eCommons

 

What Energy Functions can be Minimized via Graph Cuts?

Other Titles

Abstract

Many problems in computer vision can be naturally phrased in terms of energy minimization. In the last few years researchers have developed a powerful class of energy minimization methods based on graph cuts. These techniques construct a specialized graph, such that the minimum cut on the graph also minimizes the energy. The minimum cut in turn is efficiently computed by max flow algorithms. Such methods have been successfully applied to a number of important vision problems, including image restoration, motion, stereo, voxel occupancy and medical imaging. However, each graph construction to date has been highly specific for a particular energy function. In this paper we address a much broader problem, by characterizing the class of energy functions that can be minimized by graph cuts, and by giving a general-purpose construction that minimizes any energy function in this class. Our results generalize several previous vision algorithms based on graph cuts, and also show how to minimize an interesting new class of energy functions.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2001-11-27

Publisher

Cornell University

Keywords

computer science; technical report

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR2001-1857

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

technical report

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record