eCommons

 

VIEW-INVARIANT ACTION RECOGNITION IN DYNAMIC SCENES VIA SIM2REAL TRANSFER

dc.contributor.authorWang, Yuhan
dc.contributor.chairFerrari, Silviaen_US
dc.contributor.committeeMemberHariharan, Bharathen_US
dc.date.accessioned2024-04-05T18:36:01Z
dc.date.available2024-04-05T18:36:01Z
dc.date.issued2023-08
dc.description62 pagesen_US
dc.description.abstractLearning view-invariant representation is essential to improving feature extraction for action recognition. Existing approaches cannot effectively capture details for human actions due to fast-paced gameplay and implicit view- dependent representation. In this paper, it goes beyond recognizing human actions from a fixed view and focusing on action recognition from an arbitrary view. This paper purposes a method to build an efficient data generating pipeline due to lack of original input data. This paper also provides a pipeline combining capturing modified I3D human actions features and use Multilayer Perception to achieve human action recognition and classification. The use of information captured from combination of virtual and real-life data, as well as different viewing angles, leads to high classification performance.en_US
dc.identifier.doihttps://doi.org/10.7298/h4vt-nv30
dc.identifier.otherWang_cornell_0058O_11820
dc.identifier.otherhttp://dissertations.umi.com/cornell:11820
dc.identifier.otherWang_cornell_0058O_11839
dc.identifier.otherhttp://dissertations.umi.com/cornell:11839
dc.identifier.urihttps://hdl.handle.net/1813/114413
dc.language.isoen
dc.subjectComputer visionen_US
dc.subjectMachine Learningen_US
dc.subjectMLPen_US
dc.titleVIEW-INVARIANT ACTION RECOGNITION IN DYNAMIC SCENES VIA SIM2REAL TRANSFERen_US
dc.typedissertation or thesisen_US
dcterms.licensehttps://hdl.handle.net/1813/59810.2
thesis.degree.disciplineMechanical Engineering
thesis.degree.grantorCornell University
thesis.degree.levelMaster of Science
thesis.degree.nameM.S., Mechanical Engineering

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wang_cornell_0058O_11820.pdf
Size:
4.37 MB
Format:
Adobe Portable Document Format