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C4 plants, such as maize, concentrate carbon dioxide in a specialized compart-

ment surrounding the veins of their leaves to improve the efficiency of carbon

dioxide assimilation. The C4 photosynthetic system is a key target of efforts to

improve crop yield through biotechnology, and its independent development in

dozens of plant species widely separated geographically and phylogenetically

is an intriguing example of convergent evolution.

The availability of extensive high-throughput experimental data from C4

and non-C4 plants, as well as the origin of the biochemical pathways of C4

photosynthesis in the recruitment of enzymatic reactions already present in the

ancestral state, makes it natural to study the development, function and evolu-

tion of the C4 system in the context of a plant’s complete metabolic network,

but the essentially nonlinear relationship between rates of photosynthesis, rates

of photorespiration, and carbon dioxide and oxygen levels prevents the appli-

cation of conventional, linear methods for genome-scale metabolic modeling to

these questions.

I present an approach which incorporates nonlinear constraints on reaction

rates arising from enzyme kinetics and diffusion laws into flux balance analysis

problems, and software to enable it. Applying the technique to a new genome-

scale model, suitable for describing metabolism in the leaves of either Zea mays

or generic plants, I show it can reproduce known nonlinear physiological re-



sponses of C3 and C4 plants.

In combination with a novel method for inferring metabolic activity from en-

zyme expression data, I use the nonlinear model to interpret multiple channels

of transcriptomic and biochemical data in the developing maize leaf, showing

that the predicted metabolic state reproduces the transition between carbon-

importing tissue at the leaf base and carbon-exporting tissue at the leaf tip while

making additional testable predictions about metabolic shifts along the devel-

opmental axis.

Adapting a method for simulating transition paths in physical and chemi-

cal systems, I find the highest-fitness paths connecting C3 and C4 states in the

model’s high-dimensional parameter space, show that such paths reproduce

known aspects of the evolutionary history of the C4 position, and study their

response to variation in environmental conditions and C4 biochemistry.
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CHAPTER 1

INTRODUCTION

1.1 C4 photosynthesis

In the process of photosynthesis, plants use energy from incident light to incor-

porate carbon from atmospheric carbon dioxide into larger organic molecules.

Carbon dioxide and oxygen bind competitively to the same active site of the

enzyme Rubisco, which is responsible for photosynthetic CO2 assimilation [1].

Rubisco-catalyzed carboxylation leads to net CO2 assimilation, while Rubisco-

catalyzed oxygenation leads to photorespiration, in which CO2 is released [2].

C4 photosynthesis is an anatomical and biochemical system which improves

the efficiency of carbon dioxide assimilation in plant leaves by restricting Ru-

bisco to specialized bundle sheath compartments, surrounding the leaf veins,

where a high-CO2 environment is maintained that favors CO2 over O2 in their

competition for the active sites, thus suppressing photorespiration [3].

In most C4 plants, the CO2 concentrating system uses phosphoenolpyru-

vate carboxylase (PEPC) in mesophyll cells to transiently incorporate CO2 into

four-carbon molecules, which cross into the adjacent bundle sheath cells and

are decarboxylated again by one of three enzymes (NADP-dependent malic

enzyme, NAD-dependent malic enzyme, and phosphoenolpyruvate carboxyk-

inase), with C4 plants conventionally divided into three subtypes based on

which decarboxylating enzyme they primarily employ [4]. Figure 1.1(a) illus-

trates the biochemistry of the system, including key reactions of both the NADP-

ME and PEPCK subtypes.
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Figure 1.1: Schematic of the C4 system. Key reactions of C4 photosynthesis in
mesophyll and bundle sheath cells are shown. The system shown is a combi-
nation of the NADP-ME and PEPCK subtypes; the NAD-ME subtype is similar
to the NADP-ME, though NAD-ME is typically located in the bundle sheath
mitochondrion. For simplicity, conversion of triose phosphate to sucrose has
been drawn in the bundle sheath, though it is thought to occur in the mesophyll
in many C4 species [4]. CA, carbonic anhydrase; PEPC, phosphoenolpyruvate
carboxylase; OAA, oxaloacetate; AspAT, aspartate aminotransferase; PEPCK,
phosphoenolpyruvate carboxykinase; PEP, phosphoenolpyruvate; Mal, malate;
MDH, NADP-malate dehydrogenase; ME, NADP-malic enzyme; Pyr, pyruvate;
PPDK, pyruvate, orthophosphate dikinase; 3PGA, 3-phosphoglycerate; GAP,
glyceraldehyde 3-phosphate.

The C4 system confers increased tolerance of low atmospheric CO2 levels as

well as improved nitrogen and water use efficiencies, and a number of key crop

species, including maize, sugarcane, and sorghum, are C4 plants, as are many

weeds [5]. The agricultural and ecological significance of the C4 system, the

prospect of increasing yields of C3 crops by artificially introducing C4 function-

ality to those species [6, 7], and its remarkable evolutionary history, discussed

below, have made it the object of intense study. The core biochemical path-

ways are now generally understood [4] but many areas of uncertainty remain,

including the genetic regulation of the C4 system [8], the importance of partic-
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ular components of the system to its function (e.g., [9]), and the significance of

inter-specific variations in C4 biochemistry [10].

1.2 Evolution of the C4 system

Despite the complexity of the system, which involves extensive coordinated bio-

chemical and anatomical changes from the ancestral (C3) state, C4 photosynthe-

sis has evolved independently in more than 60 distinct plant lineages, widely

separated both geographically and phylogenetically [11], at various times in the

last 30 million years, following a decline in atmospheric CO2 levels at the end

of the Oligocene epoch [12, 13].

A sequential model for the evolution of the C4 system was proposed by

Sage [14], based on evidence from plant species showing intermediate pheno-

types with both C3 and C4 characteristics. In summary, the process is believed

to begin with preconditioning, changes which do not immediately modify the

photosynthetic process but facilitate the later acquisition of C4-like traits. This

may include gene duplication (allowing existing genes to be recruited to new

functions while maintaining their original functions [15]) as well as anatomi-

cal changes (increases in vein density and bundle sheath size [16], in addition

to increased numbers of chloroplasts and mitochondria in the bundle sheath

cells). After preconditioning, metabolic changes begin with the loss of activity

of glycine decarboxylase – the enzyme responsible for photorespiratory CO2 re-

lease – in the mesophyll, and the establishment of a shuttle system in which

glycine produced in the mesophyll is decarboxylated in the bundle sheath. As a

result, the bundle sheath CO2 level rises. Next, mesophyll PEPC levels and the

3



activity of the C4 cycle increase, and the enzymes of the C3 photosynthetic sys-

tem are redistributed between mesophyll and bundle sheath cells to exploit the

increased bundle sheath CO2 level. Finally, assorted changes occur to optimize

enzyme kinetics and metabolic regulation for the new C4 system.

Beyond this general (and flexible) outline, many aspects of C4 evolution

remain incompletely understood, and the area is an active topic of research.

Among other issues, recent work has explored the relationships among the dif-

ferent C4 decarboxylation subtypes in an evolutionary context, presenting ev-

idence and theoretical arguments that the subtypes are not well-defined – as

multiple decarboxylating enzymes often act in combination in the same plant –

and that the importance of individual decarboxylases may change in the course

of evolution of a particular C4 lineage [10, 17, 18].

Precisely how environmental conditions drove the evolution of the C4 sys-

tem and the subsequent ecological success of C4 species is also unclear [19], with

roles proposed for conversion of woodlands to open habitats by mammalian

megaherbivores [20] and fire [21], regional changes in rainfall patterns [22], and

the need to limit water loss by transpiration in warm, low-CO2 conditions [23],

in addition to the direct effect of low atmospheric CO2 on C3 carbon assimilation

rates [24].

1.3 Modeling C4 and other plant metabolism

A variety of approaches to computational and mathematical modeling of C4

photosynthesis, or photosynthetic physiology and metabolism more broadly,

have been pursued.
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1.3.1 Nonlinear physiological models

High-level nonlinear models of photosynthetic physiology [25] start from a

small number of well-supported equations relating enzyme activities, light lev-

els, and atmospheric CO2 levels (including kinetic laws for PEPC and Rubisco,

mass balance equations, diffusion laws, empirical relationships between inci-

dent light levels and rates of the photosynthetic electron transport reactions,

and requirements that photosynthetic ATP production balance its consumption

by the Calvin cycle and the C4 cycle) and solve them to find the rate of CO2

assimilation by leaves under various types of conditions.

These models have been widely applied to infer biochemical properties of C3

and C4 plants from macroscopic experiments (typically, measurements of gas

exchange in leaves under varying conditions) and for theoretical explorations of

the function of C3, C4, and C3-C4 intermediate photosynthesis. They are widely

accepted and quite tractable, but describe many aspects of plant metabolism in

only extremely abstract terms.

1.3.2 Kinetic models

Detailed kinetic models describe metabolic systems as systems of ordinary dif-

ferential equations, with the rate of change of metabolite concentrations de-

pending on the rates of the reactions which produce and consume them, which

are determined in turn by kinetic laws. Recently, such models have been used

to explore the optimal allocation of resources to enzymes in C3 plants [26] and

NADP-ME type C4 plants [27], and probe the relationship between the three C4

decarboxylation types [28].
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Such models can offer great insight, particularly into non-steady-state ques-

tions such as responses to environmental fluctuations [29]. However, they re-

quire the specification of many parameter values – over 200 for [27] (though a

few may be left variable) – which may be difficult to compile or unknown, and

the effect of uncertainty in the parameters on the predictions of the model is

rarely addressed in a comprehensive, rigorous way.

1.3.3 Constraint-based models

Constraint-based models make predictions about metabolic reaction rates

which are consistent with the structure of a network representation of the chem-

ical species and metabolic reactions believed to be in a cell or collection of cells,

as encapsulated in a stoichiometry matrix, whose entries are the stoichiomet-

ric coefficients of each species in each reaction [30]. Generally, few parameters

(other than the stoichiometric coefficients) are required. The technique is typi-

cally applied to so-called ‘genome-scale’ models, which attempt to capture all

or a large fraction of of a cell’s metabolic repertoire as defined by the reactions

for which catalyzing enzymes are encoded in its genome.

Such detailed, large-scale metabolic models offer particular advantages

for the investigation of connections between the C4 system and a plant’s

metabolism more broadly (for example, partitioning of nonphotosynthetic func-

tions between mesophyll and bundle sheath, or the evolutionary recruitment

of nonphotosynthetic reactions into the C4 cycle) and for interpreting high-

throughput experimental data from C4 systems.

However, the development of genome-scale metabolic reconstructions for
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C4 plants, and multicellular plants more generally, has lagged behind the devel-

opment of such models for single-celled organisms for several reasons. Most ob-

viously, genome-scale reconstructions are typically built starting from a genome

sequence for the organism of interest, and plant genomes began to be sequenced

[31] only some years after bacterial [32] and fungal [33] genomes; similarly, un-

derstanding of metabolism, and tools for predicting enzyme function from gene

sequence, remain less developed in plants than in key single-celled model or-

ganisms.

Below, we review key prior work in the area of plant constraint-based model

construction, before turning to a fundamental problem with the application of

standard constraint-based modeling techniques to photosynthetic systems (in

section 1.4).

1.3.4 Review of constraint-based models for higher plants

The following list includes all large-scale higher plant constraint-based mod-

els published through early 2012, and several particularly notable models pub-

lished since that date. Among the types of data given for the models are:

Method of construction Fundamentally a constraint-based model consists of

a list of reactions among a set of chemical species in a standard nam-

ing scheme. To build a model of limited scope this list can be assembled

by hand. For ‘genome-scale’ models this list is drawn from one or more

databases which predict the reactions that will be catalyzed by enzymes

encoded in a plant’s genome (on the basis of sequence similarity to genes

for enzymes of known function as well as manual curation based on the
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literature). In practice such reconstructions must be supplemented with

additional reactions to allow the model system to perform its expected

metabolic functions (gap-filling).

Compartmentalization To what extent reactions are localized to subcellular or-

ganelles or other sub-compartments of the model, and which such sub-

compartments are present.

Metabolic scope What pathways, systems, and functions the model can de-

scribe. We have summarized descriptions provided by the authors rather

than evaluating each model independently.

Consistency checking An umbrella term for efforts to ensure that reactions in

a constraint-based model are elementally balanced and, ideally, charge-

balanced, and thus to guarantee that the predicted metabolic steady states

satisfy conservation of total mass, per-element mass, and charge. Poly-

merization reactions (often written in the unfortunate form ‘polymer +

monomer = polymer’) and reactions described in the source database with

generic reactants (‘acceptor’, ‘an aldehyde’, etc.,) are frequent sources of

conservation problems, as are inconsistent assumptions about the state of

protonation of weak acids. The level of attention to these details varies

significantly between models.

Reproducibility Only included for models where we made significant efforts

to reproduce the published results.

Grafahrend-Belau barley seed CBM [34]

Description A large (but not genome-scale) model intended for studies of grain

yield and composition under perturbations.
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Method of construction Manually compiled; a variety of databases including

KEGG, MetaCyc, AraCyc, RiceCyc and Reactome were consulted, and

specific references to the primary literature are provided for nearly every

reaction (mostly to barley-specific work, with gaps filled from literature

on wheat, rice, and maize or, in rare cases, dicots).

Metabolic scope Primary metabolism of the developing barley seed (thus, no

photosynthesis or photorespiration): glycolysis, pentose phosphate path-

way, TCA cycle, amino acid metabolism, starch synthesis.

Size 257 reactions, 234 metabolites.

Compartmentalization Cytosol, mitochondrion, amyloplast.

Consistency checking Not described in detail.

Results and comparison to experiment Authors report that “predicted growth

rate and the active metabolic pathway patterns under anoxic, hypoxic and

aerobic conditions predicted by the model were in accordance with pub-

lished experimental results.”

Gene-reaction associations No comprehensive table.

Biomass sink reaction Includes all components accounting for more than 1% of

dry weight of barley seeds: in practice this meant various carbohydrates

and amino acids, in proportions determined from literature seed compo-

sition data.

AraMeta [35]

Description A genome-scale model describe heterotrophic (i.e., non-photosynthetic)

growth of Arabidopsis cells in suspension culture.
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Method of construction From the AraCyc metabolic pathway database, with

corrections and additions to allow biomass production.

Metabolic scope Includes glycolysis, pentose phosphate pathway, TCA cycle

and mitochondrial respiration; synthesis of amino acids, fatty acids, nu-

cleotides, carbohydrates. No light reactions of photosynthesis.

Size 1253 metabolites and 1406 reactions, before correction for blocked reac-

tions.

Compartmentalization Limited: key reactions of mitochondrial respiration are

localized to the mitochondrion, but all other reactions are combined in one

main compartment.

Consistency checking Fairly thorough: all reactions are elementally balanced,

except for hydrogen; polymerization handled carefully.

Comparison to experiment Extensive. In a later paper [36]predicted fluxes

were compared against fluxes measured by 13C-MFA and found to corre-

late well across several different stress conditions, though there were areas

of clear disagreement (model predictions bypassed the pentose phosphate

pathway, e.g.).

Gene-reaction association None, but these could be determined from AraCyc.

Biomass sink reaction Includes cell wall components, lipid, starch, nucleic

acid, and amino acids, in proportions determined experimentally by the

same authors.

Reproducibility Good but imperfect: my determination of the minimum-flux

biomass-producing solution uses a slightly smaller set of reactions than

the authors’; exact proportions of individual biomass components are not

always clear.
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AraGEM [37]

Description A comprehensive Arabidopsis genome-scale metabolic model,

probably the best-known plant CBM.

Method of construction From Arabidopsis gene-reaction associations in KEGG

as of January 2009 (release 49.0), with additions as necessary to allow

biomass production, and additional manual curation.

Metabolic scope Primary metabolism including glycolysis, pentose phosphate

pathway, TCA cycle, light and dark reactions of photosynthesis, fatty acid

synthesis, β-oxidation, glyoxylate cycle, photorespiration.

Size 1567 reactions and 1748 metabolites (per text of paper).

Compartmentalization Thorough, manually determined from literature and

database sources (including TAIR and the peroxisomal proteome database

AraPerox). Includes cytoplasm, mitochondrion, peroxisome, plastid, vac-

uole.

Consistency checking Not described in detail but efforts were made to achieve

consistent nomenclature and handling of polymerization reactions.

Results and comparison to experiment Optimizing photon use efficiency when

a rubisco carboxylation/oxygenation ratio was imposed reproduced the

classical photorespiratory pathway; various comparisons between fluxes

under light and dark conditions were consistent with prior literature re-

ports. No direct comparison to experiment.

Gene-reaction association Thorough; 5,253 gene-reaction associations, involv-

ing 1419 genes.

Biomass sink reaction Estimated from literature, includes different drains for

for photosynthetic and non-photosynthetic tissues; 148 separate biomass
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components including “carbohydrates, amino acids, fatty acid, cellulose,

and hemicellulose” as well as nucleotides, biotin, CoA, riboflavin, folate,

chlorophyll, nicotinamide, thiamine, ubiquinone.

Reproducibility Though the published SBML file was not strictly compliant

to the standard, this was correctable and we were able to achieve flux

through the system. However, it became clear that many reactions of in-

terest (PEPC, for example) were parts of unrealistic cycles, which were

plentiful in the published flux results as well (e.g., no source or sink of

H+ was explicitly included, so two unbalanced reactions acted together to

create or destroy it).

Radrich Arabidopsis model [38]

Description A general-purpose genome-scale network model of Arabidopsis

metabolism, prepared to illustrate a method of creating metabolic network

models from independent databases semi-automatically, on the plausible

conjecture that reactions supported by both sources are likelier to be accu-

rately represented and biologically realistic. Not a complete model suit-

able for calculations (no biomass sink, nutrient sources).

Method of construction Compounds in the AraCyc and KEGG databases were

matched, using an automated system to identify clear matches and pro-

pose others for manual verification. Reactions in AraCyc were then as-

signed to corresponding reactions in KEGG, where possible, in an itera-

tive process which used reaction identifications to resolve additional com-

pound matches. Three network models were created. The core network

included only reactions and compounds confidently matched between
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KEGG and AraCyc. An intermediate network added those reactions from

either database where all the substrates or all the products could be con-

fidently matched, and all species involved in those reactions. A complete

network added all remaining components from both databases.

Metabolic scope Very broad coverage of primary metabolism and some sec-

ondary metabolism, though note that, particularly in the core and inter-

mediate models, complete pathways may not be represented and would

not be functional in calculations. (No light reactions of photosynthesis.)

Size Core model, 753 reactions, 914 metabolites; intermediate model, 1388 reac-

tions, 1248 metabolites; complete model, 2315 reactions, 2328 metabolites.

Compartmentalization None.

Consistency checking Networks were checked systematically for conservation

violations (except of hydrogen and charge, as protonation state was ig-

nored throughout the process); the core network was consistent with con-

servation, but the intermediate and complete network had multiple con-

servation issues, which the authors attributed to generic reactants.

Results and comparison to experiment No flux predictions; graph properties

(degree distribution, clustering coefficient distribution, betweenness and

closeness centrality, etc.,) were calculated and found to be broadly consis-

tent with other analyses of metabolic networks.

Biomass sink reaction None.

Gene-reaction associations An annotated SBML version of the core network

includes links from (an unspecified number of) enzymes to gene records

in TAIR.

Reproducibility Not assessed.
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Though this work did not produce a model immediately usable for FBA, it is

notable for its method of construction, network-theoretical analyses, and the

inclusion of a brief comparison of the representation of the TCA and glyoxylate

cycles in the new model with that in AraMeta and AraGEM, identifying various

omissions in the latter two and quite a few discrepancies in cofactor use between

the three, which gives some sense of the overall level of agreement.

C4GEM [39]

Description Intended to allow detailed metabolic modeling of all three C4 sub-

types, including photosynthesis, considering both mesophyll and bundle

sheath cell types.

Method of construction From reactions assigned in KEGG to maize, sorghum,

or sugarcane genes with gaps filled by reactions from AraGEM.

Metabolic scope Primary metabolism including glycolysis, pentose phosphate

pathway, TCA cycle, light and dark reactions of photosynthesis, fatty acid

synthesis, β-oxidation, glyoxylate cycle.

Size 1588 reactions and 1755 metabolites, per text of paper (1243 reactions and

1432 species in published SBML file).

Compartmentalization Inherits AraGEM compartmentalization information

including mitochondrial, plastidic, peroxisomal and cytosolic compart-

ments (as well as a plasmodesmata pseudo-compartment for facilitating

transport between mesophyll and bundle sheath).

Consistency checking Not described in detail. In practice, carbon is not con-

served and polymerization reactions are not handled properly.
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Results and comparison to experiment Reproduces the classical C4 cycle;

mesophyll/bundle sheath distribution of chloroplast reaction flux under

photosynthetic condition correlated well with mesophyll/bundle sheath

maize chloroplast proteomics studies.

Gene-reaction association Extensive, the main strength of the paper. Reactions

have been associated, where possible, with genes in maize (total 11623),

sorghum (3557), and sugarcane (3881).

Biomass sink reaction The text of the paper indicates the following biomass

components were considered: carbohydrates, cell wall components,

amino acids, nucleotides, one fatty acid (palmitic acid), biotin, CoA, ri-

boflavin, folate, chlorophyll, nicotinamide, thiamine, ubiquinone.

Reproducibility Very poor. The SBML model distributed with the paper is in-

consistent with the text in many ways, from the total number of reactions

and species onwards, and is missing reactions necessary for the produc-

tion of some biomass components, preventing the reproduction of any re-

sults. Inquiries to the authors yielded an ‘updated version’ as a collection

of Matlab files and no explanation of or comment on the discrepancies.

Pilalis Brassica model [40]

Description A model of central metabolism in the Brassicacae emphasizing oil

accumulation in developing seeds.

Method of construction No genome for B. napus was available, so the model

was based on the related Arabidopsis (also a member of the Brassicacae)

instead. Reactions were taken from AraCyc 6.0, and those reactions not
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active in biomass-producing flux solutions were removed, effectively ex-

cluding secondary metabolism from the model. It is not clear from the

description whether any gap-filling was necessary.

Metabolic scope Primary metabolism including glycolysis, TCA cycle, mito-

chondrial respiration, pentose phosphate pathway, light and dark reac-

tions of photosynthesis (no photorespiration), amino acid, lipid and starch

synthesis,

Size 313 reactions and 262 metabolites.

Compartmentalization Cytosol, mitochondrion, and chloroplast, with reac-

tions manually assigned based on literature or textbook sources or the

BRENDA database.

Consistency checking Not discussed in detail.

Results and comparison to experiment For growth on a medium of sucrose,

alanine and glutamine, with realistic limitations on uptake rates, predicted

growth rates agreed well with observed growth rates. Flux variability re-

sults were qualitatively consistent with the targets of the WRINKLED1

transcription factor having significant control over oil synthesis.

Biomass sink reaction Oil, starch and protein, with amino acid and triglyc-

eride compositions specified from existing data.

iRS1563 (maize) [41]

Description A large-scale maize-specific CBM.

Method of construction Reactions in AraGEM were associated to Arabidopsis

genes and maize orthologs of those genes were determined; maize genes
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not assigned a function in this process were annotated by BLAST searches

against an NCBI database, and further manual curation was performed,

including the addition of some reactions without gene associations but

with direct literature evidence. Some reactions were included to facilitate

two-cell simulations but note that these were not actually performed.

Metabolic scope Primary metabolism, photosynthesis, photorespiration, lignin

biosynthesis, flavonoid biosnythesis, other secondary metabolite synthe-

sis pathways.

Size 1985 reactions, 1825 metabolites.

Compartmentalization Partial, including cytoplasm, plastid, peroxisome, mi-

tochondrion, vacuole, and extracellular compartments. Compartmen-

talization was based on plant proteomics database information (PPDB,

SUBA), with reactions assumed to be cytoplasmic without specific infor-

mation otherwise, and transporters added as necessary to allow flux. In

some cases this led to weird results, e.g., the Calvin cycle is split between

chloroplast and cytoplasm in a non-traditional way.

Consistency checking All reactions elementally and charge balanced.

Results and comparison to experiment Predictions agree with yield changes

associated with mutations in lignin biosynthesis genes.

Gene-reaction associations 1563 genes associated to reactions.

Biomass sink reaction Determined from literature data on dry weight compo-

sition of maize plants; includes amino acids, carbohydrates, cell wall com-

ponents, lipids, organic acids, nucleotides, ions.

iRS1597 (Arabidopsis) [41]

17



Description To allow fair comparison between the iRS1563 maize model and

Arabidopsis, the authors prepared a revised version of AraGEM, incorpo-

rating information from new gene annotations.

Method of construction Some reactions with conservation issues were re-

moved from AraGEM and 228 reactions and associated metabolites were

added; additional gene-protein-reaction associations were established.

The source of the new reactions and genetic information is not specified.

Metabolic scope As for AraGEM, with improved coverage of some secondary

biosynthesis pathways.

Size 1798 reactions, 1820 metabolites.

Compartmentalization The same compartments as AraGEM were used. Some

old compartment assignments were revised based on Uniprot and the sub-

cellular proteomics database SUBA.

Consistency checking Not discussed.

Results and comparison to experiment None.

Biomass sink reaction Not discussed.

Gene-reaction associations To 1597 genes.

bna572 (Brassica) [42]

Description Much like the model of Pilalis et al above, bna572 describes central

metabolism and storage compound synthesis in developing seeds of B.

napus.

18



Method of construction Developed manually from descriptions of known

pathways in the literature and the KEGG and AraCyc databases (a ‘bib-

liomic’ reconstruction). B. napus and Arabidopsis .

Metabolic scope Primary metabolism including glycolysis, pentose phosphate

pathway, TCA cycle, glyoxylate cycle, beta-oxidation, mitochondrial res-

piration, light and dark reactions of photosynthesis, photorespiration.

Size 572 reactions, 376 metabolites (counting metabolites present in multiple

compartments only once).

Compartmentalization Fully compartmentalized into nine subcellular com-

partments (apoplast, cytosol, peroxisome, mitochondrial intermembrane

space, mitochondrial inner membrane, mitochondrial matrix, plastid

stroma, thylakoid membrane, thylakoid lumen,) based on literature in-

formation.

Consistency checking All reactions elementally balanced but conservation of

protons was generally not enforced.

Results and comparison to experiment 33 fluxes were determined uniquely

by the requirement that the solution use substrates and light as efficiently

as possible; (under photoheterotrophic conditions); these predicted fluxes

compared well to fluxes measured in previous 13C-MFA experiments [43].

Biomass sink reaction Includes oil, protein, starch, sucrose, glutamine, cell

wall components, and nucleic acids. Biomass fractions were determined

experimentally for embryos developing under various conditions, with

detailed composition of proteins, oils, nucleic acids, etc., taken from prior

work.

Gene-reaction associations Arabidopsis genes corresponding to many of the re-

actions are provided.
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Mintz-Oron ‘compartmentalized’ model (Arabidopsis) [44]

Description A comprehensive Arabidopsis reconstruction created as a basis for

the generation of tissue-specific submodels.

Method of construction From AraCyc and KEGG, with automatic gap-filling

with preference for reactions attested in other plant species.

Metabolic scope 176 metabolic functions tested, including synthesis and

degradation of secondary metabolites.

Size 1363 reactions among 1078 species.

Compartmentalization Extensive, including “cytosol, plastid, mitochondrion,

endoplasmic reticulum, peroxisome, vacuole, and Golgi apparatus”; reac-

tions assigned using information from SUBA and an automatic method

that minimizes the number of transport reactions necessary.

Consistency checking All reactions automatically checked for proton and oxy-

gen balance (and possibly other atom balances as well).

Results and comparison to experiment Subcellular localization predictions com-

pared well to independent subcellular metabolomics data; predictions for

response to knockdown of pyruvate kinase in the seed-specific model cor-

related significantly with independent 13C-MFA results.

Biomass sink reaction Biomass components include amino acids, sugars, cell

wall components, nucleic acids, coenzyme A and palmitate; composition

apparently based on AraGEM.

Gene-reaction associations 1065 included.
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Poolman rice model [45]

Description Genome-scale model of a rice leaf cell, used to study responses to

varying light levels.

Method of construction From RiceCyc, supplemented with “modules” provid-

ing key reactions in chloroplast and mitochondrion (including Calvin cy-

cle and light reactions, TCA cycle and mitochondrial electron transport

chain, etc.;) mitochondrial module adapted from AraMeta.

Metabolic scope Production of key biomass components under photosynthetic

conditions.

Size 1736 reactions among 1484 species.

Compartmentalization Partial compartmentalization of key reactions in the

chloroplast and mitochondrial modules.

Consistency checking Automated checks for atomic balance for individual re-

actions, careful handling of polymerization reactions, checks for overall

conservation of carbon, nitrogen, phosphorus and sulfur; checks to ensure

ATP and reducing equivalents cannot be supplied when no input or out-

put to the system is allowed.

Results and comparison to experiment Many responses of mitochondrial res-

piration and photorespiration to varying light levels, changes in number

of photons required per C assimilated, etc., qualitatively agree with liter-

ature results; some experimental observations not predicted by the model

are also identified.

Biomass sink reaction Biomass components produced included cell wall com-

ponents, amino acids, nucleotides, lipids, and starch.

Gene-reaction associations 790 reactions with associated genes.
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Cheung ‘diel’ model (Arabidopsis/generic CAM plant) [46]

Description An integrated model for diurnal variation of metabolism in C3 or

CAM (Crassulacean acid metabolism) plants. (Like C4 plants, the CAM

plants also suppress photorespiration by restricting Rubisco activity to a

high-CO2 environment, but do so temporally rather than spatially: car-

bon transiently fixed by PEPC at night is released for fixation by Rubisco

during the day.)

Method of construction Two copies of an updated version of AraMeta [47]

were used to represent the day and night phases of metabolism, with

transport between them corresponding to metabolite accumulation dur-

ing one phase for use in the next.

Metabolic scope Describes photosynthetic production of sucrose and amino

acids for export to the rest of the plant through the leaf veins.

Size 5609 reactions among 5505 species.

Compartmentalization In addition to the notional day and night compart-

ments, chloroplast, mitochondrion, peroxisome and vacuole.

Results and comparison to experiment Qualitatively reproduces experimen-

tally observed aspects of diurnal shifts in C3 and CAM metabolism.

Others The maize genome-scale model of Simons et al. [48], a successor to

iRS1563, is discussed below, as is a multi-organ model for barley [49].
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1.4 Incorporating Rubisco kinetics in constraint-based models

The standard method for making quantitative predictions in a constraint-

based model is flux balance analysis (FBA) [50], which predicts reaction rates

v1, v2, . . . vN in a metabolic network by optimizing a biologically relevant func-

tion of the rates subject to the requirement that the system reach an internal

steady state,

max
(v1,v2,...,vN )∈RN

f(v)

s.t. S · v = 0,

(1.1)

where the stoichiometry matrix S is determined by the network structure as

discussed above. Assuming the objective function f(v) is linear, this is a linear

programming problem, which may be readily and efficiently solved by any of a

number of well-established, user-friendly computational tools.

However, photosynthesis is difficult to describe using this approach because

the relationship between the rate vc of carbon fixation by Rubisco and the rate vo

of the Rubisco oxygenase reaction depends nonlinearly on the ratio of the local

oxygen and carbon dioxide concentrations (here expressed as equivalent partial

pressures),
vo
vc

=
1

SR

PO2

PCO2

(1.2)

where SR is the specificity of Rubisco for CO2 over O2. In the C4 case, the CO2

level in the bundle sheath compartment is itself a function of the rates of the

reactions of the C4 carbon concentration system and the rate of diffusion of CO2

back to the mesophyll.

With the addition of (1.2), the problem (1.1) becomes nonlinear and cannot be

solved with typical FBA tools; instead (as the problem is also nonconvex [51]), a
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general-purpose nonlinear programming algorithm is required to numerically

solve it.

Prior constraint-based models of plant metabolism have typically ignored

the constraint (1.2) or assumed the oxygen and carbon dioxide levels PO2 and

PCO2 are known and fixed vo/vc accordingly [37,41]. While this approach is suit-

able for mature C4 leaves under many conditions, where vo/vc is approximately

zero, it may break down in some of the most important targets for simulation:

developing tissue, mutants, and C3-C4 intermediate species, where PCO2 in the

bundle sheath compartment is not necessarily high.

In other recent work, a high-level physiological model was used to deter-

mine vo, vc, and other key reaction rates given a few parameters, which were

then fixed in order to solve eq. (1.1) [52] . This method yields realistic solu-

tions, but its application is limited by the lack of a way to set the necessary

phenomenological parameters (e.g., the maximum rate of PEP regeneration in

the C4 cycle) based on lower-level, per-gene data (e.g., from transcriptomics or

experiments on single-gene mutants).

Here, we introduce a more general solution to the problem: incorporating

the nonlinear constraint (1.2) directly into the optimization problem (1.1) and

solving the resulting nonlinear program numerically with the IPOPT package

[53], using a new computational interface that we have developed, which allows

rapid, interactive development of nonlinearly-constrained FBA problems from

metabolic models specified in SBML format [54].

Using a new model describing interacting mesophyll and bundle sheath cells

in the leaves of either Zea mays or generic C3, C4, or intermediate plants, based
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on a novel genome-scale reconstruction of the maize metabolic network devel-

oped with particular attention to photosynthesis and related processes, we con-

firm that this approach can reproduce the nonlinear responses of well-validated,

high-level physiological models of C4 photosynthesis [25], while also provid-

ing detailed predictions of fluxes throughout the network. We then apply these

tools to study two key topics in the field of C4 photosynthesis: the shifts in

metabolic state along the gradient in from immature to mature tissue in devel-

oping leaves, and metabolic adaptation along the evolutionary path from the

C3 state to the C4 state.

1.5 Outline

In chapter 2 the new genome-scale metabolic model for the C4 grass Zea mays,

new software for metabolic modeling with nonlinear constraints, and a novel

method for inferring metabolic activity from enzyme expression levels are com-

bined to interpret experimental data from the developing maize leaf. In chap-

ter 3, the model and nonlinear modeling software are combined with techniques

from theoretical chemistry to simulate plausible evolutionary paths through the

fitness landscape connecting the C3 and C4 phenotypes. Appendix A details the

process of reconstruction of the maize metabolic network model. Appendix B

contains additional tables of results from chapter 3. Appendix C briefly presents

the results of a related study in which constraint-based techniques were used to

design a hypothetical metabolic pathway that could bypass the photorespira-

tory system without releasing CO2. Appendix D discusses some theoretical and

practical issues in nonlinear optimization with implications for the design and

solution of nonlinear constraint-based metabolic modeling problems.
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CHAPTER 2

MULTISCALE MODELING OF METABOLISM IN THE DEVELOPING

MAIZE LEAF

2.1 Introduction1

Maize leaves display a developmental gradient along the base-to-tip direction,

with young cells in the immature base and fully differentiated cells at the

tip [55, 56]. Here, after validating the method for nonlinear metabolic model-

ing described above and introducing a new maize metabolic reconstruction, we

combine the results of enzyme assay measurements and multiple RNA-seq ex-

periments and apply a new method to infer the metabolic state at points along a

developing maize leaf (Fig. 2.1a) using a model of mesophyll and bundle sheath

tissue in fifteen segments of the leaf, interacting through vascular transport of

sucrose, glycine, and glutathione. We compare our results to radiolabeling ex-

periments.

2.2 Results

2.2.1 Metabolic reconstruction of Zea mays

A novel genome-scale metabolic model was generated from version 4.0 of the

CornCyc metabolic pathway database [57] and is presented in two forms. The
1The material in this chapter and Appendix A is adapted from the paper “Multiscale

metabolic modeling of C4 plants: connecting nonlinear genome-scale models to leaf-scale
metabolism in developing maize leaves”, Eli Bogart and Christopher R. Myers, arXiv:1502.07969
[q-bio-MN] (2015), which has been submitted and is currently under review.
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Figure 2.1: Maize plant and models. (a) Nine-day-old maize plant (image
from [55]). (b) Organization of the two-cell-type metabolic model, showing
compartmentalization and exchanges across mesophyll and bundle sheath cell
boundaries. (c) Combined 121-compartment model for leaf 3 at the develop-
mental stage shown in (a). Fifteen identical copies of the model shown in (b)
represent 1-cm segments from base to tip.

comprehensive reconstruction involves 2720 reactions among 2725 chemical

species, and incorporates CornCyc predictions for the function of 5204 maize

genes, with 2064 reactions associated with at least one gene. A high-confidence

subset of the model, excluding many reactions not associated with manually

curated pathways or lacking computationally predicted gene assignments as

well as all reactions which could not achieve nonzero flux in FBA calculations,

involves 635 reactions among 603 species, with 469 reactions associated with a

total of 2140 genes.

Both the comprehensive and high-confidence models can simulate the pro-

duction of all major maize biomass constituents (including amino acids, nucleic
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acids, fatty acids and lipids, cellulose and hemicellulose, starch, other carbohy-

drates, and lignins, as well as chlorophyll) under either heterotrophic or pho-

toautotrophic conditions and include chloroplast, mitochondrion, and peroxi-

some compartments, with key reactions of photosynthesis (including a detailed

representation of the light reactions), photorespiration, the NADP-ME C4 cycle,

and mitochondrial respiration localized appropriately. Gene associations for re-

actions present in more than one subcellular compartment have been refined

based on the results of subcellular proteomics experiments and computational

predictions (as collected by the Plant Proteomics Database, [58]) to assign genes

to reactions in appropriate compartments.

A model for interacting mesophyll and bundle sheath tissue in the leaf was

created by combining two copies of the high-confidence model, with trans-

port reactions to represent oxygen and CO2 diffusion and metabolite transport

through the plasmodesmata, and restricting exchange reactions appropriately

(nutrient uptake from the vascular system to the bundle sheath, and gas ex-

change with the intercellular airspace to the mesophyll). A schematic of the

two-cell model is shown in Fig. 2.1b.

Both single-cell versions of the model and the two-cell model, designated

iEB5204, iEB2140, and iEB2140x2 respectively (based on the primary author’s

initials and number of genes included, according to the established naming con-

vention [59]), have been made available in SBML format (e.g., as ancillary files

to [60]).
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2.2.2 Nonlinear flux-balance analysis

To solve nonlinear optimization problems incorporating the constraints dis-

cussed above, we developed a Python package which – given a model in SBML

format, arbitrary nonlinear constraints, a (potentially nonlinear) objective func-

tion, and all needed parameter values – infers the conventional FBA constraints

of eq. (1.1) from the structure of the network, automatically generates Python

code to evaluate the objective function, all constraint functions, and their first

and second derivatives, and calls IPOPT through the pyipopt interface [61].

Source code for the package is available in the ancillary files of [60] and on-

line (http://github.com/ebogart/fluxtools). The software has been

used to successfully solve nonlinear FBA problems with over 84000 variables

and 62000 constraints.

Figure 2.2 demonstrates that, as expected, optimizing the rate of CO2 assim-

ilation in the two-cell-type model with nonlinear kinetic constraints [eqs. (2.3),

(2.4), (2.5)] produces predictions consistent with the results of the physiological

model of [25]. Note that the effective value of one macroscopic physiological

parameter may be governed by many microscopic parameters in the genome-

scale model. In the figure, the effective maximum PEP regeneration rate Vpr is

controlled by the maximum rate of three decarboxylase reactions in the bundle

sheath compartment, but with an appropriate choice of parameter values any

of at least 10 reactions of the C4 system could become the rate-limiting step in

PEP regeneration, and in the calculations below, expression levels for any of the

42 genes associated with these reactions (Table 2.1) could influence the net PEP

regeneration rate.
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Figure 2.2: CO2 assimilation rates (A) predicted by the C4 photosynthesis
model of [25], solid lines, and the present nonlinear genome-scale model
(markers) maximizing CO2 assimilation with equivalent parameters. Left, A
vs mesophyll CO2 levels with varying PEPC levels (top to bottom, Vp,max = 110,
90, 70, 50, and 30 µmol m-2 s-1). Right, A vs total maximum activity of all bundle
sheath decarboxylase enzymes (equivalent to the maximum PEP regeneration
rate Vpr) at varying Rubisco levels (top to bottom, Vc,max = 70, 60, 50, 40, and 30
µmol m-2 s-1). Other parameters as in Table 4.1 of [25], except with nonphotores-
piratory respiration rates rd = rm = 0.

2.2.3 Flux predictions in the developing leaf based on multiple

data channels

To explore variations in metabolic state along the leaf developmental gradient,

we combined the RNA-seq datasets of Wang et al. [62] and Tausta et al. [63]

to estimate expression levels (as FPKM) for 39634 genes in the mesophyll and
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bundle sheath cells at 15 points, representing 1 cm segments of the third leaf of a

9-day-old maize plant, which includes a full gradient of developmental stages.

The combined dataset provides expression information for 920 reactions in the

two-cell model (460 each in mesophyll and bundle sheath cells).

A whole-leaf metabolic model, iEB2140x2x15, was created from fifteen

copies of the two-cell model, each representing a 1-cm segment, interacting

through the exchange of sucrose, glycine, and glutathione through a common

compartment representing the phloem. The resulting 121-compartment model,

Fig. 2.1c, involves 18780 reactions among 16575 metabolites.

Subject to the requirements that reaction rates in each of the 15 segments

obey both the FBA steady-state constraints (eq. 1.1) and the nonlinear con-

straints governing Rubisco kinetics (eqs. 2.3, 2.5, and 2.4, presented in detail

below) we determined the set of rates vij for each reaction i at each segment j

which were most consistent with the base-to-tip variation in the gene expression

data, by optimizing the objective function

F (v) =
Nr∑
i=0

15∑
j=1

(esi |vij| − dij)2
δ2ij

+ α
Nr∑
i=0

s2i (2.1)

where Nr = 920 is the number of reactions associated with at least one gene

present in the expression data, dij and δij are the expression data and associated

experimental uncertainty for reaction i at leaf segment j, and si is an optimizable

scale factor associated with reaction i.

Effectively, this calculation – similar to the method of Lee et al. [64] or FAL-

CON [65] – performs a constrained least-squares fit of the fluxes to the expres-

sion data. Allowing the scale factors si to vary emphasizes agreement between

fluxes and data in their trend along the developmental gradient, rather than in
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their absolute value: if the data associated with reaction Ri has average value

100 FPKM, a solution in which Ri has mean flux 10 µmol m-2 s-1 but correlates

well with the data can achieve (with appropriate choice of scale factor) a lower

cost than a solution in which Ri has mean flux 100 µmol m-2 s-1 but is anticor-

related. The penalty term α
∑
s2i favors solutions in which, generally, reactions

with larger associated expression data carry higher fluxes. The parameter α

controlling the tradeoff between these criteria was set arbitrarily to 1.0 in the

work presented here. We require sa = sb if reactions a and b are mesophyll and

bundle sheath instances of the same reaction.

To constrain the overall scale of the fluxes and further improve accuracy, we

incorporated enzyme activity assay data from [62] for seventeen enzymes (in-

cluding Rubisco and PEPC) along the 15 leaf segments as additional constraints

on the optimization problem, requiring for each enzyme k and segment j

Ejk ≥ |vk1|+ . . .+ |vkn| (2.2)

where Ejk is the measured maximal activity of the enzyme at that segment and

the sum on the right hand side includes all the reactions which represent en-

zyme k in the mesophyll, bundle sheath, and subcompartments of those cells if

applicable.

Solving the optimization problem yielded predictions for reaction rates and

other variables. Upper and lower bounds on selected variables were deter-

mined through flux variability analysis (FVA) [66], allowing the objective func-

tion to increase by 0.1% from its optimal value.
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Predicted source-sink transition

As shown in Fig. 2.3, in the outer, more photosynthetically developed, portion

of the leaf, our optimal fit predicts net CO2 uptake, with most of the assimilated

carbon incorporated into sucrose and exported to the phloem. Near the base of

the leaf, sucrose is predicted to be imported from the phloem and used to drive

a high rate of biomass production, with some concomitant net release of CO2 to

the atmosphere by respiration.

This transition between a carbon-exporting source region and a carbon-

importing sink region is well known, and the predicted transition point between

the two, approximately 6 cm above the base of the leaf, can be compared to the

14C-labeling results of Li et al. [55] in the same experimental conditions. Fig. 2.3b

shows the location of labeled carbon in leaf 3 after feeding labeled CO2 to leaf 2

(center image) or leaf 3 (bottom image). Li et al. [55] identified the sink region as

the lowest 4 cm of the leaf; the transition is not perfectly sharp and quantitative

comparison of exchange fluxes is not possible, but the nonlinear FBA results

appear to slightly overestimate the size of the sink region.

Agreement might be improved under a different assumption about net su-

crose import or export by leaf 3 (here, we have assumed that the import visible

in the center image is exactly balanced by the export suggested by the high den-

sity of labeled carbon at the absolute base in the lower image).

The net rate of CO2 assimilation predicted in the outer, most mature leaf

segments, 8-11 µmol m-2 s-1, is lower than that typically measured in more ma-

ture maize plants (e.g., rates of 20-30 µmol m-2 s-1 in 22-day-old wild-type plants

under comparable conditions [9]), but photosynthetic capacity may still be in-
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Figure 2.3: Source-sink transition along the leaf as predicted by optimizing
the agreement between fluxes in the nonlinear model and RNA-seq data. (a)
Predicted rates of exchange of carbon with the atmosphere and phloem along
the leaf. (b) Experimental observation of the source-sink transition, reproduced
from [55]. Upper image, photograph of leaf 3; middle image, autoradiograph
of leaf 3 after feeding 14CO2 to leaf 2; lower image, autoradiograph of leaf 3
after feeding 14CO2 to the tip of leaf 3. (c) Total biomass production in the best-
fitting solution. In panels a and c, dotted lines indicate minimum and maximum
predicted rates consistent with an objective function value no more than 0.1%
worse than the optimum.
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Figure 2.4: Transport of nitrogen (upper panel) and sulfur (lower panel)
through the phloem in the best-fitting solution. Dotted lines indicate min-
imum and maximum predicted values consistent with an objective function
value no more than 0.1% worse than the optimum.

creasing even in these segments.

In addition to sucrose, glycine and glutathione are predicted to be exported

from the source region through the phloem and reimported by the sink region,

consistent with our expectations that nitrogen and sulfur reduction will occur

preferentially in the photosynthesizing region (Figure 2.4). Note that this be-

havior emerges from the data even though there is no explicit requirement in

the model that net phloem transport occur in a basipetal direction.

36



Predicted C4 system function

Figure 2.5 shows predicted rates of key reactions of the C4 system and CO2 and

O2 levels in the bundle sheath. As expected, the model predicts that a C4 cy-

cle will operate in the source region of the leaf, elevating the CO2 level in the

bundle sheath. The CO2 level is also elevated in the source region; this is an

immediate consequence of respiration in the bundle sheath and eq. (2.5). It may

be overestimated here because we have assumed a constant value for the bun-

dle sheath CO2 conductivity (as measured by Bellasio et al. [67]); in fact, gene

expression associated with synthesis of the diffusion-resistant suberin layer be-

tween bundle sheath and mesophyll peaks at 4 cm above the leaf base [62], so

gs is presumably higher below that point.

In the Calvin cycle, most reactions are predicted to be bundle-sheath specific,

but the reductive phase is active in both cells, with approximately half the 3-

phosphoglycerate produced in the bundle sheath transported to the mesophyll

and returned as dihydroxyacetone phosphate (Fig. 2.5c); this is a known aspect

of NADP-ME C4 metabolism connected to reduced photosystem II activity in

the bundle sheath cells [68], which is also predicted here (Figure 2.6). Consistent

with conclusions drawn independently from the transcriptomic data, as well as

proteomic data from the same system [55, 62, 69], the model does not predict a

C3-like metabolic state as a developmental intermediate stage. As expected in

maize [70], a significant role for phosphoenolpyruvate carboxykinase (PEPCK)

as a decarboxylating enzyme operating in the bundle sheath in parallel with

NADP-ME is predicted (Fig. 2.5b).

While the predictions are generally consistent with the standard view of the

C4 system in maize, there are minor discrepancies. In the mesophyll, our calcu-
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Figure 2.5: Operation of the C4 system in the best-fitting solution. (a) Rates
of carboxylation by PEPC in the mesophyll and Rubisco in the mesophyll and
bundle sheath. (b) Rates of CO2 release by PEP carboxykinase and chloroplastic
NADP-malic enzyme in the bundle sheath. (c) Transport of 3-phosphoglycerate
and glyceraldehyde 3-phosphate from bundle sheath to mesophyll (or the re-
verse, where negative) and glyceraldehyde 3-phosphate dehydrogenation rate
in the mesophyll chloroplast, showing the involvement of the mesophyll in the
reductive steps of the Calvin cycle throughout the source region. (d) Oxygen
and carbon dioxide levels in the bundle sheath. Straight lines show mesophyll
levels. Throughout, dotted lines indicate minimum and maximum predicted
values consistent with an objective function value no more than 0.1% worse
than the optimum.
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Figure 2.6: Photosystem II in mesophyll and bundle sheath. Dashed and
dotted lines indicate minimum and maximum predicted values consistent with
an objective function value no more than 0.1% worse than the optimum.

lations predict that malate production occurs in the mitochondrion, rather than

the chloroplast. In both mesophyll and bundle sheath, phosphoenolpyruvate

is formed by pyruvate-orthophosphate dikinase (PPDK) in the chloroplast at a

higher rate than necessary to sustain the C4 cycle; the excess is converted again

to pyruvate by pyruvate kinase in the cytoplasm, with the resulting ATP con-

sumed by the model’s generic ATPase reaction. Finally, in the bundle sheath,

a modest rate of PEPC activity is predicted, recapturing CO2 only to have it

released again by the decarboxylases (Figure 2.7). Further refinement of the

associations of genes to reactions in the model might resolve some of these dis-

crepancies.
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Figure 2.7: Bundle sheath PEPC flux in the best-fitting solution. Dotted lines
indicate minimum and maximum predicted values consistent with an objective
function value no more than 0.1% worse than the optimum.

Global agreement between fluxes and data

Figure 2.8 summarizes overall properties of the predicted fluxes. It is not clear

why agreement between data and predicted fluxes is poorer at the base, as

shown in Fig. 2.8a. As discussed below, the cell-type-specific RNA-seq data

from Tausta et al. [63] does not extend below the fourth segment from the base

of the leaf; at the base we have assumed expression levels for all genes are equal

in mesophyll and bundle sheath. Though proteomics experiments on the same

system [69] generally found limited cell-type specificity at the leaf base, this

assumption is likely an oversimplification, and could limit the ability of the al-
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gorithm to find a flux prediction consistent with the data there.

For most reactions, the correlation between the base-to-tip expression pat-

tern and the base-to-tip trend in predicted flux is high. The cumulative his-

togram in Fig. 2.8b shows that the Pearson correlation r > 0.92 for more than

half of the reactions in the model with associated expression data.

Differences in expression levels between different reactions, however, cor-

relate only weakly with the differences in fluxes between those reactions, as

shown for segment 15 in Fig. 2.8c (blue circles). After rescaling fluxes by the

optimal per-reaction scale factors, a clear relationship emerges (Fig. 2.8c, red

circles), confirming that the scale factors are functioning as intended. Of course

we should not expect a perfect correlation between data on transcript levels

and predicted fluxes through associated reactions. The limited correlation be-

tween fluxes and expression data across different reactions presumably follows,

in part, from the imperfect correlation between expression data and protein

abundance across different genes, as illustrated in Fig. 2.8d with data from the

same experimental system [71], as well as from the different catalytic capabil-

ities of different enzymes, posttranslational regulation, differences in substrate

availability, etc.

Reconciling expression data and network structure

Figure 2.9 illustrates the operation of the fitting algorithm in detail, using two

regions of the metabolic network with simple structure as examples.

In Fig. 2.9a, expression data for eight reactions of the pathway leading to

chlorophyllide a are shown. Expression levels for the different reactions at any
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Figure 2.8: Agreement between RNA-seq data and predicted fluxes. (a) Con-
tribution of each segment to the objective function (eq. (2.1), excluding costs
associated with scale factors). (b) Cumulative histogram of Pearson correlations
between data and predicted fluxes for all reactions. (c) Predicted fluxes versus
expression data at the tip of the leaf (blue, raw fluxes; red, after rescaling each
flux vi by the optimal factor esi of eq. (2.1)). Some outliers with very low pre-
dicted flux are not shown. (d) Relationship between RNA-seq and proteomics
measurements for 506 proteins in the 14th segment from the base, redrawn from
the data of [71]. NSAF, normalized spectral abundance factor.
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Figure 2.9: Comparison of RNA-seq data to predicted fluxes for a linear path-
way and around a metabolic branch point. Upper panels, chlorophyllide a
synthesis in the mesophyll; lower panels, production of arogenate in the bun-
dle sheath by prephenate transaminase and its consumption by arogenate de-
hydrogenase and arogenate dehydratase. Left, aggregate RNA-seq data and
experimental standard deviations for each reaction rescaled by a uniform factor
(see text). Right, same data and errors further rescaled by reaction-specific op-
timal factors (e−si , in the variables of eq. 2.1) to best match data with predicted
fluxes (solid circles). Fluxes are equal for all reactions of the linear pathway
(1, uroporphyrinogen decarboxylase, 2, coproporphyrinogen oxidase, 3, proto-
porphyrinogen oxidase, 4, magnesium chelatase, 5, magnesium protoporphyrin
IX methyltransferase, 6, magnesium protoporphyrin IX monomethyl ester cy-
clase, 7, divinyl chlorophyllide a 8-vinyl-reductase, 8, protochlorophyllide re-
ductase). Error bars represent standard deviations of expression measurements
across multiple replicates.
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point on the leaf may span an order of magnitude or more, but the FBA steady-

state assumption requires the rates of all reactions in this unbranched2 pathway

to be equal at each point. Applying the optimal rescaling determined for each

reaction’s expression data, shown in panel b, allows the flux prediction for the

pathway (solid dots) to achieve reasonable agreement with the data. (Note that

data for reaction 4 cannot be further scaled down because of the lower limit

exp(−5) on its scale factor exp(s4), imposed for technical reasons.)

Figure 2.9c shows data for a three-reaction branch point in aromatic amino

acid synthesis. To balance production and consumption of arogenate, the

prephenate transaminase flux must equal the sum of the fluxes through aro-

genate dehydrogenase (to tyrosine) and arogenate dehydratase (to phenylala-

nine) but expression is consistently lower for the transaminase than the other

enzymes. After rescaling (Fig. 2.9d), the data agree well with the stoichiometri-

cally consistent flux predictions (solid dots). The predicted ratio of dehydroge-

nase to dehydratase flux reflects data for downstream reactions.

Comparison to other methods for integrating RNA-seq data

Figure 2.10 shows predictions that result when the scale factors si of eq. (2.1)

are fixed to zero. The source-sink transition is apparent but the C4 cycle oper-

ates at lower levels, the example pathways of Fig. 2.9 (and a number of others)

show little or no activity, and predicted fluxes along the leaf are not as tightly

correlated with their associated expression data.

Figure 2.11 shows the metabolic state predicted by applying the expression

data for each reaction as an upper bound on the absolute value of the reaction
2The branch leading to heme production is not included in the reconstruction.
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Figure 2.10: Summary of predictions for the gradient model using the least-
squares method without per-reaction scale factors. In eq. (2.6), si = 0 for all
reactions i. (a) Sucrose and CO2 uptake rates (compare to figure 2.3a). (b) Rates
of carboxylation by PEPC and Rubisco (compare to figure 2.5b). (c) Predicted
rate for the reactions of the chlorophyllide A synthesis pathway (compare to
figure 2.9b). (d) Predicted rates at the arogenate branch point (compare to fig-
ure 2.9d). (e) Predicted oxygen and carbon dioxide levels in the bundle sheath,
with straight lines showing mesophyll levels (compare to figure 2.5d). (f) Dis-
tribution of correlation coefficients between data and predicted fluxes for each
reaction (blue, this method; red, standard method). Correlation coefficients for
reactions with zero predicted flux are taken to be zero, resulting in the visible
peak in the histogram.
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rate as in the E-Flux method [72] to the fifteen-segment model with the same

RNA-seq data. The C4 system is predicted to operate, but no source-sink transi-

tion is apparent, and typical data-predicted flux correlations are poor. Imposing

a realistic biomass composition restores the source-sink transition and some-

what improves correlation between data and fluxes (Figure 2.12; in contrast,

as shown in Figure 2.13, fixing the biomass composition has limited effect on

the method presented above, except for the suppression of production of some

species, such as chlorophyll, which are not included in the composition, and a

slightly higher rate of total biomass synthesis at the leaf base, as shown in Fig-

ure 2.14). Fluxes predicted by E-Flux are generally smaller than those predicted

by the least-squares method, with or without per-reaction scale factors.

Figure 2.15 compares the fluxes predicted at the tip by optimizing agreement

with the data through the non-biological objective function (eq. 2.1), fluxes pre-

dicted at the tip with an explicit biological objective function (maximizing CO2

assimilation) constrained by the experimental data in the E-Flux method, and

fluxes predicted in an FBA calculation which ignores the data entirely (mini-

mizing total flux while achieving the same CO2 assimilation rate as predicted

at the tip by the least-squares method). Both data-integration methods lead to

predictions very different from the unconstrained FBA calculation.
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Figure 2.11: Summary of predictions for the gradient model using the E-Flux
method. For explanation of each panel, see Figure 2.10.

2.3 Discussion

2.3.1 Reconstruction

Our model is the fourth published genome-scale metabolic reconstruction of the

major crop plant Zea mays, and the first such reconstruction developed solely

from maize data sources, rather than as a direct or indirect adaptation of the

Arabidopsis thaliana model AraGEM [37].

Direct reaction-to-reaction comparison of iEB5204 with C4GEM [39],
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Figure 2.12: Summary of predictions for the gradient model using the E-Flux
method with fixed biomass composition. The biomass composition is fixed to
that used by iRS1563, as adapted (see Appendix A). For explanation of each
panel, see Figure 2.10. Note that the chlorophyllide A synthesis pathway is
blocked when the fixed biomass composition is used.

iRS1563 [41], and its successor model [48] is difficult because those models use a

naming scheme for compounds and reactions ultimately based on KEGG [73,74]

while this model, like its parent database, uses the nomenclature of MetaCyc

and the BioCyc database collection. The models are broadly similar in size

and biological scope. As published, C4GEM included 1588 reactions associated

with 11623 maize genes; iRS1563, 1985 reactions associated with 1563 genes; the

model of Simons et al. [48], 3892 unique reactions and 5824 genes; and iEB5204,

2720 reactions with 5204 genes. All models can simulate the production of sim-
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Figure 2.13: Summary of predictions for the gradient model with fixed
biomass composition. For explanation of each panel, see Figure 2.10. Note
that the chlorophyllide A synthesis pathway is blocked when the fixed biomass
composition is used.

ilar sets of basic biomass constituents (including amino acids, carbohydrates,

nucleic acids, lipids and fatty acids, and cell wall components) under photo-

synthetic and non-photosynthetic conditions and include key reactions of the

C4 cycle. The model of Simons et al. [48] also offers extensive coverage of sec-

ondary metabolism.

However, the present model has several advantages which make it particu-

larly suitable for integration with transcriptomics data:

Gene associations The gene associations included in iEB5204 are those pre-
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Figure 2.14: Predicted biomass production rates in mesophyll and bundle
sheath cells with fixed biomass composition.

sented in CornCyc [57], which are generated by the PMN Ensemble En-

zyme Prediction Pipeline (E2P2) [75], a homology-based protein sequence

annotation algorithm trained on a reference dataset of experimentally val-

idated enzyme sequences. The E2P2 approach is more comprehensive

and scalable than the development procedures of the previous maize re-

constructions (which involve, for example, obtaining gene associations

by transferring annotations from Arabidopsis genes to their best maize

BLAST hits and manually selecting annotations for remaining maize genes

from among BLAST hits in other species). The entire set of gene associa-

tions in the FBA model may be readily updated based on improvements
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the tip of the leaf by the E-Flux method. Axis limits exclude a small number of
reactions of particularly large flux. Fluxes in µmol m-2 s-1.

in the E2P2 prediction algorithm.

High-confidence submodel In developing the fitting algorithm we found that,

to obtain plausible metabolic state predictions, a conservative reconstruc-

tion was preferable to a comprehensive one. For example, early tests with

the comprehensive version of the model suggested that the fitting algo-

rithm often found low-cost solutions involving high fluxes through reac-

tions which, on investigation, we determined were unlikely to be active
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in maize. Because of the model’s connection to the CornCyc database, it

was straightforward to create a reduced, high-confidence version of the

model by preferentially excluding reactions not included in any manually

curated plant metabolic pathway, even if candidate associated genes had

been identified computationally, leading to more realistic results.

Reproducibility In an effort to improve the reusability of the model and en-

courage its application to other data sets, we have published the full

source code for all calculations presented here (as ancillary files of [60]

and online at http://github.com/ebogart/fluxtools) as has been

recommended (see, e.g., [76]).

Previous reconstructions do offer two features absent from this model: gene

associations for intracellular transport reactions, and gene associations which

take into account the structure of protein complexes. Both should be considered

in future work.

In agreement with [77], we found that building the model starting from a

metabolic pathway database was considerably more straightforward than the

standard process of de novo reconstruction [78]. Reasonable effort was still re-

quired to bring the model to a functional state by identifying reactions or path-

ways present in the CornCyc database which could not be handled automati-

cally by the Pathway Tools export facility (for example, because they involved

polymerization, or could not be checked automatically for conservation viola-

tions) and determining how to represent them appropriately in the FBA model.

The model construction process here could readily be adapted to generate

metabolic models describing any of the more than 30 crop and model plant

species for which Pathway Tools-based metabolic pathway databases [79] have
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been developed by the Plant Metabolic Network [80], Sol Genomics Network

[81], Gramene [82], and others (e.g., [83–85]) allowing the present data-fitting

method to be applied to RNA-seq data from those organisms. The level of

model development effort required and quality of fit results will vary depend-

ing on the extent of curation of the pathway database and quality of the gene

function annotations.

2.3.2 Nonlinear optimization

In contrast to the linear and convex optimization methods employed in nearly

all prior constraint-based modeling work, general constrained nonlinear opti-

mization algorithms typically require more effort from the user (who might be

required to supply functions which evaluate the first and second derivatives of

all constraints with respect to all variables in the problem). They are slower,

are more sensitive to choices of starting point and problem formulation, are not

guaranteed to converge to an optimal point even if one exists, and, when they

do converge to an optimum, cannot guarantee that it is globally optimal.

The software package we present allows the rapid and effective develop-

ment of metabolic models with nonlinear constraints despite these complica-

tions. All necessary derivatives of constraint functions are taken analytically,

and Python code to evaluate them is automatically generated. A model in SBML

format may be imported, nonlinear constraints added and removed, and the

problem repeatedly solved to test various design choices, solver options, and

initial points, all within an interactive session, with a minimum of initial invest-

ment of effort in programming.
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In the present case, agreement between nonlinear FBA calculations maxi-

mizing growth and the predictions of classical physiological models confirmed

that the true, globally optimal CO2 assimilation rate was found successfully. For

the data-fitting calculations, where the true optimal cost is not known, we can-

not exclude the possibility that there exist other optimal solutions, qualitatively

distinct from the flux distributions and quasi-optimal regions presented above,

with equivalent or lower costs. In practice, we encountered occasional cases

in which reaction or pathway fluxes were initially predicted to be zero even

when associated with nonzero data, despite the existence of a superior alterna-

tive solution with nonzero predicted fluxes. A step to detect and correct these

situations was incorporated into the fitting algorithm.

Many future applications for the software are possible. Our approach to Ru-

bisco kinetics may easily be extended to other models of C4 metabolism or, more

generally, to any FBA calculation in a photosynthetic organism where the CO2

level at the Rubisco active site, and thus the Rubisco oxygenation/carboxylation

ratio, is not known a priori. A recent genome-scale metabolic reconstruction of

the model alga Chlamydomonas reinhardtii, for example, was identified by the

authors as being deficient in describing algal metabolism under low CO2 con-

ditions due to the fact that the Rubisco carboxylase and oxygenase fluxes were

treated as independent and not competitive, as we have done here [86].

Ensuring that rates of Rubisco oxygenation, Rubisco carboxylation, and

PEPC carboxylation are consistent with our knowledge of their kinetics is a spe-

cial case of the more general problem of integrating kinetic and constraint-based

modeling, to which diverse approaches have been proposed (e.g., [87–92]).

To our knowledge, no prior work has simply imposed kinetic laws as ad-
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ditional, nonlinear constraints in the ordinary FBA optimization problem. Our

results demonstrate the potential of this approach in systems where the kinet-

ics of a few well-understood reactions are crucial. It remains to be seen how

many kinetic laws may be incorporated in this way at once, and to what extent

their introduction usefully constrains the space of possible steady-state flux dis-

tributions even when relevant kinetic parameters are not known (but instead

are treated as optimizable variables, an approach with connections to ensemble

kinetic modeling [93]).

Nonlinear constraints may also be of use in enforcing thermodynamic realiz-

ability of flux distributions, and relaxing requirements of linearity or convexity

may stimulate the development of novel objective functions – either for data

integration purposes, as here, or as alternatives to growth-rate maximization.

2.3.3 Data fitting

The expression of a gene encoding a metabolic enzyme need not correlate with

the rate of the reaction that enzyme catalyzes. The relationship between tran-

scription and degradation of mRNA and control of flux is indirect, mediated

by protein translation, folding, and degradation, complex formation, posttrans-

lational modification, allosteric regulation, and substrate availability. Indeed,

as reviewed by [94], experimentally observed correlations among RNA-seq or

microarray data (each itself an imperfect proxy for mRNA abundance or tran-

scription rate), protein abundance, enzyme activity, and fluxes are variable and

often weak.

For example, RNA-seq and quantitative proteomic data obtained from maize
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leaves at the same developmental stage studied here, harvested simultane-

ously from plants grown together, showed Pearson correlation approximately

0.6 across the entire dataset, but some significantly lower values were found

when correlations were restricted to genes of particular functional classes, and

measured mRNA/protein ratios for individual genes varied up to 10-fold along

the gradient [71]. A subset of this data is shown in Fig. 2.8d.

The most comprehensive study of the issue in plants so far [95] found so little

agreement between RNA-seq and 13C-MFA data from embryos of two Brassica

napus accessions that the authors concluded the inference of central metabolic

fluxes from transcriptomics is, in general, impossible.

In this light, it is not surprising that methods for integrating transcriptomic

data with metabolic models to predict reaction rates have met with limited suc-

cess. Machado and Herrgård [96] reviewed 18 such methods and assessed the

performance of seven of them on three test datasets from E. coli and Saccha-

romyces cerevisiae where experimentally measured intracellular and extracellu-

lar fluxes were available for comparison. None of the methods consistently

outperformed parsimonious FBA simulations which completely ignored tran-

scriptomic data.

In contrast, in the present work the use of transcriptomic data (and a limited

number of enzyme activity measurements) allowed the correct prediction of a

metabolic transition from the base of the leaf to the tip, which could not have

been expected based on FBA calculations alone: without such data, all points

along the gradient would be identical, and the biomass-production-maximizing

solution would be the same at each. The predicted position of the source-sink

transition is not perfectly accurate, and the overall performance of the model
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cannot be evaluated until the predicted reaction rates are compared to detailed

experimental flux measurements. Nonetheless, the results are encouraging. We

offer two explanations for this apparent success.

First, the metabolic transition between the heterotrophic sink region at the

base and the photoautotrophic source region at the tip is particularly dramatic,

involving a large number of reactions which are effectively absent in one re-

gion but carry high fluxes in the other [55]; so long as even a slight correlation

between transcript levels and fluxes exists, such a reconfiguration should be

apparent from expression data.

Second, although the developing maize leaf is biologically more complex

than microbial growth experiments, the relationship between expression levels

and fluxes may be actually be closer in the leaf. Leaf development is a stereo-

typed, frequently repeated, relatively slow, one-way process, in which the pre-

cise sequence of events is subject to evolutionary optimization. Coordination

of transcription with required fluxes will lead to efficient use of resources. In

contrast, the test cases of [96] involve microbial responses to varying environ-

mental conditions and under- and over-expression mutations. Environmental

responses must be rapid, flexible and reversible – criteria a complex, scripted

transcriptional response may not satisfy – while transcriptional responses to

novel mutations, by definition, cannot have been evolutionarily optimized. This

hypothesis could be tested by evaluating performance of the present method on

RNA-seq data from mutant maize plants, or plants subject to environmental

challenges.

We note also that methods that did not constrain or optimize the growth

rate predicted zero growth rates in almost all the test cases studied by Machado
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and Herrgård [96]. The present method also does not constrain or optimize

the growth rate but consistently does predict nonzero growth as reflected in

nonzero biomass production (whether with a flexible biomass composition was

used, as above, or a fixed biomass composition, as in Figure 2.13 and Fig-

ure 2.14).

2.3.4 The whole-leaf model

Large-scale metabolic models of interacting cells of multiple types first ap-

peared in 2010, with C4GEM [39] and a model of human neurons interacting

with their surrounding astrocytes [97]. Many more complex multicellular FBA

models have since appeared, including studies of the metabolism of interacting

communities of microbial species in diverse natural environments or artificial

co-cultures [98–104] (also [105] at a smaller scale) and of the metabolic capac-

ities of host animals and their symbionts [106] or parasites [107]. In plants,

diurnal variation in C3 and CAM plant metabolism has been simulated with

a model which represents different phases of the diurnal cycle with different

abstract compartments, with transport reactions representing accumulation of

metabolites over time [46].

In the most direct antecedent of the present work, Grafahrend-Belau and

coauthors developed a multiscale model of barley metabolism [49] which rep-

resented leaf, stem, and seed organs as subcompartments of a whole-plant FBA

model, with nutrients exchanged through the phloem. Combining the FBA

model with a high-level dynamic model of plant metabolism allowed them

to predict changes in metabolism over time, including the transition between
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a biomass-producing sink state and a fructan-remobilizing source state in the

stem late in the plant’s life cycle.

The whole-leaf model presented here occupies an intermediate position be-

tween prior C4 models, with single mesophyll and bundle sheath cells, and

multi-organ whole-plant models such as [49]. It represents the first attempt to

model spatial variations in metabolic state within a single organ, allowing the

study of developmental transitions in leaf metabolism by incorporating data

from more and less differentiated cells at a single point in time, rather than

modeling development dynamically.

Other interacting cell models incorporate a priori qualitative differences in

the metabolic capabilities of their components (e.g., leaf, stem, and seed, or neu-

rons and astrocytes). In contrast in the work presented here, in order to allow

the metabolic differences between any two adjacent points to be purely quanti-

tative, the same metabolic network must be used for all points. This simplifies

the process of model creation but implies that meaningful predictions of spatial

variation depend entirely on the integration of (spatially resolved) experimental

data. The ability of the model to capture the experimentally observed shift from

sink to source tissue along the developmental gradient based on RNA-seq and

enzyme activity measurements shows that this may be done successfully with

high-resolution -omics data and careful model construction.
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2.4 Methods

2.4.1 Reconstruction process

A local copy of CornCyc 4.0 [57] was obtained from the Plant Metabolic Net-

work and a draft metabolic model was created using the MetaFlux module of

Pathway Tools 17.0 [77]. The resulting model, including reaction reversibility in-

formation, was converted to SBML format and iteratively revised, as described

in detail in Development of a flux balance analysis model for maize, until all

desired biomass components could be produced under both heterotrophic and

photosynthetic conditions and realistic mitochondrial respiration and photores-

piration could operate.

An overall biomass reaction was adapted from iRS1563 [41] with minor mod-

ifications to components and stoichiometry, as detailed in Development of a flux

balance analysis model for maize. To allow calculations with flexible biomass

composition, individual sink reactions were added for most species participat-

ing in the biomass reaction, as well as several relevant species (including chloro-

phyll) not originally included in the iRS1563 biomass equation.

Core metabolic pathways were assigned appropriately to subcellular com-

partments (e.g., the TCA cycle and mitochondrial electron transport chain to the

mitochondrion; the light reactions of photosynthesis, the Calvin cycle, and some

reactions of the C4 cycle to the chloroplast; and some reactions of the photores-

piratory pathway to the peroxisome) and the intracellular transport reactions

necessary for their operation were added.

The model was thoroughly tested for consistency and conservation viola-
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tions, confirming that no species could be created without net mass input or

destroyed without net mass output (except species representing light, which

can be consumed to drive futile cycles).

In the SBML files, gene association rules for reactions with associated genes

in CornCyc are provided following COBRA conventions [108]. Additional an-

notations give the record in the CornCyc database associated with each reaction

and species, where applicable.

To produce the higher-confidence version of the reconstruction, iEB2140,

reactions in the base model which were not associated with any identified

metabolic pathway in CornCyc, and those for which no genes for a catalyz-

ing enzyme had been identified by computational function prediction, were re-

moved from the model if their removal did not prevent photosynthesis, pho-

torespiration, or the production of any biomass component. Then, all reactions

which could not achieve nonzero steady-state rates were removed.

2.4.2 Mesophyll-bundle sheath model

A model for leaf tissue was created by taking two copies of the high-confidence

model, representing mesophyll and bundle sheath cells, and adding reactions

representing transport through the plasmodesmata which connect the cytoplas-

mic spaces of adjacent cells. Though in principle most small molecules can cross

the plasmodesmata by diffusion [109], unrealistic concentration gradients may

be required to drive high diffusive fluxes, and processes other than simple dif-

fusion may play a role in the rapid exchanges which do occur [110]. Given this

uncertainty we conservatively restricted such transport to species known or ex-
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pected to be exchanged between cell types (under at least some circumstances);

a complete list is given in Development of a flux balance analysis model for

maize.

Net import or export of metabolites from the system was limited to the

mesophyll, for gases exchanged with the intercellular airspace, or the bundle

sheath, for soluble metabolites exchanged with the leaf’s vascular system. Re-

actions were not otherwise restricted a priori to a particular cell type. To fa-

cilitate integration with cell-type-specific RNA data, gene associations in this

model are tagged with the relevant cell type, e.g. ‘bs GRMZM2G039273’ vs

‘ms GRMZM2G039273’.

2.4.3 Leaf gradient model

The choice of phloem transport metabolites (other than sucrose) is a compro-

mise. Glycine is the most abundant amino acid in maize phloem [111], and

glutathione is a putative phloem sulfur transport compound [112], but many

other amino acids are present in the phloem sap, and other compounds (e.g., S-

methyl-methionine [112]) may play roles in phloem sulfur transport. However,

we found that the available data did not adequately constrain rates of phloem

transport if multiple transport species of each type were allowed, resulting in

high rates of transport from the base towards the tip, against the direction of

bulk flow in the phloem.

For simplicity, export of metabolites from the leaf to the rest of the plant

through the phloem was neglected and net import of sucrose was not allowed.

Each segment was taken to have the same total area, so that a 1 µmol m-2 s-1
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rate of sucrose loading in one segment exactly balanced a 1 µmol m-2 s-1 rate of

sucrose unloading in another segment.

Note that the whole-leaf model is constructed dynamically within the data-

fitting code, rather than being loaded from an SBML file.

Physiological constraints

Rubisco carboxylase and oxygenase rates vc and vo in mesophyll and bundle

sheath chloroplasts were constrained to obey Michaelis-Menten kinetic laws

with competitive inhibition,

vc =
vc,max [CO2]

[CO2] + kc

(
1 + [O2]

ko

)
vo =

vo,max [O2]

[O2] + ko

(
1 + [CO2]

kc

) , (2.3)

and the relationship vo,max/vc,max = kC/(kO · SR) was imposed, from which eq.

(1.2) follows [25]. The Michaelis-Menten constants for oxygen and carbon diox-

ide kC and kO and the Rubisco specificity SR were set to values typical of C4

species: kC , 650 µmol mol-1; kO, 450 mmol mol-1; SR, 2590 [25].

The rate of PEP carboxylation in the mesophyll was bounded above by an

appropriate kinetic law,

vp =
vp,max [CO2]

kC,p + [CO2]
(2.4)

with 0 ≤ vp,active ≤ vp,max and an appropriate kC,p (80mmol mol-1, [25]).

The parameters vpmax and vc,max representing the total amount of Rubisco and

PEPC available may be fixed to permit comparison to models parameterized in

those terms or allowed to vary.
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Rates of oxygen and carbon dioxide diffusion from the bundle sheath to the

mesophyll, L and LO, were constrained to obey the relationship

L = gBS (CO2,BS − CO2,ME)

LO = gBS,O (O2,BS −O2,ME)

(2.5)

with gBS,O = 0.047gBS [25]. All simulations used the bundle sheath CO2 con-

ductivity measured by [67] for maize plants grown under high light, 1.03± 0.18

µmol m-2 s-1. While gBS undoubtedly varies along the developmental gradient,

its deviation from this value (measured in fully-expanded leaves, 3-4 weeks af-

ter planting) is likely greatest below the region of high suberin synthesis identi-

fied 4 cm from the leaf base [62]; as the C4 cycle was not predicted to operate at

high rates in this region, the impact of this discrepancy should be limited.

Resistance to CO2 diffusion from the intercellular airspace to the mesophyll

cells was neglected; ref. [113] reported gm ≈ 1 mmol m-2 s-1 in maize under a va-

riety of conditions, suggesting the mesophyll and intercellular CO2 levels would

differ only slightly at the rates of CO2 assimilation and release dealt with here.

Similarly, all intracellular compartments were taken to have equal CO2 concen-

trations.

2.4.4 Optimization calculations

The nonlinear modeling package uses the libsbml python bindings to read

SBML files [114] and an internal representation of SBML models derived from

the SloppyCell package [115, 116]. IPOPT calculations used version 3.11.8 with

the linear solver ma97 from the HSL Mathematical Software Library [117].

Where not specified, convergence tolerance was 10−5, or 10−4 in FVA calcula-
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tions. To solve purely linear problems (e.g., to test the production of biomass

species during the reconstruction process, where nonlinear constraints were not

used) the GNU Linear Programming Kit, version 4.47 [118], was called through

a Python interface [119].

2.4.5 Integrating biochemical and RNA-seq data

RNA-seq datasets

To obtain mesophyll- and bundle-sheath-specific expression levels at 15 points,

we combined the non-tissue-type-specific data of Wang et al. [62], measured

at 1-cm spatial resolution, with the tissue-specific data of Tausta et al. [63] ob-

tained by using laser capture microdissection (LCM) – measured 4 cm, 8 cm

and 13 cm from the leaf base (the upper three highlighted positions in Fig. 2.3b).

This integration was achieved by determining for each gene at each of those

points with LCM data the ratio of the average RPKM in the mesophyll (M ) to

the sum of the average RPKM values for mesophyll and bundle sheath (M +B);

furthermore, we assumed that the M/(M + B) ratio at the leaf base was 0.5

(based on the proteomic experiments of Majeran et al. [69], which showed only

limited mesophyll-bundle sheath specificity there), and linearly interpolating to

estimate M/(M + B) ratios at all 15 points. For very weakly expressed genes,

we did not impose cell-type specificity: where the sum of mesophyll and bundle

sheath RPKM in the LCM data was less than 0.1, we assumedM/(M+B) = 0.5.

We then divided the mean whole-leaf FPKM measurement at each point into

mesophyll and bundle sheath portions according to these ratios.

To associate expression data with a reaction, data for its associated genes
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were summed, dividing the data for a gene associated with multiple reactions

in the model equally among them. The uncertainties δij in the objective func-

tion (eq. (2.1)) were estimated in an ad hoc way by splitting the standard devi-

ations of the FPKM values over multiple experimental replicates according to

the M/(M + B) ratios and then summing the uncertainties for all genes associ-

ated with a particular reaction, imposing a minimum relative error of 0.05 and

a minimum absolute uncertainty corresponding to 7.5 FPKM.

To globally rescale the expression data to be comparable to expected flux

values, data for PEPC and Rubisco were compared to the enzyme activity mea-

surements discussed below and a simple linear regression performed, yielding

a conversion factor of 204 FPKM≈ 1 µmol m-2 s-1 for these enzymes. All expres-

sion data were divided by this factor before solving the optimization problem.

Enzyme activity measurements

Enzyme activities constrained by measurements in [62] were alanine amino-

transferse, aspartate aminotransferase, fructose bisphosphate aldolase, glycer-

aldehyde 3-phosphate dehydrogenase (NADPH), glyceraldehyde 3-phosphate

dehydrogenase (NADH), glutamate dehydrogenase (NADH), malate dehy-

drogenase (NADH), malate dehydrogenase (NADPH), PEPC, phosphofruc-

tokinase, phosphoglucomutase, phosphoglucose isomerase, phosphoglyceroki-

nase, Rubisco, transketolase, triose phosphate isomerase, and UDP-glucose py-

rophosphorylase.

For Rubisco and PEPC, enzyme data constrained the sum of the variable

kinetic parameters vc,max and vp,max in mesophyll and bundle sheath compart-
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ments, rather than the sum of the associated fluxes. Enzyme data in nanomole

per minute per gram fresh weight was converted to micromole per second per

square meter of leaf surface area assuming a fresh weight of 150 g m-2.

Handling reversible reactions

The objective function (eq. (2.1)) optimizes the agreement between the absolute

value of the flux through each reaction with its data, but IPOPT requires a twice

continuously differentiable objective function. We use a reformulation F ′ repre-

senting each absolute value |vij| as the product of the flux and a parameter σij

representing its sign:

F ′(v) =
Nr∑
i=0

15∑
j=1

(esiσijvij − dij)2
δ2ij

+ α
Nr∑
i=0

s2i (2.6)

Similarly, the enzyme activity data constraint, eq. (2.2), was rewritten to replace

absolute values in this way. Reaction rates with positive (negative) sign param-

eter were required to take values greater than a small negative (less than a small

positive) tolerance, typically 1.0.

Choosing the σij to optimize F ′ is a very large scale mixed-integer nonlinear

programming problem. We arrive at an approximate solution using a heuristic

method similar in spirit to that of [64], with three steps.

1. The subproblems representing each segment of the leaf are solved sepa-

rately, with all scales si set to zero and modest upper and lower bounds

on the reactions representing nutrient exchange with the phloem. Within

each segment, a sign for the reversible reaction r1 with the highest asso-

ciated expression data is chosen by first setting its sign σ1 to +1, finding
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the minimum-flux best-fitting flux distribution v+ ignoring the costs as-

sociated with all other reversible reactions (but including costs associated

with all irreversible reactions), then finding the cost c+ of the best-fitting

flux distribution v′+ considering the costs of the reversible reactions with

nonzero fluxes in v+ (temporarily setting their signs according to their val-

ues in that case). A cost c− is determined analogously after setting the sign

σ1 to −1 , and if c− < c+, σ1 = −1 is chosen; otherwise, σ1 = +1. Then the

reversible reaction with the second-highest expression data r2 is treated in

the same way, considering r1 to be irreversible.

2. When signs for all reversible reactions have been chosen at a segment, a

final best-fitting flux distribution given those signs is determined. Then

the full optimization problem, combining all fifteen segments, is solved

with the chosen sign parameters fixed, using those flux distributions to

provide a nearly-feasible initial guess.

3. The sign-choice process in each subproblem is then solved again, fixing

the scale factors si and rates of metabolite exchange with the phloem to

those determined in the full problem. If no signs change, or if the new

signs do not decrease the objective function value, fitting stops; otherwise,

step 2 is repeated.

4. Finally, for each reaction j with nonzero data and maximum absolute

flux less than 0.0001 at any point in the leaf model, a lower bound of

−0.99di is imposed on the term (esiσijvij − dij) in the objective function, for

i = 1, . . . , 15, and the full fifteen-segment optimization problem is solved

again.

The final step addresses the observation that the optimization process occasion-
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ally converged to a solution in which a few reactions with associated data were

predicted to have zero flux when a better solution with nonzero flux existed. In

some cases (e.g. the si = 0 case shown in Figure 2.10) this step did not lead to

an overall reduction in the objective function and was omitted.

Steps 1 and 3 take between one and eight hours per segment using an AMD

Opteron 6272 and may be easily parallelized across up to 15 processors. Step

2 may take up to 2 hours in the first iteration but is often faster in later itera-

tions, when the initial guess is closer to the optimum. Typically the procedure

stops after 4-5 iterations, requiring about 24 total hours of wall time using 15

processors.

Special cases

The Rubisco oxygenase, Rubisco carboxylase, and mesophyll PEPC fluxes are

excluded from the objective function. Instead, terms are added comparing the

transcriptomic data for those enzymes to the variables which explicitly repre-

sent their activity level: for Rubisco, vc,max in mesophyll and bundle sheath com-

partments, and for PEPC, vpmax in the mesophyll. Scale factors for the mesophyll

and bundle sheath Rubisco activities are not constrained to be equal.
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CHAPTER 3

GENOME-SCALE MODELING OF THE EVOLUTIONARY PATH TO C4

PHOTOSYNTHESIS

3.1 Introduction1

In section 1.2, several issues of uncertainty in the current account of the evolu-

tion of the C4 system were identified. Mathematical and computational mod-

els can assist in the study of these questions by making concrete predictions

about how the evolution of the C4 system could play out under various sets of

assumptions. Despite progress identifying regulatory mechanisms and amino

acid sequence changes associated with the C4 phenotype [8, 120, 121], the com-

plexity of the system and the extent to which its genetic control is still unknown,

make it impractical to construct an detailed model which identifies many spe-

cific, relevant genetic loci and evaluates the fitness associated with each possible

genotype to simulate selection directly. Instead, a more abstract model which

describes the photosynthetic phenotype with a manageable number of parame-

ters must be used.

Recently, Heckmann and coauthors [52] adapted a well-validated biochem-

ical and physiological model of C3-C4 intermediate photosynthesis [25] to de-

scribe a six-dimensional fitness landscape between C3 and C4 states, parame-

terized by the fraction of total Rubisco activity in the mesophyll, the fraction

of photorespiratory decarboxylation in the mesophyll, mesophyll PEPC level,

PEPC Michaelis-Menten constant for bicarbonate, the conductance of the bun-
1This chapter is adapted from “Genome-scale modeling of the evolutionary path to C4 pho-

tosynthesis”, Eli Bogart and Christopher R. Myers (manuscript in preparation).
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dle sheath to CO2 diffusion, and the Rubisco turnover rate (which was used

to determine other Rubisco kinetic parameters, following an empirical power-

law relationship [122]). Dividing the C3-C4 changes in each parameter into five

discrete levels, using CO2 assimilation rate as a proxy for overall fitness, they

analyzed the properties of the landscape, estimated relative mutation probabili-

ties for each parameter, and simulated 5000 realizations of the C3-C4 transition.

They found the model described a “Mt. Fuji-like” landscape, in that the C4

state was a unique, global fitness maximum which could be reached from any

other point in the parameter space along a path of continuous fitness increase,

and showed that the random paths exhibited a modular structure and were dis-

tributed narrowly around a mean path that was consistent with biochemical

data from C3-C4 intermediate species.

While this work represented a significant advance in quantitative simulation

of the C3-C4 transition, it did not examine the influence of environmental fac-

tors [123] and its high level of biochemical abstraction precluded the study of

differences between possible evolutionary histories of the different decarboxy-

lation subtypes, or of changes in metabolism outside the core photosynthetic

pathways in response to the development of the C4 system. It also remains to

be seen whether the observed simple structure of the fitness landscape is main-

tained when the transition is described at the level of changes in expression of

individual enzymes in the mesophyll and bundle sheath compartments.

To address these questions, we present here an approach to modeling the C3-

C4 transition which is similar in spirit to [52] but replaces the six-dimensional,

coarse-grained physiological model with a genome-scale metabolic model that

maintains consistency with the nonlinear relationships captured in the physio-
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logical model of [25]. The 793 parameters of the larger model include maximum

rates for hundreds of reactions in primary metabolism in both mesophyll and

bundle sheath compartments as well as Rubisco and PEPC kinetic parameters

and the conductance of the bundle sheath compartment to CO2 diffusion. We

explore the resulting simulated transition paths and their responses to changes

in atmospheric CO2 levels and decarboxylation subtypes.

3.2 Methods

3.2.1 Modeling photosynthetic metabolism

Underlying metabolic network model

To obtain a flexible large-scale metabolic model of photosynthesizing leaf tis-

sue, capable of describing C3, C4, or C3-C4 intermediate plants we adapted the

model iEB2140x2 described above. Figure 1.1(b) illustrates the structure of the

model, which includes mesophyll and bundle sheath compartments, connected

through the plasmodesmata, with mitochondrial, peroxisomal and chloroplas-

tidic subcompartments in each cell type. The model includes 1268 reactions

and can describe the synthesis of a wide array of biomass components – includ-

ing carbohydrates, amino acids, cellulose, hemicelluloses, lignins, nucleic acids,

fatty acids and lipids, and chlorophyll – under photosynthetic and heterotrophic

conditions.

In previous work, the model was applied to infer changes in the metabolic

state of maize leaf tissue from RNA-seq data sampled along a developmental
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gradient from the base to the tip of a growing leaf, and successfully captured

the transition between the heterotrophic, biomass-producing sink region at the

base and the more mature photosynthetic, sucrose-exporting upper region.

Though iEB2140x2 was developed specifically for leaves of the C4 grass Zea

mays, it makes no a priori assumptions about localization of any function to mes-

ophyll or bundle sheath; instead, all reactions (except exchanges with the leaf’s

vasculature or the intercellular air space) are present in a bundle sheath copy

and a mesophyll copy. As the bundle sheath compartment and all the reactions

of the C4 system are also present, playing different roles, in C3 plants [124,125],

the model can also realistically simulate C3 or C3-C4 intermediate leaves, given

an appropriate choice of parameters.

Basic nonlinear physiological constraints

The model also incorporates nonlinear relationships between reaction rates,

CO2 levels, and the ratio of Rubisco oxygenase and carboxylase reactions. As

described above, we obtain predictions for the CO2 assimilation rateA, the rates

vi of every reaction in the model, and the bundle sheath O2 and CO2 levels

through a nonlinear flux-balance analysis approach, maximizing A subject to

the usual FBA steady-state constraint [50],

S · v = 0 (3.1)

(where the stoichiometry matrix S encodes the structure of the metabolic reac-

tion network,) the requirement that

vj ≥ 0

if reaction j is irreversible, and a collection of kinetic laws, as follows:
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• For the Rubisco carboxylation and oxygenation rates vc and vo,

vc =
vc,active [CO2]

[CO2] + kc

(
1 + [O2]

ko

)
vo =

vo,active [O2]

[O2] + ko

(
1 + [CO2]

kc

) , (3.2)

Note that these equations apply separately to the mesophyll and bundle

sheath compartments, which have different O2 and CO2 levels, vactive val-

ues, etc. In each compartment we further require

vo,active/vc,active = kC/(kO · SR), (3.3)

where SR is the specificity of Rubisco for CO2 over O2; the simpler rela-

tionship
vo
vc

=
1

SR

[O2]

[CO2]
(3.4)

follows.

• For the mesophyll PEP carboxylase rate vP ,

vp =
vp,active [CO2]

kC,p + [CO2]
. (3.5)

• For the diffusive leakage of CO2 and O2 from bundle sheath to the meso-

phyll,

L = gBS ([CO2,BS]− [CO2,ME])

LO = gBS,O ([O2,BS]− [O2,ME])

(3.6)

Values of the parameters kc, ko, and SR are determined as discussed below; al-

lowed ranges of values for kC,p and gBS are given in Table 3.1; and gBS,O =

0.047gBS . (While we have written these equations in terms of concentrations, in-

ternally all CO2 and O2 values are represented as equivalent partial pressures.)
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The resulting nonlinear optimization problem is solved by IPOPT [53] (ver-

sion 3.11.8, with the ma97 linear solver from the HSL Mathematical Software

Library [117]) through the fluxtools Python package (http://github.com/

ebogart/fluxtools). Effectively, these nonlinear constraints ensure that

the flux distributions predicted by the model are also consistent with well-

established physiological models of photosynthesis such as [25].

Connections to the model of Heckmann et al.

To facilitate comparison with the results of [52] we adopted the kinetic pa-

rameter values (or ranges of values) used there (Table 3.1) and imposed ad-

ditional nonlinear constraints to reflect the tradeoff between Rubisco efficiency

and specificity for CO2 over O2 observed by [122]. In the model of [52], this is

encapsulated in the power-law relationship:

kc = 16.07k2.36ccat

kc
ko

= 3.7 · 10−4k1.16ccat

SR = 5009.75k−0.6ccat

(3.7)

where kccat is the Rubisco carboxylase turnover number. Using eq. 3.3, we re-

formulate this as
kC = 288.6µbar · E2.36

R,relative

kO = 188.62 mbar · E1.2
R,relative

vo,max

vc,max
= 0.272 · E−0.56R,relative

(3.8)

where ER,relative is the ratio of the efficiency of the Rubisco carboxylase reaction

(that is, kccat) to its C3 value.

We note in passing that [52] discussed a limited approach to integrating non-
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linear physiological constraints with an FBA model (to support their use of at-

mospheric CO2 assimilation as a proxy for overall fitness). There, the physiolog-

ical model was first solved to obtain predictions for A, Rubisco and PEPC rates,

L, etc., and then an FBA problem was solved with the corresponding fixed to

the values thus obtained. That approach would be inadequate here: to explore

the integration of the C4 system and the broader metabolic network we wish to

predict the optimal level of A that emerges from constraints on the maximum

rates of each of the many reactions in the network, but the physiological model

alone cannot take these into account. (Instead, in the approach of [52], infor-

mation flows only the other way: reactions in the larger-scale FBA model are

constrained by the small number of parameters supplied to the physiological

model.)

Maximum rates for enzymatically catalyzed reactions

Finally, we impose consistency with a set of reaction-specific maximum rate

parameters, in two steps. First, we require

−vmax,i ≤ vi ≤ vmax,i, i = 0, 1, . . . Nr,

except for the following special cases: mesophyll PEPC, where 0 ≤ vp,active ≤

vp,max; mesophyll and bundle sheath Rubisco carboxylase reactions, where 0 ≤

vc,active ≤ vc,max; mesophyll and bundle sheath Rubisco oxygenase reactions,

whose maximum rates follow from the maximum carboxylase rates through

eq. 3.3; and internal and external transport reactions (as the model does not de-

scribe in detail which are active and which passive). Note these constraints sup-

plement, rather than replace, the constraints forcing irreversible reaction rates

to be positive.
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Second, we decompose each maximum rate

vmax,i = PiEi

where Pi notionally represents the total weight of protein (per square meter

of leaf surface area) invested in the enzyme that catalyzes reaction i, and Ei

represents the efficiency of enzyme i (i.e., turnover number per unit weight of

enzyme). Here again Rubisco carboxylase is a special case, with

vc,max = PRE
0
RER,relative

As it is impractical to obtain reliable experimental estimates of in vivo

turnover numbers for all of the several hundred reactions of the model, we have

(except as noted below) taken Ei = 1 µmol m-2s-1 for all reactions except Ru-

bisco, where E0
R = 0.5, representing (very conservatively) the fact that Rubisco

is highly inefficient compared to many or most other enzymes [1]. (Note this

definition leaves the units of the Pi values arbitrary).

Finally, to exclude the possibility that fitness will increase simply through

an overall, uniform increase in enzyme levels, we add a maximum value for the

total protein level,

P1 + . . .+ PN ≤ Pmax, (3.9)

and ensure that the maximum value is reached at the start and end of the paths

simulated below.

Boundary conditions

In the calculations below, we assumed light uptake, nitrate uptake, and sulfate

uptake were not limiting. To ensure simulated flux distributions captured a
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range of functions carried out in photosynthesizing leaf tissue, we required that

biomass production and the export of sucrose, nitrogen (as glycine), and sulfur

(as glutathione) to the phloem occur in a set ratio (adapted from the rates in-

ferred from experimental data near the tip of the maize leaf, in [60]): for each

mole of carbon assimilated, one gram of total biomass is produced, 0.02 moles

of nitrate and 2 millimoles of glutathione are exported, with the balance of the

assimilated carbon being exported as sucrose.

Corrections to iEB2104

Early tests of the procedure described below uncovered a small number of

problematic behaviors of the model which were not observed when using

the very different conditions and objective function of [60], mostly unrealis-

tically high rates through pairs of reactions which could act in concert as a

transhydrogenase (oxidizing NADPH to reduce NAD+ or oxidizing NADH to

reduce NADP+). To suppress these, two non-essential reactions were inacti-

vated: an NADPH-dependent glutamate dehydrogenase (EC 1.4.1.4, CornCyc

GLUTDEHYD-RXN,) which (at least in bacteria and yeast) plays a role primarily

in high-ammonia conditions [126], and a proline dehydrogenase (EC 1.5.99.8,

CornCyc RXN-821) which is an oversimplified representation of a reaction

which should donate electrons directly to the mitochondrial electron transport

chain [127].
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3.2.2 Finding optimal evolutionary paths

With the above constraints in place, the model can predict a CO2 assimilation

rate, given an external CO2 level, values of gs, kp and ER,relative, and enzyme lev-

els for each of 790 reactions. Taking CO2 assimilation (which is proportional to

the plant’s overall biomass synthesis rate) as a proxy for fitness, the model de-

scribes a 793-dimensional phenotypic fitness landscape, where the phenotype is

the overall pattern of expression of metabolic enzymes in mesophyll and bun-

dle sheath, combined with the bundle sheath resistance to CO2 diffusion and

the kinetic properties of Rubisco and PEPC.

Random (or greedy) walks in parameter space

To characterize paths from C3-like points in this landscape to C4-like ones, a

natural approach would be to start at a fixed C3 state and perform a biased

random walk, perturbing individual parameters serially, with a preference for

perturbations which increase fitness. Alternatively, we could proceed as in [52]

by specifying both C3 and C4 values for each parameter and choosing which

parameter to advance towards its C4 value at each step.

It is reasonable to expect that, in a high-dimensional space, this simulation

process will be inefficient, as many parameters will have a limited effect on

fitness. The structure of the FBA model makes this inefficiency even more acute:

marginal changes in vmax,i can have no effect on the solution unless vi = vmax,i,

which will generally be true for only one reaction unless the vmax parameters

have been carefully tuned.

Additional complications arise. If we optimize CO2 assimilation subject
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to eq. 3.9, allowing the protein levels Pi to vary, we will generally find that

‖vi‖ = vmax,i = PiEi for all reactions subject to a maximum rate constraint (be-

cause otherwise, ‘spare’ enzymatic capacity could be redistributed to improve

the assimilation rate).

But consider for example a linear pathway

A
R1−→ B

R2−→ C
R3−→, . . .

where (under the FBA steady-state constraint) v1 = v2 = v3. If it is also true

that vmax,1 = vmax,2 = vmax,3, no single parameter change can increase the optimal

flux through the pathway. Effectively, all the protein levels in the pathway have

flux control coefficient zero (a failure of the model, as metabolic control analysis

guarantees that the coefficients should sum to 1.0 [128, 129]).

In this situation, it is clear that very few random parameter changes will

lead to increases in flux through the pathway, though decreases are readily ac-

complished. (Note that here any proposed parameter change must increase the

levels of some proteins and decrease others, to ensure eq. 3.9 is obeyed).

Of course, we expect that very few random mutations to real C3 plants

would lead in the direction of the C4 state, with most being detrimental or neu-

tral, but these technical issues make progress towards the C4 state in a sense

more difficult in the model than it was in vivo – where a single decrease in

expression of mesophyll glycine decarboxylase, for example, would naturally

increase the concentration of photorespiratory intermediates, which could dif-

fuse to the bundle sheath, tending to increase the GDC flux there, and thus the

CO2 level. In the model, a large number of other mutations would need to oc-

cur coincidentally to achieve the same effect, a larger number still to activate

the C4 cycle, and a larger number still to increase flux through Rubisco and the
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Calvin cycle in the bundle sheath. Direct simulations of such a process proved

prohibitive.

The elastic band method

Instead, we turn to so-called ‘chain of states’ methods applied in theoretical

chemistry and molecular dynamics to find minimum-energy transition paths

between different configurations of a simulated system (see [130] and references

therein). In such methods, multiple replicas of a system of interest are simulated

simultaneously, with one in the initial state, one in the final state, and the others

constrained in some way to lie between the endpoints in configuration space.

Perhaps the simplest such approach is the elastic band method [131], in which

the replicas are connected by imaginary springs. As the replicas move towards

lower-energy configurations, the springs prevent them from all falling into the

lowest-energy state, so that the chain of replicas converges to a low-average-

energy path from the initial state to the final state. Ideally, the result is a good

approximation of the minimum-energy path, though paths which achieve only

local minimization of the energy may be found if the energy landscape is rough.

More sophisticated alternatives exist, but the elastic band method is simple

to describe and implement and has proved adequate for our purposes (but see

section 3.4 below). To find an N -replica path between x′ and x′′ for a system

described each described by an m-dimensional configuration vector x and an

energy function f(x), constrained to obey g(x) = 0, h(x) ≥ 0, we simply opti-

mize
N∑
i=1

f(xi) + k

N−1∑
i=1

‖xi+1 − xi‖2 (3.10)
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subject to

g(x1) = 0, g(x2) = 0, . . . , g(xN) = 0

h(x1) ≥ 0, h(x2) ≥ 0, . . . h(xN) ≥ 0

x1 = x′,xN−1 = x′′

(3.11)

where the spring constant k must be chosen to tune the tradeoff between even

spacing of the replicas and minimization of the path energy.

3.2.3 Combining the metabolic and evolutionary pathfinding

models

To apply the method to the metabolic model, we first obtain predictions for the

initial C3 and final C4 states. For the C3 endpoint, we fix the parameters in

table 3.1 to their C3 values where applicable, set Pmax = 1000, and maximize

A subject to the usual constraints given above, plus additional constraints re-

quiring that 5% of total Rubisco activity be located in the bundle sheath, 5%

of total biomass production take place in the bundle sheath, the bundle sheath

CO2 level be less than that in the mesophyll, and metabolite diffusion through

the plasmodesmata occur only outward (from bundle sheath to mesophyll) ex-

cept for oxygen, CO2, and sucrose. For the C4 case, we maximize A subject to

the usual constraints and Pmax = 1000, allowing the parameters in table 3.1 to

take any value in their allowed range (verifying afterwards that their C4 values

are chosen and that the solution is otherwise C4-like).

Then we make M copies (typically 25) of the model, each obeying the usual

constraints above and Pmax = 1000, and follow the procedure sketched above

83



(eqs. 3.10-3.11), minimizing a slightly modified objective function

−
M∑
i=1

Ai +
M−1∑
i=1

∑
j∈Z

(
xij − x(i−1)j

)2
. (3.12)

That is, the elastic term in the objective function takes into account only a sub-

set Z of the variables in each replica of the model – specifically the values of the

protein levels Pi, the kinetic parameters kp and ER,relative, and the diffusive con-

ductance gs, which we take to be the only variables under direct genetic control

and call the ‘evolving’ variables in each replica. (Non-‘evolving’ variables in the

model include the rates of the reactions catalyzed by these enzymes, which we

assume follow from the protein levels through post-transcriptional and kinetic

regulation; the rates of passive or incompletely described transport reactions;

rates of biomass synthesis reactions; variables such as kC , kO, SR, vc,active, vo,active

which are constrained or set by the values of evolving variables in various ways;

and CO2 and O2 levels, which are set as parameters, or controlled by reaction

rates.)

We denote the 793-dimensional vectors of the values of the evolving vari-

ables, as z0, z1, . . . , zM . The endpoints z0 and zM fixed to the C3 and C4 values

found above. (Most precisely, Z includes the protein levels, gs, and auxiliary

variables constrained to equal, somewhat arbitrarily, 10 · kp and 100 · ER,relative,

as the small absolute changes allowed in the unrescaled parameters kp and

ER,relative would otherwise make their contributions to the objective function un-

reasonably small, given their accepted importance to the transition process.)
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3.2.4 Limitations of the approach

Obviously, the results of such calculations require careful interpretation. The

procedure is not intended to be a mechanistic model of the real process of evolu-

tion. Changes in parameters along the optimal paths through the space cannot

be understood as being determined by a process of selection acting on vari-

ation in a population, even in a highly abstract sense; moreover, the number

and precise positions of the replicas along the path are not particularly mean-

ingful in themselves, and they do not represent individual mutations or other

biologically defined stages or steps. Finally, there is no direct notion of time;

even a simulated path which accurately reflects the real progress of a plant pop-

ulation from a C3 phenotype to a C4 phenotype will provide no information

about the number of generations separating any two phenotypic states of inter-

est. Nonetheless, we hypothesized that the simulated high fitness paths would

tend to share qualitative features with real evolutionary histories, if only be-

cause both evolution and the simulation process would tend to avoid regions of

decreased fitness between the endpoints, so long as alternative paths existed.

3.3 Results

3.3.1 Fitness increases and path geometry

Figure 3.1 shows the surface defined by the simulated transition paths at dif-

ferent values of the spring constant k, using default parameter values with

Ci = 200. To visualize the paths through the 793-dimensional space of evo-
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Figure 3.1: Simulated fitness landscape between C3 and C4 states. Each dark
line represents a different value of the spring constant, which varies (evenly
spaced on a logarithmic scale) from 0.01 for the left-most, highest-fitness path
to 25.0 for the nearly straight path at right. At low values of the spring constant,
the elastic band method successfully finds higher-fitness paths that avoid the
fitness barrier separating the endpoints along the more direct path. White circles
show the positions of individual replicas along the path for k = 0.049.

lutionary parameters, for each step i the parameter-space displacement zi − z0

in the has been decomposed into a component xi parallel to the overall C3-C4

parameter shift, z25 − z0, and a perpendicular component yi (not necessarily

parallel to yj , j 6= i); the fitness (CO2 assimilation rate) is plotted versus x and y

for each path.

For the largest values of the spring constant, the path is a nearly straight

line from the C3 state to the C4 state, and a distinct low-fitness valley separates
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the two endpoints. As the spring is loosened, the path stretches away from the

straight line and the average fitness increases; eventually, the path escapes the

valley, following a route of monotonic fitness increase from C3 to C4.

As the spring is loosened, later steps tend to bunch together near the high-

fitness C4 state while earlier steps spread out, inefficiently sampling the impor-

tant early stages of the transition and potentially concealing fitness variations

(see Figure 3.3.1, which also shows the fitness along an exact straight line from

the C3 to C4 points, corresponding to k = ∞). Spring constants below k = 0.01

appeared to lead to progressively less regular sampling while maintaining very

similar path geometries and fitness results, so this value was used in the re-

maining calculations to balance regular image spacing and exploration of the

landscape.

3.3.2 Development of the C4 system

Figure 3.3 shows the emergence of the C4 phenotype along the simulated tran-

sition path in detail. Consistent with the established theory of the C3-C4 transi-

tion as discussed above, in the first steps, photorespiratory glycine decarboxy-

lase activity rapidly moves from the mesophyll cells to the bundle sheath cells,

increasing the carbon dioxide level there. The rate of bundle sheath photores-

piration then falls as the C4 system activity (represented by PEPC in the mes-

ophyll and the decarboxylating enzymes NAD-ME, NADP-ME, and PEPCK in

the bundle sheath) increases, further elevating the bundle sheath CO2 level.

In contrast to the conventional view, the migration of Rubisco from meso-

phyll to bundle sheath and the increase in C4 system activity begin alongside
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Figure 3.2: Alternate view of the shapes and fitness values of the straight-
line and elastic band paths for various spring constants. For a subset of the
results plotted in figure 3.1, plus the straight-line path from the C3 to C4 points
in parameter space, the fitness (i.e., CO2 assimilation rate; upper panel) and
displacement perpendicular to the C3-C4 axis in parameter space (lower panel)
are plotted versus the projection of the parameter space position onto the C3-C4
axis.

the shift in photorespiration and continue after it is complete, rather than mark-

ing a distinct phase that begins when the photorespiratory shuttle is already

well-established.

It is inevitable that the spring term in the elastic band objective will round

out sharp corners in parameter space to some degree, so that boundaries be-

tween separate phases of the transition will tend to blur; however, the early

migration of Rubisco to the bundle sheath results not (only) from this effect but
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Figure 3.3: Changes in activity levels of key enzymes and rates of biomass
synthesis through the simulated C3-C4 transition. Enzyme levels are plotted
versus the projection of their parameter-space displacement from the C3 starting
point onto the C3-C4 axis, normalized by the parameter-space distance between
the C3 and C4 states.

from the extremely rapid increase in the bundle sheath CO2 level, which ex-

ceeds the mesophyll level almost immediately after deviating from from the C3

end state as a result of the increased bundle sheath GDC activity and the rapid

decrease in the bundle sheath CO2 conductance gs (shown below).

Apparent role for anatomical preconditioning

Also notable is the rapid shift in biomass production from the mesophyll to the

bundle sheath, with the bundle sheath share of production immediately rising
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Figure 3.4: Fraction of biomass produced in bundle sheath. Default parameter
values.

from 5% at the C3 end almost to the maximum allowed value, 50%. As most

of the individual biomass components are unlikely to be produced in one cell

type and transferred to the other, this behavior, which is not sensitive to the

choice of spring constant (section 3.3.2), represents an extremely rapid reconfig-

uration of leaf anatomy to expand the size of the bundle sheath compartment

– through expansion of the bundle sheath cells themselves and/or decreased

spacing between veins – well before the C4 system is fully operational. (As

the surface area of the mesophyll-bundle sheath interface would increase in the

process, this further implies that the concurrent decrease in total conductivity

arises from an even more rapid decrease in permeability on a per-area basis.)
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These results are consistent with the theory that C3-C4 transitions are likely

to be preceded by substantial ‘anatomical preconditioning’, that is, to occur

in C3 species whose leaves have taken on C4-like characteristics for non-

photosynthetic reasons– such as improved wind resistance or decreased loss

of water to evaporation [14] and maintenance of hydraulic conductivity in dry

environments [132]– or through random drift with little impact on fitness [16].

At least in the grasses, this theory is supported by phylogenetic studies: specifi-

cally, it appears the C4 system was likelier to evolve in species where the bundle

sheath cells made up a larger proportion of the leaf tissue [16].

However, it is not immediately clear how the early increase in the bundle

sheath share of biomass increases fitness within the framework of the model,

and such a rapid shift in (implied) leaf anatomy may also suggest that the model

systematically underestimates the ‘evolutionary distance’ between C3 and C4-

like leaf anatomies, in terms of the number of independent mutations required,

the probabilities of their occurrence, and the possibility that they might come at

a cost in fitness not reflected in the modeled photosynthetic rate (e.g., the need

to invest more resources to produce a leaf of equivalent area).

3.3.3 Comparison to the model of Heckmann et al.

Figure 3.5 shows predicted changes in the six values corresponding to the pa-

rameters of the model of Heckmann et al. [52]. There, a highly modular path

was predicted, with the migration of photorespiratory decarboxylation to the

bundle sheath followed by a phase of increase in PEPC and the bundle sheath

Rubisco level, followed by shifts in the PEPC Michaelis-Menten constant, fol-
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Figure 3.5: Comparison of predicted paths to the simulations of Heckmann et
al. Upper panel: trajectories of parameters in the present model corresponding
to the six variables of the model of [52] (compare to their fig. 4). Each has
been normalized to its maximum value along the path. Shaded background
highlights the three modules described in the text. Lower panel: selected two-
dimensional projections of the simulated path (compare to figure 5 of [52]).

lowed by decreases in the bundle sheath conductivity, followed by final tuning

of the Rubisco kinetic parameters, which also varied slightly in earlier stages of

the transition.

In contrast, here, the migration of decarboxylation to the bundle sheath is
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accompanied by rapid decrease in the conductivity, with both transitions nearly

complete after the short fraction of the path represented by the first two repli-

cas in the band. The decrease in the PEPC Km also begins immediately and is

complete within the first half of the path. As noted above, the increase in PEPC

levels and migration of Rubisco to the bundle sheath begin immediately and

continue throughout the simulated transition, with the latter process accelerat-

ing towards the end. The increase in Rubisco efficiency again occurs at the C4

end of the path; here, no changes in this parameter are seen in earlier stages of

the transition.

Effectively, where the earlier work found five distinct modules in the evo-

lution from C3 to C4, this model predicts three: an initial phase in which GDC

moves completely to the bundle sheath, gs andKp fall to their mature C4 values,

and migration of Rubisco and the rise of the C4 cycle begin (highlighted in grey

in fig. 3.5); an intermediate phase in which Rubisco continues to move to the

bundle sheath and the C4 system continues to rise; and a final phase in which

the migration of Rubisco accelerates and its kinetic parameters are optimized

(highlighted in blue in fig. 3.5).

Despite these differences in the timing of events, the six two-dimensional

projections of the path shown in fig. 3.5b are broadly consistent with those

predicted by Heckmann et al., and by extension with the biochemical data from

C3-C4 intermediate species presented there.
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Figure 3.6: Trends in values of the evolving parameters through the simulated
C3-C4 transition. Colored highlighting indicates the centroid of each cluster.
Numbers in parentheses give the total number of parameters assigned to each
cluster.

3.3.4 Clustering analysis

Looking beyond the key photosynthetic enzyme levels and kinetic parameters,

421 of the 793 evolving parameters take on values greater than 10−3 in at least

one point on the simulated transition path. The patterns of changes in these

parameters along the path are diverse. Figure 3.6 illustrates some characteris-

tic responses. There, the values of each parameter have been normalized by its

maximum value along the path, and the normalized trajectories divided into

eight categories by k-means clustering. (Eight clusters were used because clus-

ter shapes became less distinct for larger values of k.)
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Overrepresented pathways in the k-means clusters of Fig. 3.6 presents an

analysis of metabolic pathway overrepresentation in the clusters. From those

calculations, and direct examination of the cluster compositions we conclude

that the largest two clusters (a and b) include primarily protein levels tightly

correlated with overall biomass production rates in the mesophyll and bun-

dle sheath respectively. Early in the transition, the parameters in cluster a fall

sharply and those in cluster b rise sharply, as biomass production shifts between

cell types; parameters in both clusters then rise as the total rate of biomass syn-

thesis increases along with the assimilation rate. The PEPC and Rubisco kinetic

parameters also are grouped with cluster a.

Cluster c, showing a steady rise from C3 to C4, includes protein levels cor-

responding to the bundle sheath Calvin cycle, light reactions of photosynthesis,

glycolysis, the mitochondrial electron transport chain and TCA cycle, and su-

crose synthesis, as well as the C4 cycle enzymes (PEPC and carbonic anhydrase

in the mesophyll, PEPCK in the bundle sheath, and aspartate aminotransferase

in both cell types) and lower glycolysis in the mesophyll.Many mesophyll coun-

terparts for these reactions are found in cluster e, which shows a moderately

paced decrease from C3 to C4; in addition to the mesophyll Calvin cycle, it in-

cludes the reductive phase of the bundle sheath Calvin cycle.

Cluster d, showing a rapid decrease to low levels in the first few steps, in-

cludes mesophyll photorespiration, mitochondrial electron transport, and ni-

trogen assimilation (as well as the bundle sheath copies of several enzymes of

the C4 system which are localized to the mesophyll in the C4 state but are ac-

tive at low levels in the C3 endpoint for unclear reasons, including PEPC and

pyruvate, orthophosphate dikinase).
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Cluster f includes reactions whose rates change only modestly (in relative

terms) across the transition, including the reactions from bundle sheath TCA

cycle, bundle sheath sulfur reduction, bundle sheath lower glycolysis, and the

mesophyll light reactions.

Cluster g includes reactions which climb to an early peak and then fall,

primarily the reactions of bundle sheath photorespiration, also bundle sheath

pyruvate kinase.

Cluster h, including reactions which climb rapidly mid-path to a late peak,

then fall, includes the Mehler reaction and superoxide radicals detoxification in

the bundle sheath chloroplast, and reactions involved in PEP regeneration in

the mesophyll (PPDK, pyrophosphatase, and adenylate kinase).

3.3.5 Varying environmental conditions

Varying atmospheric CO2 levels have historically contributed to the emergence

of the C4 phenotype [24]. To examine the influence of this aspect of the envi-

ronment on the fitness landscape, we simulated transition paths for six values

of the intercellular carbon dioxide partial pressure, ranging from 50 to 300 mi-

crobar. Figure 3.7a shows the predicted increase in fitness along the paths. As

expected, the C3 state is much more sensitive to reductions in the atmospheric

CO2 level than the C4 state, so a greater increase in fitness along the path is ob-

served for lower levels. Although the C3 and C4 ends of the paths have been

aligned here for clarity, enzyme allocations in the end states vary significantly

with CO2, as can be seen in fig. 3.7b.
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Figure 3.7: Simulated C3-C4 transitions for varying external CO2 levels. Left
panel, fitness versus path position, projected in each case onto the straight line
in parameter space between the C3 and C4 endpoints and normalized by the
length of that line. Right panel, positions in the space of evolutionary parame-
ters, projected onto their first and second principal components; for each path,
the C3 endpoint is at left.

There, the positions in the space of evolving parameters have been projected

onto their first and second principal components. The first principal component

corresponds to (moving right to left in the figure) the migration of Rubisco, the

light reactions, and the Calvin cycle from mesophyll to bundle sheath, accompa-

nied by increases in the reactions of the C4 cycle; the second represents (moving

from bottom to top) decreases in the levels of mesophyll Rubisco and PEPC,

increases in the levels of mesophyll Calvin cycle and light reactions, and de-

creases in the levels of C4 system enzymes. The pronounced downward swing
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in the simulated paths at 50 and 100 microbar thus indicates those paths main-

tain higher levels of mesophyll PEPC and Rubisco relative to other enzymes

while accelerating the establishment of the C4 cycle (though note that some of

the Rubisco is inactive).

This is a predictable low-CO2 response: higher protein levels of PEPC and

Rubisco are required per unit flux, the cost associated with the spring stretch

prevents the high C3 Rubisco protein level from falling as fast as the Rubisco

flux, and the drastic fitness disparity between the C3 and C4 states promotes

rapid establishment of the C4 system. These two straightforward components

together explain 97% of the observed variance in parameter-space position, sug-

gesting no unexpected qualitative changes in the structure of the transition path

occur in response to this environmental perturbation. Examination of individ-

ual variables generally confirms this. An exception is the timing of the changes

in Rubisco kinetic parameters, which occurs earlier at lower CO2 levels, relative

to the migration of Rubisco to the bundle sheath (Fig. 3.8).

3.3.6 Varying decarboxylation subtypes

By adjusting the efficiency parameters for NAD-malic enzyme, NADP-malic en-

zyme, PEP carboxykinase, and Rubisco, it is possible to control the combination

of decarboxylating enzymes active in the bundle sheath in the most efficient C4

state. Figure 3.9 shows simulated evolutionary paths between a common C3

state and six different C4 states, representing pure and mixed varieties of the

NADPME, NADME, and PEPCK subtypes. In each ‘pure’ case, the primary

decarboxylase accounts for over 99% of the C4 decarboxylase activity; in each
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Figure 3.8: Changes in the timing of adaptation of the Rubisco kinetic param-
eters, relative to the migration of Rubisco to the bundle sheath, in response
to changes in the atmospheric CO2 level.

‘mixed’ case, 70% to 80%. The efficiency parameters for each simulation are

given in Figure 3.3.6.

As above, principal components analysis is used to visualize the simulated

transition paths and their differences. Here, the first principal component cor-

responds to migration of Rubisco, the Calvin cycle, the light reactions, and mi-

tochondrial electron transport from mesophyll to bundle sheath, accompanied

by increased Rubisco efficiency and increases in components of the C4 system,

both those which are not specific to any one subtype (PEPC, carbonic anhy-

drase, and PPDK, for example) and (at generally lower rates) those which are

(the decarboxylating enzymes themselves, aspartate aminotransferases in both
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Figure 3.9: Simulated paths from the C3 state to C4 states using six different
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Subtype EPEPCK ENADME ENADPME

mixed NADPME 0.1 0.5 1.0
mixed NADME 0.25 0.5 0.25
pure NADME 0.25 1.0 0.25
pure NADPME 0.25 0.25 1.0
mixed PEPCK 0.5 0.5 0.5
pure PEPCK 1.0 0.25 0.25

Table 3.2: Efficiency parameters for the bundle sheath decarboxylating en-
zymes applied to obtain the differing C4 endpoints of fig. 3.9.
NADPME efficiencies were applied to both the cytosolic and chloroplastic
forms. For these calculations, the efficiency of Rubisco was set to 0.2 (rather
than the usual (very conservative) 0.5); this amplified the effect of the changes
in decarboxylase efficiencies.
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cell types, malate dehydrogenases, etc.); effectively, this component separates

C3 states and generic C4 states.

The second principal component encompasses (moving from front to back in

the figure) decreases in PEPCK in the bundle sheath, reallocation of photosys-

tem I and (to a lesser extent) photosystem II activity and the reductive Calvin cy-

cle from bundle sheath to mesophyll, increases in pyruvate kinase, NADME and

NADPME in the bundle sheath. The third (moving upwards) includes to fur-

ther decrease in PEPCK, decrease in NADME, increase in NADPME and NADP-

MDH, shift in photosystem I from the mesophyll to the bundle sheath. Though

the correspondence is not perfect, generally the first component separates paths

with PEPCK-type C4 endpoints from those with malic-enzyme-dominated C4

endpoints, while the third separates NADP-ME and mixed NADP-ME/NAD-

ME type C4 systems from NAD-ME and mixed NAD-ME/PEPCK C4 systems.

These components collectively explain 98.1% of the observed variation in the

points along these six simulated paths. As with the paths simulated at different

CO2 levels, the differences are largely predictable, following from the different

levels of the decarboxylases themselves, their accessory enzymes, and their dif-

ferent energy requirements (e.g., in the malic enzyme types the reductive Calvin

cycle is localized to the mesophyll and driven by higher light reaction levels in

the mesophyll chloroplast). Variation in intermediate points directly reflects

variation in the endpoints rather than any apparent flexibility in the optimal

sequence of events leading from the C3 state to the C4 state.
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Comparison to other models of the biochemical subtypes

Wang et al. [28] analyzed a kinetic model of the C4 system and argued that

plants which mixed a malic enzyme pathway with a PEPCK pathway required

lower metabolite concentrations to drive necessary rates of diffusion between

cell types, had a more flexible distribution of energy use requirements across

the mesophyll and bundle sheath, and so could better tolerate fluctuations in

incoming light; and further, that pure PEPCK-type systems were unlikely to

arise because they required an unrealistically high proportion of incoming light

energy to be absorbed in the bundle sheath, which is naturally shaded to some

extent by the surrounding mesophyll cells. The present calculations agree that

the pure PEPCK type is distinguished by requiring a much larger share of light

uptake to occur in the bundle sheath (section 3.3.6, panel a), but we find limited

differences in fitness between the subtypes (section 3.3.6, panel b) and those

that are seen are sensitive to our assumptions about relative enzyme efficien-

cies. Thus, while kinetic and leaf-geometry considerations as considered by [28]

may promote the evolution of mixed malic enzyme/PEPCK types, all three pure

types, as well as mixtures, are accessible at a purely stoichiometric level.

Further supporting the idea that the observed characteristics of the C4 sub-

types are not controlled by the metabolic network structure alone, we find that

all six simulated subtypes use aspartate rather than malate as the sole carrier of

carbon from the mesophyll to the bundle sheath (usually, either solely malate

or a mix of malate and aspartate is expected, outside of the pure PEPCK sub-

type [28];) nitrogen balanced is maintained by exporting glutamate from bundle

sheath to mesophyll, with 2-ketoglutarate returned in exchange (rather than, as

expected, exchanging alanine for pyruvate).
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Figure 3.10: Fraction of total light use taking place in bundle sheath cells
along the evolutionary paths for the six simulated subtypes (a), and fitness
differences along those paths (b). Intercellular CO2 level 200 µbar.

3.3.7 Combined environmental and biochemical variation

Finally, to explore the biochemical and environmental axes of variability in tan-

dem, we repeated the simulations for the six different decarboxylase combina-

tions at intercellular CO2 levels of 100 and 300 µbar. After normalizing protein

level parameters by the overall CO2 assimilation rate in each image (to mini-

mize apparent differences between the paths solely due to the well-understood

reduction inAwith decreasing CO2), vectors of results for each evolutionary pa-

rameter and each combination of CO2 level and decarboxylation subtype were

hierarchically clustered using a correlation-coefficient-based metric (after zero-
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centering, using scipy.cluster.hierarchy with the UPGMA method [133]).

subsection 3.3.7 shows the result. Even after the normalization by overall

CO2 assimilation rate, transition paths using one decarboxylation subtype are

generally more similar to paths using a different decarboxylation subtype at the

same CO2 level than they are to paths of the same subtype at a different CO2

level, but (as with the results for the reference decarboxylation type, above)

changes in the behavior of individual parameters in response to variation in

CO2 generally appeared to be quantitative rather than qualitative (e.g., changes

in sequence of events, recruitment of different enzymes, and so on). The hierar-

chical structure of the evolving parameters generally recapitulates patterns seen

in the k-means clustering, above, with biomass-synthesizing reactions in mes-

ophyll and bundle sheath forming two large, fairly tight clusters, while reac-

tions directly involved in photosynthesis (C3 and C4), photorespiration, energy

metabolism, and inorganic nutrient assimilation show greater variability.

3.4 Assessing the elastic band approximation to the highest-

fitness path

The chain-of-states method described above differs slightly from that typically

used in applications. It was presented, as the ‘plain’ elastic band, by Jónsson

et al. [131] primarily as a pedagogical device to motivate the development of

the ‘nudged’ variation – where spring forces act only parallel to the path and

forces associated with the potential energy surface act only perpendicular to it

– in which form the elastic band method has generally been applied. However,

the nudged elastic band forces are non-conservative and cannot easily be in-
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Figure 3.11: Hierarchical clustering of results for eighteen combinations of
intercellular CO2 levels and decarboxylation subtypes. Each row of the heat
map presents eighteen sequences of 25 values, representing one complete path
from C3 to C4 under each of the eighteen conditions. For visualization, each
row has been shifted to have overall mean zero, and scaled to have maximum
absolute value 1.0. Many of the 793 evolutionary parameters are very tightly or
perfectly correlated, such as protein levels for reactions which must occur in a
set stoichiometric ratio in steady state; here we have presented a summary view
in which only one parameter corresponding to each process or group labeled on
the right is shown.

105



corporated in the optimization framework developed to combine eq. 1.1 with

eqs. 2.3-3.9. The plain elastic band was thus more practical to implement, but

Jónsson indicates that for some problems the resulting approximation to the

minimum-energy path may be quite poor for any choice of spring constant k.

We have attempted to assess the performance of the plain elastic band

on the present problem by comparing the tangent vector to the elastic band

path at each non-endpoint replica with the local direction of steepest ascent

in fitness, which is everywhere parallel (or antiparallel) to the true minimum-

energy/maximum fitness path. This comparison is complicated by the fact that

the tangent vector and the steepest ascent direction can be determined only ap-

proximately. In the case of the tangent vector, this results from the discretiza-

tion of the path. In the case of the direction of steepest ascent, considerations

outlined in section 3.2.2 imply that we cannot, e.g., read off the direction of

fastest improvement in parameter space from the Lagrange multipliers associ-

ated with constraints fixing the evolvable parameters to a given set of values,

and although the gradient of the objective function is readily evaluated, to de-

termine its exact projection onto the tangent space of the feasible manifold, re-

specting all equality and inequality constraints, is highly nontrivial.

It is however straightforward to determine the optimal perturbation δz, of

norm less than or equal to a given bound c, which could be applied to a point z0

in the model’s parameter space while respecting all constraints (i.e., by adding

the constraint ‖zo − z‖ ≤ c to the model and solving normally to obtain the

optimal z). For small c, the optimal δz will lie along the direction of steepest

increase in fitness.

Figure 3.4 shows the results for c = 0.01 and c = 1.0 (blue and green curves).
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The angles range from 10-65 degrees, suggesting local agreement between the

elastic band direction and the objective function gradient is generally poor.

However, this does not necessarily indicate a large discrepancy between the

elastic band path and the true path: not only is the approximation to the tan-

gent vector inexact, but very small deviations from the ideal path could destroy

the local alignment of the tangent vector and the objective function gradient if

the derivatives of the objective function change rapidly on spatial scales small

compared to the overall path length. We may safely conclude that this condi-

tion is met in the present problem (for example, consider a reaction playing a

key role in synthesis of a very minor biomass component: the associated pro-

tein level will be small on an absolute scale, but (if all the available enzymatic

capacity is used) decreasing it by 10% (say) will necessarily decrease overall

CO2 assimilation by 10% (as biomass production and carbon assimilation occur

in a fixed ratio).

To examine optimality of the path on a coarser scale, the red curve in sec-

tion 3.4 shows the angle between the vector pointing from each image to the

next, zi+1 − zi, and the optimal step of the same distance ‖zi+1 − zi‖ away from

zi in any direction (consistent with the constraints). Here the angles are smaller,

from 40 degrees to a minimum of 0 degrees (achieved in the step from the penul-

timate image to the C4 point, which is a global optimum).

As a further test of the sensitivity of the predictions to these apparent de-

viations between the predicted path and the true maximum fitness path, we

considered the modified paths obtained by shifting the images in the reference

elastic band path by the optimal perturbations of lengths 0.1 or 1.0 calculated

above. The results presented in figs. 3.1-3.3.7 above were essentially unchanged
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in the modified paths (data not shown.)

This is somewhat more encouraging but still suggests considerable room

for improvement in the approximation to the true maximum-fitness path. Fu-

ture work should explore more sophisticated chain-of-states methods for transi-

tion path simulation, perhaps with particular attention to the finite-temperature

string method [134], which is well suited for rough potential energy surfaces.

The results from the plain elastic band method, meanwhile, at least provide a

lower bound on the extent to which the C3-C4 paths through parameter space

may be optimized, and the plain elastic band paths and their features remain

interesting as representative of one potential class of paths along which fitness

increases monotonically, even if other, somewhat higher fitness paths may also

exist.

3.5 Discussion

The approach taken here to the simulation of plausible paths through very high-

dimensional fitness landscapes necessarily involves a great deal of abstraction

and simplification. Even setting aside the various simplifying assumptions en-

tailed by the underlying flux balance analysis model and limiting our analysis

to an objective function that maximizes CO2 assimilation rate per unit of ni-

trogen invested in enzymes in photosynthetic tissue, we might still expect that

neglecting the (as yet mostly unknown) details of the genetic control of enzyme

expression levels in mesophyll and bundle sheath cells – and so forgoing any

direct estimation of mutation and fixation rates – would make it impossible to

obtain realistic results.

108



0 5 10 15 20 25
image

0

10

20

30

40

50

60

70

d
e
g
re

e
s

Elastic band tangent vector vs optimal perturbation,k=0.01

angle with optimal short perturbation
angle with optimal longer perturbation
angle between next step and optimal step

Figure 3.12: Angles between elastic band path tangent vectors and approx-
imate local directions of steepest improvement in fitness. At each non-
endpoint image in the band with default parameter settings, an approximation
to the tangent vector (blue and green curves: centered difference approxima-
tion; red curve: direction towards the next image in the band) and the direction
of the optimal parameter-space perturbation (blue curve: optimal perturbation
of length 0.01; green, length 1.0; red, length equal to the distance to the next
image) approximating the direction of steepest increase in fitness, have been
computed and the angle between them determined.

Instead, we find that the paths obtained through the purely phenotypic

fitness space successfully replicate several widely accepted aspects of histori-

cal C3-C4 transitions, most notably the early localization of photorespiratory

glycine decarboxylase to the bundle sheath and the late tuning of Rubisco ki-

netic parameters [14].

As shown in fig. 3.5b, the paths predicted here have a very similar struc-

ture to those obtained by Heckmann et al. [52] when projected onto the lower-

dimensional parameter space of their model (and thus also generally agree with

their compiled data from C3-C4 intermediate species), despite the numerous
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methodological differences between our approaches (793 continuous parame-

ters relating to all aspects of central metabolism, biomass production and photo-

synthesis versus 6 parameters directly related to photosynthesis and photores-

piration, discretized into five steps each; multiple parameters allowed to vary

between images in arbitrary combinations vs one parameter change per step; all

parameters treated symmetrically versus specific per-parameter mutation rate

estimates, et cetera).

As well, both approaches predict paths with a distinct modular structure,

though each leads to a different number and composition of modules; both in-

dicate that significant ‘sign epistasis’ can occur, where the same change in one

parameter leads to an increase or decrease in fitness depending on the value

of other parameters (shown here, for instance, by the difference between the

straight-line and optimized paths between identical C3 and C4 states in fig. 3.1;)

and both agree that the sequence of events in the transition is quite stable–over

many random realizations, in their case, or in response to varying CO2 levels

and biochemical perturbations, here. A notable exception is the prediction here

that shifts in Rubisco kinetics will begin earlier along the path at lower CO2 (fig.

3.8), which we expect would also be obtained from the model of Heckmann et

al. if applied over the same range of CO2 levels.

Heckmann et al. characterized their model’s fitness landscape as ‘Mt. Fuji’-

like, in that no local fitness optima existed other than the C4 state; that is, the C4

state was reachable from every other point in parameter space along a path of

nondecreasing fitness. While we have not demonstrated this exhaustively in the

current model, all our results suggest the same is true in our higher-dimensional

space.
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The predicted paths also disagree with established theories and previous

simulations in some ways. The increases in PEPC and C4 cycle activity and bun-

dle sheath Rubisco activity begin immediately, rather than in a distinct phase of

the transition after the photorespiratory pump has reached a threshold level of

activity (and in consequence changes in the PEPC Michaelis-Menten parameter

occur early in the transition as well); also, changes in the bundle sheath conduc-

tance to CO2 diffusion occur at the very beginning of the path in parallel with

these other changes rather than near the end as in [52].

These aspects of the results are all related to the very rapid predicted increase

in the bundle sheath CO2 level which the fast decrease in gs allows. As discussed

above, this, and the nearly immediate increase in the bundle sheath share of

biomass production from 5% to 50%, agree nicely with the apparent importance

of anatomical preconditioning in promoting the evolution of the C4 system, but

they could also indicate that the model systematically underestimates the sig-

nificance of the anatomical remodeling of the leaf which such changes would

require. Future refinements to the model could address this possibility in two

ways.

First, the explicit cost of such changes could be increased. This could be done

simply by further rescaling the conductivity contribution to the elastic band cost

function, as discussed above, and adding one for the bundle sheath biomass

fraction, or through the addition of a more detailed description of leaf anatomy

to the model, allowing it to take into account anatomical preconditioning and

potentially make predictions about the relative timing of shifts in vein spacing

and, e.g., their relationship to light use efficiency [135].

Second, the model’s assumptions about the relative costs of shifts in enzyme
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expression levels could be improved. Currently, the migration from mesophyll

to bundle sheath of 100 enzymes, each expressed at a level corresponding to a

maximum rate of 1 µmol per square meter per second, is considered as ‘large’ a

step in parameter space as the migration of a single reaction expressed at a level

corresponding to 10 µmol per square meter per second; thus biomass produc-

tion, which involves many reactions carrying relatively small fluxes, migrates

more readily than photosynthesis and photorespiration, which involve a mod-

erate number of reactions of large flux.

However, it would be equally plausible to assume that all mutations which

increase expression of an enzyme by a certain percentage are equally ‘large’, re-

gardless of the enzyme’s absolute expression level. This suggests a transformed

system, in which the elastic band objective function depends on the logarithms

of the current protein level variables, might be more realistic.

Such a refinement could also enhance the model’s capacity to examine some

of the issues for which a genome-scale model of the C3-C4 transition should be

most useful: how reactions outside the core photosynthetic machinery behave

in the transition path, and how those responses depend, if at all, on environ-

mental factors and details of the C4 biochemistry. The simulations above offer

limited insight into these questions, because the majority of non-photosynthetic

processes are tightly correlated with biomass synthesis in one cell type or the

other and respond in approximately the same way under all combinations of

conditions. While there are likely numerous pathways, outside the core ar-

eas of photosynthesis, photorespiration, and energy metabolism, which are not

strongly affected in real C4 transitions, such negative results may also be arti-

facts of an inadequate representation of the evolutionary process, or the conse-

112



quence of inadequate detail and flexibility in the underlying metabolic model.

In future work it may be best to identify and focus on key pathways of potential

interest, studying and if necessary expanding the range of behaviors they can

display in the model before generating simulated evolutionary paths.

The most important challenge in future extensions of this work will be es-

tablishing more direct connections to experimental data. In principle it should

be possible to combine this model with a sequence-based enzyme function pre-

diction method to make connections to large-scale genomic and transcriptomic

data from either C3-C4 intermediate species or closely related C3-C4 pairs but it

is unclear how most of the evolutionary changes simulated here would appear,

if at all, in such data, as most cannot distinguish mesophyll and bundle sheath

expression and cell-type specificity cannot yet be inferred from regulatory se-

quences in general.

More broadly, the methods developed here provide a blueprint for the study

of other evolutionary transitions between distinct states of large-scale metabolic

models. For most existing models, with linear constraints and objective func-

tions, such transitions will not be particularly interesting (with piecewise lin-

ear optimal paths), but the development of methods to incorporate noncon-

vex, nonlinear constraints into FBA models [60] and methods for hybridizing

constraint-based and kinetic models [88, 136] will likely give rise to more and

more complicated effective fitness landscapes, affording more opportunities to

apply these or related techniques.
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APPENDIX A

DEVELOPMENT OF A FLUX BALANCE ANALYSIS MODEL FOR MAIZE

This appendix describes the of creation of a metabolic model for maize from the

CornCyc database. It covers the creation of an SBML model with exchange and

biomass reactions and limited subcellular compartmentalization which can suc-

cessfully simulate the production of many biomass components and photosyn-

thetic carbon dioxide assimilation, the adaptation of the biomass equation from

iRS1563, some considerations in the process of expanding the model to describe

interacting mesophyll and bundle sheath compartments, and some modifica-

tions made in response to preliminary fitting results.

Sections A.1 through A.7 explain in detail the process of constructing the

underlying metabolic model at the one-cell level. Section A.8 discusses in detail

changes made to gene associations based on early data fitting results. Section

A.9 describes changes to the iRS1563 biomass equation. Section A.10 discusses

plasmodesmatal transport in the two-cell model. Filenames referred to are in

the model development subdirectory of the project source code.

A.1 Exporting the CornCyc FBA model from Pathway Tools

CornCyc 4.0 [57] was obtained from the Plant Metabolic Network and upgraded

from from Pathway Tools 16.5 to 17.0 locally.

The frame PWY-561 was removed from the database because otherwise

some of the reactions of that pathway were excluded from the FBA export, ap-

parently due to a bug.
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A simple FBA problem was solved using the Pathway Tools FBA functional-

ity [137], producing an output file which includes all reactions in the FBA model

Pathway Tools generates internally, both those which are active in the solution

to the FBA problem and those which are not. Note that this list of reactions is

distinct from the list of reactions in the database itself; the Pathway Tools soft-

ware prepares this set of reactions through an extensive process of excluding

reactions which are unbalanced or otherwise undesirable while expanding re-

actions with classes of compounds as products or reactants into sets of possible

specific instantiations which respect conservation of mass [77]. Working with

the Pathway Tools FBA reaction set (rather than, e.g, an SBML export of the

CornCyc database) allows us take advantage of this pre-processing; however,

it comes at the cost of needing to reintroduce into the FBA model many reac-

tions which are present in the CornCyc database but are excluded from the FBA

export for one reason or another.

Reaction data was extracted from the FBA output file, and reactions were

translated to refer to species by their CornCyc frame ID (to allow easy reference

to the database and comparison with previous work, and avoid possible ambi-

guities). Reactions were then added and removed from the model as described

below.
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A.2 Discarding reactions

A.2.1 Polymerization reactions

Pathway Tools attempts to include an expanded representation of certain poly-

merization reactions in the exported FBA model, but this function is considered

experimental [137]; these reactions were ignored. Note that some reactions rep-

resenting polymer growth were added manually later in the process.

A.2.2 ATPases

We removed all reactions from CornCyc which have the effective stoichiometry

{‘ADP’: 1.0, ‘ATP’: -1.0, ‘PROTON’: 1.0,

‘WATER’: -1.0, ‘|Pi|’: 1.0}

There are nine such reactions:

• RXN-11109,

• 3.6.4.6-RXN,

• RXN-11135,

• RXN0-1061,

• ADENOSINETRIPHOSPHATASE-RXN,

• 3.6.4.4-RXN,

• 3.6.4.9-RXN,

• 3.6.4.5-RXN,

• 3.6.4.3-RXN
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all treated as reversible by the Pathway Tools export procedure. Typically these

are simplified representations of the metabolic effect of enzymes whose com-

plete function is outside the scope of the database, as, for example, EC 3.6.4.3,

the microtubule-severing ATPase.

In their place, we added a single generic ATPase reaction to represent cellu-

lar maintenance costs, etc., with no associated genes.

A.2.3 Reactions involving generic electron donors and accep-

tors

Numerous reactions in the database are written with generic representations

of electron carrier species (‘a reduced electron acceptor’, ‘an oxidized elec-

tron acceptor’). Most of these reactions are outside the areas of emphasis

of the model (e.g., brassinosteroid biosynthesis), have no curated pathway

assignment, or also appear in forms which do specify the electron carrier

species (e.g., the generic nitrate reductase reaction, NITRATEREDUCT-RXN, vs

NITRATE-REDUCTASE-NADH-RXN,) and so could be safely neglected. A small

set of exceptions identified in early drafts included reactions of fatty acid syn-

thesis, handled as discussed below, and proline dehydrogenase, RXN-821, cat-

alyzed by a mitochondrial-membrane-bound flavoprotein which donates elec-

trons directly to the mitochondrial electron transport chain [127]. Because we

have not thoroughly compartmentalized amino acid metabolism, we imple-

mented this reaction as donating electrons to NAD+ instead.
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A.2.4 Duplicates

A number of other reactions were removed because they appeared to be exact

(possibly unintentional) duplicates, down to gene associations, of other reac-

tions in the database; or because they were being replaced by modified forms as

discussed below. These are given in reactions to remove.txt.

A.2.5 Non-metabolic reactions

A number of reactions present in CornCyc were removed because the database

indicated, e.g. through the Enzyme Commission summary for the relevant

EC number, that they were primarily involved in extrametabolic functions

(e.g., cell movement, regulation). These included the GTPases RXN-5462,

3.6.5.2-RXN, and 3.6.5.5-RXN.

A.2.6 Glucose-6-phospate

In the reduced model (discussed below) only one reaction, myo-inositol-1-

phosphate synthase, consumes the generic glucose-6-phosphate species, rather

than alpha-G6P or beta-G6P. To ensure that this reaction was appropriately con-

nected to other G6P producing and consuming reactions we manually split it

into two instances, one for alpha-G6P and one for beta-G6P.

118



A.2.7 UDP-glucose

For apparently all reactions in CornCyc involving UDP-glucose, the instantia-

tion procedure produced one version involving generic UDP-D-glucose and one

version involving UDP-alpha-D-glucose, the only child of the UDP-D-glucose

class. UDP-alpha-D-glucose participated in almost no reactions other than

these instantiations (in the reduced model, described below, only one: UDP-

sulfoquinovose synthase, EC 3.13.1.1). As such there is little to distinguish

the generic and specific versions of the reactions, which add complexity to the

model and degeneracy to optimization predictions without providing signif-

icant information about the function of the system, so we removed the spe-

cific versions and changed the UDP-sulfoquinovose synthase to act on a generic

UDP-D-glucose substrate.

A.3 Minor revisions to achieve basic functionality

A.3.1 Mitochondrial electron transport chain

The CornCyc representation of the mitochondrial electron transport pathway

(PWY-3781, plus the mitochondrial ATPase (ATPSYN-RXN, EC 3.6.3.14)) was

adjusted. Some reactions excluded from the initial Pathway Tools export be-

cause the balance state of reactions involving cytochrome C could not be deter-

mined were readded manually; ubiquinones/ubiquinols were uniformly repre-

sented as ubiquinone-8/ubiquinol-8, and compartments were assigned to reac-

tants and products to properly represent the transport of protons between the
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mitochondrial matrix and the mitochondrial intermembrane space. In Corn-

Cyc, as in MetaCyc and other related databases, transport of protons across the

membrane is represented explicitly for complex I but not for complex III and

complex IV; in agreement with the standard description of mitochondrial elec-

tron transport (see, e.g., [138]) proton transport was added to these reactions

with a stoichiometry of 2 H+/e- for complex III and 1 H+/e- for complex IV.

The stoichiometry of complex IV was further adjusted to include the H+ from

the mitochondrial matrix that binds to oxygen to form water.

A.3.2 Photosynthesis: light reactions

Similarly, some modifications were made to the light reactions of photosynthe-

sis (PWY-101). Reactions involving plastocyanins were not exported and were

added manually; a chloroplastic ATP synthase and a reaction describing cyclic

electron transport around PS I were added; and the stoichiometry of proton

transport was adjusted in accordance with recent literature, assuming a Q cycle

and ratio of 14 H+/3 ATP for the chloroplast ATP synthase [139].

Reduction of oxygen to superoxide at photosystem I (the Mehler reaction)

was added to allow flux through the pathways of chloroplastic reactive oxy-

gen species detoxification: superoxide dismutase and the ascorbate-glutathione

cycle, including a reaction representing the direct, non-enzymatic reduction of

monodehydroascorbate by ferredoxin [140, 141].
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A.3.3 Key reactions in biomass component production and nu-

trient uptake

Several components of biomass required either manual adjustment of reactions

from the database or the addition of abstract synthesis reactions summarizing

the behavior of pathways which could not easily be represented in more detail.

Starch

Starch synthase (GLYCOGENSYN-RXN) is not exported from CornCyc by default

(it is a polymerization reaction, and marked as unbalanced in the PGDB); it

was added manually in a form that produces the equivalent of one 1,4-alpha-D-

glucan subunit.

The starch branching enzyme EC 2.4.1.18 (RXN-7710) is not exported from

CornCyc by default (one reactant, starch, has an unspecified structure); it was

added manually as

a 1,4-alpha-D-glucan subunit→ an amylopectin subunit

Note that this stoichiometry is not intended to suggest that the branching en-

zyme introduces branches at each subunit.

CornCyc provides a detailed reconstruction of the reactions of starch degra-

dation (PWY-6724) which is by nature difficult to convert to a form suitable for

FBA calculations, as many of the stoichiometry coefficients are undefined. To in-

corporate the effects of the glucan-water and phosophoglucan-water dikinases,

for example, we would need to specify how many glucosyl residues must be
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phosphorylated (and then dephosphorylated) to produce “an exposed unphos-

phorylated, unbranched malto-oligosaccharide tail on amylopectin” of a given

length; modeling the release of maltose from that tail would require an estimate

of the typical unbranched length of such tails, etc. Rather than estimate average

values for these parameters, we divide the reactions of the pathway into two

types: those which condition starch for depolymerization , and actual depoly-

merization reactions. The first class (the dikinases above plus isoamylase) share

the abstract stoichiometry

a starch subunit→ an exposed starch subunit

(neglecting any ATP costs), while the second class (beta amylase and dispropor-

tionating enzyme) convert exposed starch subunits to sugars appropriately.

The beta-maltose releasing reactions of the starch degradation pathway in

CornCyc have no associated genes. We temporarily associated these reactions

with the beta amylase record in the database (RXN-1827, EC 3.2.1.2) pending

further review.

During transient starch degradation, beta-maltose and glucose are exported

into the cytosol, where maltose is split, releasing one glucose molecule and

donating one glucosyl residue to a cytosolic heteroglycan, from which it may

be released in turn as glucose-1-phosphate [142]. In Arabidopsis, specific en-

zymes (DPE2 and PHS2) are known to be implicated in this process [143]. In

simulations with this CornCyc-based FBA model we find the typical mode of

breakdown of cytosolic maltose is to alpha-D-glucose and alpha-D-glucose-1-

phosphate via AMYLOMALT-RXN,

maltotriose + beta-maltose→ maltotetraose + beta-D-glucose
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and RXN0-5182,

maltotetraose + phosphate→ maltotriose + alpha-D-glucose-1-phosphate

effectively the standard pathway but with maltotriose/maltotetraose playing

the role of the cytosolic heteroglycan pool. This approximation leads to a rea-

sonable effective stoichiometry but it is possible that the genes associated with

these reactions do not accurately represent the genes involved in the true un-

derlying process; we have not systematically looked for maize counterparts of

the Arabidopsis genes, for example.

Cellulose

The UDP-forming cellulose synthase, EC 2.4.1.12, is not exported from CornCyc

by default (it is a polymerization reaction, and marked as unbalanced in the

PGDB); it was added manually in a form that produces the equivalent of one

subunit.

Hemicellulose

Similarly, the following hemicellulose polymerization reactions were added

manually:

• 1,4-beta-D-xylan synthase, EC 2.4.2.24,

• reactions RXN-9093 (EC 2.4.2.-) and RXN-9094 (EC 2.4.1-), representing

the addition of arabinose and glucuronate to xylan to form arabinoxylan

and glucuronoxylan respectively (note that the corresponding subunits

notionally consist of one xylan subunit plus arabionose/glucuronate),
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• glucomannan synthase, EC 2.4.1.32,

• RXN-9461 (EC 2.4.2.39), representing the addition of xylose to a glucan

(as implemented, cellulose) to form xyloglucan (again, the corresponding

effective subunit corresponds to one glucan subunit plus xylose)– note this

representation ignores the previous step in CornCyc’s xyloglucan biosyn-

thesis pathway, xyloglycan 4-glucosyltransferase (EC 2.4.1.168).

In addition to these explicit descriptions of hemicellulose formation from
CornCyc, we added generic reactions representing the donation of the following
sugar residues from activated donor molecules to unspecified generic polysac-
charides:

• arabinose (from UDP-L-arabinose)
• galactose (from GDP-L-galactose)
• galacturonate (from UDP-D-galacturonate)
• glucose (from UDP-glucose)
• glucuronate (from UDP-D-glucuronate)
• mannose (from GDP-alpha-D-mannose)
• xylose (from UDP-alpha-D-xylose)

These reactions allow the model to represent flux of these sugars towards

hemicelluloses or other polysaccharides without explicit synthesis pathways in

CornCyc, or the construction of a hemicellulose term in the biomass equation in

terms of the overall composition of hemicellulose without reference to specific

synthesis reactions, as in our adaptation of the biomass reaction of iRS1563 (see

the biomass reaction discussion, below).

Miscellaneous cell wall components

The following additional cell wall component production reactions from Corn-

Cyc were added manually:
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• 2.4.1.43-RXN, representing the formation of homogalacturonan from

galacturonate

• RXN-9589 (EC 2.4.2.41), representing the addition of xylose to homogalac-

turonan to form xylogalacturonan (note the resulting xylogalacturonan

subunit notionally consists of one galacturonate plus xylose)

• 13-BETA-GLUCAN-SYNTHASE-RXN (EC 2.4.1.12), representing the for-

mation of callose from glucose.

Suberin production is not represented in CornCyc in detail but pathways

for the synthesis of three key precursors, N-feruloyltyramine, octadecenedioate,

and docosanediotate, are provided. Sinks for N-feruloyltyramine and oc-

tadecenedioate were added to the model to represent the flow of material to-

wards suberin production; docosanedioate was neglected because no genes

are associated with the reactions of its synthesis pathway. N-feruloyltyramine

may be produced from trans-caffeate via either ferulate or caffeoyl-CoA; the

branch through ferulate was initially dropped from the reduced version of the

model used for data analysis because it relies on trans-feruloyl-CoA synthase,

EC 6.2.1.34, which has no associated genes, but it was preserved in subsequent

versions of the model because high expression levels for caffeate O-methyl-

transferase suggest this branch is indeed active.

(In CornCyc, the tyramine N-feruloyltransferase that produces N-

feruloyltyramine from feruloyl-CoA could also catalyze the production of

other hydroxycinnamic acid tyramine amides (cinnamoyltyramide, sinapoyl-

tyramide, p-coumaroyl-tyramine) but we have neglected these for now.)
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Fatty acids and lipids

Plant fatty acid and lipid biosynthesis is rich in complexity (see, e.g., [144]),

and attempting to describe it in the FBA model at the level of detail at which it

is currently understood would require a daunting number of reactions among

the species representing the combinations of lipid head groups and acyl chains.

Though CornCyc presents some pathways of lipid metabolism at such a high

resolution, we have adopted a simplified approach which aims to include

enough detail to allow the model to:

• predict based on RNA-seq data the total flow of biomass into fatty acids

and lipids

• coarsely predict differences in the types of lipids and fatty acids produced,

based on RNA-seq data

• approximately preserve the iRS1563 biomass equation.

The model describes in detail the sequence of reactions by which fatty acids up

to lengths of 16 and 18 are synthesized in the chloroplast (though currently these

reactions occur in the cytoplasmic compartment!), and the formation of oleate

(as oleoyl-ACP) by the stearoyl-ACP desaturase (PWY-5156; [144,145]). In prac-

tice, these fatty acids may then enter the ‘prokaryotic’ pathway of glycerolipid

synthesis in the chloroplast or leave the chloroplast and enter the ‘eukaryotic’

pathway of glycerolipid synthesis in the endoplasmic reticulum, with further

desaturation of the acyl chains occurring after their incorporation into lipids.

We simplify this process by effectively decoupling the synthesis of differ-

ent types of lipids (as distinguished by head groups) from the desaturation
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of their associated acyl chains. Reactions from lipid synthesis pathways are

implemented as if all lipid species had one 16:0 and one 18:1 acyl chain, by

implementing the glycerol-3-phosphate O-acyltransferase and 1-acylglycerol-3-

phosphate O-acyltransferase reactions (RXN-10462 and 1-ACYLGLYCEROL-3-

P-ACYLTRANSFER-RXN), written in the database with generic acyl-acp sub-

strates, with oleoyl-ACP and palmitoyl-ACP as substrates respectively. (This

corresponds to the prokaryotic pathway; in the eukaryotic pathway oleoyl-CoA

and palmitoyl-CoA would supply the acyl groups for diacylglycerol formation

instead [144]. However the same genes are associated with the reactions of dia-

cylglycerol synthesis in the two pathways (PWY-5667; PWY0-1319) in CornCyc

and so they cannot be distinguished based on expression data alone; we have

chosen one arbitrarily.)

This supply of diacylglycerol is sufficient to allow, without further modifica-

tion to the CornCyc FBA export, the synthesis of a variety of lipids, including:

• phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol,

phosphatidylinositol;

• sulfoquinovosyldiacylglycerol.

UDP-glucose epimerase is exported from CornCyc in the UDP-glucose-

producing direction by default; we allowed it to run in the reverse direction

as well, consistent with literature evidence [146, 147], which allowed the pro-

duction of mono- and digalactosyldiacylglycerol.

In sphingolipid metabolism, dihydrosphingosine, 4-hydroxysphinganine

and sphinganine 1-phosphate may be produced, and sink reactions were added

for them. Production of the ceramides and their derivatives would require the
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choice of a particular fatty acid source for the sphinganine acyltransferase, writ-

ten by default with the generic substrate ‘a long-chain acyl-coA’; per the Corn-

Cyc description page for PWY-5129, in leaf sphingolipids C20 to C26 fatty acids

are typical. Currently, the FBA model lacks a detailed implementation of pro-

duction of very long chain fatty acids by elongation (a generic representation is

present in CornCyc), so no supply of C20-26 fatty acids is available. We have

deferred this issue to future work.

Separately, we model the desaturation of oleate to linoleate and linolenate

and palmitate to palmitoleate. These (along with palmitate and stearate) are the

fatty acid components of the iRS1563 biomass reaction, which originally incor-

porated them as triglycerides; our modified biomass equation consumes free

fatty acids, rather than attempt to specify the precise ratios in which they are to

be found in different lipid species in the leaf.

The CornCyc pathways for linoleate and linolenate produce them as lipid

linoleoyl groups and lipid linolenoyl groups respectively, incorporated in

generic lipid molecules; to allow these reactions to balance, and to provide

linoleate and linolenate for the biomass reaction, we added lipases which release

free linoleate/linolenate from the lipid linoleoyl and lipid linolenoyl groups,

regenerating the pool of generic ‘lipid’ species (which participate only in the

linoleate pathway, within the FBA model). Note, however, that other reactions

within the model but outside the indicated synthesis pathways are capable of

producing linoleate and linolenate as well.

CornCyc includes no complete pathway for the production of palmitoleic

acid; as there is experimental evidence it is produced in maize leaves (see

the discussion of the biomass equation, below) we introduced the acyl-ACP
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∆9-desaturase reaction from the palmitoleate biosynthesis pathway of AraCyc

(RXN-8389, 1.14.99.-), producing palmitoleoyl-ACP from palmitoyl-ACP [148],

which restores this functionality (in combination with the palmitoleoyl-ACP

hydrolase, RXN-9550, which is present in CornCyc). Note that there is some

evidence that the stearoyl-ACP desaturase enzyme may also catalyze this reac-

tion [149].

The oleoyl-acyl carrier protein hydrolase (EC 3.1.2.14) from CornCyc is un-

balanced with respect to hydrogen; a version with an additional proton on the

right hand side was added manually.

The ∆9-desaturase and the desaturases producing linoleate and linolenate

(RXN-9667 and RXN-9669) were written originally with generic electron donor

and acceptor species. Initial review of the extensive literature on plant fatty

acid desaturation suggests that the electron source for desaturases depends

on their location within the cell, with chloroplastic desaturases accepting elec-

trons from ferredoxin while desaturases in the endoplasmic reticulum accept

electrons from NADH via cytochrome b5 or fused cytochrome domains (see,

eg, [150–152]). As discriminating between chloroplastic and extrachloroplastic

fatty acid desaturation is not a high priority for the model, NADH was used as

the sole electron donor for all three of these reactions.

The ferredoxin-dependent stearoyl-ACP desaturase RXN-7903, not ex-

ported from the database by default because it is marked as unbalanced, was

added in a form adjusted for hydrogen and charge balance. Ferredoxin-NADP

oxidoreductase was made reversible to ensure NADPH can drive this reaction

in the dark, as is observed [152].
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Nucleic acids polymerization

Reactions representing the pyrophosphate-releasing incorporation of (d)NTPs

into RNA and DNA were added and associated with the DNA-directed DNA

polymerase and DNA-directed RNA polymerase reactions in the database. (In

each case, it is assumed that all nucleotides occur with equal frequency.)

A.3.4 Ascorbate-glutathione cycle

To allow the NADPH-monodehydroascorbate reductase reaction to function in

the cycle as curated, we split the L-ascorbate peroxidase reaction (EC 1.11.1.11)

into its two subreactions, which by default are not exported in the FBA problem.

A.3.5 Gamma-glutamyl cycle

The gamma-glutamyltransferase was lumped together with GAMMA-GLUTAMYL-

CYCLOTRANSFERASE-RXN, originally written in terms of the instanceless class

‘L-2-AMINO-ACID’ which appeared in no other stoichiometries in the FBA ex-

port, and the dipeptidase RXN-6622, which is the only reaction that can con-

sume the cysteinylglycine product of the gamma-glutamyltransferase, forming

a combined reaction which can carry flux. The combined reaction retained the

gene associations of the gamma-glutamyltransferase, as the other two reactions

have no associated genes.
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A.3.6 Methionine synthesis from homocysteine

The methionine synthase reaction of CornCyc’s methionine biosynthesis path-

way, HOMOCYSMET-RXN, EC 2.1.1.14, specifically requires 5-methyltetrahydro-

pteryltri-L-glutamate as a cofactor. Polyglutamylation of folates is present in

CornCyc in an abstract representation (with tetrahydrofolate synthase catalyz-

ing the addition of a glutamyl group to a 5-methyltetrahydropteryl with n glu-

tamyl groups); we have not converted this into an explicit representation in

the FBA model. Instead, HOMOCYSMETB12-RXN, EC 2.1.1.13, acts to produce

methionine from homocysteine; the effects of this possible inaccuracy on the

behavior of the rest of the network should be limited.

A.3.7 Basic import and export

The following species are given overall import/export reactions:

• WATER

• CARBON-DIOXIDE

• OXYGEN-MOLECULE

• PROTON

• NITRATE

• SULFATE

• |Pi|

• |Light|

• MG+2

These reactions exchange species inside the cell with species in meaningfully

labeled compartments where possible (eg, oxygen and CO2 are exchanged with

the intercellular air space, mineral nutrients with the xylem, etc.).
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In addition, to facilitate exchange among compartments in the whole-leaf

model, a number of exchanges with a phloem compartment were set up: these

included sucrose, glycine (as a representative of the amino acids detected in

maize phloem sap by Ohshima et al [111]), and the potential phloem sulfur

transport compound glutathione [112].

Note that these reactions should be inactive, or restricted to the exporting

direction only, when not modeling transport within the leaf (except for sucrose,

where a free supply should be allowed in heterotrophic conditions).

A.3.8 Defining the biomass components

Two types of biomass reactions are added to the model:

• Sinks for individual species, for simulations (e.g, fits to RNAseq

data) where the relative rates of production of different compo-

nents are unknown. The species given such sinks are listed in

biomass components.txt.

• A set of reactions producing a combined biomass species, made up

of assorted components in fixed proportions, for simulations where

the maximum rate of production of biomass is of interest, and an

approximately realistic biomass composition needs to be enforced di-

rectly. These reactions were taken with minor modifications from [41];

their adaptation is described below and they are listed in are listed in

adapted irs1563 biomass.txt.
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To conceptually and practically separate these types of biomass reactions, which

in general should not both be active in any one calculation, the biomass species

they produce are located within two separate abstract biomass compartments

in the SBML model.

In general, the biomass sink reactions have no gene associations, but an ex-

ception was made for the twenty reactions representing incorporation of amino

acids into protein, which inherit the gene associations of the corresponding

tRNA ligase reactions in CornCyc. (In principle these could be distinguished

from sink reactions representing the expansion of free amino acid pools as cells

grow and divide, but we have ignored this issue for now.)

Note that, to support the adapted iRS1563 biomass equation, a reaction

representing the production of free galactose from GDP-L-galactose was intro-

duced (otherwise, release of galactose from UDP-galactose was catalyzed by

two reactions in the pathways of indole-3-acetyl-ester conjugate biosynthesis

and indole-3-acetate activation, likely not a major route for carbohydrate pro-

duction). Free galactose is not included in the individual biomass species used

for data fitting.

A.4 Compartmentalization

Approaches differ to the subcellular compartmentalization in FBA models of

eukaryotes, ranging from the assignment of compartments to a few key path-

ways known to function primarily outside the cytosol, as in the mitochondrial

and chloroplastic “modules” of AraMeta [35] and RiceMeta [45] to the extremely

comprehensive, data-driven approach of [44]. Here, we did not attempt to com-
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prehensively assign reactions to their proper compartments; instead, we started

with a modular approach similar to [45] in which some core metabolic path-

ways were compartmentalized (in our case, the TCA cycle and mitochondrial

electron transport chain in the mitochondrion, the light reactions of photosyn-

thesis, Calvin cycle, and some reactions of the C4 and photorespiratory path-

ways in the chlorophyll, and some reactions of the photorespiratory pathway in

the peroxisome, with transport reactions added as necessary).

We then refined the compartment assignments of other reactions and path-

ways as needed to permit key metabolic functions and compartmentalize a lim-

ited number of additional reactions whose incorrect assignment to the cytosol

we judged particularly likely to lead to misleading results.

More details on individual compartmentalization choices and transport re-

actions are given below.

A.4.1 Intracellular transport

Sources (beyond those detailed below) informing the addition of intracellular

transport reactions in the model included the transport reactions present in

AraMeta [35], reviews of photorespiratory metabolism with attention to com-

partmentalization [153, 154], a review of chloroplast transporters [155], and a

review of transport processes in C4 photosynthesis [156].

In most cases we have not tried to reflect the mechanisms of the transport

systems, where those are known, in any detail (exceptions include the triose

phosphate-phosphate and PEP-phosphate transporters across the chloroplast
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envelope), nor have we associated genes with the transporters, even when they

are known. Future work should pay greater attention to this aspect of the sys-

tem.

A.4.2 Photorespiratory pathway

Following [2] we assumed that reducing power was supplied to the peroxi-

some through an oxaloacetate-malate shuttle and NAD(H)-dependent malate

dehydrogenase, and added an oxaloacetate-malate antiporter and a copy of

MALATE-DEH-RXN to the peroxisome. Reactions of the pathway were local-

ized following [153] and [154]. Note that glycine decarboxylase was assigned

exclusively to the mitochondrion, while serine hydroxymethyltransferase was

present in both the mitochondrion and the cytoplasm, where it plays a role in

one-carbon metabolism [157].

A.4.3 Various ferredoxin-consuming pathways

The model includes several pathways or reactions (e.g., sulfite and nitrite reduc-

tion and the chlorophyll cycle) which rely on ferredoxins for reducing power,

and are localized to the chloroplast, where, in the light, reduced ferredoxins

may be supplied by the photosynthetic electron transport chain.

Rather than assign the reactions of these pathways to compartments ap-

propriately, we added a reaction exchanging reduced ferredoxins and oxidized

ferredoxins across the chloroplast boundary to supply ferredoxin-driven path-

ways in the cytosol. We emphasize that this is a convenient simplification and
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is not intended to represent a realistic mechanism.

A.4.4 Ascorbate production

The L-galactonolactone dehydrogenase responsible for the final step of the

ascorbate production pathway in CornCyc reduces cytochrome C and has been

experimentally localized to the mitochondrial inner membrane, with its cat-

alytic site facing outwards, into the intermembrane space [158]. As the outer

membrane is generally permeable to small molecules we have treated this re-

action as acting directly on cytoplasmic galactonolactone and ascorbate. A sink

for ascorbate as a biomass component was added, as it is found in substantial

quantities in leaves (see, e.g., [159, 160]).

A.4.5 Ascorbate-glutathione cycle

This cycle is present in multiple cellular compartments; in the model we in-

cluded only cytosolic and chloroplastic instances (of which only the chloro-

plastic was ultimately expected to be relevant, as there was no supply of

superoxides in the cytosol). Note that none of the genes associated with

monodehydroascorbate reductase could be assigned to the chloroplast un-

der the rules described below: two had curated location in the peroxisome

while GRMZM2G320307 had no curated location and TargetP prediction of mi-

tochondrial (GRMZM2G320307 P01) and cytoplasmic (GRMZM2G320307 P02,

GRMZM2G320307 P03) locations. Reduction of monodehydroascorbate may

also proceed non-enzymatically (see above) so this (enzymatic) reaction was
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removed from the chloroplast in favor of direct reduction by ferredoxin.

A.5 Gene associations for compartmentalized reactions

Where a reaction was present in more than one compartment– that is, when

two or more reactions in different compartments were associated with the same

reaction record in CornCyc– we examined the genes associated with those reac-

tions in CornCyc and assigned them to the instance of the reaction in the most

appropriate compartment, as far as possible.

Where the Plant Proteome Database [58] provided manually curated location

assignments for genes, those were used; otherwise, we used automatic location

predictions by TargetP [161] or in some cases referred to the gene’s annotation

(both also provided by PPDB). In general we assumed the appropriate location

for a gene product was the cytoplasmic compartment absent a specific predic-

tion of localization in the chloroplast, mitochondrion, or peroxisome. Where

proteins were predicted to occur in a compartment where an no instance of a

particular reaction was present, those gene associations were generally dropped

from the model.

When a gene was associated with a reaction in more than one compartment

and also a reaction present in only one compartment, in general the association

with the reaction in only one compartment was dropped, except for reactions

which we believed based on literature evidence (including comments in Corn-

Cyc and PPDB) were assigned to the cytoplasmic compartment only because

our compartmentalization process was incomplete.
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Some details on the judgment calls made in this process are provided in the

comments to the file gra overrides.txt; we comment here on a few unusual

cases.

A.5.1 NADH dehydrogenases

Cyclic electron transport around Photosystem I may occur through the chloro-

plast NADH dehydrogenase complex or an alternate pathway which in Ara-

bidopsis involves PGR5 [162, 163]. In C3 plants the PGR5-dependent pathway

may play the major role in tuning the photosynthetic ATP/NADPH ratio, while

the NADH dehydrogenase pathway is implicated in stress responses [163]. In

contrast, in C4 plants the expression of the chloroplast NADH-dehydrogenase

appears to correlate with photosynthetic ATP demand, while PGR5 expression

does not, suggesting it is the NADH-dehydrogenase CET pathway which al-

lows increased the increased ATP production required by the C4 system [164].

Thus, genes associated in CornCyc with the NADH dehydrogenase reaction for

which a chloroplast location was predicted were reassociated with the model’s

cyclic electron transport reaction (despite the fact that our somewhat abstract

cyclic electron transport reaction may not accurately represent the biochemistry

of the NADH-dependent pathway).

A.5.2 Pyruvate dehydrogenases

In practice, pyruvate dehydrogenase complexes are found in the mitochondrion

and chloroplast, but here we have not fully compartmentalized the chloroplas-
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tic pyruvate dehydrogenase and the pathways it supplies, instead leaving it in

the cytosol. Thus, genes associated with the reactions of the complex with pre-

dicted chloroplast localization were associated instead with the cytosolic ver-

sion. Genes with no curated or predicted location were left associated with both

forms (splitting their expression data between them, in the fitting process).

A.6 Testing and consistency checking

The compartmentalized single-cell model was checked in detail for conserva-

tion violations by testing the feasibility of net production or consumption of a

unit of each internal species with all external transport and biomass sink reac-

tions suppressed.

Where such production was found feasible, the reactions involved were care-

fully inspected and stoichiometry coefficients adjusted to restore balance if nec-

essary. In practice, this led only to the correction of erroneous reactions added

by hand; as expected, no balance issues were found with reactions exported

from CornCyc.

In the final version, no such unrealistic processes are possible in the model

under normal conditions. (Note that the species representing light input may

be consumed in isolation, but the use of light energy to drive a futile cycle is not

unrealistic, though we have not examined the details of the process found by

the consistency checker in any detail.) Of course, demonstrating that no such

production/consumption is feasible does not guarantee that all reactions in the

model are properly balanced.
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Testing also verified that all individual biomass sink reactions, and the com-

bined biomass reaction, could proceed at nonzero rates.

A.7 SBML export

A.7.1 Component names

SBML distinguishes a component’s name from its ID. Reactions and species in

the SBML model were given name attributes according to the by calling the

Pathway Tools get name string function on the frames in the database from

which they derive, if any. The IDs of the SBML components were derived from

the frame handles, replacing special characters with underscores as necessary

to conform to the SBML sID standard.

Note that for some reactions in CornCyc, the result of get name string

is an EC number different from the EC number indicated by the label of the

frame (e.g, 2.7.1.133-RXN, for which ‘EC 2.7.1.159’ is returned). The frame

in CornCyc (if any) from which each reaction in the SBML model is ultimately

derived is preserved as a comment in the reaction’s Notes element, to resolve

any ambiguity.

A.7.2 Gene annotations

Each reaction in the FBA model associated with a particular parent frame in

CornCyc was given an association rule that combined all genes associated with
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that reaction in CornCyc, as well as all genes associated with all generic reac-

tions of which the parent reaction is a specific form, in a logical ‘or’ relationship,

stored in the reaction’s Notes element per the COBRA standard.

A.8 Model refinement

A.8.1 Phosphoribulokinase

In early attempts to fit the model to the leaf gradient data, high costs were as-

sociated with the mesophyll phosphoribulokinase reaction in the source tissue

when the bundle sheath CO2 level was high. We noted that in CornCyc 4.0

several genes were associated with both PRK and glyceraldehyde-3-phosphate

dehydrogenase. To clarify the role of these genes we referred to annotations

in the Plant Proteome Database [58] and best hits in the Conserved Domain

Database [165] (accessed through NCBI). Of the eight genes associated with PRK

in CornCyc, three (GRMZM2G039723, GRMZM2G337113, GRMZM2G162845) ap-

peared to encode GAPDH enzymes (per PPDB annotations and the presence of

Gp dh N and Gp dh C domains), three (GRMZM2G162529, GRMZM2G463280,

GRMZM2G026024) appeared encode to encode genuine phosphoribulokinases

(per PPDB annotations and the presence of PRK domains), and two appeared

to encode CP12-type regulatory proteins, with no obvious evidence for any in-

dividual protein sharing more than one of these roles. The regulatory role of

CP12 does involve forming a complex with PRK and GAPDH, but this reduces,

rather than enhancing or enabling, their individual activities [166]. We removed

the PRK associations of the GAPDH and CP12 genes from our model. PPDB as-
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signed these three GAPDH genes to a plastidic location based on experimental

evidence, so we associated them with those reactions exclusively (removing as-

sociations with the cytosolic instances of EC 1.2.1.13 and/or EC 1.2.1.12).

A.9 Biomass equation

We developed a biomass equation following that used in [41]. Our calcula-

tions are based on supplementary file S4 of that paper1, in particular sheet 2,

‘Biomass rxn’.

That sheet derives a biomass equation corresponding to the production of

one gram of plant dry weight, based on literature data on biomass composition;

the description is divided into subreactions forming (e.g.) ‘nitrogenous com-

pounds’, ‘lignin’, etc., which then participate in an overall biomass reaction.

The units of the stoichiometric coefficients are mmol.

We have adopted most of the biomass composition assumptions of Saha et

al wholesale, with gratitude for their efforts in compiling this data from the

literature. However, we have made some minor adjustments, resulting in a

different overall stoichiometry for biomass production.

A.9.1 Fatty acids

Saha et al represent the total lipid/fatty acid contribution to biomass as a pool of

triglycerides in proportions apparently based on a maize oil measurement and

1Specifically, journal.pone.0021784.s004.xls, as downloaded from the PLoS One
web site 20 November 2013
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thus probably reflective of seed triglyceride composition.

We substitute measurements of the fatty acid content of mature maize leaf

membrane lipids [167] and write a biomass sub-reaction which consumes the

relevant free fatty acids (rather than their derivatives in the form of triacylglyc-

erols, membrane lipids, etc.,) as shown in Table A.1.

Fatty acid CornCyc compound mol. wt. (g/mol) mole fraction
palmitic PALMITATE 255.42 0.104
palmitoleic CPD-9245 253.4 0.056
stearic STEARIC ACID 283.47 0.011
oleic OLEATE CPD 281.46 0.044
linoleic LINOLEIC ACID 279.44 0.132
linolenic LINOLENIC ACID 277.43 0.646

Table A.1: Fatty acid proportions in biomass.

Weighting the molecular weights by the mole fractions, we find one mole of

fatty acid in appropriate proportions weighs 272.4 g. Dividing the mole frac-

tions by the overall molar weight and multiplying coefficients by 1000 to con-

vert to millimoles, we arrive at the final equation:

0.382 PALMITATE + 0.206 CPD-9245 + 0.04 STEARIC ACID + 0.162

OLEATE CPD + 0.485 LINOLEIC ACID + 2.372 LINOLENIC ACID =

fatty acids biomass

where the left-hand side represents 1 g.

Fractions add to less than 1.0 because we ignore trace (mole fraction ≤ 0.01)

amounts of C14:0 and C20:0 fatty acids. Note that the leaf fatty acid composition

is known to change along the developmental gradient, so specifying any single

composition is an approximation; see [168].
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A.9.2 Hemicellulose

We adopted the hemicellulose production reaction as is, using the species added

to the model for this purpose, ‘polysaccharide [sugar] unit’. The result-

ing equation is:

0.548 polysaccharide arabinose unit +

1.248 polysaccharide xylose unit +

0.301 polysaccharide mannose unit +

0.144 polysaccharide galactose unit +

3.254 polysaccharide glucose unit +

0.166 polysaccharide galacturonate unit +

0.166 polysaccharide glucuronate unit

= hemicellulose biomass.

A.9.3 Total carbohydrates

We recalculated the stoichiometries of the carbohydrate-producing reac-

tion to account for the differing molecular weight of our representa-

tion of cellulose (‘CELLULOSE monomer equivalent’, effectively a glu-

cose molecule), account for the fact that one unit of hemicellulose rep-

resents one gram, not one (milli)mole, and express pectin in terms of

polysaccharide galacturonate unit, reflecting a belief that UDP is re-

leased in the formation of pectin from UDP-D-galacturonate, rather than re-

tained in the polymer [169].

It is not clear what form the ‘mannose’ referred to by Penning de Vries et
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al should be assumed to take, as free mannose is not found in plants under

most circumstances (see, e.g., [170–172]). Here we somewhat arbitrarily choose

mannose-6-phopshate.

Table A.2 shows the calculation, resulting in the equation:

0.259 polysaccharide galacturonate unit + 0.067 RIBOSE +

0.278 GLC + 0.111 FRU + 0.039 MANNOSE-6P + 0.056 GALACTOSE +

0.146 SUCROSE + 2.220 CELLULOSE monomer equivalent + 0.400

hemicellulose biomass = carbohydrates biomass.

A.9.4 Organic acids

We adopt this reaction as is. In the terminology of our model, the resulting

equation is:

0.556 OXALATE + 0.676 GLYOX + 1.515 OXALACETIC ACID + 0.746

MAL + 1.562 CIT + 1.724 CIS-ACONITATE = organic acids biomass.

A.9.5 Protein and free amino acids

We adopt these reactions as is. In the terminology of our model, the resulting

equations are:

1.15 L-ALPHA-ALANINE + 0.0959 ARG + 0.414 L-ASPARTATE +

0.0313 CYS + 1.53 GLT + 0.0445 GLY + 0.0915 HIS + 0.465 ILE +
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1.51 LEU + 5.71e-05 LYS + 0.123 MET + 0.314 PHE + 0.762 PRO +

0.612 SER + 0.175 THR + 0.00409 TRP + 0.244 TYR + 0.25 VAL =

protein biomass

and

0.624 L-ALPHA-ALANINE + 0.319 ARG + 0.418 L-ASPARTATE + 0.231

CYS + 0.378 GLT + 0.740 GLY + 0.358 HIS + 0.424 ILE + 0.424 LEU +

0.380 LYS + 0.373 MET + 0.337 PHE + 0.483 PRO + 0.529 SER + 0.467

THR + 0.272 TRP + 0.307 TYR + 0.475 VAL = free aa biomass.

A.9.6 Lignin

We adopt this reaction as is. In the terminology of our model, the resulting

equation is:

2.221 COUMARYL-ALCOHOL + 1.851 CONIFERYL-ALCOHOL + 1.587

SINAPYL-ALCOHOL = lignin biomass.

A.9.7 Nucleic acids

We adopt this reaction as is (though note that, as discussed above, nucleotide

triphosphates are not necessarily the appropriate best representation for poly-

merized nucleic acids). In the terminology of our model, the resulting equation

is:

146



0.247 ATP + 0.239 GTP + 0.259 CTP + 0.258 UTP + 0.255 DATP + 0.247

DGTP + 0.268 DCTP + 0.259 TTP = nucleic acids biomass.

A.9.8 Nitrogenous compounds

We use the same nitrogenous compound weight fraction breakdown, but re-

calculate the stoichiometric coefficients accounting for the fact that the protein

biomass, free amino acid biomass, and nucleotide biomass species each rep-

resent one gram, so that the appropriate stoichiometric coefficients of those

species for the production of one total gram of nitrogenous compounds are sim-

ply the weight fractions; see Table A.3.

The resulting equation is

0.100 free aa biomass + 0.870 protein biomass + 0.030

nucleic acids biomass = nitrogenous biomass.

A.9.9 Inorganic materials

We ignore these entirely, as they play no other role in the model. (Note that even

in iRS1563 the two species involved, potassium and chloride, participate only

in source and sink reactions.)
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A.9.10 Total biomass reaction

We drop the inorganic materials term (note that weight fractions now add to

0.95) and recalculate the stoichiometric coefficients, accounting for the fact that

the component biomass subspecies each represent one gram; see Table A.4.

The final equation is

0.230 nitrogenous biomass + 0.565 carbohydrates biomass

+ 0.025 fatty acids biomass + 0.080 lignin biomass + 0.050

organic acids biomass = total biomass.

Saha et al additionally incorporate an ATP cost in their overall biomass reac-

tion, based on that used in an earlier Arabidopsis model (AraGEM [39]) Com-

bining this ATP hydrolysis with a sink of total biomass, we arrive at the overall

equation for biomass production and growth (CombinedBiomassReaction):

1.0 total biomass + 30.0 ATP + 30.0 WATER = 30.0 ADP + 30.0 Pi +

30.0 PROTON

A.9.11 Protonation

Throughout, note that the molecular weights of species in our model may differ

somewhat from those used in the iRS1563 table because of differing assump-

tions about protonation. The practical consequences of this difference should

be limited.
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A.9.12 Oxalate

Early drafts of the model could not produce oxalate. CornCyc indicates its pro-

duction as resulting only from ascorbic acid catabolism with concomitant pro-

duction of L-threonate. Recent reviews suggest this is the primary pathway of

oxalate production in plant species which form calcium oxalate crystals, with

the threonate ultimately being oxidized to tartrate [173–175], though the path-

ways of production of soluble oxalate are less clear [174]. We found little im-

mediate evidence that tartrate (or threonate) is formed in maize leaves at levels

comparable to that of oxalate, or of pathways which could further metabolize

the tartrate.

Of the three reactions in iRS1563 which could produce oxalate, only one

has an associated gene: oxalate carboxylase (oxalate = formate + CO2);

KEGG R00522 (EC4.1.1.2). The gene, ‘ACG37538’, may correspond to

GRMZM2G103512, whose best Arabidopsis hit is AT1G09560.1 (germin-like

protein 5); it may thus be more likely to be an oxalate-consuming oxidase [176]

than an oxalate carboxylase, though no function was computationally predicted

for GRMZM2G103512 in CornCyc.

We decided the available information did not allow us to accurately model

oxalate production in maize. However, to retain the iRS1563 biomass equa-

tion and ensure that mass and elemental balance was preserved, we allowed

production of oxalate from oxaloacetate by oxaloacetase (EC 3.7.1.1; PlantCyc

OXALOACETASE-RXN, [177]). This simple reaction has been observed in fungi

[178] but is considered unlikely to be widespread in plants [174].
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A.10 Plasmodesmatal transport reactions

Species allowed to be exchanged between cell types through the plasmodesmata

included:

• carbon dioxide and oxygen;

• known C4 cycle metabolites alanine, aspartate, malate, PEP, and pyruvate;

• the Calvin cycle intermediates glyceraldehyde 3-phosphate and 3-

phosphoglycerate;

• photorespiratory metabolites glycerate, glycolate, serine, and glycine;

• nutrients sucrose, phosphate, nitrate, ammonia, sulfate and magnesium;

• glutamate and 2-ketoglutarate;

• and cysteine and glutathione [179].

The inclusion of compounds involved in NAD-ME C4 or C3-C4 intermediate

photorespiratory carbon concentrating mechanism is not meant to suggest such

a system is necessarily active in maize but merely reflects our knowledge that

significant transport of those species between mesophyll and bundle sheath can

occur under at least some circumstances.
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APPENDIX B

SUPPLEMENTARY TABLES

B.1 Overrepresented pathways in the k-means clusters of Fig.

3.6.

A list of metabolic pathways from CornCyc [57] represented in the model was

compiled and the set of protein level parameters for the reactions associated

with each pathway – which may not represent the complete pathway – was

tested for overrepresentation in each of the clusters using a one-sided Fisher’s

exact test. Listed below for each cluster are all those pathways for which the

resulting p-value was less than 0.01, and their p-values.

This approach is intended as an informal, heuristic method for identifying

the predominant metabolic activities associated with each cluster and not a for-

mal statistical test of the null hypothesis that cluster assignment is independent

of pathway assignment, which would be inappropriate here (among other is-

sues, in many cases the FBA steady-state assumption implies that the fluxes of

two or more reactions within a pathway will always be equal – or related by a

constant factor – thus perfectly correlated, so that their cluster assignments are

not independent). We have also ignored the issue of multiple testing.

Note that reactions are frequently assigned to more than one pathway, and

a pathway may be detected in a cluster even if its component reactions are ac-

tually fulfilling a different metabolic function in the model than that suggested

by the name of the pathway.
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Table B.1: Cluster a (140 parameters)

8.5993e-21 mesophyll palmitate biosynthesis II (bacteria
and plants)

4.3671e-06 mesophyll suberin biosynthesis
2.5938e-05 mesophyll pyruvate decarboxylation to acetyl

CoA
0.00015309 mesophyll chorismate biosynthesis from 3-

dehydroquinate
0.00015309 mesophyll isoleucine biosynthesis I (from thre-

onine)
0.00023188 mesophyll phenylpropanoid biosynthesis
0.00089798 mesophyll ascorbate biosynthesis I (L-galactose

pathway)
0.00089798 mesophyll photosynthesis light reactions
0.00089798 mesophyll valine biosynthesis
0.0038775 mesophyll proline biosynthesis I
0.0038775 mesophyll stearate biosynthesis II (bacteria and

plants)
0.0052349 mesophyll fatty acid biosynthesis initiation I
0.0052349 mesophyll linoleate biosynthesis I (plants)
0.0052349 mesophyll phenylalanine biosynthesis II
0.0052349 mesophyll tyrosine biosynthesis II

Table B.2: Cluster b (134 parameters)

3.5818e-21 bundle sheath palmitate biosynthesis II (bacte-
ria and plants)

3.5378e-06 bundle sheath suberin biosynthesis
2.1669e-05 bundle sheath pyruvate decarboxylation to

acetyl CoA
0.00013186 bundle sheath chorismate biosynthesis from 3-

dehydroquinate
0.00013186 bundle sheath isoleucine biosynthesis I (from

threonine)
0.00018228 bundle sheath phenylpropanoid biosynthesis
0.0034588 bundle sheath stearate biosynthesis II (bacteria

and plants)
0.0047896 bundle sheath fatty acid biosynthesis initiation

I
0.0047896 bundle sheath linoleate biosynthesis I (plants)
0.0047896 bundle sheath phenylalanine biosynthesis II
0.0047896 bundle sheath sulfate reduction II (assimilatory)
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0.0092497 bundle sheath pentose phosphate pathway
(non-oxidative branch)

Table B.3: Cluster c (47 parameters)

7.9344e-14 bundle sheath Calvin-Benson-Bassham cycle
5.2648e-11 bundle sheath sucrose biosynthesis
6.9097e-09 bundle sheath glycolysis I
3.6089e-08 bundle sheath gluconeogenesis I
8.882e-08 bundle sheath glycolysis II (from fructose-6P)
2.2103e-06 bundle sheath glycolysis IV (plant cytosol)
1.1074e-05 bundle sheath photosynthesis light reactions
0.00019808 bundle sheath starch biosynthesis
0.00033894 bundle sheath C4 photosynthetic carbon assim-

ilation cycle, PEPCK type
0.0006483 bundle sheath sucrose degradation III
0.00075909 bundle sheath aerobic respiration (cytochrome

c)
0.001116 bundle sheath pentose phosphate pathway

(non-oxidative branch)
0.0034686 bundle sheath GDP-glucose biosynthesis
0.0034686 bundle sheath glutathione biosynthesis
0.0034686 mesophyll CO2 fixation into oxaloacetate

(anapleurotic)
0.0089615 bundle sheath xylose degradation IV

Table B.4: Cluster d (38 parameters)

5.3157e-07 mesophyll photorespiration
9.4917e-05 bundle sheath serine biosynthesis
9.4917e-05 mesophyll nitrate reduction II (assimilatory)
0.0002504 bundle sheath sucrose degradation III
0.00036736 mesophyll aerobic respiration (cytochrome c)
0.00088869 bundle sheath sucrose degradation VI (anaero-

bic)
0.002137 bundle sheath CO2 fixation into oxaloacetate

(anapleurotic)
0.002137 mesophyll ammonia assimilation cycle II
0.0049581 mesophyll gluconeogenesis I

Table B.5: Cluster e (30 parameters)
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3.9157e-17 mesophyll Calvin-Benson-Bassham cycle
3.2487e-13 mesophyll sucrose biosynthesis
1.5688e-07 mesophyll glycolysis I
2.5527e-06 mesophyll glycolysis II (from fructose-6P)
4.9596e-05 mesophyll starch biosynthesis
5.84e-05 mesophyll glycolysis IV (plant cytosol)
0.00010699 mesophyll sucrose degradation III
0.0001828 mesophyll gluconeogenesis I
0.00018749 mesophyll pentose phosphate pathway (non-

oxidative branch)
0.0013958 bundle sheath ammonia assimilation cycle II
0.0013958 mesophyll GDP-glucose biosynthesis
0.003564 bundle sheath glutamine biosynthesis III
0.0040881 mesophyll starch degradation I

Table B.6: Cluster f (13 parameters)

4.2522e-10 bundle sheath photorespiration
0.0084395 bundle sheath folate transformations II

Table B.7: Cluster g (11 parameters)

0.0047199 bundle sheath xylose degradation IV

Table B.8: Cluster h (9 parameters)

0.00011551 bundle sheath serine racemization
0.00011551 mesophyll glutathione biosynthesis
0.00011551 mesophyll serine racemization
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APPENDIX C

AN ALTERNATIVE PHOTORESPIRATORY PATHWAY

The constraint-based modeling approach presented in subsection 1.3.3 can be

used to describe hypothetical metabolic networks as well as naturally occur-

ring ones. Combining all the enzymatically catalyzed reactions described in

many different organisms into an omnibus metabolic network model, then find-

ing flux predictions which satisfy certain requirements while using a relatively

tractable total number of reactions, allows modeling-assisted design of synthetic

metabolic systems which could then in principal be implemented by transform-

ing genes encoding the necessary enzymes into a single organism. For example,

Bar-Even and coauthors [180] used a model comprising all metabolic reactions

(≈ 5000) from any organism in the KEGG LIGAND database [74] to search for

possible CO2 pathways that could offer alternatives to the Calvin cycle.

We adapted the approach of Bar-Even et al to study alternatives to the pro-

cess of photorespiration. In the pioneering work of Kebeish et al [181], five

bacterial enzymes (from glycolate catabolism in E. coli) were expressed in the

Arabidopsis chloroplast, allowing glycolate to be converted to glycerate and re-

turned to the Calvin cycle entirely within the chloroplast, bypassing the ordi-

nary process of photorespiration (which spans the chloroplast, peroxisome and

mitochondrion). The resulting plants showed increased growth rates and sol-

uble sugar contents. This result suggested that other transgenic pathways for

glycolate recycling could also have technological applications.

In particular, although part of the growth advantage seen in the transgenic

plants was attributed to an increase in CO2 concentration in the chloroplast (be-

cause the engineered pathway releases CO2 there, through glyoxylate carboxyli-
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gase, rather than glycine decarboxylase in the mesophyll), we speculated that it

might be possible to improve growth rates still further by designing a synthetic

pathway which recycled glycolate to a Calvin cycle intermediate without any

release of CO2 at all.

To seek the shortest such pathway, we formed a large metabolic model from

the reactions in KEGG release 54.1, allowing import of carbon, oxygen, and var-

ious cofactors, and export of triose phosphates. We then inactivated all CO2-

releasing reactions, constrained the flux through the Rubisco oxygenase reaction

to a nonzero value, and minimized total flux through all reactions outside the

Calvin cycle. (Although minimizing total flux is mathematically distinct from

minimizing the total number of reactions used, it is much more computation-

ally straightforward and we found it to be a reasonable proxy for simplicity in

practice.)

The solution, shown in Fig. C, involved 19 reactions not normally involved

in the Calvin cycle or photorespiration. Feasible pathway design, as discussed

in [180], involves consideration of thermodynamics and kinetics as well as re-

action stoichiometry; we did not investigate those issues for this pathway be-

cause we anticipated that the practical challenges associated with transform-

ing the necessary genes for the 19 enzymes from multiple different species into

plants, and ensuring that the enzymes were functional, would be prohibitive.

Even if this could be done, and the pathway was thermodynamically and ki-

netically feasible, the nitrogen costs associated with expressing the enzymes at

high enough levels to catalyze the reactions at the high rate usually associated

with photorespiration might well outweigh any other advantages to the plant.
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We conclude that in further efforts to design or optimize photorespiratory

bypasses of manageable complexity, it must be accepted that some CO2 release

is inevitable.
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APPENDIX D

THEORETICAL AND PRACTICAL CONSIDERATIONS IN SOLVING

NONLINEAR FLUX BALANCE ANALYSIS PROBLEMS WITH IPOPT

D.1 The Karush-Kuhn-Tucker conditions

Any general nonlinear programming problem with ng equality and nh inequal-

ity constraints may be placed in the following form:

min
x∈RN

f(x) (D.1)

s.t. g(x) = 0

h(x) ≥ 0.

By introducing a new ‘slack’ variable si for each inequality constraint func-

tion hi and requiring si = hi, i = 1, . . . , nh, we may further reformulate any such

problem as

min
x∈RN′

f(x) (D.2)

s.t. g(x) = 0

xi ≥ 0, i = 1, . . . , nh

Any solution x∗ to (D.2) (strictly speaking, any solution which meets certain

regularity conditions, discussed below) must satisfy the Karush-Kuhn-Tucker
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equations [182, 183],

∇g(x∗) · λ+ z = ∇f(x∗) (D.3)

g(x∗) = 0

x∗i ≥ 0, i = 1, . . . , nh

zi ≥ 0, i = 1, . . . , nh

zihi(x
∗) = 0, i = 1, . . . , nh

for some values of the Lagrange multipliers λ = (λ1, . . . , λng) and z ∈ RN ′
=

(z1, . . . , znh
, 0, 0, . . . , 0). Effectively these conditions generalize the ordinary La-

grange multiplier approach to optimization with only equality constraints by

formalizing the requirement that the Lagrange multipliers associated with in-

active inequality constraints (those where hi(x∗) is not zero) are zero, and that

inequality constraints can ‘push’ the solution in only one direction.

(We omit here any discussion of additional second-order necessary condi-

tions for x∗ to be an optimal point in the problem (D.1); the reader may refer

to [182, 183] or other textbooks on constrained optimization theory.)

D.2 IPOPT

The IPOPT package [53] obtains numerical solutions to the problem (D.2) by

solving a sequence of related problems

min
x∈RN′

f(x)− µ
nh∑
i=1

log (xi) (D.4)

s.t. g(x) = 0
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with decreasing values the barrier parameter µ (which acts to keep the variables

x1, . . . , xnh
nonnegative) until the process converges to an adequate solution to

an adequate approximation of the original problem. (We omit a detailed justifi-

cation of this approach; see the references to [53].)

At each iteration, the primal variables x and dual variables λ and z are up-

dated by applying Newton’s method to the Karush-Kuhn-Tucker equations for

D.4 with the current value of µ. (Strictly, Newton’s method is used only to find

a search direction in the space of primal and dual variables, along which a line

search is then performed, but this is irrelevant to the discussion here – for de-

tails on this, the control of µ, generalization to upper as well as lower bounds,

and the other niceties which contribute to IPOPT’s good performance on a wide

range of problems, the reader is referred to [53] and the package’s online docu-

mentation [184].)

To calculate the Newton’s method update, a matrix equation must be solved,

with the matrix elements being first and second partial derivatives of the con-

straint functions g and h and the objective function f (or combinations thereof).

The performance of the method is largely determined by how quickly, and how

precisely, IPOPT (through the linear solver packages it calls) is able to solve

this linear system at each step. Several considerations in the design of models

intended to be solved by IPOPT follow immediately:

Sparsity The sparsity of the relevant matrix is determined by the number of

variables which participate in each constraint. At large scales the problem

generally needs to be fairly sparse to be numerically solvable at all, and the

linear solver codes (such as ma97) used by IPOPT are typically intended

for the solution of sparse systems. In FBA problems with nonlinear con-
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straints, as studied here, typically the nonlinear constraints are outnum-

bered by the linear constraints arising from the conservation laws, and

each reaction rate variable typically participates in only a small number

of conservation laws (corresponding to its reactants and products) – that

is, the overall structure of the problem is sparse because the stoichiome-

try matrix S is. (Note that the stoichiometry matrix is the transpose of the

Jacobian of the linear conservation constraints.)

However, marginal improvements in sparsity can be achieved by formu-

lating additional constraints (or contributions to the objective function) in

the problem appropriately, and in some cases this will improve conver-

gence. This may be seen for example in the design of the data-fitting code,

where individual auxiliary variables are introduced to represent the con-

tribution to the objective function of each reaction with associated data

at each leaf segment, and the total cost associated with the data set is the

sum of the auxiliary variables. This is an alternative to a less-sparse design

which would directly constrain the variable representing the data set’s

overall cost to equal a complex expression involving many thousands of

data parameters, uncertainty parameters, and reaction rates. As a bonus,

such modular design is also often easier to implement and maintain.

Constraint derivative scaling If the derivatives of the constraints with respect

to the variables of the problem – taken at the starting point of an opti-

mization calculation, an optimal point, or any intermediate iterate – span

many orders of magnitude, so will the entries of the matrix solved in the

Newton’s-method calculation, and it will tend to have a high condition

number, making it more difficult to solve the system precisely (see any

numerical linear algebra text for a more precise discussion of this issue.)
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IPOPT has the capability to automatically rescale variables (in a way that is

transparent to the user) to decrease large derivatives [53,184], and does so

by default. However, this does not occur on an iteration-by-iteration basis;

instead it is performed at the beginning of the calculation, evaluating the

derivatives at the user-provided starting point (or a random sample of

points, an optional behavior we never tested because it relies on the MC19

package, which we did not use). Also, it does not correct derivatives which

may be too small.

Thus, the user’s choice of problem formulation still is key to maintaining

good derivative scaling, and we have found choice of units and variable

bounds, in particular, can have a great effect on solver performance.

One example occurs in the implementation of the Rubisco kinetics,

PEPC kinetics, and CO2/O2 diffusion law constraints, which depend on

the CO2 and O2 concentrations, expressed as equivalent partial pres-

sures. Internally, these are represented in units equivalent to 1 mbar

and 10 mbar respectively; this scaling (which may be adjusted through

the parameters co2 scaling factor and o2 scaling factor, in

reduced model.py for the data-fitting source code and for the elastic

band source code in setup better physiology.py) led to much faster

convergence compared to the initial, naive approach of simply expressing

both quantities in microbar. (Some experimentation was done to arrive at

the current values but further optimization may be possible.)

Another example occurs in the data-fitting code: the scale factors si are

explicitly required to lie in the range (−5, 5), not just kept to a reason-

able size by the penalty term α
∑

i s
2
i in the objective function, because the

derivative of the cost with respect to the rate of a reaction (with data) vi is
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proportional to exp(si), and convergence issues arose when one or more

such exponential terms became too large or small.

D.3 Constraint degeneracy

In nonlinear problems which incorporate flux balance analysis constraints, the

gradients of the constraint functions will typically form a linearly dependent set

everywhere. This degeneracy arises for two reasons:

• A typical stoichiometry matrix has a nontrivial left null space (connected

to the existence of “conserved moieties”: if an element or chemical group

is neither produced nor consumed by any reactions in the system, the sto-

ichiometry of one chemical species containing that element or group in a

reaction can always be determined from the stoichiometries of all the other

species which contain it; thus, the associated row in S is a linear combina-

tion of other rows, and represents a redundant constraint [185].) The rows

of S are the gradients of the FBA steady-state constraints.

• Many constraints on reaction reversibility are redundant: for example, if

one reaction in an unbranched linear pathway is irreversible, it follows

that the others cannot run in reverse either. If an explicit lower bound is

set for the other reactions (because, for example, they are also believed

to be thermodynamically irreversible under biological conditions) it is

straightforward to show the gradients of the “constraint functions” en-

forcing those bounds (which are equal to the unit vectors along the coor-

dinate axes corresponding to the reaction rates) can be written as linear

combinations of the gradients of the conservation constraints (rows in the
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stoichiometry matrix) and the unit vector along the axis corresponding

to the first reaction. The same holds true in more complicated situations

where the feasible signs of one reaction rate are in practice determined

by the signs allowed for other reaction rates. This is essentially equiva-

lent to the issue discussed in section 3.2.2 above: there, upper bounds were

redundant.

Two issues arise when the set of gradients of the equality constraints and

active inequality constraints is linearly dependent at a (proposed) optimal point.

The first is theoretical: the most common “constraint qualifications”, con-

ditions under which the KKT equations are necessary conditions for a point

to solve the nonlinear programming problem, may no longer hold. The sim-

plest such condition, the linearly independent constraint qualification, is (as it

sounds) precisely the requirement that the set of constraint gradients be linearly

independent. One condition of the weaker Mangasarian-Fromovitz constraint

qualification (see section 12.6 of [182]) also requires the gradients of the equality

constraints to be linearly independent.

We have largely ignored this issue as in practice we have been often able to

find acceptable optimal points which do satisfy the KKT equations even when

those qualifications do not hold. (It is possible that other more arcane qualifi-

cations exist in the literature which do apply to the sorts of problems we have

usually solved. Section 12.6 of [182] notes that it is sufficient for all active con-

straints to be linear functions; we speculate that a similar result could be derived

for the special case where the constraint gradients are linearly independent ex-

cept for degeneracies among a set of purely linear constraints, but have not

explored this.)
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The second issue is practical. In several particularly large-scale problems,

including the data-fitting calculations above, we initially found that IPOPT con-

verged slowly or not at all, but performed better after we removed as many

redundant linear constraints from the problem as possible. When the set of ac-

tive constraint gradients is linearly dependent at an optimal point x∗ for which

the KKT conditions do hold, infinitely many choices of multipliers λ and z, and

the multipliers may become very large; it is plausible that this will slow the pro-

cess of convergence to a single choice λ∗ and z∗ (with the impact being limited

for small-scale problems), though we have not worked out the details.

To facilitate the solution of such large-scale problems, the simplification

submodule of the fluxtools package provides a method to automatically

identify and remove redundant linear constraints and variable bounds, which is

applied to the basic two-cell model before setting up the data-fitting and elastic

band problems solved above. It is important to note that the resulting simplified

problem is equivalent to the original problem, but the simplified problem after

changing a constraint or variable bound need not be equivalent to the original

problem with the same change applied.
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tutorial for downloading, installing, and using IPOPT. http://www.
coin-or.org/Ipopt/documentation/.

[185] Sauro HM, Ingalls B (2004) Conservation analysis in biochemical net-
works: computational issues for software writers. Biophysical Chemistry
109: 1–15.

187

http://www.coin-or.org/Ipopt/documentation/
http://www.coin-or.org/Ipopt/documentation/

	Biographical Sketch
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	C4 photosynthesis
	Evolution of the C4 system
	Modeling C4 and other plant metabolism
	Nonlinear physiological models
	Kinetic models
	Constraint-based models
	Review of constraint-based models for higher plants

	Incorporating Rubisco kinetics in constraint-based models
	Outline

	Multiscale modeling of metabolism in the developing maize leaf
	Introduction
	Results
	Metabolic reconstruction of Zea mays
	Nonlinear flux-balance analysis
	Flux predictions in the developing leaf based on multiple data channels

	Discussion
	Reconstruction
	Nonlinear optimization
	Data fitting
	The whole-leaf model

	Methods
	Reconstruction process
	Mesophyll-bundle sheath model
	Leaf gradient model
	Optimization calculations
	Integrating biochemical and RNA-seq data


	Genome-scale modeling of the evolutionary path to C4 photosynthesis
	Introduction
	Methods
	Modeling photosynthetic metabolism
	Finding optimal evolutionary paths
	Combining the metabolic and evolutionary pathfinding models
	Limitations of the approach

	Results
	Fitness increases and path geometry
	Development of the C4 system
	Comparison to the model of Heckmann et al.
	Clustering analysis
	Varying environmental conditions
	Varying decarboxylation subtypes
	Combined environmental and biochemical variation

	Assessing the elastic band approximation to the highest-fitness path
	Discussion

	Development of a flux balance analysis model for maize
	Exporting the CornCyc FBA model from Pathway Tools
	Discarding reactions
	Polymerization reactions
	ATPases
	Reactions involving generic electron donors and acceptors
	Duplicates
	Non-metabolic reactions
	Glucose-6-phospate
	UDP-glucose

	Minor revisions to achieve basic functionality
	Mitochondrial electron transport chain
	Photosynthesis: light reactions
	Key reactions in biomass component production and nutrient uptake
	Ascorbate-glutathione cycle
	Gamma-glutamyl cycle
	Methionine synthesis from homocysteine
	Basic import and export
	Defining the biomass components

	Compartmentalization
	Intracellular transport
	Photorespiratory pathway
	Various ferredoxin-consuming pathways
	Ascorbate production
	Ascorbate-glutathione cycle

	Gene associations for compartmentalized reactions
	NADH dehydrogenases
	Pyruvate dehydrogenases

	Testing and consistency checking
	SBML export
	Component names
	Gene annotations

	Model refinement
	Phosphoribulokinase

	Biomass equation
	Fatty acids
	Hemicellulose
	Total carbohydrates
	Organic acids
	Protein and free amino acids
	Lignin
	Nucleic acids
	Nitrogenous compounds
	Inorganic materials
	Total biomass reaction
	Protonation
	Oxalate

	Plasmodesmatal transport reactions

	Supplementary tables
	Overrepresented pathways in the k-means clusters of Fig. 3.6.

	An alternative photorespiratory pathway
	Theoretical and practical considerations in solving nonlinear flux balance analysis problems with IPOPT
	The Karush-Kuhn-Tucker conditions
	IPOPT
	Constraint degeneracy

	Bibliography

