eCommons

 

Detecting Depression in Social Media : An Emotional Analysis Approach

Other Titles

Abstract

Depression has been an ongoing mental health issue that has been affecting a wide range of humanity, particularly the young adults. To address and observe the more general public in a natural habitat, social media is examined for constructing a system to accurately detect depression. Despite the assiduous effort to construct a novel mechanism to detect depression from social media, behavioral approaches had underlying problems for users with a short activity span. To address this problem, emotion analysis was used as a tool to extract the emotion(s) of a user’s post to identify those with depression. Via machine learning techniques to construct an emotion classifier which in turn creates emotion embeddings for a binary classifier, this study proposes a pipeline structure to identify reddit posts from the depression subreddit. The model yielded promising results, introducing emotional analysis as a novel methodology in assessing mental health within social media.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2019-05-30

Publisher

Keywords

depression; Computer science; Social Media; Emotional Analysis

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Cardie, Claire T.

Committee Co-Chair

Committee Member

Bunea, Florentina

Degree Discipline

Computer Science

Degree Name

M.S., Computer Science

Degree Level

Master of Science

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record