eCommons

 

Network-Structured Error Flattening For Power Grids And Other Real-World Networks

Other Titles

Abstract

From power grids to social networks to neuroscience, networks are increasingly important in science today. They are, however, inherently hard to study. On one hand, phenomena beginning in one part of a network can have complex and global effects on the rest of the network, and so behavior is frequently difficult to predict without simulations. On the other hand, modern networks are often massive, containing hundreds of millions or even billions of nodes. Due to this, network computations often require specialized algorithms that exploit network structure to perform their tasks efficiently. In this work, we study matrix-based network computations and the relationship between network structure and linear algorithms. Out algorithms use either low rank upates or coarse grid projections to transform the problem into a smaller one that is exactly or approximately equivalent to the original. We refer to these techniques as error flattening methods. We present three examples: a method for fast detection and identification of power grid topology errors; a nonlinear multigrid method to solve the power flow equations; and a two-part iterative method to solve graph Laplacian systems.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2016-05-29

Publisher

Keywords

Topology Correction; Power Grid Simulation; Multigrid

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Bindel,David S.

Committee Co-Chair

Committee Member

Birman,Kenneth Paul
Tong,Lang
Wells,Martin Timothy

Degree Discipline

Computer Science

Degree Name

Ph. D., Computer Science

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record