Geometric Backlund Transformations In Homogeneous Spaces
Loading...
No Access Until
Permanent Link(s)
Collections
Other Titles
Author(s)
Abstract
A classical theorem of Bianchi states that two surfaces in space are the focal surfaces of a pseudospherical line congruence only if each surface has constant negative Gaussian curvature. Lie constructed a partial converse, explicitly calculating from one surface of constant negative curvature a pseudospherical line congruence and matching surface. We construct a generalization of these theorems to submanifolds of arbitrary homogeneous spaces. Applications are given to surfaces in the classical space forms and in a novel geometry related to the group of Lie sphere transformations.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
2010-10-20
Publisher
Keywords
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
dissertation or thesis