eCommons

 

Mechanical Properties Of Tetra-Polyethylene And Tetra-Polyethylene Oxide Diamond Networks Via Molecular Dynamics Simulations

Other Titles

Abstract

The tensile response to uniaxial deformation of polyethylene-based (Tetra-PE) and polyethylene glycol-based (Tetra-PEG) networks of various strand lengths with idealized diamond connectivity have been studied via atomistic molecular dynamics simulations. Tetra-PE and Tetra-PEG diamond networks with the same strand length show comparable maximum extensibility but the Young's moduli and tensile strength of the former are significantly lower than those of the latter, consistent with stronger intersegmental attractions in the amorphous Tetra-PEG networks. The stress-strain curves show that the stress in short-stranded networks increased rapidly and monotonically with strain while for long-stranded networks it increased very little at small strain, in a non-monotonic fashion at intermediate strains, and then very sharply as the limit of extensibility was approached. Spontaneous partial crystallization of a long-stranded Tetra-PE diamond network under supercooling was demonstrated, and the resulting system was used to: (1) Estimate its melting point as the temperature where any crystalline material disappeared abruptly, and (2) show that the presence of crystalline material in the undeformed state leads to higher stress responses upon deformation compared to amorphous samples, a result consistent with experimental observations. The spontaneous crystallization of Tetra-PEG networks at large supercooling was unsuccessful due to the slow motions of the network beads and the prohibitively long crystal nucleation times entailed.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2016-02-01

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Escobedo,Fernando

Committee Co-Chair

Committee Member

Cohen,Claude

Degree Discipline

Chemical Engineering

Degree Name

M.S., Chemical Engineering

Degree Level

Master of Science

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record