eCommons

 

Complete Reducibility In Euclidean Twin Buildings

dc.contributor.authorDawson, Deniseen_US
dc.contributor.chairBrown, Kenneth Stephenen_US
dc.contributor.committeeMemberVogtmann, Karen Len_US
dc.contributor.committeeMemberSpeh, Birgit Else Marieen_US
dc.date.accessioned2012-12-17T13:50:45Z
dc.date.available2016-12-30T06:47:00Z
dc.date.issued2011-08-31en_US
dc.description.abstractIn [6], J.P. Serre defined completely reducible subcomplexes of spherical buildings in order to study subgroups of reductive algebraic groups. This paper begins the exploration of how one may use a similar notion of completely reducible subcomplexes of twin buildings to study subgroups of algebraic groups over a ring of Laurent polynomials and Kac-Moody groups. In this paper we explore the definitions of convexity and complete reducibility in twin buildings and some implications of the two in the Euclidean case.en_US
dc.identifier.otherbibid: 7955435
dc.identifier.urihttps://hdl.handle.net/1813/30634
dc.language.isoen_USen_US
dc.subjectBuildingsen_US
dc.subjectComplete Reducibilityen_US
dc.subjecttwin buildingsen_US
dc.titleComplete Reducibility In Euclidean Twin Buildingsen_US
dc.typedissertation or thesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorCornell Universityen_US
thesis.degree.levelDoctor of Philosophy
thesis.degree.namePh. D., Mathematics

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dkt23.pdf
Size:
433.51 KB
Format:
Adobe Portable Document Format