IN SITU ATOMIC FORCE MICROSCOPY OF GROWING CRYSTALS REVEALS FUNDAMENTAL MECHANISMS OF CRYSTAL GROWTH AND INCORPORATION OF ADDITIVES

Other Titles
Abstract
Calcite, the most thermodynamically stable form of calcium carbonate (CaCO3), is commonly found in nature and functions as a structural component for a variety of organisms including mollusks, sea urchins, and algae. In particular, the organisms often utilize single crystals that have significantly increased hardness, modulus, and toughness when compared to a geologic sample of calcite. The increased mechanical properties are of evolutionary benefit to the organism and arise due to additives which control the crystal formation and are incorporated within the single crystalline structures. These additives include magnesium substitutions, small molecules and amino acids, and nanometer scale globules of protein. Though the smaller scale additives are now relatively well understood, the interaction mechanisms between the nanoparticle scale organic and the crystal remain unknown. A more complete understanding of such particle-crystal interactions could lead to “design rules” which can optimize the incorporation of nanoparticles into single crystals. This work uses in situ AFM performed on growing calcite in the presence of nanoparticles with tunable surface chemistry and reveals three types of nanoparticle-crystal interactions: attachment-detachment, attachment-incorporation, and attachment-hovering, where the nanoparticle hovers on the surface as growth proceeds unaffected. Additionally, the particle surface chemistry determines whether the interactions are driven by the charge corona on the particle (a particle driven regime) or by local behavior at the crystal surface (a surface driven regime). Further, this work demonstrates that the distribution of particles in an ensemble is divided between the three types of interactions in an equilibrium which can be affected by both surface chemistry and the growth conditions. Together, we now have a more complete picture of how nanoparticles can interact with a growing crystal surface.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2017-08-30
Publisher
Keywords
Surface Interactions; Materials Science; Nanoscience; Crystal Growth; in situ Atomic Force Microscopy
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Estroff, Lara A.
Committee Co-Chair
Committee Member
Schlom, Darrell
Kourkoutis, Lena Fitting
Degree Discipline
Materials Science and Engineering
Degree Name
Ph. D., Materials Science and Engineering
Degree Level
Doctor of Philosophy
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Attribution 4.0 International
Types
dissertation or thesis
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record