eCommons

 

Applications of Intravital Nonlinear Microscopy in Cardiovascular Research

Other Titles

Abstract

Coordinated contraction of the heart allows for efficient pumping of blood to the body, supplying organs with oxygen necessary for metabolism. In heart disease, reduction of blood flow to heart muscle tissue can result in damage to the tissue over time. The adult heart, unlike other organs, has a limited capacity to recover from this damage causing the mechanical work the heart can perform to decline over time. While our ability to restore flow to the heart and mitigate abnormal electrically conducting tissue has improved over the last few decades, therapies which restore mechanical function improving cardiac output, through repair and healing of the cardiac muscle have not been realized in the clinic. Historic models used to study heart disease lack the ability to quantitative study the progression of individual cells within the living heart following an injury. Here I have taken some first steps in providing imaging methods and tools to allow the study of a more complete picture of heart disease in the context of the whole animal using multiphoton microscopy. I present methods for quantification of cellular resolved excitation and contraction, demonstrate the potential of THG as a label free signal to study the atherosclerotic plaque environment, and characterize some of the optical properties of the heart necessary to push the imaging depth accessible with current multiphoton technology.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2018-12-30

Publisher

Keywords

Multiphoton; Applied physics; third harmonic generation; Atherosclerosis; Biomedical engineering; Microscopy; Cardiac; Fluorescent; physiology

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Nishimura, Nozomi

Committee Co-Chair

Committee Member

Xu, Chunhui
Kotlikoff, Michael I

Degree Discipline

Biomedical Engineering

Degree Name

Ph. D., Biomedical Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Attribution 4.0 International

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record