E6. Influence of Urban Morphology on Surface Energy Budget

Other Titles


Our study combines eddy flux measurements from four different sites with distinct land cover characteristics with an urban canopy model to understand the influence of urban materials and morphology on the surface energy budget. Turbulent fluxes of heat and water vapor and other micrometeorological variables were continuously sampled from four different sites (UMBC, Cubhill, Princeton and Broadmead) located in the North Eastern United States. Of the four sites, UMBC and Princeton were located in dense urban areas, while their counterparts Cubhill and Broadmead were located in a suburban and a rural environment, respectively. Our preliminary analysis has shown that while the latent heat flux dominates at the rural and suburban sites, the more urbanized UMBC and Princeton sites were dominated by sensible heat flux. This is expected and could directly be attributed to the vegetative cover fraction surrounding the respective sites. A more interesting finding is that, over the more urbanized surfaces, a considerable shift in peak flux times can be noted due to the heat retaining capacity of urban materials, especially concrete. To quantitatively assess these effects, the Princeton Urban Canyon Model (PUCM) was used. PUCM combines basic meteorological data with aerodynamic and geometric properties of built environment and thermal properties of built and vegetated surfaces to estimate the surface energy budget for urban canopies. The model was able to reproduce the shift in peaks observed in the eddy flux data at the densely urban site (UMBC). The sector-averaged fluxes produced by the model show relatively high sensible heat fluxes from sectors filled with asphalt and concrete. Moreover a significant phase shift was observed in sensible heat fluxes emitted by different urban surfaces.

Journal / Series

Volume & Issue



Date Issued



Internet-First University Press



Effective Date

Expiration Date




Union Local


Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)


Link(s) to Reference(s)

Previously Published As

Government Document




Other Identifiers


Rights URI


Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record