eCommons

 

Checkpointing and Rollback-Recovery for Distributed Systems

Other Titles

Abstract

We consider the problem of bringing a distributed system to a consistent state after transient failures. We address the two components of this problem by describing a distributed algorithm to create consistent checkpoints, as well as a rollback-recovery algorithm to recover the system to a consistent state. In contrast to previous algorithms, they tolerate failures that occur during their executions. Furthermore, when a process takes a checkpoint, a minimal number of additional processes are forced to take checkpoints. Similarly, when a process rolls back and restarts after a failure, a minimal number of additional processes are forced to roll back with it. Our algorithms require each process to store at most two checkpoints in stable storage. This storage requirement is shown to be minimal under general assumptions.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

1985-10

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR85-706

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record