On the Efficient Methods to Solve ODEs and BVPs Using Automatic Differentiation

Other Titles
Abstract
A large number of physical phenomena are modeled by a system of ODEs or a system of implicit ODEs. We demonstrate applicability of automatic differentiation (AD) for solving: (1) Boundary value problems in ODEs and implicit ODEs. (2) Initial state and parameter estimation problems. The impact of using AD is two fold. Firstly, efficient methods for computing the gradient vectors and Jacobian matrices have been developed using AD. Secondly the process of getting derivatives via AD is robust, more user friendly, and provides error free derivatives. Furthermore, techniques using AD have been developed which exploit structure in the user's computation, and particularly the structure we observe in boundary value problems or state/parameter estimation problems. We demonstrate by a few experiments the efficiency gained by the usage of AD in solving these problems.
Journal / Series
Volume & Issue
Description
Sponsorship
Date Issued
1996-08
Publisher
Cornell University
Keywords
theory center
Location
Effective Date
Expiration Date
Sector
Employer
Union
Union Local
NAICS
Number of Workers
Committee Chair
Committee Co-Chair
Committee Member
Degree Discipline
Degree Name
Degree Level
Related Version
Related DOI
Related To
Related Part
Based on Related Item
Has Other Format(s)
Part of Related Item
Related To
Related Publication(s)
Link(s) to Related Publication(s)
References
Link(s) to Reference(s)
Previously Published As
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.tc/96-253
Government Document
ISBN
ISMN
ISSN
Other Identifiers
Rights
Rights URI
Types
technical report
Accessibility Feature
Accessibility Hazard
Accessibility Summary
Link(s) to Catalog Record