eCommons

 

Geometric Backlund Transformations In Homogeneous Spaces

Other Titles

Abstract

A classical theorem of Bianchi states that two surfaces in space are the focal surfaces of a pseudospherical line congruence only if each surface has constant negative Gaussian curvature. Lie constructed a partial converse, explicitly calculating from one surface of constant negative curvature a pseudospherical line congruence and matching surface. We construct a generalization of these theorems to submanifolds of arbitrary homogeneous spaces. Applications are given to surfaces in the classical space forms and in a novel geometry related to the group of Lie sphere transformations.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2010-10-20

Publisher

Keywords

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record