Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys

Other Titles
Abstract
We have used an atomistic ab initio approach with no adjustable parameters to compute the lattice thermal conductivity of Si0.5Ge0.5 with a low concentration of embedded Si or Ge nanoparticles of diameters up to 4.4 nm. Through exact Green's function calculation of the nanoparticle scattering rates, we find that embedding Ge nanoparticles in Si0.5Ge0.5 provides 20% lower thermal conductivities than embedding Si nanoparticles. This contrasts with the Born approximation, which predicts an equal amount of reduction for the two cases, irrespective of the sign of the mass difference. Despite these differences, we find that the Born approximation still performs remarkably well, and it permits investigation of larger nanoparticle sizes, up to 60 nm, not feasible with the exact approach.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2011-09-09
Publisher
American Physical Society
Keywords
SiGe alloy; thermal conductivity; heat transfer; nanoparticle; density functional theory; thermoelectric; Born approximation; Green's function
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
A. Kundu, N. Mingo, D. A. Broido, D. A. Stewart, Phys. Rev. B, 84, 125426 (2011)
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
article
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record