eCommons

 

Bimodal Morphology Transition Mechanism In The Synthesis Of Two Different Silica Nanoparticles

Other Titles

Abstract

Morphology transitions in the surfactant directed synthesis of mesoporous silica nanoparticles are of great interest as these materials are interesting for applications in catalysis, separation, and drug delivery. The nature of the transition mechanisms often remains unknown, but is vital to understanding of better-designed materials. We investigate a bimodal transition mechanism in the synthesis of single pore silica nanoparticles of two different shapes synthesized through micelle templating. Introducing pore expander trimethylbenzene (TMB) to the system at varying concentrations results in a transition from pure thicker single-pore particles to pure thinner single-pore particles. In the transition region both particles have stable pore and particle sizes while after the transition region an increase in the size of the thinner particles is observed. The bimodal nature of the transition is verified by a combination of gel permeation chromatography (GPC), fluorescence correlation spectroscopy (FCS), dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2015-08-17

Publisher

Keywords

Bimodal, Morphology, Transition, Silica; Nanoparticles, Surfactant, Oil

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Wiesner,Ulrich B.

Committee Co-Chair

Committee Member

Estroff,Lara A.

Degree Discipline

Materials Science and Engineering

Degree Name

M.S., Materials Science and Engineering

Degree Level

Master of Science

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record