eCommons

 

Dynamic Silicon Nanophotonic Devices For On-Chip Optical Interconnects

Other Titles

Author(s)

Abstract

Silicon nanophotonics is one of the most promising candidates to keep the steady increase of computational power we have been used to for the last decades. Its most appealing feature is the amount of data it can deliver, an important factor as complex networks on chip are developed: while Microelectronics suffers from attenuation of the signal traveling through metallic wires as bandwidth is increased, in Photonics losses and bandwidth are not related. Joining our efforts with many of the interesting insights provided by researchers in this very active field of Silicon Nanophotonics, we present a few more dynamic components which are key for the development and maturing of this technology. The first device we study is a hitless switch, which is formed by two coupled microring resonators which transfer function can be changed from a bandpass filter to a allpass filter. The second object of our study is a thermooptical coupled resonator filter which can be tuned across many nanometers while keeping its transfer function unchanged. Third we present a coupled cavity filter which has its Free Spectral Range doubled by using Mach-Zehnder Interferometer couplers, and we also demonstrate non-blocking tuning of such a filter. The last device we present is an electrically-driven optical-isolator, which provides an optical isolator without using magnetic materials, being therefore CMOS-compatible. All devices are studied theoretically, designed, fabricated and tested, with results corroborating the theory presented.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2012-01-31

Publisher

Keywords

Silicon; Photonics; Dynamic Devices

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Lipson, Michal

Committee Co-Chair

Committee Member

Van Dover, Robert B.
Pollock, Clifford Raymond

Degree Discipline

Electrical Engineering

Degree Name

Ph. D., Electrical Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record