A Combinatorial Approach For Exploring Fuel Cell Electrocatalysts
Loading...
Files
No Access Until
Permanent Link(s)
Collections
Other Titles
Authors
Abstract
Fuel cells represent an alternative energy technology with the potential for providing more efficient means for energy conversion. However, their widespread deployment has been hampered by materials limitations, especially for the catalysts as they can be expensive, easily poisoned, and/or unstable over time. In order to accelerate the discovery and development of electrocatalysts that enhance fuel cell performance, a high throughput method is employed to screen many compositions and phases simultaneously. Preparation of the composition-spread libraries is achieved via cosputtering of multiple elements onto a Ta- or Ti-coated 3-inch Si wafer. These samples are screened as anode electrocatalysts using a fluorescence assay with quinine as the fluorescent probe. A key development is the characterization of these thin films via X-ray diffraction at Cornell's High Energy Synchrotron Source (CHESS). Systems of interest are discussed, including Pt-Zn, Pt-Ta, Pt-M alloys (M= transition metal at concentrations below 40%). Compositions exhibiting promising activity for specific fuels in the fluorescence tests are further characterized using a scanning electrochemical minicell. Alternative materials are introduced, i.e. nitrides and carbides, as well as non-Pt containing metal compositions. Fundamental studies on understanding fuel oxidation in neutral pH are described and further development of the fluorescence screening methodology for the cathode is presented.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2011-08-31
Publisher
Keywords
Methanol oxidation; fuel cells; Platinum alloys; combinatorial screening; Fluorescence; high throughput
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Abruna, Hector D
Committee Co-Chair
Committee Member
Disalvo, Francis J
Van Dover, Robert B.
Van Dover, Robert B.
Degree Discipline
Chemistry and Chemical Biology
Degree Name
Ph. D., Chemistry and Chemical Biology
Degree Level
Doctor of Philosophy
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
dissertation or thesis