitness [-error]

Frequency of Appearance (%)

=
o
1

o

k x
-]
kv <>k cogXx)
107+
© kv
° k, coqx) +k, v?
ki x + K,V °
10_2 r r r r r r r
0 1 2 3 4 5 6 7
Term Complexity [nodes]
x4

I

O . | V/]

|

| |

[I

| |

P

-0.5¢ % |

| |

7 | |

// | |

! !
1k Z}'—} pinni T

=
o

-2
1

Convergence
Times

creef c corcceeck t rorrrecrf r e ocecreedf f rorcreerf r o rcreeck

10 11 12

0° 10 10 10° 10 10 10
Computational Effort [evaluations]

Figure 8.5. The impact of using a domain alphabet obtained from simple systen
the harmonic oscillator andsimple pendulum, to find the model of a more
complex system, the 2D spring pendulum. The alphabet in (top) shows the
common building blocks found from the Pareto analysis of only the harmonic
oscillator and simple pendulum systems. Allowing symbolic regresn to use
these terms substantially accelerates the modeling of the more complex 2D spi
pendulum system (bottom). Error bars show the first standard error about the
mean over ten independent trials.

114

Using the alphabet substantially improves perforceaover time, converging sooner
onto the exact 2D spring pendulum model. The time to convergence is four times

faster using the alphabet building blocks.

This result shows that an alphabet obtained from two simpler systems can be used to

accelerate the naeling of a more complex system using symbolic regression.

Conclusions

Identifying a mathematical alphabet is a means to organize and learn the rules and
language of a particular scientific field or domain. Alphabets are sets of mathematical

building blocls that represent common terms and calculations that pervade different

phenomena. Identifying these building blocks helps to generalize our understanding of

different systems, and potentially simply the modeling of future complex systems.

We proposed an amated method to distill the mathematical alphabet directly from
experimental data using symbolic regression. The method finds a set of equations for
multiple related systems on the accuracy/complexity Pareto front, decomposes these
equations into buildinglocks, and then calculates the frequencies these building

blocks occur on the Pareto fronts of the other systems.

Our results suggested that building blocks that are both frequently used and complex
tend to be the most physically meaningful to the clafssystems; such as spring

potentials and kinetic energies. Other building blocks in the resulting alphabet were
potentially useful approximations common across multiple systems, such as small

angle approximations, but were the least complex and leasefrdy used.

Finally, we used an alphabet obtained automatically from the harmonic oscillator and

simple pendulum systems to accelerate the symbolic regression of the more complex

115

2D spring pendulum system. The regression using the alphabet found thenegat
in one fourth of the computational effort compared to the regression from scratch,
suggesting an automated method for scaling into higher and higher complexity

systems.

116

SECTION I' T MODEL REPRESENTATIONS

CHAPTER 9.DYNAMICAL SYSTEMS

Summary

This chapter describes a new algorithm for automatically revessgineering
symbolic analytical models of dynamical systems directly from experimental
observations, for the purpose of modeling, control and exploratory analysis. The new
algorithm builds on genetic pgoamming techniques used in symbolic regression to
infer differential equations from time series data. We introduce the core algorithm for
building coherent mathematical models efficiently and then describe its application to
system identification. The ned is demonstrated on a number of nonlinear

mechanical and biological systems.

Introduction

Many branches of science and engineering represent dynamical systems
mathematically as sets of differential equations derived laboriously from basic
principles andthrough experimentation. Until recently, deriving such models has
relied on human interpretation or simply fitting data to existing models. In contrast,
system identification methods can be used to generate models of a dynamical system
automatically fromobservations. Most system identification methods today are limited

to linear systems, or to some classes of nonlinear systems provided the underlying
model is known goriori. Non-parametric methods such as Neural Networks can model
nonlinear systems withowa preconceived model, but provide little insight into the
target systemds internal structure. There
able to generate symbolic models of nonlinear systems without relying heavily on

prior knowledge.

117

Our method ses genetic programming to assemble the exact differential equations
that describe an unknown system from scrg@thmidt and Lipson 2006; Schmidt
and Lipson 2006; Schmidt and Lipson 2008 represent differential equations as an
acyclic graph of primitive operationssuch asabs exp andlog, or binary operations
such asadd multiply, anddivide. The leaves of the graph can represent-statiables

of the system or parameter coefficients. We then evolve initially random equations
mutating, recombining, and selecting the best fitaéigns- until a dominant equation

emerges explaining all significant variation in the observed data.

Our algorithm scales favorably into significantly higloeder systems and higher
complexity equations than previous research by coevolving lightwdighgss
approximationgSchmidt and Lipson 20087 hese approximations adapt to the current
population of differential equations in ordergeedict how well future solutions will
explain the data. While these approximations accelerate learning, our results show
they also emphasize nonlinear features of the system and mediate solution bloat
biasing the equations to explain basic featuresrbgimposing higheorder terms. In
ongoing research, we are exploring modeling stochastic systems where manual

methods to model and control are most overwhel(®etimidt and Lipson 2007)

In the following sections, we provide an overview of our system identification method
and describe its adaptation to inferring dynamical systems. We then showsod® re
on a number of classical nonlinear mechanical and biological systems and discuss

further applications.

Background

Symbolic Regression

See the descr i BymboliciRegressiat hoen 4speacgtei on 0

118

Table 9.1. Fitness prediction dgorithm parameters

Solution Population Size 64 (x 8)
Selection Method Deterministic Crowding
P(mutation) 0.05
P(crossover) 0.75
Solution Encoding Operation List (graph)
Max Graph Size 32 nodes
Inputs 7
Operator Set (+,-,*/, sin, cos)
Terminal Set 2-dimensional (e.gx, y)
Crossover variableposition,single point
FitnessPredictorSample Size 16

Fitness prediction

Fitness prediction is a new technique to measure how well different mathematical
expressions explain experimental data more efficiently and to mediate the pressure to
fit multiple aspects of the dat&chmidt and Lipson 2006; Schmidt and Lipson 2008)
Fitness predictors only measure fit on a small subset of the dbbaving the
algorithm to search solutions faster and build intermediate expressions more easily.
However, the data subset istnstatic: Predictors cadapt with the solutions to
maintain an accurate metric for the fit to the entire data set, so that solutions still move

toward a complete model.

See the descr i pSubsample Fitmesst Fredictasse @ 1 i2pfarg &

greater detail.

Inferring Dynamical Systems

One form of a mathematical description of a physical or biological system is a set of

119

ordinary differential equations (ODES) that describe the toheevatives of physical
positions or chemical concentrations in the system as a function of its current state.
Unlike Bayesian networks and informatitdmeoretic approaches, ODEs are
deterministic model¢ghat describe causal relationsh@ansal, Belcastro et al. 2007)
including feedback loops. Terms in the differential equestioan correspond to forces
such as damping or reactions occurring in the system based on their connectivity.
Mathematical models can also be used to predict the behavior of the system in
different conditions such as attracting basins and bifurcationmedictions that are

not available in statistical models.

Reverseengineering ODEs is the task of finding both the correct functional form as
well as the parameter constants to fit experimentally collected data. In contrast, many
other methods rely on pnasting models to choose a functional form and then use an
optimization technique only to fit its parameté@ardner, di Bernardo et al. 2003;
Tegner, Yeung et al. 2003; di Bernardo, Thompson et al. 2005; Bansal, Gatta et al.
2006; Bonneau, Reiss et al. 2006; van Someren, taak 2006) However if prior
knowledge is limited, itmay not be possible to model the system mathematically
beyond simple linear models with standard meth@sWen 1999) In symbolic
regression,both the form and the parameters of the mathematical expression are

searched simultaneously in the space of possible algebraic expressions.

Our goal is to algorithmically find an exact mathematical model of some unknown
dynamical system. In a system ofhhtevariables that we observe experimentally, we

must identifyN (possibly nonlinear) differential equations.

Experimental Data

We can collect data by observing its behavior in time experimentally. We conduct

120

experiments in silicy integrating a known system model from four initial conditions
and observing it for ten seconds. These initial conditions are chosen randomly about

its stable nodes or limit cycles.

Handling Noise

The results shown here were obtained without noise,irbwther work we have
experimented with noisy data sources. There are various methods for handling noisy
time-series data from filtering and smoothing to spline and polynomial fitting.
However, system noise is particularly problematic when calculatimgperical
derivatives. We use a Loess Fitti(@leveland and Devlin 198&)oth to smooth the

data and to calculate tirterivatives of potentially noisy experimental data. We have
found empirically this allows yields accurate derivative estimates up to approximately
20% noise (signal to noise). Another approach to handlingrsystese is to model

noise sources directlifchmidt and Lipson 2001y incorporating random vabées

into the mathematical model.

Estimating Numerical Derivatives

Our approach to finding the differential equations is to measure error directly on the
time derivative of each state numerically. There are many methods for numerical
differentiation; we hee found locallyweighted polynomial fitting(Cleveland and
Devlin 1988)to give the most accurate results. At each data point we fit a locally
weighted polynomial, and approximate the derivate numerically as the derivative of

the polynomial.

Our fitness function for differential equations then becomes:

fitnesgs) = %a
i=1

S(%) - %

121

wheres(x;) is the candidate solution (a differential equation) evaluatedaaid [x/[a

is the numerically estimated derivative calculated from the data.

There are two key reasons for measuring error on the derivative values rather than
therr integrals (the measured tirseries values). First, the derivative is a lower level
comparison and more invariant to small perturbations to the exact solution. For
example,f () = sin(x)+0.1 may be extremely similar t@{x) = sin(x), but their

integrals diverge linearly. Consequently, the fitness landscape is more rugged.

Secondly, and most importantly, measuring error on derivative values rather than
integrating allows us to evaluate the fithess of candidate solutions withegtating
them.Instead, we can perform point evaluations at arbitrary points within the training

data, leading to significantly faster evaluation.

To summarize, we calculate the numerical taeeivative from the data and then use
symbolic regression to find a differegtiequation for each variable individually. We
then assemble the final model at the end when we have accurate differential equations

for each stat@ariable.

Results and Discussion

We chose seven twdimensional dynamical systems that are well studied to
demonstrate system identification of various physical and biological models: The
glider, bacterial respiration, predator prey, bar magnet, shear flow, van derandl,
LotkaVolterra models (Strogatz 1994) These systems exhibit many remarkable
dynamics (ey. bistability, hysteresis, limit cycles) and are frequently used

understand behavior of other related systems.

122

Table 9.2. Inferring various physical and biological dynamical models

System Inferred Time E\?;T;
V= 005 v® sin(q) V= 00499999 v® sin(q) 12-5019 1-33
Glider 5.062 0.50
y=v -cos(§/ y= 1-co€(9)/ . .
7=y (() Y q=v { é)(()) v sec B
. x ¢y % =19.994 0.998 xO —1999 | 25047 | 7.59
. Xx=20 X ——F X + 1.995/
Bacterial 1+0.5 & sec B
Respiration .)
y=10 — X9 y =10 - 200001y 30.547 | 3.09
1+0.5 & X + 2.00006/ x sec B
iox B ox Y C 4002 2 10030 ¢ 81718 8.26
¢ 1+ X 1.003 + x sec B
Predator- o
Prey 5 x y= 0075 y& —+0772X Y0 | 590 57| 59 38
) = 0-075 y : = : :
y =y %Tx y 30772430772 © G ont |
; 5 ; : : - 11.75 1.19
=0.5 §n 5 = 0.5
B q (g 9 sin(,) |g= sin(g sirp ,q ,) sec 5
Magnets . N . . . s
g,=05¢én(g :psin(,) |g=sin(g 065sid, qg,)q 153'229 1.858
. _ . _cosf 3.562 0.36
g=cot Eos = ainf S ¢ cec 5
Shear Flow) . L
£ =(cos? FO.1 s)fsin® f =0.099 én g 09 sinOaps cas| 33.859 | 3.42
sec B
L s
x=10 § &L yoox § |X=9990 0 0099y G333 x| 25.547 | 2.58
e ?5 I sec B
van der Pol
1 . . ; 0.859 0.09
= = % = 0.1 x(
y 10 X y X sec B
, . .. , 4.25 0.43
x=30 2-x § O x=3 0 x* 2x
Lotka- sec B
Volterra . 1.063 | 0.11
= . 2 ;= 2 _ . .
y=29 xy Q y=29 y* x-y sec B

For each system, we generate tisegies data by integrating the known model over
ten seconds, from four different initial conditions. We record 100 data points per

integration for a total of 400 data measurements. Initial conditions were chosen

123

randomlye ar each systemb6és stable nodes or |

We distributed the symbolic regression evolution over 4 computers and eight total
logical processors using the island mo@&iancisco, Marco et al. 2003gvery 100
generations, we reshuffle all solutions across all populatiaigde9.1 shows specific

settingsfor the fitness prediction algorithm.

With eight island populations, successful convergence is quite high for these systems.
We ran each system once and recorded the time before convergence and the total
number of point evaluations (the number of timeg fanction is evaluated in any data

point). Results are shown irable9.2.

The time to convergence is on the order of one to five minutes over all systems. Most
of the differential equations converge in less than 30 seconds. The most difficult
equation,dy/dt in the predatoiprey model, took just under approximately 5 minutes.
The time to find each differential equation depends primarily on the complexity of its
expression and the subtleties of its nonlinearities. For example, in the predstor

equation, most timis spent finding thél+x) denominator.

It is important to note that the algebraic form and parameter values may not exactly
match the known model. For example, in the shear flow mode, the algorithm finds a
trigonometric transformation ofin’+a*cos’ to ai (1i a)*cos’, which is equivalent.
Additionally, while the known models use precise parameter constants, such as 0.05,
the algorithm usually finds close approximations to these constants, such as 0.4999.
We could reduce this by running nonlinear regressiothe final model to polish off

its parameters. Some amount of inaccuracy in the parameters may however be the

result of artifacts in the numerical differentiation.

124

Conclusions
We have proposed a new method for building mathematical models of dynamical
systems automatically. The modeling process utilizes symbolic regression using

fitness prediction to build differential equations from experimental data.

Symbolic regression witltoevolved fitness prediction allows the algorithm to find
coherent models reliably in muitimensional systems. Fitness predictors specify a
small subset of the total training data, effectively focusing regression on a smaller
number of features at anyvgn time. In parallel, fithess predictors coevolve to
maintain accurate fitness predictions with respect to the cumulative dataset mediate
solutions drifting too far away from objective gradient. In this fashion, predictors both
reduce computational efforallowing the algorithm to find solutions faster and

allowing regression to explore more diverse funcgpace.

Applying this algorithm to system identification allowed us to infer a number of

nonlinear physical and biological systems directly from data.

125

CHAPTER 10. IMPLICIT EQUATIONS

Summary

Traditional Symbolic Regression applications are a form of supervised learning, where
a labely is provided for everyx and an explicit symbolic relationship of the foys

f(x) is sought. This chapter explores the use of o regression to perform
unsupervised learning by searching for implicit relationships of the fogy) = 0.
Implicit relationships are more general and more expressive than explicit equations in
that they can also represent closed surfaces, as svetrdinuous and discontinuous
multi-dimensional manifolds. However, searching these types of equations is
particularly challenging because an error metric is difficult to define. We studied
several direct and indirect techniques, and present a successfiubd based on
implicit derivatives. Our experiments identified implicit relationships found in a
variety of datasets, such as equations of circles, elliptic curves, spheres, equations of

motion, and energy manifolds.

Introduction

An implicit equation repesents a mathematical relationship where the dependent
variable is not given explicitly. For example, an implicit function could be given in the
form f(x,y) = O, whereas an explicit function would be given in the fgrm f(x).
Implicit equations can be more expressive and are often used to concisely define
complex surfaces or functions with multiple outputs. Consider, for example, the
equation of a circle: It could be represented implicitlyxas y? - r? = 0, explicitly

using a multioutput square root function gs= sqr(r® - x°), or as a parametric
equation of the fornx = cosf), y = sinf¢),t= 0. . 2 " . Our goal i s

implicit equations to model experimental data.

126

t

Regressing implicit relationships cha thought of as a form of unsupervised learning.
Ordinarily, Symbolic Regressiors used forsupervised learning, where a lalyeis
provided for every input vector and a symbolic relationship of the foryn= f(x) is
sought. When seeking an implicit agbnship of the fornf(x,y) = 0, we are looking

for any pattern that uniquely identifies the points in the dataset, and excludes all other

points in space.

Like clustering methods and other data mining approa(ie€onaghy, Palmers et

al. 2009) unsupervised learning has the potential to find unexpected relationships in
the data(Mackin and Tazaki 2000; De Falco, Tarantino et al. 2002; Hetland and
Seetrom 2005)For example, unsupervised learning can creat®del from positive
examples only, and then use that model to detect outliers that do not belong to the
original set. This is important in many practical applications where negative examples
are difficult or costly to come by. For example, when trainisgsiem to monitor a jet
engine, a learning algorithm will typically be trained using sensor data from intact
operation only, but will be required to alert an operator if abnormal sensor data is

detected.

Implicit equations can also provide deeper insighd the mechanism underlying an
observed phenomenon by identifying conservations. For example, when observing a
pendulum, an explicit equation can be used to fit the data and thus predict the
pendulum's future state based on its current and past statamttast, searching for
implicit relationships can lead to finding equations of invariants, such as conservation
of energy or momenturfSchmidt and Lipson 2009 These conservations can also be
used to make predictions, but provide more insight into the underlying principles,

beyond prediction.

127

While symbolic regression has been used to find exp{B#&utu, Bautu et al. 2005;
Duffy, EngleWarnick et al. 2007; Riolo, Soule et al. 20@nd differential equains
(Bongard and Lipson 2007}t is not immediately obvious how it could be used to
search for implicit equation$igure10.1). Symbolic regression ordinarily models and
predicts a specific signal or value. In implicit equations, the equation always evaluates

to zero over the datase

A key challenge is that there are an infinite number of valid implicit equations for any
given dataset. For example, i) + cos(X) - 1 is exactly zero for all points in the
dataset, but it is also exactly zero for all points not in the datBisete are also an
infinite number of relationships that are arbitrarily close to zero, such as 15260

In order to utilize symbolic regression, we need to devise a fitness function that avoids

these trivial solutions.

We experimented with a numbedrfaness functions for searching invariant equations.

We explored minimizing the variance of the function from zero over the dataset while

ol OOD
Inferred Implicit
1 & - :
Equation Model:
e %, -t —1=0
sl b@c@
4 0 : 2

Figure 10.1. Many datasets exist that do not have explicit dependent variabl
such as an elliptic curve shown here. Instead, this type of data must be mode
with an implicit equation. We explore using symbolic regression to infer the
types of models.

128

penalizing trivial equations that are zero everywhere, and numerically solving the
implicit equation and minimizings distance to each data point. Due to the difficulty
of trivial solutions and susceptibility to local optima, none of these direct methods

worked well.

Based on these results, we looked for a different metric that would relate an implicit
equation to thelataset. Rather than attempting to model the data points themselves or
the zeros of the target function, we decided to look at the gradients of the data. We
found that we could derive implicit derivatives of the data variables using an arbitrary
implicit equation, and then compare the two. Instead of fitting data points directly, this
approach fits line segments (partial derivatives) derived from the data to the line

segments (implicit derivatives) of the implicit function.

To test this approach, we expraanted on modeling a number of implicit systéims
ranging from equations of circles to equations of motion. We found this to be a
reliable method for all these systems, whereas the other methods failed to find even

the equation of the circle with similaomputational effort.

In the remaining sections, we describe the direct methods in more detail, our proposed
fitness for arbitrary implicit equations, the experiments and results on modeling

implicit systems, and finally, concluding remarks.

The Implicit Equation Problem

The need to search for implicit equations arises when we do not know or do not have
an explicit dependent variable in a dataset. Instead, we are given a large vector of data
points and our goal is to find an equation that holds true fafahese points. For
example, an equation that when solved numerically reproduces the points in the

dataset.

129

An implicit equation has the form:

f(xy,...) =0

wherex, y, etc. are independent variables of the system. Implicit equations in this form
may or may not have an explicit equation in general (it may not be possible to solve
for any single variable). However, these equations can be solved numerically or

graphically when the equation is known.

Our task is to identify expressid(x,y,...) that sasfies the uniquely for all points in

the dataset.

Naive Methods

It might be tempting to search for equations that evaluate to zero for all data points in
the dataset. A simple fitness function for this would be second moment or squared
error from zero. Theproblem with this naive method is quickly obvious however:
evolution almost immediately converges to a trivial solution suchiag = 0 orx +

4.56 - y xly, etc. These trivial solutions are zero everywhere and are not particularly

interesting or usefubr analyzing the data.

We tried a slight modification of this method by adding a test for trivial solutions such
as 0 = 0. For each candidate equation, we would perform a quick symbolic
simplification to see if the result reduces to zero. Unfortunateé/etvolution always
converged to more complex identities equal to zero than we could add to our
simplification test. For examplex { 1) - (x> 2 x + 1)/(x - 1) and-sir?(X) - cos(x) + 1,

or more complex elaborations of zero identities.

A third method we tried was rewarding the function for being-zeno away from the

points in the dataset. In this circumstance, evolution still converged on trivial solutions

130

that were arbitrarily close to zero over most of the data, but still nonzeno feava
the data. For example, solutions such as 1/(1)}+ can become arbitrarily close

implicit equations over the data, but are still trivial.

Finally, we decided to try numerically solving the candidate implicit equations and
comparing with the data pds. This method is extremely slow as the numerical
solution requires an iterative procedure. It also has serious evolvability problems.
Many candidate equations do not have implicit solutions (for exarf(@lez 1/

never crosses zero) which makes ifiigthe numerical solution neconvergent.

We modified this procedure slightly to find the local absolute valued minimum of a
candidate equation around each point in the data set, summing the distance from the
data points to their minima on the impliciiriction and the distance of the minima
from zero. In the case that there is no local minimum for a data point, we capped the

iterated procedure to a maximum distance.

This approach was able to identify implicit versions of simple lines, sughk §s= 0,

and once finding the correct implicit equations in the unit circle dataset (though these
solutions were not repeatable). Unfortunately, all runs on more complex dataset, and
most runs on the unit circle dataset, became trapped in local optima solutions. A
common type of local optima evolved zeros around a part of the dataset (for example
1/(x + @) - b - y can model the left and bottom sides of a circle accurately), but rarely

jumped to fit remaining data points.

While this final direct method may be a wallte approach with more sophistication,
it is far from elegant or efficient. Below, we describe a more direct and greatly more

reliable and efficient fitness calculation for implicit equations.

131

Table 10.1. A summary of direct methods and their difficulties

Method

Difficulty

Equations that equal zero at all d

points

Trivial solutions such as 80, x-x =

0, etc

Equations that equal zero near data,

grow with distance

Places too many constraints dhe

resulting equations

Equations that equal zero but hs

non-zero derivative

Places too many constraints on |

resulting equations

Equations that equal zero but 1

symbolically zero when simplified

Trivial solutions, just more comple
zero identities suhv as co¥X’) +

Sirf(x’) - 1

Equations that Equal zero, but nonz

at random point away from data

Trivial solutions such afx) = 1/(100

+X)2, which is norzero neax = -100

Numerically solve equation, measu
distance from data points to clos¢

zero

Difficult to evolve, many degenera
equations do not have solutions, ¢

computationally expensive

The Implicit Derivatives Method
The difficulties of the direct method$4ble10.1) suggest that comparing the zeros of
the candidate implicit equation directly is insufficient to reliably find accurate and

nontrivial models.

132

Rather than looking at the individual points, dexided to look at the local derivatives

of these points. If the candidate implicit equation is modeling the points in a
meaningful way, it should be able to predict relationships between derivatives of each
variable. Importantly, we must also be ablemeasure such a relationship readily

from the dataset.

For our method, we propose using the ratio of partial derivatives between pairs of
variables (implicit derivatives). The idea is that dividing two partial derivatives of a
candidate implicit equatioff...) = O cancels out the implidi{...) signal, leaving only

the implied derivative between two variables of the system.

For example, in a twdimensional dataset we could measure variak(lgsand y(t)
over time. The system's implicit derivatives estimated from-8erées data would be
dx/dya x'ly' anddy/dxa y'/x', wherex' andy' represent the timderivatives ofk andy.
Similarly, given a candidate implicit equatidfx,y), we can derive the samalues
through differentiationdx/dy= (df/dy)/(df/dX) anddy/dx= (df/dX/(df/dy). We can now
comparedx/dyvalues from the experimental data witk/dy values from a candidate
implicit equationf(x,y) to measure how well it predicts indirect relatioips between

variables of the system.

Finally, we can use this process in a fitness function for implicit equations. We simply
measure the error on all implicit derivatives that we can derive from each candidate
equation. In our experiments, we returne ttmean logarithmic error of these

derivatives:

N o)
ia|og§+d)§_ df/dfo
Nz 8 dy dy/ dx@

133

Figure 10.2. Implicit derivatives can be estimated from unordered, or shuffle
data, nonparametrically by fitting a hyperplane or higher-order surface tc
neighboring points. After fitting the neighboring points, simply take any of thi
implicit derivatives of the locally fit surface.

whereN is the number of data pointx/dy is a implicit derivative estimated from the
data, anddf/dy)/(df/dX) is the implicit derivative derived from the candidate implicit

equation.

Handling Unordered Datasets

The implicit method can also be applied to unordered andimenseries data as there
are several ways to estimate implicit derivatives from experimental data. An implicit
derivative is simply a local relation of how two vdnles covary. In 2D, the implicit
derivative is the slope of the tangent line. In 3D, the implicit derivatives lie on the

tangent plane. In higher dimensions, they lie on tdemensional tangent hyperplane.

To generalize this procedure for arbitrary wered data, one can fit a hyperplane, or
higherorder surface such as a conic secti®hpitalni, M et al. 1997)o local clouds
of data points. From each hyperplane, one can then sample implicit derivatives by

taking the implicit derivative of the hyperplane equatieigre10.2).

We verified that this procedure works in our experimental datasets by randomly

134

shuffling them and discarding their time ordering. The method regresses the same

implicit equations as in our results below using this procedure.

Experiments

We experimented on six implicit equation problems of varying complexity and
difficulty (Figure10.3). The simplest are the equation of a circle and an elliptic curve.
These are welknown two dimensional systems with only two implicit derivative
(dx/dyanddy/dX that reque implicit equations. A similar but slightly more difficult
problem is the dlimensional sphere. In each of these systems we can collect data

uniformly on their implicit surfaces.

The next three systems are dynamical systems of varying complexity: ke dimegar
harmonic oscillator, a nonlinear pendulum, and a chaotic spendulum. We
simulated single trajectories of each system, recording the positions, velocities, and
accelerations for the implicit datasets. In these systems, we are seeking th# impl
equation of motion. In the spriqgendulum we are seeking a similar implicit equation,
the Hamiltonian, which only uses position and velocity data. The data used for each

system is shown iRigure10.3.

From this data, we estimate the partial derivatives from the datdyY by taking the

ratio of the time derivatives. For the circle, elliptic curve, and sphere, we picked an
arbitrary timetrajectory around their surfaces (two in the case of the elliptic curve).
This works because the time component cancels out in the ratio. We could also have
fit a local plane to each point to estimate the partial derivativegpa@metrically of

unorderd data as discussed earlier.

135

UOOCGOUUG

:
ocoog
000 0g
e “o
C
Co o®
900p0000°

"o, c L o
3 ° 3
- o - o
%o o [+]

Q
\ 900 nnnnno0? . . , . . @

5 25 0 25 515 -1 -05 0 05 1 15

(a) Circle: 1% + y* — 47 (b) Elliptic Curve: 2> + 2 — y> — 1.5

1 m&gngngggﬁg%m
@000 0 0 0 0 0 000D
+ @O0 0 0 0 0 0 0000 o 6 o
@O0 0 0 O 0O O O O O O0O0®™ o o @ F 0 &
@O0 o © 0 © © O O O 0o0® o ° o oo EEPN
F @00 o0 0 0 0O © O O 0 0o® o 60 ° %o, o
®CO ¢ © O O O © O 0O 0O0OW | CO 6 ° L0009 00, o Oq
L o o © =]
@00 © © 0 0 0 0 © 0 O om o 0% Lo 5000000, " 94 o o
Moo 0o © 0o © © 0o 0 0 0o®m o o o7 0% 4000000570, Oy "o o
L0 o
L @o o O O o o o] 0o o o0o® o o o o 7 o00! 5. 0 ©° © [e]
= o o qO Q%QC (]] [}
0 ®oo o o o0 © o0 © © o Co® o 4 O F 9 o o ©
o] c o (=}
F ®o o o © o o o o 0o 0 0oW <] o o OJOO § %% s o °©
[} o
®o o o o o © o ©o o o 0oowm L c o ¢ o g 5o o @
s o © 28§ = 00 o o o
L @o 0o o O o o o o o © 0 om® o © %o G goc o o o
@Woo o © 0 © © © © 0 oo® OO o 59 -' OQCDU S o 4
L © o o e soplie) o ©
@00 ¢ © 0 O O 0 © 0 O om + o o %o, OOOJOUOOOOOGOCO‘VOJ 1U0 PO o o
@oo o o © O o o ©o 0O 0o0m o o 0, 70g 00600000 00" o° o ¢}
L @oo 0 0 0 O © © © 0 0Oom o 37 o4 %00opno0?® 0° GD o]
@co o © 0 © © 0 O © 0o® | o o, %06450000° o C
@O Q0 O 0 0 0 0 °0 0 o0® L o4 s0° o
_l- @O0 0 0O 0 0 0 0 000D o Oooo0 P
@90 0,00 & ©0 00w o 4 5 ©
. o TR LR . | | 1T °Qq009 | |

-1 0.5 0 0.5 01 2 4 6

(c) Sphere: 2 + y? + 22 — 12 (d) Harmonic Oscillator: 6 —0.10 + 3

3 15 0 15

(¢) Pendulum: 6 — 0.16 + 9.8 sin(¢) (f) Spring Pendulum: —10r4+0.572+5r2 —
10rcos(6) + 0.57262

Figure 10.3. Data sampled from six target implicit equation systems. Data
collected uniformly for the geometric systems. In the dynamical systems, the d
is a single sinulated trajectory from a random initial condition.

136

We used a basic symbolic regression algori{®thmidt and Lipson 2006p search

the space of implicit equations. We use the deterministic crowding selection method
(Mahfoud 1995) with 1% mutation probability and 75% crossover probability. The
encoding is an acyclic grapfschmidt and Lipson 200Ayith a maximum of 128
operations/nodes. The operation set contains addition, subtraction, multiply, sine, and

cosine operations.

Results

We conducted 20 independent trials on each system, recordingsfitaleles and
solutions overtime. Evolution was stopped after a solution converged onto a near
perfect solutionFigure10.4 shows the mean fitness of the 4@mkedsolution during

the evolutionary runs on a validation dataset.

Each evolutionary run identified the correct implicit equation for these systems,
although different systems required more computation than others. The circle took less
than a minute to convge on average; the elliptic curve, sphere, and pendulum took
five to ten minutes on average; and the spring pendulum took approximately one to

two hours.

In comparison, none of the direct methods could find solutions to any of these
systems, even with coidgrably more computational effort. In the case of the circle,
the implicit derivatives methods obtained the correct solution 20 out of 20 trials in
under one minute per trial. In contrast, the direct methods did not obtain the correct
solution even onceani20, one hour trials. The best solution found by the direct method
over these runs wag(x> + b) - y i ¢ = 0. In the remaining target systems, the direct

methods performed even worse.

137

O - r TEEET"T
0 S
i JHHH - ‘ FFF}H{’E '
S -0.01 Hﬁ .0.01f I
@ % < I H
2 002 i 2 f
2. -0.02/ %H{ -0.02| I
¢ 0.03/ W s II
c -U. =
£ Mﬂﬁ £-0.03 Hﬂ
-0.041 | | _0_04_ | | |
108 10° oo 108 10° 1010 101t
Effort [evaluations] Effort [evaluat?(lans]
(a) Circle: 2 + y* — 42 (b) Elliptic Curve: 2 + 2 — 3% — 1.5
0 0r e
_ it - | ff
S-0.15 }H S 0.2)
o ' o i
5 I 3 !
S, -0.3 2.-0.3]
o & H
(%]
£.0.45 mﬁﬁ S .06 i
.L-'f : I_{HH' T J
-0.6 -0.8¢ }H
108 3 100 10 108 100 100 10
E]Jfort [evaluat%ns] Effort [evaluations]
(¢) Sphere: 22 + 42 + 22 — 17 (d) Harmonic Oscillator: 6 — 0.16 + 3«
0.02] 0 2=
— 0 T = f
5-0.06" a S-0.04
@ 1)
c’ [}I c)
S 0.1l / =2,-0.08
= [9
)] f
%) | H 4
£-0.14 J £-0.12
T HJ L L
-0.18| -0.16)
10° 1010 101 106 10°__ 10 10t 102 103

1P _
Effort [evaluations]

Effort [evaluations]

(¢) Pendulum: 6 — 0.16 4 9.8 sin(6) (f) Spring Pendulum: —10r+0.572 4+5r2 —
10rcos(6) 4+ 0.5r262

Figure 104. Fitness of the symbolic regression algorithm using the implic
derivatives fitness for each of the six systems. Results are the top ranked solu
versus time, averaged over 20 independent trials. Error bars indicate the fir

standard error.

138

Implicit P areto Fronts

Over our experiments, we also tracked Hareto frontierof the implicit equation
fithess and complexity for each systeRigure 10.5). This front shows the tradeoff
between equation complexity and its ability to model the implicit ¢&taits and
Kotanchek 2004)Here, we measure the complexity of an equation as the number of

nodes in its binary parse tree.

The Pareto fronts tend to contain cliff features where fithess jumps rapidly at some
minimum complexity. In theases where even more complex equations are found on
the front, even several times more complex, the improvement in fitness is only

marginal.

For each system, the simplest implicit equation to reach the highest qualitative fithess
on the Pareto front wabé exact target equation. Looking more closely at the higher
complexity solutions, we found they were elaborations on the exact sotutfon
example, extraneous terms with very small coefficients, perhaps compensating for

small errors in estimating thpartial derivatives from the data.

We also noticed that simpler and lower fitness solutions on the fronts contained
approximations to the exact solutidnfr example, small angle approximations in the

pendulum and spring pendulum systems.

139

0 0 _i.
i
—_ 5 L
2 -0.04] S 0.2 I_
3
(@]
g g
< -0.08 o -0.4
¢ | £
it -0.12f L 06
-0.16 ‘ ‘ ‘ ‘ , , . . -0.8 ‘ ‘ ‘ ‘ ‘ ‘ -
-11 9 7 - -3 -18 -14 -10 -6 -
Parsimonyf-node Parsimony-nodeg
(a) Cirele: z2 + y2 — 42 (b) Elliptic Curve: =% + = —y? — 1.5
O b, Or
S _
5 02 S.0.04|
o (@)
o 3 I
2 04 =0.08
2 g
q) GJ
c =
= 0.6 _ i 0.12; B
-0.8 ‘ . ‘ -0.16 . ‘ ‘ . ‘ i -
-20 -1 -1 -5 -18 -14 -10 -6 -2
Par35|mon)[-node8 Parsimony-nodeg
(c) Sphere: =2 4 y° + 22 — 12 (d) Harmonic Oscillator: 6 — 0.16 + 3x
- O— - - .
O_ L _ L
% og S 04
= -0.5 5 L
o =4 .
A = .08 L.
2 3 |
Q Q@ - .
£ ! = L,
T -1.5] i -1.2 e T
_27 ‘ , ‘ ‘ , I - -16 ‘ ‘ , ‘ |'L. ,
-60 0 -35 -15 -5

-40, -20 -25

Parsimony4nodes] Parsimony-nodeg

(¢) Pendulum: 6 — 0.16 + 9.8 sin(6) (f) Spring Pendulum: —10r4+0.572 4 5r2 —
10rcos(8) + 0.5r292

Figure 10.5. The fitness and equation complexity Pareto fronts found for each

the six systems. The exact solutions are the simplest equations to reach |

perfect fithess. More complex solutions show elaborationsnahe exact solution

improving fitness only marginally.

140

Conclusions

The ability to search for implicit equations enables searching for -gioiensional
surfaces, equations of motion, and other invariant models in experimental data.
However, identifyingmeaningful and nontrivial implicit equations poses difficult

challenges.

We explored several naive fithess methods for rewarding implicit equations to model
data. These methods, which considered the individual data points and the zeros of the
implicit equations directly, were unable to solve the simplest implicit equations

reliably or consistently.

We showed that looking instead at ratios of partial derivatives of local data points
provided a reliable search gradient for a variety of implicit systems mMathod
identified geometric equations such as elliptic curves addn@nsional spheres, as

well as equations of motions in nonlinear dynamical systems.

141

CHAPTER 11. NATURAL LAWS

Summary

For centuries, scientists have attempted to identify and document anabisathiat
underlie physical phenomena in nature. Despite the prevalence of computing power,
finding natural laws and their corresponding equations has resisted automation. A key
challenge to finding analytic relationships automatically is defining algoictdin

what makes a correlation in observed data important and insightful. We propose a
principle for the identification of notriviality. We demonstrate this approach by
automatically searching motidracking data captured from various physical systems,
ranging from simple harmonic oscillators to chaotic doydgledula. Without any

prior knowledge about physics, kinematics or geometry, the algorithm discovered
Hamiltonians, Lagrangians, and other laws of geometric and momentum conservation.
The discoveryrate accelerated as laws found for simpler systems were used to
bootstrap explanations for more complex systems, gradually uncovering the

"alphabet" used to describe those systems.

Motivation

Mathematical symmetries and invariants are known to underdeynall physical

laws in naturg/Anderson 1972)suggesting that the search for many natural laws is
inseparably a search for conserved quantities and invatiartiongNoether 1918;
Hanc, Tuleja et al. 2004Automated techniques for generating, collecting and storing
data from scientific measeiments have become increasingly precise and powerful, but
automated processes for distilling this data into knowledge in the form of analytical
natural laws have not kept pace. This trend is incommensurate with the rapidly
increasing influx of scientific masurementfClery and Voss 2005; Szalay and Gray

2006) coupled with the growing complexity of systems being stu@&ttbgatz 2001;

142

A C
Detected Invariance:
i L*(m+m)m*+m,L ‘e’ +
m,L Lo ,cos(@ -6, -
19.6L (m +m,)cos 0 —
19.6m,L cos 0,

Figure 11.1. Mining physical systems: We captured the angles andangular
velocities of a chaotic doublgoendulum (A) over time, using motion tracking (B)
then automatically searched for equations that describe a single natural [
relating these variables. Without any prior knowledge about physics or geometi
the algaithm found the conservation law (C), which turns out to be the double
pendul umés Hamiltonian. Actual pend

Marquet 2002) There is thus a pressing practical need for new forms of scientific data

mining (Ra, | et al. 1999; King, Whelan et al. 2004)

The most prohibiting obstacle to overcome in order to search for conservation laws
computationally is findingneaningfuland nontrivialinvariants. Here we introduce a
new principle for identifying useful analytical relationships. We then demonstrate how
a search algorithm based on this principle identifies meaningful analytical

relationships in data captured from a varietyhysical systemd={gure11.1).

Our goal is to find natural relationshipdere they existvith minimal restrictions on

their analytical form (i.efreeforn). Many methods exist for modeling scientific data:
Some employ fixedorm parametric models derived from expert knowledge, others
use numerical models (such as neural networks) aimed at prediction. Alternatively, we
seek the principal freeform analytical exggmn that explains symbolically precise
conservation relationships, thus helping distill the dataset from correlations into

scientific knowledge.

143

Method Overview

The established method for search a space of mathematical expressionsmiaanin
various eror metrics is known aSymbolic regressio(Koza 1992) a method based
on evolutionary computatiorfForrest 1993) See the description of the section

ASymbolic Regressian o n 4 forangre information.

While symbolic regession is typically used to find expli¢®uffy and EngleWarnick

2002; Elena, Andrei et al. 2005; Cyril and Alberto 2087@Y differential equations
(Bongard and Lipson 2007yymbolic regression cannot readily find conservation
laws or imariant equations. We simply do not knaav priori what exactly the
equations should model or what they should evaluate to, and so a direct error metric is
elusive. Rather than trying to model a specific signal, we are trying to detect any
underlying physicklaw that the system is obeying, which may or may not be constant

(e.g. a Lagrangian).

A particular challenge is requiring the d
state while avoiding trivial or meaningless relationships. For any system evstatk

spacex, there are, in fact, infinitely manirivial equationsover x that satisfy a

conserved quantity, such aB¥(x,)+cos’(x1) or X;+4.56i xx1/%,. Additionally, there

are infinitely many arbitrarihclose trivial conservations, such 456+1/(100+x?).

Clearly, we need a more robust principle for distinguishing good conservation law

candidates from poor ones, than simply invariance alone.

The identification of nontrivial relationships is known to be a major challenge even for
human s@ntists: Many published invariant quantities have turned out to be
coincidental(Nee, Colegrave &l. 2005) The mere appearance of a conserved value

is insufficient for a conservation law. The key insight into identifying nontrivial

144

conservation laws computationally is that the candidate equations should predict
relationships between dynamics obsamponents of the system. More precisely, the

conservation equation should be able to predict relationships among derivatives of
groups of variables over time, derivatives that we can also readily calculate from new

experimental data.

One instance of shica metric is thgartial derivativesbetweerpairs of variables. For
example, in a twalimensional system we could measure variak{sandy(t) over

ti me. The systembs parti-aeries datarwowdahen be e s
X [§ & ax/egy andy /& & agy/aex (wherex andy depresent the timderivative ofx and

y). Similarly, given a candidate conservation equat{®@y), we can deriveredicted
values through differentiationti(fi y/ (G/fi x U&i yand (/& x/ G/ y Udn xWe

can now comparex/ay estimatesfrom the experimental data wiih i ypredictions

from a candidate conservation expressiogy) to measure how well it predicts
intrinsic relationships in the system. In higher dimensional systems, multiple variable
pairings and higher order derivatives yield a plethora of criteria toTus®.section
"Calculating the Predictive Ability below details how to take accurate partial
derivatives off as it must be a symbolic derivative with interiable dependencies

for higherdimensional systems. Using the partial derivative pairs, we define a new
type of search criteria for measuring how well a candidate analytical expression

repreents a nontrivial invariance over the experimental data.

145

o L A]
Pendulum iy S 7 ' ? Ay

ALAS W e -

PNE W Az TN RIS

T e Ax iV Y

o Collect experimental 9 Numerically calculate
data from physical system partial derivative for every

(e.g. pendulum time series) pair of variables

f=(x-1.12)-cos(y)
[=091-exp(y/z)
. =0.5-y" —9.8-cos(x

f=z+9.8sin(x) 4 !)
e Generate candidate
f’ =0.5- yz —-908- COS(I) symbolic functions. Initially
. these are random; later they
are small variations of best
equations selected in (5)

o When predictive ability
reaches sufficient
accuracy, return the most

parsimonious equations %[f] =y sin(x}%

[Explore
Ay ay .
— === Candidate . .
Axly Equations, ¥ = 6)‘/@“
Oy OX/ Oy

0 Compare predicted
partial derivatives (4) with
numerical partial derivatives
(2). Select best equations.

o Derive symbolic partial
derivatives of pairs of variables
for each candidate function

B F0,00)=4.771<3.714 — @) + cos(#)
+(3.714 — @?)-cos(@)

(0) <= load [3.714]
(1) <= load [w]

(2) €<= mul (1), (1)
(3) <= sub (0), (2)
(4) <- load [#]
(
(

5) <- cos (4)

6) <= mul (3), (5)
(7) <- load [4.771]
(B8) <= mul (7)), (3)
(9) <- add (8), (5)
(10) <- add (9), (6)

w w

Figure 11.2. The computational approach for detecting conservation laws froi
experimentally collected data.(A) First, calculate partial derivatives betwee
variables from the data, then search for equations that may describe a physi
invariance. To measure how well an equation describes an invariance, derive
same partial derivatives symbolically to compare with the data. Finally, retur
the most parsimonious equations for the hypothesized physical law§B) The
representation of a symbolic equation in computer memory is a list of success
mathematical operations.(C) This list representation corresponds to agraph,
where nodes represent mathematical building blocks and leaves repres
parameters and system variables. Botl{B) and (C) correspond to the equatiol
f(d¥)=17.719 4. 770 *+4.714cosf)i ¥°cos¢]). To search for conservatio
equations, the algorithm mutdes and recombines these structures to search 1
space of equations.

146

An important consequence of the partial derivative pair measure is that it can also
identify relationships that represent other nontrivial identities of the system beyond
invariants ad conservation laws. For example, if the system is confined to a manifold,
the manifold equation can also derive accurate partial derivative pairs. Similarly, the
partial derivative pair can identify equations such as Lagrangian equations, the energy
equialent to theequation of motionn classical mechanics, which summarizes the

systems dynamics, but is not invariant.

One can control, to an extent, the type of law that the system might find by choosing
what variables to provide to the algorithm. For egemif we only provide position
coordinates, the algorithm is f epaceelid t o
we provide velocities, the algorithm is biased to find energy laws. If we additionally
supply accelerations, the algorithm is biagedind force identities and equatico

motion. There may exist, however, other or previously unknown analytical laws given

these or other types of variables.

Results

We used the algorithm summarizedrigure11.2 to search for analytical laws in data
captured from several synthetic and physical systems using various sets of system
variables. We present here key results for a number of physical experimental systems;
See sectionDetecting Laws in Synthetic Systefmiselow for a study of synthetic
systems, geometric symmetries, and manifolds. A video of these systems and
visualizations of the search for their law expressions is avaitatiee (Schmidt and

Lipson 2009)

We collected data from standard experimental systems typically used in undergraduate

physics education: An atrack oscillator and a double pemdgn (Figure 11.3). After

147

placing infrared markers on the moving components, we placed the target system in an
arbitrary initial condition and recorded its transient behavior using cameras and
motiontracking software.This process provided tirgeries data of the marker

positions. We then processed the numerical derivative of the positions to obtain

velocities, accelerations, and so forth.

Without any additional information, system models, or theoretical knowledge, the
search using the partial derivative pairs criterion was able to find several analytical
law expressions directly from this data. We experimented on two configurations of the
air-track: twospring singlemass, and thregpring doublemass. Similarly, we
cdlected timeseries data from a pendulum and a doydgedulum Figure 11.3)

using motionrtracking.

The singlecar airtrack is a harmonic oscillator with slight damping from the air and

its two springs. With onlyminimal noise and damping, it was the simplest physical

system that we examined. Given velocity and position data from 30 seconds of
observation, the algorithm detected the s
equations within five minutes. Given ditionally acceleration data, it detected the

systembés differenti al equation of motion ¢

The doublemass autrack consisted of two coupled harmonic oscillators of different
masses. There was significant noise in thisskt as a result of compression of the

middle spring. The algorithm still detected the LagrangianHamdiltonianequations.

The pendulum is a nonlinear oscillator. Given only position data, the algorithm
detected that the device is confined to a citGleen angular positions, velocities, and
accelerations, it detected energy conservation, the Lagrangian, and the Newtonian

equation of motion. The algorithm also detected several inexact expressions through

148

Physical System Schematic Experimental Data Inferred Laws

Ja oA A A 114.287 + 692.33°

Hamiltonian

JARVFARVFARY A"-,_A) \/21- 6.04X2
w VO v . v _ Lagrangian
ai 0.008/7 6.02x

“me ' Equation of motion

o e Ml v 142,191 T4.65 + 0.12¢%1
RO e 189X T 1517 T 0,490, +
o/ WS WY 0.41v;v, i 0.082°

Lagrangian

1.37%7 + 3.29-cos())

o Lagrangian
FEARRAAREAAR! 2.71U+ 0.054¢ | 3.54sin(d)
ot 1 f 11 Y :f ! '_f Vi Equation of motion

4}; ,L:_»': \I"».i. W WowW (X i 7772? + (y i 106‘8)2

I e Circular manifold

*2+0.32,°0
124.13cogafy) i 46.82cosf,) +
0.82y 1Y2COSO-1 T dz)

% Hamiltonian

M M5 35 355 38 385 37

Figure 11.3. Summary of laws inferred from experimental datacollected from
physical systems. Depending on the types of variables provided to the algoritt
it detects different types of laws. Given solely position information, the algorithi
detects position manifolds; given velocities the algorithm detects energgws;
given accelerations, it detects equations of motion and sum of forces laws. Tt
laws contain bulk parameters.

small angle approximatiorisfor example using in place ofsin(x)andi x? in place of
cos(x) To detect the complete nonlinear trigonometric terms, the algorithm required

data spanning |l arger angles (roughly N40e¢)

The doublependulum is the most complex system we studied. It is a coupled
nonlinear oscillator system that exhibits rich dynanfitmeckel 1998and chaos at

certain energieéShinbrot, Grebogi et al. 199#)aking it challenging to modéMor

149

M 2007; Liang and Feeny 2008\We focused only on detecting its energy laws.
Similar to the singlgpendulum, there are several approximate equations that mask the
identification of its exact laws. Additionally, there is significantly higher measurement
noise and dampening errors due to higher velocities of the second arm. However, these
challenges wer@vercome by balancing data measured from the double pendulum

while operating at its two different regimesiamely, inphase and chaotic regimes.

An interesting approximate law for the double pendulum that emerged was
conservation of angular momentum. &ivonly data measured while the pendulum
was chaotic (e.g. at high energy), the algorithm tends to fixate on this law. The
conservation of momentum equation is simpler than other valid laws and is
approximately correct for high velocities where gravityeégligible, as with the high

energy chaotic dataset.

Similarly, given only data from low velocity iphase oscillations, the algorithm
fixated on small angle approximations and uncoupled energy terms. By combining the
chaotic data with low velocity #phase oscillation data, the algorithm detected the

precise energy laws.

Performance

Any fAgoodo scientific theory must be both
key challenge of any machine learning algorithm is balancing accuracy versus
parsimony. Som equations may be more accurate derfit the data, while others

may be more parsimonious but oversimp(idwin and Jordan 2003; GregoDenis

et al. 2003)the right balance is difficult to specify in advance. Instead of producing a

single result, the algorithm produces a small set of final candidate iaaklyt

expressions on the accuragegrsimonyPareto front which represents the tradeoff

150

between equation complexity and the predictive abdiythe experimental dat&Ve

measured @arsimony as the inverse thfe number of terms in the expression

The Parto front for the double penduluntigure 11.4A) reveals a few particularly

simple equations that predict the partial derivative pairs very accurately. Predictive
accuracy was measured using creabdation with the paial derivative pairs

criterion. Numerically, the nature of the partial derivative pairs criterion tends to
produce a large inflection where predictive ability jumps rapidly at some minimum
complexity. Predictive ability then improves only marginally witiore complex

equations Kigure 11.4A). It is interesting to note that the conservation of angular
momentum equation lies on the Pareto front, though it is inexact. The double
pendul umés Hami | tiomlnallofolr expesiments, theé dolationah f | e c t

this inflection has been an exact theoretical law.

Searching a space of equations for a natural law and discovering the Pareto front can
be a computationally intensive task, possibly requiring several haudays of
computation. However, the search over funcspace is readily parallelizable as
many candidate functions need to be evaluated simultaneously. We distributed our
computations over eight quadre computers usg the islanepopulation model

(Christian, Marc et al. 2003; Francisco, Giandomenico et al. 2005)

A 32-core implementation detected twlomensional geometric invariants in
approximately 5 minutes. The singieass antrack laws take approximately 10
minutes. The doublenass ahtrack laws take approximately one to two hours. The
pendulum laws take approximately 15 minutes. And the most challenging double

pendulum system takeapproximately one to two days of computatieig(rel11.4B).

151

A ko T Ky 2T K32+ Koy ¥, coqd; T ks dy) + kg cog(dy) + kycog(dy) T kgCokody) T Kyg
0 cogky T Ky,d)

More I/I K ¥ 2+ K 2T k¥ ¥, cos; i o) T k,cos@y) i kscos(y) I
Predictive . !
— -0.4
e
5} -ky ¥ 427 kg ¥ 2+ Kk ¥, ¥, cosy) + k, cosy) + k; cos(;)
D
o
= -08 I k¥, T k¥, + kv cosd; i dy) +k, ¥, cos@; i dy) I
>
§ ki ¥,¥,1 kycodd; T d,)
o -1.2(
2
s ¥ ,-cosf, d,) + ¥,
°
2
o -1.6
Less
Predictive
-2
-10° -10'
Complex Parsimony [-nodes] Simple

B oz

I Single Pendulum (d¥)

[Harmonic Oscillator (x,v,a) +

[Harmonic Oscillator (X,V)
‘@ o1+ CISingle Pendulum (dr,U
S [_1Double Harmonic Oscillator (X;,X,,V;,V,) +
2 [_1Double Pendulum (d;,d,¥ ;,¥
=z [1Seeded Double Pendulum (d;,d,,¥,,¥)

T

£ 100} i
=
o
%)
g
bt 101
a
e
[¢3]
E 10%
'_

103

Figure 114. Parsimony vs. accuracy, and performance. (A) The Pareto front
(solid black curve) for physical laws of the doublgpendulum and the frequenc
of sampling during the invariant equation search (grayscale). The Pareto fro
shows the tradeoff between equation complexity (or parsimony) and ability t
model a predictive invariance. At a critical complexity of ~32, there is a stror
point of inflection. The equation at the inflection corresponds to the exact ener
conservation law of the doublependulum, highlighted. A second momentur
conservation law enountered is also highlighted.(B) The computation time
required to detect different physical laws for several systems. The computati
time increases with the dimensionality, equation complexity, and noise. A notal
exception is the bootstrapped double pwlulum, where reuse of terms fron
simpler systems helped reduce computational cost by almost an order
magnitude, suggesting a mechanism for scaling higher complexities.

152

In the worst case, the time tdentify the equations depends exponentially on the
complexity of the expression itself and roughly quadratically on the system
dimensionality Figure 11.4B). The impact of noise also couples with these factors.
For comparison, the simulated doubbass autrack and simulated doubfgendulum
datasets (where measurements are noiseless) take approximategntbnef the
computational effort to analyze. A mmary of performance versus noise level is

provided inthe section Impact of Noisé below.

The Justification Problem

Though the algorithm can detect physical lawthgir mathematical form, we are still
faced with the challenge of justifying and giving words to their meaning. One
difficulty is that we cannot know with certainty the units of bulk constants in the law
expressions for example combinations of masses)gths, etc. embodied in the
system. Secondly, the equation may model something that is inherently difficult to

observe directly, such as total energy.

A more systematic approach to parsing the coefficients is to analyze multiple datasets
from the same sysms, albeit with different configurations and parameters. To
demonstrate this approach, we used several virtual dpebl@ula with randomly
chosen masses and lengths, to generate several new synthetic datasets. We fit the free
coefficients of the automiatlly-discovered model to each dataset, and then invoked

the equation search algorithm again to seek a relationship between the coefficients and
the parameter sets. Arbitrarily setting;=1, the algorithm identified that

ko=moL (Ml + moli?), ke=2molo/(mil: + muli), k=19.6/L;, and
ks=19.6mpLo/(mpL% + myL;?) where 19.6 is the only absolute constant whose units are
necessarilym/s. A similar approach can be used to identify coefficients that vary

slowly over time, for example due to damping, creeping, or ecological drift. In such

153

cases, the multiple datasets would come from different time windows of the same

system.

Bootstrapping

Thus far, the algorithm has detected natural laWwsnito without prior knowledge

about physics, kinematics, or geometry, with a growing performance cost for
increasingly complex systems. In contrast, scientists are able to leverage knowledge
from simplersystems to explain more complex systems. Can an algorithm do this as

well?

One method to utilize prior knowledge seedingthe equation search by initializing

the algorithmdés initial set of <candidate
simpler sygems. For example, the singbendulum (nonlinear oscillation) and the
doubleharmonic oscillator (coupled oscillation) equations provide clues to the laws
governing the more complex doufpendulum (coupled nonlinear oscillation). To

seed the set of equais for analyzing the doubjgendulum, we shuffled terms of the

simpler systems, exchanging velocity symbols with dopeledulum velocity

variables, etc., and randomized parameters to generate many inexact initial
expressions. This seeding approach dessconstrain the equation search, but simply

biases it to reuse terms from previous laws.

Bootstrapping the doubleendulum search with the singbendulum and double
harmonic oscillator terms reduced the search time by nearly an order of magnitude,
from 30-40 hours of computation to& hours Figure11.4B). Based on this result, we
conjecture that bootstrapping may be critical for detecting lawsigheh order
systems that are veiled in complexity. We also expect there are more effective means

to utilizing prior information, including human expert knowledge.

154

A statistical analysis of the swdxpression frequency and complexity across
populations ofvarious physical systems reveal¢dat terms that appear more
frequency that expected for their complexiénd to be more physically meaningful,
such as trigonometric terms representing potential energies, squared velocities
representing kinetic energies, linear force combinations. These terms may comprise
an "emergent alphabet" for describing a range of systems, which could accelerate their

modeling and simplify their conceptual understanding.

Conclusions

In conclusion, we have demonstrated the autanditicovery of physical laws, from
scratch, directly from experimentalbaptured data. The presented approach detected
nonlinear energy conservation laws, Newtonian force laws, geometric invariants, and
system manifolds in various synthetic and physicatiplemented systems without

prior knowledge about physics, kinematics or geometry. The concise analytical
expressions found are amenable to human interpretation and help reveal the physics

underlying the observed phenomenon.

Might this process diministhe role of future scientists? Quite the contrary. Scientists
may use processes such as this to help focus on interesting phenomena more rapidly,
and interpret their meaning. Much like design automation allows engineers to delegate
mundane design tasks toraputers and focus more on creative and conceptual issues,
automated mining processes might elevate scientists to think of new conceptual
frameworks, leaving machines to see if these new frameworks help generate more

predictive and parsimonious explanasdn observed phenomena.

155

Materials and Methods

The Predictive Ability Criterion

To search for potentialonservatiorequations we need a method that discriminates
trivial equations, such as coincidental invariants, from equations that represent
intrinsic relationships, such as energy conservation. We define a potengaiant
equation to benontrivial if it can predict differential relationships between two or

more variables.

One such relationship that is readily quantifiable from both the equation and
experimental data is the partial derivative between pairs of variables. If our
experiments collect timseries data, we can estimate the partial derivative between
any pair of variables by taking the ratio of their numerical derivatives over time. For

exanple, in a system with two staw@riablesx andy:

Dx , dx /dy

Dy dat/ (Equation11.1)

We use nonparametric fittiriglocal polynomial fits(Cleveland and Devlin 1988)to
estimate the timeerivatives of each statariable. In the case where we do not have
time-series data, but instead random point samples, we could alternatively estimate the

partial derivatives directly using twdimensional notparametric fitting.

A candidate equation an equation we wish to test for trivialitycan also derive the
same partial e@rivatives between variable pairs using basic calculus. We do this by
taking the ratio between partial derivatives of the equation. For example, for an

equationf(x,y) over variablex andy:

156

ax_at | & (Equationl11.2)

dy dy/ & q '

We now have two estimates of the partial derivative: one estimated from the data, and
one predicted by the candidate equafioho measure how well the equation predicted

this relationship, we take the difference(&fjuation11.1) and (Equation11.2) over

the dataset.

(Equation11.3)

A0

- —a Iog Jabsaany'

There are many metrics for combining the residiiaich as squaregiror, mean
error, correlation, etc. Here, we chose to userthanlog-error for numerical reasons.

The magnitude of the partial derivatives can grow dawghen the denominator
approaches or crosses zero. The meanetoy squashes these higlagnitude
residuals, while not discarding them entirely. In cases where the denominator is
precisely zero, we discard the data sample. By convention, we measueg#tiea

meanlog-error to define a maximization criterion.

Calculating the Predictive Ability

Here we detail the predictive ability calculation in greater generality. While Egns.
(Equation 11.1) and (Equation 11.2) work for 2dimensional systems using only
numerical approximations, we need to consider symbolic relationships for higher order

systems.

Specifically, we need to handle the case where onablaris dependent on another in

order to calculate partial derivatives(lBquation11.2) correctly. Consider calculating

157

Ux/ yiin a 3dimensional system with varis x, y, andz. When taking the partial
derivative off(x,y,2) : we canot assume variable inde

we need to perform a symbolic derivative.

For example, consider the equation of a sph&pey,2) = ¥* + y* + Z. When
calculath g f/{d we must considey andz being dependent anor viceversa. Using

the chainrule, the symbolic derivative is thus:

%gx%yz 2 g2x 2+y% 23%; (Equation11.4)

In or der tffix we needltaufill in the partial derivatives on the riglaind
side of(Equation11.4). We have already approximated these values from the data in

(Equation11.1). Therefore, we can +write (Equation11.4) as:

%gx“yz 17 g2x 245/%/(2 (Equation1l5)

In general however, we shouldt assume thatveryvariable is interdependent on all
othersi only a subset. For example in adBnensional system, we only need to
assume one pair of depbamt variables; and in adimensional system, two pairs. So,

continuing this example of the sphere equation, we have either:

a%gxz +y 47 g2x 2%((Equation11.6)

or

158

a .., Dz .
—’+y 7 go2x 2% — Equation11.7
a’xgx y b Dx (Eq)

For the general case, we can pick either ¢&spiation11.6) or (Equation11.7) for
our calculation of(Equation11.3). We call this choice theariable pairingi which
variabkes we assume are interdependent. We now réfgeation11.3) i the measure

of predictive abilityi to incorporate the variable pairing:

£ N oA a o0
F[;]r'”f;i ié logad Jabsfa% Lt aq (Equation11.8)

I’ i=1 (i:e (; i dy pairing 9‘—‘
We could optionally measure error using all possible pairings. However, we have

found empirically that taking the worstise pairing, as i(Equation11.8), provides

the best results for our computatioimatariantequation search.

One final adjustment we can make to the partial derivative pair metric is the sign of
t he oX yga rhao yYigrms in(Equation11.8). The partial derivative pairs define

a cloud of line segments in phase space, therefore we are only interested in matching
thelinebutnotnecs sar i Iy the direct ixXogiernodrtaking e |
the absolute value of both can affect the signs of terms in the optimal equation (for

example, sign differences between Lagrangian and Hamiltonian equations).

159

n

e

)

o a0l
v 0
=2} Ol
2 3
~ =)
P >, 20f
3 £
< D
)]
2 g qu\ el
10}
2 o | W
8 il
o S R T] 7
o i B S
d%l’l 0 0000 00t A 1] 11[/
_2'50 0.2 04 06 08 1 12 14 00 0.2 04 0.6 08 1 12 14
Time [seconds] Time [seconds]

0

]
o
T

4
T

N
:

Predictive Ability [-log-error]

25 I I I L I I 1
0 5 10 15 20 25 30 35

Complexity [nodes]

Figure 11.5. Ancestor trajectories in equation space while searching for tl
equation of an ellipse. Dots indicate crossover and mutation events while lii
represent parameter tuning over time. (A) Several initially random equ#ons
with varying predictive ability evolve independently before coalescing toward tt
exact solution over the running time of the algorithm. (B) The ancestors also ve
in equation complexity i measured as the number of nodes in their expressi
trees. Initial equations tend to have higher complexity, but simplify over tim
toward the exact solution. (C) The same trajectories plotted over predicti
ability and complexity shows the ancestor trajectories converge toward a simj
and high predictive ability neighborhood before finding the correct equatiol
structure whose parameters can be tuned to the exact solution.

Searching the Space of Implicit Equations
The partial derivative pairs metri¢Equation11.3), effectively defines a landscape
over the space of equations. While the landscape is difficult to visualize due to its

dimensionality and size, it is smoother and more -geefined than one ight expect.

160

Accuracy Equations in Sequence Event
-1.4197 X+XT c3ly random
-1.41347 X+X+XT CT Yy mutation
-1.41339 X+ X+ X1 sin(Gg)Ty mutation
-1.13805 X+ X+XT siny) T (X1 X) crossover
-1.08904 (x+Xx)-xT sin(y)T (X7 X) mutation
-1.08574 (X+x)-xT siny) 1 ¢ mutation
-1.01841 (X+X)-XT yi ¢ mutation
-0.978484 (X+X+X):X-yT Ci3 mutation
-0.914336 (X+yT C3)y+XXCss mutation
-0.303559 (X+yT Cg)y+XXC15 mutation
-0.0692607 (x+yT sinf))-y + x-X-C15 crossover
-0.0140815 (X+yT X)y+XXCis mutation
-0.0050732 (X+yT X)y+XX-Cip mutation
-0.0050732 Y-y + C3:X-X mutation

Figure 11.6. Sequence of solutions as they evolve to model the equation of
ellipse. This sequence represents a single trajectory iRigure 11.5. Small
mutations and crossover events during the evolutionary search slowly
converge this sequence onto the exact equation.

Our method uses genetic programming to explore this landscape. In fact, most of the
time, starting from a small number of random initial points in the landscape, this
method can descend to the global optimal equation. We call the pathsdhthaig

takes to the final solution its trajectory in equation space.

See the description in the sectioBymbolic Regressigh on page4 for a general

description and background of the symbolic regression problem.

One way to visualize the evolution of the equation genome is to tracnttestors of
the final equation over the running time of the algoritifigure 11.5 shows the
ancestry trees for the equation of the ellipse. Sevmtally random equations evolve

independently before coalescing. Predictive ability is initially low and some ancestors

161

parent less accurate equations that eventually lead toward the exact séligioe (
11.5A). Equation complexity is also initially high on averadgeg(re 11.5B). After
several generations however, the ancestry converges to simple and predictive
equations, eventually finding an equation whose parameters can be tuned to find the

exact solutionKigure11.5C).

We can also look at an individual trajectofjigure 11.6) to see how the equations

vary during the evolutionary aech. The first equation is randomly initialized and has
poor accuracy. Gradually, point mutations vary individual terms in the equation.
Crossovers introduce larger changes, such as adding or replacing terms evolved in
other ancestry sequences. In eaelp,sthe accuracy improves, until convergence onto

the exact ellipse equation.

Representing Invariant Equations

The acyclic graph Rigure 11.7B) represents symbolic equations and is encoded
internally as floatingpoint assembly. Operations can load an input variable or a
parameter value, or perform a floatipgint operation on any previous operation
outputs (ey. add subtract, multiply, sinepr cosine commands). Each operation
represents a leaf or parent node in the acyclic graph. The graph is rooted by the final

operation in the listrigure11.7A shows a raw encoding of an example equation.

We can construct the graph of a list encoding by tracing backward from the last
operation recursively. One notable consequence of this encoding is that some
operations are unconnected in the grapmo opeations branching from the output

node may reference certain nodes. In effect, these vestigial sections are free to drift
during regression since they have no impact on the equation (phenotype). These

sections are omitted fRigurel11.7A.

162

A | f(d¥)= 47713714 i ¥2+ cos(d)
+(3.714 1 ¥?)- cos(d)

()
1)
)
®3)
(4)
(6)
(7)
)
(12)
(13)
(15)

load [3.714]
load [¥]

mul (1), (1)
sub (0), (2)
load [d]

cos (4)

mul (3), (6)
load [4.771]
mul (9), (3)
add (12), (6)
add (13), (7)

ANNNNNNANNNNNNA
(O S A o D D D A

Figure 117. Two equivalentr epr esent ati ons of an
177191 4 . 771 A¥2 +i A2 AclAAsAc.os(Al) The al g
equations represented by a 1|ist o1
variables. Each operation can load a variable, loa@d parameter, or perform an
mathematical operation on any previous operation. Unused lines have be
omitted for clarity. (B) The raw list can be interpreted more intuitively by an
acyclic graph where several sultrees are reused by multiple terms. Both (Aand
(B) represent the same equation.

We initialize the algorithm with random equations by generating a random list of
floating-point operations, limited to 128 operatiofi$is puts a deefimit onthe size

of the equation graphand narrows the search to humamterpretable equations
(equations wecould fit on a piece of paperftachnode could represent one fofe

types of mathematical operations, two to four variables, or a parameter constant.

Ignoring the infinite parameter spadéjs is effectively asearchspace of roughly

10'°® parameterized equations.
Analysis of Results

Detecting Laws in Synthetic Systems
In addition to physical laws such as Hamiltonians, Lagrangians, and equations of
motion, the partial derivative pair criterion can also decipher implicit equations and

geometric constraint§ablellls ummar i zes t he al gorithmos

163

Pareto fronts for several synthetic manifolds and simulated dynamical systems.

Systems with parameter constants tend to exhibit gtadanvergence whereas
parametetess equations converge rapidly at differing times. There is a similar
inflection trend among all the Pareto froritsan equation with some minimum
complexity achieves very high predictive ability. The inflection of thebtmlinear
oscillator is more subtle, which we suspect is due to the large number of terms and

polynomial approximations in its Hamiltonian equation.

The algorithmbés search over a space of eq
Pareto front is a conypationally intensive task, possibly requiring several hours or

days of computation. However, the search is readily parallelizable as many candidate
functions need to be evaluated simultaneously. We distributed our computations using

the islandpopulationmodel(Christian, Marc et al. 2003; Francisco, Giandomenico et

al. 2005)and used a fitnegzrediction model(Schmidt and Lipson 2008p reduce

overall computational cost and to improve the local search gradient.

In a 32core implementation, 10 minutes for the pendulum to yafdathe double

pendulum. The time for twdimensional geometric invariants to be found on the
Pareto front during the algorithmdés searc
mass autrack laws took approximately 10 minutes to appear. The denbsair-

track laws took approximately one to two hours to appear. The pendulum laws took
approximately 15 minutes to appear. And the most challenging, the gmerudelum

system, took approximately one to two days of computation.

164

Table 11.1. The predictive ability and Pareto fronts of several synthetic manifold
and simulated dynamical systems. Error bars denote the standard error of
predictive ability

- . . Accuracy/Complexity Pareto
System Predictive Ability Over Time Y Frogt y
0
T 0
F 001 *;'I F02
& £ o
. 2002 # : 204
Circle: g _ .-H £.0s
X2 + yz E-Ma | ’# ,g.oa
g M £
£ 0,04 A f & o
ool | ‘ 12
10 10 10’ 26 20 E 10 5 0
Time [seconds] Parsimony [-nodes
° e 0
T
—-0.01 I
] ¥ T -0.
E‘ru.oz | ;-H E..:;
Elliptic Curve: g”“ ,l §os
.- @ o 04
X3+X| y2 é.u,gs }f g_os
3 \ 3
% 008 I " 06
oo 10' 10’ 20 15 10 5 : 0
Time [seconds])) Parslmu-r'y [-nodes]]
’ . 0
=-01 . “ i =
g ,' E <01
é—o‘z H H 802
here: g / g03
X28pyze ezz R ! S04
ty + §os (H%E”H §.0s
2 . E o
06 * .06
07 - ;)
10 10 10 10 -20 5 A0 5
Time [seconds] Parsimony [-nodes
0 o .
B .1"" ¥
% 0.4 ; ’J” g".o‘s
Linear Oscillator: §°° / g
.. <.08 J| <
al 0.1v+ 3x £l £
E 0 8
12
! ‘110 10’ 10" 10 154 -15 10 -5
Time [seconds] Parsimony [-nodes]
02 0
= " B =02
E—OA H'H: Em,
I g -0,
. . Z.06 I fr g
Linear Oscillator: £ R i
o 08 <08
X2 + 03V2 § I ?;)
R .
%c 10 10" 10° 14g -20 -15 -10 5 0
Time [seconds] Parsimony [-nodes]

165

Table 11.1 (cont.) The predictive ability and Pareto fronts of several synthetic
manifolds and simulated dynamical systems. Error bars denote the standard
error of predictive ability.

Svstem Predictive Ability Over Accuracy/Complexity Pareto
y Time Front
0
0
T -0.05 B
g’ 3-0.5
2 04 2
Pendulum: £ £
Ui 9.8-sinf) 7" 2
E 0z §-1.5
025l : X 2
10 10 10 -40 30 20 10 0
Time [seconds] Parsimony [-nodes]
0
0
50002 5-02
%-0.004 z-’w'o"‘
I~ =.06
Pendulum: £ -000s £ s
'X'ZT 9.8'COS® %-0.008 % -1
& o0t E_u
14
3 w W My g s 5 4 3 2
Time [seconds] Parsimony [-nodes]
0 0
. g g 05
Double Linear $-s g
Oscillator] 2 .
2 . 2 . T 2
X1 +(x1|x22 + (17 £ - H
X2+ 2ViT vyt E B
185 1 3 4 -2 v L L
10 10 10 10 10 40 30 20 ET) 0
Time [seconds] Parsimony [-nodes]
0.2
0
'E'M 5-02
Double Pendulum & % .04
¥ P +0.5%,°+ Lo % s
Y1¥ocosEhi)i 2 208
. 2 2 -1
19.6cosfh) | g2 3.
9.8cos(h) " P
165 5 14
10 10 %0 40 30 20 10 0
Time [seconds] Parsimony [-nodes]

166

Equation Accuracy and Complexity Tradeoff

For any finite set of experimental data, there is potentially an infinite set of equations
that maximize any type of error metric. For example, a Tander polynomial can
perfectly fit any dataset of 1000 or fewer unique data points. While it is immensely
more difficult to find arbitrarily accurate equations using the partial derivative
predictive ability criterion, it is still important to have some qualitative understanding

of what the domain of equations looks like.

Consider the relationship between equation complexity and accuracy of fitting the
experimental data. Qualitatively there two extremes: complex equatigna {aylor
series, neural networker Fourier seriesyvith arbitrarily highaccuracyandthe most
simple models with baseline accura&guations that are simultaneously simple and
accuracyare the mostlifficult to find. Figure11.8 shows the Pareto front of equation

accuracy versus equation complexity for the doydaedulum.

The algorithm may also fail to find interesting relationships, due to either lack of
convergence, inappropriate building blocks,absence of any governing law. In this
case, the front may be poorly formed with only exceedingly complex solutions

reaching high predictive ability.

At certain minimum complexities, the equat
and then plateau$Ve can reason this equatignthe mostikely candidate as further

elaborations yield marginal improvement in predictive abilithe equation at the

inflection in this example is indeed the conservation of energy equation (Hamiltonian),

supporting ths assumption.

167

0.2 _
™ ® oo 0o
B
= 0.4} .
@
(@)]
S
= 06}]
2
§
3 0.8t .
>
-§ [X]
5 -
o
® .s ®
121 oo |
140 -50 -40 -30 -20 -10 0

Parsimony [-nodes]

Figure 11.8. The accuracy/complexityPareto front of the double pendulum. The
Pareto front shows the tradeoff between equation complexity and its ability
derive accurate partial derivative. At some minimum complexity (32 nodes
predictive accuracy jumps rapidly. Equations almost twice as complex improy
the accuracy only marginally. These high complexity equations tend to conte
the simpler exact equation, but add many smallerdrms to compensate noise. Tl
parsimonious and accurate equation at the inflection is the Hamiltonian ar
Lagrangian of the double pendulum.

Impact of Noise

The presence ofaise can makestimatingderivativesdifficult because derivatives
can be highly ensitive to noise. We use Loess smoothi@teveland and Devlin
1988)i a nonparametric fitting method to remove high frequency noise from the

motion tracking system. Loess smoothing updates each sample in the dataset by fitting

a small order polynomial to the sample and its nearest neighbors.

Other methods, such as filteg and convolution, also reduce hifyjequency noise,
but do not readily produce estimates of the signal derivative. Using Loess smoothing,

we obtain the numerical derivatives directly from the smoothing procedure by

168

o

Predictive Ability [-log-error]
S o 5 5 ©
(4] I W %] -

1 1
S o
~l (o]

1

0 2 4 6 8 10
Noise [%]

1
o
@

Figure 11.9. The mean predictive ability on a withheld test set of the be
equations detected versus the amount of normally distributed noise in the d:
set for the simulated double linear oscillator. Error bars show the standard erro
The percent noise is the ratio of the standard deviation of the noise and -
standard deviation of the original signal.

evaluating the symbolic derivativestbk local polynomial fits at each data sample.

We have examined the impact of noise on the ptigdi@bility for the double linear
oscillator Figure 11.9). Noise reduces the ability to find accurateariantequations
substantially, either simply requiring netime to compute or obscuring the equation
entirely depending on the noise strength. We measure the noise strength (percent
noise) as the ratio of the standard deviation of the random noise to the standard

deviation of the exact signal.

Data Collection aml Preprocessing

We used motion tracking cameras and software (Vicon MX) to collect data on
physical systems such as the doyté&dulum. We place several infrared markers on
the experimental device, place it into an arbitrary initial condition, and obsgerve

dynamics.

169

The motion tracking produces tirseries data of -Bimensional Euclidean position
coordinates for each infrared marker. We use many infrared markers in order to
minimize noise and occlusions effects during the tracking. Afterward, we then
combine the timeseries of each marker to calculate the essentiahwtai@bles of the
system i 2-dimensional coordinates, angles, etc. For example, in the double
pendulum, we project all-8imensional tracking points to its principle plane, and then
calaulate the angle of the two pendulum arms by taking the arctangent between

segments of the infrared markers.

While motion tracking systems have become quite accurate and autq@etgdand
Eric 2002) we must still handle noise and occlusion in the {smees data. Noise
amplifies when the system experiences high velocities or when the number of cameras

that can see a particular infrared marker changes.

In the doublependulum, the infrared markers ¢he second arm become occluded
from nearly all cameras when it passes behind the upper arm. In this case, the motion
tracking produces null position coordinates, which we strip out before processing.

Therefore, some of our tireeries data contains gaps.

Evolutionary Parameters

We use the fitness prediction algorithf§chmidt and Lipson 2005; Secidt and
Lipson 2006; Schmidt and Lipson 2008) searchover symbolic equationsThe
selection method wadeterministic crowdig selection(Mahfoud 1995) using 1%
pointmutation probability and 75% crossover probability. The encodagh
eguation wa an acyclic graph with a maximum of 128 operations/n{elsmidt and
Lipson 2007)We used mgle-point crossoveto exchangehe operationsn the parent

equationsThe operatosetcontainedaddition, subtraction, multiply, sine, and cosine

170

Table 11.2. Summary of Detected Approximations with Missing Building Blocks

Building Blocks Detected Pendulum Law Approximation Discovered
* +,1, cos(), sin() ¥21 19.6-cos()) Exact Solution
* +, 1, sin() ¥21 19.5999-sin{1.57079 +d) Trigonometric identity
* ¥2+9.7108d % 0.7042d* | Taylor series expansion (4™ order)

We distributed the symbolic regression evolution over 8 quad core computers (32 total
cores) using the island distributed computation me{@ittistian, Marc et al. 2003,
Francisco, Giandomenico et al. 2008Je spread a population of 2048 equations over

32 CPU cores; therefore each island population has 64 equations.

The fitness predictor population tains 512 predictors, distributed over 32 cores.
The fitness predictarconsist of 128 indicesinto the full training data sefThe
predictors are evolved with deterministic crowdingusing 10% mutation and 50%

crossoverates

We calculate fitness usingariations of(Equation11.8), where we modify the signs of
partial derivative pairs using negation or absolute value to vary the types of equations
we search for. Fgoredicted fitness values, we only calculgEguation11.8) over the

smaller subset of the fitness predictor rather than the entire data set.

Results with Missing Buding Blocks
It is interesting to note that in the absence of appropriate building blocks, the
algorithm develops approximations. For example, eliminating sine and cosine as

building blocks causes the pendulum invariant to be expressed &asad® i kyd”,

171

thereby exploiting the Taylor series expansion. Eliminating cosine but natesués
in other identitiessuch acos@) =sind+ ~/ 2) or mor e cTabtepl ex ec

11.2).

172

CHAPTER 12. SYMBOLIC NOISE SOURE MODELS

Summary

In this chapterwe propose a genetic programming approach to learning stochastic
models with unsymmetrical noise distributions. Most learning algorithms try to learn
from noisy data by modeling the mimmum likelihood output or least squared error,
assuming that noise effects average out. While this process works well for data with
symmetrical noise distributions (such as Gaussian observation noise), malifg real
sources of noise are not symmetricaligtributed, thus this approach does not hold.
We suggest improved learning can be obtained by including noise sources explicitly in
the model as a stochastic element. A stochastic element is a randqrocess or
latent variable of a hidden system thah propagate nonlinear noise to the observable
outputs. Stochastic elements can skew and distort output features making regression of
analytical models particularly difficult and error minimizing approaches inhibiting.
We introduce a new method to infle analytical model of a system by decomposing
nonuniform noise observed at the outputs into uniform stochastic elements appearing
symbolically inside the system. Results demonstrate the ability to regress exact
analytical models where stochastic elerseate embedded inside nonlinear and

polynomial hidden systems.

Introduction

Random noise is found in many natural and engineered systems, such as random
diffusion, noisy actuators or sensors, and human ififwikarni 1995) Most learning
algorithms handle noise by fitting the maximum likelihood or least squares error of
noisy dataKulkarni 1995; Carl Edward 19977 his approach works well when noise

is distributed symmetrical about the true system output, such as white noise, Gaussian

noise, and any zero mean noise superimposed over the output.

173

When noise existsnternally in the system, it can be coupled with nonlinear
components of the system. In other words symmetric internal noise can be scaled,
offset, and in general transformed to produce-symmetric noise distributions on the
output. In these situationshd noise has deformed the maximikelihood output

from the theoretical noiseless system, and the regressed models may no longer

describe the analytical structure of the system.

We call this type of noise stochastic elemerit a random process inheremt the
system, affecting its behavior and observable output. Noise from stochastic elements

can propagate nonlinear !l y t-unifotmhariatieny st e mod s

The most common approach to handling noise is to model its expectation, either
through averaging or leastjuares fittingKulkarni 1995; Carl Edward 1997yhile

the expectation of a noisy system is valuable for figdi model with minimal error, it

can be misleading when finding a descriptive analytical model of the system (e.g.
symbolic regression). In the worst case, it can distort the observed output of the

system, preventing the true system structure from beungc.

In this chapterwe aim to improve regression of a noisy system based on the notion

that observed noise that is coupled to the system may itself provide additional
information about the systemdés analytical
appears to grow quadratically, there is likely to be some quadratic structure in the
system. Our approach is to use symbolic regression to model the output noise
explicitly, decomposing noise as uniform stochastic elements inside the system to
produce a ney model. We then compare the noise observed in candidate models to

the variation in the training data to calculate fithess. The final analytical model is

obtained by removing the stochastic terminals used.

174

In the remaining sections, we discuss the distorproduced by stochastic elements,
describe our approach in greater detail, show some simple results, and finish with

concluding remarks.
Background

Distortion from Stochastic Elements

Expected values of a noisy output can disguise and distort anbbtticeture when

the system contains internal stochastic elem@tuhbaffer, Eliner et al. 1986; Kleijnen
2006) Noise can be multiplied into the system or pass through a nonlinear operation
to significantly change the expected output valkegure 12.1 shows three simple

examples where a stochastic element hides or distorts analytical features.

Figurel121a shows a sine functiof(x) = sin(x) with a stochastic element giving rise

to a random phase offséfx) = sin(x + R). The noise does not change the magnitude

of the sine wave but does shift data samples left or right. The expectation of the output
shows a sine function with correct phase but with smaller amplitude than the target

analytical modelf(x) = A*sin(x).

The system inFigure 12.1b is a simple linearuinction, f(x) = x, multiplied by a
stochastic elemenix) = x*R. The multiplied noise completely hides the linear growth

from the expectation. The expected output becomes siifxphy O.

Figure12.1c is a quadratic functiori(x) = x*, with noise added to the inptitx) = (x +
RY. This noise again shifts the data points left or right, but does not change the y

intercept. The expected output model however is quiadwith a y-offset, f(x) = x*+A.

Though these are simple examples, they give insight into how stochastic elements can

distort expectation models from the exact analytical model, or even hide features. In

175

the next section, we describe a simple approachcrporating stochastic elements

into models in order to recover exact analytical models despite this difficulty.

Regressing Noisy Data
Noise is found in almost all experimental data and is a central focus in many areas of
machine learningArnold 2001) Here, we briefly overview how noise is traditionally

handled in regression problems.

Often experimental data is ppeocessed to remove outliefRousseeuw and Leroy
1987) remove white nois€Kleijnen 2006) and more generally, smdofeatures.
Common techniques for preprocessing include convolving with gobmssfilter (e.g.

box or sliding window, Gaussian filter), local leasjuares fitting, and spline fitting.

The aim of preprocessing is to transform the data set to be moreeneiaitere of the
expected outcome or maximum likelihood of the system through interpolation or
statistical properties among neighboring data points. These processes make
assumptions about the underlying system and its noise distribution but are still used

frequently in practice to improve predictive performance.

In contrast, we are interested in exploiting the existence of nonlinear noise to reveal
internal structure of the unknown system. In this sense, the goal is broader and

removing noise coupled to tisgstem could remove information.

Modeling Noise and Confidence
One is often interested in the confidence of predictions made by a regressed model.
Accurate models predict the maximdikelihood value, but the variance of outputs

for this value may be laeg

176

*

sin(}{-ilnnisej
E[sin{x+noise)] ||

+ ¥'noise
E[x*noize]

==X

bt

2@’1.: . u
I *

ol gt tag 4
o L +’ w'
4 + * *o ‘;’ *
*
-1.5 £l
-4 2 0 2 4 -4 -2 a 2 4
(a) (b)
E T . . +
*
* + * (><+nuisej2
st * 1
++ . : E[(x+nu:uisejz]
- ¥
* *
3
4

Figure 12.1. Three basic examples where a stochastic element hides or dist
analytical features of the system to different extents. Blue dots show the obser
system output, thered line shows the expectation of the output, and the green li
show the target analytical model with stochastic elements removed.

The most common neparametric approach to measure confidence is to examine the
residual errors of the model on the training set. This leads to a naturategpo

procedure:
(1) Regress a best fit model
(2) Derive a statistical model of the residual error

In the case of white noise, residual errors appear uniformly distributed and can be

modeled globally such as calculating its mean and variance.

177

If noise is coupled to the system by an internal stochastic element, the residual error
may vary greatly over the inpapace. In this case, local statistical models are used to

model confidence among neighboring inp{iteuretzky, Leen et al. 2007)

Deriving a statistical model of the residual error in this fashion requires assuming a
noise distribution model, such as the normal distribution. In nonlinear regression,
where an analytical model of the system is assumed, the noise distribution can be
deived automatically from the model. Most commonly, confidence intervals are
calculated on the model fitting paramet€¥&igrin, Swiler et al. 2007)Parameter
confidences then translate into nonlinear output confidence ranges on the model

output.

In contrast, the method proposedthis chaptemodels noise explicitly in the model

parametrically without a predetermined model structure.

Symbolic Regrssion
See the descr i pSynmbolio Regressian h e n 4 pomhaekground i

the symbolic regression problem.

The fitness objective in symbolic regression, traditionally, is to minimize error on the
training set(Koza 1992; Augusto and Barbosa 2000; Schmidt and Lipson 208y

in this chapterhowever, wedefine a new objective geared specifically to reward
candidate solutions with noise distributions that match the noise observed in the

training set.

Learning Noise Algorithm
The basic idea of our approach is to include behavior of stochastic elemeraghiesid

analytical model. Instead of using an error minimization objective, we attempt to find

178

Individual ind = (encoding E, stochastic elements S)
Input variables X

Function evalute():
Foreach s in S

s =random value [-1,1]
End
é
val = evaluate ind normally
é
Return val
Individual ind

Training data D of (x,y) pairs
Number of samples N

Function fithess():

fitness =0
Foreach d in D
yin ’ y max

Repeat N times
y = ind .evaluate(d.x)
If(y < ymin) ymin = y
FC Y > Ymad Ymax = Y
End
F(Ymn < dy < Yma)
fitness +=1(Ymax - Ymin)
Else
fitness += 1 min(l dy - Ymah| dY - Ymad)
End
End
Return fitness

Figure 12.2. Pseudocode for evaluating a model with stochastic noise source
to estimate the noise envelope or distribution (top), and pseudocode fol
calculating the resulting fitness metric for the candidate model (bottom).

a model of stochastic elements with the simplest distribution explaining all features
and noise in the training data. The final analytical model identifies tganai noise

as well as its effect on out observations.

Much research has been done on boundingsencerror and modeling error

179

Ryl X

() (b)
Figure 12.3. An example binary expression tree (a) for the functiorf(x) = €'sin(x),
and a similar tree modeling a stochastic element (b) for the functioffx) = & sin(x

+ R()).

distributions(Xavier and David 2003; Touretzky, Leen et al. 2007; Vugrin, Swiler et
al. 2007) The distinction here is that we are modeling individual noise components
explicitly inside a system. The analytical model is regressed from scratch, rather than

relying on an assned system model or distribution model.

We use symbolic regression to find an analytical model which incorporates uniform
random variables to explain residual error parametrically in addition to finding a best
fit. In the next two sections, we describeahwe incorporate stochastic elements into

candidate models and describe a new objective function to explain observed noise.

Decomposing Stochastic Elements

Our basic building block for a stochastic element is a uniform random variable with
range-1to 1 inclusivethat returns a random value every time it is read or evaluated by
the model. Symbolic regression can incorporate this random variable anywhere in its

models to help explain the noise distribution.

R() = uniform random value-1, 1]

180

Nearly all types of randuo variables and distributions can be derived from this
uniform random variable. Symbolic regression treats this variable like it would any
other attribute variable, and can derive combinations and transformations -to non
uniform distributions. For exampléhe Normal distribution can be derived from

guerying the uniform random variable twice:
Normal0,1) = - AQIn@)- In(R) +1) GosR) P)

Symbolic regression most commonly represents candidate solutions as expression

trees Figurel2.3a).

We treat stochastic elements as a new variable in the terminal set that can be used
anywhere in the expression tree to model the noise in experimental Figtae (
12.3b). The new terminal value is special however in that it is randomized every time

it is evaluated, even when appearing multiple times in the same expression tree.

The Noise DistributionObjective
Now that candidate models can include random variables, their output predictions will
have some distribution. Our goal for this distribution is to explain all variation found

in the training data, and do so in the narrowest and simplest way.

Adistri bution explains a training data poi |
distribution at that point. For examplef{k=10) has a distribution betweef®[3], it

explains the training data point if its value s but not if it is 4.

We can aproximate the distribution of a candidate model at a training point by
sampling it. In our experiments, we find the range of output for a training input by

storing the minimum and maximum output from 100 model evaluations.

181

Note however that a triviaolution would be a large (or perhaps infinite) distribution
where all training data lies inside the distribution. Therefore, we must introduce a

second objective to minimize the size of the distribution.

I f a training data point | ies inside the
height of the distribution at that point. If tip@int is not covered by the distribution,
we want to minimize the distance of that point from the distribution. We can combine

these two objectives into a single fitness criterion:

. _ . & min|y-ranggf(x)| ifyl range(f(x)
fltness(f)_(gy):, Yrange(f (x)) if yi range(f(x)

This is a twestep fithess objective, summarizedHigure 12.4. The model must first
cover the point with its distribution, and then it must minimize the area of its
distribution. As shown inFigure 124b, training points not explained by the
distribution contribute negatively to the fitness, and points that are explained

contribute positively.

Psaidocode for evaluating a model thabntains stochastic elements, and for

20 1.3
--------- Model Distribution
15t + Dats Points _ g
- 1 ra
+ m . ' £
10t PR point-outside: | point not covered:
oo paint |n$rd¢:_ minimize negative distance - ~
N minimize " distance 0.3 from distribution -~
51 distribution _ Yhom -
height 17 itrioutic -
| EEEREL istribution 0 - Point coverad:
ot L NN E 1iheight of
. AL distribution)
5 e 05
0 1 2 3 4 -0.5 0 0.3
(@) (b)

Figure 12.4. The fitness objective for explaining training data with a with mode
that has stochastic elements and output distribution. If a training point fall
inside the model distribution, the objective is to minimize the height of
distribution. If the point falls outside, the objective is to minimize the distance «
the point to the distribution.

182

Table 12.1. Summary of Experiment Setup

Solution Population Size
Selection Method
P(mutation)
P(crossover)

Solution Encoding
Operations

Local Variables
Evolved Constants
Inputs

Operator Set
Terminal Set
Crossover

Fithess Sample Size
Distribution Samples

64

Deterministic Crowding
0.05

0.75

Operation List (graph)
16

4

4

1

+, -, %/, sin, cos

X, C1, Cp, C3, C4
variable, single point

4
100

evaluating the distribution fitness of a model is shawfigure12.2.

Experiments

We modify a symbolic regression algorithf8chmidt and Lipson 200%p include

stochastic elements and regress based on distmisutather than error minimization.

This algorithm utilizes adaptive sampling of the training set to reduce computational

cost, which is particularly high for finding the output distribution of candidate models

during regression.

Parameters for all experiments are summarizedlable 12.1. In deterministic

crowding, offspring replace their most similar parent if they have equal or higher

fitness and are discarded otherwise. Population singtation probability, and

crossover probability have been tuned empirically. Crossover produces a higher fit

child approximately 20% of the time with these setting on the operation list encoding.

The candidate solutions (algebraic expressions) are listepefations on local
variables. The number of operations and local variables were tuned for computational
performance. The encoding size, terminal set, and operator set anemesented
(no experiments requires all for convergence). Single point cress® used on the

operation list at a variable offset.

To measure fitness, the output distribution is measured on four inputs from the
training set, one hundred times. The minimum and maximum values are then used to

calculate the fitness described earlier

We test on three simple example systems each with a uniform stochastic element

coupled in the system:
A fi(x) = 10 sin{x + R)
A fy(x) = ¥sin(x + R)
A f3(x)= (x + R)- 1.5

These experiments demonstrate the finding the exact structure and parameters of the

system despite internal stochastic noise which offset the expected output.

Results
This section gives results on three simple examples of regressing stochastic elements
embedded in a hidden system to demonstrate our approach. We show screen captures

of different stages during regression to show the progress toward the analytical model.

184

f(x) = 10R f(x) = 10 sir(x) + 5R f(x) = 10 sir(x

AT
el G

+R)

1 1
KB e, AT X0 (N
R RN

e tan iy
SR AT G "

it e | WX s 4
(a) (b) (c)
Figure 12.5. The best model found at three points during regression dfx) = 1(

sin(x + R). The green pointsshow the training data, the grey areashows the

model ds di st r i but shomthe amalytatal modet with stackasti
elements removed.

f(x) = ¥R f(x) = ¥ sin(x + R)
&, 4%“ B .
L .:. .::l :. l"
ey o K L
r "‘.r"i’.:ry_—‘d.‘s'“ .:: "‘._‘l'- '.;l'- :¢: ;:
RS e § LA 1S
(a) (b) (c)

Figure 12.6. The best model found at three points during regression dfx) = x*
sin(x + R). The green pointsindicate the training data, the grey areaindicatesthe

A

model 6s di stri but i andicatesathe danalytibak mobtel wiik
stochastic elements removed.

f(x)=-1.5x + 3R f(x) = x R- 1.5%° f(x)= (x + R)- 1.5xX°

-7 -7
z z 2 z 2

(a) (b) (c)
Figure 12.7. The best model found at three points during regression dfx) = (x +
R) - 1.5 %%, The green points are the tra

distribution, and the blue line is the analytical model with stochastic elemer
removed.

185

The time toregress each system successfully ranged from one to five minutes. The
primary computation time consists in computing the candidate model distribution at
each training point. We use random sampling to determine the output ranges at each
point, but a morentelligent sampling method could be used to scale the application to

higher complexity systems.

Figure125 shows three stages during regression of the funép®rr 10 sinx + R),
whereR is a stochastic element variable that returns a uniformly random number in

the range<=-1to x = 1 inclusive each time it is read.

Early on, candidate solutions are linear with distributions that cover all the training
pointsi shown inFigure 12.5a. In Figure 12.5b, the solutions have inferred the sine
function in the system, but the noise distribution is just added linearly to the.datpu
the next stagefigure12.5c, the solution has converged on the sine function with the

stochastic element located inside the sine function.

Figure12.6 shows the regression of the functigx) = x*sin(x + R) which is similar to
the first experiment but now has a variable amplitude sine wave. Candidate solutions
converge on quadratic ampide noisevery quicklyi Figurel2.6b. Shortly after, the

sine function is found and the analytical model convergé&sggure12.6c.

The third experiment uses a polynomial function but with noise simply added linearly
to the output. This is a case where the minimum error model is the same as the
analytical model but it is importathat we can differentiate this type of noise as well.
Figure 12.7a shows early candidate solutions are linear with an additive noise range.
In Figure12.7b, the analytical model has been found but the noise distribution has not
yet explained all data pointgigure 12.7c shows the converged solution identifying

the correct analytical model and its distribution.

186

Conclusions

Stochastic elements existing inside a hidden system can produce nonlinear and non
uniform noise athe observable outputs. There are many cases where the expected
value output or minimum error regression can be deceiving toward finding an exact

analytical model as done in symbolic regression.

We have presented a simple approach to model stochastic &edirently as uniform
random features using symbolic regression. The objective for candidate models with
stochastic elements is to explain (overlap) all training data points in its distribution and

minimize the area of the distribution used.

Results showthis approach can find the exact analytical model despite misleading
nonlinear and nomniform output noise. In three basic experiments, regression of the
output distribution found the correct system structure and location of the stochastic

elements wittparameters existing in the hidden system.

187

CHAPTER 13. STOCHASTIC REACTIONMODELS

Summary

Many systems, particularly in biology and chemistry, involve the interaction of
discrete quantities, such as individual elements or molecules. When the total number
of elementsin the system is low, the impact of individual reactions becomes non
negligible and modeling requires the simulation of exact sequences of reactions. In
this chapter, we introduce an algorithm that can infer an exact stochastic reaction
model based on s measurements of an evolving system of discrete quantities. The
algorithm is based on simulating a candidate model to maximize the likelihood of the
data. When the likelihood is too small to provide a search gradient, the algorithm uses
the distance ofhie data to the model's estimated distribution. Results show that this
method infers stochastic models reliably with both short time gaps between
measurements of the system, and long time gaps where the system state has evolved
qualitatively far between elhcmeasurement. Furthermore, the proposed metric
outperforms optimizing on likelihood or distance components alone. Traits measured
on the search novelty, age, and bloat suggest that this algorithm scales well to

increasingly complex systems.

Introduction

Stochastic systems pervade nearly all areas of science, from quantum properties of
atomic particles, to chemical reactions in a chemical bath, to fluctuations in
populations or ecosystems. All stochastic systems are at least partially random,
making them dficult to model dynamically or deterministically. Instead, Monte Carlo

methods are often employed to simulate and analyze their behavior.

A particularly important Monte Carlo method was developed by Dan Gillespie in 1977

188

Periodic Samples of a Maximum Likelihood

Stochastic System Stochastic Model
1500 T T T T T T

1400 -

1300

i XLZX

1200

1100

X+y 0.1 2y

1000 ~

900~ 1 y ——>10 4]

800 -

700 -

600 r r r r r r r
600 700 800 900 1000 1100 1200 1300 1400

X

Figure 13.1. Overview of the modeling problem. A stochastic system evolves

exact behavior over time shown in blue. Periodicallythe state of system can |
measured (shown in red dots), a sample of the exact time evolution of the syst

The task is to infer a maximum likelihood stochastic model (right) for this syste

from these periodic measurements. Actual data and solution show

in order to model chemical reaat® kinetics (Gillespie 1977) The Gillespie
algorithm performs an exact and statisticaltyrect simultéion of a stochastic system
based on a set of discrete chemical reactions, reaction coefficients, and initial
conditions. The Gillespie algorithm has been used extensively in systems biology, and

also similar domains. Traditionally, the set of reactioms thodel a stochastic system

must be developed and theorized manually by experts.

In this chapter we introduce an evolutionary algorithm that automatically hypothesizes

about the reactions and reaction rates taking place in a system simply by analyzing
raw experimental data, even with large time gaps between observationsigae

13.1). The proposed method searches over a space of reactions in order to find the

maximum likelihood model that agrees with the experimental observations.

The key challenges to searching over stochastic models is the computational cost of

189

estimating likelihood values from a model and maintaining a search gradient. Except
for only the most trivial systems, the probability density of a set of stochasttorea
cannot be solved over time. Instead, the model can be simulated (or sampled)
repeatedly. However, efficient sampling methods fail over large time ¢@atespie

2007) making it difficult to estimate digbution tails.

The proposed method overcomes this difficulty by using a-dwoponent
optimization metric. The metric attempts to maximize thelikg/ihood of the data

given a candidate model. However, if the likelihood is too small to provide aegtadi

for the search, the criterion changes to the distance of each data point to the estimated
probability density of the candidate model. In effect, this distance component allows
even extremely inaccurate models to improve despite having zero likelibome.
models get close enough to the data, where their likelihoods can be estimated

accurately through sampling, the metric switches to maximize the likelihood.

This metric also reduces the computational complexity, as the accuracy of estimating
the tails & distributions is less important. The algorithm can thereby use fewer
samples (fewer simulations of a candidate model) and still estimate a useful likelihood

gradient.

Background
Here we introduce important concepts in stochastic simulation algorithmsityde

estimation, and evolutionary algorithms.

Stochastic Simulation Algorithms
The exact stochastic simulation algorithm was first develope@aob 1945)and
later applied to chemical kinetics {(iGillespie 1977) The makes few assumptions

about the system except that the environment is well mixed.

190

The basic algorithm involves two steps: (1) sampling a time delay until the next
reaction occurs, and (2) sampling among possible reactions which occurs. Each of
these samples are dependent on the number of molecules in the current state. When
there are a large number of molecules, the time until the next reaction can be
extremely small. The counts of each species also influences which reaction is more
likely to occur. Thesystem is simulated by repeatedly applying reactions and
incrementing time by the sampled time amount, resulting in a random walk, time

series trajectory. S€&illespie 1977¥or more details.

The exact simulation of the Gillespie algorithm becomes critically important when the
number of molecules is sufficiently small. In this case, single reactions can
significantly impact reaction propensities and future states (e.g. reaching a terminating
state). When the number of molecules is exceedingly large, the system dynamics are
approximately deterministic because a large numbers of reactions tend to average out

random fluctuations.

The exactness of the Gillespie algorithm does come at a computation cost, and several
methods have been proposed to improve its performance, while still preserving

exactness where necessary.

For our simulations, we use the modifiedid3on tatleaping procedure that ensures
thatat most oe critical reactioroccursper leap(Cao, Gillespie et al. 2005 he tau
leaping speeds up the stochastic simulation by estimating the number of reactions
occurring duing a time period tau. The value of tau is chosen such that the change in
reaction propensities during tau is arbitrarily small. When the tau leap is not large

enough to provide useful speed up, the algorithm defaults to an exact simulation.

191

Kernel DensityEstimation
In order to calculate the likelihood of a the data given a candidate model, we need to
estimate the probability density of the model at each data point. There are many ways

to estimate probability densities.

A simple method is to use a histograThe histogram divides all samples (in our case
counts of molecules after simulating a model) into a number of bins. The density is
then the bin frequency divided by the bin width. Several methods exist for choosing

optimal bin widths and positior{slideaki and Shigeru 200.7)

A major drawback to binned histograms however is that they are locally flat
everywhere. In other words, they have no local gradient that is amenable to

optimization.

An alternatie to a histogram, and the method used in our experiments, is kernel
density estimatiofRosenblatt 1956; Parzen 196Kernel density estimation is a non
parametric method to estate probability density functions. It sums a series of kernel
functions that are centered on each sample. We used a Gaussian kernel function,
meaning each sample contributed a Gaussian density around its sample value.
Choosing a uniform kernel for exameplvould produce a result similar to a binned

histogram.

The Gaussian kernel produces density estimates, useful for optimizing, however we
still need to specify bandwidth. The bandwidth is analogous to the bin width in a
binned histogram. Variable kernelrmwidth selection is the technique of selecting a
different bandwidth for each samp(€errell and Scott 1992)Variable bandwidths
allow the kernels to be narrow in high density regions, capturing high details of the

distribution, and wide in less certain lalensity areas.

192

Reactions:
c
A Xy ta X, —— by X +boX,

c
Ay Xy tAyoX, —— Dy X +Dy5X,

. X X X
Encoding:
ea;, a, 3 a,g ec, @ é,bll b, 3 b, g
e u e. u e u
ea2,1 a'z,z 3 az,n u écl u ébz,l bz,z 3 bz,n u
€4 4 6 44U é4u €4 4 6 40U
e u e u u
@‘m,l a‘m,2 3 am,nl:] mL,J gjm,l bm,2 3 bm,nl]
integers reals integers

Figure 13.2. The encoding of asolution representing a stochastic model
discrete reactions. A series of chemical reactions (top) are represented
corresponding integer coefficients and real valued rate constants for ec
reaction (bottom).

In our experiments, we used the squam@t law (Abramson 1982Jor selecting tkb
bandwidths per sample. This technique requires an initial estimate of the density
here, we used an ordinary histogram with optimize bins chosen by minimizing the
mean integrated squared error (MI§BH)deaki and Shigeru 2007The final result is

a smooth continuous estimate of the probability density that captures both sharp and

diffuse features in the distribution.

Evolutionary computation
See the descrign in the section Evolutionary Conputatiori on page3 for more

information.

Algorithm
The proposed method for inferring a maximum likelihood stochastic model uses an

evolutionary algorithm to search for sets of reaction channels and rates to match the

193

data. In this section, we describe the evolutionary encoding of candidagésnmothe

search, and the fitness function.

Encoding

The stochastic model consists of a series of reactions. Each reaction specifies an
integer number for the inputs, an integer number for the outputs, and a real valued
number for the reaction rate. dfreaction does not use an input, its input value is 0;

likewise for outputs.

We use a fixed, maximum number of reactions for our experiments. Candidate models
can opt to use fewer reactions than the maximum by setting the reaction rate to 0, or

setting he inputs and outputs to 0.

Figure13.2 summarizes our encoding for a stochastic model. It consists of a matrix of
integer valued input coefficients for each reattia vector of real valued coefficients

for each reaction, and a matrix of integer valued output coefficients for each reaction.

A random encoding is produced by filling each matrix with random integers, normally
distributed with zero mean and standardiagen of 1, and filling the reaction vector
with random positive real values, normally distributed with zero mean and standard

deviation of 1.

The mutation operator works by randomizing each individual element with a fixed
point mutation probability. Therossover operation recombines two parent encodings
to form a new offspring. We use a random single point crossover on the readtoons
example, copying the first n reactions (inputs, outputs, and rate) from the first parent,

and the remaining from treecond parent.

The complexity of the encoding is defined as the sum of all integer valued reaction

194

coefficients on both inputs and outputs of the reactions.

Likelihood Estimate

Our goal is to find a maximum likelihood model. We cannot estimated thénbkel

of a model explicitly, however, we can estimate the likelihood of seeing the
experimental data given a specific model. This gives a measure of how well a
particular model agrees with the data. In other words, we are trying to maximize the

following expression:

R
Likelihood=Q P(x, |M =m)
i=1
Here,n is the number of data points (measurements of a system state) particular
data pointm s a particular model, and is the probability density of the modal at
data pointi. Rather than working directly ithh probabilities, it is numerically more

stable to work with the log of probabilities, or the Hagelihood:

Log Likelihood = 3 log(P(x, |[M =m))
i=1
To evaluate the likelihood, we need to estimate the valt&xpf M = m). We do this
by sampling the modeh i that is, simulating the model over the time span from the

previous datai 1 point to the current data point

Figure13.3 visualizes the simulation process.eltandidate model is simulated, using

the previous state, until the time reaches the current state. Each simulation is then
added to a kernel density estimator, described above, to estimate the probability
densityP. The log of the density is then sumnfed each stat& of the system to the

cumulative loglikelihood value.

195

Experimental Data Point Simulated Model on Data Point

1500

1400 -~

1300

1200 -

1100 -

1000 -

900 -

PDF aftet seconds

800

X

700

60%OO 7(;0 860 9&0 10’00 lerO 12’00 13’00 1400 0 506 1000 1500 2000 2500 3000

X xandy State Values [# of particles]

Figure 13.3. Comparing a candidate model with the experimental data. The le
pane shows the hypothetical exact behavior of a system in blue, and two knc
measurements of the system at red dots. The candidate model is simulz
multiple times, starting from the first measurement fort seconds, in order t
estimate a probability distribution of the model (right). The state of the secor
measurement is then compared with this distribution to evaluate the quality
the model to reproduce the measurement.

Fitness Function

Ultimately wewant to maximize the likelihood of a candidate model, but since we can
only approximate the density function, most random models will tend to have zero
likelihood and no gradient to optimize on because we cannot accurately estimate the

tails of the probaibty density function.

Our solution to this problem is to use a tammponent fithess metric. The two

components are:
1. The loglikelihood as usual, and
2. The distance of the data point to the median value of the estimated distribution

When a model has neaero likelihood (e.g. lower than epsilon =@ our
experiments) we subtract the distance of the data point to the median value of the

distribution. Otherwise, the fitness is equal to thelibglihood. This fithess metric is

196

summarized irFigure13.3.

By adding the lodikelihood component to the distance component, the fitness
function remains monotonically increasing for improving models. This allows
initially poor random models to move their distributions close enough to the data

points such that their density estimations can be used to maximize the likelihood.

Experiments
We perform proof of concept experiments on the basic bdtdeerra model(Lotka

1925; Volterra 1926)The target reactions fdnis system are shown below:

X YViz- 2x
X+y Y- 2y
y 1375- 0

The LotkaVolterra reactions model a predator prey system. In the first reaction, prey
(represented by) grow exponentially. In the second reaction, prey may meet
predators (represented by y), causingray to die and predators to increase in

number. Finally in the last reaction, a predator can die out.

We generated data sets of 10 pairs of measurements of the\laltkara system.
Each pair consists of a random initial condition, followed by a measne after

simulating for a fixed time duration.

In our experiments, we compare two types of data sets, those with short time gaps,
where measurements are made in short succession (time steps of 0.002), and long time
gaps (time steps of 0.1) where the estat the system changes dramatically between
measurements. An example of the long time gaps data set is showiguire

13.1(left), where each green arrow is a pdineasurements.

197

In the evolutionary algorithm we use a population size of 30, crossover probability of
50%, and mutation probability of 15%. We allow a maximum of 3 reactions in each
model. In estimating a model detysior a data point, we sample 100 independent

simulations. We track various statistics of the best solution throughout each trial,
including fitness on training and test data sets. We terminate all trial runs after 300

Short Time Gaps in Experimental Data:

120 100 - I L
=7 ol
R eor
-8 o short all g or
o short dist | = 601
C 60 short like | =
= o)
[} %)) 50
é a0l .,5 w0l ‘ short all
. A x = | short dist
A P S el Q ok short like
20 Z [I1]
20~
o r
10 |
»20 r r r r r r r L o /| r r r r r r r
-50 0 50 100 150 200 250 300 350 -50 0 50 100 150 200 250 300 350
Computational Effort [generations] Computational Effort [generations]
Long Time Gaps in Experimental Data:
12~ 100~
long all
10+ long dist o
long like '0\3' 80 -
E oL S eor T
= Ie) il
[} 50
<. b
- QO 40r
IS
ol L>IJ< 30
20~
long all
or 10k long dist
long like
-—250 (; 5’0 l(r)O 1;0 2(;0 25;0 3(;0 350 E)50 (; 2(;0 2;0 3(;0 3;0
Computational Effort [generations] Computational Effort [generations]

Figure 13.4. The search performance of the three compared fithess metrics. T
top panes show performance when data points appear in rapid succession v
short gaps in time. The bottompanes show performance when there are lol
gaps of time between data points. The left panes show the likelihood score of
best model during the search. The right panes show the percent of runs tl
identified the exact solution for the amount of computtional effort. Error bars
indicate the standard error.

198

iterations (generations) of the eutibnary algorithm.

We repeated the evolutionary algorithm using three different fithess metrics:

1. Log-likelihood only

2. Median distance only

3. The proposed distance and Llkelihood metric

Therefore, we will be able to evaluate strengths or weaknesseshot@aponent in

the proposed metric.

Results

The first results is that the evolutionary algorithm is able to find the maximum
likelihood model for all three compared fithess metrics. For the short time gap data
set, Figure 134 (top) shows that all three metrics reach approximately 90%
convergence to the exact known model. Both the likelihood and hybrid metrics

perform 100% convergence after 100 generations.

In tems of computation time, each generation took approximately 1 minute. Most
computation cost lies in simulating various candidate models to estimate their

probability densities for each data point.

On the data set with large time gapsSigure 134 (bottom) shows greater
differentiation between the three metrics. The -t@mponent metric reaches the
highest likelihood models and convergence, followed by the likelihobg rastric.

The distance metric only performs the worst.

199

Log-Likelihood

1] 0.1 0.2 0.3 0.4 0 0.6 a7 0s 09 1
Distance Metric

Figure 135. The relationships between the distance metric of a model and
corresponding likelihood given the experimental data. Each point ithe plot is €
random candidate model during the likelihood search.

Interestingly, when the time gaps are short, the performance of theotwgonent
metric and likelihood metric only are approximately the same. This indicates that on
short time gaps, thergbability density of random candidate models is more likely to
provided a useful search gradient, because data points are close to their initial
conditions. Here, there is no benefit to using the extra distance component in the

fithness metric.

However, tle distance metric appears to be crucial when the data set has large time

gaps Figurel13.4). Here, the twecomponent metric out performs the other metrics.

Also interesting is that the distance metric alone performs very poorly. This metric
allows models to get their distributions centered on the data, but does not optimize the

likelihood making it inadequate on its own.

In Figure135 we compare the relationship between thelikglihood score and the

distance metric. We can see that the distance is correlated with tlileeldwpod, but

200

Genotypic Age

250

200

150

100

50~

long all
long dist
—long like

0.8

0.6

Novelty

long all
long dist
long like

0.4r

0.2

0
-50

2 r r
0 50 100

Computational Effort [generations]

Bloat

r
150

1251

1.2

1151

11

1051

1k

0.95

09

0.85

0.8

0 r r r r r r r r
-50 0 50 100 150 200 250 300 350

Computational Effort [generations]

r r r r
200 250 300 350

P
] - Hﬁﬂﬁlﬂﬂiﬂmﬂ%
; EIHHHH

—long all
long dist
long like

-50

0 50 100 150 200 250 300 350

Computational Effort [generations]

Figure 13.6. Traits of the best model over time during the evolutionary searc
The top left plot shows the genotypic age of the best solution (the number
generations any part of the solution existed in the population). The top rig
shows the novelty of the best solution (how different it is from the rest of tr
population). The bottom pane shows the bloat of the best solution (ratio
complexity with the target solution complexity). Error bars indicate the standar

error.

imperfect. There is large variance vertically in the-ligglihood for fixed distance,

indicating that logikelihood metric is inaccurate or at least unstable at the tails of the

model probability distribution.

Finally, we colleted various traits of the best solution for each algorithm during each

search, shown ifigure 13.6. The first observation is that the genotypic @gernby

2006) of the best solution (measured in generations) is roughly equal to the total

201

generations on average. Thisizates that the evolutionary search is not being trapped
by local optima, otherwise the best solutions would appear younger as younger
solutions would replace solutions in local optima. Interestingly, the distance metric
algorithm tended to have the highegjes, suggesting that it avoided local optima

most, perhaps by identifying an attracting region for the global optima most reliably.

The novelty of the best solution over time, shownFigure 13.6, shows that the
populations are initially very diverse before converging onto optima. But no clear
difference between the compared metrics is apparent. Nokelhyman and Stanley
2010)is defined as the average distance summed over the reaction coefficients of a

candidate solution to nearest neighbors in the current population.

In terms of bloatBanzlaf and Langdon 2002Yhe algorithm starts off with a low
bloat ration after random initialization. The bloat tends to increase quickly, and then
fall toward a ratio of 1 (no bloat) as the best solution converges to the taigate(
13.6). The distance only metric tended to reach higher bloat, which may be a reflection

that it was less likely to converge to the target.

One final observation is that for these sait Figure 13.6, there appears to be very
little difference between the likelihood metric and the-teonponent metric. The key
difference is only in the overall germance Figure13.4). This suggests that the role

of the distance component is to help models move toward the data so that the
likelihood component can be used, alms not impact other aspects of the population

or evolutionary algorithm.

Conclusions
In this chapter we introduced an automated algorithm for identifying stochastic

reaction models. The proposed method used an evolutionary algorithm to identify a

202

maximum likelihood set of reactions and reaction coefficients. Instead of only
optimizing likelihood, the proposed algorithm used a-t@mponent fithess metric
that optimized the distance of a candidate model's distribution from the data point

when the likelihod was too small to provide an accurate search gradient.

The experiments indicate that the likelihood metric alone performs well on data with
short time gaps in data set. However, when the data set contained large time gaps,
where the state of the systenoklved far from the local behavior the tveomponent

fitness metric performed best, finding the exact target solution faster and more
reliably. Observations on the age, novelty, and bloat of the best solution indicate that
the algorithm avoids local optimand could scale well with increasing complexity

systems.

203

CHAPTER 14. TREE AND GRAPH ENCOINGS

Summary

In this chapter we analyze two generplrpose encoding types, trees and graphs
systematically, focusing on trends over increasingly complex problems. Tree and
graph encodings are similar in application but offer distinct advantages and
disadvantages in genetic programgr We describe two implementations and discuss
their evolvability. We then compare performance using symbolic regression on
hundreds of random nonlinear target functions of bottiniensional and -8
dimensional cases. Results show the graph encoding esasbias for bloating
solutions but is slower to converge and deleterious crossovers are more frequent. The
graph encoding however is found to have computational benefits, suggesting it to be

an advantageous tratf between regression performance and potational effort.

Introduction

In this chapter we analyze the differences between a tree and graph encoding in
genetic programming. The choice of solution encoding in genetic programming can
have dramatic impacts on the evolvability, convergence, aedalbwsuccess of the
algorithm (Franz 2006) Algorithms and encodings are often described by their bias
variance tradeff T error introduced by predisposed structure (bias), and error
introducel by representative power and accommodation (variaf@ayid 1997;
Domingos 2000; Uday and Cezary 2008)this chapterwe examine such tragasfs

more precisely, considering their representations, solution bloat, overfitting, and
convergence over a range of complexity problems. In contrast with previous research,
we examine thegeerformance trends across problems with a systematgafigrated

range of complexities.

204

Tree encodings are weéthown for their representative power and used heavily in
genetic programmingKoza 1992) Tree encodings are generally rooted with each
branch describing a unique or isolated-striocture. In contrast, graph (or network)

encodings describe groups of interacting eused structures.

Graph encodings allow direct-tese of subcomponents components, and can thus
promote modularity and regularity in solutions. Graphs can also haveputaimnal
advantage by reducing the evaluation frequency of commonly reused structure within
the solutions. However, the inherent tradeoff between modularity and regularity
(Lipson 2007)suggest that reuse of modular substructures also creates internal
coupling that may sometimes hinder evolvability. As a special case of graphs, tree
encodings can often be adapted to graph encodings which may be more natural to the

problem being solved when latent features are commonly reused.

We compare these two emting approaches systematically using the symbolic
regression problerfKoza 1992; Schmidt and Lipson 200Symbolic regression is a
well-known genetic programming behmark problem with precise definitions of
performance and convergence. Additionally, symbolic regression provides a natural
measurement of problem complexity and difficulty, allowing us to explore

performance trends as problem complexity increases,

The Tree Encoding

Structure

The tree encoding is a popular structure in genetic programifinga 1992)
particularly in symbolic regression. Tree encodings typically define a root node that
represents the final output or prediction of a candidate solution. Each node can have

one or more child nodehkdt are used to evaluate its value or behavior. Nodes without

205

children are called leaf nodes (or terminals) that evaluate immediately from an input,

constant, or state modeled within the system.

Tree encodings in symbolic regressifoza 1992; McKay, Willis et al. 1995re
termed expression trees. Nodes represent algebraic operations on children, such as
add suh multiply, divide. Leaf nodes represent input valueg (& = 1) or evolved

constat values (a.c; = 3.14). An example expression tree is showigurel4.1a.

Evaluating an expression tree is a recursive procedure. Evaluation is invoked by
calling the root node, which in turn evaluates its children nodes, and so on. Recursion
stops at the leaf nodes and evaluation collapses back to the root. Recursion can be

computationally expensive, particularly in deep trees

Evolutionary Considerations
Crosswer of expression trees swaps two $wdes from two parent individuals. The
crossover points are typically chosen at random in each pdieiay, Willis et al.

1995; Schmidt and Lipson 2005)

An immediate consequence of this procedure as$ dffspring can become extremely
large by chance. For example a leaf node swapped with the root node of another
parent could double the depth of the chil

crop children or avoid crossovers that produce trees some threshold depth.

A second consequence is repeated or duplicate structure. For example if the individual
encodes the functioifx) = (xi 1)* the subexpressionXi 1) must exist four times in
the tree. The duplicate expressions can dominate the crossover point selection

focusing recombination oix{ 1) subtrees.

Along the same line from the previous example, duplicate expressions make mutation

206

Tree: f(x) = (x + 1)* Graph: f(x)= (x + 1)*

(b)

Figure 14.1. Example expressions of(x) = (x + 1)* in the tree encoding (a) and
graph encoding (b). The graph encoding reuses redundant stéxpressions but
is more susceptible to deleterious variation.

more difficult. Toproducef(x) = (xi 1.23) (from the previous example), the constant

must be mutated 4 times.
The Graph Encoding

Structure
The graph encoding is similar to the tree, but child nodes are no longer tinique

multiple nodes may reference the same node as its child.

Graph encodings in symbolic regression are termed expression graphs, or operation
lists. Each node in the graph ceepresent algebraic operations, constant values, or

input variables. An example graph expression is shov#igure14.1b.

A useful feature of graph encodings is thay lend well to efficient nonecursive
representations. For experimeimtghis chapterwe use a list of operations that modify
a set of internal variableR. Local variable represent internal nodes in the graph and

are necessary to butlgh nontrivial expressions

In the list encoding, each operation in the list can reference one or more input

207

variables, evolved constants, or internal variables. The result from each operation is
then stored in an internal variable. After all operations are complétedinal local

variable is returned as output.

Avoiding recursion, without the need to cache or compile a tree expression, provides
significant speed up computationally. We will analyze this improvement later in the

chapter

Evolutionary Considerations
Crossover in the graph encoding exchanges two sections of the operator list to form a
child. For experiment#n this chaptemwe use single point crossover that is chosen

randomly.

The graph encoding reuses supressions (multiple operations can referetiee
same suiexpression). Unlike the tree, crossovers in the graph are less likely to focus
on redundant structure since it can be represented in a single operation (or internal

variable).

For the same reason, crossover and mutation can be significamédydaieterious. An
alteration to an operation producing a reused internal variableaffelit all other
operations which reference it. In contrast, variation in the tree encoding is localized to

individual branches.

Experiments

Experimental Setup
The symbolic regression algorithm and past experiments on scaling complexity can be
found in(Schmidt and Lipson 2005)For experiments this chapterwe have simply

swap out the tree and graph encodings described earlier.

208

Table 14.1. Summary of Experiment Setup

Solution Population Size 64
Selection Method Deterministic Crowding
P(mutation) 0.05
P(crossover) 0.75
Inputs 1
Operator Set +,-. %, /,sin, cos
Terminal Set X, C1, Co, C3, Ca

Graph Encoding

List Operations 16

Internal Variables 4

Evolved Constants 4
Crossover variable, single point

Tree Encoding
Initial Depths 1-5
Crossover single branch swap

Parameters for all experiments are summarizedlable 14.1. Population size,
mutation probability, and crossover probability are the same usé8chmidt and

Lipson 2005)

For experiment# this chaptewe use correlation fitnegdIcKay, Willis et al. 1995)
since it 5 a naturally normalized metric that translates well between multiple

experiments and different target functions.

Evolution is stopped after the best candidate solution has converged on the training set

(convergence defined later), or after a maximum &f million generations.

209

Target Complexity

We define complexity as the number of nodes in a binary tree needed to represent the
function (Monroy, ArroycFigueroa et al. 2004; Schmidt and Lipson 200Bgrget
functions are generated randomly, and then simplified algebraicadly dellectng

terms, canceling quotients, and evaluating constants) to give a more accurate

representation of the targets minimum size.

This metric for complexity does not perfectly match problem difficulty. For example,
f(X) = x1 X2 X3 is most likely more difficult to regress théfx) = x; + Xz + X3 + x4 for
combinatorial reasons. However, as seen in Section 7, the correlation with problem
difficulty is strong and larger target functions take longer to regress symbolically on

averagedr random functions.

Random Test Problems

A key focus of thischapteris to examine performance trends between the two
encoding schemes over a range of different complexity problems. We collect results
on randomly generated functions to get sufficient dampver several complexity

targets.

Random targets are generated by randomizing a tree encoding. The target first
simplified algebraically before measuring its complexity. Each encoding is then run on

the same target functions.

The training data is gendeal by sampling the target function randomly over the range
R" [[0, 2] for all input variables 200 times. The test set is generated similarly by

sampling over the randg®" i [0, 4].

Results are collected over 500 randomly generated target functiomdedlievenly

210

among compl exi ti esor 501lrandor targeks, per &€égmplekity.)

Additionally we test on two input feature sizes: single variable avari@ble.

Convergence Testing
Convergence is defined as having greater than 0.9999 correlatioe tnaithng set.

Evolution is stopped if the best candidate solution reaches this correlation.

Note that convergence on the training set may not mean the target function has
converged; the solutions may have overfit to the training data. For this reason we
report convergence on the test set (test set correlation greater than 0.9999) in

experimental results.

Results

Solution Complexity and Bloat
Bloated solutions are those which are excessively complicated. In machine learning,
bl oat i's synonymoulsg owiwthher feo wseorlfut i ons con:

that do not exist in the target function to explain the fithess objective.

We measure bloat as the complexity of the regressed solution minus the complexity of

the target function:

Bloat= (# nodes in sation)T (# of nodes in target)

This definition of bloat will be zero if the evolved solution is the exact same size as
the target (perfect case) or positive it is larger. In rare cases, converged solutions may
use fewer nodes if further simplification dhe target function is possible but not

caught by our algebra library.

211

12 T T T 15
—+— Graph Enceding
% 1q = -2 - Tree Encoding
= =
[-‘Jﬁ mﬂ
%; E 10
= 8 =
s =
3 o
L g
Z 2 o
B B
a2 4 T _3;'
2 1 1 L 0 L N N
] 5 10 15 20 o] 10 15 20
Syatem Complexity (# of nodes) System Complexity (# of nodes)
—+— Graph Encoding —+— Graph Encoding
- % - Tree Encoding -+ - Tree Encoding
(a) 1-variable (b) 8-variable

Figure 14.2. Bloat of converged solutions for dvariable functions (a), and 8
variable functions (b). Each point is averaged over 50 randomly generated targe
functions. Error bars show the standard error.

We measure the effective number of nodes in the graph encoding by converting it to a

binary tree. This always increases the number oesiduit allows better comparison

with the tree encoding results.

The mean bloat of each encoding type is showignre 14.2 at each target function
complexity. In tle 1-variable case, the tree encoding has higher average bloat over all
complexities. The amount of bloat (for both encodings) tends to increase with target

complexity. Bloat is also higher on average in theaBable targets than the single

variable targts.

Convergence Rate

In this experiment we measure the convergence rate for each encoding over target
function complexityi the percent of runs where the best solution achieves greater than
0.9999 correlation on the withheld test $egure 14.3 shows the test set convergence

for each complexity target function. Both encodings drop in convergence with higher

complexity target functions. Each encoding is run on theedanget functions.

212

100

100
ot an
@ enf &
n noT
[= [
g 0T & &0
PE] [E]
£ £ o
S 80 o
40
a0t
30
4':' 1 1 1 2':' 1 1 1
] 5 10 15 20 u] 5 10 15 20
System Complexity (3 of nodes) System Complexity (3 of nodes))
—+— Graph Encoding —+— Graph Encoding
-+ - Tree Encoding -+ - Tree Encoding
(a) 1-variable (b) 8-variable

Figure 14.3. Test set convergence versus target function complexity forvariable
functions (a), and 8variable functions (b). Each point is corresponds to 5l
randomly generated target functions.

The tree encoding achieves slightly higher convergence than the graph encoding over

medium sized targets. However, their general trends in both-tzeidble and 8

variable cases appear to be complarab

Convergence Evaluations

In this experiment we measure the number of point evaluations before convergence on
the training set. A point evaluation is a single execution of a candidate solution on a
given input. Therefore, this is a metric of the tatamputational effort required for

convergence.

Figure 14.4 shows the mean number of point evaluations to convergence for each
encoding where the runs had convergedhertraining set. In the single variable case,

the graph encoding always takes more evaluations on averaged to converge than the
tree encoding. This suggests that the graph encoding is less evolvable, or perhaps more

conservative considering it is lesisdly to bloat.

213

10 T T T 10
10°
g2 £ 0
g 10 T
= =
[[
= =
w (] w
£ 10 E =
& & 10
10°
10* 1 1 1 10* 1 1 1
] 5 10 15 20] 5 10 15 20
System Complexity (3 of nodes)) System Complexity (3 of nodes))
—+— Graph Encoding —+— (Graph Encoding
-+ - Tree Encoding -+ - Tree Encoding
(a) 1-variable (b) 8-variable

Figure 14.4. The number of point evaluations before convergence on the trainii

set versus the target function complexity for dvariable functions (a), and 8
variable functions (b). Points are averaged over 50 randomly generated targ
functions. Error bars show thestandard error.

In the 8variable case however, the difference in point evaluations decreases for higher
complexity targets. At complexity ten and higher both encodings perform roughly the
same. These figures show only runs where both encodings converglee waining

set. In the 8ariable case the effort appears to require less computation, but fewer

runs were able to converge before a million generations.

Evolvability
In this experiment we measure the number of beneficial crossover occurring during

ewlution. A beneficial crossover occurs when a child achieves higher fitness than its

most similar parent.

Figure14.5 shows the rate of beneficial crossovers for both encodings over the range
of complexity target functions. In the single variable case, the tree encoding
experiences more beneficial crossovers than the graph encoding, particularly at low

complexities.

214

G0 T T T a0

Sﬂ-ll

a0t

40

30
30

20
20

Beneficial Crossovers (%)
Beneficial Crozzovers (%)

10

10

1] 3 10 13 20 0 3 10 13 20

System Complexity (# of nodes) System Complexity (# of nodes))
—+— (Graph Encoding —+— (Graph Encoding
-+ - Tree Encoding -+ - Tree Encoding

(a) 1-variable (b) 8-variable

Figure 14.5. The rate of beneficial crossovers versus target function complex

for 1l-variable functions (a), and 8variable functions (b). Results areaveragec

over 50 randomtest problems Error bars show the standard error.
ComputationalPerformance

In addition to evolvability, bloat, and convergence, the efficiency of encodings can
have a large impact on the difficulty of problems that can be saivedctice. In this

section we benchmark the tree and graph encodings.

Figure 14.6 shows the computational performance, measured in point evaluations per
second overl range of complexities. The graph encoding remains roughly constant
because it has a fixed encoding size. Variation still exists because it still executes

operations in its list that do not affect the output.

The tree encoding is efficient on simple fuaos of less than five nodes. Performance
drops significantly with complexity however as recursion deepens with complexity.
The computational performance result indicates the tree encoding does not scale as
well with complexity. At five nodes and highehget graph encoding using an operator

list more than triples the performance of the tree encoding.

215

X —+— (Graph Encoding

1
i -+ - Tree Encoding

—_ B. '-I .
[b
m .
-EI:'_ a
i
A .
u'.l 1
L
o \
E "

h]
] - -
E 4 l‘\
B
_E s
& e

= -
2 _'K--"}‘?__%ﬂ_h
. -
e

5 10 15 20
Syzstem Complexity (# of nodes)

Figure 14.6. The point evaluations per second versus the function complexity.

Conclusions
We have comparetivo encoding schemes in increasingly complex problems using
symbolic regression. While the tree and graph encodings are similar in application,

they offer distinct advantages and disadvantages in genetic programming.

We have tested these two encodingsammdomly generated nonlinear target functions,

for both single variable and\&riable input spaces.

Results show that the tree encoding solutions exhibit consistently higher bloat over all
complexity targets. The tree encoding however offers slightlyehigbnvergence rate
(finding an exact fit) and time to converge, but there was no large trend difference
over complexity. The tree encoding experiences more beneficial crossovers (offspring
more fit than most similar parent) on single variable targetsefitgal crossovers
deaease with complexity. On-@aricble targets both encodings experienced similar
trends in beneficial crossover trends. Finally, the computational comparison shows

that the graph encoding more efficient than the graph for high comxties.

216

From these results we conclude the graph encoding to be a attractive alternative to
traditional tree based problemsgesymbolic regression). Graph encodings provide

similar performance in convergence over a range of complex target functions and
different input sizes, and do so with less bloat. The graph encoding experiences fewer
beneficial crossovers and converges slightly slower, however the computational

performance outweighs this drawback.

217

SECTION IlIIT INTERPRETING RESULTS

CHAPTER 15. PARAMETERMAPPING

Summary

Recent automated scientific discovery processes hold the potential to accelerate
scientific inquiry in many fields, but also present scientists with a new kind of
challenge: How to assign meaning to the discovered relationships, and how to
reconcile the new knowledge with current understanding. We used automated
modeling to gain new insights into cellular differentiation dynamics. The process
discovered a new and substantially simpler model of the dynamics of cellular
differentiation of Badlus subtilis that is equally predictive on unseen data. Further, it
identified a new invariant, which through a procesautbmateemapping was found

to be closely tied to the differentiation period of the cell. This prediction was validated
using a sebf new experiments. We argue that beyond the value of these two specific
new models to the understanding of Bacillus subtilis, the search for invariants and
their mapping to existing knowledge may be a way of identifying governing principles
of other biolgical systems. Just as physical conservations, such as the conservation of
energy, can help understand physical processes, so can biological conservations help

identify new homeostatic properties selected for by evolution.

Introduction

Increasing throughpuof experimentation and data collection has placed a growing
demand on automated modeling and knowledge discovery technigats2009;
Mitchell 2009; Waltz and Buchanan 200%¥hile recent developments automated
scientific knowledge discovery have the potential to accelerate scientific inquiry in

many fields(King, Rowland et al. 2009; Schmidt and Lipson 20Gscientists will

218

increasingly be faced with the challenge of interpreting these models and reconciling

new insights with existing knowledge.

In this chapter we juxtapose automated modelirwith the current biological
understanding of cellular differentiation &acillus subtilis We first developed a
computational method for automatically generating symbolic models of siatjle
dynamics using data collected from multiple cells. We tbempared these data
driven models to existing, manuaiktierived models produced from first principles.
The automaticalhgenerated datdriven models appeared to have a markedly simpler
form than the established manuallgrived models, but could not beaddy
understood. We then developed an additional method for elucidating the meaning of
the automaticalhgenerated models by mapping components of one model to its
counterpart. We begin by describing the target biological system and the
computational tealique, and then follow with new models generated and how these

models led to new insight when compared to the mandallived models.

The genetic circuit that controls differentiationBdcillus subtiliscells into a state of
competence for uptake of eatellular DNA is weHsuited for automated analysis,
because it is well characterized yet poorly understood. For example, the genes and
proteins comprising the competence gene regulatory circuit have been identified and
characterized. Furthermore, we oguantitatively measure the dynamics of multiple
components of the competence circuit simultaneously and at the-saliglevel. The
resulting data reveal the dynamics of interactions within the cellular differentiation
circuit. Despite these features, comprehensive understanding of how individual
biochemical reactions comprising the competence circuit contribute to cellular
differentiation is currently lacking. The presently accepted model for this circuit has

been derived from known biochemical reaos, yielding the differentiaéquation

219

model shown irFigure15.1(left).

New techniques for real time high resolution sirggd measurements of gemircuit
dynamics can now provide new data that includes information aboutetiell
variability (Figure15.1 (right)). This presents an opportunityr automated scientific
methods, which rely heavily on experimental data, to identify improved empirical
models of these dynamics, and possibly new insight into the local, -selgle

dynamics.

We used two types of automated modeling approaches whichzanaxperimental

data: The first is a search for tirdelay differential equation mode{Bongard and
Lipson 2007) and the second method is a search for invariant equations and conserved
guantities(Schmidt and Lipson 2009)Ve then used a method we cailtomated
mapping(described below) to uncover how the automatiegéyerated models map

onto existing manualigerived models. We perturbed the parameters of one model
and genated synthetic data sets, and then fitted the automatgatigrated models

to those generated data sets. This process highlighted the correspondences between the
parameters of the two models. Moreover, by using the perturbation itself as an
experimentaparameter, we could use the symbolic modeling algorithm itself to also
uncover the specific nonlinear mapping between the automatgeigrated models

and the manuallgerived models. When such a mapping exists, it shows how the
manuallyderived model uderstanding collapses to the mathematical model inferred

directly from the data.

220

Expert Informed Model Automatically Inferred Model

N\ EN

\—/ ’.w,_l/
P

comSs

d_K:aK+ B K" 5. K K g:a by +c.S
dt kp+K" 1+K/T,+S/T dt £ K
ﬁ:an_p Ps — 55 — 1. ds bS+CSK
d ° 1+(K/k) 1+KT +S/Ty E:ﬂs S

Figure 15.1. Manually-derived versus automaticallygenerated biological model
and the mapping challenge. Most biologicamodels are derived by hand usin
expert knowledge of the system, related systems, and qualitative understandi
of the underlying biology (left). When large amounts of experimental data a
available, empirical models can be inferred automatically by a cuoputational
search for the most parsimonious model that accurately predicts the dynam
(right). The automatically-generated model potentially provides new insight ini
the system but does not have any accompanying explanation. Our solution to !
problem is to additionally learn a mapping from the known biological model t
the automatically-generated model, identifying which understood paramete
collapse to simpler explanations in the automaticalhgenerated solution. Actue
models and data shownK and S represent the protein concentration levels «
ComK and Com§ respectively. U, and b terms correspond to the basal an
maximum rates of protein expression, respectivelya-denotes the linear andi the
enzymatic degradation rates of ComK and ComS The meanings of the
parameters on the right are unknown.

Based on the dynamical modeling and its mapping, we found that that the key
dynamics of theB. subtiliscellular differentiation behavior can be captured in a six
parameter dynamical model, as compa@dhe 14parameter statef-the-art model.

In addition, the conserved quantity search identified a previaustpown invariant
equation. We cannot tell immediately what the conserved value measures or
represents. However, the mapping shows that the antaparameters are linked to

the duration of competence events in the cell, suggesting that the competence duration

221

may be a fixed or regulated property in each individual cell. After modifying the
bacillus strain and collecting new data, we verified thatmagnitude of the invariant

predicts the duration of competence events observed in each cell.

Below, we introduce the automated modeling methods and the biological system in
greater detail. We then analyze the resulting models and their mappings to the

manuallyderived model and discuss our findings and conclusions.

Current Biological Understanding

The B. subtilis competence system exemplifies in its simplest form the typical
problems associated with developing a comprehensive and conceptual undegstandin
of the operational principles of gene regulatory circuits. Under conditions of stress
such as nutrient deprivatioB, Subtiliscells can transiently become competent and
take up DNA from the environment and incorporate it into their chromosome.
Therefoe, competence is believed to provide genetic diversification and templates for

gene repair.

The differentiation of cells into the competence state is triggered in an autonomous
and stochastic manner. Once differentiated, cells remain in the competerrdjat

for a transient period of time. The probabilistic initiation and transient duration of the
competence state at the singkdl level is controlled by a gene regulatory circuit
which constitutes a nonlinear system with excitable dynaffidel, GarcieDjalvo et

al. 2006) At the heart othe competence circuit is the transcription factamKk
whose expression is necessary and sufficient for compe(8inwgeren, Luttinger et

al. 1995; Hahn, Luttinger et al. 1996FomK positively auteregulates its own
expression thereby forming a positive feedback I@&laamar and Dubnau 2005;

Smits, Eschevinstal. 2005) The cell exits from the transient state of competence via

222

a negative feedback loop in whi€@omK indirectly represses the expression of its
activatorComS(Suel, GarcigDjalvo et al. 2006)The competing positezand negative
feedback loops are described by a two dimensional modebwiK and Com$ based
on the known biochemical reactions, showrFigure15.1(left). This model accounts
for experimental observations and has been shown to be prediStiet Garcia

Ojalvo et al. 2006; Suel, Kulkarni et al. 2007)

TheB. subtiliscompetence behavior is wellited for automated knowledge discovery
methods because the organism is experimentally accessible. In particalar, th
dynamics of multiple gene circuit components can be measured simultaneously at the
singlecell level using quantitative multicolor fluorescence tilmgse microscopy
(Figure 152). However, despite these advantages, how individual biochemical
reactions at the molecular level contribute to nonlinear dynamics and physiology at the

cellular level remains poorly understood.

We measured the activities @omG and ComSpromoters simultaneously at the
singlecell level using quantitative tir@pse microscopy, utilizing the spectrally
distinct fluorescent protein reportecfp andyfp. Transcriptional reporter constructs
were integrated into standard ressential sitesfahe B. subtilischromosome. We
followed 33B. subtiliscells containing these reporters that transiently differentiated
into the competence state and collected ts®es trajectories d@omSand ComG
promoter dynamics. Furthermore, we also utilizegeaetically modifiedB. subtilis

strain in which the competence circuit was perturbed to generate oscill¢dioels
Kulkarni et al. 2007) Together, the native and modified strains allowed us to record
pulse and oscillatory dynamics of the competence circuit under two distinct parameter
regimes, thereby providing additional information on the operation of the competence

circuit.

223

6.3 hr 10 hr 26.3 hr 28 hr 326 hr

8 hr 16.3 hr 203 hr 36.6 hr
S " S «x
W W 4 owm A
< =S g
8 = 8 0
@ % o =
o b
3 w g =
S = S - 3
K “© & nm.’
- P -cfb < =
g 4 s S e coms¥fD
¢ L] " " » Ee) » » [®w x » < % ©) L o
Time (min) Time (min)

Figure 15.2. Transient and oscillatory dynamics of competence events in singe
subtilis cells. Filmstrips in panels A and B show overlays of phase contrast
two-color fluorescence images. Blue and orge colors depict the reporter fo
competence BomG and negative feedback loop component R,s respectively
Panel A shows a single wild type cell that differentiates into the competence s
and then exits (indicated in blue). Panel B, shows cells caiting a modified
competence circuit (for details see text and SOM) that give rise to oscillations
competence where cells undergo consecutive events. Panels C and D depict
traces of promoter activity obtained from quantitative image analysis
fluorescent reporters during the competence events shown in panels A an
respectively. Blue and orange colors utilized in the graphics are consistent w
the colors depicted in the filmstrips and time traces, where blue indicat
competence and orange th activity of the negative feedback loop necessary -
exit from competence.

224

Automated Modeling

Automated modeling is a process that builds a new model of a system directly from
experimental data rather than from prior knowledge or assumptions about the
underlying biological mechanisms. Automated modeling can potentially provide a

different or unbiased perspective on experimental observations.

The automated modeling method we used here is called symbolic regré&saan
1992) See thedescription in sectionSymbolic Regressidnon page4 for more
information. Symbolic regression is an established algorithm that generates analytical
equations for a particular experimental data set, without recourse to expert knowledge.
It usesan evolutionary searckForrest 1993)to look for the most parsimonious
mathematical modgRissanen 1978hat fits the experimental data for a given set of

variables and set of functional buildhdpcks.

Ordinarily, symbolic regression att@ts to create a single model that explains the
entire data sefDuffy and EngleWarnick 2002; Elena, Andrei et al. 2005; ig@ard
and Lipson 2007; Cyril and Alberto 2007 the B. subtilissystem however, each
individual cell may behave differently due to variation in theirgatgl size or internal

composition, corresponding to parameter changes in a more general model.

In order to find a single model that captures the behavioallofcells in the
experimental data, we created a variation of the standard symbolic regression
algorithm which we refer to asulti-set regressioninstead of optimizing equation
structures with specific parameter values, we optimize just the equation structure,
while allowing the parameter values to vary for each individual cell. The figure of
merit of a candidate equation model is then how well it could be made to fit the curve

of each and every cell in the experimental data as illustratéidume 15.3 steps 14.

225

"S|opow oM 8y} Jo sialawelred ayl usamiag diysuone|al Jeauljuou e 10} youeas
ay) a/\\ ‘elep palesauabay) 01 |apow parelaualfeonewolne ayl Bumiy uay) pue ‘elep mau arelauab 01 Ajjeosuswnu
I Buneinwis ‘lapow paAuafirenuew ayl Jo sisvwelred Bulkren Ag |apow woISAs pooisiapun Apjualind ayl 01 [apow
1y1 Jo Buiddew e Ajnuapi 01 1dwane usyl ap\ gps AleuonnjoAa ue Buisn eiep [eluswuadxa ayl ul paAIasqo SolwreuAp
s1o1paid Aj@relnade yoiym uonenba snoluowisied 1sow ayl 1o) sayaseas wyliobje ayl "Sjuaidla0d JurIsuo0d ueyl Jayiel
30 yoea 10} AreA yoiym sialaweled 21joquiAs urejuod suonenbasay| |apow pooisiapun snoinaid e 0] Buiddew Jeauljuou
juapl uay) pue ‘uonenba a|buls e yum s||99 ajdnjnw [gpow 03 sydwane poyaw Buldpow pajewoline ayl ‘£'GT ainbi4

§||82 |enplAIpuUl sieleweled pue suus) seaouapuodseliod pealasqo
lie Buiuy 1oy punoy |gpow usamjaq seouspuodseliod 8y} sulejdxs }seq jey)} sjspow
snojuowsied ysow nding e Ayuspi 0} japow pasiajul pue usamyaq buiddew sy} ndinp o
yadxe yosjew pue qiniad Q
sy 2 e A ey A By 4 suonenb3
% +Sp— i TYEIVVE 7\ Sl TYE Buiddey
¥o+7q sp < c J8ju]
> | LA w Buiddewrpajewoiny
Ny, A =
24 T -
hY q JpP A ﬁ!xr.ﬂ._Ir LW vy
F . w ...r. .\../..__

S|@pouw MaU Ydless o} ajenu
__uw.m .m_._.n.E_“,oE .w__h.,... "_ut“n.u ¢ u| pejoajas suonenbes s||e2 ajbuis ajdiynw woiy

R T B @ 1881 8} JO SUOIJELIBA ||EWS 818 ejep [ejuswpadxa Jo8]j03 °

Asy} 1e1e] ‘wopuel aie asel)
femu| ‘suonauny sjoquis

X suonenb3 alepipued ajelauss @
5 b a RN POl
...... daju] s+ ¥ L
S A+ g |m_d_um

it pg ™

226

Additional information on the muklset regresion method is provided in the section

"Multi-set Symbolic Regressibbelow.

Dynamical Model

Our first attempts to find a firsirder dynamical model of thdB. subtilis
differentiation failed to find any accurate expressions. A lack of a convergence like
this typically ocurs if the data is purely random, or if the algorithm does not have the
correct variables or functional buildisigocks (e.g. attempting to model a quotient
without using division). Here, we were attempting to model the numerical derivative
(Cleveland and Devlin 1988)f each variable, using only addition, subtraction,

multiplication, and division.

We began finding accurate models only after allowing the search algorithm to
introduce a fixed timalelay for each variable. The manuadlgrived biological model

also required a fixed timdelay to fit all data sets.

The requirement of the tirrdelay in the automaticallgenerated model is consistent
with the manuallyderived model and the recent finding ti@mK represse€omS
expressionindirectly through RapH. Such a tirdelay was shown to increase the
parameter regime for excitable dynamics in the mamnashved model. Therefore,
the requirement of a timeelay in the automaticallgenerated model demonstrates
that critical featues of gene regulatory circuit dynamics can be identified with this

approach.

The most parsimonious model found that fit the data as well as the materigd
model using fixed timalelays is shown irFigure 15.1(right). Figure 152C and D
show agreement of the automaticajignerated model with experimental data. We

further validated the generalization of this model by acquiring new data from a

227

genetically modified Badlus strain. The initial section of these trajectories was used

for the timedelay history and to optimize parameters.

Interestingly, the automaticallyenerated model is as accurate as the current
biological model over the different dynamic regimes, bas eight fewer free
parameters. The simplicity of the automaticajgnerated model compared to the
manuallyderived model suggests that several parameters involved in the production
of ComK can be reduced to single parameters, suggesting a potentiatipaked
simplicity in the generation of functional dynamics. There appears to be a small subset
of parameters that account for the dynamics of the core competence circuit. Many

other parameters do not seem to be as critical.

A small subset that contuites to function is reminiscent of other observations in
biology such as the fact that only a few positions in proteins contribute to protein
function and most others can be mutated without any measurable effect. Such

properties have been suggested torfieal for evolution of biological networks.

Invariant model and conserved quantities

We also performed a separate search to detect a conserved quantit irstidilis
dynamics. Similar to the symbolic regression method, the inveseeking algoritm
(Schmidt and Lipson; Schmidind Lipson 2009)xearches for invariant expressions
that remain constant over the dataset. The motivation for this search is that in many
physical systems, invariant quantities are signatures of governing laws such as the
conservation of energy. The dis@ry of invariants in a biological system may

therefore help uncover the fundamental principles governing the observed dynamics.

228

"SJUBAS 92Uud1adwo JO uoneinp ayl 01 pan sI Alnuenb paAIasu0d
Bunsabbns ‘(3) sdnoub juaiayip om] olul salesedas anjeA pPaAIasu0d ayl Jo apnyiubew ay ‘(palt) urens uoneinp Jabuoj
2 pue (oe|q) urens uonelinp Uos e (Q) surenssingns g Jo sadAl Juaiayip oMo} Pa1da||0d elep uo Alnuenb paAlasuod
)yl Bunenjeas usym (D) SwoD Jo uononpoidd pue HwoJo uonepelbop ayl 01 puodsaliod yoiym (g) [apow paAusp
2nuew ay) ul sialvweled Jo 189S |ews e ojuo sdew () Aiuenb panlasuod paressusb-Ajeonewoine ayl 'GT ainbi4

[sinoy] swi | [sinoy] swi|

=

s

E]

E

anjeA uelLeAU|

=

a0U80saI0N|4 49
) PaZilewlioN

=

m‘w\ m@% MFNG.N% nw%‘T
SO JO UOIIONPOoId yWwoD Jo uonepelbaq

T
j D w03 [& p p P

-y r——Yo+—+— Yo+ yo=
/ﬁw\.(R S A LA | m

0)

229

We used the invariant search algorithm to look for invariants consisting Qfotmé
andComSvalues and their first derivativésas might be required for some energy or
momentum conservationNSchmidt and Lipson 2009) Among the candidate
conservations, the functiod shown inFigure 15.4A was the simplest relation and
also remained invariant even on the forward experimental data of the mutated strain.
Figure 154 also shows the invariartd plotted for several cells (pane D) of two
different B. subtilisstrains which are plotted in pane E. There is some variance in the

conserved value for each cell which scales with the magnitude ofrikerged value.

We fit this invariant to all data sets for both the wild and mutated strains. Since we do
not know what the units and offset of the invariant are, we normalized each fit by
arbitrarily fixing the last coefficientcs, to one. While there ésts some residual
variance- either from noise or approximations in the conserved vatlne normalized
conserved values show a clear separation between the wild and mutated strains, with
very little overlap Figure 154E). In fact, given data from an unknown strain, the
magnitude of the conserved quantity could be used to predict which strain the cell

belongs to.

Mapping to Current Biological Understanding

The automated modeling results gave two previoushknown descriptions of the
experimental data: a substantially simpler dynamical model, and an unknown
conserved quantity. The difficulty is how to explain and interpret these models in
order to gain new biologicahsight. In essence, we have new answers derived from

experimental data, but without any accompanying explanations.

Our solution to the interpretation challenge is to leamagpingi from the current

manuallyderived biological model, to the automatigagenerated datdriven model.

230

The mapping we are interested in is the relationships between thgaferaeters of
the manuallyderived model and the frggrameters of the automaticafignerated
models. If a simple mapping exists, it can show how mpaters in the manualy
derived model collapse to the simpler automatiegéiperated dynamical model, and
which qualities of the known biology affect the automaticgiyerated conserved

guantity.

Automatedmapping- using model perturbations as "experimés"

We refer to the method for learning the parameter mappirguesnateemapping
between two models. The basic process, summarizé&dgure 15.3 steps 5 and 6,
starts by simulating the manualiferived model numerically with random parameter
variations. The automaticaliyenerated model is then fit to each simulated trajectory.
The result is a set of parameter values for the mandatliyed model and the
corresponding parameter values for the fitted automatigaiherated model. We
repeat this process for several hundred random parameter variations, thereby

generating a dataset of matching parameters of both models.

We first looked at linear coeglations between the manuatlgrived dynamical model
parameters and the automaticadignerated model parameteBgure 15.5B shows

the strength ofhe correlations in a bipartite graph. The correlations suggest that each
parameter in the automaticalenerated dynamical model -garies with a small
number of parameters in manuatlgrived model. Interestingly, some parameters of
the manuallyderivedmodel appear to have little influence on automatiegéyerated
model and its dynamics, and therefore are apparently irrelevant to explaining the

observed behavior in this regime.

231

‘San[eA Ja)aweled JO abuel apim e J9A0 [9pow palelausbi|eoiewolne ayl Yum juswaalbe buosis ul si buiddew ayl reyl
oys (v) s10/d Jo18weled ay] ‘jopow paressusbpgoiewolne Jajdwis ayl ul asoy) 01 asde||0d |apow paAlap-Ajjenuew ayl
sio1oweled ajdninw 1eyl smoys (D) buiddew sesauluou ayy -apis 1ybul ayl uo ate siaweled |ppow paAuLBp-Ajlenuew
JIS Ya| 8yl uo ale sigldweled |ppow palesauab-Ajeonewoine | L1awelsed [gpow usamiaq sylbuans uone|allod
20Ul 8yl smoys (g) ydeisb auuediqg ayl -bBuipueisiapun [e2160]0Iq JuaLNDd Byl YIM [Bpow uaAup-elep Jajdwis ayl
J3UUO0J [9poW [edlwruAp palelauabA|eonewolne ayl pue |apow paAldpAjlenuew ay) usamiaq buiddew ayl ‘G'GT ainbi

. enjo Bnjo
Sy cro-2 1% §.oluH\Nhh+”h\mﬂm+mﬂchu 0o to N.___ﬂ Hm__uw ¥o o w oz m,?_ H_u_r,i s LIS
1+226100 , wa . 186860 =28 # fo | 0LSL60= .
Besorr L OSTTHYVETELT=5q & o M
ol G
SITHATLO00 o o o 0d g
—_— —-_= Q -~
915 zo 3 a Em.
X .
d 6000 +1 | .
To_Iyid 0179153 - — T 868€1= 0 oo W g
I 729010 s . "
Iy 4 1OSYHF = So o Buiddey — \A o jobBuiddely 0z
Yoig oo~ Y TZOVLI-= T
¥ €L7919 [enjoy [enmoy
052 00g 051 0ol 0% 0 oe 0ooe 000Z ool 1] oool- oam._ma.m |
X 4 X, _¥X ¥y _ X,
n+7g+ Y 116SYE— %=) 1¥896°0 = ;¥ o | S9ZLS0= o
05 - i a® {005 g
o 008 ° o 3
& <
051 2 2 oos o
e | . % Jooa &
& L o oos |
L1 Sq Jjobuidde|y [——toe L g jobuiddey oo
|enjoyy [endy
oL G [1] 3 0 ,‘o._.. 08 09 ot 0z 1] 0z- ova.v
Go€66'0 =4 | £96860=cd oz
T .) O
0 .W amm
palaju| a J 08
o : L m.w@soo ° 09
<o
Buipuelsiapun eoibojoig umouy| o1 buidde|p m — Se jobBuiddepy —'o e joBurddepy |g<

232

The linear correlation shown figure 15.5B are averaged across a large area of the
dataset, but the strengths of the correlations vary depending on the specific regime of
the data. These fluctuations suggest that the relationships betiweeparameters are
nonlinear. To investigate this further, we used the same automated model search
algorithm to find relationship between the parameters of the two models, essentially

using the parameter variations as "experiments".

The nonlinear mapp@ (Figure 155C) showed high accuracy; predicting the
automaticallygenerated model parameters from the larger mandeliyed model
parameters witlgoodnesf-fit of over 0.95 for most parametefSigure15.5A). This
suggests that thB. subitiliscellular differentiation dynamics are, in fact,eopting on

a simpler manifold with reduced dimensionality.

For ComK the automaticalhgenerated model correlates linearly with the parameters
of the manuallyderived model that describe the maximum production and linear
degradation o€ComK However, folCom$S parameters of the automaticafjgnerated

model exhibit less correlation with production terms of the mama&ihved model,

and much more correlation with the degradatiotComS Therefore, the production

of ComKand the degradation €@omSappea to account for most of the nonlinear
dynamics of the competence circuit. Only a small subset of parameters accounts for
the data, which is similar to observations made in proteins and metabolic networks.

This suggests perhaps a common evolutionaryisalth selection pressures.

This key insight from the mapping indicates which parameteSooiK and ComS
contribute most to the dynamics of the competence circuit. These results also suggest

that perturbations of those parameters should give greatesteffe

233

Conserved Quantity Mapping

The mapping found for the unknown conserved quanktgufe 15.4A) using the
automateemapping procedure also provides insight ithte meaning of the conserved
guantity. Similar to the dynamical model mapping, we fit the invariant to the data
generated from the manualtierived model, using symbolic regression to identify the
nonlinear relationship between the invariant parameterstl@dnanuallyderived

model parameters.

The mapping shows that the conserved quantity only depends on two types of
understood parameters of the system: parameters controlling the degrad@oomkof

and parameters controlling the productiorCaimS(seeFigure 15.4B and C). In fact,

these parameters are known to impact the duration of competence event®8in the
subtilis system. The duration of transient competengenes are determined by the
ComSmediated negative feedback loop. The longer it take€donSconcentrations

to decrease, the longer the duration of competence. Parameters describing the
production rate and concentration @omS can therefore affect theuration of
competence even{Suel, Kulkarni et al. 2007) Therefore, the mapping suggests that

the conserved quantity is related to competence durations.

We tested this prediction by looking at the invariant evaluated on data collected from
the wild type and a modified strain with higher expressio@a@inS(Figure 15.4D).
Increased production @omSin the modified strain was accomplished by introducing

a copy of the nativ€omSpromoter drivingComSinto a plasmid maintained at five
copies per cell. Effectively, this modification resulted in a six fold higher primatuct
rate of ComS(bs) compared to wild type. The invariant values obtained from the
competence dynamics recorded from the wild type and modified strains cluster into

two groups. High magnitudes for the short duration wild type, and low magnitudes for

234

the long duration mutated strain. In fact, the separation is clear enough that the
invariant magnitude could be used to predict which strain an unknown cell belongs to
and therefore its expected competence duration. These results confirmed our
hypothesis base@dn the mapping that the conserved quantitative is related to

competence durations.

The key insight from the conserved value and its mapping is that competence duration
is tied to a conservation taking place in each cell. It has recently been shown that
subtilis competence durations determine physiological functiga atay, Turcotte et

al. 2009) Specifically, the duration of competence has been demonstrated to dictate
the efficiency and range of DNA concentrations over whichcibrapetence circuit

can perform its biological function. It is thus noteworthy that the conserved property

identified here maps to parameters governing this critical property of competence.

Conclusions

In this chapter we have identified a simpler modef the dynamics of cellular
differentiation ofBacillus subtilis that is equally predictive on unseen data. This result
demonstratea usefulapplicationfor reducing the complexity of mathematical models
describing biochemical interactions. We furtheopgmsed the search of invariants as a
way to uncover the natural laws governing the dynamics of this system. Indeed an
invariant was discovered and was found to be closslbtedto the differentiation
period of the cell. This prediction was validated gsinnew set of experimentEhe
search for invariants may be a way of identifying key principles of other biological
systemsas well We suggest that the ability to identify such conservations can be

informative for understanding increasingly complex systén the future.

A fundamental question is whether algorithmic methods for modeling and

235

hypothesizing about experimental systems can ultimately be hoomapetitive: Can

such methods produce elegant and predictive models on par with human experts, and
if so, will and how could human experts understand these models. th#pter we

have shown one of the first instances of an algorithm producing a concise,-human
readable model that is consistent with a large amount of experimental data, and is
substantily simpler that a recently published model for the same phenomenon. But
that accomplishment only led to a new challenge: How to assign meaning to the
resulting models and reconcile them with existing knowledge. Our solution was to use
the automatednodeling process itself to find relationships between the new model
and existing knowledge, by using model perturbations as "experiments". We believe
that this kind of hurdle will become increasingly challenging as the use of automated
modeling algorithms becorsemore prevalent. The need for new methods to help
machines "teach" their findings to humans, for example by drawing analogies to
known information, may be essential to long term progress in science, and become a

new frontier for Artificial Intelligence rgearch.

Methods

Multi -set Symbolic Regression

Models are encoded as an equation and a set of parameters for each unique set of data
points (measurements of a single bacterial cell) in the @ataautomated modeling
method is based oithe symbolic regression algorithniKoza 1992) See the
descri pt i o®ymimlic Regeessimi omn Apa ghere detail on this

technique.

Symbolic regression has been usedniodelexplicit (Duffy and EngleWarnick 2002;
Elena, Andrei et al. 2005; Cyril and Alberto 20@#f)d dynamical systeméongard

236

and Lipson 2007)n past research, it does nodwmrarily take advantage of multiple
dataset from unmatched sources, such as data recorded from multiple cells, each cell
with different parameters such as physical size. In order to use multiple datasets at
once to get a large enough description of thdesys we developed a mubket
regression method. The method searches for a single equation set that can be fitted
well to each data source independentlyg.(eeach individual cell), requiring only

parameter adjustments, but no change in form.

Model Seleabn

We selected the automaticaljgnerated model by considering tRareto front
(Kung, Luccio et al. 1975; Parke, Ryan et al. 20foduced by symbolic regression
between model complexity and its accuracy on the experimental@laiaplexity is
measured as the inverse of number of terms in the expreBsioationsthat are both
simple and accuracgre the most challenging to find and identify, and their behavior
is more interestingSchmidt and Lipson GD9) In particular, he most interesting
solutions on this frontieappeaat cliff points, wherehe predictive ability toncreases

and then platea(Edwin and Jordan 2003; Gregory, Denis et al. 2003)

The Inferred Dynamical Model

We performed the mulset regression technique using data collected froreraev
different cells. The top rows dfigure 15.6 show data from different cells used to
search for the model. The fit of the automaticglgnerated model is shown solid
black lines. The automaticallyenerated model fits each cell, capturing their key

dynamics, despite the inherent stochastic behavior of the system.

237

450] 160 350

350

100
250 180 200

400

00 80 0 90
Figure 15.6. Collected data and the fit of the automaticallygenerated dynamice
model. ComKflorescence (AFU) is shown in blue dot€omSflorescence (AFU) i
shown in red dots, and the automaticallygenerated model is shown in black fc
each. The automaticallygeneraed model was found using data from the top fot
rows. The bottom row shows that the model generalized to other behaviors st
as oscillating competence events.

Fitting these data sets with a fu@tder model required a tirrgelay in the dynamical
model,as described in the main text. It may also be possible to model this data using a
secondorder (or higheiorder) model however, we were unable to find any simple
secondorder models that generalized to other data sets. Calculating multiple

derivatives fron the data set is difficult numerically, especially when estimating initial

238

conditions. Also, second order systems are less common in the chemical and

biological context.

The model is fit to this data by sweeping the tidedays and leastquares fittinghe
model to the numerical derivative of the data for each varigldmKandComS We
then integrated the model using the DDE23 tofetay differential equation solvér

specifying the absolute error tolerance and relative error tolerancé.to 10

Figure15.6 also shows data not used to find the model (bottom row). Here, the model
generalized to different behavior from the training data to model oscillating

competencewvents.

Nonlinear Dynamical Model Mapping

We used the automatedapping method to find an equation relating each parameter
of the automaticalhgenerated dynamical model to the parameters of the manually
derived model. We generated data for each paramgtesimulating the manually
derived model with randomly perturbed parameter values and fitting the
automaticallygenerated model to each simulated trajectory. We then searched for an
equation to predict the value of the automaticgiyerated model paramnees based

on those in the generating manuallgrived model.

The resulting mapping for the dynamical model is showRigure 15.7. The search
identified a simple mapping equation for each parameter with high goodness of fits.
Based only on the parameter values of the mandaitived model, the mapping can
predict the ptimal fitted parameter values in the automaticgiyerated model with

R? values over 0.95, with the exception of paramleterhich was 0.51.

239

Predicted

Predicted

Predicted

Predicted

~ Predicted

15 000 -1000 0 1000 2000 300

300 Parameterbg

°
250 o

S
0.1,
0.2
0.3

-0.4] y"
o5 R?=0.98987

80, Parameter ay .

60 o 08®

0B
o o&

R?=0.98983

-40 -20 0 60 8

0 20 4
Actual

Parameterby

. R2=0.51265

Actual

20, Parametercy
89
15 &5 %

o5 ©
% O

‘ R?=0.97510

00

&

0 5 15 20 2!

10
Actual

10 Parameterag

°

) R? = 0.99365

&

10 1

Acgu al

R?=0.96847

0 50 100 150 200 250
Actual

. Parameterc

®

05 04 03 02 -01 0

Actual

a, =-u.0, - 3459118, +b, +U,

53% 30% 16% 0.2%

6462730, K!

b, =- 174623 -
“ ®” 244301 + K
31% 12%
¢, =138998q, - 01004t Uk 4 6166005, kI -
1+0009023i
56% 21% 10% 0.1%

ag =- 1066728 + U, - Us Og
S ° 000696926l +2155321
56% 22% 19%

1752671 G

b, = 273234 & + 225291l fi - — 220/ Us U _
5 % ste” ho186411, + 1

82% 21% 9%

as
C. =
® 01304+9589/G, +7.718/ G,

- 0003930 G, - 01516/

7% 6% 0.1%

Figure 15.7. The parameter mapping relating the parameters of the exper
biological model and the automatically identified dynamical model. The left plo
show the predicted parameter value in the automaticalhgenerated model base
on the parameters of the expert model versus the actual best fit paratee of the
automatically-generated model. The parameter equations found are shown to 1
right. The percent shown for each term indicates the percent of the varian
explained by each term.

240

It is interesting that such an accurate mapping exists. The waelmcould just as
easily fit the same data in discontinuous or random ways. Instead, the mapping
suggests equivalence between the two, described by the mapping equakimusean

15.7.

Conserved Quantity Mapping

We also used the automatedhpping method to identify a nonlinear mapping between
the automaticalhgenerated conserved quantity and the margiywed biological
model. We simulated the manuatlgrived nodel with varying parameters to collect
synthetic data, then fitted the invariant to each simulated trajectory. We then looked
for an equation modeling the resulting fitted parameters in the conserved quantity as a

function of the parameters in the manyalkerived model.

Figure 158 shows the resulting map for the automaticgignerated conserved
guantity. The conserved quantity parameters were more difficult to model than the
dynamical model. This is likely a result of higher sensitivity and variance when fitting

an invariant equan. The mapping however still shows strong correlations.

The result of the conserved value mapping is that we now have a method to directly
calculate the conserved value from the manuddlyved model directly without the

need to tune parametédrshey ae explicitly prescribed by the mapping.

Interpreting a Conserved Quantity
Many conserved quantities correspond to a fundamental physical or naturaslaw
as conservation of energy or momentum. However, we are not certain what the

automaticallygener#ed conserved quantity represents in the competence circuit.

In developing our analysis of the unknown conserved quantity, we make many

241

-2.5u‘ 5 _ 5.5
R®=0.8858 R? = 0.6963
K ®
2 0 & g 00009 00009
g @ 487931255020, 0, 3 €, © 0002k - ———- ———
o a Kk Uk Uk
-i}iS Actual 2.8 0 Actual 6
2.2 9.5
R2 = 0.4088 R2 = 0.9449
K] ®
s 000133, +00013/ 0 3
g CZ ° azk b K 8 05 (o} Lks
c sPs c 14771, 0, bq
1 45
0.5 Actual 2 3 Actual 10
0. 5 _ 0.013
R®=0.3245 R2=0.7854
3 00524 3
2 o - 0
E @ ksbq § G ° %
o S
-0.5 -0.021 o
-0.55 Actual -0.15 -0.022 Actual -0.008

Figure 15.8. The parameter mapping relating the parameters of the expel
biological model to the automaticallyinferred conserved quantity. The left plot:
show the predicted parameter value in the conserved quantity of the mappi
versus the actual best fit parameter of the conseed value. The paramete
equations found are shown to the right.

comparisons with a known conserved quantity, such as conservation of energy in a
pendulum. We collected data both fromreml and a simulated double pendulum
(Schmidt and Lipson 2009nd apply the same types of analysishe total energy

eqguation of the double pendulum. This allowed us to compare the unknown conserved

guantity with an understood conservation both with and without noise or loss.

Conserved quantities are often difficult or unintuitive to understand. In fact, many
conserved guantities cannot be directly observed. For example, the concept of energy
is abstract. In the dible pendulum, we can tell that the conserved quantity (total
energy) is predictive of magnitudes of the velocities of the pendulum and the
maximum heights it reaches. But we cannot directly measure it; it has to be inferred
from other measurements. It dduthave an arbitrary offset, and possibly, arbitrary

scale; yet still be predictive of the dynamics of the double pendulum.

242

Similarly, the conserved quantity automaticatyerred for theB. subtiliscompetence
system is predictive of the duration of go@tence events in each cell. It is quite
possible that this quantity is also abstract as in the double pendulum and we may not
be able to interpret this quantity any better than we can interpret and understand the

concept of energy.

Nevertheless, we knothat the conserved quantity is tied to the competence duration,
and that the duration can greatly impact fithess and adaptability of the cell. It is likely
that optimal durations are controlled in the cell or at least selected for by evolution.
Thereforewe could interpret the conserved quantity as a control value of each cell for
the competence durations. However, the scale, offset, or units we define for this value

could be arbitrary; as with energy.

Normalizing Unknown Conserved Quantities

One challengevhen analyzing and comparing unknown conserved values is that they
are invariant to scaling and offset. For example, if the forrhifles conserved, so is

the formulaaf + b wherea andb are any real constants. The key problem is that we do
not know te Aunitso of the conserved value.
normalizing each fitted conserved quanfityemoving the scal@ in the previous

example.

One way to normalize the scale is to divide the entire invariant equation by one of the
coefficients that that appear linearly in the formula since these will also contain the
scaling factor. Ideally, we could divide by the scale exactly, but the coefficients also
contain the parameter of that coefficient. Normalizing by different coefficient

produces different scales and different orderings depending on the parameter used.

One way to visualize this problem is to plot the coefficient values of the conserved

243

o el 035 a
a o ey = @
o B . =& . o iquo . . ?go
. oo B N o T T e
: oo A R -
10 | 0.04 : A 4
0.025 0.005 0025 0005 0025 0005 ~0.025 0.005
o.oosﬂ kyvs. ky [] 004
& %q:w:g"g“o o ° ¢
0o . IO . gq&‘%
c“:; 0 9_-‘ : ‘%ﬁg‘aoo
; 32 . - @
003 e ™" 00 -)
3025 0005 10, -1 2
AR X RS
s Ll e,
5 ‘5
0.035 - 1 it
__1_39 2 -0.04 0.04
6 —Fi kg vs. K 0.005
. Coefficients
L e of the
¥ .
g . inferred
- Bacillus
invariant
4 R 5
& 50,035,

Figure 15.9. The clusters of coefficient values of the unknown conserved quant
equation colored by the B. subtilis strain. Each plot shows a projection onto
different pair of coefficients.

value formula for both the wild and mutat&d subtilis strains In Figure 15.9, we

plotted pairs of coefficients (or 2D projections) of conserved value formula fitted to

the experimental data collected from both the \id mutated strains.

In these projections we can see that the wild and mutated types form distinct clusters
based on the coefficients of the invariant. In several of the projections we can even

separate them by a 2D hypgaane of coefficients.

In particular, allprojections Bown in Figure 15.9 that have coeitient k; as an axis
appear well separated. This suggests Kaatlone is useful for normalizing with

though combinations may be even better. In the main text, we show the conserved

244

value after normalizing blg.

Sampling Parameters Values for Automated Mapping

In the automatedhapping technique, we use the bacillus models to generate data by
simulatingthe system with different model parameters. This allowed us to compare
the parameters of each model over many different data sets. Here we detail the

procedure used to generate data on the parameters.

We started by fitting the manualterived model to am of the experimentally
collected cell data sets. For this comparison we fitted to the oscillatory data set shown
in the bottom left ofFigure 15.6 which happens to have more interesting dynamics
over a longer period of time. We fit the manuallgrived model by sweeping the
time-delays for each variable, and using nonlinear regressiciit the numerical
derivatives of the data for each variable. We use the beginning of the experimentally
collected data as the initial tingelay history, interpolating between data points as

necessary.

Next, we estimated the valid ranges of the paramétethe manualhderived model.

We did this by sweeping the value of each parameter individually, holding the other
parameters to their fitted values, until the system became unstable or exceeded
experimentally observed ranges in either variable. Thigeasso indicates the

relative impacts of each parameter that allows us to perturb all parameter equally.

We simulate the manuaHlyerived model multiples times varying the parameters in
Matlab using the DDE solver with absolute error and relative erterataces set to
10°. For each sample, each parameter is modified by a random percent between zero

and 25% of the parameter 6 s whourirajectariesn ge . We

245

Simulation:

1 100
X
%]
@] 4 ——
g] 8
() =
5 L)¢
©
£] E
5]
zZ

f 2071 ,
0 0 _ 40
Time [hours] Time [hours]
Experiment:
1F 7 10°

NormalizedComK

Invariant

, o 15
Time [hours] Time [hours]

Figure 15.10. Verifying the perturbations of the models with the physical change

in the wild (black) and mutated (red) strains. Pertubing only the parameters the
correspond to production of ComSin the smulated model produces simila
changes to those seen in experiment.

Finally, we take the automaticalpenerated dynamical model and fittat each of
these simulated trajectoriésagain by sweeping the tirtelays and using nonlinear

least squares fitting to the numerical derivatives. This procedure gave us a thousand

sets of parameters for each model which corresponded to the same data.

Real and Simulated Perturbations

This section verifies that the model produces similar effects when perturbed to wet
experiments. As described above, we collected data on a wild ancdhstiain oB.
subtilis The genetically modified strain increased the productiorComS This

resulted in longer duration competence events and increased variability in competence

events.

246

We first tuned the model to the experimental data of the wpe tyata. We then
simulated the model in Matlab with lightly varied parameters to resemble small

variance among cells of the same type.

Next, we increased the parameters which correspond to produc@on®® alphaS

betaS andk-S This is done to mingsithe change in the modifi®l subtilisstrain.

In Figure15.10, we show the side by side comparison between the simulated effects
on the model and the experimental modified strain. The model does not show
increased variance because it is a deterministierential equation model and does

not model the lowevel stochastic nature of the system. However, the model predicts
the same effect on competence durations as in experiment. The durations increased,

and the normalized conserved quantity value ineetas

247

CHAPTER 16. PARAMETER MODELS

Finding Symbolic Parameters

The search over equation space produces equations with bulk parameters; however,
we can use a second equation search to identify the fully parameterized equation with
symbolic parameters such as lengths, masses, etc. For exam@leapter 1lour

method found the following equation for the double pendulum with bulk parameters:

klmf"'kz'/% +k3 W}@OS(1q'2) qk?lcosl kg—COS‘

The question is what are the symbolic representations fdg treefficients? To find
the fully parameterized equation, we simply need data from similar systems but with
different physical configurations and hence varying bulk parameétéos example,
collecting data from several double pendula that have diffeaemt lengths and

masses.

One way to help identify the units in a potentralariant equation is to require the

evolved expressions to be consistent in physical units, and to provide the algorithm
with physicallymeaningful building blocks such as the nesssind lengths of the
systembs component s, whil e reqgdessrthsg al |

approach still does not eliminate completely some fundamental ambiguities.

Alternatively, once we have found thevariantequation with bulk coefficigts, we
can refit it very easily to data from another system that has different parameters. If we
do this on several different system configurations, we can obtain bulk coefficients for
each configuration of the system versus the physical parametgrk; (@lues versus

lengthandmassvalues of the collection of systems).

With bulk coefficient values from several systems, we can now find an equation for

248

each individual coefficient using explicit symbolic regressiog. (Bnd the equation of

ki as a function of the system masses and lengths).

We have done this in silico using 100 simulated double pendula with random masses
and arm lengths. We first collected data from these double pendula by simulating them
numerically and then refitting the déieients of the doublgendulum equation for
each. Since the partial derivative pairs metric is scale invariant, we divide out the first
coefficient to put all equation in a normal form. This allows us to compare coefficients
across multiple double pendwh equations. Finally, we use explicit symbolic

regression to find the equation for each coefficient:
ki/lkp =1
Kofky = mpLo%/(myLy® + mylLs?)
k/ky = 2.00058nL/(myL1 + mpLy)
Ko/ky = 19.6L,
ks/ki= 19.6 mpLo/(mpLs® + myL4?)

wherem, L;, mp, andL, are the masses and lengths of the first and second arms
respectively. The remaining coefficient 19.6 is a multiple of the gravitational

acceleration 9.8 m/s (which we do not vary).

By multiplying the coefficients by their commatenominatomyL,® + mpL% we can

finally write out the fully parameterized equation for arbitrary double pendula:

Lm+m)nw; +mEig 2 m,L w woy ,q)
-19.6 QM m)cogy, 19.6nL, cogy

249

Finding explicit equations for the parameters is much simpler than finding equations
from scratch. Symbolic regression found each coefficexpression in less than 30
seconds, compared with the tens of hours required to find the original bulk coefficient

equation.

250

SECTION IVT APPLICATIONS

CHAPTER 17. METABOLIC NETWORKS

Summary

Many challenges of systems biology involve revessgineering metabolinetworks

by using experimental data to determine metabolic fluxes. Traditionally, specification
of the form of the analytical mathematical model appropriate to a particular metabolic
system relies heavily on prior knowledge about the system, the expeirdesign,

and how closely the system relates to established metabolic models. Here, we propose
an automated process to build mathematical models with limited prior knowledge, or
alternatively, adapt the form of a hypothesized model to suggest a morataccur
structure. The algorithm alternates between generating multiple potential models
commensurate with experimental data and designing new experiments that are
optimized to differentiate models based upon disagreements between thietiqred

We demonstat e t he al gor i t h mdaimensidnal inadel gf yeast a
glycolytic oscillations and compare its performance with related methods. We further
show that this method can symbolically correct impaired and overspecified expert
models. We suggeghat this approach may help study dynamic and-limaar
components of complex metabolic and signaling systems, and may even provide

optimized design and control of experiments in-teaé.

Introduction

Many remarkable behaviors in nature arise from @em signaling or metabolic
networks, and hence the ability to rapidly develop a predictive network model is
essential to understanding and controlling these behaviors. A mathematical description

is one way to represent the dynamics of a network amer@ablentan interpretation,

251

Noisy metabolic time Inferred analytical

s series data differential equations
o
25l el A, S ds, .., 9879.AS
S s FER J dt " T+1266 A,
L] L) ') .
L) 3) R ~ 1 s, _202AS, qer.5 687N, +0.95
g o2t fy I F dt 11380 A
B by .‘ < '-,5" %:G.OO-SZ—G.OO-NZSZ—64,16-33+16.08-A383
215 'f"gn . S qu' 4
@ N » W R 95, _ 64,04 5,-16.03- AS,~13.03-§,-10011- N,S, +13.21-§,
e % ° W 2 E*-'a-'Aaal'o LT NS, +13.215,
S %) . . LI
O 4t ".E _'. N S %:70.055+5.99-sf17.94-N,sz793.32-st,
L Al []
. ® e .
I8 = el ' o 94 _ 1128, 12HAS 104925, 131.69. AS,
05 w |leg s e N dt 141250 A;
| . .S "" 4 e oo '.. N. ‘I L% ds;
o ” Sy ¥ it S ot t . SEo1msm20ts,
O 1 . - 5
0 0.5 1 15 2 25
Time

Figure 17.1 Automated analytical modeling: Noisy time series data reflectin
anaerobic metabolism concentrations over time are automatically translated in

a set of coupled analytical differential equations without prior knowledge of tr
system (actual data and equations).

but finding a full analytical expression can be ardudusparticularly in
multidimensional systems with nonlinear reactions, feedback, and oscillations that are
common in biology. Here we propose a method that generates such a model
automatically() without anyprior knowledgeof the metabolic system under study. It

can be applied either to existing tireeries data or wéab experiments suggested (or

controlled) by the algorithm.

Identifying metabolic ath signaling network models is of pressing practical interest
(Stolovitzky and Califano 2007A variety of methods have been used to infer gene
regulatory networks (GRN)Gardner, di Bernardo et al. 2003; Styczynski and
Stephanopoulos 2005)including genetics, biochemistryand molecular biology
(Levine, Hu et al. 2007)Most often, preexisting models are used to provide a
functiomal form, and then an optimization technique is used to fit the model
parameters. Because of the breadth of data available, much of signaling network
inference is based upon higiroughput MRNA microarray data for gene arrays,

while metabolic network anadis considers both gene expression and-thgbhughput

252

mass spectrometry of metabolitéNielsen and Oliver 2005)There are various
challenges specific to the inference of metabolic networks from such data
(Nememan, Escola et al. 20Q73ince metabolism includes not only transcriptional
regulation of enzymes, but also tt@nversion of substrate species with stoichiometric
constraints. The computational challenge is exacerbated by the range of metabolic
time constants and concentrations, which can easily span a several orders of

magnitude, respectively.

While there remainmany unsolved problems in the inference of GRN models,
metabolic networks surpass many other biological networks in terms of their breadth,
detail, quantitative nature, and experimental validation. Currently, it is possible to
obtain quantitative, dynamimeasurements of metabolic concentrations, metabolite
fluxes, and genetic modification simultaneously, providing an important connection
between the transcriptome/proteome and cellular pheng¢Nipand Savageau 1996;

Kauffman, Pagrowski et al. 2002)

The most common mathematical form used to describe a metabolic network is a set of
ordinary differential equations (ODESs) that describe the-tlerévatives of chemical
concentrations in the system as a function of its current state. OBEsn@nable to
human interpretation because they are deterministic models and explicitly encode
causal relationshipgBansal, Belcstro et al. 2007)including feedback loops that are
difficult to model using other methods. Terms in the differential equations correspond
to reactions occurring in the system based on their connectivity, such asrfist

secondorder rate laws, powdaws, and Michaelidlenten kinetic§Koza 2001)

Methods such as symbolic regress(Bimza 1992; Augusto and Barbosa 2000; Duffy
and EngleWarnick 2002; Hoai, McKay et al. 200@an be used to identify differential

253

equations automatically from experimental dégahmidt and Lipson 2006; Bongard
and Lipson 2007; Schmidt and Lipson 20079wever, substantial challenges remain
to scale into the dimensionality and functional complexiecessary for biological

applications.

In this chapterwe introduce a method to automatically construct mathematical models
of a biological system, and apply this technique to infer a séweansional nonlinear
model of glycolytic oscillation in yea$tthe largest automatically identified system to
datei using only noisy observational datasilico. This method is enabled by three
new techniques for searching for differential equation models: dvapéd symbolic
encoding(Schmidt and Lipson 200/fitness predictior(Schmidt and Lipson 2006;
Schmidt and Lipson 2008pand estimatiomexploration(Bongard and Lipson 2005;
Zykov, Bongard et al. 2005; Bongard and Lipson 3007

Background

Metabolic Modeling

Given the breadth of metabolic networks, we find it useful to classify systems biology
metabolic models into three categories: compreher(gxact and completejersus

local (surrogaes or approximations static versus dynamic, and linear versus-non
linear. Genomescale modeling using generalized mass adtlamshidi and Palsson
2008) is linear, dynamic, and comprehensive. Flux balance analysis (FBA) and
metabolic control analysis (MCA) are linear, static, and comprehensive. Metabolic
flux analysis (MFA) is linear, static, and localized (Varnand Palsson 1994).
Dynamic flux balance analysis (dFBAMahadevan, Edwards et al. 2002; Gadkar,
Varner et al. 2005 and dynamic metabolic control analysis (MCjell 1992;

Mendes and Kell 1996; Kell 2004re linear, static, and fall between localized and

254

comprehensive. Biochemical systems theory, also known as3lyst&m approach, is
nonlinear, dynamic, localize@Beard, Qian et al. 2004; Crampin, Schnell et al. 2004)
Cybernetic modeling is nonlinear, dynamic, and falls between localized and
comprehensive(Young and Ramkrishna 2007)it is becoming more widely
recognized that highly detailed comprehensive models suffer from the identifiability
problem (Schmidt, Madsen et al. 2008), because of thkililgato distinguish
experimentally between parameter combinations that produce identical measurements,
and that additional methods are needed to reduce model complexity. We focus this
chapteron an approach to identify local or effective models for-hoear and
dynamic subsets of larger systems, and hence explore the underlying physiology and

enable external control of the system and the optimized design-tdibwexperiments.

Metabolic models, in contrast to signaling ones, require strict adherentee t
stoichiometry of the equationsg.,chemical mass balance. Such mathematical models
can be used to predict the behavior of the network in different conditions, such as
attracting basins and bifurcations predictions that are not readily availalle
statistical models. Stoichiometric methods can also be used to identify some
gualitative properties of biological systems. For example, if a model can be linearized,
it is possible to create a Jacobian matrix that can subsequently be decomposed into
stachiometric and gradient matrices to reveal kinetic and thermodynamic components
(Jamshidi and Palsson 200&ut this technique may not be applicable to problems
that are not readily linearized or for which perturbations take the system far from the

reference model.

Integration of a parameterized system of differential equations is known as the
forward metabolic etwork problem. In contrast, the inverse problem involves

determining the nature of the equation network underlying observed behavior using

255

techniques such as reverse engineering or systems identification. Revgirssering

a metabolic network consist$ determining both the correct functiorfakm of a set

of ODEs to describe the system and the proper set of model parameters to fit
experimentally collected data to within a given tolerance. The inverse metabolic
problem is universally recognized as vaard(Kell 2004;Kell 2006)and most likely

NP complete(Mendes and Kell 1996; Styczynski and Stephanopoulos 2@G5a

result of the nonlinear and coupled nature of the equations, enzymatic kinetics studied
in isolation or with small, singular perturbations, often used to explore network
connectivity, may not be farmative regarding the behavior of the complete system,
particularly under large amplitude dynamic perturbations to multiple variables.
Conventional local nonlinear solvers can be inadequate for teenititioned and
multi-model inverse problem presedteby the nonlinear, differentialgebraic
constraints associated with dynamic biochemical pathways, and various global
nonlinear optimization approaches have been developed to solve the inverse problem
(Mendes and Kell 1998; Moles, Mendes et al. 2003; Beard, Qian et al. 2004; Crampin,
Schnell et al. 2004)

Methods

Searching for Differential Equations

Genetic programming is a widely studied class of evolutionary algorithms inspired by
biological evolution(Koza 1992) In a traditional genetic program, an initially random
population & solutions evolves iteratively in computer memory to maximize some
objectivei for example, to model experimental data with the lowest squared error.
Solutions with the highest fitness persist in the populatiometmmbine(genetic

crossover) andthutateto replace less fit individuals.

256

Symbolic regression usegenetic programmingto evolve (compete) algebraic
expressions to explain experimental dd€aza 1992) Unlike polynomial regression

or neural networks which also fit data, symbolic regression searches a space of
analytical equations to xplain experimental observations. Symbolic regression
composes equations using basic algebraic building blocks with the aim to formulate
simpler €.g.,fewer parameters) or more natural expressions (robust to perturbations)
that are more likely to correspd to the underlying intrinsic behavior mechanisms of

the system.

Symbolic regression compares candidate equations by calculating their residual errors
on the experimental dataalso known as the equatiofiiess metrid for example,

using squarerror or correlation. In past research, algorithms have used all available
data at once to evaluate the fit. However, this metric can be overly stringent and

inhibit solutions from building intermediate expressions needed for the final model.

Instead, we use thechniquefitness predictiorto reduce overall computational cost

and to improve the local search gradi¢gthmidt and Lipson 2006; Schmidt and
Lipson 2008) Fitness predictors measure eron only a small subset of the data. The

data subset is adapted, however, as a population of fitness predictors (data subsets)
evolves in parallel with symbolic regression of differential equations. Predictors are
rewarded for accurately approximatingnganequati ons® error on
differential equations measure fitness using theramied predictor. In contrast to
standard symbolic regression, equations compete on an accurate fithess approximation

but are free to drift in more trajectes. Predictors adafu defeafpoor deviations.

Conceptually, fithess prediction allows a genetic algorithm to search a wider range of

solutions by adapting the fitness heuristic and reducing its computational cost. An

257

t

C:j_T:kzsz 'kZSJ\lz kaJ\lz k_§N2

Figure 17.2. Analytical model representations for NADH in the cell glycolysi
model - a tree encoding (left pane) and a graph encoding (right pane). Both pat
encode the same equation, but while the tree encodingssnpler to manipulate
algorithmically (e.g.,alter subexpressions), it requires redundant subtrees and
prone to produce large equations that may not accurately represent the biologi
system. The graph encoding couples subtrees, thereby biasing equasiotc
preserve simpler shared expressions.

interesting result(Schmidt and Lipson 20083hows that symbolic regression is
substantially more successful when solutions are pressured to explain only a few
features of the sgfems at any given time rather than the entire data set at once. This
allows solutions to drift from the objective gradient, but the focus adapts with the

solution population to prevent excessive divergence from the intended gradient.

Model Encoding

The ability to identify an accurate and parsimonious differential equation model using
symbolic regression relies critically on thgenetic encodingle.g., the genotype
organization of a symbolic exession). To search the space of candidate symbolic
analytical equations, we use an acyclic graph encoding for symbolic regression that
scales well computationally and exploits the shared structures found in many

metabolic networkgSchmidt and Lipson 2007 raditionally, symbolic expressions

258

have been repsented as binasfyees, where parent nodes represent algebraic
operations such as addition or multiplication, and leaf nodes represent symbolic
variables and parameteonstants Kigure 17.2A, left pane). Howewe trees can
produce complex and bloated equations, often resulting in unsuitable models for
understanding the underlying system. Instead, the graph encoding produces models
that are more concisen average by reusing and coupling ®xipressions in the

genetic encodingSchmidt and Lipson 2008)

The acyclic graph encoding represents a symbolic expression by interpreting nodes as
mathematical operations such as addition and multiplication. Leaf nodes represent
statevariables or paranter constantsHigure17.2B, right pane). The encodingrfthe

graph is an ordered list of operations much like assembly code: Each operation builds
up successive sedxpressions in the final expression, using argc@ding operations

and symbolic variables. The graph encoding takes advantage of redundant sub
expressions, such as coupled reactions in metabolic networks, and is biased against

bloated solutions and overfittif@chmidt and Lipson 2007)

The acyclic gaph (illustrated irFigure 17.2) that represents symbolic equations was
encoded internally as floatiFgpint assembly code. The encoding consists of aflist
floating-point operations and parameter valu@perations can load an input variable
or a parameter valuesg¢t command), or perform a floatiqgpint operation on any
previous operation outputsadd/sub/mulply/divide commands).Each operation
corresponds t@ leaf or parent node in the graph. The gragprooted by the final
operation in the listTable 17.1 shows several raw encodings generated by the

algorithm after regressing the yeast glycolysis model.

259

Table 17.1. Raw encodings ofjlycolysisdifferential equations found.

St S S S,
(0) & set<A3> (0) & set[-0.2349] [0) & set[6.01392] (0) & set[-0.02674]
(1) a set[-7.15469] |(1) & set[-6.00913] (1) & set<S2> (1) & set[62.8684]
(2) & set<S1> (2) a set<S2> (2) & mul(0) (1) (2) & set<S3>
(3) a mul(1) (2 3) a mul(1) (2 (3) & set[-64.187] (3) & mul(1)(2)
(4) a set[-10.6171] |(4) a add(0)(3) (4) & set<S3> (4) & add(3)(0)
(6) a div(4) (@3 (5) a set[-6.70044] [5) & mul(3)(4) (5) & set[-12.727]
(10) & set<S1> (7) & mul(5)(2) (6) a add(2)(5) (6) & set<S4>
(12) a set<S3> (8) & set<N2> (7) & set[16.0479] (7) & mul(5) (6)
(13) a div(3)(12) (9) a mul(7)(8) (9) & mul(7)(4) (8) & add(4)(7)
(15) & sub (6) (10) (10) a add(4)(9) (10) a set<A3> (9) & set[12.7542]
(16) & div(13)(15) (11) & set[14.6053] (11) a mul(9) (10) (10) a set<S5>
(17) & sub (16) (0) (12) a set< S1> (12) & add (6) (11) (11) a mul(9) (10)
(18) & sub (16) (17) (13) a mul (11) (12) (13) a set[-6.0004] [(12) & add(8)(11)
(22) a mul(18) (18) (14) a set[0.0710] (14) & set<S2> (13) & set[-98.40 2]
(23) & set[0.0708 1] |(15) & set<A3> (15) & mul (13) (14) (15) a mul (13) (6)
(24) & div(23)(0) (16) a div(14) (15) (16) a set<N2> (16) a set<N2>
(25) a mul (18) (22) (19) a mul (15) (15) (17) a mul (15) (16) (17) & mul (15) (16)
(26) & add (24) (25) (21) a mul (19) (15) (28) a add(12)(17) (18) a add(12)(17)
(27) & div(3)(26) (22) a add(16)(21) (29) a set[1] (19) a set[-15.712]
(28) a set[-2.469] (23) a div(13)(22) (31) a div(28)(29) (20) a set<S3>
(31) & sub (27)(28) (24) a add(10)(23) return (31) (21) a mul (19) (20)
return (31) (25) & set[-0.1942] (22) & set<A3>
(26) a add (24) (25) (23) a mul(21) (22)
(27) a set[-0.4663] (24) a add (18)(23)
(28) a sub (26) (27) (25) a set[1.01302]
(29) a set[1.01609] (26) a mul (24) (25)
(31) a div(28)(29) (27) & set[1.00701]
return (31) (28) & mul (26) (27)
(29) a set[0.0213]
(31) a add(28)(29)
return (31)
N As Ss
(1) a set[5.95097] (0) a set[0.08596] (0) & set[1.30265]
(2) a set<S2> (1) a set[128.854] (1) a set<S4>
(3) a mul(1)(2) (2) a set<S3> (2) & mul (1) (0)
(5) a set[-17.8537] |(3) a mul(1)(2) (3) & set[-3.1032]
(6) a set<S2> (4) a add(0)(3) (4) & set<Sb5>
(7) a mul(5) (6) (5) a set[-1.37961] [(5) & mul(3)(4)
(8) a set<N2> (6) a set<A3> (6) a add(2)(5)
9) a mul(7)(8) (7) a mul(5) (6) (25) a set[-2265.4]
(10) & add(3)(9) (8) a add(4)(7) (26) a add (6) (25)
(11) & set[-99.130] |99 a set[-32.0337] [(28) & sub(26)(25)
(12) & set<S4> (11) & mul (9) (2) (29) a set[-0.0001]
(13) a mul (11) (12) (13) a mul (11) (6) (31) a add(28)(29)
(15) a mul (13) (8) (14) a add(8)(13) return (31)
(16) & add (10) (15) (15) a set[-14.53]
(17) & set[0.9840 16) a set<Si1>
(18) a mul (16) (17) (17) a mul (15) (16)
(19) a set[0.9841] |(18) & set[0.0714]
(20) a div(18)(19) (19) a set<A3>
(27) a set[-0.0003] |(20) & div(18)(6)
(28) a add (20) (27) (23) & mul (6) (6)
(29) a set[1.01106] (25) a mul(23) (19)
(31) a mul(28)(29) (26) & add (20) (25)
return (31) (27) & div(17) (26)
(28) a add (14) (27)
(29) & set[0.99359]
(31) a mul(28) (29)
return (31)

260

The connected components of tiggaph define a sequence of operations that

correspond to a single equation, as showhable17.1.

In our experiments, we are effectively searching the ratiomations (seveivariable
guotients of polynomials) of at most 32 operations (nodes in an acyclic graph
representation). This places a limit on the total number of parameters also to 32. The
discrete search space size, neglectingvakied parameters, taus 621 or roughly

10?° parameterized functions.

Model Accuracy and Complexity Tradeoff

For any given system, there a potentially infinite set of equations that closely fit any
finite set of experimentally collected data. Therefore, it is importartaiee some
gualitative understanding of what the domain of reaction rate equations looks like. For
example, a 1000order polynomial can perfectly fit any data set of 1000 or fewer
unigue time samples. Therefore, it is important to understand the quelit@ditures

of the equatiorspace which can also help us distinguish between true intrinsic models

and coincidental fits.

Consider the relationship between equation complexity and accuracy of fitting the
experimental data. Qualitatively, there exist exegntomplex equationsg(g, Taylor

series, neural networks, and Fourier series) with near perfect accuracy as well as
simple, singleparameter models with baseline accurazg.(the mean reaction rate).

The behavior of equations in between these twremeés is more interesting.

Figure 17.3 shows thePareto front of equation accuracy versus equation complexity
for modelinga particulareaction rat€dS,/dt describé below). It demongrates ecliff
point in the tradeoff between model accuracy and complexity. Starting at the lower

right corner of the figure and increasing the model complexity by moving to the left,

261

Model Accuracy (-error)

-40 -30 -20 -10 0
Model Parsimony (-nodes)

Figure 17.3. The pareto front of model accuracy versus its simplicity. There is a

inherent trade-off between complexity and accuracy to the training data. Mar

complex functions have very high accuracy, however the exact solution lies at

sharp inflection near 28 nodes, balacing high accuracy and simplicity.

there is a certain complexity where model accuracy jumps dramatically and then
plateaus. In other words, there is a relatively simple equation that can model the
systembébs behavior accurately (but perhaps

can reaso this equation to be the mdsdtely model of the system. The equation at the

inflection at this example is indeed the cori®@amnodel, supporting this assumption.

Automated Experimental Design

Once the symbolic regression step has evolved a population of candidate solutions to
fit the current set of training data, there may be several coherent solutions for
modeling the data in flerent waysi particularly in highdimensional domains with
sparse data where many equivalent explanations exist for the simplest behavior. But
which mathematical explanation of the system is correct? The estirexidoration
algorithm (EEA) is a methotb automatically design a new experiment that can help

differentiate the current solution candidates and refine their stru@amegard and

262

Lipson 2005; Zykov, Bongard et al. 2005; Schmidt and Lipson 2006; Bongard and
Lipson 2007) The purpose of the EEA to decipher which model is likely to be
correct by searching for experiment settings, perturbations, or procedures that cause
current models to disagree most in their préoins. Figure17.4 summarizes the high

level symbolic regression of differential equations and the automated experiment

control of the proposed algorithm.

The first step in our explorat iperiormaf an
series of randomly selected experimentperhaps just observing nominal stable
behavior, such as stable nodes and limit cycles. As candidate solutions compete to fit
these training data, there is a tendency to produce multiple solutions tleah eékp
behavior in different ways. Given multiple solutions competing to explain the current
data, we can then search in parallel for new experiment designs to maximize
disagreement in the predictions of the set of solutions. For a dynamical systeas such
glycolysis, we design new experiments as sets of initial conditions into which we
place the system and then record its transient trajectory as governed by the differential
equations in the black box. We dictate the most informative experiment to st thfe

initial conditions in which the current population of solutions has the highest statistical
variance in its predicted dynamics. The candidate experiment producing the most
disagreement in the prediction of competing models is the most informative
experiment to carry out and the one most likely to eliminate overfit models that are

unable to make useful predictions (Zykov, et 2005).

Once identified by the EEA, we can then perform the most controversial experiment
on the real system, acquire newtal and once again compete solutions to explain
them. We repeat this proceg&ongard and Lipson 2005; Zykov, Bongard et al. 2005;

Bongard and Lipson 200tntil a single dominant solution emerges.

263

(virtual) Collected

/ Wetlab Data \
Automated .
Experiment Fitness

Design Prediction

\ Graph Encoding 4_/i

Equation Search

Figure 17.4 The coevolution of models through symbolic regression and fitne
prediction, and experiments by the estimatiorexploration algorithm. Candidate
solutions compete to explain current experimental data, and experimental initi
conditions compete to maximize disagreement in the predictions of the varic
solutions. This process of synthesizing coherent models and controver
experiments corinues until a single dominant solution emerges.

Distributed Computation

Genetic programs are readily parallelizable to several computers and server clusters
where available. We distributed the symbolic regression evolution over four
computers and eight total logical processors using the island distributed computation
method(Francisco, Marco et al. 2003Jhe island model partitions the population of
solutions into separated smaller populations residing on each conjputere). We
spread a population of 512 individuals over eight CPU cores; therefore each

population has 64 individuals.

The island model populations are faster to evolve because there are fewer individuals
and less work to calculate fitness values mgutation. We migrate solutions between
populations at regular intervals. Every 10,000 iterations (averaged over all

populations), we randomly shuffle all solutions among random pairs of populations.

264

Noise Effects on Numerical Derivatives

Measuremennoise makes approximating the gradient (numerical derivatives) more
difficult because derivatives can be highly sensitive to noise. We usepanametric
fitting, Loess smoothingCleveland and Devlin 1988)which could overcome a
significant amount of noise, up to a point depending on the noise strength and

frequency.

Loess smoditing updates each sample in the data set by fitting a small order
polynomial to the sample and its nearest neighbors. If the neighbor size is significantly
wider than the sample rate, the polynomial will remove {ilgquency noise. Other
methods, such dgdtering and convolution, also reduce hiflequency noise, but they

do not readily produce estimates of the signal derivative. Using Loess smoothing, we
can obtain the numerical derivative directly from the smoothing procedure by

evaluating the symboliderivative of the local polynomial fit at each data sample.

In Figurel17.5, we can see the effect of Loess smoothing for calculating the numerical
derivative versusnie amplitude of the noise and its frequency relative to the sampling
rate. These graphs come from smoothing the sifffjadsinwvt) overt=[0, 2]
number of features (ofw/(themembet aftperiods ia thg i
data set). We can see that error on the signal itself is most affected by the noise
frequency. In contrast, the error of the numerical derivative using Loess smoothing is
affected by both noise amplitude and the number a@bifea in the data set (frequency

of the signal).

This result suggests that smoothing cannot remove all noise from data, even for small
amounts, and that smoothing breaks down for the numerical derivative values for

high-frequency features in the data.

265

The

S

d

Residual erroif(t) = singt)

Residual errorff(X) =wcosvt)

Figure 17.5. The residual squarederror after Loess smoothing versus th
magnitude of the noise and the density of features relative to theise frequency
(sample rate) for a sinewave signal and its numerical derivative. The signal errc
is most sensitive to the noise magnitude but more robust to the number
features. In contrast, the error on the numerical derivative has much highe
sengtivity to the number of features. The state of the art of what the symboli
regression algorithm can handle with Loess smoothing is roughly the mediw
blue to dark-blue regions.

266

