eCommons

 

That bites!: the transport of Bothrops asper venom in leg

Other Titles

Abstract

Snake venom has been known to be a deadly toxin for centuries. Although many studies about the dangerous effects of snake venom have been conducted, the spread of venom throughout human tissue has not yet been modeled. The goal of this study is to examine the contributions of relevant modes of mass transport on the spread of venom in human skeletal muscle tissue. In this study, computational models that mimic the localized propagation of venom were developed using parameter values for diffusivity, injection pressure, and injection volume determined from available research papers, empirical formulas, and clinical case studies. COMSOL Multiphysics 4.3b software was used to simulate the dissemination of venom from a fang into human flesh. A simplified 2D axisymmetric geometry was used initially to model the human tissue punctured by a single snake fang. This model allows us to examine the diffusion of BAP1 metalloprotease in human tissue. The results were compared to data from in vivo snake bite case studies and a study of the diffusion of similarly sized non-toxic protein. It was determined that diffusion alone could not be responsible for the expected extent of venom spread. Therefore, additional modes of mass transport, such as convection and Darcy’s flow, were evaluated and integrated in a 3D model of a human leg. Darcy flow at the point of injection simulated the effect of the injection pressure pushing venom out of the fang into the tissue. The model results were compared to findings in a series of studies on venom mechanics and metering in rattlesnakes and were found to be consistent. The convection of venom away from the injection site due to circulation of blood and interstitial fluid in the leg was modeled as a source term. Sensitivity analyses were performed in order to study how sensitive the solutions are to these input parameters. These models enable researchers to gain insight into how the different modes of mass transport influence the progression of edema. Knowing this can allow researchers to develop more effective treatment methods and antidotes for snakebites. Researchers can also modify these input parameters in order to model venom transport for different species of snakes, allowing them to tailor treatment methods for a variety of snakes.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2015-05-19

Publisher

Keywords

Computer-Aided Engineering; Biomedical Processes

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Committee Co-Chair

Committee Member

Degree Discipline

Degree Name

Degree Level

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

term paper

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record