eCommons

 

Pseudospectra of the Convection-Diffusion Operator

dc.contributor.authorReddy, Satish C.en_US
dc.contributor.authorTrefethen, Lloyd N.en_US
dc.contributor.authorPathria, Dimpyen_US
dc.date.accessioned2007-04-23T16:28:16Z
dc.date.available2007-04-23T16:28:16Z
dc.date.issued1993-04en_US
dc.description.abstractThe spectrum of the simplest 1D convection-diffusion operator is a discrete subset of the negative real axis, but the pseudospectra are regions in the complex plane that approximate parabolas. Put another way, the norm of the resolvent is exponentially large as a function of the Peclet number throughout a certain parabolic region. These observations have a simple physical basis, and suggest that conventional spectral analysis for convection-diffusion operators may be of limited value in some applications.en_US
dc.format.extent2645312 bytes
dc.format.extent1092754 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.citationhttp://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR93-1337en_US
dc.identifier.urihttps://hdl.handle.net/1813/6103
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.subjectcomputer scienceen_US
dc.subjecttechnical reporten_US
dc.titlePseudospectra of the Convection-Diffusion Operatoren_US
dc.typetechnical reporten_US

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
93-1337.pdf
Size:
2.52 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
93-1337.ps
Size:
1.04 MB
Format:
Postscript Files