eCommons

 

A Suite Of Tools For Reporting And Engineering Protein Folding, Interactions, And Post-Translational Modifications In The Bacterial Periplasm

Other Titles

Abstract

Therapeutic protein drugs are part of an emerging new generation of pharmaceutical products. However, production of such drugs is expensive due to the complex nature of many human proteins and post-translational modifications required for physiological efficacy and pharmacokinetic activity. We have developed several tools to improve production of human-like proteins in a relatively inexpensive host, Escherichia coli. First, we developed a system for monitoring and engineering protein solubility in the bacterial periplasm, a compartment with many useful features for heterologous protein expression. Next, we developed a system for monitoring protein-protein interactions in vivo in the periplasm, which we can leverage for the production of novel and improved antibodies and antibody fragments. Building upon our protein folding reporter technology, we have developed a system for examining the effect of N-linked glycosylation, an important post-translational modification, on protein folding in vivo. This system allows us to (1) study the effect of glycosylation on folding of various glycoproteins from pathogenic organisms and (2) create a genetic selection with the purpose of engineering the glycosylation pathway using the versatile E. coli as a host. Finally, we have created a modified genome-scale flux balance analysis model of E. coli to determine in silico metabolic factors that affect glycosylation efficiency.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2012-01-31

Publisher

Keywords

Protein Engineering; Bacteria; Glycosylation

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Delisa, Matthew

Committee Co-Chair

Varner, Jeffrey D.

Committee Member

Shuler, Michael Louis

Degree Discipline

Chemical Engineering

Degree Name

Ph. D., Chemical Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record