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The work presented here advances the technology to analyze experimental data and 

automatically hypothesize about explanatory models and physical laws that help 

explain observations. Automated Modeling, sometimes referred to as Symbolic 

Regression or System Identification, is the process of searching a possibly infinite 

space of mathematical expressions in order to optimize various objectives ï for 

example, identifying the simplest possible nonlinear equation that captures the 

observed dynamics of a system.  

Traditionally, the task of formulating analytical models and theory has remained 

entirely within the purview of human expertise, and also human limitation. However, 

the development of Evolutionary Algorithms, and more recently Genetic 

Programming, has made searching for analytical models automatically a possibility. 

The work presented here focuses on advancing the algorithms and techniques for 

Automated Modeling to shrink this ñreality gap,ò and applies these advances to 

various real and experimental systems for the first time. 

The specific contributions of this work fall into four categories: search methods and 

algorithms, model representations and the types of systems that can be analyzed, 



 

techniques for interpreting solutions and results, and applications in science and 

engineering fields.  

The most important contribution in the search methods is the Fitness and Rank 

Prediction algorithm, which enables utilizing exceedingly large data sets with low 

computational effort. This algorithm is based on the idea that, at any given time, only 

a small number of carefully selected data points are necessary to discriminate among 

candidate models, allowing large reductions in computational effort. In model 

representations, the most important contribution is the principle for identifying 

meaningful invariant quantities amongst the infinite number of trivial invariant 

expressions. This principle enables searching for physical laws and conservations 

directly from experimental measurements. In the interpretation of results, the most 

important contribution is Parameter Mapping technique, which relates an 

automatically inferred model to a previous model through repeated regressions. 

Finally, the most important contribution in applications is the analysis of yeast 

Glycolytic oscillations, which demonstrates and compares several techniques in order 

to identify a complete nonlinear ordinary differential equation model directly from 

data. 
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Figure 10.3. Data sampled from six target implicit equation systems. Data is collected 

uniformly for the geometric systems. In the dynamical systems, the data is a single 

simulated trajectory from a random initial condition. ................................................ 136 

Figure 10.4. Fitness of the symbolic regression algorithm using the implicit 

derivatives fitness for each of the six systems. Results are the top ranked solution 

versus time, averaged over 20 independent trials. Error bars indicate the first standard 
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Figure 10.5. The fitness and equation complexity Pareto fronts found for each of the 

six systems. The exact solutions are the simplest equations to reach near perfect 

fitness. More complex solutions show elaborations on the exact solution, improving 

fitness only marginally. .............................................................................................. 140 

Figure 11.1. Mining physical systems: We captured the angles and angular velocities 

of a chaotic double-pendulum (A) over time, using motion tracking (B), then 

automatically searched for equations that describe a single natural law relating these 

variables. Without any prior knowledge about physics or geometry, the algorithm 

found the conservation law (C), which turns out to be the double-pendulumôs 

Hamiltonian. Actual pendulum, data and result shown. ............................................. 143 

Figure 11.2. The computational approach for detecting conservation laws from 

experimentally collected data. (A) First, calculate partial derivatives between variables 

from the data, then search for equations that may describe a physical invariance. To 

measure how well an equation describes an invariance, derive the same partial 

derivatives symbolically to compare with the data. Finally, return the most 

parsimonious equations for the hypothesized physical laws. (B) The representation of 

a symbolic equation in computer memory is a list of successive mathematical 

operations. (C) This list representation corresponds to a graph, where nodes represent 

mathematical building blocks and leaves represent parameters and system variables. 

Both (B) and (C) correspond to the equation f(ɗ,ɤ)=17.719ï4.771ɤ
2
+4.714cos(ɗ)ï

ɤ
2
cos(ɗ). To search for conservation equations, the algorithm mutates and recombines 

these structures to search the space of equations. ....................................................... 146 

Figure 11.3. Summary of laws inferred from experimental data collected from physical 

systems. Depending on the types of variables provided to the algorithm, it detects 

different types of laws. Given solely position information, the algorithm detects 

position manifolds; given velocities the algorithm detects energy laws; given 

accelerations, it detects equations of motion and sum of forces laws. These laws 

contain bulk parameters. ............................................................................................. 149 

Figure 11.4. Parsimony vs. accuracy, and performance. (A) The Pareto front (solid 

black curve) for physical laws of the double-pendulum and the frequency of sampling 

during the invariant equation search (grayscale). The Pareto front shows the trade-off 

between equation complexity (or parsimony) and ability to model a predictive 
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equation at the inflection corresponds to the exact energy conservation law of the 

double-pendulum, highlighted. A second momentum conservation law encountered is 

also highlighted. (B) The computation time required to detect different physical laws 

for several systems. The computation time increases with the dimensionality, equation 

complexity, and noise. A notable exception is the bootstrapped double pendulum, 

where reuse of terms from simpler systems helped reduce computational cost by 

almost an order of magnitude, suggesting a mechanism for scaling higher 
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Figure 11.5. Ancestor trajectories in equation space while searching for the equation 

of an ellipse. Dots indicate crossover and mutation events while lines represent 

parameter tuning over time. (A) Several initially random equations with varying 

predictive ability evolve independently before coalescing toward the exact solution 

over the running time of the algorithm. (B) The ancestors also vary in equation 

complexity ï measured as the number of nodes in their expression trees. Initial 

equations tend to have higher complexity, but simplify over time toward the exact 

solution. (C) The same trajectories plotted over predictive ability and complexity 

shows the ancestor trajectories converge toward a simple and high predictive ability 

neighborhood before finding the correct equation structure whose parameters can be 

tuned to the exact solution. ......................................................................................... 160 

Figure 11.6. Sequence of solutions as they evolve to model the equation of an ellipse. 

This sequence represents a single trajectory in Figure 11.5. Small mutations and 

crossover events during the evolutionary search slowly converge this sequence onto 

the exact equation. ...................................................................................................... 161 

Figure 11.7. Two equivalent representations of an example equation f(ɗ,ɤ) = 17.719 ï 

4.771Āɤ2 + 4.714Ācos ɗ ï ɤ2Ācosɗ. (A) The algorithm stores and evolves equations 

represented by a list of floating point operators over a systemôs variables. Each 

operation can load a variable, load a parameter, or perform an mathematical operation 

on any previous operation. Unused lines have been omitted for clarity. (B) The raw list 

can be interpreted more intuitively by an acyclic graph where several sub-trees are 

reused by multiple terms. Both (A) and (B) represent the same equation. ................ 163 

Figure 11.8. The accuracy/complexity Pareto front of the double pendulum. The 

Pareto front shows the tradeoff between equation complexity and its ability to derive 

accurate partial derivative. At some minimum complexity (32 nodes), predictive 

accuracy jumps rapidly. Equations almost twice as complex improve the accuracy 

only marginally. These high complexity equations tend to contain the simpler exact 

equation, but add many smaller terms to compensate noise. The parsimonious and 

accurate equation at the inflection is the Hamiltonian and Lagrangian of the double 
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Figure 11.9. The mean predictive ability on a withheld test set of the best equations 

detected versus the amount of normally distributed noise in the data set for the 

simulated double linear oscillator. Error bars show the standard error. The percent 
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shows the hypothetical exact behavior of a system in blue, and two known 

measurements of the system at red dots. The candidate model is simulated multiple 

times, starting from the first measurement for t seconds, in order to estimate a 

probability distribution of the model (right). The state of the second measurement is 

then compared with this distribution to evaluate the quality of the model to reproduce 
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the search. The right panes show the percent of runs that identified the exact solution 

for the amount of computational effort. Error bars indicate the standard error. ........ 198 

Figure 13.5. The relationships between the distance metric of a model and its 

corresponding likelihood given the experimental data. Each point in the plot is a 
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Figure 13.6. Traits of the best model over time during the evolutionary search. The top 

left plot shows the genotypic age of the best solution (the number of generations any 

part of the solution existed in the population). The top right shows the novelty of the 

best solution (how different it is from the rest of the population). The bottom pane 

shows the bloat of the best solution (ratio its complexity with the target solution 

complexity). Error bars indicate the standard error. ................................................... 201 

Figure 14.1. Example expressions of f(x) = (x + 1)
4
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Figure 14.2. Bloat of converged solutions for 1-variable functions (a), and 8-variable 

functions (b). Each point is averaged over 50 randomly generated target functions. 

Error bars show the standard error. ............................................................................ 212 

Figure 14.3. Test set convergence versus target function complexity for 1-variable 

functions (a), and 8-variable functions (b). Each point is corresponds to 50 randomly 
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Figure 14.4. The number of point evaluations before convergence on the training set 

versus the target function complexity for 1-variable functions (a), and 8-variable 
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Figure 15.1. Manually-derived versus automatically-generated biological models and 

the mapping challenge. Most biological models are derived by hand using expert 

knowledge of the system, related systems, and qualitative understandings of the 

underlying biology (left). When large amounts of experimental data are available, 

empirical models can be inferred automatically by a computational search for the most 

parsimonious model that accurately predicts the dynamics (right). The automatically-

generated model potentially provides new insight into the system but does not have 

any accompanying explanation. Our solution to this problem is to additionally learn a 

mapping from the known biological model to the automatically-generated model, 

identifying which understood parameters collapse to simpler explanations in the 

automatically-generated solution. Actual models and data shown. K and S represent 

the protein concentration levels of ComK and ComS, respectively. Ŭ, and ɓ terms 

correspond to  the basal and maximum rates of protein expression, respectively.  ɚ 

denotes the linear and ŭ the enzymatic degradation rates of ComK and ComS. The 

meanings of the parameters on the right are unknown. .............................................. 221 

Figure 15.2. Transient and oscillatory dynamics of competence events in single B. 

subtilis cells. Filmstrips in panels A and B show overlays of phase contrast and two-

color fluorescence images.  Blue and orange colors depict the reporter for competence 

PcomG and negative feedback loop component PcomS, respectively.  Panel A shows a 

single wild type cell that differentiates into the competence state and then exits 

(indicated in blue).  Panel B, shows cells containing a modified competence circuit 

(for details see text and SOM) that give rise to oscillations in competence where cells 

undergo consecutive events.  Panels C and D depict time traces of promoter activity 

obtained from quantitative image analysis of fluorescent reporters during the 

competence events shown in panels A and B respectively.  Blue and orange colors 

utilized in the graphics are consistent with the colors depicted in the filmstrips and 

time traces, where blue indicates competence and orange the activity of the negative 

feedback loop necessary for exit from competence. .................................................. 224 

Figure 15.3. The automated modeling method attempts to model multiple cells with a 

single equation, and then identify a nonlinear mapping to a previous understood 

model. These equations contain symbolic parameters which vary for each cell, rather 

than constant coefficients. The algorithm searches for the most parsimonious equation 

which accurately predicts the dynamics observed in the experimental data using an 

evolutionary search. We then attempt to identify a mapping of this model to the 

currently understood system model by varying parameters of the manually-derived 

model, simulating it numerically to generate new data, and then fitting the 

automatically-generated model to the generated data. We then search for a nonlinear 

relationship between the parameters of the two models. ............................................ 226 

Figure 15.4. The automatically-generated conserved quantity (A) maps onto a small 

set of parameters in the manually-derived model (B) which correspond to the 

degradation of ComK and production of ComS (C). When evaluating the conserved 

quantity on data collected from two different types of B. subtilis strains (D), a sort 

duration strain (black) and a longer duration strain (red), the magnitude of the 
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conserved value separates into two different groups (E), suggesting the conserved 

quantity is tied to the duration of competence events. ............................................... 229 

Figure 15.5. The mapping between the manually-derived model and the automatically-

generated dynamical model connects the simpler data-driven model with the current 

biological understanding. The bipartite graph (B) shows the linear correlation 

strengths between model parameters ï automatically-generated model parameters are 

on the left side, manually-derived model parameters are on the right side. The 

nonlinear mapping (C) shows that multiple parameters of the manually-derived model 

collapse to those in the simpler automatically-generated model. The parameter plots 

(A) show that the mapping is in strong agreement with the automatically-generated 

model over a wide range of parameter values. ........................................................... 232 

Figure 15.6. Collected data and the fit of the automatically-generated dynamical 

model. ComK florescence (AFU) is shown in blue dots, ComS florescence (AFU) is 

shown in red dots, and the automatically-generated model is shown in black for each. 

The automatically-generated model was found using data from the top four rows. The 

bottom row shows that the model generalized to other behaviors such as oscillating 
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Figure 15.7. The parameter mapping relating the parameters of the expert biological 

model and the automatically identified dynamical model. The left plots show the 

predicted parameter value in the automatically-generated model based on the 

parameters of the expert model versus the actual best fit parameter of the 

automatically-generated model. The parameter equations found are shown to the right. 

The percent shown for each term indicates the percent of the variance explained by 
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Figure 15.8. The parameter mapping relating the parameters of the expert biological 

model to the automatically-inferred conserved quantity. The left plots show the 

predicted parameter value in the conserved quantity of the mapping versus the actual 

best fit parameter of the conserved value. The parameter equations found are shown to 
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Figure 15.9. The clusters of coefficient values of the unknown conserved quantity 

equation colored by the B. subtilis strain. Each plot shows a projection onto a different 

pair of coefficients. ..................................................................................................... 244 

Figure 15.10. Verifying the perturbations of the models with the physical changes in 

the wild (black) and mutated (red) strains. Pertubing only the parameters that 

correspond to production of ComS in the simulated model produces similar changes to 

those seen in experiment. ........................................................................................... 246 

Figure 17.1 Automated analytical modeling: Noisy time series data reflecting 

anaerobic metabolism concentrations over time are automatically translated into a set 

of coupled analytical differential equations without prior knowledge of the system 
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Figure 17.2. Analytical model representations for NADH in the cell glycolysis model - 

a tree encoding (left pane) and a graph encoding (right pane). Both panes encode the 

same equation, but while the tree encoding is simpler to manipulate algorithmically 

(e.g., alter subexpressions), it requires redundant subtrees and is prone to produce 

large equations that may not accurately represent the biological system. The graph 

encoding couples subtrees, thereby biasing equations to preserve simpler shared 
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Figure 17.3. The pareto front of model accuracy versus its simplicity. There is an 

inherent trade-off between complexity and accuracy to the training data. Many 

complex functions have very high accuracy, however the exact solution lies at the 

sharp inflection near 28 nodes, balancing high accuracy and simplicity. .................. 262 

Figure 17.4 The coevolution of models through symbolic regression and fitness 

prediction, and experiments by the estimation-exploration algorithm. Candidate 

solutions compete to explain current experimental data, and experimental initial 

conditions compete to maximize disagreement in the predictions of the various 

solutions. This process of synthesizing coherent models and controversial experiments 

continues until a single dominant solution emerges. .................................................. 264 

Figure 17.5. The residual squared-error after Loess smoothing versus the magnitude of 

the noise and the density of features relative to the noise frequency (sample rate) for a 

sine-wave signal and its numerical derivative. The signal error is most sensitive to the 

noise magnitude but more robust to the number of features. In contrast, the error on 

the numerical derivative has much higher sensitivity to the number of features. The 

state of the art of what the symbolic regression algorithm can handle with Loess 

smoothing is roughly the medium-blue to dark-blue regions. .................................... 266 

Figure 17.6. Reaction networks for anaerobic metabolism in a yeast cell. Left: The 

exact model includes membrane transport of glucose and pyruvate/acetaldehyde. 

Reactions in red involve ATP production/usage, and reactions in blue involve redox 

species production/usage. Middle: The impaired model does not produce either 

glycerol or ethanol. Right: The overspecified model has an additional sink for 

pyruvate/acetaldehyde (S4). ........................................................................................ 275 

Figure 17.7. The fit to the data of the highest ranked solution during regression for 

each glycolysis variable. The blue series show the correlation coefficient to the 

training data, and the red to the test data. The training data contain 10% noise while 

the test data have none. The test data contain a larger range of allowed state variables 

(i.e., sampled with weaker constraints) to measure whether the model can extrapolate 

and predict new behavior. ........................................................................................... 278 

Figure 17.8. The exact black box model and inferred model integrated over time. The 

inferred model shown in Table 17.5 differs from the exact model by a slight mass 
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imbalance. Integrated over 10 minutes, the inferred model captures the same behavior. 

While small differences in derivative values tend to accumulate during integration, the 

inferred model captures the integrated behavior remarkably well. The inferred model 

predicts early behavior accurately and exhibits the same qualitative dynamics later in 

time, differing only slightly in the phase. ................................................................... 280 

Figure 17.9 The glycolysis system near the stable limit cycle in the course of a single 

experiment, with colors representing frequency with which the fitness predictor 

examines each point within a single time-series. ....................................................... 281 

Figure 17.10. The initial condition experiments (red) chosen by the algorithm to 

differentiate solutions in comparison to a random distribution of initial conditions 

(blue). The algorithm tends to focus on nonlinear states away from the limit cycle 

(dashed black line) within the experimental constraints imposed upon the estimation-
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Figure 17.11. (A) The rate of successful inference of the exact differential equation for 

each state-variable versus the observation noise in the system after one hour of 

regression. The convergence rate is calculated from ten independent trials on each 

equation at each noise level. (B) The rate of successful inference of the exact 

differential equation for all variables versus the total amount of data given to the 

system. The error bars indicate the standard deviation in convergence among the seven 

variables. ..................................................................................................................... 284 

Figure 17.12. Performance comparison between symbolic regression, nonlinear 

regression, and neural network regression. Results are averaged over 100 trials ï error 

bars represent the standard error. Training data performance (top pane) shows that all 

algorithms accurately explain the training data. The negative slope of the correlations 

when the results from the training regression are applied to the test data indicates 

varying degrees of overfitting. Note that symbolic regression uses more point 

evaluations in the same amount of running time because it is a parallel search, whereas 

nonlinear regression and neural network back-propagation use serial updates.......... 287 

Figure 17.13. Correlations of the various regressions averaged over 100 trials on 

equation S4 ï error bars represent the standard error. (A) The correlations between the 

training data and each initial model before the model is regressed to the training data 

by the corresponding algorithm. Symbolic regression and neural network regression 

must model the system from scratch and initially have zero correlation. The impaired 

and overspecified models are close approximations to the exact model and therefore 

have positive correlations. (B) The mean correlation of the best solution from ten runs 

of each algorithm to the training data. The training data contain 10% random noise, 

which results in slight variances ï most notably in the neural networks. The best 

solution from each algorithm correlates well to the training data with low standard 

error. (C) The mean correlation of each method to the test data. The assumed 

structures of the impaired and overspecified models limit their ability to model a wider 

phase domain. The neural network appears limited by noise in the system, but does 
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achieve a higher correlation on average with the test set than do the impaired and 
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Figure 17.14. Performance comparison of symbolic regression when correcting a 

hypothesized model. Results are averaged over 100 trials ï error bars represent the 

standard error. The blue curves represent the performance of the algorithm to the S4 

equation without any prior model. For the other two pairs of curves, the symbolic 

regression algorithm was seeded with an incorrect hypothesized model (black = 

impaired, red = overspecified) and the algorithm had to modify the seeded model to fit 

the original training data. The graph shows the performance for both the training data 

used for the regression (top pane), and the test data (bottom pane) used to evaluate the 
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Figure 18.1. The tracked position of the fly (top pane) and the correpsonding angles of 
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ɗ3). There is slight variation among the periods but overall they line up neatly. After 
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Figure 18.3. Phase plots of the three angles of the right wing (dɗi/dt vs. ɗi), in order 

(ɗ1, ɗ2, and ɗ3). The first angle appears to be a simple harmonic oscillator, whereas the 

other two angles show more complex sub-cycles, likely containing higher order 
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Figure 18.4. Functional linear models based on the period number explains much of 

the variation between periods. The linear coefficients (left), the fit and description of 
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2
 scores (right). ..................................................................... 299 

Figure 18.5. The registration method slices the data into each periods, scaling length 

of each slice to have the same period (left pane). The method optimizes the positions 

of the slices in order to maximize the correlation among all the periods (right pane).
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Figure 18.6. The registered data (left pane) and the shifts in periods after optimizing 
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Figure 18.7. An equation modeling D
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PREFACE 

The area of automated modeling contains many unexplored directions, and I had to 

work on a breadth of topics as they came up over the course of my Ph.D. While 

compiling this text, I had some initial concern that the length was too long. I thought 

carefully about excluding large portions. However, I decided to keep the text complete 

so that it could serve as a comprehensive record of my work. The final dissertation 

comprises all of my research related to automated modeling during my Ph.D. It 

includes both topics that I have published on and also smaller unpublished results. The 

chapters span a breadth of topics and several explore significant depth into various 

problems. Still, there are many remaining questions to be answered in this growing 

field. I hope this text may inspire others in future directions. 
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SECTION I ï INTRODUCTION 

CHAPTER 1. GOALS 

The central goal of this work is to advance new technology to accelerate scientific 

discovery. In particular, this work focuses on Automated Modeling and Artificial 

Intelligence for analyzing experimental data observed in a physical system in order to 

hypothesize about its analytical rules and intrinsic relationships; ultimately helping to 

transform data into scientific knowledge. 

Scientific discovery often progresses in stages, from making observations and 

performing experiments (data), to modeling and predicting the outcome of 

experiments (predictions), to identifying the symmetries and rules of the phenomenon 

(laws), and finally to developing theories and understanding (meaning). The work 

presented here explores computational methods to move from data to laws, leaving 

humans to take the last step. 

This work addresses the task in four core areas: improving search methods and 

algorithm performance, improving model representations and expanding the types of 

solutions that can be modeled, interpreting results and connecting to them previous 

knowledge, and finally proving these techniques to realistic systems.  

CHAPTER 2. MOTIVATION  

In 2006, Josh Bongard, Viktor Zykov, and Hod Lipson developed a continuous self-

modeling robot (Bongard, Zykov et al. 2006) ï a robot that could, using only raw data 

from its internal sensors, deduce its own configuration. For example, the robot could 

determine that it had four legs of specific lengths and orientations. Even after a leg of 
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the robot was broken off, the robot would refine its model and design a new gait to 

continue its locomotion. 

This work begged the question: could a similar robot also model external 

phenomenon? This concept led Bongard and Lipson to pioneer new research in 

automated modeling of dynamical systems (Bongard and Lipson 2007), and formed a 

basis for future work in automated modeling of dynamical systems, including the work 

presented here.  

Automated methods for generating, collecting and storing data from experiments have 

become increasingly precise and efficient over the past decade (Clery and Voss 2005; 

Szalay and Gray 2006). But the technology to make hypotheses or convert data into 

meaningful analytical relations hasn't kept pace. As a result, there is increasing interest 

in new forms of automated analysis, and automating tasks which traditionally required 

human labor and expertise. 

Many methods already exist for modeling scientific data: from fixed-form parametric 

models derived from expert knowledge to statistical models aimed exclusively at 

prediction. However, there exist very few methods for creating human-understandable 

models of nonlinear systems from experimental data. 

Recently, the ongoing research to address this problem has accumulated several 

different names, from ñMachine Scienceò (Evans and Rzhetsky) or ñAutomation of 

Scienceò (Waltz and Buchanan 2009) to ñThe Robot Scientistò (King, Whelan et al. 

2004). The actual machines comprising these systems remain less glamorous than 

their names imply (e.g. a rack of servers in a data center). But, there is increasing 

debate (Gianfelici 2010; Haufe, Elliott et al. 2010; Leonelli 2010) that our concept of 

science, and what it means to do science, may be changing (Mitchell 2009). 
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Of course not everyone agrees ï Philip Anderson and Elihu Abrahams have claimed 

that there is ñno mechanism by which [machines] could create a Kuhnian revolution 

and thereby establish new physical lawò (Anderson and Abrahams 2009).  

Regardless of the various predictions on the future, this is a critical question that must 

be answered. And, it is the motivating factor for the work presented here. 

CHAPTER 3. BACKGROUND 

This section briefly describes essential information describing background concepts 

and previous research that are referenced in several chapters of the text. It covers 

evolutionary computation and symbolic regression. Individual chapters also contain 

their own specific background topics; the following topics are common to almost all 

chapters. 

Evolutionary Computation 

An evolutionary algorithm is an optimization algorithm originally inspired by 

biological evolution and Darwinian selection. A typical algorithm maintains a 

population of individuals (candidate solutions to a problem) that compete to survive in 

a simulated evolution. Solutions in the population are initially random and typically 

survive by maximizing some heuristic (Fogel, Owens et al. 1966). The algorithm 

utilizes stochastic operations inspired by biological evolution ï such as mutation, 

recombination, and selection ï to vary the population, recombine new individuals, and 

reward optimal solutions.  

In a typical algorithm, each iteration (or generation) of the algorithm generates a 

successive population by selecting, crossing, and mutating individuals from the 

previous population. The selection process then picks individuals which perform the 
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best to be crossed and recombined with other individuals to create offspring for the 

next generation. Additionally, offspring undergo mutation which adds variation and 

diversity to the population. Mutation and crossover occur with some predefined 

probability. This allows some individuals to produce identical copies, mutated copies, 

crossed children, or crossed and mutated children.  

Often, the best candidate solution in the population is tracked over each generation to 

measure progress. After the best solution has reached some desired level of 

performance, the solution is said to be converged, and the solution is returned. 

Symbolic Regression 

Symbolic regression is the problem of identifying the analytical mathematical 

description of a hidden system from experimental data (Augusto and Barbosa 2000; 

Duffy and Engle-Warnick 2002). Unlike polynomial regression or related machine 

learning methods that also fit data, symbolic regression is a system identification 

method, which attempts to reconstruct the representative structure of a system. 

Symbolic regression is closely related to general machine learning problems however, 

it remains an open-ended and discrete problem that cannot be solved directly. 

Symbolic regression is an NP-hard problem, however, we can use an Evolutionary 

Algorithm to find solutions (Koza 1992; Schmidt and Lipson 2008; Schmidt and 

Lipson 2009). More specifically, the standard algorithm used in symbolic regression is 

genetic programming (Koza 1992), an evolutionary algorithm specialized for evolving 

computer programs and tree structures ï for example, searching a space of 

mathematical expressions computationally and minimizing various error metrics. Both 

the parameters and the form of the equation are subject to search. In symbolic 

regression, many initially random symbolic equations compete to model experimental 
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data in the most parsimonious way. It forms new equations by recombining previous 

equations and probabilistically varying their sub-expressions. The algorithm retains 

equations that model the experimental data well while abandoning unpromising 

solutions. After an equation reaches a desired level of accuracy, the algorithm 

terminates, returning the most parsimonious equations that may correspond to the 

intrinsic mechanisms of the observed system. 

In symbolic regression, the genotype or encoding represents symbolic expressions in 

computer memory. Often, the genotype is a binary tree of algebraic operations with 

numerical constants and symbolic variables at its leaves (McKay, Willis et al. 1995; 

Edwin and Jordan 2003). Other encodings include acyclic graphs (Schmidt and Lipson 

2007) and tree-adjunct grammars (Nguyen, McKay et al. 2001). The fitness of a 

particular genotype (a candidate equation) is a numerical measure of how well it 

agrees with the data, such as the equationôs correlation or squared-error with respect to 

the experimental data.  

The operations can be unary operations such as abs, exp, and log, or binary operations 

such as add, sub, multiply, and divide. If some prior knowledge of the problem is 

known, the types of operations available can be chosen ahead of time (Augusto and 

Barbosa 2000; Soule and Heckendorn 2001; Duffy and Engle-Warnick 2002). The 

terminal values available consist of the function's input variables and the function's 

evolved constant values (Ferreira 2002).  

Mutation in a symbolic expression can change an operator in the binary tree (e.g. 

change add to sub), change the arguments of an operation (e.g. change x+c to x+x), 

delete an operation (e.g. change x+x to x), or add an operation (e.g. change x+x to 

x+(x*x)). If the operator is changed from a binary operation to a unary operation, for 
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example, one of the two child branches (chosen randomly) is discarded. 

Crossover of a symbolic expression exchanges sub-trees in the binary trees of two 

parent expressions. For example, crossing f1(x) = x
2 

+ c and f2(x) = x
4
 + sin(x) + x 

could produce a child f3(x) = x
2
 + sin(x). In this example, the leaf node c was 

exchanged with the sin(x) term. 
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SECTION II ï SEARCH METHODS 

CHAPTER 4. FITNESS PREDICTION 

Summary 

We present an algorithm that coevolves fitness predictors, optimized for the solution 

population, which reduce fitness evaluation cost and frequency while maintaining 

evolutionary progress. Fitness predictors differ from fitness models in that they may or 

may not represent the objective fitness, opening opportunities to adapt selection 

pressures and diversify solutions. The use of coevolution addresses three fundamental 

challenges faced in past fitness approximation research: (1) the model learning 

investment, (2) the level of approximation of the model, and (3) the loss of accuracy. 

We discuss applications of this approach and demonstrate its impact on the symbolic 

regression problem. We show that coevolved predictors scale favorably with problem 

complexity on a series of randomly generated test problems. Finally, we present 

additional empirical results that demonstrate that fitness prediction can also reduce 

solution bloat and find solutions more reliably. 

Introduction  

The chapter proposed the concept of fitness prediction ï a technique to replace fitness 

evaluations in evolutionary algorithms with an exceedingly coarse approximation that 

adapts with the solution population. A closely related concept to fitness prediction is 

fitness modeling, where a predefined model or simulation is used to approximate 

fitness in cases where the exact fitness requires an expensive calculation or physical 

experiment (Jin, Olhofer et al. 2001; Ong, Nair et al. 2003). Fitness predictors 

however, cannot approximate the entire fitness landscape, but  instead shift their focus 

throughout evolution. 
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Fitness approximations have been used in other situations as well, such as smoothing 

rugged fitness landscapes, mapping discrete fitness values to continuous values, and 

diversifying populations through ambiguity (Jin 2005). In this chapter we show that 

coevolving fitness predictors may also offer further benefits by destabilizing local 

optima and by resisting bloated solutions. 

Recent research in fitness modeling and prediction has focused on approximation 

methods and strategies for use of approximated fitness values (Jin 2005). We review 

significant advances and challenges found in recent work and motivate a 

coevolutionary approach. We suggest that coevolution can resolve three fundamental 

difficulties faced in many fitness approximation applications:  

1. Model training effort:  Often significant computational effort is required to 

train the desired fitness model. 

2. Level of approximation: It is often unclear what level of approximation is 

accurate enough to achieve desired results. High-quality approximations 

provide greater accuracy, but require more computation. Low-quality 

approximations are less accurate, but require less computation. 

3. Loss of accuracy: Similarly, even high-quality approximations are bound to 

have some loss of accuracy due to either the model structure itself or the data 

available to tune it. In the worst case, this effect can hide or even change the 

global optimum ï in which case, exact fitness calculations are still needed to 

find the optimal solution. 

The goal of this chapter is to address these issues through coevolution. In the general 

framework, there are three populations: (1) solutions to the original problem, 

evaluated using only fitness predictors, (2) fitness predictors of the problem, and (3) 

fitness trainers, whose exact fitness is used to train predictors. Solutions are evolved to 
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maximize their predicted fitness using a predictor from the predictor population. 

Fitness predictors are evolved to maximize prediction accuracy using trainers selected 

from the solution population. Trainers are evolved or selected to create discrepancies 

between predictors in order to address their weaknesses. Solution and predictor 

populations start with random solutions and random fitness predictors, respectively. 

The trainer population is initialized with random solutions and their exact fitness 

values. 

In the following sections, we first review preliminary topics and current research in 

coevolution and fitness approximation. We then propose a coevolutionary algorithm 

based on a general framework and discuss its application in example domains. This 

algorithm is then adapted to the symbolic regression benchmark problem in genetic 

programming to measure its impact.  

The experimental part of this chapter is structured as follows. First, we compare 

performance using three other fitness approximation methods to test what role 

coevolution plays in performance. We then duplicate experiments in recent symbolic 

regression literature and compare their results. We then test predictor performance as 

function of complexity on randomly generated target functions, in order to measure 

how the fitness prediction algorithms scale with respect to increasingly difficult 

problems. Finally, we discuss empirical trends demonstrating how coevolving fitness 

predictors can improve reliability and the quality of final solutions, even when the 

advantages of computational cost reduction are ignored. 

Related Work 

Coevolution  

In a coevolutionary algorithm, the fitness metric for one individual becomes a function 
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of other individuals, possibly including itself. More precisely, one individual can 

affect the relative fitness ranking between two other individuals in the same or a 

separate population (Hillis 1992). As a result, the fitness pressures and incentives 

imposed on the solutions may change throughout evolution. 

Coevolution is often applied to problems in which no explicit fitness objective is 

known in advance, or where the objective is abstract. For example, one may wish to 

find a solution that competes well against other solutions. In this example, competition 

between individuals imposed by coevolution can continuously expose weak 

individuals and refine successful individuals, until a dominant solution emerges 

perhaps. 

Several studies have been devoted to the application of coevolution to enhance 

problem solving  (Rosin 1997; Rosin and Belew 1997; Potter and De Jong 2000; Ficici 

and Pollack 2001; De Jong and Pollack 2004; Ficici 2004; Stanley and Miikkulainen 

2004; Zykov, Bongard et al. 2005; Schmidt and Lipson 2006), with the main goal of 

controlling coevolutionary dynamics that often result in a lack of progress or progress 

in unanticipated directions (Cliff and Miller 1995; Pagie and Hogeweg 1997; Watson 

and Pollack 2001; Luke and Wiegand 2002; Bucci and Pollack 2005). Here we use a 

specific form of coevolution (Bongard and Lipson 2005; Bongard and Lipson 2005) 

which addresses many of these challenges. 

The aim of coevolving fitness predictors is to allow both solutions and fitness 

predictors to enhance each other automatically until an optimal problem solution is 

found. The solution population benefits from the fitness predictor population through 

reduction in computational cost (and other benefits such as reduced bloat discussed 

later). The fitness predictor population benefits from the solution population by 
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refining its approximation in the most useful areas of the fitness domain. 

Fitness Modeling 

Fitness modeling has become an active area in evolutionary computation with many 

varying approaches and results (Jin 2005). Here we discuss the motivations, methods, 

and challenges of fitness modeling. 

Motivation 

There are several reasons for utilizing fitness approximation through modeling. The 

first, and most common, is to reduce the computational complexity of expensive 

fitness evaluations. However, approximation can be used advantageously in other 

problems as well. Fitness models have been applied to handle noisy fitness functions, 

smooth multi-modal landscapes, and define a continuous fitness in domains that lack 

an explicit fitness (e.g. evolving art and music) (Jin 2005). Here we discuss 

motivations for fitness modeling and example applications. 

1. Reducing complexity: Many applications of evolutionary algorithms are in 

high-complexity or intractable domains where the fitness calculation can be 

prohibitively  time consuming. For example, fitness modeling has been applied 

to structural design optimization (Jin, Olhofer et al. 2001; Jin, Olhofer et al. 

2002; Mutoh, Nakamura et al. 2003; Ong, Nair et al. 2003; Jin and Sendhoff 

2004; Regis and Shoemaker 2004; Regis and Shoemaker 2005) that often 

requires time-consuming finite element calculations. Often the resolution 

provided by the exact fitness objective is unnecessary for evolutionary 

progress. 

2. No explicit fitness: Many domains do not have a computable fitness. For 

example, in human interactive evolution (Takagi 2001) (e.g. evolution of art 
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and music), a human user must select favorable individuals. Fitness models 

have been applied in these domains to reduce user fatigue and define a 

computable fitness landscape that can be searched while waiting for the user to 

give more feedback (Poli and Cagnoni 1997; Johanson and Poli 1998; Schmidt 

and Lipson 2006). 

3. Noisy fitness: Some fitness functions are very noisy. To produce stable fitness 

rankings, algorithms typically average many evaluations, but this can greatly 

increase the computational cost (Arnold 2001). An alternative approach may 

be to develop a statistical model (Sano and Kita 2000). 

4. Smoothing landscapes: Almost all evolutionary domains suffer from multi-

modal landscapes that are often dense with local optima. Fitness approximation 

can greatly reduce the frequency and severity of local optima. Landscape 

smoothing has been observed with interpolation, kernels, and fitness clustering 

(Yang and Flockton 1995; Audet, Dennis et al. 2000; Regis and Shoemaker 

2004; Regis and Shoemaker 2005).  

5. Promoting diversity: When models smooth fitness landscapes, they often 

flatten local optima or produce different regions with similar fitness. While this 

is undesirable when using a single model throughout evolution, it can be 

advantageous for producing diversity as long as the fitness model continuously 

adapts, as is proposed in this chapter. 

Despite their benefits, the use of fitness models can create new problems. Currently, it 

is not always clear when the benefits of fitness modeling outweigh the costs. In the 

following sections we overview basic fitness modeling approaches and their tradeoffs. 

We then discuss our approach to resolving these tradeoffs through coevolution. 
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Methods 

The technique of fitness modeling falls naturally in the field of machine learning. 

Depending on the structure of solution encodings, many different machine learning 

approaches such as neural nets, support vector machines, decision trees, Bayesian 

networks, k-nearest-neighbor, and polynomial regression can be trained to map 

individuals in order to approximate fitness values efficiently (Jin and Sendhoff 2004; 

Schmidt and Lipson 2006). Modern approaches utilize boosting, bagging, and 

ensemble learning to produce accurate models. A major drawback of these approaches 

is that it is often unclear which approach will work best for a given problem (Jin 

2005). 

Sub-sampling of training data is also a common way to reduce the cost of fitness 

evaluation (Pagie and Hogeweg 1997; Albert and Goldberg 2002). In many problems, 

fitness is calculated by evaluating individuals on training cases and combining the 

total error. With a sub-sample, only a fraction of the training data is evaluated. 

Evolutionary-specific fitness modeling methods include fitness inheritance, fitness 

imitation, and partial evaluation. In fitness inheritance (Smith, Dike et al. 1995; Sastry, 

Goldberg et al. 2001; Chen, Goldberg et al. 2002), fitness values are transferred from 

parents to children during crossover (similar to parent passing on a legacy or 

education). A form of fitness inheritance for estimation of distribution algorithms 

(Larrañaga and Lozano 2002) (EDAs) builds a model of the fitness function based on 

the structure of the probabilistic model used in the algorithm (Pelikan and Sastry 

2004). In fitness imitation (Jin and Sendhoff 2004), individuals are clustered into 

groups based on a distance metric. The fitness of the central individual of each cluster 

is then evaluated in full and assigned to all individuals in that cluster. In partial 

evaluation (Ochoa and Soto Ortiz 1997), the fitness of some individuals are calculated 
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exactly, while others are modeled or inherited. 

Once a fitness model has been chosen, there are many ways to incorporate it into the 

evolutionary process. It can be used simply to initialize the population, guide 

crossover and mutation, or replace (some) fitness evaluations (Jin 2005). For example, 

a fitness predictor such as a neural network is used to select offspring from all 

potential crossovers of two parents (Mutoh, Nakamura et al. 2003). In this chapter 

however, we focus only on replacing actual fitness evaluations with the fitness 

predictor. 

Challenges 

The use of an approximate fitness model comes at a cost and with potentially 

unacceptable consequences. 

1. Training the model: Fitness models like neural nets, SVMs, and Gaussian 

processes require significant overhead to train. When advanced methods like 

bagging, boosting, and ensemble methods are used, this investment becomes 

significantly larger. In addition, a significant amount of exact fitness values 

must be calculated for training and validation data to effectively learn any type 

of model ahead of time. 

By using coevolution, we can train these models in parallel with the problemsô 

solutions. As shown in (Yang and Flockton 1995), early stages of evolution 

only require coarse fitness models. As the solution population progresses, so 

do the fitness models. In this fashion, coevolution retains an automatic 

ócoarseness adjustmentô without the need to train several different 

approximations in advance. 

2. Level of approximation: How powerful must the fitness model be to facilitate 
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progress throughout evolution? If a single fitness model is used, it may need to 

be quite complex in order to model all possible solutions in the fitness 

landscape. 

When fitness models are coevolved, the models can be optimized for only the 

individuals in the current population. The models do not need to encapsulate 

the entire landscape, but only a subset, so the chosen method can be 

significantly less complex. 

3. Loss of accuracy: In most applications, the computational advantage of using 

a fitness approximation comes at a cost in fitness accuracy. In the worst case, 

the global optima may be removed entirely from the fitness landscape. 

Similar to adapting the level of approximation, the optimization of the models to the 

current population can keep the subjective fitness of current candidate solutions 

pointed toward the global optima in an active learning fashion (Bongard and Lipson 

2005). Solutions will evolve to exploit their fitness model. In coevolution, the fitness 

model can adapt through the selection of trainers to redirect solutions so that they are 

consistent with the true optima. 

Fitness Prediction Algorithm  

General Framework 

In this section we present a simple framework before describing our implementation. 

A conventional evolutionary algorithm can be viewed as an optimization to find the 

most fit solution. In this sense, the optimal solution, s*, is defined as:  

)(maxarg* sfitnesss
SsÍ

=
 

where S is the set of all possible candidate solutions to the problem and fitness(s) is the 
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exact computed fitness of solution s.  

In the coevolutionary algorithm, we replace all fitness evaluations with a fitness 

predictor, p. In this instance, the solution objective is a function of the predictor 

instead of the exact fitness: 

)(maxarg* sps
SsÍ

=
 

where p is the fitness predictor used.  

We coevolve the fitness predictors in a second population to make p as accurate as 

possible for the current solution population. A third population of fitness trainers is 

used to evaluate how closely fitness predictors are approximating the exact fitness. 

Fitness trainers are chosen from the solution population periodically that have the 

highest prediction variance (e.g. lowest confidence). 

The objectives for each population are summarized below, where asterisks specify an 

optimal result that is being searched for in each population. 

)(maxarg* sps best
SsÍ
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where S is the set of all problem solutions, Sc is the current solution population, P is 

the set of all possible fitness predictors, Pcur is the current predictor population, Tcur is 

the current trainers population, pbest is the highest ranked predictor in Pcur and )(sp  is 
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the average  predicted fitness of solution s among the current predictors. It is important 

to note that all three populations are evolved in parallel and their objectives will be 

dynamic and changing over each generation.  

To summarize the framework, the solution population evolves to maximize the fitness 

of the current best fitness predictor. Trainers are solutions chosen from the solution 

population that produce the most variance in predictions among the predictor 

population. The fitness predictor population evolves to minimize the difference 

between exact and predicted fitness values of the current population. 

Algorithm 

Summary 

The algorithm presented in this chapter has three populations: Problem solutions, 

fitness predictors, and fitness trainers. This section outlines the basics needed to 

implement this coevolutionary approach based on this general framework. A high-

Select New Trainer

Evolve Solutions Evolve Predictors

Check 

Convergence

Finished

yes

Start

no

 

Figure 4.1. High-level overview of the coevolution of solutions and fitness 

predictors algorithm. 
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level algorithm overview is given in  Figure 4.1. 

At the start, solutions, fitness predictors, and trainers are randomly initialized. The 

algorithm then chooses an individual from the solution population to measure its exact 

fitness for use in training the fitness predictors (elaborated upon in next section). The 

algorithm then evolves the solution population using the highest ranked fitness 

predictor, and evolves the predictors using the fitness trainers. Finally, the highest-

ranked individual is tested for convergence (described below), and the algorithm 

completes if successful. Pseudocode for evolving each population is provided in 

Figure 4.2. 

Evaluating Exact Fitness Values 

The objective of this step is to select an individual from the solution population that 

will help the fitness predictors optimize to the current solutions. Therefore, we want to 

choose an individual whose fitness can be predicted with the least confidence. To do 

this efficiently, we select the individual that has the highest variance in predicted 

fitness among predictors in the predictor population. Variance has a strong correlation 

with reducing uncertainty (Jin and Branke 2005) and with improving evolved 

individuals (Bongard and Lipson 2005).  

In many model types, it is often beneficial to ñforgetò past solution fitness information 

in order to allow simple predictor encodings to specialize in only the current and other 

recently observed solutions. In our implementation, we store only the most recent 

trainers, discarding the oldest as new trainers are evaluated.  

Removal of old trainers can also speed up predictor evaluation, but could lead to 

cycling. For example, removing a trainer may remove pressure to explain an important 

part of the fitness domain. In which case, solutions and predictors that modeled this 
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region well could drift away temporarily while learning other regions. To prevent this 

effect, we could opt to keep all trainers for an additional computational cost ï but we 

did not find cycling to be prohibitive in our experiments. 

Evolving the Populations 

Candidate solutions and fitness predictors are coevolved in parallel using two threads. 

Pseudocode is shown in Figure 4.2. Fitness trainers are selected periodically in the 

predictor thread. 

The solution thread begins by randomizing the population of candidate problem 

solutions. The main loop then evolves the solution population. Variation is introduced 

using single point crossover with probability pc and mutation with probability pm. The 

highest ranked fitness predictor is then used to estimate the fitness of each child and 

selected to form the next generation. Finally, the top ranked solution is tested for 

convergence (described in the next section) and exits. 

The predictor thread begins by randomizing the fitness predictor and fitness trainer 

populations. The main loop then evolves the predictors and periodically adds new 

trainers to the trainer population. Variation is introduced using single point crossover 

with probability pc and mutation with probability pm. The fitness of each predictor is 

calculated by the mean absolute error between the fitness prediction and the exact 

fitness for each fitness trainer. 
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Lightweight fitness predictors tend to evolve much faster than the solutions and 

therefore do not require as much computational effort. To reduce computational effort, 

Solutions Thread :  

    Randomize solution population  

    Repeat  

        Cross solution s  with probability pc 

        Mutate solutions  with probability pm 

        Let pred  = the top ranked fitness predictor  

        Predict fitness  valu es  for solutions  using pred  

        Perform selection  

        Sort population  

        If  top - ranked solution  error  < epsilon  

            Return solution  and Exit  

        End if  

    End repeat  

 

 

 

Predictor Thread :  

    Randomize predictor population  

    Randomize trainer population  

    Repeat forever  

        If computational effort  > 5% of total   

            Wait  

        End if  

        Cross predictors  with probability pc 

        Mutate predictors  with probability pm 

        Evaluate fitness  values  of predictors  

        Perform selection  

        If time to add new fitness trainer  

            Let v i  = the variance in fitness  

                predictions of all predictors for  

                solution i  

            Add solution i  with the highest v i  to  

                the trainer population  

            Calculate the exact fitness  of the new trainer  

        End if  

    End repeat  

 

Figure 4.2.  Pseudocode for the two threads in the algorithm that coevolve 

solutions and predictors. Trainers are chosen periodically in the predictor 

thread. 
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we artificially slow evolution of the predictor population by introducing a delay. If the 

computational effort (measured in point evaluations1) used to evolve the predictors 

exceeds some percentage of the total effort of all populations (5% in our experiments), 

the predictor thread is delayed. The specific choice of effort allocation is likely 

problem-dependent; however, we have observed that the 5% ratio performs well over 

a relatively wide range of values (as shown in the results section below).  

New fitness trainers are chosen from the solution population periodically. Fitness 

trainers are solutions that the fitness predictors optimize to predict. In our 

implementation, we choose a new trainer to add to the trainer population every 100 

fitness predictor population generations. This augmentation of the trainer population 

provides time for the fitness predictors to adjust their approximation and is related to 

the speed at which predictors converge. Alternatively, new trainers could be selected 

continuously, or whenever the progress of the predictor population slows. 

Convergence Test 

The convergence test determines when the algorithm should terminate by testing the 

solution in the current population that has the highest predicted fitness. For symbolic 

regression, we define convergence as having near zero (<Ů) error on all training data 

examples. If the best solution has not converged at this step, a new trainer is added 

(Figure 4.1) and evolution continues; otherwise, the best solution is returned and the 

program terminates. As in any machine learning algorithm, the final solution 

performance must be cross-validated against an unseen test set. 

                                                 

1 Here and elsewhere in this chapter, we measure performance as function of number of point 

evaluations, instead of number of generations or number of fitness evaluations. We use this metric in 

order to perform fair comparisons between methods that use different computational efforts per 

evaluation. 
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Experiments in Symbolic Regression 

We evaluated our proposed approach using symbolic regression as an example 

application of fitness predictor coevolution. Symbolic regression serves as a good 

benchmark since it is a well-studied domain with diverse applications. 

We first experiment on simple functions, then duplicate experiments from recently 

published research, and finally experiment on thousands of randomly generated 

symbolic target functions of increasing complexity.  

We generated random target functions by building a random tree of operations. The 

Initialize:  

    Func = binary tree of random depth [1,12]  

    Func.Randomize_Operators()  

    Runc.Remove_Random_Child_on_Unary_Operators()  

 

Branch Prune:  

    Test = Func  

    For each Node1, Node2:  

    Test.Remove(Node1, Node2)  

        If Max_Output_Difference(Func, Test) < EPSILON:  

            Func = Test  

        Else:  

            Test = Func  

    End for  

  

Node Prune:  

    Test1 = Test3 = Test3 = Test4 = Func  

    For each Node1, Node2:  

        For each Child1 in Node1 and Child2 in Node2:  

            Test1.Node1 = Node1.Child1  

            Test1.Node2 = Node2.Child2  

            If Max_Output_Difference(Func, Test1) < EPSILON:  

                Func = Test1  

        End for  

    End for  

Figure 4.3. Pseudocode for pruning inactive expressions in randomly 

generated test problems to improve the complexity estimate for problem 

difficulty . 
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tree is binary, with the exception of unary operators which only have a single child. 

We then prune combinations of nodes in the function's tree that result in less than Ů = 

1% change in function output across a target range (between -2 and 2 inclusive for our 

experiments), using the code below. We define the complexity of the resulting 

function as the number of nodes in the pruned tree. Example randomly generated 

functions and their respective complexities are shown in Table 4.3. 

Symbolic Regression Overview 

Symbolic Regression Encoding 

For experiments in this chapter, we represent functional expressions as a binary tree of 

primitive operations (Koza 1992; Augusto and Barbosa 2000; Eggermont and Hemert 

2000). See the description in the section ñSymbolic Regressionò on page 4 for more 

detail. 

The fitness objective of a symbolic regression solution is to minimize error on the 

training set (Eggermont and Hemert 2000; Dolin, III et al. 2002; Hoai, McKay et al. 

2002; Keijzer 2003). There are many ways to measure the error such as squared error, 

absolute error, etc. For experiments in this chapter, we use the mean absolute error for 

fitness measurement: 

ä
=

-=
N

i

ii yxs
N

sfitness
1

)(
1

)(

 

where s(xi) is output of a candidate solution s evaluated on input xi, the value yi is the 

corresponding output, and N is the number of training examples in training data set. 

Coevolution in Symbolic Regression 

Coevolving training examples is a well-studied approach in symbolic regression 



 

24 

(Pagie and Hogeweg 1997; Dolin, III et al. 2002). Past research has competitively 

coevolved training examples to exploit errors, an approach similar to boosting 

methods in machine learning. Coevolving examples to diversify solutions and 

moderate purely competitive pressures have also been studied. 

Very little work, however, has been done in fitness prediction or modeling in symbolic 

regression. In our experimentation, we coevolve a subset of the total training data 

examples that approximates fitness measurement over the complete training data. The 

setôs objective is to guide evolution as closely as possible to using the entire training 

set, but at a reduced computational cost.  

Sub-sample Fitness Predictors 

Fitness Predictor Encoding 

Training data in symbolic regression typically consists of hundreds to thousands of 

data points (e.g. experimental measurements) providing output values for a sample of 

inputs. In our symbolic regression experiments, the fitness predictor is a small subset 

of these points. Instead of measuring the exact objective fitness of candidate solutions, 

a subjective fitness is obtained by measuring the error on the select handful of data 

points of a given fitness predictor. 

The fitness predictor is encoded as a small array of indexes to the full training data set 

(size discussed in the next section). Each index in the predictorôs array is free to 

reference any points in the training data examples and can repeatedly sample point if it 

likes (thus over emphasizing an area). The predicted fitness is calculated as: 

predicted_fitness(s) = ä
=

-
n

i

ii yxs
n 1

)(
1
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Here, n is the number of samples in the predictor, and symbols s, xi, and yi are the 

same as above. 

Mutation in the fitness predictor can randomize an index in its array to index a 

different training point. An example point mutation would be (1, 41, 53, 92) changing 

to (1, 78, 53, 92), where the sample 41 switched to 78. 

Crossover exchanges the samples of two parent fitness predictors. For our purpose, we 

use a single point crossover. A random crossover point c is chosen, the first c indexes 

are copied from the first parent and the remaining indexes are set from the second 

parent. 

Size and Complexity of the Fitness Predictor 

There is an inherent tradeoff between predictor size (subset size) and overall 

performance. Using a small number of samples in the fitness predictor allows for more 

generations while maintaining the same computational effort, at the cost of less 

accurate prediction. We empirically examined the sensitivity of the number of samples 

in the training subset fitness predictor using an arbitrary function f=e
|x|

sin(x). This 

function is a simple non-linear function that has two local minima approximations that 

make finding the exact solution difficult. In following sections we also use this 

function as a benchmark for some empirical experimentation because, although it 

evolves rapidly, it is clearly non-trivial.  
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When the fitness predictor only has two samples, fitness evaluations are extremely 

light-weight but the evolutionary process requires many more generations, as evident 

in Figure 4.4. The larger subsets are sufficiently large for accurate modeling but do not 

greatly reduce the number of generations needed. Figure 4.4 also suggests that there is 

some minimum number of samples needed for a given target function or the available 

training data. We hypothesize that the optimal number of samples is higher for 

complex functions with more detailed features, but we have yet to see this number 

increase dramatically even with high complexity functions (over 30 nodes in the 

expression tree) as tested later in this chapter. 

In our symbolic regression experiments, we use an 8-sample subset for all 

experiments. Although it may not be the optimal choice for all target functions, these 

results suggest that it will not have a dramatic impact on final performance. Varying 

the number of samples from eight did not appear to have a strong impact on the 

performance on several other target functions tested, even in the cases of high 

complexity multi-variable functions involved in on-going research.  

 

Figure 4.4. The expected point evaluations before convergence versus the number 

of samples in the fitness predictor. Error bars show the standard deviation. 
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Fitness Predictor Behavior 

Here we preview how fitness predictors may behave in symbolic regression. The 

fitness predictors used here are small subsets of the training set and are optimized by 

trainers chosen from the solution population. Thus, the types of subsets evolved are 

determined by how the solutions evolve and are likely to vary over different problems 

and even different runs. However, a few empirical trends can be seen in this type of 

fitness predictor. 

Figure 4.5 shows a histogram of the training points used by the best fitness predictor 

up to convergence on the function f=e
|x|
sin(x). For this run, there are seven highly used 

training points which are used in 20% to 40% of generations up to convergence. 

Notice that the most used points tend to lie to the sides of local minima and maxima in 

 

Figure 4.5. Histogram of training samples selected by the best fitness predictor 

during evolution to convergence of f(x)=e
|x|

sin(x). Some samples are selected 

significantly more often than others. 
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the training data. This may indicate an effective way to capture features of the dataset 

without overestimating the averaged error. In particular to this function, these points 

may be necessary to fine-tune candidate solutions to match the functionôs periodic 

structure. 

Experimental Settings 

For each independent run, all symbolic regression parameters were held constant, and 

only the type of predictor was varied. We used a solution population size of 128, a 

fitness predictor population size of 8, and a trainer population size of 10. For evolution 

we use deterministic crowding selection (Mahfoud 1995), 0.1 mutation probability, 

and 0.5 crossover probability.  

The operator set was (add, subtract, multiply, divide, exponent, logarithm, sine, 

cosine) and the terminal set consists of the input variable and one evolved constant. In 

practice, a priori knowledge could be applied to choose a more useful operator and 

terminal sets. For example, the experimenter may not be interested in expressions that 

use many evolved constants, or solutions that involve trigonometric functions. 

However, in our experiments, we use the same parameters throughout testing and the 

terminal and operator sets are over-representative for all targets (e.g. more operators 

are available than needed to regress the function). 

Computational Effort Distribution Among Populations 

For experimental purposes, we control how much effort is spent training the fitness 

predictors in relation to the solutions so that we can compare algorithms based on their 

total overall computational effort. Note that in practice, the ratio is not vital to the 

algorithmôs performance since each population can be evolved in parallel.  

Figure 4.6 shows the impact that the effort ratio has on convergence time with the test 
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function f=e
|x|

sin(x). Ratios in the range 5% to 30% of effort spent training the fitness 

predictor population all yield approximately optimal convergence time. If fitness 

predictors are given extremely low computational effort, overall performance suffers 

greatly since the fitness approximation never adapts. 

Spending excessive effort training fitness predictors tends to add no extra benefit. The 

computational effort increases, but solution generations remain approximately the 

same.  

In summary, the fitness predictors need some minimal amount of effort so that they 

are able to adapt with the solutions. Thus, the relative rates of evolution need be 

considered before choosing a minimal effort ratio so that they have similar time-

scales. Since fitness predictors are expected to be simple and light-weight, they should 

require only a fraction of the effort that the solutions require. 

Experimental Results 

Examining Behavior on Test Problems 

Here we compare four fitness algorithms in symbolic regression listed in Table 4.1. 

 

Figure 4.6. The expected number of point evaluations before convergence versus 

the effort (percent of point evaluations) while training the fitness predictors 

averaged over 50 trials. Error bars show the standard error. 
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These algorithms are used as null hypotheses to elicit the effect of coevolution.  

The Static Random Sample algorithm uses a single fitness approximation throughout 

evolution. Eight random samples are chosen from the training data at run time, and 

solutions are evolved using only this sample. This algorithm tests the hypothesis that 

the performance improvement is made simply from reducing point evaluations. 

The Dynamic Random Sample algorithm is similar to the Static algorithm, but now 

the sample is re-randomized at every generation of the solutions. This algorithm tests 

the hypothesis that performance improves not only because of reducing point 

evaluations but also because of allowing the sample to change. 

The Exact Fitness Algorithm is given for the purpose of baseline comparison. The 

solutions are evolved using the exact objective fitness, as is usually practiced in 

symbolic regression research (Eggermont and Hemert 2000; Dolin, III et al. 2002; 

Hoai, McKay et al. 2002; Keijzer 2003). 

Table 4.1. Summary of the Compared Algorithms 

Fitness Calculation Sample Size Sample Selection 

Coevolved Predictor Sample 8 Evolved subset 

Static Random Sample 8 Random subset chosen at runtime 

Dynamic Random Sample 8 Changing random subset 

Exact Fitness 200 Use all training data 
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In this section, we test on three different target functions that elicit different behaviors 

from the four algorithms. The training data, shown in Figure 4.7, are 200 evenly 

spaced samples of the target function. The test set contains 200 additional random 

samples. Each experiment is repeated 50 times independently, and the fitness for each 

run is recorded over evolutionary time. 

The performances on these three functions for each algorithm are shown versus the 

number of point evaluations in Figure 4.8. 

The polynomial function f1(x) is very simple and coevolution, static random, and exact 

fitness all rapidly converge. The coevolution and static random methods make similar 

improvements over exact fitness, suggesting that the improvement is chiefly due to the 

reduction in function evaluations. 

Behavior on f2(x) is different however. The static and dynamic random sample 

algorithms perform very poorly on average, and the exact fitness algorithm 

outperforms them. However, coevolution still makes a substantial improvement over 

exact fitness. 

f1=1.5x
2
-x

3
 

 

f2=e
|x|
sin(x) 

 

f3= x
2
e

sin(x)
+x+sin(p/4-x

3
) 

 

Figure 4.7. The training data of the three target functions experimented on. The 

horizontal axis shows the input values x. The vertical axis shows the output 

training value f(x). 

-100

-50

0

50

100

150

200

-5 0 5
x

-20

-15

-10

-5

0

5

10

15

20

-3 -1 1 3
x

-20

30

80

130

180

-10 0 10
x



 

32 
 

 

 

 

Figure 4.8. The test set fitness during evolution for target functions f1(x), f2(x), 

and f3(x) respectively. Results are averaged over 50 trials. Error bars show the 

standard error. 
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In contrast, function f3(x) gives an example in which the dynamic random sample 

performs very well. It is able to find the large features of the function as quickly as 

coevolution; however, it fails on the final sine feature. 

We can make several conclusions from these results. First, the static random sample 

shows performance can be improved on a simple function like f1(x) simply by using a 

small subset for fitness calculation. On more complicated functions however, a small 

constant subset alone cannot adequately represent features of more complicated 

functions like f2(x) or f3(x). 

Conversely, the dynamic random sample algorithm can greatly improve performance 

on some more complicated functions such as f3(x). Using a sample that changes 

randomly can accelerate finding large features of the data but may fail on simple 

features as in f1(x),  f2(x), or the sine term in f3(x). 

For these basic test cases, coevolution performs the best in each case. We can reject 

the hypotheses that the performance improvement is due only to using a sub-sample or 

a randomly changing sub-sample. Thus, the effect of coevolution must play an 

important role. Later in this chapter we compare the convergence rates of these 

algorithms over randomly generated functions to observe more general trends. 

Comparison to Previously Published Methods 

In this section, we compare the coevolution algorithm with four recently published 

symbolic regression techniques: Stepwise Adaptive Weights (SAW) (Eggermont and 

Hemert 2000), Grammar Guided Genetic Programming (GGGP) (Hoai, McKay et al. 

2002), Tree-Adjunct Grammar Guided Genetic Programming (TAG3P) (Hoai, McKay 

et al. 2002), Coevolution with Tractable Shared Fitness (Dolin, III et al. 2002), 

Distinction Fitness (Dolin, III et al. 2002), and random sampling (Dolin, III et al. 
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2002). We did not re-implement these algorithms. Instead, we ran our algorithm on the 

same test problems reported in the original papers, using the same convergence criteria 

used in the original paper.  

We compare computational performance based on point evaluations, defined by the 

total number of times the output of any symbolic expression is evaluated. The 

coevolution algorithm is stopped based on the number of point evaluations that the 

compared algorithm made during each experiment. In the compared algorithms, we 

assume that each individual's fitness is measured every generation. Likewise, we force 

the coevolution algorithm to calculate fitness for every generation, even though 

different selection algorithms do not require it. 

Many of these experiments are on simple functions but are stopped at a very low 

number of point evaluations. Thus, finding the target function quickly is the highest 

priority. The cosine identity and the Gaussian function experiments are noticeably 

more challenging to regress based on parameters specific to these experiments.  

Qualitative improvements in Table 4.2 are shown in bold text. The coevolution 

algorithm has slightly higher convergence than the PSAW and GGGP algorithms on 

polynomial problems. The TAG3P algorithm performs the best on simple 

polynomials; however, there is a qualitative difference when applied to a harder 

problem: regressing the double angle cosine identity. Coevolution makes a 40% 

improvement in convergence for the trigonometric identity experiment. The 

comparison with coevolved tractable, shared, and random sampling algorithms show 

coevolution can make substantial improvements in regressing a Gaussian function, 

traditionally a very challenging problem for symbolic regression in which over 90% of 

the data points lie on the tail (Dolin, III et al. 2002). 
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Next, we make an empirical comparison with fitness inheritance (Smith, Dike et al. 

1995; Sastry, Goldberg et al. 2001; Chen, Goldberg et al. 2002). As mentioned in 

above, fitness inheritance is a fitness modeling approach that evaluates exact fitness 

values for a fraction of the population and allows the inheritance of fitness values 

during crossover for remaining individuals. We implemented fitness inheritance in 

symbolic regression by tagging 10%, 25%, and 50% of individuals each generation to 

Table 4.2. Performance comparison to published methods 

Algorithm  Target Function
§
 Metric

§
 

Published 

Results 

Coevolved 

Predictors 

PSAW f(x) = x
5
 ï 2x

3
 + x Convergence

À
 85.9% 93.9% 

 f(x) = x
6
 ï 2x

4
 + x

2
 Convergence

À
 81.8% 86.9% 

GGGP P2, P3, P4, P5*  Convergence
ÀÀ

 
92%, 64%,  

48%,  28% 

100%, 86%, 

62%, 52% 

 f(x) = cos(2x)** Convergence
ÀÀ

 20% 76% 

TAG3P P2, P3, P4, P5*  Convergence
ÀÀ

 
100%, 100%, 

96%, 84% 

100%, 86%, 

62%, 52% 

 f(x) = cos(2x)** Convergence
ÀÀ

 36% 76% 

Coevolved 

Tractable 
Gaussian Evaluations

ÀÀÀ
 3.384e7 2.107e7 

Coevolved 

Distinction 
Gaussian Evaluations

ÀÀÀ
 5.070e7 2.107e7 

Random  

Sampling 
Gaussian Evaluations

ÀÀÀ
 6.006e8 2.107e7 

*  P3, P4, P5 etc. refer to polynomials (x
3
+x

2
+x, x

4
+x

3
+x

2
+x, x

5
+x

4
+x

3
+x

2
+x, é ) 

**  The operator set does not include the cos() function, a trigonometric identity must 

be found 
À
 The percent of successful convergences from 100 test runs 
ÀÀ

 The percent of successful convergences from 50 test runs 

§ This target function and metric was used in the original paper 
ÀÀÀ

 The maximum number of evaluations before convergence for 100 test runs 
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use exact fitness calculations and the rest to use their inherited fitness (or last exact 

fitness). 

Figure 4.9 compares performance by the computational effort. In this experiment, runs 

were stopped after 20,000 generations. Exact fitness and fitness inheritance use more 

point evaluations and therefore show more data points on the plot. 

Fitness inheritance appears to behave very similarly to the exact fitness algorithm in 

symbolic regression. Using 50% exact evaluations in fitness inheritance does 

accelerate over exact fitness on several runs; however, further attempts to reduce 

evaluations worsen the average performance.  

This result is consistent with other work involving fitness inheritance. In related work 

(Jin, Olhofer et al. 2002), the authors conclude that 50% of fitness evaluations need to 

be based on exact fitness to ensure reliable convergence. In contrast, fitness prediction 

distributes a small fraction of point evaluations to estimate the fitness of all individuals 

 

Figure 4.9. Test set fitness versus evaluations averaged over 100 test runs for 

f2(x). Error bars show standard error. 

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1.31E+05 5.24E+05 2.10E+06 8.39E+06 3.36E+07 1.34E+08 5.37E+08

F
it
n
e
s
s
 (
-e

rr
o
r)

Effort (point evaluations)

Coevolution

Exact

FI 50%

FI 25%

FI 10%



 

37 

in every generation, the equivalent of roughly 5% full evaluations per generation in 

this experiment. This demonstrates that a compromise between exact fitness 

evaluations and approximated fitness values can yield performance increases with 

similar convergence rates. 

Testing Scalability on Randomly Generated Test Problems 

The experiment presented in this section explores the behavior of the coevolution 

algorithm when solving for randomly generated functions of varying complexity.  

We generate random target functions by building a random binary tree of operations. 

We then perform a rough simplification by systematically pruning combinations of 

nodes in the function's binary tree and then testing for a significant change in the 

functionsô outputs (see Appendix A). Next, the function is evenly sampled 100 times 

over the range [-2, 2] to generate the training data and then randomly sampled to 

produce the test set. 

Table 4.3. Example functions and complexities 

Random Function Complexity 

f(x) = x   1 

f(x) = x
2
 ï x 5 

f(x) = sin(cos(x))Ö(exp(x) - cos(x))  11 

f(x) = exp((|x| + exp(x)))/((exp(x) + sin(x)) - |(x/x)|) 23 

f(x) = log(cos(x + (exp(sin(x)Ö|x|)Ö (sin(xÖlog(x)) +  exp(cos(x))))))   37 
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We define the ñcomplexityò in this experiment to be the number of nodes in the 

generating target function. Examples of randomly generated functions and their 

respective complexities are shown in Table 4.3. 

We generate 5000 random target functions for this experiment in order to produce 

training and test datasets of various complexities. Functions are uniformly spaced on 

odd-numbered complexities from 1-40.  

Table 4.4. Chi-Square Significance of Convergence Rates Compared to the 

Coevolution Algorithm 

 Chi-Square p-value 

Complexity Static Dynamic Exact 

1 1 1 1 

3 1 1 1 

5 1 1 1 

7 0.315692 0.315692 0.080181 

9 0.095581 0.052926 1.54E-05 

11 1.08E-05 0.000536 1.96E-10 

13 9.56E-06 0.002441 7.75E-17 

15 4.1E-07 0.000281 9.57E-18 

17 3.92E-05 0.001073 5.17E-20 

19 0.000431 0.001726 4.75E-32 

21 0.007439 0.040599 2.57E-34 

23 0.000303 0.000303 4.84E-25 

25 0.001503 0.004607 4.32E-16 

27 0.002755 0.044423 1.91E-13 

29 0.049535 0.049535 1.19E-09 

31 0.003649 0.0161 2.14E-23 

33 1.71E-19 0.002359 1.71E-19 

35 1.23E-08 0.022948 1.23E-08 

37 0.172386 0.172386 1.94E-05 
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The four fitness algorithms described in the first experiment were tested on the 

randomly generated target symbolic functions. For each run, all algorithms were 

initialized with the same initial populations and control parameters. We used the same 

experimental setup and controls as in the previous experiments. 

Each run is stopped after 10 million function evaluations. Then the best individual is 

tested for a perfect fit to the test data, and a tally of the successful convergences is 

recorded for each complexity. The percent of successful convergences versus 

complexity for each alternative algorithm is plotted in Figure 4.11. 

We have performed a Chi-Square statistical test between coevolution and each 

algorithm. The difference in convergence is found to be statistically significant (p < 

0.05) for all complexities between 9 and 37. More samples at higher complexities are 

needed to conclude the significance at 37. 

A Chi-Square p-value < 0.05 is shown to indicate statistical significance. At low 

complexities, all algorithms have 100% convergence and have no statistical 

difference.  The p-values for higher complexities show that coevolution has 

statistically significant higher convergence than the other three algorithms compared. 

More samples are needed to show significance at complexities 37 and higher. 

 

Figure 4.10. The Chi-square p-values for significance of convergence versus 

complexity between the coevolution algorithm and each compared algorithm. 
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We see that all algorithms have a very high probability of success for simple 

functions. Furthermore, all algorithms experience a drop in success with an increase in 

the complexity of the function, but at different rates. 

The coevolution algorithm has the highest success rate in general. It maintains a 5-

10% higher convergence rate over the other fitness algorithms involving the 11 to 27 

complexity functions. Most notably, coevolution maintains a 1-4% advantage over the 

29 to 37 complexities where the other algorithms have 0-3% successful convergence 

overall.  

The static and dynamic fitness approximation algorithms perform significantly better 

in comparison to the exact fitness algorithm with the 9 to 37 complexity functions. In 

 

Figure 4.11.  The percent of successful convergence after 10 million point 

evaluations versus the target function complexity (the number of nodes in the 

binary expression tree). 
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the previous experiment, we saw that the exact fitness algorithm achieves higher 

fitness values, but here we are only measuring convergence, and the fitness prediction 

algorithms converge significantly more on average over random functions. The exact 

fitness algorithm achieves many fewer generations for the same number of point 

evaluations and may simply be lacking some amount of exploration from crossovers 

and mutations to converge on the final solution. 

Next we look at the improvement factor in order to compare coevolution pair-wise 

with the other three approaches. The improvement factor is the ratio of convergence of 

coevolution to the compared algorithm, over complexity: 

Improvement Factor = 
algorithm compared of econvergenc %

ncoevolutio of econvergenc %
 

An improvement factor of one indicates the two algorithms have the same 

performance. A factor of less than one indicates that coevolution performed worse. 

Greater than one indicates coevolution performed better. For example, a factor of two 

indicates coevolution had twice the convergence at a given complexity. 

Though all algorithms decrease in convergence with increasing complexity functions 

(Figure 4.11), the improvement factor for coevolution tends to increase (Figure 4.12). 

Statistical testing (Figure 4.10 and Table 4.4) demonstrates this growth as significant 

for complexities 11 and higher. Based on this observation we conclude that 

coevolution may offer greater tolerance to growing complexity. 
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Improving Solution Reliability  

One important effect of fitness prediction is the adaptation of fitness pressures, which 

causes the evolutionary focus to change throughout evolution. In this section, we 

examine how this effect impacts the solutions found by comparing performance by 

generation, rather than computational effort. We also examine the difference in 

solution bloat when using coevolved fitness predictors. 

Comparing Performance by Generation 

We measure the fitness and convergence of 100 runs versus the number of generations 

(not point evaluations as before). Note that in our previous experiments, coevolution 

achieves many more generations with the same number of point evaluations 

(computational effort) by utilizing the fitness predictor. 

The experiment is identical to the previous experiments; however, we run the exact-

fitness algorithm out to billions of point evaluations so that we can compare 

performance based on the number of generations rather than the amount of 

 

Figure 4.12. Improvement factor in convergence of coevolution over the other 

algorithms verses complexity for random target functions.  
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Figure 4.13. Fitness and percent of runs converged versus generations 

throughout evolution on the function f2(x). Error bars show the standard error. 

Note that exact evaluations are performing significantly more computational 

effort per generation. 
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computational effort. 

Figure 4.13 shows the performance of each algorithm over 20,000 generations while 

regressing f2(x). This is sufficiently long enough for both algorithms to achieve 90% 

convergence or higher. 

The exact fitness algorithm starts with a clear lead over coevolution in both fitness and 

convergence in early generations. However, at approximately 4000 generations 

coevolution begins to dominate the exact fitness algorithm over the averaged 100 test 

runs. 

This empirical result on f2(x) suggests that coevolution outperforms the use of exact 

fitness measurements even when ignoring the high cost of exact fitness values. There 

are several possible explanations for this. Fitness approximation can drive solutions to 

unexplored areas of the domain (Booker, Dennis et al. 1999; Regis and Shoemaker 

2005), perhaps increasing convergence. Additionally, adapting the fitness 

approximation can destabilize local optima solutions, as also noted by (Pagie and 

Hogeweg 1997; Jin 2005). When individuals converge to local optima in the fitness 

predictor, predictors react to approximate the region more accurately. The better the 

local optima solutions are, the more stable they will be during the predictor transition. 

Since the predictions shift data point emphasis, the improvement may also be related 

techniques such as boosting or adaptive weighting. Although this behavior may be an 

important advantage of coevolved predictors, understanding it is beyond the scope of 

this chapter. 

Reducing Bloat 

A challenging problem in many genetic programming domains is dealing with bloat. 

Bloated solutions are those that are excessively complicated. In relation to machine 
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learning, bloat can be thought of as ñoverfittingò, in which solutions evolve complex 

structures that do not exist in the real system. 

Bloat can also be problematic in symbolic regression. Figure 4.14 shows the size of 

the best solution during evolution on f2(x) averaged over 100 test runs. Function f2(x) 

is a very simple nonlinear target function that has two difficult local optima. This is a 

good first example because the local optima may be cause for extra bloat during 

evolution. Later we compare bloat on randomly generated functions. 

In this instance, size, defined as the number of nodes on the binary tree, is 

synonymous with the complexity metric used earlier. 

On average, coevolution maintains significantly less complex solutions during 

evolution than the algorithm using exact fitness calculations. The exact fitness 

solutions balloon near 5000 generations while coevolution experiences solution sizes 

 

Figure 4.14. The size of the best solution during evolution of f2(x) averaged over 

100 test runs.  Error bars show the standard error. 
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that are both lower and more consistent.  

This preliminary result from f2(x) suggest fitness prediction is less susceptible to bloat. 

To get an idea if this could be a general trend, we compared solution sizes of both 

algorithms on randomly generated target functions where both algorithms are allowed 

to fully converge. 

Figure 4.15 shows the bloat of final solutions of both algorithms on 500 randomly 

generated target functions. Coevolution yields less bloated solutions on average for 

randomly generated functions as well. Here we define bloat as the solution size minus 

the target function size. Each algorithm is tested on the same target functions and only 

target functions in which both algorithms converged are considered. Note that bloat 

reduction can also improve computational performance per point evaluation, since 

smaller expressions can be evaluated faster. 

Coevolutionary bloat reduction is an important observation for this chapter, but deeper 

 

Figure 4.15. The bloat of final converged solutions averaged over 500 randomly 

generated target functions. Error bars show the standard error. 
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analysis is beyond the current scope. One hypothesis is that the fitness landscape 

imposed by fitness prediction is simpler and therefore inherently biased towards 

simpler solutions. In the case of a subset predictor as used here, the sample is less 

likely to encompass fine detail in training data features, thereby reducing pressure to 

explain detail or noise features until the solutions have converged on the larger trends 

first. However, we leave deeper analysis to future work. 

Conclusions 

This chapter proposed a coevolution algorithm to address three fundamental 

challenges faced when using fitness modeling in evolutionary algorithms: (1) the 

model training investment, (2) choosing a level of approximation, and (3) loss of 

accuracy. The coevolutionary framework uses three populations: Problem solutions, 

fitness predictors, and fitness trainers. Solutions evolve to maximize their predicted 

fitness, fitness trainers are selected to cause the most inconsistencies between fitness 

predictors, and finally fitness predictors evolve to minimize error in predicting the 

fitness trainers. 

For the problem of symbolic regression, we have shown the following advantages: 

4. Computational performance improvement: Coevolution provides 

substantial performance improvement over exact fitness, random sample, and 

dynamic sample fitness algorithms. On simple manually designed test 

problems, coevolution achieves higher average fitness values and more reliable 

convergence with significantly less computational effort in each case. 

Coevolution also performs competitively with other recently published 

symbolic regression methods. In these experiments, coevolution achieves 

significantly higher convergence on challenging experiments such as 



 

47 

trigonometric derivations and has a similar performance on simple experiments 

such as polynomial targets.  

5. Scaling: In experimentation on randomly generated benchmarks, coevolution 

shows higher performance over all solution complexities tested. The factor of 

improvement increases as complexity rises. 

6. Performance by generation: Empirical results show that coevolving fitness 

predictors can yield higher fitness solutions compared to the exact fitness 

algorithm even when disregarding savings in computational effort. This 

suggests that the transformation of the fitness landscape is in itself beneficial. 

7. Bloat reduction: Empirical results suggest that, on average, coevolution yields 

less bloated solutions for randomly generated target functions. 

Finally, fitness prediction is a technique that can be applied in many domains and 

general problems. Certain problems that have traditionally been poorly suited for 

fitness approximation (e.g. symbolic regression) or coevolution could benefit from this 

coevolutionary approach ï such as increasing computational performance, scaling to 

higher complexity problems, improving convergence, and reducing bloat. 
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CHAPTER 5. RANK PREDICTION 

Summary 

Many applications of evolutionary algorithms utilize fitness approximations, for 

example coarse-grained simulations in lieu of computationally intensive simulations. 

Here, we propose that it is better to learn approximations that accurately predict the 

ranks of individuals rather than explicitly estimating their real-valued fitness values. 

We present an algorithm that coevolves a rank-predictor which optimizes to 

accurately rank the evolving solution population. We compare this method with a 

similar algorithm that uses fitness-predictors to approximate real-valued fitness 

values. We benchmark the two approaches using thousands of randomly-generated test 

problems in Symbolic Regression with varying difficulties. The rank prediction 

method showed a 5-fold reduction in computational effort for similar convergence 

rates. Rank prediction also produced less bloated solutions than fitness prediction. 

Introduction  

In practice, many applications of evolutionary computation involve expensive fitness 

calculations (Jin, Olhofer et al. 2001; Ong, Nair et al. 2003). For example, some 

problems involve simulating the performance of evolved robotics or structures. Others 

commonly involve evaluating a solution over a large dataset.  

One method to address the computational difficulty of fitness calculation is fitness 

modeling and approximation (Jin 2005). Fitness models are often coarse 

approximations of the full fitness calculation ï for example, a coarse simulation, or 

subset of the dataset ï chosen ahead of time to replace the full fitness function.  

One general method to improve performance using fitness approximations in arbitrary 

applications is the Coevolution of Fitness Predictors algorithm (Schmidt and Lipson 
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2006; Schmidt and Lipson 2006; Schmidt and Lipson 2008). Here, the concept of a 

fitness predictor is to estimate the exact fitness value of an individual with an 

extremely coarse and light-weight approximation. Instead of specifying the 

approximation ahead of time, fitness predictors are coevolved, optimizing their ability 

to estimate the exact fitness values of the current solution population.  

A surprising result from this method is that it can improve performance even with 

extremely coarse fitness approximations. For example, in the symbolic regression 

(Koza 1992) problem, the fitness predictors can maintain an objective fitness gradient 

by evaluating solutions on as few as four data points in a data set of thousands of 

points and tens of variables (Schmidt and Lipson 2007). In such extreme cases, the 

fitness approximations are almost certainly inaccurate, but still allow evolutionary 

progress on the objective fitness. 

In this chapter, we propose that the primary mechanism by which fitness 

approximations improve performance is by providing accurate rankings of individuals, 

rather that accurate fitness values as originally intended. Furthermore, we suggest that 

performance can be improved even further by selecting approximations that are 

optimized to rank solutions, rather than model their fitness directly. 

To test this idea, we use two implementations of the Coevolution of Fitness Predictors 

algorithm for symbolic regression (Schmidt and Lipson 2008). The first is the standard 

fitness predictor algorithm which coevolves a small subset of the total training data to 

measure error. The second is identical, however fitness predictors are replaced with 

rank predictors, which are optimized to rank solutions, rather than model their fitness 

values. We then test the performance of these two algorithms on thousands of 

generated test problems and observe their differences over varying problem 
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difficulties. 

In the remaining sections, we describe related work in fitness approximation and 

introduce the basic algorithm for coevolving fitness or rank predictors. We then detail 

our experiments and test problems on the symbolic regression problem and present 

results. Finally, we conclude with discussion and final remarks. 

Background 

Mentioned above, fitness modeling is the technique of using a predefined model or 

coarse simulation to approximate the fitness calculation in evolutionary algorithms; 

especially in cases where the exact fitness requires an expensive simulation or 

physical experiment. In contrast, fitness predictors are a type of fitness model that is 

so coarse that they cannot approximate the entire fitness landscape. Instead fitness 

predictors must be adapted throughout evolution. 

In this chapter, we use a sub-sampling of training data for the predictor structure. For 

the fitness predictor, the sub-sample is optimized to match the fitness of the entire data 

set, while the rank predictor simply picks points that accurately rank the solutions. In 

both cases, the sample is optimized in a second coevolving population (Schmidt and 

Lipson 2008). 

Algorithm  

Fitness and Rank Predictors 

The objective of a fitness predictor is to approximate the expensive, exact fitness 

calculation of an evolving problem solution. The objective of a rank predictor however 

is to provide a ranking of solutions that corresponds to their ranking based on their 

exact fitness values. 
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These two types can be very similar in implementation. A fitness predictor does in fact 

produce a ranking of solutions ï a ranking based on the predicted fitness values.  

In fact, in our implementation, we represent rank and fitness predictors identically. 

The primary difference is the objective they are optimized for: producing an accurate 

ranking or a representative fitness value.  

Both rank and fitness predictors produce a numeric value. For the fitness predictor, 

this value is optimized to match the exact fitness value of the solutions in the current 

population. The numeric value produced by the rank predictors has no discernable 

scale or magnitude; it is simply a value that is likely correlated with the exact fitness. 

Furthermore, the rank predictors are optimized such that if this value is used to rank 

the solution population, it produces a similar ranking to that based on the exact fitness 

values. 

In our experiments, we compare the two methods on the symbolic regression problem 

where fitness is measured by error on a dataset. Here the fitness and rank predictors 

are encoded as a small subset of the total training data. The subset indicates to 

evaluate the solutions and measure error only on these data points. We used a fixed 

subset size of 16, where the total training data set size is 500.  

Fitness and Rank Trainers 

Because fitness and rank predictors are very coarse approximations, they need to be 

optimized to approximate for the current solution population. Therefore, we need to 

calculate the exact fitness (error on all data points) of some solutions from the current 

generation in order to train the predictors. These example solutions are known as 

fitness trainers. 



 

52 

Fitness trainers are selected in order to help predictors optimize to the current 

solutions. To do this, the algorithm chooses a solution whose predicted rank or fitness 

has the least confidence. For example, we select the solution with the highest variance 

(Bongard and Lipson 2005; Jin and Branke 2005) in predicted fitness, or highest 

variance in predicted rank, among the current rank or fitness predictors. 

Additionally, old trainers are discarded to keep the predictors optimizing to only 

recent solutions. If the population diverges away from older solutions, we donôt want 

to optimize the predictors on those solutions any longer. In our experiments, we 

discard trainers older than 1000 generations. 

The population of trainers allows us to define a fitness, or optimization criterion, for 

the predictors. In the case of fitness predictors, where i spans the set of trainers, this 

metric is: 
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Very simply, this rewards the fitness predictors to accurately reproduce the exact 

fitness value.  

In the case of the rank predictor, where i and j span the set of pairs of trainers, the 

metric is: 
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This rewards rank predictors for correctly ordering pairs of solutions ï or equivalently, 

correctly ranking all trainers. 
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Coevolution Algorithm 

The coevolution algorithm (Schmidt and Lipson 2008) that we modify in this chapter 

has three populations: Problem solutions, fitness predictors, and fitness trainers. As 

described earlier, fitness trainers are a set of solutions chosen to train the fitness and 

rank predictors on. 

The algorithm chooses individuals from the solution population to calculate exact 

fitness values in order to train the fitness or rank predictors. The algorithm then 

evolves the solution population using the highest ranked fitness or rank predictor, and 

evolves the predictors using the fitness trainers. 

Experimental Setup 

In this section we detail our experimental methods to test the impact of using rank 

predictions rather than fitness approximations. We perform identical experiments on 

two algorithms: (1) the coevolved rank predictor algorithm, and (2) the coevolved 

fitness predictor algorithm (Schmidt and Lipson 2008). 

We experiment on the Symbolic Regression problem because it is a ubiquitous and 

important problem in genetic programming (Koza 1992). Additionally, we can easily 

vary the problem complexity and the problem dimensionality. 

Symbolic regression (Koza 1992) is the problem of identifying the simplest equation 

(Grünwald 2000) that most accurately fits a given set of data. Symbolic regression has 

a wide range of applications, such as prediction, classification, modeling, and system 

identification.  

Recently, symbolic regression has been used to detect conserved quantities data 

representing physical laws of nature (Schmidt and Lipson 2009), infer the differential 
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equations in dynamical systems (Bongard and Lipson 2007). 

Symbolic Regression 

See the description in the section "Symbolic Regression," on page 4. 

Test Problems 

We measured performance of each algorithm on randomly generated test problems. To 

generate a random problem in symbolic regression, we simply need a random target 

equation to find and a set of data corresponding to that equation for the fitness error 

metric.  

We experiment varying two characteristics of the random symbolic regression 

problems: (1) the dimensionality of the data (i.e. the number of variables in the data 

set), and (2) the complexity of the target function (i.e. the size of the equationôs binary 

parse tree). Both of these characteristics factor into the problemôs difficulty. Increasing 

dimensionality increases the base set of possible variables for the equation may use, 

while increasing complexity increases the chances of couples nonlinear features. 

The first step in our random test problem generation is to randomly sample the 

dimensionality of the problem. We pick a random number of variables between one 

and ten. 

Next, we generate a random equation which can use any of these variables. We 

generate a random equation in the same fashion that we generate random individuals 

in the evolutionary algorithm. 

Many randomly generated equations may have compressible terms. For example, f(x) 

= 4.211 + 0.93 x
2
 + 1.23 is equivalent to f(x) = 0.93 x

2
 + 5.441. Therefore, we perform 

a symbolic simplification on the randomly generated equation in order to get an 
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accurate measure of the target equations complexity. We measure complexity of the 

problem as the total nodes in the binary tree representation of the equation. For 

example, the complexity of the equation just above is 5. 

We repeat this step as necessary in order to get a uniform distribution of problem 

complexities. We continue generating and simplifying equations in order to uniformly 

sweep the problem complexities between 1 and 32.  

Next, we randomly sample the input values of the equation 500 times to create a 

dataset. These variables are sampled from a normal distribution around the origin, 

with standard deviation of two. The equation is then evaluated on these variables in 

order to get the target output value. Several examples of training data are shown in 

Figure 5.1. 

Finally, we also generate a separate validation data set of 500 points. The validation 

data set is created in the same fashion as the training data set, however the input 

 

Figure 5.1. The generation of random test problems for symbolic regression. We 

start by picking a random number of inputs, between one and ten. We then 

generate a random equation using these inputs and simplify the equation before 

measuring its complexity (the number of nodes in the binary tree). We then 

generate a random training data set by sampling the input variables around the 

origin and evaluating the target equation on these data points. We then generate 

a validation data set in a similar fashion, but with a wider range around the 

origin to test if the solutions extrapolate to the exact solution.  
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variables are sampled with a standard deviation of three. By using a broader input 

sampling, we can use the validation dataset to test whether solutions extrapolate in 

their predictions to unseen data.  

We also use this to measure the percent of times the algorithms find the exact solution 

ï if the algorithm achieves near zero error on the extrapolated validation dataset. Since 

we are not adding any noise to the dataset, we expect the algorithms to reach zero 

error on the generated data, if the exact solution is in fact found. 

Measuring Performance 

We tested each algorithm on 1000 randomly generated symbolic regression problems. 

Each evolutionary search was performed on a single quad core computer.  

Evolution was stopped if the algorithm identified a zero error solution on the 

validation data set (i.e. less than 10
-3

 normalized mean absolute error), or when the 

algorithm reached one million generations.  

Throughout each search, we log the best equation, its fitness (i.e. normalized mean 

absolute error) on the training and validation sets, its complexity, and the total 

computational effort. We measure computational effort as the total equation 

evaluations performed in fitness calculations. 

The fitness of the normalized mean absolute error is normalized using the standard 

deviation of the target output values. The normalized fitness allows comparing fitness 

values between evolution runs and detecting convergence to the exact target solution 

more easily. In all figures, we show the fitness on the validation data set (i.e. the 

normalized mean absolute error on the validation data). 
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Algorithm Settings 

We use the symbolic regression algorithm described in (Schmidt and Lipson 2008) as 

the basis for our implementation. We simply swap out the fitness criterion for the 

fitness predictor for the rank predictor criterion, described earlier. 

We use deterministic crowding selection (Mahfoud 1995), with 1% mutation 

probability and 75% crossover probability. The encoding is an acyclic graph of 64 

operations/nodes (Schmidt and Lipson 2007). The operation set allowed addition, 

subtraction, multiply, divide, sine, and cosine operations. 

Experimental Results 

This section summarizes the experimental results comparing the two algorithms: (1) 

the standard fitness prediction algorithm, and (2) the rank predictor algorithm. 

Fitness and Convergence 

We first observe the fitness of each algorithm over the course of the evolutionary 

search, with the time measured in computational effort ï the total point evaluations of 

all equations in fitness calculations, predictions, or rank predictions. 

The fitness values plotted in Figure 5.2 show both algorithms have similar trends on 

the randomly generated test problems, suggesting that the algorithms experience 

similar optima during their searches. Despite this, we see a clear difference in the 

fitness performance over time, with rank predictors achieving lower error. 

This may also reflect the difference in convergences to the exact problem solution, 

also plotted in Figure 5.2. Here we notice that the fitness predictor algorithm begins 

finding exact solutions slightly sooner than the rank predictor algorithm. However, it 

is quickly overcome by the rank predictor algorithm. 
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Later in the evolutionary searches, the rank predictor algorithm shows a clear trend of 

finding the exact problem solution more often ï reaching 55% average convergence 

rate in less than 1/5 the time than that of the fitness predictor method.  

Computational Effort 

We also compared the total computational effort each algorithm required to find the 

exact problem solution ï in cases where the algorithm did indeed find the exact 

solution. Here, we looked at the computational effort versus the complexity of the 

target solution and the dimensionality of the datasets for each evolutionary search. 

In response to increasing target solution complexity, shown in Figure 5.3, both 

algorithms show very similar trends. We do see a small difference, where the fitness 

predictor algorithm tended to find the exact solution slightly faster for the simplest 

problems. At higher complexities, the difference is less noticeable, however rank 

  

Figure 5.2. The fitness and convergence rate to the exact solution of each 

algorithm versus the total computational effort of each trial. The fitness (left) is 

the normalized mean absolute error on the validation data set. Convergence to 

the exact solution (right) represents the percent of the trials that identify  

solutions that have less than epsilon error on the validation data set. Error bars 

indicate the standard error. The performance of the algorithm without using 

prediction at all is several order of magnitude higher in computational effort and 

is not shown. 
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predictors tended to require slightly less effort at most higher complexities than the 

fitness predictors. 

There is a similar trend found in the computational effort to find the exact solution 

versus the number of variables in the problem datasets (Figure 5.3). Computational 

effort tended to increase with dimensionality for both algorithms. Again, fitness 

predictors tended to require slightly less effort on average for the lower dimensions.  

Solution Bloat 

Finally, we looked at the solution bloat that both algorithms experienced over the 

course of the evolutionary searches.  

We define bloat as the difference between the binary tree size of the best solution in 

the population and the target solution. Therefore, the bloated solutions have positive 

bloat values, and underfit solutions have negative bloat values.  

The bloat results (Figure 5.4) show that both algorithms begin with highly bloated 

  

Figure 5.3. The computational effort required when the exact solution was found 

versus the target equation complexity (left) and the number of variables in the 

dataset (right). Each algorithm found the exact solution with different 

frequencies; these plots show the computation effort for when the algorithms did 

find the exact solution. The error bars indicate the standard error. 
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solutions, which decrease over the search toward the target solution on average. 

Interestingly, fitness predictors are slightly more bloated on average than the rank 

predictors. This is only true however later during the evolutionary searches. However, 

itôs unclear if this is due to the lesser convergence of the fitness predictors. 

Discussion 

The results in the previous sections show several interesting trends which highlight the 

difference between the two algorithms. 

Most significantly, we found that the rank predictor algorithm found the exact solution 

more often on the hardest problems which took the most computational effort to solve. 

The rank predictor algorithm also found solutions with higher objective fitness on 

average, despite only being evolved to only improve the solutionsô ranks. 

Overall, results in computational effort, for both the test problem complexity and the 

 

Figure 5.4. The mean solution bloat of the best solution versus the computational 

effort . Solution bloat is defined as the binary tree size of the best individual in the 

population minus the size of the target solution. Error bars  indicate the standard 

error.  
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number of variables in the dataset, were similar. This suggests that there was not great 

difference in speed to find the exact solution between the two algorithms ï when it is 

indeed found. Instead, the benefit must be arising from finding the exact problem 

solution more often.  

Interestingly, the fitness predictor algorithm achieved slightly higher performance than 

the rank predictors early in the evolutionary searches, and for the simpler test 

problems. Additionally, the fitness predictor algorithm experienced more bloat on 

average than the rank predictor algorithm. This suggests that fitness predictors may be 

placing stronger pressure to fit detailed features in the data set. In simple test 

problems, this may boost convergence to the exact solution. In more difficult problems 

however, it could result in excessive bloat. 

This may be the primary reason rank predictors outperformed the fitness predictors. 

By optimizing solution ranking, rather than explicit fitness values, they may not need 

to emphasize large errors or detailed features to create accurate fitness values. They 

only need to emphasize the points of disagreement between solutions in order to find 

an effective ranking. 

Conclusion 

In summary, many applications in evolutionary computation rely on fitness 

approximation and modeling. Instead of using fitness models which approximate the 

absolute fitness value, we proposed optimizing rank predictors ï approximations 

which can accurately rank solutions in correspondence with the absolute fitness. 

We compared the difference between optimizing modeled fitness values and 

optimizing solution rankings using a coevolutionary algorithm which optimizes either 

fitness predictors or rank predictors with the evolving problem solutions. We tested 
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both methods on the symbolic regression problem using thousands of test problems, 

varying in problem complexity and number of variables. 

Our results found rank predictors strongly outperform fitness predictors, achieving 

higher fitness on average and identifying the exact problem solution more often. 

Interestingly, when solutions are found by both algorithms, both algorithms used 

similar amounts of computational effort to find solutions, suggesting the primary 

benefit from rank prediction comes from identifying the exact solution more often (i.e. 

more reliably). 
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CHAPTER 6. META-OBJECTIVES IN EVOLUTIONARY SEARCH 

Summary 

In this chapter, we explore the impact of meta-objectives ï optimizing secondary 

objectives ï in an evolutionary search. Ordinarily, evolutionary algorithms attempt to 

optimize a primary objective, such as minimizing error. Here, we consider three other 

secondary objectives: genotypic age, genotypic novelty, and solution complexity. 

Recent research has shown each of these traits to be important in evolutionary search 

individually. Here, we examine the impact of optimizing all combinations of these 

objectives simultaneously, to improve the original primary objective, in an explicit 

multi-objective search. We first compare an explicit multi-objective algorithm that 

optimizes error and age objectives with the existing single-objective age algorithm on 

the Symbolic Regression problem. Results show that the multi-objective approach 

identifies the exact target solution more often than the age-layered population and 

standard population methods. The multi-objective method also performs better on 

higher complexity problems and higher dimensional datasets ï finding global optima 

with less computational effort. Next, we repeated this experiment for each 

combination of the four objectives. Results show that age yields the greatest 

improvement in performance for a single extra objective. Performance improves even 

more when additionally optimizing for age and novelty. Optimizing for complexity 

tended to only improve the Error-Complexity Pareto volume performance. 

Introduction  

A common problem in many applications of evolutionary algorithms is when the 

progress of the algorithm stagnates and solutions stop improving. Expending 

additional computational effort in the evolution often fails to make any substantial 

progress. This problem is known as premature convergence (Kenneth Alan De 1975; 
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Louis and Rawlins 1992; Conor 1996).   

A common method for dealing with premature convergence is to perform many 

evolutionary searches, randomizing and restarting the search multiple times (Jansen 

2002; Auger and Hansen 2005). This approach can be wasteful however, as the entire 

population is repeatedly thrown out. There is also the difficulty of deciding when to 

restart, and the possibility that the converged population could continue improving 

with additional diversity. 

One of the best performing methods in the genetic programming literature for 

addressing premature convergence is the Age-Layered Population Structure (ALPS) 

method (Hornby 2006; Hornby 2009). ALPS uses a special notion of age ï how long 

genotypic material has existed in the population ï in order to partition the evolving 

population into age layers (see Figure 6.2). The algorithm adds new random 

individuals into the youngest population layer throughout the search, and layers evolve 

independently of others. As a result, the youngest layers, do not immediately compete 

with the oldest and most fit solutions. Implementation of the ALPS algorithm, 

however, requires new parameters, such as how to pick age layer cutoffs and how 

many solutions to keep in each layer, etc. 

The concept of age in the ALPS algorithm is an example of a secondary objective. The 

ALPS algorithm uses this objective to partition the population to significantly improve 

search performance (Hornby 2006; Hornby 2009).  

In this chapter, we first consider using the ALPS concept of age as a fundamental 

property in the evolutionary optimization. Rather than using age to partition the 

population into layers, we use age as an independent dimension in a multi-objective 

Pareto front optimization. In this context, a solution is selected for if it has both higher 
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fitness and lower genotypic age than other solutions.  

A completely multi-objective approach allows us to consider adding other secondary 

objectives. Our hypothesis is that, based on the impact of age, other seemingly 

unrelated objects may further improve performance. 

We consider explicitly optimizing two other objectives in addition to age: solution 

complexity and genotypic novelty. We test the impact that optimizing all possible 

combinations of these objectives has on the overall performance on the primary 

objective. 

Heuristics 

Here we introduce the secondary objective metrics. In all experiments we use a 

primary objective (minimize error), with zero or more secondary objectives. 

Complexity 

Complexity is a commonly used secondary objective in genetic programming (Mark, 

Guido et al. 2007; Schmidt and Lipson 2009). Complexity generally measures the size 

or content of a solution. Many algorithms explicitly minimize, or penalize for 

complexity in order to reduce bloat (Banzhaf and Langdon 2002) ï the tendency to 

evolve exceedingly complex solutions. 

Often, complexity is incorporated as a penalty in the primary fitness objective when 

solutions become large enough. This effectively establishes a fixed tradeoff between 

complexity and fitness. When used in multi-objective optimization instead, the 

complexity metric biases the search toward simpler solutions (Edwin and Jordan 

2003). Simple solutions are favored because they are non-dominated in age.  

In our experiments in symbolic regression, we measure complexity as the tree size ï 
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the number nodes in the expression's binary tree representation.  

Age 

Interestingly, the concept of genotypic age as used in ALPS has shown to be one of 

the best approaches for avoiding premature convergence and improving results 

(Hornby 2009). Our goal in this chapter is to develop this idea further by utilizing 

genotypic age as a fundamental search trait. 

The age of a solution is generally measured in generations, or alternatively 

computational effort measured in fitness evaluations for steady-state algorithms 

(Hornby 2009).  

All randomly initialized individuals start with age of one. With each successive 

application of a variation operator, the age of an individual is incremented by one. 

This alone measures the amount of time an individual has existed in the population. 

However, we are more interested in the age of the genotype. 

To measure the age of the genotype, we need to pass on ages during crossover and 

mutation events. There are several options, such as taking the age of the most similar 

parent, taking the average age of the parents, etc. The best method reported in the 

literature (Hornby 2009), and the method we use, is to inherit the maximum age of the 

parents.  

Therefore, the age is a measure of how long the oldest part of the genotype has existed 

in population. 

Novelty 

Novelty is a measure of how new or original a solution is, or how densely the search 

has explored on similar genotypes. It has also been suggested as a primary search 
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objective (Lehman and Stanley 2010), where the population is evolved in order to 

maximize novelty. Maximizing novelty has the effect of increasing the search 

coverage, ensuring a high degree of exploration ï or even a maximum amount of 

exploration versus the computational effort. 

Novelty can also be thought of as a diversity metric. The higher novelty values in a 

population, the greater the diversity. Therefore, novelty will also prevent pre-mature 

convergence, but in a more direct way than age. 

In our experiments, we measure novelty as the correlation of a solution with other 

solutions of similar fitness. The higher the correlation, the less novel the solution is. 

We first sort all solutions by their fitness (the primary objective, such as error on a 

data set). We then calculate the correlation coefficients of each solution with its 

closest fitness neighbor. We then define novelty measure as one minus this correlation 

value.  

Random Objectives 

In our experiments, we also use random objectives in order to more accurately 

 

Figure 6.1. The novelty objective of a solution. Here, the novelty of equation #4 

is equal to the maximum correlation of its residual errors with its two nearest 

neighbors in terms of fitness. 
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measure the impact of each secondary objective. If a particular combination does use 

one of the three secondary objectives, the objective is replaced with a random 

objective. 

Each new solution is given a random score on each random objective when initialized. 

The random scores are inherited during crossover. This allows some solutions to be 

non-dominated by chance, but otherwise implies no other metric of the solution. 

In effect, this allows us to measure the impact of each objective over a random noise 

objective, since an algorithm may otherwise have sensitivity to the dimensionality of 

the multi-objective optimization. 

Algorithm  

Age-Fitness Algorithm 

As in the ALPS method, random individuals are added into the population at each 

generation. Rather than flowing up the age layers, they flow through a two-

dimensional space of fitness and age (see Figure 6.2). Young solutions exist in the 

same population as the oldest and most fit, but persist because they are non-dominated 

on the age dimension of the Pareto space. 

A key benefit of the proposed approach is that it does not require a population 

partitioning or structuring. For example it does not constrain intermediate layer sizes, 

the number of total layers, or layer partitions. These variations all exist within the 

larger Pareto space of the search, allowing the age-fitness distributions to vary 

dynamically. 

Like ALPS, this approach makes no assumptions about the underlying solution 

representation. Therefore, it can be applied to nearly any evolutionary search problem 
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to improve the optimization performance. 

Multi -objective Optimization 

There are a number of ways to implement multi-objective evolution (Ekárt and 

Németh 2001; Kalyanmoy and Deb 2001; Zhang and Rockett 2007). In this chapter, 

we use the simple random mating with tournament selection method. 

Each generation, we select random pairs of individuals, cross and mutate them 

probabilistically, and add them to current population. Additionally, a new random 

individual is added to the population each generation.  

We specify a target population size ï analogous to the population size in a traditional 

evolutionary algorithm. The goal of the selection is to remove dominated individuals 

from the population until the target population size is reached. 

 

Figure 6.2. The Age-Fitness Pareto Population algorithm (A) considers a single 

population of individuals moving in a two-dimensional Age-Fitness Pareto space. 

Individuals are selected for if they simultaneous have higher fitness values and 

lower age than other individuals. Ages increase every generation, or are inherited 

during crossover, and new random individuals are added with zero age. In the 

Age-Layered Population Structure (ALPS) algorithm, there are several layers of 

populations for each age group. New individuals are injected to the youngest 

population, and individuals migrate to older populations as their age increases. 

Age [generations]

Fitness

Population #1

Age 
[generations]

Population #2

Population #3

Population #4

Population #5

Random Individuals

Random 
Individuals

A B
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We used the SPEA2 (Strength Pareto Evolutionary Algorithm) for selection (Zitzler, 

Laumanns et al. 2001). SPEA2 is one of the most popular multi-objective methods. It 

scores and selects solutions based on how many other solutions dominate it. Non-

dominated solutions on the Pareto frontier are always selected. If the number of 

solutions on the Pareto frontier are larger than the target population size, SPEA2 

iteratively removes the solution with the closest neighbors. 

Experiments 

We compare several combinations of ALPS and multiple objectives on the Symbolic 

Regression problem. Here we describe the experimental setup. 

Symbolic regression 

See the description in the section "Symbolic Regression" on page 4. 

Random test problems 

We tested each algorithm on 1000 randomly symbolic regression problems. Each 

evolutionary search was performed on a single quad-core computer. The testing 

procedure was the same as described in the section "Test Problems" on page 54. 

Algorithm Settings 

We used standard algorithm settings for symbolic regression ï 75% crossover, 1% 

mutation. We used a population size of 1000. This was large enough such that the 

Pareto  frontier always fit inside the population in all experiments. Solutions were 

allowed to use add, subtract, multiply, divide, sine, cosine, a variable, or a constant 

coefficient.  

Results 

Results are split into sections: the age-fitness optimization algorithm, and the 
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combinations of multiple objectives. 

Age and Fitness Objectives 

This section summarizes the experimental results comparing the three algorithms: (1) 

the ALPS algorithm, (2) Age-Fitness Pareto algorithm, and (3) the Deterministic 

Crowding algorithm with randomized individuals. 

Our first observation is that the fitness trends versus the computational effort of each 

algorithm are quite similar (Figure 6.3). On average, the ALPS algorithm has the 

lowest error early on while the Age-Fitness Pareto algorithm has the highest error. 

This difference, however, does not appear to be significant due to the overlapping 

standard errors.  

Later into the evolution, all algorithms converge to similar fitness trends. This 

suggests that the algorithms are reaching common local optima. The deterministic 

crowding method does clearly perform worse here as it is the last to converge on to 

this trend. Near the end however, the average fitness values are very similar, as most 

runs for all algorithms do converge to the exact solution. 

Figure 6.3 also shows the rate that each algorithm identifies the exact target solution. 

Here we have clear difference and non-overlapping standard errors for each algorithm. 

The ALPS algorithm again has the highest exact solution rate early on in evolution. 

All algorithms show the standard s-shaped convergence rates where computational 

effort increases greatly for the hardest of the test problems.  

Late in the searches, the algorithms begin to plateau at different rates of finding the 

exact solution. The Age-Fitness Pareto algorithm performed the best, finding the exact 

solution approximately 5% more often than the ALPS algorithm.  
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Importantly, Figure 6.3(right) further demonstrates that the hardest problems solved 

by ALPS were solved by the Age-Fitness Pareto algorithm using a third of the 

computational effort. 

The deterministic crowding algorithm, with the added randomized individual per 

generation, performed worst of the three algorithms. Here, deterministic crowding 

identified the exact target solution approximately 5% less often than the ALPS 

algorithm, and approximately 10% less often than the Age-Fitness Pareto algorithm. 

The deterministic crowding algorithm used a randomized individual each generation. 

However, it still performed significantly worse that the other algorithms. This suggests 

that the performance improvement is not coming solely from increased diversity 

through random individuals. Therefore, the genotypic age is playing an important role.  

Finally, we looked at the amount of solution bloat experienced by each algorithm over 

the course of the evolutionary searches in Figure 6.4.  

 

Figure 6.3. The fitness and convergence rate to the exact solution of the compared 

algorithms versus the total computational effort of the evolutionary search. The 

fitness is plotted (left) is the normalized mean absolute error on the validation 

data set. Fitness is normalized by the standard deviation of the output values. 

Convergence to the exact solution (right) is percent of the trials which reach 

epsilon error on the validation data set. The error bars indicate the standard 

error.  
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We define bloat as the binary tree size of the best solution in the population minus the 

binary tree size of the target solution. Therefore, the most bloated solutions have 

positive bloat values, and overly simple solutions have negative bloat values.  

In these results, all algorithms started with high amount of bloated solutions early on 

in the evolutionary searches. On average, the bloat decreased as the search progressed, 

and the algorithm converged toward exact solutions.  

Interestingly, the deterministic crowding algorithm dropped the most in solution bloat. 

This suggests that the algorithm is under-fitting ï it is stagnating at simple local 

optima. 

In contrast, the ALPS and Age-Fitness Pareto algorithms have similar, more-complex 

solutions on average, which converge toward slightly bloated solutions. On average, 

ALPS was the least bloated early on in the evolutionary searches, but bloated the most 

as the searches progressed. 

On average, the deterministic crowding algorithm experience the least bloat, 

 

Figure 6.4. Solution bloat over the course of the evolutionary search. Solution 

bloat is defined as the binary tree size of the best individual in the population 

minus the binary tree size of the target solution. The error bars indicate the 

standard error. 
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suggesting that could be under fitting, stagnating at low complexity local optima. The 

ALPS and Age-Fitness Pareto algorithms instead tended toward slightly bloated 

solutions on average, which may reflect their higher performance overall. 

Multi -objective Combinations 

Here we compare the performance of all combinations of secondary objectives: Age, 

Complexity, and Novelty. The primary objective is Error. This results in 2
3
 = 8 

compared methods. We abbreviate each combination with the letters "E" for Error, 

"A" for Age, "C" for Complexity, and "N" for Novelty. 

For each algorithm we track the best solution over time, and record its final 

performance. Figure 6.5, summarizes the performance of each on all problems. We 

consider the error of the best solution (the mean absolute error on a test data set), the 

convergence  (the percent of times that the algorithm identified the exact known 

solution), and the Pareto volume. The Pareto volume measure the percent of the Pareto 

space explored by the algorithm. Here, we measure the percent of the 

Error*Complexity Pareto space, which are of most interest in the Symbolic Regression 

problem.  

Our first observation form Figure 6.5 is that using the error objective alone ("E") 

performed the worst for all metrics. This is counter-intuitive; it shows that investing 

computational effort in any of the three secondary objectives improved performance 

on error. 

Adding complexity to the error objective ("EC") slightly improved convergence and 

Pareto volume, but otherwise has little impact. Adding novelty objective to error 

("EN") we see a substantial improvement in all metrics. Similar to results in the 

previous experiment, adding age to the error objective ("EA") had the largest impact 
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for a single secondary objective.  

Interestingly, combining error, complexity, and novelty ("ECN") improves the 

performance over novelty ("EN") or complexity ("EC") alone. Combining complexity 

with age ("EAC") however had no visible change form age alone ("EA").  

The two best combinations were error, age, novelty ("EAN") and using all four 

 

Figure 6.5. The performance of each combination of the multiple secondary 

objectives on random symbolic regression problems. Pane (A) shows the mean 

absolute error on the test data set of the best solution found by each algorithm. 

Pane (B) shows the convergence rate, the percent of times each algorithm 

identified the exact solution. Pane (C) shows the percentage of the Pareto space, 

defined by solution error and solution complexity (the two metrics of interest in 

the Symbolic Regression), that each algorithm explored.  

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

E EC EN EA ECN EAC EAN EACN

Error

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

E EC EN EA ECN EAC EANEACN

Convergence

97.4

97.5

97.6

97.7

97.8

97.9

98

98.1

98.2

E EC EN EA ECN EAC EAN EACN

Pareto Volume
Error & Complexity 

Objectives:

E: Error
A: Age
C: Complexity
N: Novelty

A B

C



 

76 

objectives ("EACN"). These two methods had equal performance in terms of test set 

error and convergence. However, adding complexity and using all four yielded slightly 

higher performance in Pareto volume.  

Results in Figure 6.6 show the convergence rate of all combinations versus the 

problem complexity. The results are split into three panes to better display the 

difference between the results. 

We can see that the performance drops for all algorithms as the problem complexity 

increases. However, some drop later than others. The differences at the lower 

convergence rates appear smaller, but the relative difference between the algorithm is 

actually quite large, with some algorithms achieving 10 times or higher convergence 

than others.  

For one and two objectives  (Figure 6.6A), the age objective ("EA") stands out 

showing large improvement over all complexity of problems. Error alone performs 

worst. 

For combinations of three objectives (Figure 6.6B), error, age, complexity ("EAC") 

roughly matches the performance of error and age ("EA"). The combination of error, 

age, novelty ("EAN") however makes substantial improvement. The improvement also 

increases with the problem complexity up to complexity of 33. 

Finally, all four objectives (Figure 6.6C), ("EACN") performs well, approximately 

equal to the error, age, novelty combination ("EAN").  

An interesting observation from these results is that age has such a large impact. 

Combining novelty and complexity improves performance, but combining age and 

complexity has none. However, combining age and novelty does. This suggests that 
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age is somehow capturing the benefits of complexity and partially the benefits of 

novelty on its own.  

Complexity only appeared to impact the performance of the Pareto volume. Therefore, 

it may still be useful as a secondary objective for identifying parsimonious solutions 

and discouraging bloat.  

 

Figure 6.6. The convergence (percent of problems where each method identified 

the exact solution) versus the problem complexity. These results are split into 

three panes to make the differences more easily identifiable. Pane (A) shows the 

results for combinations of two objectives plus the single error objective. Pane 

(B) shows the results for three objectives plus the best 2 objective method and 

error objective. Pane (C) shows the best of the previous panes with the 4 

objective method. 
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Conclusions 

This chapter looked at using secondary objectives to improve the performance of 

optimizing a primary objective. Previous research has shown that traits such as 

genotypic age can be used to greatly improve performance in genetic programming.  

We first tested explicitly optimizing for age in a multi-objective search. The Age-

Fitness Pareto algorithm selected solutions based on both low error and low genotypic 

age. Results on randomly generated symbolic regression problems indicate that this 

approach finds the exact target solution substantially more often than previous 

methods over a range of target problem complexities and dataset dimensions. 

We then looked at two other secondary objectives: complexity and novelty. We tested 

the performance when combining all combinations of the three secondary objectives. 

Results showed that the age objective had the largest impact for a single objective. 

Performance improved slightly more when using novelty and age.  

The two best combinations were error, age, novelty and using all four objectives. 

These to combinations were similar in performance, but adding complexity slightly 

improved the percentage of the Pareto volume explored. 
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CHAPTER 7. PRIOR MODELS AND SEEDING 

Summary 

We investigated several methods for utilizing expert knowledge in evolutionary 

search, and compared their impact on performance and scalability into increasingly 

complex problems. We collected data over one thousand randomly generated 

problems. We then simulated collecting expert knowledge for each problem by 

optimizing an approximated version of the exact solution. We then compared six 

different methods of seeding the approximate model in to the genetic program, such as 

using the entire approximate model at once or breaking it into pieces. Contrary to 

common intuition, we found that inserting the complete expert solution into the 

population is not the best way to utilize that information; using parts of that solution is 

often more effective. Additionally, we found that each method scaled differently based 

on the complexity and accuracy of the approximate solution. Inserting randomized 

pieces of the approximate solution into the population scaled the best into high 

complexity problems and was the most invariant to the accuracy of the approximate 

solution. Furthermore, this method produced the least bloated solutions of all methods. 

In general, methods that used randomized parameter coefficients scaled best with the 

approximate error, and methods that inserted entire approximate solutions scaled worst 

with the problem complexity.  

Introduction  

A common challenge in genetic programming is how to take advantage of prior 

knowledge and expert knowledge. Utilizing expert knowledge could be used to find 

solutions that are more interpretable or reliable in their applications (Moore and White 

2006; Casey, Bill et al. 2008). Perhaps most importantly however, expert knowledge 

could be used to scale genetic programs to solve increasingly complex problems 
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(Banzhaf and Miller 2004) ï freeing new evolutionary runs from having to reinvent all 

past knowledge from scratch over and over. 

In this chapter, we explore one of the more general forms of expert knowledge: 

reusing established or prior solutions to solve a related problem at hand. For example, 

if we had a model of the metabolic network in a yeast cell, how could we reuse this 

model to find the metabolic network of a mammalian cell using an evolutionary 

search? We can generalize this task in genetic programming as the problem of reusing 

any previous solution that has the same basic problem structure or tree encoding for a 

new problem.  

We define seeding as the reuse of a prior knowledge solution by introducing all or any 

part of its encoding into the population during a new evolutionary run. By injecting 

genes from a prior knowledge solution, seeding is effectively biasing the evolutionary 

search toward solutions that use ubiquitous features of the related solution 

(Mohammad-Reza and Mohammad 1997), even though solutions to the new problems 

may look very different at a higher level.  

There are many potential approaches to seed the solutions in an evolutionary search. 

Here, we examine six general seeding approaches: injecting prior solutions in their 

entirety into the population, injecting pieces of the prior solution, injecting entire 

solutions but with randomly rearranged and shuffled versions of the prior solution, and 

finally each of these the methods again with either the optimized parameter values 

from the prior solution or randomized parameters.  

We measure the impact of each method on randomly generated problems over one 

thousand evolutionary runs each. We simulated expert knowledge for these random 

problems by simplifying and approximating their exact solutions. 
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In the following sections, we overview back ground information in symbolic 

regression and seeding, describe each seeding method in greater detail, compare their 

results in fitness, convergence, and bloat, and end with discussion and conclusions. 

Background 

Symbolic Regression 

See the description in the section "Symbolic Regression," on page 4. 

Equation Complexity  

We define the complexity of an equation to be the number of nodes in the equationôs 

binary parse tree. More complex equations are more difficult to find because the 

evolutionary search must build and optimize a larger solution.  

Past results show that the performance of symbolic regression depends heavily on the 

complexity of the exact target equation (Schmidt and Lipson 2005; Schmidt and 

Lipson 2006; Schmidt and Lipson 2008). Therefore, we consider the complexity of the 

problems in our experiments and how the performances of different methods change 

as target complexity increases. 

Convergence 

We define convergence in symbolic regression as when the evolutionary search 

identifies the exact target solution as the top ranked solution in the population without 

overfitting.  

We test for convergence when generating our final results using a cross validation 

dataset. The validation dataset has a much wider range of input values than the 

training dataset used for fitness calculations. This helps distinguish between overfit 

solutions and exact fits. If the error on the wider cross validation dataset is near zero, 
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we consider the equation to be converged. 

The concept of convergence assumes that there is an exact and general equation 

underlying the system producing the experimental data. There may be cases however, 

where no underlying equation exists.  

Seeding Methods 

There are many different forms of expert knowledge and ways of incorporating it into 

an evolutionary search (Moore and White 2006; Casey, Bill et al. 2008). Here, we 

consider one general form of prior knowledge where we have a prior solution to a 

simpler problem, or an approximate solution to a more complex problem.  

We consider six different policies for using a prior approximate solution: seeding the 

population with the full solution, seeding with random shuffles of the full solution, a 

mutation operator for injecting building-blocks of the approximate solution into the 

population, and finally, using either randomized or optimized parameters for each of 

these methods (see Figure 7.1).  
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Figure 7.1. Example seed equations for each method (left) and an example 

randomly generated target equation plotted next to the automatically generated 

approximate equation (right). 
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No seeding 

In the no seeding case, we use and ordinary evolutionary search with a completely 

random initial population and operators. Variance is introduced solely through random 

mutation and crossover, and individuals are selected based only on their fitness. 

Approximate Equation Seed 

In the approximate equation seed, we introduce exact copies of the approximate into 

the initial population. Only a few equations are seeded to maintain the initial 

population diversity. In our experiments, we introduce one approximate equation copy 

for every 10 random initial solutions. 

This is the most straight-forward method for using a prior model. The idea is that 

evolution will use the seeded equations if it likes and will adapt it to the exact model 

of the system. 

There is a potential danger to this method however, in that the approximate solution 

may trap the evolutionary search in local optima; particularly if the seeded equation is 

a local optima itself. In the worst case, the evolution fixates on the seeded solution, 

losing diversity, and is unable to improve upon it.  

Shuffled Equation 

Instead of seeding with the exact approximate equation, we could instead introduce 

slightly randomized and rearranged version of the approximation. In the case where 

the approximate equation is a local optima solution, randomly shuffling its sub-

expressions would effectively produce random solutions; but random solutions 

composed of the same parts of the approximate solution.  

Random shuffles of the approximate solution should have roughly the same fitness 
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distribution as ordinary random solutions, but will still introduce all parts of the 

approximate equation into the initial population. The idea is that the evolutionary 

search can recompose these shuffled solutions if beneficial, but will not be 

immediately placed into a local optima solution. 

We implement the shuffling by performing two random shuffles of the approximate 

solution (or until the fitness changes since shuffles could be neutral). A shuffle 

consists of picking two random sub-trees of the equationôs binary parse tree, and 

exchanging them. 

Though shuffled equations are less likely to push the evolution into local optima, it 

may not be the best use of the approximate equation. The random shuffles could 

destroy important parts of the solution, or may be deleterious to the other shuffled 

components making them difficult to evolve from. 

Building block Mutation 

The third method we consider is injecting only individual parts of the approximate 

equation into the population. We call these parts the building blocks defined by the 

approximate equation. 

We define the set of building blocks for a particular equation to be all sub-trees (sub-

expressions) of the equationôs binary parse tree.  

We define a new type of mutation operator using the set of building blocks defined by 

the approximate equation. In addition to typical genetic programming mutations, the 

algorithm can now replace a sub-expression with one of the building blocks at 

random.  

The idea behind this method is that it may be easier to reuse individual pieces of an 
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expert model rather than adapt the entire equation at once. This operation provides a 

more granular method for the evolutionary search to pick and choose the useful 

components of the approximate equation. 

One possible danger of this approach is it could produce more bloated solutions, 

thereby inhibiting finding a general and parsimonious solution.  

Parameter Constants 

Finally, for each of the three seeding methods, we can choose to keep the exact 

coefficient values used in the approximate solution, or randomize these coefficients.  

Randomizing the coefficients is one way to deter or delay the possibility of falling into 

a local optima based on the seed, such as in the whole equation and shuffled equation 

seed.  

The downside of randomizing the constants, however, is that the evolutionary search 

must always refit them if used. So, randomizing the parameter coefficients does 

discard some of the prior information contained in the approximate equation. 

Experiments 

Test Problems 

We used randomly generated problems to evaluate the performance of each seeding 

method. While random equations do not always resemble real-world applications of 

genetic programming and symbolic regression, they do provide a base or average case 

for comparison. Additionally, we can vary and control the complexity of the equations 

and effectively the difficulty of the evolutionary search. 
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For symbolic regression, we can produce a random equation in the same way we 

generate initially random population of equations. We generated one-dimensional 

equations and then sampled them over the range [-2,2] to produce synthetic 

experimental data as would ordinarily be used with symbolic regression. Additionally, 

we generated a larger test data set over the range [-10,10]. We use this data set for 

reporting the performance and convergence rates of each method in our results. 

We generated 100 random symbolic equations and corresponding datasets. We then 

ran each method on the same random problems ten times for each equation.  

We also generated the random target equations such that their complexities were 

evenly distributed. We measure the complexity of an equation as the number of nodes 

in its binary parse tree. We also perform symbolic simplification of the equation 

beforehand so that redundant or cancelling terms do not exaggerate the complexity 

measure.  

The random target functions are then evenly distributed between complexities 5 to 35 

(or 5 to 35 nodes). Therefore, each seeding method evolves to solve each complexity 

of target equation approximately 30 times. 

Expert Knowledge in Random Problems 

We are using random target equations to generate random problems for testing our 

seeding methods. Therefore, we need a method for producing expert knowledge for 

each randomly generated problem. Since we are generating the random problems with 

a random equation, we know the exact solution to each problem. This allows us to 

generate approximate models that are equivalent to an expert-derived approximate 

model, or perhaps an expert derived model of a slightly simpler problem. 
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We generate the expert knowledge model based on the randomly generated target 

equation. We first want to approximate this equation so that we arenôt giving the exact 

answer for every problem. To do this we take a randomly generated target equation, 

and select a random sub-expression that contains at least one operation and is not a 

leaf node. We then set this sub-expression equal to a random constant. 

This creates a simpler and distorted version of the exact target function; however, the 

output of this function may be drastically different. To be considered an expert 

knowledge equation, the equation should at least also mimic the general features in the 

output of the exact target equation. 

To mimic an expert derived approximation, we take this simpler equation and refit all 

of its parameters via nonlinear regression so that it fits the more complex target 

equation as closely as possible. 

The end result is a simpler, but useful approximate model that resembles the target 

equation that should still have a good initial fitness during evolution. An example is 

plotted in Figure 7.1. This equation still contains much of the exact structure of the 

target equation, and is potentially useful for the evolutionary search. 

Experimental Setup 

We used the fitness prediction algorithm (Schmidt and Lipson 2005; Schmidt and 

Lipson 2006; Schmidt and Lipson 2008) to search the space of symbolic equations. 

Deterministic crowding was used for selection (Mahfoud 1995), with 1% mutation 

probability and 75% crossover probability. The encoding is an operation list acyclic 

graph with 64 nodes (Schmidt and Lipson 2007). The operation set contained addition, 

subtraction, multiply, sine, and cosine operations. 
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The fitness predictor population contains 1280 predictors, distributed over 80 cores. 

The fitness predictor subset size is 128 data points. Predictors are also evolved using 

deterministic crowding, but with 10% mutation and 50% crossover.  

Results 

We executed 1000 trials per seeding method over 100 randomly generated target 

equations. We tracked the best solution in each generation, measuring its fitness, 

convergence, and bloat over the evolutionary run. Fitness and convergence were 

calculated using a withheld test dataset that spanned a larger input range than the 

training data set. 

Time to Convergence 

The time to convergence is the total computational effort for each method to find the 

exact target solution in the evolutionary search. Figure 7.2 compares the convergence 

time for each seeding method, averaged over all target equations and evolutionary 

runs. 

Time to convergence measures only the runs that did indeed converge. Therefore, it is 

a measure of the best cases for each method; comparing, potentially, how much the 

evolution can be sped up with each seeding method. It is important to note however 

that fast convergence is not always good; but, it is a measure of the evolvability. 

The ordinary evolutionary runs without seeding were the slowest to converge (Figure 

7.2) on average. This suggests that all of the seeding methods can speed up the 

convergence. The next slowest are the shuffled equation seeding methods. This 

indicates that evolving the randomly shuffled seed equations is the most difficult, but 

still faster than no seeding at all. 
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The fastest method to converge is the building block seeding, followed closely by the 

whole equation seeding. This suggests whole equations and the equation building 

blocks are easier to evolve than equations from scratch or randomly shuffled equation 

seeds. 

The time to convergence appears to be invariant to using either randomized or 

optimized parameter constants in the seed. This is particularly interesting because 

randomized coefficients must always be re-learned or refit. The invariance to the 

coefficient method indicates that the evolvability and convergence times depend 

primarily on finding the structure of the equation in the average case. 

 

Figure 7.2. The expected time for the evolutionary search to converge to the exact 

target equation for each seeding method measured in function evaluations (runs 

that did not converge omitted). Error bars show the standard error. 
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Figure 7.3. The mean fitness (top) and convergence rate (bottom) for each 

method measured over each evolutionary trial. Error bars show the standard 

error.  
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Fitness Over Time 

We also tracked the fitness of the top ranked equation over all runs for each method on 

the withheld cross validation dataset.  

We can see that the methods that use whole equations for seeding (the approximate 

equation and shuffled equation seeding methods with optimized constants) have 

higher initial fitness as should be expected (Figure 7.3). However, these methods are 

overcome by the randomized versions later in evolution. 

The standard error in fitness increases over time, making it difficult to discriminate 

between the methods. However, we can pick out some additional general trends. All 

seeding methods appear to strictly dominate the no seeding method. Also, the most fit 

solutions at the end tend to be the least fit solutions early on. 

Convergence Over Time 

The convergence rates over time are more stable than the fitness, making it easier for 

comparing between each seeding method. The convergence rate shows the percentage 

of runs that found the exact target solution versus the time (or computational effort) 

into the evolutionary run (Figure 7.3).  

All runs start with zero convergence and increase gradually on a sigmoid trend to their 

maximum convergence performance. Again, all seeding methods dominate the 

ordinary non-seeding method. The next worst is the shuffled approximate equations. 

The highest convergence methods are the building block and equation seed methods. 

The building block seeding method with optimized constants stands out the most in 

Figure 7.3. It converges the soonest, and is tied for the highest convergence rate at the 

end of each trial with the building block seeding with randomized constants.  
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Figure 7.4. The logistic trends of each seeding method in convergence rate versus 

target equation complexity (top), and linear trends in convergence versus the 

error of the approximate seed equation from the target equation (bottom). Error 

bars show the range based on the standard errors of the trend fit parameters. 
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Scaling with Complexity 

So far we have only looked at the average performances of each seeding method over 

all equations. However, the impact of seeding may depend on the different traits of the 

target functions. Here we break down the performance of each method based on the 

complexity of the target equation. 

Breaking the performances up by the target equation complexity makes the 

performance trends noisier. Therefore, we use a trend fit to help visualize the 

differences between each method. 

For the convergence versus the target equation complexity, we fit a sigmoid trend 

curve to each method (Figure 7.4). A sigmoid trend is appropriate for this data since 

the convergence rate ranges between 0 and 100% depending on the problem difficulty 

(such as complexity). The sigmoid trend curve has two parameters, the origin slope 

and the origin offset, making it a low variance trend model.  

Based on the sigmoid trends, we want to see which methods drop off in convergence 

the latest with increasingly complex target equations.  

Shown in Figure 7.4, the non-seeding method drops of the fastest. The best performing 

methods are the building block seeding methods. The remaining methods fall in-

between. This result suggests that building block seeding scales the best with the 

problem complexity; solving the most complex problems more reliably on average. 

Scaling with Seed Equation Error 

Next, we look at the convergence rates plotted against the error of the approximate 

model that is used for seeding. We can view this as the dependence on the confidence 

or quality of our expert knowledge equation ï for example, how does the performance 
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vary between highly accurate approximate seed equations and inaccurate seed 

equations. 

For this data we fit a linear trend to help visualize the differences between each 

method (Figure 7.4). This is the most appropriate trend to fit because the seeding 

equation error does have a dominating influence over the convergence rates. So, we 

can only pick out the local general trends. 

We first notice that there are three methods that appear to be invariant to the 

approximate model error: no seeding, shuffled equation with random coefficients, and 

building block with random coefficients (Figure 7.4). This is not surprising for the 

non-seeding method since it does not use the seed equation. The performance of the 

other two has the same slope, but higher convergence.  

This suggests that the randomized coefficient building block seed and shuffled 

equation can use parts of the seeding equation even when it is a poor approximation.  

It is interesting to note that even the non-seeding method has a slight decreasing trend 

in convergence with the error of the seed equation, despite not using the seed equation. 

We generate the seed equation by approximating the exact equation. Therefore, there 

is a secondary trend in this figure, which is the target equationôs sensitivity to 

approximations. An equation that is difficult to approximate accurately may contain 

more complex features, thereby making the target equation more difficult to fit in 

general.  

Solution Bloat Over Time 

Finally, we examined the bloat of the top ranked solution of each method in each 

evolutionary run. We define the bloat as the complexity of the equation (the number of 
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nodes in the equations binary parse tree) minus the complexity of the target equation. 

Equations with positive bloat are larger than they need to be while negative bloat 

means the equation is too small. 

We can see that the whole equation seeding methods start off with higher bloat on 

average (Figure 7.5). This means the seed equations tend to be more complex than the 

average randomly generated equations. However, all methods converge in complexity 

toward the target equation complexity over time.  

Overall, none of the methods experienced an excessive amount of bloat over time. 

 

Figure 7.5. The solution bloat of the top ranked solution over the evolutionary 

runs. Bloat is measured as the top ranked equationôs complexity minus the target 

equation complexity. Error bars show the standard error. 
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However, we can pick out some general trends. 

The non-seeding method has the most bloated solutions, and the highest variance in 

bloat ï particularly near the end of the evolution. The building block seeding, in 

comparison, has the least amount of bloat. This is surprising because the mutation 

operator with the building blocks provides a means to create additional bloat. 

Therefore, we suspect that the benefits of the seeding itself dominate this metric, 

resulting in more exact results on the target solution. 

Conclusions 

We have explored the effects of incorporating expert knowledge into evolutionary 

search. We considered a general expert knowledge case, where the expert knowledge 

consists of an approximate solution or a related solution to the problem at hand. We 

investigated six seeding methods for utilizing this type of prior expert knowledge: 

seeding with the whole solution, the randomly shuffled solution, pieces of the 

solution, and using random or optimized parameter coefficients in each of these three 

methods. 

Our results show that each seeding method can substantially improve the convergence 

and fitness performance over not seeding. However, different methods scaled 

differently based on the different traits of the target function. 

We found that the building block mutation seeding method converged the fastest 

among all methods and achieved the highest convergence rates on average for all 

problems. It also maintained the highest convergence rates for the most complex target 

equations, and was the most invariant to the error and quality of the seeding equation. 

We also found that the seeding methods that used whole equations (no seeding, whole 
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equation seeding, and shuffled equation seeding) scaled the worst with the target 

equation complexity. Additionally, the methods that used the optimized parameters 

(rather than randomized parameters) of the seed equation were the most sensitive to 

decreasing quality and accuracy of the seeding equation. 

While many other possible types of expert knowledge may exist for genetic 

programming, we conclude that in the case of seeding with a prior solution, it is best 

to seed with the building blocks of the prior solution, and to randomize the parameter 

coefficients before seeding.  
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CHAPTER 8. IDENTIFYING A DOMAIN  ALPHABET 

Summary 

A key to the success of any genetic programming process is the use of a good alphabet 

of atomic building blocks from which solutions can be evolved efficiently. An 

alphabet that is too granular may generate an unnecessarily large search space; an 

inappropriately coarse grained alphabet may bias or prevent finding optimal solutions. 

Here we introduce a method that automatically identifies a small alphabet for a 

problem domain. We process solutions on the complexity-optimality Pareto front of a 

number of sample systems and identify terms that appear significantly more frequently 

than merited by their size. These terms are then used as basic building blocks to solve 

new problems in the same problem domain. We demonstrate this process on symbolic 

regression for a variety of physics problems. The method discovers key terms relating 

to concepts such as energy and momentum. A significant performance enhancement is 

demonstrated when these terms are then used as basic building blocks on new physics 

problems. We suggest that identifying a problem-specific alphabet is key to scaling 

evolutionary methods to higher complexity systems. 

Introduction  

Critical to the success of any genetic programming system is the use of a good 

alphabet of building blocks from which solutions can be evolved efficiently. 

Typically, GP practitioners will choose generic building blocks based on prior domain 

knowledge, but this choice may have profound performance implications. An alphabet 

that is too granular may generate an unnecessarily large search space, while an 

inappropriately coarse grained alphabet may bias or even prevent finding optimal 

solutions. Here we investigate a method that identifies an alphabet appropriate for a 

specific problem domain automatically. 
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As an example, consider the problem of evolving mathematical expressions that model 

data collected from an experimental system. If the system is mechanical, its 

expressions are likely to contain various combinations of trigonometric terms or 

kinetic energy terms. If the system is biological, then trigonometric terms are unlikely 

to appear at all; instead, reaction rates and chemical gradient terms such as Hill 

functions are likely to appear. The availability of appropriate building blocks greatly 

simplifies both the search space for mathematical models of more complex systems, as 

well as our conceptual understanding of the results (Holland 2000). A large portion of 

scientific inquiry has been devoted to unraveling these building blocks by hand. Here, 

we propose a computational method to explore and learn the language and rules of a 

problem domain automatically. 

Any mathematical equation, or mathematical model, can be decomposed into various 

combinations of simpler building blocks, such as monomials or trigonometric terms. 

All of these building blocks are candidates for a common mathematical alphabet of 

other related systems. Therefore, to build a domain alphabet automatically, we must be 

able to both generate physically meaningful mathematical models, and be able to 

identify the nontrivial building blocks from these models. 

We use symbolic regression and Pareto analysis to find physically meaningful 

mathematical models from experimental data. We are interested in finding the most 

accurate equation at different equation complexities; for example, finding the most 

accurate model that uses no more than six mathematical operations. These equations 

are special in the sense that they are both accurate and parsimonious (Kotanchek, 

Smits et al. 2008) ï often consisting of different approximations or elaborations of the 

physical description of the system.  
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We break down the models found on the symbolic regression Pareto front into 

individual terms and building blocks to form a list of candidates for a domain 

alphabet. The building blocks are extracted by iterating through all sub-trees (sub-

expressions) of the equations. Many of these building blocks may not be useful for 

other systems, such as terms that are overfit to the data or numerical coincidences. 

Therefore, we need a way to discriminate among the various building blocks. 

In order to determine which building blocks generalize to other systems in a scientific 

domain, we need to compare models in two or more systems (Figure 8.1a). We repeat 

the automated modeling and Pareto analysis to generate candidate building block lists 

for multiple systems (Figure 8.1b). Finally, we calculate the frequencies that each 

building block is used in a different system. By considering the frequency and the 

complexity of a building block itself, we distill the nontrivial building blocks that are 

the most ubiquitous to return the alphabet of the domain (Figure 8.1c). 

Background 

Genetic Building Blocks 

Building blocks (Holland 1975; Goldberg 1989) are simple expressions which 

comprise a more complicated solution. While building blocks are most commonly 

associated with genetic algorithms, they can also refer to sub-trees in genetic programs 

(O'Reilly 1994; Rosca 1995). For example in symbolic regression, the lowest level 

building blocks are typically algebraic operations such as add, subtract, multiply, and 

divide. However, we can also define higher order building blocks such as squaring and 

multiplying with a constant.  

We think of a solution, or equation, as being composed of various types of building 

blocks  (McPhee, Ohs et al. 2008). For example, if we think of an equation as a binary 
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parse tree of mathematical operations (Figure 8.2), the set of building blocks for that 

particular equation contains all sub-trees (sub-expressions) of the tree (O'Reilly 1994). 

Knowing the building blocks for a particular problem simplifies human conceptual 

understanding of the problem (and related problems) by giving higher order meanings 

and interpretations of the systemôs mechanics, morphology, or physics. For example, 

rather than working with cosine operations and a set of variables, a cosine of an angle 

building block could allow us to work instead with a more meaningful concept, such 

as the vertical position of a swinging pendulum.  

Knowing the basic building blocks of a system ahead of time also greatly simplifies 

searching for or building a mathematical model to explain its behavior and 

experimental data ï such as done in symbolic regression. Rather than having to re-

derive common terms from scratch, over and over again for each model, the algorithm 

could benefit from the coarser search of assembling higher order building blocks. 

There are an infinite number of potential building blocks however. 

f(x1,x2) = (x1 ï 3) Ț 

sin(x2 + -7) 

 

Building Blocks: 

x1 

x2 

k 

(x1 ï k1) 

(x2 + k2) 

sin(x2 + k2) 

x1Țsin(x2 + k2) 

k1Țsin(x2 + k2) 

(a) (b) (c) 

Figure 8.2. Example equation (a), its binary parse tree (b), and all possible 

building blocks of the equation (c). Building blocks are common sub-expressions 

or internal components of a system that simplify building a full mathematical 

model. 
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Domain Alphabet 

While there are an infinite number of possible building blocks for any system, we 

define a domain alphabet as the set of building blocks specific to a particular problem, 

domain, or class of systems that generalize to many similar systems. Domain alphabet 

building blocks are typically physically meaningful, and are useful for building new 

models.  

Determining the most useful building blocks can be considered to fall under the 

ñcredit assignmentò problem in machine learning. The credit assignment problem is 

the task of deciding how to score or weight the importance of individual components 

of a model when only given entire systems (Grefenstette 1988).  

One difficulty to detecting meaningful building blocks is that some building blocks 

may arise by chance due to overfitting the data, or other numerical coincidences. For 

example, consider the following equations for two different systems: 

f =  x
2
 cos(x ï 1.01) + 2 x

3
  

g = x
2
 cos(x ï 1.02) ï sin(x) + x  

We would like to be able to identify a term such as x
2
 cos(x ï 1) as a building block 

given only f, g, and x values over time (we donôt know the equations in advance) ï 

while rejecting others that are less commonly generated during modeling. The more 

systems we look at, the less and less likely such a complex building block we be 

rediscovered repeatedly by chance during evolution. Therefore, finding large repeated 

building blocks is a strong indication the building block is a nontrivial building block 

useful throughout the problem domain. 

With such information on useful physical terms, the algorithm could reuse them for 
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analyzing future systems, bootstrapping its knowledge into higher complexity 

systems. Rather than needing to rediscover common features repeatedly, the algorithm 

can simplify the problem to the assembly of solutions within the domain alphabet.   

Pareto Front 

When generating potential building blocks, we consider the Pareto front (Fonseca and 

Fleming 1993; Fonseca and Fleming 1995) produced by symbolic regression which 

represents the tradeoff between a modelôs complexity and its maximum predictive 

ability for the experimental data. We define parsimony as the inverse of number of 

terms in the expression and the predictive accuracy as the error on unseen data.  

If we consider the relationship between equation complexity and accuracy of fitting 

the experimental data, there are there two qualitative extremes: extremely complex 

equations with near perfect accuracy, and simple models with poor accuracy. 

Equations in-between these two extremes are the most difficult to identify, but their 

structure tends to be the most meaningful (Kotanchek, Smits et al. 2008).  

At certain minimum complexities, the predictive ability tends to increase substantially 

and then plateau. In other words, there is often a relatively simple model or equation 

that captures some intrinsic relationships of the system (but perhaps not perfectly). By 

parsimony arguments, we can reason simpler equations to likely be approximations 

and more complex equations to be more precise refinements and elaborations of the 

exact model or overfit solutions to the data.  

Though we canôt know with certainty what the exact physical model is, it is likely to 

exist at least partially on this Pareto front. Therefore, when detecting what building 

blocks may form a general physical alphabet, we consider all building blocks on the 

Pareto front as candidates for inclusion in the alphabet. 
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Symbolic Regression 

See the description in the section "Symbolic Regression," on page 4. 

Alphabet Algorithm  

Our goal is to identify the primary mathematical building blocks of a particular 

problem or domain of systems, thereby building a domain alphabet automatically from 

experimentally collected data. Our primary challenge is distilling the nontrivial 

building blocks that generalize to other physical systems for inclusion in the domain 

alphabet.  

Our method has three main steps: (1) finding several mathematical models for two or 

more related systems, (2) decomposing these models into their constituent building 

blocks, and (3) identifying the most useful and meaningful building blocks for 

inclusion in the domain alphabet. 

Modeling Groups of Systems 

Our first task is to find several system models that define many candidate building 

blocks. We collect data from several related physical systems (Figure 8.1a) by 

observing their behavior and dynamics over time. The group of systems should 

represent qualitatively different dynamics within the same problem domain. 

Next, we employ a symbolic regression algorithm (Schmidt and Lipson 2008) to 

generate several hypothesized mathematical models of each system for varying model 

complexities.  

The output of our symbolic regression algorithm is a small set of equations that lie on 

the equation accuracy and equation complexity Pareto front for each particular system 

(Figure 8.1b). The equations on this front are nontrivial in the sense that they represent 



 

106 

the maximum accuracy a model of a given size or complexity can achieve to explain 

the systemôs data. The equations on the Pareto front are often different levels of 

approximation or elaborations of the exact physical system 

Extracting Building Blocks 

Now that we have several equations modeling each system, we decompose them into 

building blocks. For each equation found on each systemôs Pareto front, we iterate 

through every sub-tree (or sub-expression) of the equation, adding the sub-tree to our 

list of potential building blocks (Figure 8.2). 

During this process, we abstract away the bulk constants found in each equation and 

sub-expression to symbolic parameters. For example, we would convert a sub-

expression such as x + 1.427Țcos(ɗ) to k1Țx + k2Țcos(ɗ). This allows us to later match 

building blocks between different systems that may only vary by their embedded 

coefficients.  

Additionally, we abstract away variable types based on their units. For example, we 

consider variables of angles to be equivalent to variables of lengths, but not equivalent 

to velocities. This allows us later to match building blocks between systems with 

differences in variable names.  

Distilling the Alphabet 

We now have a long list of all building blocks found for each system and must distill 

this list down to a domain alphabet. We need to identify which are the nontrivial and 

meaningful building blocks within this list. 

If a particular building block exists repeatedly on the Pareto fronts of other systems, it 

is a strong indication that it is a meaningful building block for the domain alphabet. At 
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the very least, the building block is certainly useful for forming a parsimonious model 

in more than one system. This observation forms the basis for identifying the domain 

alphabet. 

If a building block was simply a result of overfitting to the data, it is unlikely to be 

repeated on the Pareto front of other systems or different datasets because overfit 

solutions are very sensitive to perturbations and noise in the data. Similarly, if the 

building block is the result of a numerical coincidence for modeling a particular 

dataset, it is unlikely that the same coincidence exists in other systems and in their 

datasets.  

Therefore, we can use the frequency that a building block is used on the Pareto fronts 

as a principle for its generality and importance for a domain of systems. To do this we 

iterate through all building blocks and count their total occurrences on the Pareto 

fronts of every other system, and number of times each building block was matched by 

another.  

We form the initial alphabet by rejecting all building blocks that have zero frequency 

on the Pareto fronts of the other systems.  

The second criterion we can use to gauge the importance of a candidate building block 

is its complexity. Very complex building blocks are much less likely to reoccur by 

chance or numerical coincidence than simple building blocks. Therefore, we also 

consider the complexity of the building block when adding it to the domain alphabet. 

After calculating the frequencies and complexities of all potential building blocks we 

examine them graphically to verify the results. We plot each building block as a point 

on a second type of Pareto space: the building block frequency versus the building 
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block complexity. As we discovery later, the building blocks on this chart that are both 

complex and frequently used comprise the physically meaningful domain alphabet. 

Experiments 

The Mechanical Systems 

We explore the alphabet building approach using a few simple mechanical systems: a 

harmonic oscillator, a simple pendulum, and a 2D spring pendulum. These systems are 

known to have well-defined mathematical models, allowing us to generate data and 

verify our results. Schematic diagrams of these systems are shown in Figure 8.3. 

The harmonic oscillator (Figure 8.3) is a simple conservative system with one degree 

of freedom. The variables are the massôs vertical position over time and vertical 

velocity over time. The symbolic regression algorithm identifies several equations 

modeling the systemôs kinetic and potential energy over time on the 

accuracy/complexity Pareto front, including the systemôs exact Hamiltonian equation. 

The simple pendulum (Figure 8.3) is a similar system, but with nonlinear 

trigonometric terms. The massôs position is measured by the pendulumôs angle, and 

the velocity is the pendulumôs angular velocity. Symbolic regression identifies several 

equations modeling the angular energies over time. 

The third system is the more complex 2D spring pendulum (Figure 8.3). Here, the 

system has two degrees of freedom, two positions, and two velocities measured over 

time. The dynamics of this systems are more complex, but still tractable with the 

symbolic regression algorithm. 
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The Pareto front of these systems (shown in Figure 8.3) summarizes the equations that 

maximize parsimony and accuracy for modeling the experimental data. The terms in 

the equations are in this sense useful, and may comprise a common physical language.  

System Data Pareto Front of Models 

 
  

 
  

 
 

 
Figure 8.3. Summary of the mechanical systems, the collected data of their 

dynamics, and the resulting models found using symbolic regression on the 

equation accuracy and complexity Pareto front. Each system was simulated 

numerically. The symbolic regression algorithm generates a small set of 

equations for each system. This set is a Pareto front, showing the most accurate 

equation found for different sizes (complexities) of equations. These equations 

are used to distill a common mathematical alphabet of building blocks for 

modeling mass, spring, and pendulum mechanical devices. 
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We simulated these systems numerically by integrating their differential equations. 

We save the position coordinates and the velocities of each component of the system 

as the experimental data for use in the symbolic regression algorithm (in Figure 8.3). 

Experimental Setup 

Our experiments used the fitness prediction algorithm described in (Schmidt and 

Lipson 2005; Schmidt and Lipson 2006; Schmidt and Lipson 2008) to search the 

space of symbolic equations. The selection method was deterministic crowding 

(Mahfoud 1995), with 1% mutation probability and 75% crossover probability. The 

encoding is an acyclic graph of 64 operations/nodes (Schmidt and Lipson 2007) and 

used single-point crossover. The operation set allowed addition, subtraction, multiply, 

sine, and cosine operations. 

We allowed solutions to use up to 64 nodes, each possibly representing five types of 

mathematical operations, two to four variables, or a parameter constant. Ignoring the 

possible real values of coefficients, this space contains roughly 10
54

 parameterized 

genotypes. 

We distributed the symbolic regression evolution over 20 quad core computers (80 

total cores) (Christian, Marc et al. 2003; Francisco, Giandomenico et al. 2005). The 

distribution technique partitions the total population of solutions into small local 

populations residing on each computer (or core). Periodically (every 1,000 generations 

in our experiments), the total population is randomly shuffled solutions across all 

computers to better simulate a single large population. 

The fitness predictor population contains 1280 predictors, distributed over 80 cores. 

The fitness predictor subset size is 128 indices to the full training data set. Predictors 

were evolved using deterministic crowding, with 10% mutation and 50% crossover. 
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Our fitness calculation rewards equations for modeling the systems kinetic and 

potential energies as described in (Schmidt and Lipson 2009) as measured over the 

dataset. The predicted fitness values only calculate over the smaller subset of a fitness 

predictor rather than the entire data set. 

Results 

A Mechanical Alphabet 

After building the equation accuracy/complexity Pareto fronts for each system using 

symbolic regression and decomposing the building blocks for each equation in each 

system, we plot the frequency of each building block versus its complexity (Figure 

8.4). 

 

Figure 8.4. The building blocks found for the domain alphabet based on the 

harmonic oscillator, simple pendulum, and 2D spring pendulum Pareto front 

models. The most frequent and complex building blocks correspond to the kinetic 

energy terms for moving masses and potential energy terms for springs and 

pendula. Building blocks with zero frequency on the Pareto fronts of other 

systems are omitting and not included in the alphabet.  
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We can see that single variable terms are the most common building blocks, as well as 

being the simplest possible building blocks. Not shown in Figure 8.4 are the numerous 

build blocks that were only found within a single system having zero frequency. 

Moving to the next most frequent building blocks, we find cos(ɗ) and k x2. These are 

pendulum and spring potential energies respectively. 

Interestingly, the higher complexity building blocks in Figure 8.4 are the result of 

matches between inexact equations between the different systems. For example, 

k1cos(ɗ) + k2v
2
 is an exact building block for the simple pendulum system, but also an 

approximate solution to the harmonic oscillator. 

There are two building blocks in Figure 8.4 which are not exact building blocks for 

any of the systems, though they are potentially useful approximate building blocks; 

namely, k cos(v) and k sin(ɗ). The k cos(v) term approximates a kinetic energy and the 

k sin(ɗ) term approximates a single variable term. These terms are both low 

complexity and low frequency however. This hints that these are approximate building 

blocks and we could elect to reject them after manual inspection. 

This result suggests that the terms that are both frequently used and complex tend to 

be more physically meaningful for inclusion in the domain alphabet, such as 

trigonometric terms representing potential energies or squared velocities representing 

kinetic energies. 

Utilizing the Alphabet 

One application of the domain alphabet is to simplify the search for forming models of 

more complex systems. We demonstrate this idea by using an alphabet formed from 

just the harmonic oscillator and simple pendulum systems to find a model of the more 
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complex 2D spring pendulum system. 

If we repeat the Pareto building block analysis, but now only with the harmonic 

oscillator and simple pendulum building blocks we obtain the building blocks shown 

in Figure 8.5a. 

There are many ways we could utilize these building blocks in the symbolic regression 

algorithm. We could introduce them as new functions in the operator set. 

Alternatively, we could seed the initial population using random combinations of these 

building blocks. 

We chose to introduce a mutation operator that could mutate a sub-expression of an 

evolving equation to be a random building block from Figure 8.5a. The constant terms 

in each building block, kôs, were set to normally distributed random constants at the 

mutation event. This approach allows the building blocks to be consistently introduced 

during evolution, but also adapted if necessary. In the case that an alphabet building 

block is approximate, the evolution can still benefit from using it early on, and adapt 

its structure later to fit the exact system model. 

There are likely much better methods for utilizing the alphabet building blocks in 

symbolic regression as well as other types of expert knowledge. For the scope of this 

chapter, we want to show the proof of concept using a simple modification to the 

program. 

Figure 8.5b compares the symbolic regression of the 2D spring pendulum over time 

with and without the building block alphabet obtained from the harmonic oscillator 

and simple pendulum. The fitness is shown versus the number of function evaluations, 

averaged over ten independent trials.  
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Figure 8.5. The impact of using a domain alphabet obtained from simple systems, 

the harmonic oscillator and simple pendulum, to find the model of a more 

complex system, the 2D spring pendulum. The alphabet in (top) shows the 

common building blocks found from the Pareto analysis of only the harmonic 

oscillator and simple pendulum systems. Allowing symbolic regression to use 

these terms substantially accelerates the modeling of the more complex 2D spring 

pendulum system (bottom). Error bars show the first standard error about the 

mean over ten independent trials. 
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Using the alphabet substantially improves performance over time, converging sooner 

onto the exact 2D spring pendulum model. The time to convergence is four times 

faster using the alphabet building blocks.  

This result shows that an alphabet obtained from two simpler systems can be used to 

accelerate the modeling of a more complex system using symbolic regression. 

Conclusions 

Identifying a mathematical alphabet is a means to organize and learn the rules and 

language of a particular scientific field or domain. Alphabets are sets of mathematical 

building blocks that represent common terms and calculations that pervade different 

phenomena. Identifying these building blocks helps to generalize our understanding of 

different systems, and potentially simply the modeling of future complex systems. 

We proposed an automated method to distill the mathematical alphabet directly from 

experimental data using symbolic regression. The method finds a set of equations for 

multiple related systems on the accuracy/complexity Pareto front, decomposes these 

equations into building blocks, and then calculates the frequencies these building 

blocks occur on the Pareto fronts of the other systems. 

Our results suggested that building blocks that are both frequently used and complex 

tend to be the most physically meaningful to the class of systems; such as spring 

potentials and kinetic energies. Other building blocks in the resulting alphabet were 

potentially useful approximations common across multiple systems, such as small 

angle approximations, but were the least complex and least frequently used.  

Finally, we used an alphabet obtained automatically from the harmonic oscillator and 

simple pendulum systems to accelerate the symbolic regression of the more complex 
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2D spring pendulum system. The regression using the alphabet found the exact model 

in one fourth of the computational effort compared to the regression from scratch, 

suggesting an automated method for scaling into higher and higher complexity 

systems. 
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SECTION II ï MODEL REPRESENTATIONS 

CHAPTER 9. DYNAMICAL SYSTEMS 

Summary 

This chapter describes a new algorithm for automatically reverse-engineering 

symbolic analytical models of dynamical systems directly from experimental 

observations, for the purpose of modeling, control and exploratory analysis. The new 

algorithm builds on genetic programming techniques used in symbolic regression to 

infer differential equations from time series data. We introduce the core algorithm for 

building coherent mathematical models efficiently and then describe its application to 

system identification. The method is demonstrated on a number of nonlinear 

mechanical and biological systems. 

Introduction  

Many branches of science and engineering represent dynamical systems 

mathematically as sets of differential equations derived laboriously from basic 

principles and through experimentation. Until recently, deriving such models has 

relied on human interpretation or simply fitting data to existing models. In contrast, 

system identification methods can be used to generate models of a dynamical system 

automatically from observations. Most system identification methods today are limited 

to linear systems, or to some classes of nonlinear systems provided the underlying 

model is known a-priori. Non-parametric methods such as Neural Networks can model 

nonlinear systems without a preconceived model, but provide little insight into the 

target systemôs internal structure. There is a growing need for methods that will be 

able to generate symbolic models of nonlinear systems without relying heavily on 

prior knowledge.  
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Our method uses genetic programming to assemble the exact differential equations 

that describe an unknown system from scratch (Schmidt and Lipson 2006; Schmidt 

and Lipson 2006; Schmidt and Lipson 2008). We represent differential equations as an 

acyclic graph of primitive operations - such as abs, exp, and log, or binary operations 

such as add, multiply, and divide. The leaves of the graph can represent state-variables 

of the system or parameter coefficients. We then evolve initially random equations - 

mutating, recombining, and selecting the best fit equations - until a dominant equation 

emerges explaining all significant variation in the observed data.  

Our algorithm scales favorably into significantly higher-order systems and higher-

complexity equations than previous research by coevolving lightweight fitness 

approximations (Schmidt and Lipson 2008). These approximations adapt to the current 

population of differential equations in order to predict how well future solutions will 

explain the data. While these approximations accelerate learning, our results show 

they also emphasize nonlinear features of the system and mediate solution bloat - 

biasing the equations to explain basic features before proposing higher-order terms. In 

ongoing research, we are exploring modeling stochastic systems where manual 

methods to model and control are most overwhelmed (Schmidt and Lipson 2007). 

In the following sections, we provide an overview of our system identification method 

and describe its adaptation to inferring dynamical systems. We then show new results 

on a number of classical nonlinear mechanical and biological systems and discuss 

further applications. 

Background 

Symbolic Regression 

See the description in the section ñSymbolic Regressionò on page 4. 
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Fitness prediction 

Fitness prediction is a new technique to measure how well different mathematical 

expressions explain experimental data more efficiently and to mediate the pressure to 

fit multiple aspects of the data (Schmidt and Lipson 2006; Schmidt and Lipson 2008). 

Fitness predictors only measure fit on a small subset of the data, allowing the 

algorithm to search solutions faster and build intermediate expressions more easily. 

However, the data subset is not static: Predictors co-adapt with the solutions to 

maintain an accurate metric for the fit to the entire data set, so that solutions still move 

toward a complete model. 

See the description in the section ñSub-sample Fitness Predictorsò on page 24 for 

greater detail. 

Inferring Dynamical Systems 

One form of a mathematical description of a physical or biological system is a set of 

Table 9.1. Fitness prediction algorithm parameters 

Solution Population Size 64 (x 8) 

Selection Method Deterministic Crowding 

P(mutation) 0.05 

P(crossover) 0.75 

Solution Encoding Operation List (graph) 

Max Graph Size 32 nodes 

Inputs 7 

Operator Set ( +, -, *, /, sin, cos) 

Terminal Set 2-dimensional (e.g. x, y) 

Crossover variable position, single point 

Fitness Predictor Sample Size 16 
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ordinary differential equations (ODEs) that describe the time-derivatives of physical 

positions or chemical concentrations in the system as a function of its current state. 

Unlike Bayesian networks and information-theoretic approaches, ODEs are 

deterministic models that describe causal relationships (Bansal, Belcastro et al. 2007) 

including feedback loops. Terms in the differential equations can correspond to forces 

such as damping or reactions occurring in the system based on their connectivity. 

Mathematical models can also be used to predict the behavior of the system in 

different conditions ï such as attracting basins and bifurcations ï predictions that are 

not available in statistical models. 

Reverse-engineering ODEs is the task of finding both the correct functional form as 

well as the parameter constants to fit experimentally collected data. In contrast, many 

other methods rely on preexisting models to choose a functional form and then use an 

optimization technique only to fit its parameters (Gardner, di Bernardo et al. 2003; 

Tegner, Yeung et al. 2003; di Bernardo, Thompson et al. 2005; Bansal, Gatta et al. 

2006; Bonneau, Reiss et al. 2006; van Someren, Vaes et al. 2006). However if prior 

knowledge is limited, it may not be possible to model the system mathematically 

beyond simple linear models with standard methods (X. Wen 1999). In symbolic 

regression, both the form and the parameters of the mathematical expression are 

searched simultaneously in the space of possible algebraic expressions. 

Our goal is to algorithmically find an exact mathematical model of some unknown 

dynamical system. In a system of N state-variables that we observe experimentally, we 

must identify N (possibly nonlinear) differential equations.  

Experimental Data 

We can collect data by observing its behavior in time experimentally. We conduct 
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experiments in silico by integrating a known system model from four initial conditions 

and observing it for ten seconds. These initial conditions are chosen randomly about 

its stable nodes or limit cycles.  

Handling Noise 

The results shown here were obtained without noise, but in other work we have 

experimented with noisy data sources. There are various methods for handling noisy 

time-series data ï from filtering and smoothing to spline and polynomial fitting. 

However, system noise is particularly problematic when calculating numerical 

derivatives. We use a Loess Fitting (Cleveland and Devlin 1988) both to smooth the 

data and to calculate time-derivatives of potentially noisy experimental data. We have 

found empirically this allows yields accurate derivative estimates up to approximately 

20% noise (signal to noise). Another approach to handling system noise is to model 

noise sources directly (Schmidt and Lipson 2007) by incorporating random variables 

into the mathematical model. 

Estimating Numerical Derivatives 

Our approach to finding the differential equations is to measure error directly on the 

time derivative of each state numerically. There are many methods for numerical 

differentiation; we have found locally-weighted polynomial fitting (Cleveland and 

Devlin 1988) to give the most accurate results. At each data point we fit a locally-

weighted polynomial, and approximate the derivate numerically as the derivative of 

the polynomial. 

Our fitness function for differential equations then becomes: 

fitness(s) = 
1

1
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n
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x
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where s(xi) is the candidate solution (a differential equation) evaluated at xi and  Dx/Dt 

is the numerically estimated derivative calculated from the data. 

There are two key reasons for measuring error on the derivative values rather than 

their integrals (the measured time-series values). First, the derivative is a lower level 

comparison and more invariant to small perturbations to the exact solution. For 

example, fô(x) = sin(x)+0.1 may be extremely similar to fô(x) = sin(x), but their 

integrals diverge linearly. Consequently, the fitness landscape is more rugged. 

Secondly, and most importantly, measuring error on derivative values rather than 

integrating allows us to evaluate the fitness of candidate solutions without integrating 

them. Instead, we can perform point evaluations at arbitrary points within the training 

data, leading to significantly faster evaluation. 

To summarize, we calculate the numerical time-derivative from the data and then use 

symbolic regression to find a differential equation for each variable individually. We 

then assemble the final model at the end when we have accurate differential equations 

for each state-variable. 

Results and Discussion 

We chose seven two-dimensional dynamical systems that are well studied to 

demonstrate system identification of various physical and biological models: The 

glider, bacterial respiration, predator prey, bar magnet, shear flow, van der Pol, and 

Lotka-Volterra models (Strogatz 1994). These systems exhibit many remarkable 

dynamics (e.g. bi-stability, hysteresis, limit cycles) and are frequently used to 

understand behavior of other related systems. 
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For each system, we generate time-series data by integrating the known model over 

ten seconds, from four different initial conditions. We record 100 data points per 

integration for a total of 400 data measurements. Initial conditions were chosen 

Table 9.2. Inferring various physical and biological dynamical models 

 System Inferred Time 
Point 
Evals 

Glider 

()20.05 sin  v v q=- Ö -  ()20.0499999 sinv v q=- Ö -  10.219 
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B 
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randomly near each systemôs stable nodes or limit cycles. 

We distributed the symbolic regression evolution over 4 computers and eight total 

logical processors using the island model (Francisco, Marco et al. 2003). Every 100 

generations, we reshuffle all solutions across all populations. Table 9.1 shows specific 

settings for the fitness prediction algorithm. 

With eight island populations, successful convergence is quite high for these systems. 

We ran each system once and recorded the time before convergence and the total 

number of point evaluations (the number of times any function is evaluated in any data 

point). Results are shown in Table 9.2. 

The time to convergence is on the order of one to five minutes over all systems. Most 

of the differential equations converge in less than 30 seconds. The most difficult 

equation, dy/dt in the predator-prey model, took just under approximately 5 minutes. 

The time to find each differential equation depends primarily on the complexity of its 

expression and the subtleties of its nonlinearities. For example, in the predator-prey 

equation, most time is spent finding the (1+x) denominator. 

It is important to note that the algebraic form and parameter values may not exactly 

match the known model. For example, in the shear flow mode, the algorithm finds a 

trigonometric transformation of sin
2
+a*cos

2
 to aï(1ïa)*cos

2
, which is equivalent. 

Additionally, while the known models use precise parameter constants, such as 0.05, 

the algorithm usually finds close approximations to these constants, such as 0.4999. 

We could reduce this by running nonlinear regression on the final model to polish off 

its parameters. Some amount of inaccuracy in the parameters may however be the 

result of artifacts in the numerical differentiation. 
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Conclusions 

We have proposed a new method for building mathematical models of dynamical 

systems automatically. The modeling process utilizes symbolic regression using 

fitness prediction to build differential equations from experimental data.  

Symbolic regression with coevolved fitness prediction allows the algorithm to find 

coherent models reliably in multi-dimensional systems. Fitness predictors specify a 

small subset of the total training data, effectively focusing regression on a smaller 

number of features at any given time. In parallel, fitness predictors coevolve to 

maintain accurate fitness predictions with respect to the cumulative dataset mediate 

solutions drifting too far away from objective gradient. In this fashion, predictors both 

reduce computational effort allowing the algorithm to find solutions faster and 

allowing regression to explore more diverse function-space.  

Applying this algorithm to system identification allowed us to infer a number of 

nonlinear physical and biological systems directly from data. 
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CHAPTER 10. IMPLICIT EQUATIONS 

Summary 

Traditional Symbolic Regression applications are a form of supervised learning, where 

a label y is provided for every x and an explicit symbolic relationship of the form y = 

f(x) is sought. This chapter explores the use of symbolic regression to perform 

unsupervised learning by searching for implicit relationships of the form f(x,y) = 0. 

Implicit relationships are more general and more expressive than explicit equations in 

that they can also represent closed surfaces, as well as continuous and discontinuous 

multi-dimensional manifolds. However, searching these types of equations is 

particularly challenging because an error metric is difficult to define. We studied 

several direct and indirect techniques, and present a successful method based on 

implicit derivatives. Our experiments identified implicit relationships found in a 

variety of datasets, such as equations of circles, elliptic curves, spheres, equations of 

motion, and energy manifolds. 

Introduction  

An implicit equation represents a mathematical relationship where the dependent 

variable is not given explicitly. For example, an implicit function could be given in the 

form f(x,y) = 0, whereas an explicit function would be given in the form y = f(x). 

Implicit equations can be more expressive and are often used to concisely define 

complex surfaces or functions with multiple outputs. Consider, for example, the 

equation of a circle: It could be represented implicitly as x
2 

+ y
2 

- r
2 

= 0, explicitly 

using a multi-output square root function as y = sqrt(r
2 

- x
2
), or as a parametric 

equation of the form x = cos(t), y = sin(t), t = 0..2ˊ. Our goal is to automatically infer 

implicit equations to model experimental data. 
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Regressing implicit relationships can be thought of as a form of unsupervised learning. 

Ordinarily, Symbolic Regression is used for supervised learning, where a label y is 

provided for every input vector x and a symbolic relationship of the form y = f(x) is 

sought. When seeking an implicit relationship of the form f(x,y) = 0, we are looking 

for any pattern that uniquely identifies the points in the dataset, and excludes all other 

points in space.  

Like clustering methods and other data mining approaches (McConaghy, Palmers et 

al. 2009), unsupervised learning has the potential to find unexpected relationships in 

the data (Mackin and Tazaki 2000; De Falco, Tarantino et al. 2002; Hetland and 

Sætrom 2005). For example, unsupervised learning can create a model from positive 

examples only, and then use that model to detect outliers that do not belong to the 

original set. This is important in many practical applications where negative examples 

are difficult or costly to come by. For example, when training a system to monitor a jet 

engine, a learning algorithm will typically be trained using sensor data from intact 

operation only, but will be required to alert an operator if abnormal sensor data is 

detected. 

Implicit equations can also provide deeper insight into the mechanism underlying an 

observed phenomenon by identifying conservations. For example, when observing a 

pendulum, an explicit equation can be used to fit the data and thus predict the 

pendulum's future state based on its current and past states. In contrast, searching for 

implicit relationships can lead to finding equations of invariants, such as conservation 

of energy or momentum (Schmidt and Lipson 2009). These conservations can also be 

used to make predictions, but provide more insight into the underlying principles, 

beyond  prediction. 
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While symbolic regression has been used to find explicit (Bautu, Bautu et al. 2005; 

Duffy, Engle-Warnick et al. 2007; Riolo, Soule et al. 2007) and differential equations 

(Bongard and Lipson 2007), it is not immediately obvious how it could be used to 

search for implicit equations (Figure 10.1). Symbolic regression ordinarily models and 

predicts a specific signal or value. In implicit equations, the equation always evaluates 

to zero over the dataset.  

A key challenge is that there are an infinite number of valid implicit equations for any 

given dataset. For example, sin
2
(x) + cos

2
(x) - 1 is exactly zero for all points in the 

dataset, but it is also exactly zero for all points not in the dataset. There are also an 

infinite number of relationships that are arbitrarily close to zero, such as 1/(1000 + x
2
). 

In order to utilize symbolic regression, we need to devise a fitness function that avoids 

these trivial solutions. 

We experimented with a number of fitness functions for searching invariant equations. 

We explored minimizing the variance of the function from zero over the dataset while 

 

Figure 10.1. Many datasets exist that do not have explicit dependent variables, 

such as an elliptic curve shown here. Instead, this type of data must be modeled 

with an implicit equation. We explore using symbolic regression to infer these 

types of models. 
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penalizing trivial equations that are zero everywhere, and numerically solving the 

implicit equation and minimizing its distance to each data point. Due to the difficulty 

of trivial solutions and susceptibility to local optima, none of these direct methods 

worked well. 

Based on these results, we looked for a different metric that would relate an implicit 

equation to the dataset. Rather than attempting to model the data points themselves or 

the zeros of the target function, we decided to look at the gradients of the data. We 

found that we could derive implicit derivatives of the data variables using an arbitrary 

implicit equation, and then compare the two. Instead of fitting data points directly, this 

approach fits line segments (partial derivatives) derived from the data to the line 

segments (implicit derivatives) of the implicit function. 

To test this approach, we experimented on modeling a number of implicit systems ï 

ranging from equations of circles to equations of motion. We found this to be a 

reliable method for all these systems, whereas the other methods failed to find even 

the equation of the circle with similar computational effort. 

In the remaining sections, we describe the direct methods in more detail, our proposed 

fitness for arbitrary implicit equations, the experiments and results on modeling 

implicit systems, and finally, concluding remarks. 

The Implicit Equation Problem 

The need to search for implicit equations arises when we do not know or do not have 

an explicit dependent variable in a dataset. Instead, we are given a large vector of data 

points and our goal is to find an equation that holds true for all of these points. For 

example, an equation that when solved numerically reproduces the points in the 

dataset.  
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An implicit equation has the form: 

f(x,y,...) = 0 

where x, y, etc. are independent variables of the system. Implicit equations in this form 

may or may not have an explicit equation in general (it may not be possible to solve 

for any single variable). However, these equations can be solved numerically or 

graphically when the equation is known. 

Our task is to identify expression f(x,y,...) that satisfies the uniquely for all points in 

the dataset. 

Naive Methods 

It might be tempting to search for equations that evaluate to zero for all data points in 

the dataset. A simple fitness function for this would be second moment or squared-

error from zero. The problem with this naive method is quickly obvious however: 

evolution almost immediately converges to a trivial solution such as x ï x = 0 or x + 

4.56 - y x/y, etc. These trivial solutions are zero everywhere and are not particularly 

interesting or useful for analyzing the data. 

We tried a slight modification of this method by adding a test for trivial solutions such 

as 0 = 0. For each candidate equation, we would perform a quick symbolic 

simplification to see if the result reduces to zero. Unfortunately, the evolution always 

converged to more complex identities equal to zero than we could add to our 

simplification test. For example, (x - 1) - (x
2
 ï 2 x + 1)/(x - 1) and -sin

2
(x) - cos

2
(x) + 1, 

or more complex elaborations of zero identities. 

A third method we tried was rewarding the function for being non-zero away from the 

points in the dataset. In this circumstance, evolution still converged on trivial solutions 
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that were arbitrarily close to zero over most of the data, but still nonzero away from 

the data. For example, solutions such as 1/(1 + x
2
), can become arbitrarily close 

implicit equations over the data, but are still trivial. 

Finally, we decided to try numerically solving the candidate implicit equations and 

comparing with the data points. This method is extremely slow as the numerical 

solution requires an iterative procedure. It also has serious evolvability problems. 

Many candidate equations do not have implicit solutions (for example, f(x) = 1/x
2
 

never crosses zero) which makes finding the numerical solution non-convergent.  

We modified this procedure slightly to find the local absolute valued minimum of a 

candidate equation around each point in the data set, summing the distance from the 

data points to their minima on the implicit function and the distance of the minima 

from zero. In the case that there is no local minimum for a data point, we capped the 

iterated procedure to a maximum distance.  

This approach was able to identify implicit versions of simple lines, such as x + y = 0, 

and once finding the correct implicit equations in the unit circle dataset (though these 

solutions were not repeatable). Unfortunately, all runs on more complex dataset, and 

most runs on the unit circle dataset, became trapped in local optima solutions. A 

common type of local optima evolved zeros around a part of the dataset (for example 

1/(x + a) - b - y can model the left and bottom sides of a circle accurately), but rarely 

jumped to fit remaining data points. 

While this final direct method may be a workable approach with more sophistication, 

it is far from elegant or efficient. Below, we describe a more direct and greatly more 

reliable and efficient fitness calculation for implicit equations. 
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The Implicit Derivatives Method 

The difficulties of the direct methods (Table 10.1) suggest that comparing the zeros of 

the candidate implicit equation directly is insufficient to reliably find accurate and 

nontrivial models. 

Table 10.1. A summary of direct methods and their difficulties 

Method Difficulty  

Equations that equal zero at all data 

points 

Trivial solutions such as 0 = 0, x - x = 

0, etc. 

Equations that equal zero near data, but 

grow with distance 

Places too many constraints on the 

resulting equations 

Equations that equal zero but have 

non-zero derivative 

Places too many constraints on the 

resulting equations 

Equations that equal zero but not 

symbolically zero when simplified 

Trivial solutions, just more complex 

zero identities such as cos
2
(x

3
) + 

sin
2
(x

3
) - 1 

Equations that Equal zero, but nonzero 

at random point away from data 

Trivial solutions such as f(x) = 1/(100 

+ x)
2
, which is non-zero near x = -100 

Numerically solve equation, measure 

distance from data points to closest 

zero 

Difficult to evolve, many degenerate 

equations do not have solutions, and 

computationally expensive 
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Rather than looking at the individual points, we decided to look at the local derivatives 

of these points. If the candidate implicit equation is modeling the points in a 

meaningful way, it should be able to predict relationships between derivatives of each 

variable. Importantly, we must also be able to measure such a relationship readily 

from the dataset.  

For our method, we propose using the ratio of partial derivatives between pairs of 

variables (implicit derivatives). The idea is that dividing two partial derivatives of a 

candidate implicit equation f(...) = 0 cancels out the implicit f(...) signal, leaving only 

the implied derivative between two variables of the system. 

For example, in a two-dimensional dataset we could measure variables x(t) and y(t) 

over time. The system's implicit derivatives estimated from time-series data would be 

dx/dy å x'/y' and dy/dx å y'/x', where x' and y' represent the time-derivatives of x and y. 

Similarly, given a candidate implicit equation f(x,y), we can derive the same values 

through differentiation: dx/dy = (df/dy)/(df/dx) and dy/dx = (df/dx)/(df/dy). We can now 

compare dx/dy values from the experimental data with dx/dy values from a candidate 

implicit equation f(x,y) to measure how well it predicts indirect relationships between 

variables of the system.   

Finally, we can use this process in a fitness function for implicit equations. We simply 

measure the error on all implicit derivatives that we can derive from each candidate 

equation. In our experiments, we return the mean logarithmic error of these 

derivatives: 
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where N is the number of data points, dx/dy is a implicit derivative estimated from the 

data, and (df/dy)/(df/dx) is the implicit derivative derived from the candidate implicit 

equation. 

Handling Unordered Datasets 

The implicit method can also be applied to unordered and non-time series data as there 

are several ways to estimate implicit derivatives from experimental data. An implicit 

derivative is simply a local relation of how two variables covary. In 2D, the implicit 

derivative is the slope of the tangent line. In 3D, the implicit derivatives lie on the 

tangent plane. In higher dimensions, they lie on the n-dimensional tangent hyperplane.  

To generalize this procedure for arbitrary unordered data, one can fit a hyperplane, or 

higher-order surface such as a conic section (Shpitalni, M et al. 1997), to local clouds 

of data points. From each hyperplane, one can then sample implicit derivatives by 

taking the implicit derivative of the hyperplane equation (Figure 10.2).  

We verified that this procedure works in our experimental datasets by randomly 

 

Figure 10.2. Implicit derivatives can be estimated from unordered, or shuffled 

data, non-parametrically by fitting a hyperplane or higher-order surface to 

neighboring points. After fitting the neighboring points, simply take any of the 

implicit derivatives of the locally fit surface. 
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shuffling them and discarding their time ordering. The method regresses the same 

implicit equations as in our results below using this procedure. 

Experiments 

We experimented on six implicit equation problems of varying complexity and 

difficulty (Figure 10.3). The simplest are the equation of a circle and an elliptic curve. 

These are well-known two dimensional systems with only two implicit derivative 

(dx/dy and dy/dx) that require implicit equations. A similar but slightly more difficult 

problem is the 3-dimensional sphere. In each of these systems we can collect data 

uniformly on their implicit surfaces. 

The next three systems are dynamical systems of varying complexity: a simple linear 

harmonic oscillator, a nonlinear pendulum, and a chaotic spring-pendulum. We 

simulated single trajectories of each system, recording the positions, velocities, and 

accelerations for the implicit datasets. In these systems, we are seeking the implicit 

equation of motion. In the spring-pendulum we are seeking a similar implicit equation, 

the Hamiltonian, which only uses position and velocity data. The data used for each 

system is shown in Figure 10.3. 

From this data, we estimate the partial derivatives from the data (dx/dy) by taking the 

ratio of the time derivatives. For the circle, elliptic curve, and sphere, we picked an 

arbitrary time trajectory around their surfaces (two in the case of the elliptic curve). 

This works because the time component cancels out in the ratio. We could also have 

fit a local plane to each point to estimate the partial derivatives non-parametrically of 

unordered data as discussed earlier. 
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Figure 10.3. Data sampled from six target implicit equation systems. Data is 

collected uniformly for the geometric systems. In the dynamical systems, the data 

is a single simulated trajectory from a random initial condition.  
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We used a basic symbolic regression algorithm (Schmidt and Lipson 2006) to search 

the space of implicit equations. We use the deterministic crowding selection method 

(Mahfoud 1995), with 1% mutation probability and 75% crossover probability. The 

encoding is an acyclic graph (Schmidt and Lipson 2007) with a maximum of 128 

operations/nodes. The operation set contains addition, subtraction, multiply, sine, and 

cosine operations. 

Results 

We conducted 20 independent trials on each system, recording fitness values and 

solutions overtime. Evolution was stopped after a solution converged onto a near 

perfect solution. Figure 10.4 shows the mean fitness of the top-ranked solution during 

the evolutionary runs on a validation dataset.  

Each evolutionary run identified the correct implicit equation for these systems, 

although different systems required more computation than others. The circle took less 

than a minute to converge on average; the elliptic curve, sphere, and pendulum took 

five to ten minutes on average; and the spring pendulum took approximately one to 

two hours. 

In comparison, none of the direct methods could find solutions to any of these 

systems, even with considerably more computational effort. In the case of the circle, 

the implicit derivatives methods obtained the correct solution 20 out of 20 trials in 

under one minute per trial. In contrast, the direct methods did not obtain the correct 

solution even once in 20, one hour trials. The best solution found by the direct method 

over these runs was a/(x
2
 + b) - y ï c = 0. In the remaining target systems, the direct 

methods performed even worse. 
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Figure 10.4. Fitness of the symbolic regression algorithm using the implicit 

derivatives fitness for each of the six systems. Results are the top ranked solution 

versus time, averaged over 20 independent trials. Error bars indicate the first 

standard error. 
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Implicit P areto Fronts 

Over our experiments, we also tracked the Pareto frontier of the implicit equation 

fitness and complexity for each system (Figure 10.5). This front shows the tradeoff 

between equation complexity and its ability to model the implicit data (Smits and 

Kotanchek 2004). Here, we measure the complexity of an equation as the number of 

nodes in its binary parse tree. 

The Pareto fronts tend to contain cliff features where fitness jumps rapidly at some 

minimum complexity. In the cases where even more complex equations are found on 

the front, even several times more complex, the improvement in fitness is only 

marginal. 

For each system, the simplest implicit equation to reach the highest qualitative fitness 

on the Pareto front was the exact target equation. Looking more closely at the higher 

complexity solutions, we found they were elaborations on the exact solution -- for 

example, extraneous terms with very small coefficients, perhaps compensating for 

small errors in estimating the partial derivatives from the data. 

We also noticed that simpler and lower fitness solutions on the fronts contained 

approximations to the exact solutions ï for example, small angle approximations in the 

pendulum and spring pendulum systems. 
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Figure 10.5. The fitness and equation complexity Pareto fronts found for each of 

the six systems. The exact solutions are the simplest equations to reach near 

perfect fitness. More complex solutions show elaborations on the exact solution, 

improving fitness only marginally. 
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Conclusions 

The ability to search for implicit equations enables searching for multi-dimensional 

surfaces, equations of motion, and other invariant models in experimental data. 

However, identifying meaningful and nontrivial implicit equations poses difficult 

challenges.  

We explored several naive fitness methods for rewarding implicit equations to model 

data. These methods, which considered the individual data points and the zeros of the 

implicit equations directly, were unable to solve the simplest implicit equations 

reliably or consistently.  

We showed that looking instead at ratios of partial derivatives of local data points 

provided a reliable search gradient for a variety of implicit systems. This method 

identified geometric equations such as elliptic curves and 3-dimensional spheres, as 

well as equations of motions in nonlinear dynamical systems. 
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CHAPTER 11. NATURAL LAWS 

Summary 

For centuries, scientists have attempted to identify and document analytical laws that 

underlie physical phenomena in nature. Despite the prevalence of computing power, 

finding natural laws and their corresponding equations has resisted automation. A key 

challenge to finding analytic relationships automatically is defining algorithmically 

what makes a correlation in observed data important and insightful. We propose a 

principle for the identification of non-triviality. We demonstrate this approach by 

automatically searching motion-tracking data captured from various physical systems, 

ranging from simple harmonic oscillators to chaotic double-pendula. Without any 

prior knowledge about physics, kinematics or geometry, the algorithm discovered 

Hamiltonians, Lagrangians, and other laws of geometric and momentum conservation. 

The discovery rate accelerated as laws found for simpler systems were used to 

bootstrap explanations for more complex systems, gradually uncovering the 

"alphabet" used to describe those systems. 

Motivation  

Mathematical symmetries and invariants are known to underlie nearly all physical 

laws in nature (Anderson 1972), suggesting that the search for many natural laws is 

inseparably a search for conserved quantities and invariant equations (Noether 1918; 

Hanc, Tuleja et al. 2004). Automated techniques for generating, collecting and storing 

data from scientific measurements have become increasingly precise and powerful, but 

automated processes for distilling this data into knowledge in the form of analytical 

natural laws have not kept pace. This trend is incommensurate with the rapidly 

increasing influx of scientific measurements (Clery and Voss 2005; Szalay and Gray 

2006) coupled with the growing complexity of systems being studied (Strogatz 2001; 
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Marquet 2002). There is thus a pressing practical need for new forms of scientific data 

mining (Ra, l et al. 1999; King, Whelan et al. 2004).  

The most prohibiting obstacle to overcome in order to search for conservation laws 

computationally is finding meaningful and nontrivial invariants. Here we introduce a 

new principle for identifying useful analytical relationships. We then demonstrate how 

a search algorithm based on this principle identifies meaningful analytical 

relationships in data captured from a variety of physical systems (Figure 11.1).  

Our goal is to find natural relationships where they exist, with minimal restrictions on 

their analytical form (i.e. freeform). Many methods exist for modeling scientific data: 

Some employ fixed-form parametric models derived from expert knowledge, others 

use numerical models (such as neural networks) aimed at prediction. Alternatively, we 

seek the principal freeform analytical expression that explains symbolically precise 

conservation relationships, thus helping distill the dataset from correlations into 

scientific knowledge. 

 

Figure 11.1. Mining physical systems: We captured the angles and angular 

velocities of a chaotic double-pendulum (A) over time, using motion tracking (B), 

then automatically searched for equations that describe a single natural law 

relating these variables. Without any prior knowledge about physics or geometry, 

the algorithm found the conservation law (C), which turns out to be the double-

pendulumôs Hamiltonian. Actual pendulum, data and result shown. 
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Method Overview 

The established method for search a space of mathematical expressions to minimize 

various error metrics is known as Symbolic regression (Koza 1992), a method based 

on evolutionary computation (Forrest 1993). See the description of the section 

ñSymbolic Regressionò on page 4 for more information. 

While symbolic regression is typically used to find explicit (Duffy and Engle-Warnick 

2002; Elena, Andrei et al. 2005; Cyril and Alberto 2007) and differential equations 

(Bongard and Lipson 2007), symbolic regression cannot readily find conservation 

laws or invariant equations. We simply do not know a priori what exactly the 

equations should model or what they should evaluate to, and so a direct error metric is 

elusive. Rather than trying to model a specific signal, we are trying to detect any 

underlying physical law that the system is obeying, which may or may not be constant 

(e.g. a Lagrangian).  

A particular challenge is requiring the detected law to be a function of the systemôs 

state while avoiding trivial or meaningless relationships. For any system over the state 

space x, there are, in fact, infinitely many trivial  equations over x that satisfy a 

conserved quantity, such as sin
2
(x1)+cos

2
(x1) or x1+4.56ïx2x1/x2. Additionally, there 

are infinitely many arbitrarily-close trivial conservations, such as 4.56+1/(100+x1
2
). 

Clearly, we need a more robust principle for distinguishing good conservation law 

candidates from poor ones, than simply invariance alone.  

The identification of nontrivial relationships is known to be a major challenge even for 

human scientists: Many published invariant quantities have turned out to be 

coincidental (Nee, Colegrave et al. 2005). The mere appearance of a conserved value 

is insufficient for a conservation law. The key insight into identifying nontrivial 
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conservation laws computationally is that the candidate equations should predict 

relationships between dynamics of subcomponents of the system. More precisely, the 

conservation equation should be able to predict relationships among derivatives of 

groups of variables over time, derivatives that we can also readily calculate from new 

experimental data.  

One instance of such a metric is the partial derivatives between pairs of variables. For 

example, in a two-dimensional system we could measure variables x(t) and y(t) over 

time. The systemôs partial derivatives estimated from time-series data would then be 

xô/yô å æx/æy and yô/xô å æy/æx (where xô and yô represent the time-derivative of x and 

y). Similarly, given a candidate conservation equation f(x,y), we can derive predicted 

values through differentiation: (ŭf/ŭy) / (ŭf/ŭx) å ŭx/ŭy and (ŭf/ŭx) / (ŭf/ŭy) å ŭy/ŭx. We 

can now compare æx/æy estimates from the experimental data with ŭx/ŭy predictions 

from a candidate conservation expression f(x,y) to measure how well it predicts 

intrinsic relationships in the system. In higher dimensional systems, multiple variable 

pairings and higher order derivatives yield a plethora of criteria to use. The section 

"Calculating the Predictive Ability" below details how to take accurate partial 

derivatives of f as it must be a symbolic derivative with inter-variable dependencies 

for higher-dimensional systems. Using the partial derivative pairs, we define a new 

type of search criteria for measuring how well a candidate analytical expression 

represents a nontrivial invariance over the experimental data.  
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Figure 11.2. The computational approach for detecting conservation laws from 

experimentally collected data. (A) First, calculate partial derivatives between 

variables from the data, then search for equations that may describe a physical 

invariance. To measure how well an equation describes an invariance, derive the 

same partial derivatives symbolically to compare with the data. Finally, return 

the most parsimonious equations for the hypothesized physical laws. (B) The 

representation of a symbolic equation in computer memory is a list of successive 

mathematical operations. (C) This list representation corresponds to a graph, 

where nodes represent mathematical building blocks and leaves represent 

parameters and system variables. Both (B) and (C) correspond to the equation 

f(ɗ,ɤ)=17.719ï4.771ɤ
2
+4.714cos(ɗ)ïɤ

2
cos(ɗ). To search for conservation 

equations, the algorithm mutates and recombines these structures to search the 

space of equations. 
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An important consequence of the partial derivative pair measure is that it can also 

identify relationships that represent other nontrivial identities of the system beyond 

invariants and conservation laws. For example, if the system is confined to a manifold, 

the manifold equation can also derive accurate partial derivative pairs. Similarly, the 

partial derivative pair can identify equations such as Lagrangian equations, the energy 

equivalent to the equation of motion in classical mechanics, which summarizes the 

systems dynamics, but is not invariant. 

One can control, to an extent, the type of law that the system might find by choosing 

what variables to provide to the algorithm. For example, if we only provide position 

coordinates, the algorithm is forced to detect a manifold in the systemôs state-space. If 

we provide velocities, the algorithm is biased to find energy laws. If we additionally 

supply accelerations, the algorithm is biased to find force identities and equations-of-

motion. There may exist, however, other or previously unknown analytical laws given 

these or other types of variables.  

Results 

We used the algorithm summarized in Figure 11.2 to search for analytical laws in data 

captured from several synthetic and physical systems using various sets of system 

variables. We present here key results for a number of physical experimental systems; 

See section "Detecting Laws in Synthetic Systems" below for a study of synthetic 

systems, geometric symmetries, and manifolds. A video of these systems and 

visualizations of the search for their law expressions is available online (Schmidt and 

Lipson 2009). 

We collected data from standard experimental systems typically used in undergraduate 

physics education: An air-track oscillator and a double pendulum (Figure 11.3). After 
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placing infrared markers on the moving components, we placed the target system in an 

arbitrary initial condition and recorded its transient behavior using cameras and 

motion-tracking software. This process provided time-series data of the marker 

positions. We then processed the numerical derivative of the positions to obtain 

velocities, accelerations, and so forth.  

Without any additional information, system models, or theoretical knowledge, the 

search using the partial derivative pairs criterion was able to find several analytical 

law expressions directly from this data. We experimented on two configurations of the 

air-track: two-spring single-mass, and three-spring double-mass. Similarly, we 

collected time-series data from a pendulum and a double-pendulum (Figure 11.3) 

using motion-tracking.  

The single-car air-track is a harmonic oscillator with slight damping from the air and 

its two springs. With only minimal noise and damping, it was the simplest physical 

system that we examined. Given velocity and position data from 30 seconds of 

observation, the algorithm detected the systemôs energy conservation and Lagrangian 

equations within five minutes. Given additionally acceleration data, it detected the 

systemôs differential equation of motion corresponding to Newtonôs second law. 

The double-mass air-track consisted of two coupled harmonic oscillators of different 

masses. There was significant noise in this dataset as a result of compression of the 

middle spring. The algorithm still detected the Lagrangian and Hamiltonian equations. 

The pendulum is a nonlinear oscillator. Given only position data, the algorithm 

detected that the device is confined to a circle. Given angular positions, velocities, and 

accelerations, it detected energy conservation, the Lagrangian, and the Newtonian 

equation of motion. The algorithm also detected several inexact expressions through 
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small angle approximations ï for example using x in place of sin(x) and ïx
2
 in place of 

cos(x). To detect the complete nonlinear trigonometric terms, the algorithm required 

data spanning larger angles (roughly Ñ40ę). 

The double-pendulum is the most complex system we studied. It is a coupled 

nonlinear oscillator system that exhibits rich dynamics (Jaeckel 1998) and chaos at 

certain energies (Shinbrot, Grebogi et al. 1992) making it challenging to model (Mor 

Physical System Schematic Experimental Data Inferred Laws 
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 + 692.32x

2 
Hamiltonian 

v
2
 ï 6.04x

2 
Lagrangian 

a ï 0.008v ï 6.02x 
Equation of motion 

 

 

-142.19x1 ï 74.65x2 + 0.12x1
2
 ï 

1.89x1x2 ï 1.51x2
2
 ï 0.49v2

2
 + 

0.41v1v2 ï 0.082v1
2 

Lagrangian 

 

 
 

1.37·ɤ
2
 + 3.29·cos(ɗ)  

Lagrangian 

2.71Ŭ + 0.054ɤ ï 3.54sin(ɗ) 
Equation of motion 

(x ï 77.72)
2
 + (y ï 106.48)

2 

Circular manifold 

 
 

ɤ1
2
 + 0.32ɤ2

2
 ï  

124.13cos(ɗ1) ï 46.82cos(ɗ2) + 

0.82ɤ1ɤ2cos(ɗ1 ï ɗ2) 
Hamiltonian 

Figure 11.3. Summary of laws inferred from experimental data collected from 

physical systems. Depending on the types of variables provided to the algorithm, 

it detects different types of laws. Given solely position information, the algorithm 

detects position manifolds; given velocities the algorithm detects energy laws; 

given accelerations, it detects equations of motion and sum of forces laws. These 

laws contain bulk parameters. 
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M 2007; Liang and Feeny 2008). We focused only on detecting its energy laws. 

Similar to the single-pendulum, there are several approximate equations that mask the 

identification of its exact laws. Additionally, there is significantly higher measurement 

noise and dampening errors due to higher velocities of the second arm. However, these 

challenges were overcome by balancing data measured from the double pendulum 

while operating at its two different regimes ï namely, in-phase and chaotic regimes. 

 An interesting approximate law for the double pendulum that emerged was 

conservation of angular momentum. Given only data measured while the pendulum 

was chaotic (e.g. at high energy), the algorithm tends to fixate on this law. The 

conservation of momentum equation is simpler than other valid laws and is 

approximately correct for high velocities where gravity is negligible, as with the high 

energy chaotic dataset.  

Similarly, given only data from low velocity in-phase oscillations, the algorithm 

fixated on small angle approximations and uncoupled energy terms. By combining the 

chaotic data with low velocity in-phase oscillation data, the algorithm detected the 

precise energy laws. 

Performance 

Any ñgoodò scientific theory must be both predictive and parsimonious. Similarly, a 

key challenge of any machine learning algorithm is balancing accuracy versus 

parsimony. Some equations may be more accurate but overfit the data, while others 

may be more parsimonious but oversimplify (Edwin and Jordan 2003; Gregory, Denis 

et al. 2003); the right balance is difficult to specify in advance. Instead of producing a 

single result, the algorithm produces a small set of final candidate analytical 

expressions on the accuracy-parsimony Pareto front, which represents the tradeoff 
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between equation complexity and the predictive ability on the experimental data. We 

measured parsimony as the inverse of the number of terms in the expression.  

The Pareto front for the double pendulum (Figure 11.4A) reveals a few particularly 

simple equations that predict the partial derivative pairs very accurately. Predictive 

accuracy was measured using cross-validation with the partial derivative pairs 

criterion. Numerically, the nature of the partial derivative pairs criterion tends to 

produce a large inflection where predictive ability jumps rapidly at some minimum 

complexity. Predictive ability then improves only marginally with more complex 

equations (Figure 11.4A). It is interesting to note that the conservation of angular 

momentum equation lies on the Pareto front, though it is inexact. The double 

pendulumôs Hamiltonian lies at the inflection. In all of our experiments, the solution at 

this inflection has been an exact theoretical law. 

Searching a space of equations for a natural law and discovering the Pareto front can 

be a computationally intensive task, possibly requiring several hours or days of 

computation. However, the search over function-space is readily parallelizable as 

many candidate functions need to be evaluated simultaneously. We distributed our 

computations over eight quad-core computers using the island-population model 

(Christian, Marc et al. 2003; Francisco, Giandomenico et al. 2005).  

A 32-core implementation detected two-dimensional geometric invariants in 

approximately 5 minutes. The single-mass air-track laws take approximately 10 

minutes. The double-mass air-track laws take approximately one to two hours. The 

pendulum laws take approximately 15 minutes. And the most challenging double-

pendulum system takes approximately one to two days of computation (Figure 11.4B). 
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Figure 11.4. Parsimony vs. accuracy, and performance. (A) The Pareto front 

(solid black curve) for physical laws of the double-pendulum and the frequency 

of sampling during the invariant equation search (grayscale). The Pareto front 

shows the trade-off between equation complexity (or parsimony) and ability to 

model a predictive invariance. At a critical complexity of ~32, there is a strong 

point of inflection. The equation at the inflection corresponds to the exact energy 

conservation law of the double-pendulum, highlighted. A second momentum 

conservation law encountered is also highlighted. (B) The computation time 

required to detect different physical laws for several systems. The computation 

time increases with the dimensionality, equation complexity, and noise. A notable 

exception is the bootstrapped double pendulum, where reuse of terms from 

simpler systems helped reduce computational cost by almost an order of 

magnitude, suggesting a mechanism for scaling higher complexities.  
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In the worst case, the time to identify the equations depends exponentially on the 

complexity of the expression itself and roughly quadratically on the system 

dimensionality (Figure 11.4B). The impact of noise also couples with these factors. 

For comparison, the simulated double-mass air-track and simulated double-pendulum 

datasets (where measurements are noiseless) take approximately one-tenth of the 

computational effort to analyze. A summary of performance versus noise level is 

provided in the section "Impact of Noise" below. 

The Justification Problem 

Though the algorithm can detect physical laws in their mathematical form, we are still 

faced with the challenge of justifying and giving words to their meaning. One 

difficulty is that we cannot know with certainty the units of bulk constants in the law 

expressions ï for example combinations of masses, lengths, etc. embodied in the 

system. Secondly, the equation may model something that is inherently difficult to 

observe directly, such as total energy.  

A more systematic approach to parsing the coefficients is to analyze multiple datasets 

from the same systems, albeit with different configurations and parameters. To 

demonstrate this approach, we used several virtual double-pendula with randomly 

chosen masses and lengths, to generate several new synthetic datasets. We fit the free 

coefficients of the automatically-discovered model to each dataset, and then invoked 

the equation search algorithm again to seek a relationship between the coefficients and 

the parameter sets. Arbitrarily setting k1=1, the algorithm identified that 

k2=m2L2
2
/(m1L1

2 
+ m2L1

2
), k3=2m2L2/(m1L1 + m2L1), k3=19.6/L1, and 

k4=19.6m2L2/(m2L1
2 
+ m1L1

2
) where 19.6 is the only absolute constant whose units are 

necessarily m/s
2
. A similar approach can be used to identify coefficients that vary 

slowly over time, for example due to damping, creeping, or ecological drift. In such 
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cases, the multiple datasets would come from different time windows of the same 

system. 

Bootstrapping 

Thus far, the algorithm has detected natural laws ab inito without prior knowledge 

about physics, kinematics, or geometry, with a growing performance cost for 

increasingly complex systems. In contrast, scientists are able to leverage knowledge 

from simpler systems to explain more complex systems. Can an algorithm do this as 

well?  

One method to utilize prior knowledge is seeding the equation search by initializing 

the algorithmôs initial set of candidate expressions with terms from equations from 

simpler systems. For example, the single-pendulum (nonlinear oscillation) and the 

double-harmonic oscillator (coupled oscillation) equations provide clues to the laws 

governing the more complex double-pendulum (coupled nonlinear oscillation). To 

seed the set of equations for analyzing the double-pendulum, we shuffled terms of the 

simpler systems, exchanging velocity symbols with double-pendulum velocity 

variables, etc., and randomized parameters to generate many inexact initial 

expressions. This seeding approach does not constrain the equation search, but simply 

biases it to reuse terms from previous laws. 

Bootstrapping the double-pendulum search with the single-pendulum and double-

harmonic oscillator terms reduced the search time by nearly an order of magnitude, 

from 30-40 hours of computation to 7-8 hours (Figure 11.4B). Based on this result, we 

conjecture that bootstrapping may be critical for detecting laws in higher order 

systems that are veiled in complexity. We also expect there are more effective means 

to utilizing prior information, including human expert knowledge. 
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A statistical analysis of the sub-expression frequency and complexity across 

populations of various physical systems revealed that terms that appear more 

frequency that expected for their complexity tend to be more physically meaningful, 

such as trigonometric terms representing potential energies, squared velocities 

representing kinetic energies, or linear force combinations. These terms may comprise 

an "emergent alphabet" for describing a range of systems, which could accelerate their 

modeling and simplify their conceptual understanding. 

Conclusions 

In conclusion, we have demonstrated the automatic discovery of physical laws, from 

scratch, directly from experimentally-captured data. The presented approach detected 

nonlinear energy conservation laws, Newtonian force laws, geometric invariants, and 

system manifolds in various synthetic and physically implemented systems without 

prior knowledge about physics, kinematics or geometry. The concise analytical 

expressions found are amenable to human interpretation and help reveal the physics 

underlying the observed phenomenon.  

Might this process diminish the role of future scientists? Quite the contrary. Scientists 

may use processes such as this to help focus on interesting phenomena more rapidly, 

and interpret their meaning. Much like design automation allows engineers to delegate 

mundane design tasks to computers and focus more on creative and conceptual issues, 

automated mining processes might elevate scientists to think of new conceptual 

frameworks, leaving machines to see if these new frameworks help generate more 

predictive and parsimonious explanations to observed phenomena.  
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Materials and Methods 

The Predictive Ability Criterion 

To search for potential conservation equations, we need a method that discriminates 

trivial equations, such as coincidental invariants, from equations that represent 

intrinsic relationships, such as energy conservation. We define a potential invariant 

equation to be nontrivial if it can predict differential relationships between two or 

more variables. 

One such relationship that is readily quantifiable from both the equation and 

experimental data is the partial derivative between pairs of variables. If our 

experiments collect time-series data, we can estimate the partial derivative between 

any pair of variables by taking the ratio of their numerical derivatives over time. For 

example, in a system with two state-variables x and y: 

x dx dy

dt dty

D
º

D
 (Equation 11.1) 

We use nonparametric fitting ï local polynomial fits (Cleveland and Devlin 1988) ï to 

estimate the time-derivatives of each state-variable. In the case where we do not have 

time-series data, but instead random point samples, we could alternatively estimate the 

partial derivatives directly using two-dimensional non-parametric fitting.  

A candidate equation ï an equation we wish to test for triviality ï can also derive the 

same partial derivatives between variable pairs using basic calculus. We do this by 

taking the ratio between partial derivatives of the equation. For example, for an 

equation f(x,y) over variables x and y:  
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x f f

y xy

d d d

d dd
=  (Equation 11.2) 

We now have two estimates of the partial derivative: one estimated from the data, and 

one predicted by the candidate equation f. To measure how well the equation predicted 

this relationship, we take the difference of (Equation 11.1) and (Equation 11.2) over 

the dataset.  

1

1
log 1

N
i i

i i i

x x
abs

N y y

d

d=

å õå õD
- + -æ öæ öæ öDç ÷ç ÷
ä  (Equation 11.3) 

There are many metrics for combining the residuals ï such as squared-error, mean 

error, correlation, etc. Here, we chose to use the mean-log-error for numerical reasons. 

The magnitude of the partial derivatives can grow large when the denominator 

approaches or crosses zero. The mean log-error squashes these high-magnitude 

residuals, while not discarding them entirely. In cases where the denominator is 

precisely zero, we discard the data sample. By convention, we measure the negative 

mean-log-error to define a maximization criterion. 

Calculating the Predictive Ability 

Here we detail the predictive ability calculation in greater generality. While Eqns. 

(Equation 11.1) and (Equation 11.2) work for 2-dimensional systems using only 

numerical approximations, we need to consider symbolic relationships for higher order 

systems. 

Specifically, we need to handle the case where one variable is dependent on another in 

order to calculate partial derivatives in (Equation 11.2) correctly. Consider calculating 
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ŭx/ŭy in a 3-dimensional system with variables x, y, and z. When taking the partial 

derivative of f(x,y,z) , we canôt assume variable independence in general. Therefore, 

we need to perform a symbolic derivative. 

For example, consider the equation of a sphere: f(x,y,z) = x
2
 + y

2
 + z

2
. When 

calculating ŭf/ŭx, we must consider y and z being dependent on x or vice-versa. Using 

the chain-rule, the symbolic derivative is thus: 

2 2 2 2 2 2
y z

x y z x y z
x x x

d d d

d d d
è ø+ + = + +ê ú

 
(Equation 11.4) 

In order to evaluate ŭf/ŭx we need to fill in the partial derivatives on the right-hand-

side of (Equation 11.4). We have already approximated these values from the data in 

(Equation 11.1). Therefore, we can re-write (Equation 11.4) as: 

2 2 2 2 2 2
y z

x y z x y z
x x x

d

d

D D
è ø+ + º + +ê ú D D

 (Equation 11.5) 

In general however, we should not assume that every variable is interdependent on all 

others ï only a subset. For example in a 3-dimensional system, we only need to 

assume one pair of dependent variables; and in a 4-dimensional system, two pairs. So, 

continuing this example of the sphere equation, we have either: 

2 2 2 2 2
y

x y z x y
x x

d

d

D
è ø+ + º +ê ú D

 (Equation 11.6) 

or 
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2 2 2 2 2
z

x y z x z
x x

d

d

D
è ø+ + º +ê ú D

 (Equation 11.7) 

For the general case, we can pick either case (Equation 11.6) or (Equation 11.7) for 

our calculation of (Equation 11.3). We call this choice the variable pairing ï which 

variables we assume are interdependent. We now refine (Equation 11.3) ï the measure 

of predictive ability ï to incorporate the variable pairing: 

1

1
min log 1

N
i i

pairing
i i i pairing

x x
abs

N y y

d

d=

ë ûå õå õDî îæ öæ ö- + -ì ü
æ öæ öDî îç ÷ç ÷í ý

ä  (Equation 11.8) 

We could optionally measure error using all possible pairings. However, we have 

found empirically that taking the worst-case pairing, as in (Equation 11.8), provides 

the best results for our computational invariant equation search.  

One final adjustment we can make to the partial derivative pair metric is the sign of 

the of the ȹx/ȹy and ŭx/ŭy terms in (Equation 11.8). The partial derivative pairs define 

a cloud of line segments in phase space, therefore we are only interested in matching 

the line but not necessarily the direction of the line. Negating the ȹx/ȹy term or taking 

the absolute value of both can affect the signs of terms in the optimal equation (for 

example, sign differences between Lagrangian and Hamiltonian equations). 
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Searching the Space of Implicit Equations 

The partial derivative pairs metric, (Equation 11.3), effectively defines a landscape 

over the space of equations. While the landscape is difficult to visualize due to its 

dimensionality and size, it is smoother and more well-defined than one might expect. 

 
Figure 11.5. Ancestor trajectories in equation space while searching for the 

equation of an ellipse. Dots indicate crossover and mutation events while lines 

represent parameter tuning over time. (A) Several initially random equations 

with varying predictive ability evolve independently before coalescing toward the 

exact solution over the running time of the algorithm. (B) The ancestors also vary 

in equation complexity ï measured as the number of nodes in their expression 

trees. Initial equations tend to have higher complexity, but simplify over time 

toward the exact solution. (C) The same trajectories plotted over predictive 

ability and complexity shows the ancestor trajectories converge toward a simple 

and high predictive ability neighborhood before finding the correct equation 

structure whose parameters can be tuned to the exact solution. 
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Our method uses genetic programming to explore this landscape. In fact, most of the 

time, starting from a small number of random initial points in the landscape, this 

method can descend to the global optimal equation. We call the paths the algorithm 

takes to the final solution its trajectory in equation space. 

See the description in the section "Symbolic Regression," on page 4 for a general 

description and background of the symbolic regression problem. 

One way to visualize the evolution of the equation genome is to track the ancestors of 

the final equation over the running time of the algorithm. Figure 11.5 shows the 

ancestry trees for the equation of the ellipse. Several initially random equations evolve 

independently before coalescing. Predictive ability is initially low and some ancestors 

Accuracy Equations in Sequence Event 

-1.4197 x + x ï c3 ï y random 

-1.41347 x + x + x ï c4 ï y mutation 

-1.41339 x + x + x ï sin(c3) ï y mutation 

-1.13805 x + x + x ï sin(y) ï (x ï x) crossover 

-1.08904 (x + x)·x ï sin(y) ï (x ï x) mutation 

-1.08574 (x + x)·x ï sin(y) ï c1 mutation 

-1.01841 (x + x)·x ï y ï c1 mutation 

-0.978484 (x + x + x)·x - y ï c13 mutation 

-0.914336 (x + y ï c3)·y + x·x·c15 mutation 

-0.303559 (x + y ï c4)·y + x·x·c15 mutation 

-0.0692607 (x + y ï sin(x))·y + x·x·c15 crossover 

-0.0140815 (x + y ï x)·y + x·x·c15 mutation 

-0.0050732 (x + y ï x)·y + x·x·c16 mutation 

-0.0050732 y·y + c3·x·x mutation 

Figure 11.6. Sequence of solutions as they evolve to model the equation of an 

ellipse. This sequence represents a single trajectory in Figure 11.5. Small 

mutations and crossover events during the evolutionary search slowly 

converge this sequence onto the exact equation. 
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parent less accurate equations that eventually lead toward the exact solution (Figure 

11.5A). Equation complexity is also initially high on average (Figure 11.5B). After 

several generations however, the ancestry converges to simple and predictive 

equations, eventually finding an equation whose parameters can be tuned to find the 

exact solution (Figure 11.5C). 

 We can also look at an individual trajectory (Figure 11.6) to see how the equations 

vary during the evolutionary search. The first equation is randomly initialized and has 

poor accuracy. Gradually, point mutations vary individual terms in the equation. 

Crossovers introduce larger changes, such as adding or replacing terms evolved in 

other ancestry sequences. In each step, the accuracy improves, until convergence onto 

the exact ellipse equation. 

Representing Invariant Equations 

The acyclic graph (Figure 11.7B) represents symbolic equations and is encoded 

internally as floating-point assembly. Operations can load an input variable or a 

parameter value, or perform a floating-point operation on any previous operation 

outputs (e.g. add, subtract, multiply, sine, or cosine commands). Each operation 

represents a leaf or parent node in the acyclic graph. The graph is rooted by the final 

operation in the list. Figure 11.7A shows a raw encoding of an example equation. 

We can construct the graph of a list encoding by tracing backward from the last 

operation recursively. One notable consequence of this encoding is that some 

operations are unconnected in the graph ï no operations branching from the output 

node may reference certain nodes. In effect, these vestigial sections are free to drift 

during regression since they have no impact on the equation (phenotype). These 

sections are omitted in Figure 11.7A. 
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We initialize the algorithm with random equations by generating a random list of 

floating-point operations, limited to 128 operations. This puts a deep limit on the size 

of the equation graph, and narrows the search to human-interpretable equations 

(equations we could fit on a piece of paper). Each node could represent one of five 

types of mathematical operations, two to four variables, or a parameter constant. 

Ignoring the infinite parameter space, this is effectively a search space of roughly 

10
108

 parameterized equations. 

Analysis of Results 

Detecting Laws in Synthetic Systems 

In addition to physical laws such as Hamiltonians, Lagrangians, and equations of 

motion, the partial derivative pair criterion can also decipher implicit equations and 

geometric constraints. Table 11.1 summarizes the algorithmôs search over time and the 

 

Figure 11.7. Two equivalent representations of an example equation f(ɗ,ɤ) = 

17.719 ï 4.771Āɤ2 + 4.714Ācos ɗ ï ɤ2Ācosɗ. (A) The algorithm stores and evolves 

equations represented by a list of floating point operators over a systemôs 

variables. Each operation can load a variable, load a parameter, or perform an 

mathematical operation on any previous operation. Unused lines have been 

omitted for clarity. (B) The raw list can be interpreted more intuitively by an 

acyclic graph where several sub-trees are reused by multiple terms. Both (A) and 

(B) represent the same equation. 

f(ɗ, ɤ) = 4.771·(3.714 ïɤ2) + cos (ɗ)

+ (3.714 ïɤ2)· cos (ɗ)

(0) <- load [3.714]

(1) <- load [ ɤ]

(2) <- mul ( 1), (1)

(3) <- sub  ( 0), (2)

(4) <- load [ ɗ]

(6) <- cos (4)

(7) <- mul (3), (6)

(9) <- load [4.771]

(12) <- mul ( 9), (3)

(13) <- add (12), (6)

(15) <- add (13), (7)

A B
+

x +

ï

x

4.771

ɤ ɤ

3.714

cos

ɗ

x
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Pareto fronts for several synthetic manifolds and simulated dynamical systems. 

Systems with parameter constants tend to exhibit gradual convergence whereas 

parameter-less equations converge rapidly at differing times. There is a similar 

inflection trend among all the Pareto fronts ï an equation with some minimum 

complexity achieves very high predictive ability. The inflection of the double linear 

oscillator is more subtle, which we suspect is due to the large number of terms and 

polynomial approximations in its Hamiltonian equation. 

The algorithmôs search over a space of equations for a natural law and building the 

Pareto front is a computationally intensive task, possibly requiring several hours or 

days of computation. However, the search is readily parallelizable as many candidate 

functions need to be evaluated simultaneously. We distributed our computations using 

the island-population model (Christian, Marc et al. 2003; Francisco, Giandomenico et 

al. 2005) and used a fitness-prediction model (Schmidt and Lipson 2008) to reduce 

overall computational cost and to improve the local search gradient.  

In a 32-core implementation, 10 minutes for the pendulum to a day for the double 

pendulum. The time for two-dimensional geometric invariants to be found on the 

Pareto front during the algorithmôs search was approximately 5 minutes. The single-

mass air-track laws took approximately 10 minutes to appear. The double-mass air-

track laws took approximately one to two hours to appear. The pendulum laws took 

approximately 15 minutes to appear. And the most challenging, the double-pendulum 

system, took approximately one to two days of computation. 
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Table 11.1. The predictive ability and Pareto fronts of several synthetic manifolds 

and simulated dynamical systems. Error bars denote the standard error of 

predictive ability  

System Predictive Ability Over Time  
Accuracy/Complexity Pareto 

Front  

Circle:  

x
2
 + y

2
 

  

Elliptic Curve:  

x
3
 + x ï y

2
 

  

Sphere: 

x
2
 + y

2
 + z

2
 

  

Linear Oscillator:  

a ï 0.1·v + 3·x 

  

Linear Oscillator:  

x
2
 + 0.3·v

2
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Table 11.1 (cont.) The predictive ability and Pareto fronts of several synthetic 

manifolds and simulated dynamical systems. Error bars denote the standard 

error of predictive ability.  

System 
Predictive Ability Over 

Time 

Accuracy/Complexity Pareto 

Front  

Pendulum: 

Ŭ ï 9.8·sin(ɗ) 

  

Pendulum: 

ɤ
2
 ï 9.8·cos(ɗ) 

  

Double Linear 

Oscillator 

x1
2
 + (x1 ï x2)

2
 + (1 ï 

x2)
2
 + 2·v1

2
 + v2

2
 

  

Double Pendulum 

ɤ1
2
 + 0.5·ɤ2

2
 + 

ɤ1ɤ2cos(ɗ1 ï ɗ2) ï 

19.6cos(ɗ1) ï 

9.8cos(ɗ2) 
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Equation Accuracy and Complexity Tradeoff 

For any finite set of experimental data, there is potentially an infinite set of equations 

that maximize any type of error metric. For example, a 1000
th
 order polynomial can 

perfectly fit any dataset of 1000 or fewer unique data points. While it is immensely 

more difficult to find arbitrarily accurate equations using the partial derivative 

predictive ability criterion, it is still important to have some qualitative understanding 

of what the domain of equations looks like.  

Consider the relationship between equation complexity and accuracy of fitting the 

experimental data. Qualitatively there two extremes: complex equations (e.g. a Taylor 

series, neural networks, or Fourier series) with arbitrarily high accuracy, and the most 

simple models with baseline accuracy. Equations that are simultaneously simple and 

accuracy are the most difficult  to find. Figure 11.8 shows the Pareto front of equation 

accuracy versus equation complexity for the double-pendulum.  

The algorithm may also fail to find interesting relationships, due to either lack of 

convergence, inappropriate building blocks, or absence of any governing law. In this 

case, the front may be poorly formed with only exceedingly complex solutions 

reaching high predictive ability. 

At certain minimum complexities, the equationôs predictive ability jumps dramatically 

and then plateaus. We can reason this equation is the most likely candidate, as further 

elaborations yield marginal improvement in predictive ability. The equation at the 

inflection in this example is indeed the conservation of energy equation (Hamiltonian), 

supporting this assumption. 
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Impact of Noise 

The presence of noise can make estimating derivatives difficult because derivatives 

can be highly sensitive to noise. We use Loess smoothing (Cleveland and Devlin 

1988) ï a non-parametric fitting method ï to remove high frequency noise from the 

motion tracking system. Loess smoothing updates each sample in the dataset by fitting 

a small order polynomial to the sample and its nearest neighbors.  

Other methods, such as filtering and convolution, also reduce high-frequency noise, 

but do not readily produce estimates of the signal derivative. Using Loess smoothing, 

we obtain the numerical derivatives directly from the smoothing procedure by 

 

Figure 11.8. The accuracy/complexity Pareto front of the double pendulum. The 

Pareto front shows the tradeoff between equation complexity and its ability to 

derive accurate partial derivative. At some minimum complexity (32 nodes), 

predictive accuracy jumps rapidly. Equations almost twice as complex improve 

the accuracy only marginally. These high complexity equations tend to contain 

the simpler exact equation, but add many smaller terms to compensate noise. The 

parsimonious and accurate equation at the inflection is the Hamiltonian and 

Lagrangian of the double pendulum. 
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evaluating the symbolic derivatives of the local polynomial fits at each data sample.  

We have examined the impact of noise on the predictive ability for the double linear 

oscillator (Figure 11.9). Noise reduces the ability to find accurate invariant equations 

substantially, either simply requiring more time to compute or obscuring the equation 

entirely depending on the noise strength. We measure the noise strength (percent 

noise) as the ratio of the standard deviation of the random noise to the standard 

deviation of the exact signal. 

Data Collection and Preprocessing 

We used motion tracking cameras and software (Vicon MX) to collect data on 

physical systems such as the double-pendulum. We place several infrared markers on 

the experimental device, place it into an arbitrary initial condition, and observe its 

dynamics.  

 

Figure 11.9. The mean predictive ability on a withheld test set of the best 

equations detected versus the amount of normally distributed noise in the data 

set for the simulated double linear oscillator. Error bars show the standard error. 

The percent noise is the ratio of the standard deviation of the noise and the 

standard deviation of the original signal.  
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The motion tracking produces time-series data of 3-dimensional Euclidean position 

coordinates for each infrared marker. We use many infrared markers in order to 

minimize noise and occlusions effects during the tracking. Afterward, we then 

combine the time-series of each marker to calculate the essential state-variables of the 

system ï 2-dimensional coordinates, angles, etc. For example, in the double-

pendulum, we project all 3-dimensional tracking points to its principle plane, and then 

calculate the angle of the two pendulum arms by taking the arctangent between 

segments of the infrared markers. 

While motion tracking systems have become quite accurate and automated (Greg and 

Eric 2002), we must still handle noise and occlusion in the time-series data. Noise 

amplifies when the system experiences high velocities or when the number of cameras 

that can see a particular infrared marker changes.  

In the double-pendulum, the infrared markers on the second arm become occluded 

from nearly all cameras when it passes behind the upper arm. In this case, the motion 

tracking produces null position coordinates, which we strip out before processing. 

Therefore, some of our time-series data contains gaps. 

Evolutionary Parameters 

We use the fitness prediction algorithm (Schmidt and Lipson 2005; Schmidt and 

Lipson 2006; Schmidt and Lipson 2008) to search over symbolic equations. The 

selection method was deterministic crowding selection (Mahfoud 1995), using 1% 

point-mutation probability and 75% crossover probability. The encoding each 

equation was an acyclic graph with a maximum of 128 operations/nodes (Schmidt and 

Lipson 2007). We used single-point crossover to exchange the operations in the parent 

equations. The operator set contained addition, subtraction, multiply, sine, and cosine. 
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We distributed the symbolic regression evolution over 8 quad core computers (32 total 

cores) using the island distributed computation method (Christian, Marc et al. 2003; 

Francisco, Giandomenico et al. 2005). We spread a population of 2048 equations over 

32 CPU cores; therefore each island population has 64 equations. 

The fitness predictor population contains 512 predictors, distributed over 32 cores. 

The fitness predictors consist of 128 indices into the full training data set. The 

predictors are evolved with deterministic crowding, using 10% mutation and 50% 

crossover rates. 

We calculate fitness using variations of (Equation 11.8), where we modify the signs of 

partial derivative pairs using negation or absolute value to vary the types of equations 

we search for. For predicted fitness values, we only calculate (Equation 11.8) over the 

smaller subset of the fitness predictor rather than the entire data set. 

Results with Missing Building Blocks 

It is interesting to note that in the absence of appropriate building blocks, the 

algorithm develops approximations. For example, eliminating sine and cosine as 

building blocks causes the pendulum invariant to be expressed as ɤ
2
 + k1ɗ

2
 ï k1ɗ

4
, 

Table 11.2. Summary of Detected Approximations with Missing Building Blocks 

Building Blocks Detected Pendulum Law Approximation Discovered 

*, +, ï, cos(), sin() ɤ
2
 ï 19.6·cos(ɗ) Exact Solution 

*, +, ï, sin() ɤ
2
 ï 19.5999·sin(-1.57079 + ɗ) Trigonometric identity 

*, +, ï ɤ
2
 + 9.7108·ɗ 

2
 ï 0.7042·ɗ

 4
 Taylor series expansion (4

th
 order) 
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thereby exploiting the Taylor series expansion. Eliminating cosine but not sine results 

in other identities, such as cos(ɗ) = sin(ɗ + ˊ/2) or more complex equivalences (Table 

11.2). 

  



 

173 

CHAPTER 12. SYMBOLIC NOISE SOURCE MODELS 

Summary 

In this chapter we propose a genetic programming approach to learning stochastic 

models with unsymmetrical noise distributions. Most learning algorithms try to learn 

from noisy data by modeling the maximum likelihood output or least squared error, 

assuming that noise effects average out. While this process works well for data with 

symmetrical noise distributions (such as Gaussian observation noise), many real-life 

sources of noise are not symmetrically distributed, thus this approach does not hold. 

We suggest improved learning can be obtained by including noise sources explicitly in 

the model as a stochastic element. A stochastic element is a random sub-process or 

latent variable of a hidden system that can propagate nonlinear noise to the observable 

outputs. Stochastic elements can skew and distort output features making regression of 

analytical models particularly difficult and error minimizing approaches inhibiting. 

We introduce a new method to infer the analytical model of a system by decomposing 

non-uniform noise observed at the outputs into uniform stochastic elements appearing 

symbolically inside the system. Results demonstrate the ability to regress exact 

analytical models where stochastic elements are embedded inside nonlinear and 

polynomial hidden systems.   

Introduction  

Random noise is found in many natural and engineered systems, such as random 

diffusion, noisy actuators or sensors, and human input (Kulkarni 1995). Most learning 

algorithms handle noise by fitting the maximum likelihood or least squares error of 

noisy data (Kulkarni 1995; Carl Edward 1997). This approach works well when noise 

is distributed symmetrical about the true system output, such as white noise, Gaussian 

noise, and any zero mean noise superimposed over the output. 
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When noise exists internally in the system, it can be coupled with nonlinear 

components of the system. In other words symmetric internal noise can be scaled, 

offset, and in general transformed to produce non-symmetric noise distributions on the 

output. In these situations, the noise has deformed the maximum-likelihood output 

from the theoretical noiseless system, and the regressed models may no longer 

describe the analytical structure of the system. 

We call this type of noise a stochastic element ï a random process inherent to the 

system, affecting its behavior and observable output. Noise from stochastic elements 

can propagate nonlinearly to the systemôs output and produce non-uniform variation. 

The most common approach to handling noise is to model its expectation, either 

through averaging or least-squares fitting (Kulkarni 1995; Carl Edward 1997). While 

the expectation of a noisy system is valuable for finding a model with minimal error, it 

can be misleading when finding a descriptive analytical model of the system (e.g. 

symbolic regression). In the worst case, it can distort the observed output of the 

system, preventing the true system structure from being found. 

In this chapter, we aim to improve regression of a noisy system based on the notion 

that observed noise that is coupled to the system may itself provide additional 

information about the systemôs analytical structure. For example, if the output noise 

appears to grow quadratically, there is likely to be some quadratic structure in the 

system. Our approach is to use symbolic regression to model the output noise 

explicitly, decomposing noise as uniform stochastic elements inside the system to 

produce a noisy model. We then compare the noise observed in candidate models to 

the variation in the training data to calculate fitness. The final analytical model is 

obtained by removing the stochastic terminals used. 
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In the remaining sections, we discuss the distortion produced by stochastic elements, 

describe our approach in greater detail, show some simple results, and finish with 

concluding remarks. 

Background 

Distortion from Stochastic Elements 

Expected values of a noisy output can disguise and distort analytical structure when 

the system contains internal stochastic elements (Schaffer, Ellner et al. 1986; Kleijnen 

2006). Noise can be multiplied into the system or pass through a nonlinear operation 

to significantly change the expected output values. Figure 12.1 shows three simple 

examples where a stochastic element hides or distorts analytical features. 

Figure 12.1a shows a sine function, f(x) = sin(x) with a stochastic element giving rise 

to a random phase offset, f(x) = sin(x + R). The noise does not change the magnitude 

of the sine wave but does shift data samples left or right. The expectation of the output 

shows a sine function with correct phase but with smaller amplitude than the target 

analytical model, f(x) = A*sin(x). 

The system in Figure 12.1b is a simple linear function, f(x) = x, multiplied by a 

stochastic element, f(x) = x*R. The multiplied noise completely hides the linear growth 

from the expectation. The expected output becomes simply f(x) = 0. 

Figure 12.1c is a quadratic function, f(x) = x
2
, with noise added to the input, f(x) = (x + 

R)
2
. This noise again shifts the data points left or right, but does not change the y-

intercept. The expected output model however is quadratic with a y-offset, f(x) = x
2
+A. 

Though these are simple examples, they give insight into how stochastic elements can 

distort expectation models from the exact analytical model, or even hide features. In 
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the next section, we describe a simple approach to incorporating stochastic elements 

into models in order to recover exact analytical models despite this difficulty. 

Regressing Noisy Data 

Noise is found in almost all experimental data and is a central focus in many areas of 

machine learning (Arnold 2001). Here, we briefly overview how noise is traditionally 

handled in regression problems. 

Often experimental data is pre-processed to remove outliers (Rousseeuw and Leroy 

1987), remove white noise (Kleijnen 2006), and more generally, smooth features. 

Common techniques for preprocessing include convolving with a low-pass-filter (e.g. 

box or sliding window, Gaussian filter), local least-squares fitting, and spline fitting. 

The aim of preprocessing is to transform the data set to be more representative of the 

expected outcome or maximum likelihood of the system through interpolation or 

statistical properties among neighboring data points. These processes make 

assumptions about the underlying system and its noise distribution but are still used 

frequently in practice to improve predictive performance. 

In contrast, we are interested in exploiting the existence of nonlinear noise to reveal 

internal structure of the unknown system. In this sense, the goal is broader and 

removing noise coupled to the system could remove information. 

Modeling Noise and Confidence 

One is often interested in the confidence of predictions made by a regressed model. 

Accurate models predict the maximum-likelihood value, but the variance of outputs 

for this value may be large. 
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The most common non-parametric approach to measure confidence is to examine the 

residual errors of the model on the training set. This leads to a natural two-step 

procedure:  

(1) Regress a best fit model 

(2) Derive a statistical model of the residual error 

In the case of white noise, residual errors appear uniformly distributed and can be 

modeled globally such as calculating its mean and variance. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 12.1. Three basic examples where a stochastic element hides or distorts 

analytical features of the system to different extents. Blue dots show the observed 

system output, the red line shows the expectation of the output, and the green line 

show the target analytical model with stochastic elements removed. 
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If noise is coupled to the system by an internal stochastic element, the residual error 

may vary greatly over the input space. In this case, local statistical models are used to 

model confidence among neighboring inputs (Touretzky, Leen et al. 2007). 

Deriving a statistical model of the residual error in this fashion requires assuming a 

noise distribution model, such as the normal distribution. In nonlinear regression, 

where an analytical model of the system is assumed, the noise distribution can be 

derived automatically from the model. Most commonly, confidence intervals are 

calculated on the model fitting parameters (Vugrin, Swiler et al. 2007). Parameter 

confidences then translate into nonlinear output confidence ranges on the model 

output. 

In contrast, the method proposed in this chapter models noise explicitly in the model 

parametrically without a predetermined model structure. 

Symbolic Regression 

See the description in the section ñSymbolic Regressionò on page 4 for background 

the symbolic regression problem. 

The fitness objective in symbolic regression, traditionally, is to minimize error on the 

training set (Koza 1992; Augusto and Barbosa 2000; Schmidt and Lipson 2005). Later 

in this chapter however, we define a new objective geared specifically to reward 

candidate solutions with noise distributions that match the noise observed in the 

training set. 

Learning Noise Algorithm 

The basic idea of our approach is to include behavior of stochastic elements inside the 

analytical model. Instead of using an error minimization objective, we attempt to find 
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a model of stochastic elements with the simplest distribution explaining all features 

and noise in the training data. The final analytical model identifies the origin of noise 

as well as its effect on out observations. 

Much research has been done on bounding noise error and modeling error 

Individual ind  = (  encoding E, stochastic elements S )  

Input variables X  

 

Function evalute():  

    For each s  in S 

        s  = random value [ - 1, 1]  

    End 

    é 

    val  = evaluate ind  normally  

    é 

    Return val  

 

 

Individual ind  

Training data D of (x,y)  pairs  

Number of samples N 

 

Function fitness():  

 fitness  = 0  

 For each d in D 

  y in , y max 

  Repeat N times  

   y  = ind .evaluate( d.x )  

   If ( y  < ymin ) ymin  = y  

   If ( y  > ymax) ymax = y  

  End 

  If ( ymin  < d.y  < ymax)  

   fitness  += 1/( ymax -  ymin )  

  Else  

   fitness  += ï min(| d.y  -  ymax|, | d.y  -  ymax|)  

  End 

 End 

 Return fitness  

 

Figure 12.2. Pseudocode for evaluating a model with stochastic noise sources 

to estimate the noise envelope or distribution (top), and pseudocode for 

calculating the resulting fitness metric for the candidate model (bottom). 
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distributions (Xavier and David 2003; Touretzky, Leen et al. 2007; Vugrin, Swiler et 

al. 2007). The distinction here is that we are modeling individual noise components 

explicitly inside a system. The analytical model is regressed from scratch, rather than 

relying on an assumed system model or distribution model. 

We use symbolic regression to find an analytical model which incorporates uniform 

random variables to explain residual error parametrically in addition to finding a best 

fit. In the next two sections, we describe how we incorporate stochastic elements into 

candidate models and describe a new objective function to explain observed noise. 

Decomposing Stochastic Elements 

Our basic building block for a stochastic element is a uniform random variable with 

range -1 to 1 inclusive that returns a random value every time it is read or evaluated by 

the model. Symbolic regression can incorporate this random variable anywhere in its 

models to help explain the noise distribution.  

R() = uniform random value [-1, 1] 

 
(a) 

 
(b) 

Figure 12.3. An example binary expression tree (a) for the function f(x) = e
x
sin(x), 

and a similar tree modeling a stochastic element (b) for the function f(x) = e
x
sin(x 

+ R()). 



 

181 

Nearly all types of random variables and distributions can be derived from this 

uniform random variable. Symbolic regression treats this variable like it would any 

other attribute variable, and can derive combinations and transformations to non-

uniform distributions. For example, the Normal distribution can be derived from 

querying the uniform random variable twice: 

Normal(0,1)  =  )()cos()1()ln()2ln( pÖÖ+-Ö- RRA  

Symbolic regression most commonly represents candidate solutions as expression 

trees (Figure 12.3a). 

We treat stochastic elements as a new variable in the terminal set that can be used 

anywhere in the expression tree to model the noise in experimental data (Figure 

12.3b). The new terminal value is special however in that it is randomized every time 

it is evaluated, even when appearing multiple times in the same expression tree. 

The Noise Distribution Objective 

Now that candidate models can include random variables, their output predictions will 

have some distribution. Our goal for this distribution is to explain all variation found 

in the training data, and do so in the narrowest and simplest way. 

A distribution explains a training data point if the data point falls inside the modelôs 

distribution at that point. For example if f(x=10) has a distribution between [-9,-3], it 

explains the training data point if its value is -6, but not if it is 4. 

We can approximate the distribution of a candidate model at a training point by 

sampling it. In our experiments, we find the range of output for a training input by 

storing the minimum and maximum output from 100 model evaluations.  
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Note however that a trivial solution would be a large (or perhaps infinite) distribution 

where all training data lies inside the distribution. Therefore, we must introduce a 

second objective to minimize the size of the distribution. 

If a training data point lies inside the modelôs distribution, we want to minimize the 

height of the distribution at that point. If the point is not covered by the distribution, 

we want to minimize the distance of that point from the distribution. We can combine 

these two objectives into a single fitness criterion: 
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This is a two-step fitness objective, summarized in Figure 12.4. The model must first 

cover the point with its distribution, and then it must minimize the area of its 

distribution. As shown in Figure 12.4b, training points not explained by the 

distribution contribute negatively to the fitness, and points that are explained 

contribute positively. 

Pseudocode for evaluating a model that contains stochastic elements, and for 

 
(a) 

 
(b) 

Figure 12.4. The fitness objective for explaining training data with a with model 

that has stochastic elements and output distribution. If a training point falls 

inside the model distribution, the objective is to minimize the height of the 

distribution. If the point falls outside, the objective is to minimize the distance of 

the point to the distribution. 
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evaluating the distribution fitness of a model is shown in Figure 12.2.  

Experiments 

We modify a symbolic regression algorithm (Schmidt and Lipson 2005) to include 

stochastic elements and regress based on distributions rather than error minimization. 

This algorithm utilizes adaptive sampling of the training set to reduce computational 

cost, which is particularly high for finding the output distribution of candidate models 

during regression.  

Parameters for all experiments are summarized in Table 12.1. In deterministic 

crowding, offspring replace their most similar parent if they have equal or higher 

fitness and are discarded otherwise. Population size, mutation probability, and 

Table 12.1. Summary of Experiment Setup 

Solution Population Size 64 

Selection Method Deterministic Crowding 

P(mutation) 0.05 

P(crossover) 0.75 

  

Solution Encoding Operation List (graph) 

Operations 16 

Local Variables 4 

Evolved Constants 4 

Inputs 1 

Operator Set  +, -, *, /, sin, cos  

Terminal Set  x, c1, c2, c3, c4  

Crossover variable, single point 

  

Fitness Sample Size 4 

Distribution Samples 100 
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crossover probability have been tuned empirically. Crossover produces a higher fit 

child approximately 20% of the time with these setting on the operation list encoding. 

The candidate solutions (algebraic expressions) are lists of operations on local 

variables. The number of operations and local variables were tuned for computational 

performance. The encoding size, terminal set, and operator set are over-represented 

(no experiments requires all for convergence). Single point crossover is used on the 

operation list at a variable offset. 

To measure fitness, the output distribution is measured on four inputs from the 

training set, one hundred times. The minimum and maximum values are then used to 

calculate the fitness described earlier. 

We test on three simple example systems each with a uniform stochastic element 

coupled in the system: 

Á f1(x) = 10 sin(x + R) 

Á f2(x) = x
2 
sin(x + R) 

Á f3(x) = (x + R) - 1.5 x
3
 

These experiments demonstrate the finding the exact structure and parameters of the 

system despite internal stochastic noise which offset the expected output. 

Results 

This section gives results on three simple examples of regressing stochastic elements 

embedded in a hidden system to demonstrate our approach. We show screen captures 

of different stages during regression to show the progress toward the analytical model. 
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f(x) = 10R 

 
(a) 

f(x) = 10 sin(x) + 5R 

 
(b) 

f(x) = 10 sin(x + R) 

 
(c) 

Figure 12.5. The best model found at three points during regression of f(x) = 10 

sin(x + R). The green points show the training data, the grey area shows the 

modelôs distribution, and the blue line shows the analytical model with stochastic 

elements removed. 

 

 

 
(a) 

f(x) = x
2 
R 

 
(b) 

f(x) = x
2 
sin(x + R) 

 
(c) 

Figure 12.6. The best model found at three points during regression of f(x) = x
2 

sin(x + R). The green points indicate the training data, the grey area indicates the 

modelôs distribution, and the blue line indicates the analytical model with 

stochastic elements removed. 

 

f(x) = -1.5 x + 3R 

 
(a) 

f(x) = x R - 1.5 x
3
 

 
(b) 

f(x) = (x + R) - 1.5 x
3
 

 
(c) 

Figure 12.7. The best model found at three points during regression of f(x) = (x + 

R) - 1.5 x
3
. The green points are the training data, the grey area is the modelôs 

distribution, and the blue line is the analytical model with stochastic elements 

removed. 
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The time to regress each system successfully ranged from one to five minutes. The 

primary computation time consists in computing the candidate model distribution at 

each training point. We use random sampling to determine the output ranges at each 

point, but a more intelligent sampling method could be used to scale the application to 

higher complexity systems. 

Figure 12.5 shows three stages during regression of the function f(x) = 10 sin(x + R), 

where R is a stochastic element variable that returns a uniformly random number in 

the range x = -1 to x = 1 inclusive each time it is read. 

Early on, candidate solutions are linear with distributions that cover all the training 

points ï shown in Figure 12.5a. In Figure 12.5b, the solutions have inferred the sine 

function in the system, but the noise distribution is just added linearly to the output. In 

the next stage, Figure 12.5c, the solution has converged on the sine function with the 

stochastic element located inside the sine function. 

Figure 12.6 shows the regression of the function f(x) = x
2 
sin(x + R) which is similar to 

the first experiment but now has a variable amplitude sine wave. Candidate solutions 

converge on quadratic amplitude noise very quickly ï Figure 12.6b. Shortly after, the 

sine function is found and the analytical model converges in Figure 12.6c. 

The third experiment uses a polynomial function but with noise simply added linearly 

to the output. This is a case where the minimum error model is the same as the 

analytical model but it is important that we can differentiate this type of noise as well.  

Figure 12.7a shows early candidate solutions are linear with an additive noise range. 

In Figure 12.7b, the analytical model has been found but the noise distribution has not 

yet explained all data points. Figure 12.7c shows the converged solution identifying 

the correct analytical model and its distribution. 
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Conclusions 

Stochastic elements existing inside a hidden system can produce nonlinear and non-

uniform noise at the observable outputs. There are many cases where the expected 

value output or minimum error regression can be deceiving toward finding an exact 

analytical model as done in symbolic regression. 

We have presented a simple approach to model stochastic elements directly as uniform 

random features using symbolic regression. The objective for candidate models with 

stochastic elements is to explain (overlap) all training data points in its distribution and 

minimize the area of the distribution used. 

Results show this approach can find the exact analytical model despite misleading 

nonlinear and non-uniform output noise.  In three basic experiments, regression of the 

output distribution found the correct system structure and location of the stochastic 

elements with parameters existing in the hidden system. 
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CHAPTER 13. STOCHASTIC REACTION MODELS 

Summary 

Many systems, particularly in biology and chemistry, involve the interaction of 

discrete quantities, such as individual elements or molecules. When the total number 

of elements in the system is low, the impact of individual reactions becomes non-

negligible and modeling requires the simulation of exact sequences of reactions. In 

this chapter, we introduce an algorithm that can infer an exact stochastic reaction 

model based on sparse measurements of an evolving system of discrete quantities. The 

algorithm is based on simulating a candidate model to maximize the likelihood of the 

data. When the likelihood is too small to provide a search gradient, the algorithm uses 

the distance of the data to the model's estimated distribution. Results show that this 

method infers stochastic models reliably with both short time gaps between 

measurements of the system, and long time gaps where the system state has evolved 

qualitatively far between each measurement. Furthermore, the proposed metric 

outperforms optimizing on likelihood or distance components alone. Traits measured 

on the search novelty, age, and bloat suggest that this algorithm scales well to 

increasingly complex systems. 

Introduction  

Stochastic systems pervade nearly all areas of science, from quantum properties of 

atomic particles, to chemical reactions in a chemical bath, to fluctuations in 

populations or ecosystems. All stochastic systems are at least partially random, 

making them difficult to model dynamically or deterministically. Instead, Monte Carlo 

methods are often employed to simulate and analyze their behavior. 

A particularly important Monte Carlo method was developed by Dan Gillespie in 1977 
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in order to model chemical reactions kinetics (Gillespie 1977). The Gillespie 

algorithm performs an exact and statistically-correct simulation of a stochastic system 

based on a set of discrete chemical reactions, reaction coefficients, and initial 

conditions. The Gillespie algorithm has been used extensively in systems biology, and 

also similar domains. Traditionally, the set of reactions that model a stochastic system 

must be developed and theorized manually by experts.  

In this chapter we introduce an evolutionary algorithm that automatically hypothesizes 

about the reactions and reaction rates taking place in a system simply by analyzing 

raw experimental data, even with large time gaps between observations (see Figure 

13.1).  The proposed method searches over a space of reactions in order to find the 

maximum likelihood model that agrees with the experimental observations.  

The key challenges to searching over stochastic models is the computational cost of 

 

Figure 13.1. Overview of the modeling problem. A stochastic system evolves an 

exact behavior over time shown in blue. Periodically, the state of system can be 

measured (shown in red dots), a sample of the exact time evolution of the system. 

The task is to infer a maximum likelihood stochastic model (right) for this system 

from these periodic measurements. Actual data and solution shown. 
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estimating likelihood values from a model and maintaining a search gradient. Except 

for only the most trivial systems, the probability density of a set of stochastic reactions 

cannot be solved over time. Instead, the model can be simulated (or sampled) 

repeatedly. However, efficient sampling methods fail over large time spans (Gillespie 

2007), making it difficult to estimate distribution tails.  

The proposed method overcomes this difficulty by using a two-component 

optimization metric. The metric attempts to maximize the log-likelihood of the data 

given a candidate model. However, if the likelihood is too small to provide a gradient 

for the search, the criterion changes to the distance of each data point to the estimated 

probability density of the candidate model. In effect, this distance component allows 

even extremely inaccurate models to improve despite having zero likelihood. Once 

models get close enough to the data, where their likelihoods can be estimated 

accurately through sampling, the metric switches to maximize the likelihood. 

This metric also reduces the computational complexity, as the accuracy of estimating 

the tails of distributions is less important. The algorithm can thereby use fewer 

samples (fewer simulations of a candidate model) and still estimate a useful likelihood 

gradient. 

Background 

Here we introduce important concepts in stochastic simulation algorithms, density 

estimation, and evolutionary algorithms. 

Stochastic Simulation Algorithms 

The exact stochastic simulation algorithm was first developed in (Doob 1945) and 

later applied to chemical kinetics in (Gillespie 1977). The makes few assumptions 

about the system except that the environment is well mixed. 
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The basic algorithm involves two steps: (1) sampling a time delay until the next 

reaction occurs, and (2) sampling among possible reactions which occurs. Each of 

these samples are dependent on the number of molecules in the current state. When 

there are a large number of molecules, the time until the next reaction can be 

extremely small. The counts of each species also influences which reaction is more 

likely to occur. The system is simulated by repeatedly applying reactions and 

incrementing time by the sampled time amount, resulting in a random walk, time-

series trajectory. See (Gillespie 1977) for more details. 

The exact simulation of the Gillespie algorithm becomes critically important when the 

number of molecules is sufficiently small. In this case, single reactions can 

significantly impact reaction propensities and future states (e.g. reaching a terminating 

state). When the number of molecules is exceedingly large, the system dynamics are 

approximately deterministic because a large numbers of reactions tend to average out 

random fluctuations. 

The exactness of the Gillespie algorithm does come at a computation cost, and several 

methods have been proposed to improve its performance, while still preserving 

exactness where necessary.  

For our simulations, we use the modified Poisson tau-leaping procedure that ensures 

that at most one critical reaction occurs per leap (Cao, Gillespie et al. 2005). The tau-

leaping speeds up the stochastic simulation by estimating the number of reactions 

occurring during a time period tau. The value of tau is chosen such that the change in 

reaction propensities during tau is arbitrarily small. When the tau leap is not large 

enough to provide useful speed up, the algorithm defaults to an exact simulation. 



 

192 

Kernel Density Estimation 

In order to calculate the likelihood of a the data given a candidate model, we need to 

estimate the probability density of the model at each data point. There are many ways 

to estimate probability densities. 

A simple method is to use a histogram. The histogram divides all samples (in our case 

counts of molecules after simulating a model) into a number of bins. The density is 

then the bin frequency divided by the bin width. Several methods exist for choosing 

optimal bin widths and positions (Hideaki and Shigeru 2007).  

A major drawback to binned histograms however is that they are locally flat 

everywhere. In other words, they have no local gradient that is amenable to 

optimization.  

An alternative to a histogram, and the method used in our experiments, is kernel 

density estimation (Rosenblatt 1956; Parzen 1962). Kernel density estimation is a non-

parametric method to estimate probability density functions. It sums a series of kernel 

functions that are centered on each sample. We used a Gaussian kernel function, 

meaning each sample contributed a Gaussian density around its sample value. 

Choosing a uniform kernel for example would produce a result similar to a binned 

histogram. 

The Gaussian kernel produces density estimates, useful for optimizing, however we 

still need to specify bandwidth. The bandwidth is analogous to the bin width in a 

binned histogram. Variable kernel bandwidth selection is the technique of selecting a 

different bandwidth for each sample (Terrell and Scott 1992). Variable bandwidths 

allow the kernels to be narrow in high density regions, capturing high details of the 

distribution, and wide in less certain low-density areas. 
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In our experiments, we used the square-root law (Abramson 1982) for selecting the 

bandwidths per sample. This technique requires an initial estimate of the density ï 

here, we used an ordinary histogram with optimize bins chosen by minimizing the 

mean integrated squared error (MISE) (Hideaki and Shigeru 2007). The final result is 

a smooth continuous estimate of the probability density that captures both sharp and 

diffuse features in the distribution. 

Evolutionary computation 

See the description in the section "Evolutionary Computation" on page 3 for more 

information. 

Algorithm  

The proposed method for inferring a maximum likelihood stochastic model uses an 

evolutionary algorithm to search for sets of reaction channels and rates to match the 

 

Figure 13.2. The encoding of a solution representing a stochastic model of 

discrete reactions. A series of chemical reactions (top) are represented by 

corresponding integer coefficients and real valued rate constants for each 

reaction (bottom). 
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data. In this section, we describe the evolutionary encoding of candidate models in the 

search, and the fitness function. 

Encoding  

The stochastic model consists of a series of reactions. Each reaction specifies an 

integer number for the inputs, an integer number for the outputs, and a real valued 

number for the reaction rate.  If a reaction does not use an input, its input value is 0; 

likewise for outputs.  

We use a fixed, maximum number of reactions for our experiments. Candidate models 

can opt to use fewer reactions than the maximum by setting the reaction rate to 0, or 

setting the inputs and outputs to 0.  

Figure 13.2 summarizes our encoding for a stochastic model. It consists of a matrix of 

integer valued input coefficients for each reaction, a vector of real valued coefficients 

for each reaction, and a matrix of integer valued output coefficients for each reaction. 

A random encoding is produced by filling each matrix with random integers, normally 

distributed with zero mean and standard deviation of 1, and filling the reaction vector 

with random positive real values, normally distributed with zero mean and standard 

deviation of 1.  

The mutation operator works by randomizing each individual element with a fixed 

point mutation probability. The crossover operation recombines two parent encodings 

to form a new offspring. We use a random single point crossover on the reactions ï for 

example, copying the first n reactions (inputs, outputs, and rate) from the first parent, 

and the remaining from the second parent. 

The complexity of the encoding is defined as the sum of all integer valued reaction 
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coefficients on both inputs and outputs of the reactions.  

Likelihood Estimate 

Our goal is to find a maximum likelihood model. We cannot estimated the likelihood 

of a model explicitly, however, we can estimate the likelihood of seeing the 

experimental data given a specific model. This gives a measure of how well a 

particular model agrees with the data. In other words, we are trying to maximize the 

following expression: 

)|(
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mMxPLikelihood
n

i

i ==Ô
=  

Here, n is the number of data points (measurements of a system state), xi is a particular 

data point, m is a particular model, and P is the probability density of the model m at 

data point i. Rather than working directly with probabilities, it is numerically more 

stable to work with the log of probabilities, or the Log-Likelihood: 
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To evaluate the likelihood, we need to estimate the value of P(xi | M = m). We do this 

by sampling the model m ï that is, simulating the model over the time span from the 

previous data i ï 1 point to the current data point i.  

Figure 13.3 visualizes the simulation process. The candidate model is simulated, using 

the previous state, until the time reaches the current state.  Each simulation is then 

added to a kernel density estimator, described above, to estimate the probability 

density P. The log of the density is then summed for each state x of the system to the 

cumulative log-likelihood value. 
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Fitness Function 

Ultimately we want to maximize the likelihood of a candidate model, but since we can 

only approximate the density function, most random models will tend to have zero 

likelihood and no gradient to optimize on because we cannot accurately estimate the 

tails of the probability density function. 

Our solution to this problem is to use a two-component fitness metric. The two 

components are: 

1. The log-likelihood as usual, and  

2. The distance of the data point to the median value of the estimated distribution 

When a model has near zero likelihood (e.g. lower than epsilon = 10
-6

 in our 

experiments) we subtract the distance of the data point to the median value of the 

distribution. Otherwise, the fitness is equal to the log-likelihood. This fitness metric is 

 

Figure 13.3. Comparing a candidate model with the experimental data. The left 

pane shows the hypothetical exact behavior of a system in blue, and two known 

measurements of the system at red dots. The candidate model is simulated 

multiple times, starting from the first measurement for t seconds, in order to 

estimate a probability distribution of the model (right). The state of the second 

measurement is then compared with this distribution to evaluate the quality of 

the model to reproduce the measurement.  
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summarized in Figure 13.3. 

By adding the log-likelihood component to the distance component, the fitness 

function remains monotonically increasing  for improving models. This allows 

initially poor random models to move their distributions close enough to the data 

points such that their density estimations can be used to maximize the likelihood. 

Experiments 

We perform proof of concept experiments on the basic Lotka-Volterra model (Lotka 

1925; Volterra 1926). The target reactions for this system are shown below:  
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The Lotka-Volterra reactions model a predator prey system. In the first reaction, prey 

(represented by x) grow exponentially. In the second reaction, prey may meet 

predators (represented by y), causing a prey to die and predators to increase in 

number. Finally in the last reaction, a predator can die out.  

We generated data sets of 10 pairs of measurements of the Lotka-Volterra system. 

Each pair consists of a random initial condition, followed by a measurement after 

simulating for a fixed time duration. 

In our experiments, we compare two types of data sets, those with short time gaps, 

where measurements are made in short succession (time steps of 0.002), and long time 

gaps (time steps of 0.1) where the state of the system changes dramatically between 

measurements. An example of the long time gaps data set is shown in Figure 

13.1(left), where each green arrow is a pair of measurements.  
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In the evolutionary algorithm we use a population size of 30, crossover probability of 

50%, and mutation probability of 15%. We allow a maximum of 3 reactions in each 

model. In estimating a model density for a data point, we sample 100 independent 

simulations. We track various statistics of the best solution throughout each trial, 

including fitness on training and test data sets. We terminate all trial runs after 300 

 

Figure 13.4. The search performance of the three compared fitness metrics. The 

top panes show performance when data points appear in rapid succession with 

short gaps in time. The bottom panes show performance when there are long 

gaps of time between data points. The left panes show the likelihood score of the 

best model during the search. The right panes show the percent of runs that 

identified the exact solution for the amount of computational effort. Error bars 

indicate the standard error. 
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iterations (generations) of the evolutionary algorithm. 

We repeated the evolutionary algorithm using three different fitness metrics: 

1. Log-likelihood only 

2. Median distance only 

3. The proposed distance and Log-likelihood metric 

Therefore, we will be able to evaluate strengths or weaknesses of each component in 

the proposed metric. 

Results 

The first results is that the evolutionary algorithm is able to find the maximum 

likelihood model for all three compared fitness metrics. For the short time gap data 

set, Figure 13.4 (top) shows that all three metrics reach approximately 90% 

convergence to the exact known model. Both the likelihood and hybrid metrics 

perform 100% convergence after 100 generations.  

In terms of computation time, each generation took approximately 1 minute. Most 

computation cost lies in simulating various candidate models to estimate their 

probability densities for each data point.  

On the data set with large time gaps, Figure 13.4 (bottom) shows greater 

differentiation between the three metrics. The two-component metric reaches the 

highest likelihood models and convergence, followed by the likelihood only metric. 

The distance metric only performs the worst.  
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Interestingly, when the time gaps are short, the performance of the two-component 

metric and likelihood metric only are approximately the same. This indicates that on 

short time gaps, the probability density of random candidate models is more likely to 

provided a useful search gradient, because data points are close to their initial 

conditions. Here, there is no benefit to using the extra distance component in the 

fitness metric. 

However, the distance metric appears to be crucial when the data set has large time 

gaps (Figure 13.4). Here, the two-component metric out performs the other metrics.  

Also interesting is that the distance metric alone performs very poorly. This metric 

allows models to get their distributions centered on the data, but does not optimize the 

likelihood making it inadequate on its own.  

In Figure 13.5 we compare the relationship between the log-likelihood score and the 

distance metric. We can see that the distance is correlated with the log-likelihood, but 

 

Figure 13.5. The relationships between the distance metric of a model and its 

corresponding likelihood given the experimental data. Each point in the plot is a 

random candidate model during the likelihood search. 
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imperfect. There is large variance vertically in the log-likelihood for fixed distance, 

indicating that log-likelihood metric is inaccurate or at least unstable at the tails of the 

model probability distribution.  

Finally, we collected various traits of the best solution for each algorithm during each 

search, shown in Figure 13.6. The first observation is that the genotypic age (Hornby 

2006) of the best solution (measured in generations) is roughly equal to the total 

 

Figure 13.6. Traits of the best model over time during the evolutionary search. 

The top left plot shows the genotypic age of the best solution (the number of 

generations any part of the solution existed in the population). The top right 

shows the novelty of the best solution (how different it is from the rest of the 

population). The bottom pane shows the bloat of the best solution (ratio its 

complexity with the target solution complexity). Error bars indicate the standard 

error.  
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generations on average. This indicates that the evolutionary search is not being trapped 

by local optima, otherwise the best solutions would appear younger as younger 

solutions would replace solutions in local optima. Interestingly, the distance metric 

algorithm tended to have the highest ages, suggesting that it avoided local optima 

most, perhaps by identifying an attracting region for the global optima most reliably. 

The novelty of the best solution over time, shown in Figure 13.6, shows that the 

populations are initially very diverse before converging onto optima. But no clear 

difference between the compared metrics is apparent. Novelty (Lehman and Stanley 

2010) is defined as the average distance summed over the reaction coefficients of a 

candidate solution to nearest neighbors in the current population. 

In terms of bloat (Banzhaf and Langdon 2002), the algorithm starts off with a low 

bloat ration after random initialization. The bloat tends to increase quickly, and then 

fall toward a ratio of 1 (no bloat) as the best solution converges to the target (Figure 

13.6). The distance only metric tended to reach higher bloat, which may be a reflection 

that it was less likely to converge to the target. 

One final observation is that for these traits in Figure 13.6, there appears to be very 

little difference between the likelihood metric and the two-component metric. The key 

difference is only in the overall performance (Figure 13.4). This suggests that the role 

of the distance component is to help models move toward the data so that the 

likelihood component can be used, and does not impact other aspects of the population 

or evolutionary algorithm. 

Conclusions 

In this chapter we introduced an automated algorithm for identifying stochastic 

reaction models. The proposed method used an evolutionary algorithm to identify a 
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maximum likelihood set of reactions and reaction coefficients. Instead of only 

optimizing likelihood, the proposed algorithm used a two-component fitness metric 

that optimized the distance of a candidate model's distribution from the data point 

when the likelihood was too small to provide an accurate search gradient.  

The experiments indicate that the likelihood metric alone performs well on data with 

short time gaps in data set. However, when the data set contained large time gaps, 

where the state of the system evolved far from the local behavior the two-component 

fitness metric performed best, finding the exact target solution faster and more 

reliably. Observations on the age, novelty, and bloat of the best solution indicate that 

the algorithm avoids local optima, and could scale well with increasing complexity 

systems. 
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CHAPTER 14. TREE AND GRAPH ENCODINGS 

Summary 

In this chapter, we analyze two general-purpose encoding types, trees and graphs 

systematically, focusing on trends over increasingly complex problems. Tree and 

graph encodings are similar in application but offer distinct advantages and 

disadvantages in genetic programming. We describe two implementations and discuss 

their evolvability. We then compare performance using symbolic regression on 

hundreds of random nonlinear target functions of both 1-dimensional and 8-

dimensional cases. Results show the graph encoding has less bias for bloating 

solutions but is slower to converge and deleterious crossovers are more frequent. The 

graph encoding however is found to have computational benefits, suggesting it to be 

an advantageous trade-off between regression performance and computational effort.  

Introduction  

In this chapter, we analyze the differences between a tree and graph encoding in 

genetic programming. The choice of solution encoding in genetic programming can 

have dramatic impacts on the evolvability, convergence, and overall success of the 

algorithm (Franz 2006). Algorithms and encodings are often described by their bias-

variance trade-off ï error introduced by predisposed structure (bias), and error 

introduced by representative power and accommodation (variance) (David 1997; 

Domingos 2000; Uday and Cezary 2003). In this chapter, we examine such trade-offs 

more precisely, considering their representations, solution bloat, overfitting, and 

convergence over a range of complexity problems. In contrast with previous research, 

we examine these performance trends across problems with a systematically-generated 

range of complexities. 
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Tree encodings are well-known for their representative power and used heavily in 

genetic programming (Koza 1992). Tree encodings are generally rooted with each 

branch describing a unique or isolated sub-structure. In contrast, graph (or network) 

encodings describe groups of interacting or re-used structures.  

Graph encodings allow direct re-use of subcomponents components, and can thus 

promote modularity and regularity in solutions. Graphs can also have a computational 

advantage by reducing the evaluation frequency of commonly reused structure within 

the solutions. However, the inherent tradeoff between modularity and regularity 

(Lipson 2007) suggest that reuse of modular substructures also creates internal 

coupling that may sometimes hinder evolvability. As a special case of graphs, tree 

encodings can often be adapted to graph encodings which may be more natural to the 

problem being solved when latent features are commonly reused.  

We compare these two encoding approaches systematically using the symbolic 

regression problem (Koza 1992; Schmidt and Lipson 2005). Symbolic regression is a 

well-known genetic programming benchmark problem with precise definitions of 

performance and convergence. Additionally, symbolic regression provides a natural 

measurement of problem complexity and difficulty, allowing us to explore 

performance trends as problem complexity increases, 

The Tree Encoding 

Structure 

The tree encoding is a popular structure in genetic programming (Koza 1992), 

particularly in symbolic regression. Tree encodings typically define a root node that 

represents the final output or prediction of a candidate solution. Each node can have 

one or more child nodes that are used to evaluate its value or behavior. Nodes without 
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children are called leaf nodes (or terminals) that evaluate immediately from an input, 

constant, or state modeled within the system. 

Tree encodings in symbolic regression (Koza 1992; McKay, Willis et al. 1995) are 

termed expression trees. Nodes represent algebraic operations on children, such as 

add, sub, multiply, divide. Leaf nodes represent input values (e.g. x1 = 1) or evolved 

constant values (e.g. c1 = 3.14).  An example expression tree is shown in Figure 14.1a. 

Evaluating an expression tree is a recursive procedure. Evaluation is invoked by 

calling the root node, which in turn evaluates its children nodes, and so on. Recursion 

stops at the leaf nodes and evaluation collapses back to the root. Recursion can be 

computationally expensive, particularly in deep trees 

Evolutionary Considerations 

Crossover of expression trees swaps two sub-trees from two parent individuals. The 

crossover points are typically chosen at random in each parent (McKay, Willis et al. 

1995; Schmidt and Lipson 2005). 

An immediate consequence of this procedure is that offspring can become extremely 

large by chance.  For example a leaf node swapped with the root node of another 

parent could double the depth of the childôs tree. Therefore, it is common practice to 

crop children or avoid crossovers that produce trees over some threshold depth. 

A second consequence is repeated or duplicate structure. For example if the individual 

encodes the function f(x) = (x ï 1)
4
, the sub-expression (x ï 1) must exist four times in 

the tree. The duplicate expressions can dominate the crossover point selection 

focusing recombination on (x ï 1) sub-trees. 

Along the same line from the previous example, duplicate expressions make mutation 
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more difficult. To produce f(x) = (x ï 1.23)
4
 (from the previous example), the constant 

must be mutated 4 times. 

The Graph Encoding 

Structure 

The graph encoding is similar to the tree, but child nodes are no longer unique ï 

multiple nodes may reference the same node as its child.  

Graph encodings in symbolic regression are termed expression graphs, or operation 

lists. Each node in the graph can represent algebraic operations, constant values, or 

input variables. An example graph expression is shown in Figure 14.1b. 

A useful feature of graph encodings is that they lend well to efficient non-recursive 

representations. For experiments in this chapter, we use a list of operations that modify 

a set of internal variables, R. Local variable represent internal nodes in the graph and 

are necessary to build-up non-trivial expressions 

In the list encoding, each operation in the list can reference one or more input 

Tree: f(x) = (x + 1)
4
 

 
(a) 

Graph:  f(x) = (x + 1)
4
 

 
(b) 

Figure 14.1. Example expressions of f(x) = (x + 1)
4
 in the tree encoding (a) and 

graph encoding (b). The graph encoding reuses redundant sub-expressions but 

is more susceptible to deleterious variation. 
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variables, evolved constants, or internal variables. The result from each operation is 

then stored in an internal variable. After all operations are completed, the final local 

variable is returned as output. 

Avoiding recursion, without the need to cache or compile a tree expression, provides 

significant speed up computationally. We will analyze this improvement later in the 

chapter. 

Evolutionary Considerations 

Crossover in the graph encoding exchanges two sections of the operator list to form a 

child. For experiments in this chapter we use single point crossover that is chosen 

randomly. 

The graph encoding reuses sub-expressions (multiple operations can reference the 

same sub-expression). Unlike the tree, crossovers in the graph are less likely to focus 

on redundant structure since it can be represented in a single operation (or internal 

variable). 

For the same reason, crossover and mutation can be significantly more deleterious. An 

alteration to an operation producing a reused internal variable will affect all other 

operations which reference it. In contrast, variation in the tree encoding is localized to 

individual branches. 

Experiments 

Experimental Setup 

The symbolic regression algorithm and past experiments on scaling complexity can be 

found in (Schmidt and Lipson 2005).  For experiments in this chapter, we have simply 

swap out the tree and graph encodings described earlier.  
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Parameters for all experiments are summarized in Table 14.1. Population size, 

mutation probability, and crossover probability are the same used in (Schmidt and 

Lipson 2005).  

For experiments in this chapter we use correlation fitness (McKay, Willis et al. 1995) 

since it is a naturally normalized metric that translates well between multiple 

experiments and different target functions. 

Evolution is stopped after the best candidate solution has converged on the training set 

(convergence defined later), or after a maximum of one million generations. 

Table 14.1. Summary of Experiment Setup 

Solution Population Size 64 

Selection Method Deterministic Crowding 

P(mutation) 0.05 

P(crossover) 0.75 

  

Inputs 1 

Operator Set  +, -. *, /, sin, cos  

Terminal Set  x, c1, c2, c3, c4  

  

Graph Encoding  

List Operations 16 

Internal Variables 4 

Evolved Constants 4 

Crossover variable, single point 

  

Tree Encoding  

Initial Depths 1-5 

Crossover single branch swap 
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Target Complexity 

We define complexity as the number of nodes in a binary tree needed to represent the 

function (Monroy, Arroyo-Figueroa et al. 2004; Schmidt and Lipson 2005). Target 

functions are generated randomly, and then simplified algebraically (e.g. collecting 

terms, canceling quotients, and evaluating constants) to give a more accurate 

representation of the targets minimum size. 

This metric for complexity does not perfectly match problem difficulty. For example, 

f(x) = x1 x2 x3 is most likely more difficult to regress than f(x) = x1 + x2 + x3 + x4 for 

combinatorial reasons. However, as seen in Section 7, the correlation with problem 

difficulty is strong and larger target functions take longer to regress symbolically on 

average for random functions. 

Random Test Problems 

A key focus of this chapter is to examine performance trends between the two 

encoding schemes over a range of different complexity problems. We collect results 

on randomly generated functions to get sufficient samples over several complexity 

targets. 

Random targets are generated by randomizing a tree encoding. The target first 

simplified algebraically before measuring its complexity. Each encoding is then run on 

the same target functions. 

The training data is generated by sampling the target function randomly over the range 

R
n
 Í [0, 2] for all input variables 200 times. The test set is generated similarly by 

sampling over the range R
n
 Í [0, 4].  

Results are collected over 500 randomly generated target functions, divided evenly 
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among complexities (1, 3, 5, é, 19), or 50 random targets per complexity. 

Additionally we test on two input feature sizes: single variable and 8-variable. 

Convergence Testing 

Convergence is defined as having greater than 0.9999 correlation on the training set. 

Evolution is stopped if the best candidate solution reaches this correlation. 

Note that convergence on the training set may not mean the target function has 

converged; the solutions may have overfit to the training data. For this reason we 

report convergence on the test set (test set correlation greater than 0.9999) in 

experimental results. 

Results 

Solution Complexity and Bloat 

Bloated solutions are those which are excessively complicated. In machine learning, 

bloat is synonymous with ñoverfittingò where solutions contain complex structures 

that do not exist in the target function to explain the fitness objective.  

We measure bloat as the complexity of the regressed solution minus the complexity of 

the target function: 

Bloat = (# nodes in solution) ï (# of nodes in target) 

This definition of bloat will be zero if the evolved solution is the exact same size as 

the target (perfect case) or positive it is larger.  In rare cases, converged solutions may 

use fewer nodes if further simplification on the target function is possible but not 

caught by our algebra library.  
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We measure the effective number of nodes in the graph encoding by converting it to a 

binary tree. This always increases the number of nodes but allows better comparison 

with the tree encoding results. 

The mean bloat of each encoding type is shown in Figure 14.2 at each target function 

complexity. In the 1-variable case, the tree encoding has higher average bloat over all 

complexities. The amount of bloat (for both encodings) tends to increase with target 

complexity.  Bloat is also higher on average in the 8-variable targets than the single 

variable targets. 

Convergence Rate 

In this experiment we measure the convergence rate for each encoding over target 

function complexity ï the percent of runs where the best solution achieves greater than 

0.9999 correlation on the withheld test set. Figure 14.3 shows the test set convergence 

for each complexity target function. Both encodings drop in convergence with higher 

complexity target functions. Each encoding is run on the same target functions. 

 

 
(a) 1-variable 

 

 
(b) 8-variable 

Figure 14.2. Bloat of converged solutions for 1-variable functions (a), and 8-

variable functions (b). Each point is averaged over 50 randomly generated target 

functions. Error bars show the standard error. 
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The tree encoding achieves slightly higher convergence than the graph encoding over 

medium sized targets. However, their general trends in both the 1-variable and 8-

variable cases appear to be comparable. 

Convergence Evaluations 

In this experiment we measure the number of point evaluations before convergence on 

the training set. A point evaluation is a single execution of a candidate solution on a 

given input. Therefore, this is a metric of the total computational effort required for 

convergence. 

Figure 14.4 shows the mean number of point evaluations to convergence for each 

encoding where the runs had converged on the training set.  In the single variable case, 

the graph encoding always takes more evaluations on averaged to converge than the 

tree encoding. This suggests that the graph encoding is less evolvable, or perhaps more 

conservative considering it is less likely to bloat. 

 
(a) 1-variable 

 
(b) 8-variable 

Figure 14.3. Test set convergence versus target function complexity for 1-variable 

functions (a), and 8-variable functions (b). Each point is corresponds to 50 

randomly generated target functions. 
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In the 8-variable case however, the difference in point evaluations decreases for higher 

complexity targets. At complexity ten and higher both encodings perform roughly the 

same. These figures show only runs where both encodings converged on the training 

set. In the 8-variable case the effort appears to require less computation, but fewer 

runs were able to converge before a million generations. 

Evolvability 

In this experiment we measure the number of beneficial crossover occurring during 

evolution. A beneficial crossover occurs when a child achieves higher fitness than its 

most similar parent. 

Figure 14.5 shows the rate of beneficial crossovers for both encodings over the range 

of complexity target functions. In the single variable case, the tree encoding 

experiences more beneficial crossovers than the graph encoding, particularly at low 

complexities.  

 
(a) 1-variable 

 
(b) 8-variable 

Figure 14.4. The number of point evaluations before convergence on the training 

set versus the target function complexity for 1-variable functions (a), and 8-

variable functions (b). Points are averaged over 50 randomly generated target 

functions. Error bars show the standard error. 
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Computational Performance 

In addition to evolvability, bloat, and convergence, the efficiency of encodings can 

have a large impact on the difficulty of problems that can be solved in practice. In this 

section we benchmark the tree and graph encodings. 

Figure 14.6 shows the computational performance, measured in point evaluations per 

second over a range of complexities. The graph encoding remains roughly constant 

because it has a fixed encoding size. Variation still exists because it still executes 

operations in its list that do not affect the output. 

The tree encoding is efficient on simple functions of less than five nodes. Performance 

drops significantly with complexity however as recursion deepens with complexity. 

The computational performance result indicates the tree encoding does not scale as 

well with complexity. At five nodes and higher, the graph encoding using an operator 

list more than triples the performance of the tree encoding. 

 
(a) 1-variable 

 
(b) 8-variable 

Figure 14.5. The rate of beneficial crossovers versus target function complexity 

for 1-variable functions (a), and 8-variable functions (b). Results are averaged 

over 50 random test problems. Error bars show the standard error. 
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Conclusions 

We have compared two encoding schemes in increasingly complex problems using 

symbolic regression. While the tree and graph encodings are similar in application, 

they offer distinct advantages and disadvantages in genetic programming. 

We have tested these two encodings on randomly generated nonlinear target functions, 

for both single variable and 8-variable input spaces. 

Results show that the tree encoding solutions exhibit consistently higher bloat over all 

complexity targets. The tree encoding however offers slightly higher convergence rate 

(finding an exact fit) and time to converge, but there was no large trend difference 

over complexity. The tree encoding experiences more beneficial crossovers (offspring 

more fit than most similar parent) on single variable targets. Beneficial crossovers 

decrease with complexity. On 8-variable targets both encodings experienced similar 

trends in beneficial crossover trends. Finally, the computational comparison shows 

that the graph encoding is more efficient than the graph for high complexities. 

 

Figure 14.6. The point evaluations per second versus the function complexity. 
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From these results we conclude the graph encoding to be a attractive alternative to 

traditional tree based problems (e.g. symbolic regression). Graph encodings provide 

similar performance in convergence over a range of complex target functions and 

different input sizes, and do so with less bloat. The graph encoding experiences fewer 

beneficial crossovers and converges slightly slower, however the computational 

performance outweighs this drawback. 
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SECTION III ï INTERPRETING RESULTS 

CHAPTER 15. PARAMETER MAPPING 

Summary 

Recent automated scientific discovery processes hold the potential to accelerate 

scientific inquiry in many fields, but also present scientists with a new kind of 

challenge: How to assign meaning to the discovered relationships, and how to 

reconcile the new knowledge with current understanding. We used automated 

modeling to gain new insights into cellular differentiation dynamics. The process 

discovered a new and substantially simpler model of the dynamics of cellular 

differentiation of Bacillus subtilis that is equally predictive on unseen data. Further, it 

identified a new invariant, which through a process of automated-mapping was found 

to be closely tied to the differentiation period of the cell. This prediction was validated 

using a set of new experiments. We argue that beyond the value of these two specific 

new models to the understanding of Bacillus subtilis, the search for invariants and 

their mapping to existing knowledge may be a way of identifying governing principles 

of other biological systems. Just as physical conservations, such as the conservation of 

energy, can help understand physical processes, so can biological conservations help 

identify new homeostatic properties selected for by evolution. 

Introduction  

Increasing throughput of experimentation and data collection has placed a growing 

demand on automated modeling and knowledge discovery techniques (Ball 2009; 

Mitchell 2009; Waltz and Buchanan 2009). While recent developments in automated 

scientific knowledge discovery have the potential to accelerate scientific inquiry in 

many fields (King, Rowland et al. 2009; Schmidt and Lipson 2009), scientists will 
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increasingly be faced with the challenge of interpreting these models and reconciling 

new insights with existing knowledge.  

In this chapter, we juxtapose automated modeling with the current biological 

understanding of cellular differentiation of Bacillus subtilis. We first developed a 

computational method for automatically generating symbolic models of single-cell 

dynamics using data collected from multiple cells. We then compared these data-

driven models to existing, manually-derived models produced from first principles. 

The automatically-generated data-driven models appeared to have a markedly simpler 

form than the established manually-derived models, but could not be readily 

understood. We then developed an additional method for elucidating the meaning of 

the automatically-generated models by mapping components of one model to its 

counterpart. We begin by describing the target biological system and the 

computational technique, and then follow with new models generated and how these 

models led to new insight when compared to the manually-derived models. 

The genetic circuit that controls differentiation of Bacillus subtilis cells into a state of 

competence for uptake of extracellular DNA is well-suited for automated analysis, 

because it is well characterized yet poorly understood. For example, the genes and 

proteins comprising the competence gene regulatory circuit have been identified and 

characterized. Furthermore, we can quantitatively measure the dynamics of multiple 

components of the competence circuit simultaneously and at the single-cell level.  The 

resulting data reveal the dynamics of interactions within the cellular differentiation 

circuit.  Despite these features, a comprehensive understanding of how individual 

biochemical reactions comprising the competence circuit contribute to cellular 

differentiation is currently lacking. The presently accepted model for this circuit has 

been derived from known biochemical reactions, yielding the differential-equation 
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model shown in Figure 15.1(left). 

New techniques for real time high resolution single-cell measurements of gene circuit 

dynamics can now provide new data that includes information about cell-cell 

variability (Figure 15.1 (right)). This presents an opportunity for automated scientific 

methods, which rely heavily on experimental data, to identify improved empirical 

models of these dynamics, and possibly new insight into the local, single-cell 

dynamics. 

We used two types of automated modeling approaches which analyze experimental 

data: The first is a  search for time-delay differential equation models (Bongard and 

Lipson 2007), and the second method is a search for invariant equations and conserved 

quantities (Schmidt and Lipson 2009). We then used a method we call automated-

mapping (described below) to uncover how the automatically-generated models map 

onto existing manually-derived models. We perturbed the parameters of one model 

and generated synthetic data sets, and then fitted the automatically-generated models 

to those generated data sets. This process highlighted the correspondences between the 

parameters of the two models. Moreover, by using the perturbation itself as an 

experimental parameter, we could use the symbolic modeling algorithm itself to also 

uncover the specific nonlinear mapping between the automatically-generated models 

and the manually-derived models. When such a mapping exists, it shows how the 

manually-derived model understanding collapses to the mathematical model inferred 

directly from the data. 
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Based on the dynamical modeling and its mapping, we found that that the key 

dynamics of the B. subtilis cellular differentiation behavior can be captured in a six-

parameter dynamical model, as compared to the 14-parameter state-of-the-art model. 

In addition, the conserved quantity search identified a previously-unknown invariant 

equation. We cannot tell immediately what the conserved value measures or 

represents. However, the mapping shows that the invariant parameters are linked to 

the duration of competence events in the cell, suggesting that the competence duration 

 
Figure 15.1. Manually-derived versus automatically-generated biological models 

and the mapping challenge. Most biological models are derived by hand using 

expert knowledge of the system, related systems, and qualitative understandings 

of the underlying biology (left). When large amounts of experimental data are 

available, empirical models can be inferred automatically by a computational 

search for the most parsimonious model that accurately predicts the dynamics 

(right). The automatically-generated model potentially provides new insight into 

the system but does not have any accompanying explanation. Our solution to this 

problem is to additionally learn a mapping from the known biological model to 

the automatically-generated model, identifying which understood parameters 

collapse to simpler explanations in the automatically-generated solution. Actual 

models and data shown. K and S represent the protein concentration levels of 

ComK and ComS, respectively. Ŭ, and ɓ terms correspond to  the basal and 

maximum rates of protein expression, respectively.  ɚ denotes the linear and ŭ the 

enzymatic degradation rates of ComK and ComS. The meanings of the 

parameters on the right are unknown. 
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may be a fixed or regulated property in each individual cell. After modifying the 

bacillus strain and collecting new data, we verified that the magnitude of the invariant 

predicts the duration of competence events observed in each cell. 

Below, we introduce the automated modeling methods and the biological system in 

greater detail. We then analyze the resulting models and their mappings to the 

manually-derived model and discuss our findings and conclusions. 

Current Biological Understanding 

The B. subtilis competence system exemplifies in its simplest form the typical 

problems associated with developing a comprehensive and conceptual understanding 

of the operational principles of gene regulatory circuits. Under conditions of stress 

such as nutrient deprivation, B. Subtilis cells can transiently become competent and 

take up DNA from the environment and incorporate it into their chromosome. 

Therefore, competence is believed to provide genetic diversification and templates for 

gene repair.  

The differentiation of cells into the competence state is triggered in an autonomous 

and stochastic manner. Once differentiated, cells remain in the competent state only 

for a transient period of time. The probabilistic initiation and transient duration of the 

competence state at the single-cell level is controlled by a gene regulatory circuit 

which constitutes a nonlinear system with excitable dynamics (Süel, Garcia-Ojalvo et 

al. 2006).  At the heart of the competence circuit is the transcription factor ComK, 

whose expression is necessary and sufficient for competence (Sinderen, Luttinger et 

al. 1995; Hahn, Luttinger et al. 1996). ComK positively auto-regulates its own 

expression thereby forming a positive feedback loop (Maamar and Dubnau 2005; 

Smits, Eschevins et al. 2005). The cell exits from the transient state of competence via 
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a negative feedback loop in which ComK indirectly represses the expression of its 

activator ComS (Süel, Garcia-Ojalvo et al. 2006). The competing positive and negative 

feedback loops are described by a two dimensional model of ComK and ComS, based 

on the known biochemical reactions, shown in Figure 15.1(left). This model accounts 

for experimental observations and has been shown to be predictive (Süel, Garcia-

Ojalvo et al. 2006; Suel, Kulkarni et al. 2007).  

The B. subtilis competence behavior is well-suited for automated knowledge discovery 

methods because the organism is experimentally accessible. In particular, the 

dynamics of multiple gene circuit components can be measured simultaneously at the 

single-cell level using quantitative multicolor fluorescence time-lapse microscopy 

(Figure 15.2). However, despite these advantages, how individual biochemical 

reactions at the molecular level contribute to nonlinear dynamics and physiology at the 

cellular level remains poorly understood.   

We measured the activities of ComG and ComS promoters simultaneously at the 

single-cell level using quantitative time-lapse microscopy, utilizing the spectrally 

distinct fluorescent protein reporters cfp and yfp.  Transcriptional reporter constructs 

were integrated into standard non-essential sites of the B. subtilis chromosome. We 

followed 33 B. subtilis cells containing these reporters that transiently differentiated 

into the competence state and collected time-series trajectories of ComS and ComG 

promoter dynamics.  Furthermore, we also utilized a genetically modified B. subtilis 

strain in which the competence circuit was perturbed to generate oscillations (Suel, 

Kulkarni et al. 2007).  Together, the native and modified strains allowed us to record 

pulse and oscillatory dynamics of the competence circuit under two distinct parameter 

regimes, thereby providing additional information on the operation of the competence 

circuit.   
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Figure 15.2. Transient and oscillatory dynamics of competence events in single B. 

subtilis cells. Filmstrips in panels A and B show overlays of phase contrast and 

two-color fluorescence images.  Blue and orange colors depict the reporter for 

competence PcomG and negative feedback loop component PcomS, respectively.  

Panel A shows a single wild type cell that differentiates into the competence state 

and then exits (indicated in blue).  Panel B, shows cells containing a modified 

competence circuit (for details see text and SOM) that give rise to oscillations in 

competence where cells undergo consecutive events.  Panels C and D depict time 

traces of promoter activity obtained from quantitative image analysis of 

fluorescent reporters during the competence events shown in panels A and B 

respectively.  Blue and orange colors utilized in the graphics are consistent with 

the colors depicted in the filmstrips and time traces, where blue indicates 

competence and orange the activity of the negative feedback loop necessary for 

exit from competence. 
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Automated Modeling 

Automated modeling is a process that builds a new model of a system directly from 

experimental data rather than from prior knowledge or assumptions about the 

underlying biological mechanisms. Automated modeling can potentially provide a 

different or unbiased perspective on experimental observations. 

The automated modeling method we used here is called symbolic regression (Koza 

1992). See the description in section "Symbolic Regression" on page 4 for more 

information. Symbolic regression is an established algorithm that generates analytical 

equations for a particular experimental data set, without recourse to expert knowledge. 

It uses an evolutionary search (Forrest 1993) to look for the most parsimonious 

mathematical model (Rissanen 1978) that fits the experimental data for a given set of 

variables and set of functional building-blocks.  

Ordinarily, symbolic regression attempts to create a single model that explains the 

entire data set (Duffy and Engle-Warnick 2002; Elena, Andrei et al. 2005; Bongard 

and Lipson 2007; Cyril and Alberto 2007). In the B. subtilis system however, each 

individual cell may behave differently due to variation in their physical size or internal 

composition, corresponding to parameter changes in a more general model.  

In order to find a single model that captures the behavior of all cells in the 

experimental data, we created a variation of the standard symbolic regression 

algorithm which we refer to as multi-set regression. Instead of optimizing equation 

structures with specific parameter values, we optimize just the equation structure, 

while allowing the parameter values to vary for each individual cell. The figure of 

merit of a candidate equation model is then how well it could be made to fit the curve 

of each and every cell in the experimental data as illustrated in Figure 15.3 steps 1-4.  
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Additional information on the multi-set regression method is provided in the section 

"Multi -set Symbolic Regression" below. 

Dynamical Model 

Our first attempts to find a first-order dynamical model of the B. subtilis 

differentiation failed to find any accurate expressions. A lack of a convergence like 

this typically occurs if the data is purely random, or if the algorithm does not have the 

correct variables or functional building-blocks (e.g. attempting to model a quotient 

without using division). Here, we were attempting to model the numerical derivative 

(Cleveland and Devlin 1988) of each variable, using only addition, subtraction, 

multiplication, and division. 

We began finding accurate models only after allowing the search algorithm to 

introduce a fixed time-delay for each variable. The manually-derived biological model 

also required a fixed time-delay to fit all data sets. 

The requirement of the time-delay in the automatically-generated model is consistent 

with the manually-derived model and the recent finding that ComK represses ComS 

expression indirectly through RapH.  Such a time-delay was shown to increase the 

parameter regime for excitable dynamics in the manually-derived model.  Therefore, 

the requirement of a time-delay in the automatically-generated model demonstrates 

that critical features of gene regulatory circuit dynamics can be identified with this 

approach. 

The most parsimonious model found that fit the data as well as the manually-derived 

model using fixed time-delays is shown in Figure 15.1(right). Figure 15.2C and D 

show agreement of the automatically-generated model with experimental data. We 

further validated the generalization of this model by acquiring new data from a 
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genetically modified Bacillus strain. The initial section of these trajectories was used 

for the time-delay history and to optimize parameters.  

Interestingly, the automatically-generated model is as accurate as the current 

biological model over the different dynamic regimes, but has eight fewer free 

parameters. The simplicity of the automatically-generated model compared to the 

manually-derived model suggests that several parameters involved in the production 

of ComK can be reduced to single parameters, suggesting a potentially overlooked 

simplicity in the generation of functional dynamics. There appears to be a small subset 

of parameters that account for the dynamics of the core competence circuit.  Many 

other parameters do not seem to be as critical.   

A small subset that contributes to function is reminiscent of other observations in 

biology such as the fact that only a few positions in proteins contribute to protein 

function and most others can be mutated without any measurable effect. Such 

properties have been suggested to be critical for evolution of biological networks. 

Invariant model and conserved quantities 

We also performed a separate search to detect a conserved quantity in the B. subtilis 

dynamics. Similar to the symbolic regression method, the invariant-seeking algorithm 

(Schmidt and Lipson; Schmidt and Lipson 2009) searches for invariant expressions 

that remain constant over the dataset. The motivation for this search is that in many 

physical systems, invariant quantities are signatures of governing laws such as the 

conservation of energy. The discovery of invariants in a biological system may 

therefore help uncover the fundamental principles governing the observed dynamics. 
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We used the invariant search algorithm to look for invariants consisting of the ComK 

and ComS values and their first derivatives ï as might be required for some energy or 

momentum conservation (Schmidt and Lipson 2009). Among the candidate 

conservations, the function H shown in Figure 15.4A was the simplest relation and 

also remained invariant even on the forward experimental data of the mutated strain. 

Figure 15.4 also shows the invariant H plotted for several cells (pane D) of two 

different B. subtilis strains which are plotted in pane E. There is some variance in the 

conserved value for each cell which scales with the magnitude of the conserved value.  

We fit this invariant to all data sets for both the wild and mutated strains. Since we do 

not know what the units and offset of the invariant are, we normalized each fit by 

arbitrarily fixing the last coefficient, c6, to one. While there exists some residual 

variance - either from noise or approximations in the conserved value - the normalized 

conserved values show a clear separation between the wild and mutated strains, with 

very little overlap (Figure 15.4E). In fact, given data from an unknown strain, the 

magnitude of the conserved quantity could be used to predict which strain the cell 

belongs to. 

Mapping to Current Biological Understanding 

The automated modeling results gave two previously-unknown descriptions of the 

experimental data: a substantially simpler dynamical model, and an unknown 

conserved quantity. The difficulty is how to explain and interpret these models in 

order to gain new biological insight. In essence, we have new answers derived from 

experimental data, but without any accompanying explanations.  

Our solution to the interpretation challenge is to learn a mapping ï from the current 

manually-derived biological model, to the automatically-generated data-driven model. 



 

231 

The mapping we are interested in is the relationships between the free-parameters of 

the manually-derived model and the free-parameters of the automatically-generated 

models. If a simple mapping exists, it can show how parameters in the manually-

derived model collapse to the simpler automatically-generated dynamical model, and 

which qualities of the known biology affect the automatically-generated conserved 

quantity. 

Automated-mapping - using model perturbations as "experiments" 

We refer to the method for learning the parameter mapping as automated-mapping 

between two models. The basic process, summarized in Figure 15.3 steps 5 and 6, 

starts by simulating the manually-derived model numerically with random parameter 

variations. The automatically-generated model is then fit to each simulated trajectory. 

The result is a set of parameter values for the manually-derived model, and the 

corresponding parameter values for the fitted automatically-generated model. We 

repeat this process for several hundred random parameter variations, thereby 

generating a dataset of matching parameters of both models. 

We first looked at linear correlations between the manually-derived dynamical model 

parameters and the automatically-generated model parameters. Figure 15.5B shows 

the strength of the correlations in a bipartite graph. The correlations suggest that each 

parameter in the automatically-generated dynamical model co-varies with a small 

number of parameters in manually-derived model. Interestingly, some parameters of 

the manually-derived model appear to have little influence on automatically-generated 

model and its dynamics, and therefore are apparently irrelevant to explaining the 

observed behavior in this regime.  
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The linear correlation shown in Figure 15.5B are averaged across a large area of the 

dataset, but the strengths of the correlations vary depending on the specific regime of 

the data. These fluctuations suggest that the relationships between the parameters are 

nonlinear. To investigate this further, we used the same automated model search 

algorithm to find relationship between the parameters of the two models, essentially 

using the parameter variations as "experiments".  

The nonlinear mapping (Figure 15.5C) showed high accuracy; predicting the 

automatically-generated model parameters from the larger manually-derived model 

parameters with goodness-of-fit of over 0.95 for most parameters (Figure 15.5A). This 

suggests that the B. subitilis cellular differentiation dynamics are, in fact, operating on 

a simpler manifold with reduced dimensionality.  

For ComK, the automatically-generated model correlates linearly with the parameters 

of the manually-derived model that describe the maximum production and linear 

degradation of ComK.  However, for ComS, parameters of the automatically-generated 

model exhibit less correlation with production terms of the manually-derived model, 

and much more correlation with the degradation of ComS. Therefore, the production 

of ComK and the degradation of ComS appear to account for most of the nonlinear 

dynamics of the competence circuit.  Only a small subset of parameters accounts for 

the data, which is similar to observations made in proteins and metabolic networks. 

This suggests perhaps a common evolutionary solution to selection pressures. 

This key insight from the mapping indicates which parameters of ComK and ComS 

contribute most to the dynamics of the competence circuit. These results also suggest 

that perturbations of those parameters should give greatest effects.  
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Conserved Quantity Mapping 

The mapping found for the unknown conserved quantity (Figure 15.4A) using the 

automated-mapping procedure also provides insight into the meaning of the conserved 

quantity. Similar to the dynamical model mapping, we fit the invariant to the data 

generated from the manually-derived model, using symbolic regression to identify the 

nonlinear relationship between the invariant parameters and the manually-derived 

model parameters. 

The mapping shows that the conserved quantity only depends on two types of 

understood parameters of the system: parameters controlling the degradation of ComK, 

and parameters controlling the production of ComS (see Figure 15.4B and C). In fact, 

these parameters are known to impact the duration of competence events in the B. 

subtilis system.  The duration of transient competence events are determined by the 

ComS mediated negative feedback loop.  The longer it takes for ComS concentrations 

to decrease, the longer the duration of competence.  Parameters describing the 

production rate and concentration of ComS can therefore affect the duration of 

competence events (Suel, Kulkarni et al. 2007).  Therefore, the mapping suggests that 

the conserved quantity is related to competence durations. 

We tested this prediction by looking at the invariant evaluated on data collected from 

the wild type and a modified strain with higher expression of ComS (Figure 15.4D). 

Increased production of ComS in the modified strain was accomplished by introducing 

a copy of the native ComS promoter driving ComS into a plasmid maintained at five 

copies per cell.  Effectively, this modification resulted in a six fold higher production 

rate of ComS (ɓS) compared to wild type. The invariant values obtained from the 

competence dynamics recorded from the wild type and modified strains cluster into 

two groups.  High magnitudes for the short duration wild type, and low magnitudes for 
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the long duration mutated strain. In fact, the separation is clear enough that the 

invariant magnitude could be used to predict which strain an unknown cell belongs to 

and therefore its expected competence duration. These results confirmed our 

hypothesis based on the mapping that the conserved quantitative is related to 

competence durations.  

The key insight from the conserved value and its mapping is that competence duration 

is tied to a conservation taking place in each cell. It has recently been shown that B. 

subtilis competence durations determine physiological function (Ça atay, Turcotte et 

al. 2009).  Specifically, the duration of competence has been demonstrated to dictate 

the efficiency and range of DNA concentrations over which the competence circuit 

can perform its biological function. It is thus noteworthy that the conserved property 

identified here maps to parameters governing this critical property of competence.   

Conclusions 

In this chapter, we have identified a simpler model of the dynamics of cellular 

differentiation of Bacillus subtilis, that is equally predictive on unseen data. This result 

demonstrates a useful application for reducing the complexity of mathematical models 

describing biochemical interactions. We further proposed the search of invariants as a 

way to uncover the natural laws governing the dynamics of this system. Indeed an 

invariant was discovered and was found to be closely related to the differentiation 

period of the cell. This prediction was validated using a new set of experiments. The 

search for invariants may be a way of identifying key principles of other biological 

systems as well. We suggest that the ability to identify such conservations can be 

informative for understanding increasingly complex systems in the future. 

A fundamental question is whether algorithmic methods for modeling and 
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hypothesizing about experimental systems can ultimately be human-competitive: Can 

such methods produce elegant and predictive models on par with human experts, and 

if so, will and how could human experts understand these models. In this chapter, we 

have shown one of the first instances of an algorithm producing a concise, human-

readable model that is consistent with a large amount of experimental data, and is 

substantially simpler that a recently published model for the same phenomenon. But 

that accomplishment only led to a new challenge: How to assign meaning to the 

resulting models and reconcile them with existing knowledge. Our solution was to use 

the automated-modeling process itself to find relationships between the new model 

and existing knowledge, by using model perturbations as "experiments". We believe 

that this kind of hurdle will become increasingly challenging as the use of automated 

modeling algorithms becomes more prevalent. The need for new methods to help 

machines "teach" their findings to humans, for example by drawing analogies to 

known information, may be essential to long term progress in science, and become a 

new frontier for Artificial Intelligence research. 

Methods 

Multi -set Symbolic Regression 

Models are encoded as an equation and a set of parameters for each unique set of data 

points (measurements of a single bacterial cell) in the data. Our automated modeling 

method is based on the symbolic regression algorithm (Koza 1992). See the 

description of section ñSymbolic Regressionò on page 4 for more detail on this 

technique. 

Symbolic regression has been used to model explicit (Duffy and Engle-Warnick 2002; 

Elena, Andrei et al. 2005; Cyril and Alberto 2007) and dynamical systems (Bongard 
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and Lipson 2007) in past research, it does not ordinarily take advantage of multiple 

dataset from unmatched sources, such as data recorded from multiple cells, each cell 

with different parameters such as physical size. In order to use multiple datasets at 

once to get a large enough description of the system, we developed a multi-set 

regression method. The method searches for a single equation set that can be fitted 

well to each data source independently (e.g. each individual cell), requiring only 

parameter adjustments, but no change in form.  

Model Selection 

We selected the automatically-generated model by considering the Pareto front 

(Kung, Luccio et al. 1975; Parke, Ryan et al. 2007) produced by symbolic regression 

between model complexity and its accuracy on the experimental data. Complexity is 

measured as the inverse of number of terms in the expression. Equations that are both 

simple and accuracy are the most challenging to find and identify, and their behavior 

is more interesting (Schmidt and Lipson 2009). In particular, the most interesting 

solutions on this frontier appear at cliff points, where the predictive ability to increases 

and then plateaus (Edwin and Jordan 2003; Gregory, Denis et al. 2003). 

The Inferred Dynamical Model 

We performed the multi-set regression technique using data collected from several 

different cells. The top rows of Figure 15.6 show data from different cells used to 

search for the model. The fit of the automatically-generated model is shown in solid 

black lines. The automatically-generated model fits each cell, capturing their key 

dynamics, despite the inherent stochastic behavior of the system. 
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Fitting these data sets with a first-order model required a time-delay in the dynamical 

model, as described in the main text. It may also be possible to model this data using a 

second-order (or higher-order) model however, we were unable to find any simple 

second-order models that generalized to other data sets. Calculating multiple 

derivatives from the data set is difficult numerically, especially when estimating initial 

 
Figure 15.6. Collected data and the fit of the automatically-generated dynamical 

model. ComK florescence (AFU) is shown in blue dots, ComS florescence (AFU) is 

shown in red dots, and the automatically-generated model is shown in black for 

each. The automatically-generated model was found using data from the top four 

rows. The bottom row shows that the model generalized to other behaviors such 

as oscillating competence events.  
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conditions. Also, second order systems are less common in the chemical and 

biological context. 

The model is fit to this data by sweeping the time-delays and least-squares fitting the 

model to the numerical derivative of the data for each variable, ComK and ComS. We 

then integrated the model using the DDE23 time-delay differential equation solver ï 

specifying the absolute error tolerance and relative error tolerance to 10
-9

. 

Figure 15.6 also shows data not used to find the model (bottom row). Here, the model 

generalized to different behavior from the training data to model oscillating 

competence events.  

Nonlinear Dynamical Model Mapping 

We used the automated-mapping method to find an equation relating each parameter 

of the automatically-generated dynamical model to the parameters of the manually-

derived model. We generated data for each parameter by simulating the manually-

derived model with randomly perturbed parameter values and fitting the 

automatically-generated model to each simulated trajectory. We then searched for an 

equation to predict the value of the automatically-generated model parameters based 

on those in the generating manually-derived model. 

The resulting mapping for the dynamical model is shown in Figure 15.7. The search 

identified a simple mapping equation for each parameter with high goodness of fits. 

Based only on the parameter values of the manually-derived model, the mapping can 

predict the optimal fitted parameter values in the automatically-generated model with 

R
2
 values over 0.95, with the exception of parameter bK which was 0.51.  



 

240 
 

 

 
Figure 15.7. The parameter mapping relating the parameters of the expert 

biological model and the automatically identified dynamical model. The left plots 

show the predicted parameter value in the automatically-generated model based 

on the parameters of the expert model versus the actual best fit parameter of the 

automatically-generated model. The parameter equations found are shown to the 

right. The percent shown for each term indicates the percent of the variance 

explained by each term. 
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It is interesting that such an accurate mapping exists. The two models could just as 

easily fit the same data in discontinuous or random ways. Instead, the mapping 

suggests equivalence between the two, described by the mapping equations in Figure 

15.7. 

Conserved Quantity Mapping 

We also used the automated-mapping method to identify a nonlinear mapping between 

the automatically-generated conserved quantity and the manually-derived biological 

model. We simulated the manually-derived model with varying parameters to collect 

synthetic data, then fitted the invariant to each simulated trajectory. We then looked 

for an equation modeling the resulting fitted parameters in the conserved quantity as a 

function of the parameters in the manually-derived model. 

Figure 15.8 shows the resulting map for the automatically-generated conserved 

quantity. The conserved quantity parameters were more difficult to model than the 

dynamical model. This is likely a result of higher sensitivity and variance when fitting 

an invariant equation. The mapping however still shows strong correlations. 

The result of the conserved value mapping is that we now have a method to directly 

calculate the conserved value from the manually-derived model directly without the 

need to tune parameters ï they are explicitly prescribed by the mapping. 

Interpreting a Conserved Quantity 

Many conserved quantities correspond to a fundamental physical or natural law ï such 

as conservation of energy or momentum. However, we are not certain what the 

automatically-generated conserved quantity represents in the competence circuit. 

In developing our analysis of the unknown conserved quantity, we make many 
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comparisons with a known conserved quantity, such as conservation of energy in a 

pendulum. We collected data both from a real and a simulated double pendulum 

(Schmidt and Lipson 2009) and apply the same types of analysis to the total energy 

equation of the double pendulum. This allowed us to compare the unknown conserved 

quantity with an understood conservation both with and without noise or loss. 

Conserved quantities are often difficult or unintuitive to understand. In fact, many 

conserved quantities cannot be directly observed. For example, the concept of energy 

is abstract. In the double pendulum, we can tell that the conserved quantity (total 

energy) is predictive of magnitudes of the velocities of the pendulum and the 

maximum heights it reaches. But we cannot directly measure it; it has to be inferred 

from other measurements. It could have an arbitrary offset, and possibly, arbitrary 

scale; yet still be predictive of the dynamics of the double pendulum.  

 

Figure 15.8. The parameter mapping relating the parameters of the expert 

biological model to the automatically-inferred conserved quantity. The left plots 

show the predicted parameter value in the conserved quantity of the mapping 

versus the actual best fit parameter of the conserved value. The parameter 

equations found are shown to the right. 
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Similarly, the conserved quantity automatically-inferred for the B. subtilis competence 

system is predictive of the duration of competence events in each cell. It is quite 

possible that this quantity is also abstract as in the double pendulum and we may not 

be able to interpret this quantity any better than we can interpret and understand the 

concept of energy.  

Nevertheless, we know that the conserved quantity is tied to the competence duration, 

and that the duration can greatly impact fitness and adaptability of the cell. It is likely 

that optimal durations are controlled in the cell or at least selected for by evolution. 

Therefore, we could interpret the conserved quantity as a control value of each cell for 

the competence durations. However, the scale, offset, or units we define for this value 

could be arbitrary; as with energy. 

Normalizing Unknown Conserved Quantities 

One challenge when analyzing and comparing unknown conserved values is that they 

are invariant to scaling and offset. For example, if the formula f if is conserved, so is 

the formula af + b where a and b are any real constants. The key problem is that we do 

not know the ñunitsò of the conserved value. Therefore, we need a method for 

normalizing each fitted conserved quantity ï removing the scale a in the previous 

example. 

One way to normalize the scale is to divide the entire invariant equation by one of the 

coefficients that that appear linearly in the formula since these will also contain the 

scaling factor. Ideally, we could divide by the scale exactly, but the coefficients also 

contain the parameter of that coefficient. Normalizing by different coefficients 

produces different scales and different orderings depending on the parameter used. 

One way to visualize this problem is to plot the coefficient values of the conserved 
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value formula for both the wild and mutated B. subtilis strains. In Figure 15.9, we 

plotted pairs of coefficients (or 2D projections) of conserved value formula fitted to 

the experimental data collected from both the wild and mutated strains.  

In these projections we can see that the wild and mutated types form distinct clusters 

based on the coefficients of the invariant. In several of the projections we can even 

separate them by a 2D hyper-plane of coefficients. 

In particular, all projections shown in Figure 15.9 that have coefficient k7 as an axis 

appear well separated. This suggests that k7 alone is useful for normalizing with, 

though combinations may be even better. In the main text, we show the conserved 

 

Figure 15.9. The clusters of coefficient values of the unknown conserved quantity 

equation colored by the B. subtilis strain. Each plot shows a projection onto a 

different pair of coefficients. 
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value after normalizing by k7.  

Sampling Parameters Values for Automated Mapping 

In the automated-mapping technique, we use the bacillus models to generate data by 

simulating the system with different model parameters. This allowed us to compare 

the parameters of each model over many different data sets. Here we detail the 

procedure used to generate data on the parameters. 

We started by fitting the manually-derived model to one of the experimentally 

collected cell data sets. For this comparison we fitted to the oscillatory data set shown 

in the bottom left of Figure 15.6 which happens to have more interesting dynamics 

over a longer period of time. We fit the manually-derived model by sweeping the 

time-delays for each variable, and using nonlinear regression to fit the numerical 

derivatives of the data for each variable. We use the beginning of the experimentally 

collected data as the initial time-delay history, interpolating between data points as 

necessary. 

Next, we estimated the valid ranges of the parameters in the manually-derived model. 

We did this by sweeping the value of each parameter individually, holding the other 

parameters to their fitted values, until the system became unstable or exceeded 

experimentally observed ranges in either variable. This range also indicates the 

relative impacts of each parameter that allows us to perturb all parameter equally. 

We simulate the manually-derived model multiples times varying the parameters in 

Matlab using the DDE solver with absolute error and relative error tolerances set to 

10
-9

. For each sample, each parameter is modified by a random percent between zero 

and 25% of the parameterôs valid range. We collected a thousand 30-hour trajectories. 
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Finally, we take the automatically-generated dynamical model and fit it to each of 

these simulated trajectories ï again by sweeping the time-delays and using nonlinear 

least squares fitting to the numerical derivatives. This procedure gave us a thousand 

sets of parameters for each model which corresponded to the same data. 

Real and Simulated Perturbations 

This section verifies that the model produces similar effects when perturbed to wet 

experiments. As described above, we collected data on a wild and mutated strain of B. 

subtilis. The genetically modified strain increased the production of ComS. This 

resulted in longer duration competence events and increased variability in competence 

events.  

 

Figure 15.10. Verifying the perturbations of the models with the physical changes 

in the wild (black) and mutated (red) strains. Pertubing only the parameters that 

correspond to production of ComS in the simulated model produces similar 

changes to those seen in experiment. 
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We first tuned the model to the experimental data of the wild type data. We then 

simulated the model in Matlab with lightly varied parameters to resemble small 

variance among cells of the same type.  

Next, we increased the parameters which correspond to production of ComS: alpha-S, 

beta-S, and k-S. This is done to mimic the change in the modified B. subtilis strain. 

In Figure 15.10, we show the side by side comparison between the simulated effects 

on the model and the experimental modified strain. The model does not show 

increased variance because it is a deterministic differential equation model and does 

not model the low-level stochastic nature of the system. However, the model predicts 

the same effect on competence durations as in experiment. The durations increased, 

and the normalized conserved quantity value increased. 
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CHAPTER 16. PARAMETER MODELS 

Finding Symbolic Parameters 

The search over equation space produces equations with bulk parameters; however, 

we can use a second equation search to identify the fully parameterized equation with 

symbolic parameters such as lengths, masses, etc. For example, in Chapter 11 our 

method found the following equation for the double pendulum with bulk parameters: 

( )2 2

1 1 2 2 3 1 2 1 2 4 1 5 2cos cos cosk k k k kw w ww q q q q+ + - - -
 

The question is what are the symbolic representations for the ki coefficients? To find 

the fully parameterized equation, we simply need data from similar systems but with 

different physical configurations and hence varying bulk parameters ï for example, 

collecting data from several double pendula that have different arm lengths and 

masses. 

One way to help identify the units in a potential invariant equation is to require the 

evolved expressions to be consistent in physical units, and to provide the algorithm 

with  physically-meaningful building blocks such as the masses and lengths of the 

systemôs components, while requiring all other constants to remain unit-less. This 

approach still does not eliminate completely some fundamental ambiguities. 

Alternatively, once we have found the invariant equation with bulk coefficients, we 

can refit it very easily to data from another system that has different parameters. If we 

do this on several different system configurations, we can obtain bulk coefficients for 

each configuration of the system versus the physical parameters (e.g. ki values versus 

length and mass values of the collection of systems).  

With bulk coefficient values from several systems, we can now find an equation for 
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each individual coefficient using explicit symbolic regression (e.g. find the equation of 

ki as a function of the system masses and lengths). 

We have done this in silico using 100 simulated double pendula with random masses 

and arm lengths. We first collected data from these double pendula by simulating them 

numerically and then refitting the coefficients of the double-pendulum equation for 

each. Since the partial derivative pairs metric is scale invariant, we divide out the first 

coefficient to put all equation in a normal form. This allows us to compare coefficients 

across multiple double pendulum equations. Finally, we use explicit symbolic 

regression to find the equation for each coefficient: 

k1/k1 = 1 

k2/k1 = m2L2
2
/(m1L1

2
 + m2L1

2
) 

k3/k1 = 2.00055m2L2/(m1L1 + m2L1) 

k4/k1 = 19.6/L1 

k5/k1= 19.6·m2L2/(m2L1
2
 + m1L1

2
) 

where m1, L1, m2, and L2 are the masses and lengths of the first and second arms 

respectively. The remaining coefficient 19.6 is a multiple of the gravitational 

acceleration 9.8 m/s (which we do not vary). 

By multiplying the coefficients by their common denominator m1L1
2
 + m2L1

2
, we can 

finally write out the fully parameterized equation for arbitrary double pendula: 

( )2 2 2 2

1 1 2 1 2 2 2 2 1 2 1 2 1 2

1 1 2 1 2 2 2

( ) 2 cos

19.6 ( )cos 19.6 cos

L m m m L m L L

L m m m L

w w ww q q

q q

+ + + Ö -

- Ö + -
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Finding explicit equations for the parameters is much simpler than finding equations 

from scratch. Symbolic regression found each coefficient expression in less than 30 

seconds, compared with the tens of hours required to find the original bulk coefficient 

equation. 
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SECTION IV ï APPLICATIONS 

CHAPTER 17. METABOLIC NETWORKS 

Summary 

Many challenges of systems biology involve reverse-engineering metabolic networks 

by using experimental data to determine metabolic fluxes. Traditionally, specification 

of the form of the analytical mathematical model appropriate to a particular metabolic 

system relies heavily on prior knowledge about the system, the experimental design, 

and how closely the system relates to established metabolic models. Here, we propose 

an automated process to build mathematical models with limited prior knowledge, or 

alternatively, adapt the form of a hypothesized model to suggest a more accurate 

structure. The algorithm alternates between generating multiple potential models 

commensurate with experimental data and designing new experiments that are 

optimized to differentiate models based upon disagreements between their predictions. 

We demonstrate the algorithmôs ability on a noisy seven-dimensional model of yeast 

glycolytic oscillations and compare its performance with related methods. We further 

show that this method can symbolically correct impaired and overspecified expert 

models. We suggest that this approach may help study dynamic and non-linear 

components of complex metabolic and signaling systems, and may even provide 

optimized design and control of experiments in real-time. 

Introduction  

Many remarkable behaviors in nature arise from complex signaling or metabolic 

networks, and hence the ability to rapidly develop a predictive network model is 

essential to understanding and controlling these behaviors. A mathematical description 

is one way to represent the dynamics of a network amenable to human interpretation, 
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but finding a full analytical expression can be arduous ï particularly in 

multidimensional systems with nonlinear reactions, feedback, and oscillations that are 

common in biology. Here we propose a method that generates such a model 

automatically () without any prior knowledge of the metabolic system under study. It 

can be applied either to existing time-series data or wet-lab experiments suggested (or 

controlled) by the algorithm. 

Identifying metabolic and signaling network models is of pressing practical interest 

(Stolovitzky and Califano 2007). A variety of methods have been used to infer gene 

regulatory networks (GRN) (Gardner, di Bernardo et al. 2003; Styczynski and 

Stephanopoulos 2005), including genetics, biochemistry, and molecular biology 

(Levine, Hu et al. 2007). Most often, preexisting models are used to provide a 

functional form, and then an optimization technique is used to fit the model 

parameters. Because of the breadth of data available, much of signaling network 

inference is based upon high-throughput mRNA microarray data for gene arrays, 

while metabolic network analysis considers both gene expression and high-throughput 

  

Figure 17.1 Automated analytical modeling: Noisy time series data reflecting 

anaerobic metabolism concentrations over time are automatically translated into 

a set of coupled analytical differential equations without prior knowledge of the 

system (actual data and equations). 
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mass spectrometry of metabolites (Nielsen and Oliver 2005). There are various 

challenges specific to the inference of metabolic networks from such data 

(Nemenman, Escola et al. 2007), since metabolism includes not only transcriptional 

regulation of enzymes, but also the conversion of substrate species with stoichiometric 

constraints. The computational challenge is exacerbated by the range of metabolic 

time constants and concentrations, which can easily span a several orders of 

magnitude, respectively. 

While there remain many unsolved problems in the inference of GRN models, 

metabolic networks surpass many other biological networks in terms of their breadth, 

detail, quantitative nature, and experimental validation. Currently, it is possible to 

obtain quantitative, dynamic measurements of metabolic concentrations, metabolite 

fluxes, and genetic modification simultaneously, providing an important connection 

between the transcriptome/proteome and cellular phenotype (Ni and Savageau 1996; 

Kauffman, Pajerowski et al. 2002).  

The most common mathematical form used to describe a metabolic network is a set of 

ordinary differential equations (ODEs) that describe the time-derivatives of chemical 

concentrations in the system as a function of its current state. ODEs are amenable to 

human interpretation because they are deterministic models and explicitly encode 

causal relationships (Bansal, Belcastro et al. 2007), including feedback loops that are 

difficult to model using other methods. Terms in the differential equations correspond 

to reactions occurring in the system based on their connectivity, such as first- and 

second-order rate laws, power laws, and Michaelis-Menten kinetics (Koza 2001).  

Methods such as symbolic regression (Koza 1992; Augusto and Barbosa 2000; Duffy 

and Engle-Warnick 2002; Hoai, McKay et al. 2002) can be used to identify differential 



 

254 

equations automatically from experimental data (Schmidt and Lipson 2006; Bongard 

and Lipson 2007; Schmidt and Lipson 2007), however, substantial challenges remain 

to scale into the dimensionality and functional complexity necessary for biological 

applications. 

In this chapter, we introduce a method to automatically construct mathematical models 

of a biological system, and apply this technique to infer a seven-dimensional nonlinear 

model of glycolytic oscillation in yeast ï the largest automatically identified system to 

date ï using only noisy observational data in silico. This method is enabled by three 

new techniques for searching for differential equation models: graph-based symbolic 

encoding (Schmidt and Lipson 2007), fitness prediction (Schmidt and Lipson 2006; 

Schmidt and Lipson 2008), and estimation-exploration (Bongard and Lipson 2005; 

Zykov, Bongard et al. 2005; Bongard and Lipson 2007).  

Background 

Metabolic Modeling 

Given the breadth of metabolic networks, we find it useful to classify systems biology 

metabolic models into three categories: comprehensive (exact and complete) versus 

local (surrogates or approximations), static versus dynamic, and linear versus non-

linear. Genome-scale modeling using generalized mass action (Jamshidi and Palsson 

2008) is linear, dynamic, and comprehensive. Flux balance analysis (FBA) and 

metabolic control analysis (MCA) are linear, static, and comprehensive. Metabolic 

flux analysis (MFA) is linear, static, and localized (Varma and Palsson 1994). 

Dynamic flux balance analysis (dFBA) (Mahadevan, Edwards et al. 2002; Gadkar, 

Varner et al. 2005) and dynamic metabolic control analysis (MCA) (Fell 1992; 

Mendes and Kell 1996; Kell 2004) are linear, static, and fall between localized and 
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comprehensive. Biochemical systems theory, also known as the S-System approach, is 

nonlinear, dynamic, localized (Beard, Qian et al. 2004; Crampin, Schnell et al. 2004). 

Cybernetic modeling is nonlinear, dynamic, and falls between localized and 

comprehensive (Young and Ramkrishna 2007). It is becoming more widely 

recognized that highly detailed comprehensive models suffer from the identifiability 

problem (Schmidt, Madsen et al. 2008), because of the inability to distinguish 

experimentally between parameter combinations that produce identical measurements, 

and that additional methods are needed to reduce model complexity. We focus this 

chapter on an approach to identify local or effective models for non-linear and 

dynamic subsets of larger systems, and hence explore the underlying physiology and 

enable external control of the system and the optimized design of wet-lab experiments.  

Metabolic models, in contrast to signaling ones, require strict adherence to the 

stoichiometry of the equations, i.e., chemical mass balance. Such mathematical models 

can be used to predict the behavior of the network in different conditions, such as 

attracting basins and bifurcations ï predictions that are not readily available in 

statistical models. Stoichiometric methods can also be used to identify some 

qualitative properties of biological systems. For example, if a model can be linearized, 

it is possible to create a Jacobian matrix that can subsequently be decomposed into 

stoichiometric and gradient matrices to reveal kinetic and thermodynamic components 

(Jamshidi and Palsson 2008), but this technique may not be applicable to problems 

that are not readily linearized or for which perturbations take the system far from the 

reference model. 

Integration of a parameterized system of differential equations is known as the 

forward metabolic network problem. In contrast, the inverse problem involves 

determining the nature of the equation network underlying observed behavior using 
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techniques such as reverse engineering or systems identification. Reverse-engineering 

a metabolic network consists of determining both the correct functional form of a set 

of ODEs to describe the system and the proper set of model parameters to fit 

experimentally collected data to within a given tolerance. The inverse metabolic 

problem is universally recognized as very hard (Kell 2004; Kell 2006) and most likely 

NP complete (Mendes and Kell 1996; Styczynski and Stephanopoulos 2005). As a 

result of the nonlinear and coupled nature of the equations, enzymatic kinetics studied 

in isolation or with small, singular perturbations, often used to explore network 

connectivity, may not be informative regarding the behavior of the complete system, 

particularly under large amplitude dynamic perturbations to multiple variables. 

Conventional local nonlinear solvers can be inadequate for the ill-conditioned and 

multi-model inverse problem presented by the nonlinear, differential-algebraic 

constraints associated with dynamic biochemical pathways, and various global 

nonlinear optimization approaches have been developed to solve the inverse problem 

(Mendes and Kell 1998; Moles, Mendes et al. 2003; Beard, Qian et al. 2004; Crampin, 

Schnell et al. 2004). 

Methods 

Searching for Differential Equations 

Genetic programming is a widely studied class of evolutionary algorithms inspired by 

biological evolution (Koza 1992). In a traditional genetic program, an initially random 

population of solutions evolves iteratively in computer memory to maximize some 

objective ï for example, to model experimental data with the lowest squared error. 

Solutions with the highest fitness persist in the population to recombine (genetic 

crossover) and mutate to replace less fit individuals.  
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Symbolic regression uses genetic programming to evolve (compete) algebraic 

expressions to explain experimental data (Koza 1992). Unlike polynomial regression 

or neural networks which also fit data, symbolic regression searches a space of 

analytical equations to explain experimental observations. Symbolic regression 

composes equations using basic algebraic building blocks with the aim to formulate 

simpler (e.g., fewer parameters) or more natural expressions (robust to perturbations) 

that are more likely to correspond to the underlying intrinsic behavior mechanisms of 

the system. 

Symbolic regression compares candidate equations by calculating their residual errors 

on the experimental data ï also known as the equations fitness metric ï for example, 

using square-error or correlation. In past research, algorithms have used all available 

data at once to evaluate the fit. However, this metric can be overly stringent and 

inhibit solutions from building intermediate expressions needed for the final model. 

Instead, we use the technique fitness prediction to reduce overall computational cost 

and to improve the local search gradient (Schmidt and Lipson 2006; Schmidt and 

Lipson 2008). Fitness predictors measure error on only a small subset of the data. The 

data subset is adapted, however, as a population of fitness predictors (data subsets) 

evolves in parallel with symbolic regression of differential equations. Predictors are 

rewarded for accurately approximating many equationsô error on the full data set. All 

differential equations measure fitness using the top-ranked predictor. In contrast to 

standard symbolic regression, equations compete on an accurate fitness approximation 

but are free to drift in more trajectories. Predictors adapt to defeat poor deviations. 

Conceptually, fitness prediction allows a genetic algorithm to search a wider range of 

solutions by adapting the fitness heuristic and reducing its computational cost. An 
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interesting result (Schmidt and Lipson 2008) shows that symbolic regression is 

substantially more successful when solutions are pressured to explain only a few 

features of the systems at any given time rather than the entire data set at once. This 

allows solutions to drift from the objective gradient, but the focus adapts with the 

solution population to prevent excessive divergence from the intended gradient. 

Model Encoding 

The ability to identify an accurate and parsimonious differential equation model using 

symbolic regression relies critically on the genetic encoding (e.g., the genotype 

organization of a symbolic expression). To search the space of candidate symbolic 

analytical equations, we use an acyclic graph encoding for symbolic regression that 

scales well computationally and exploits the shared structures found in many 

metabolic networks (Schmidt and Lipson 2007). Traditionally, symbolic expressions 

2 2 2 2 2 6 2 2 4 4 2

dN
k S k S N k S N k S N

dt
= - - -

 

 

Figure 17.2. Analytical model representations for NADH in the cell glycolysis 

model - a tree encoding (left pane) and a graph encoding (right pane). Both panes 

encode the same equation, but while the tree encoding is simpler to manipulate 

algorithmically ( e.g., alter subexpressions), it requires redundant subtrees and is 

prone to produce large equations that may not accurately represent the biological 

system. The graph encoding couples subtrees, thereby biasing equations to 

preserve simpler shared expressions. 



 

259 

have been represented as binary-trees, where parent nodes represent algebraic 

operations such as addition or multiplication, and leaf nodes represent symbolic 

variables and parameter constants (Figure 17.2A, left pane). However, trees can 

produce complex and bloated equations, often resulting in unsuitable models for 

understanding the underlying system. Instead, the graph encoding produces models 

that are more concise on average by reusing and coupling sub-expressions in the 

genetic encoding (Schmidt and Lipson 2008). 

The acyclic graph encoding represents a symbolic expression by interpreting nodes as 

mathematical operations such as addition and multiplication. Leaf nodes represent 

state-variables or parameter constants (Figure 17.2B, right pane). The encoding for the 

graph is an ordered list of operations much like assembly code: Each operation builds 

up successive sub-expressions in the final expression, using any preceding operations 

and symbolic variables. The graph encoding takes advantage of redundant sub-

expressions, such as coupled reactions in metabolic networks, and is biased against 

bloated solutions and overfitting (Schmidt and Lipson 2007). 

The acyclic graph (illustrated in Figure 17.2) that represents symbolic equations was 

encoded internally as floating-point assembly code. The encoding consists of a list of 

floating-point operations and parameter values. Operations can load an input variable 

or a parameter value (set command), or perform a floating-point operation on any 

previous operation outputs (add/sub/multiply/divide commands). Each operation 

corresponds to a leaf or parent node in the graph. The graph is rooted by the final 

operation in the list. Table 17.1 shows several raw encodings generated by the 

algorithm after regressing the yeast glycolysis model. 
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Table 17.1. Raw encodings of glycolysis differential equations found. 

S1 S2 S3 S4 

(0) ă set <A3>  
(1) ă set [ - 7.15469]  
(2) ă set <S1>  
(3) ă mul (1) (2)  
(4) ă set [ - 10.6171]  
(6) ă div (4) (3)  
(10) ă set <S1>  
(12) ă set <S3>  
(13) ă div (3) (12)  
(15) ă sub (6) (10)  
(16) ă div (13) (15)  
(17) ă sub (16) (0)  
(18) ă sub (16) (17)  
(22) ă mul (18) (18)  
(23) ă set [0.0708 1]  
(24) ă div (23) (0)  
(25) ă mul (18) (22)  
(26) ă add (24) (25)  
(27) ă div (3) (26)  
(28) ă set [ - 2.469]  
(31) ă sub (27) (28)  
return (31)  

(0) ă set [ - 0.2349 ]  
(1) ă set [ - 6.00913]  
(2) ă set <S2>  
(3) ă mul (1) (2)  
(4) ă add (0) (3)  
(5) ă set [ - 6.70044]  
(7) ă mul (5) (2)  
(8) ă set <N2>  
(9) ă mul (7) (8)  
(10) ă add (4) (9)  
(11) ă set [14.6053]  
(12) ă set < S1> 
(13) ă mul (11) (12)  
(14) ă set [0.0710]  
(15) ă set <A3>  
(16) ă div (14) (15)  
(19) ă mul (15) (15)  
(21) ă mul (19) (15)  
(22) ă add (16) (21)  
(23) ă div (13) (22)  
(24) ă add (10) (23)  
(25) ă set [ - 0.1942 ]  
(26) ă add (24) (25)  
(27) ă set [ - 0.4663]  
(28) ă sub (26) (27)  
(29) ă set [1.01609]  
(31) ă div (28) (29)  
return (31)  

(0) ă set [6.01392]  
(1) ă set <S2>  
(2) ă mul (0) (1)  
(3) ă set [ - 64.187]  
(4) ă set <S3>  
(5) ă mul (3) (4)  
(6) ă add (2) (5)  
(7) ă set [16.0479]  
(9) ă mul (7) (4)  
(10) ă set <A3>  
(11) ă mul (9) (10)  
(12) ă add (6) (11)  
(13) ă set [ - 6.0004 ]  
(14) ă set <S2>  
(15) ă mul (13) (14)  
(16) ă set <N2>  
(17) ă mul (15) (16)  
(28) ă add (12) (17)  
(29) ă set [1]  
(31) ă div (28) (29)  
return (31)  

(0) ă set [ - 0.02674 ]  
(1) ă set [62.8684]  
(2) ă set <S3>  
(3)  ă mul (1) (2)  
(4) ă add (3) (0)  
(5) ă set [ - 12.727]  
(6) ă set <S4>  
(7) ă mul (5) (6)  
(8) ă add (4) (7)  
(9) ă set [12.7542]  
(10) ă set <S5>  
(11) ă mul (9) (10)  
(12) ă add (8) (11)  
(13) ă set [ - 98.40 2]  
(15) ă mul (13) (6)  
(16) ă set <N2>  
(17) ă mul  (15) (16)  
(18) ă add (12) (17)  
(19) ă set [ - 15.712 ]  
(20) ă set <S3>  
(21) ă mul (19) (20)  
(22) ă set <A3>  
(23) ă mul (21) (22)  
(24) ă add (18) (23)  
(25) ă set [1.01302]  
(26) ă mul (24) (25)  
(27) ă set [1.00701]  
(28) ă mul (26) (27)  
(29) ă set [0.0213 ]  
(31)  ă add (28) (29)  
return (31)  

N2 A3 S5  

(1) ă set [5.95097]  
(2) ă set <S2>  
(3) ă mul (1) (2)  
(5) ă set [ - 17.8537]  
(6) ă set <S2>  
(7) ă mul (5) (6)  
(8) ă set <N2>  
(9) ă mul (7) (8)  
(10) ă add (3) (9)  
(11) ă set [ - 99.130 ]  
(12) ă set <S4>  
(13) ă mul  (11) (12)  
(15) ă mul (13) (8)  
(16) ă add (10) (15)  
(17) ă set [0.9840 ]  
(18) ă mul (16) (17)  
(19) ă set [0.9841 ]  
(20) ă div (18) (19)  
(27) ă set [ - 0.0003 ]  
(28) ă add (20) (27)  
(29) ă set [1.01106]  
(31) ă mul (28) (29)  
return (31)  

(0) ă set [0.08596]  
(1) ă set [128.854]  
(2) ă set <S3>  
(3) ă mul (1) (2)  
(4) ă add (0) (3)  
(5) ă set [ - 1.37961]  
(6) ă set <A3>  
(7) ă mul (5) (6)  
(8) ă add (4) (7)  
(9) ă set [ - 32.0337]  
(11) ă mul (9) (2)  
(13) ă mul (11) (6)  
(14) ă add (8) (13)  
(15) ă set [ - 14.53 ]  
(16) ă set <S1>  
(17) ă mul (15) (16)  
(18) ă set [0.0714 ]  
(19) ă set <A3>  
(20) ă div (18) (6)  
(23) ă mul (6) (6)  
(25) ă mul (23) (19)  
(26) ă add (20) (25)  
(27) ă div (17) (26)  
(28) ă add (14) (27)  
(29) ă set [0.99359]  
(31) ă mul (28) (29)  
return (31)  

(0) ă set [1.30265]  
(1) ă set <S4>  
(2) ă mul (1) (0)  
(3) ă set [ - 3.1032]  
(4) ă set <S5>  
(5) ă mul (3) (4)  
(6) ă add (2) (5)  
(25) ă set [ - 2265.4 ]  
(26) ă add (6) (25)  
(28) ă sub (26) (25)  
(29) ă set [ - 0.0001 ]  
(31) ă add (28) (29)  
return (31)  
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The connected components of the graph define a sequence of operations that 

correspond to a single equation, as shown in Table 17.1. 

In our experiments, we are effectively searching the rational functions (seven-variable 

quotients of polynomials) of at most 32 operations (nodes in an acyclic graph 

representation). This places a limit on the total number of parameters also to 32. The 

discrete search space size, neglecting real-valued parameters, is thus 6
32

 ï or roughly 

10
25

 parameterized functions. 

Model Accuracy and Complexity Tradeoff 

For any given system, there a potentially infinite set of equations that closely fit any 

finite set of experimentally collected data. Therefore, it is important to have some 

qualitative understanding of what the domain of reaction rate equations looks like. For 

example, a 1000
th
 order polynomial can perfectly fit any data set of 1000 or fewer 

unique time samples. Therefore, it is important to understand the qualitative features 

of the equation-space which can also help us distinguish between true intrinsic models 

and coincidental fits. 

Consider the relationship between equation complexity and accuracy of fitting the 

experimental data. Qualitatively, there exist extremely complex equations (e.g., Taylor 

series, neural networks, and Fourier series) with near perfect accuracy as well as 

simple, single-parameter models with baseline accuracy (e.g., the mean reaction rate). 

The behavior of equations in between these two extremes is more interesting.  

Figure 17.3 shows the Pareto front of equation accuracy versus equation complexity 

for modeling a particular reaction rate (dS1/dt described below). It demonstrates a cliff  

point in the trade-off between model accuracy and complexity. Starting at the lower 

right corner of the figure and increasing the model complexity by moving to the left, 
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there is a certain complexity where model accuracy jumps dramatically and then 

plateaus. In other words, there is a relatively simple equation that can model the 

systemôs behavior accurately (but perhaps not perfectly). By parsimony arguments, we 

can reason this equation to be the most-likely model of the system. The equation at the 

inflection at this example is indeed the correct S1 model, supporting this assumption.  

Automated Experimental Design 

Once the symbolic regression step has evolved a population of candidate solutions to 

fit the current set of training data, there may be several coherent solutions for 

modeling the data in different ways ï particularly in high-dimensional domains with 

sparse data where many equivalent explanations exist for the simplest behavior. But 

which mathematical explanation of the system is correct? The estimation-exploration 

algorithm (EEA) is a method to automatically design a new experiment that can help 

differentiate the current solution candidates and refine their structure (Bongard and 

 

Figure 17.3. The pareto front of model accuracy versus its simplicity. There is an 

inherent trade-off between complexity and accuracy to the training data. Many 

complex functions have very high accuracy, however the exact solution lies at the 

sharp inflection near 28 nodes, balancing high accuracy and simplicity. 
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Lipson 2005; Zykov, Bongard et al. 2005; Schmidt and Lipson 2006; Bongard and 

Lipson 2007). The purpose of the EEA is to decipher which model is likely to be 

correct by searching for experiment settings, perturbations, or procedures that cause 

current models to disagree most in their predictions. Figure 17.4 summarizes the high-

level symbolic regression of differential equations and the automated experiment 

control of the proposed algorithm.  

The first step in our exploration of an ñunknownò metabolic network is to perform a 

series of randomly selected experiments ï perhaps just observing nominal stable 

behavior, such as stable nodes and limit cycles. As candidate solutions compete to fit 

these training data, there is a tendency to produce multiple solutions that explain the 

behavior in different ways. Given multiple solutions competing to explain the current 

data, we can then search in parallel for new experiment designs to maximize 

disagreement in the predictions of the set of solutions. For a dynamical system such as 

glycolysis, we design new experiments as sets of initial conditions into which we 

place the system and then record its transient trajectory as governed by the differential 

equations in the black box. We dictate the most informative experiment to be the set of 

initial conditions in which the current population of solutions has the highest statistical 

variance in its predicted dynamics. The candidate experiment producing the most 

disagreement in the prediction of competing models is the most informative 

experiment to carry out and the one most likely to eliminate overfit models that are 

unable to make useful predictions (Zykov, et al., 2005).  

Once identified by the EEA, we can then perform the most controversial experiment 

on the real system, acquire new data, and once again compete solutions to explain 

them. We repeat this process (Bongard and Lipson 2005; Zykov, Bongard et al. 2005; 

Bongard and Lipson 2007) until a single dominant solution emerges. 
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Distributed Computation 

Genetic programs are readily parallelizable to several computers and server clusters 

where available. We distributed the symbolic regression evolution over four 

computers and eight total logical processors using the island distributed computation 

method (Francisco, Marco et al. 2003). The island model partitions the population of 

solutions into separated smaller populations residing on each computer (or core). We 

spread a population of 512 individuals over eight CPU cores; therefore each 

population has 64 individuals. 

The island model populations are faster to evolve because there are fewer individuals 

and less work to calculate fitness values per population. We migrate solutions between 

populations at regular intervals. Every 10,000 iterations (averaged over all 

populations), we randomly shuffle all solutions among random pairs of populations. 

 

Figure 17.4 The coevolution of models through symbolic regression and fitness 

prediction, and experiments by the estimation-exploration algorithm. Candidate 

solutions compete to explain current experimental data, and experimental initial 

conditions compete to maximize disagreement in the predictions of the various 

solutions. This process of synthesizing coherent models and controversial 

experiments continues until a single dominant solution emerges. 
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Noise Effects on Numerical Derivatives 

Measurement noise makes approximating the gradient (numerical derivatives) more 

difficult because derivatives can be highly sensitive to noise. We used non-parametric 

fitting, Loess smoothing (Cleveland and Devlin 1988), which could overcome a 

significant amount of noise, up to a point depending on the noise strength and 

frequency.  

Loess smoothing updates each sample in the data set by fitting a small order 

polynomial to the sample and its nearest neighbors. If the neighbor size is significantly 

wider than the sample rate, the polynomial will remove high-frequency noise. Other 

methods, such as filtering and convolution, also reduce high-frequency noise, but they 

do not readily produce estimates of the signal derivative. Using Loess smoothing, we 

can obtain the numerical derivative directly from the smoothing procedure by 

evaluating the symbolic derivative of the local polynomial fit at each data sample. 

In Figure 17.5, we can see the effect of Loess smoothing for calculating the numerical 

derivative versus the amplitude of the noise and its frequency relative to the sampling 

rate. These graphs come from smoothing the signal f(t)=sin(wt) over t=[0,2ˊ]. The 

number of features (of the data set) is defined as 2ˊw (the number of periods in the 

data set). We can see that error on the signal itself is most affected by the noise 

frequency. In contrast, the error of the numerical derivative using Loess smoothing is 

affected by both noise amplitude and the number of features in the data set (frequency 

of the signal).  

This result suggests that smoothing cannot remove all noise from data, even for small 

amounts, and that smoothing breaks down for the numerical derivative values for 

high-frequency features in the data.  
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Residual error f(t) = sin(wt) 

 
Residual error ŦΩ(x) = wcos(wt) 

 
Figure 17.5. The residual squared-error after Loess smoothing versus the 

magnitude of the noise and the density of features relative to the noise frequency 

(sample rate) for a sine-wave signal and its numerical derivative. The signal error 

is most sensitive to the noise magnitude but more robust to the number of 

features. In contrast, the error on the numerical derivative has much higher 

sensitivity to the number of features. The state of the art of what the symbolic 

regression algorithm can handle with Loess smoothing is roughly the medium-

blue to dark-blue regions. 










































































































































































































