DEVELOPMENT OF LITHIUM SULFUR BATTERY BY INCORPORATION OF REDUCED GRAPHENE OXIDE AND MESOPOROUS CARBON NANOFIBER ENABLED BY AIR CONTROLLED ELECTROSPRAY METHOD
No Access Until
Permanent Link(s)
Collections
Other Titles
Author(s)
Abstract
The popularity of lithium-sulfur technology and graphene oxide have been surging following the rapid development of technology. High capacity and low cost of sulfur in conjunction with the high surface area and intriguing chemical and mechanical properties of graphene oxide (GO) are subject to many scientific interests. For my project, GO was primary interest to improve the electrochemical performance of lithium sulfur battery as a polysulfide inhibitor and active materials anchor. In chapter 1, GO was utilized as an interlayer to capture polysulfide. GO was coated onto mesoporous carbon nanofiber using air controlled electrospray method. We analyzed the performance of Li-S battery at different reduction temperatures under N2 gas flow and found optimum performance at 300oC. In chapter 2, GO was directly coated onto celgard separator along with the conductive polymer as an effective suppressor of polysulfide diffusion. In chapter 3, GO serves as a binder and polysulfide anchor to adhere active materials onto an aluminum substrate. The fabrication was carried by air controlled electrospray process. Air controlled electrospray process showed superior performance as opposed to conventional slurry method due to unique porous mechanical structure morphology and elimination of insulating polymer binder. Our conclusion indicated that air controlled electrospray process provides novel, facile, and scalable process to develop advance lithium-sulfur cells.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
Publisher
Keywords
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Suntivich, Jin