Modified Lagrangian-Mean Perspective Of Annular Mode Variability

Other Titles


The leading mode of extratropical variability or annular mode is characterized as a meridional seesaw of mass between middle and high latitudes or equivalently, a barotropic dipole in the zonal wind anomaly field. With an understanding of the spatial structure of the annular mode variability, focus has shifted to the eddy-zonal flow interaction or Rossby wave breaking that leads to the persistence of the zonal wind anomalies. Much insight has been gained from the conventional relationship between the zonal-mean flow and eddy fluxes, and the resulting mechanisms often involve eddies of different frequencies or barotropic versus baroclinic processes. Here a new perspective of the annular mode variability is presented in the Modified Lagrangian-Mean (MLM) formalism of a quasi-geostrophic (QG) and absolute vorticity model. By applying the MLM to the QG potential vorticity (PV) tendency budget, a closure equation for annular mode variability or eddy vorticity flux can be obtained. The eddy vorticity flux closure model can be described by a simple diffusive equation with the eddy fluxes absorbed in the MLM. A similar diffusive equation is obtained using absolute vorticity but with a redefinition of the wave type and wave source. Instead of a QG PV, baroclinic wave source, absolute vorticity provides a horizontally, divergent source of waves which are important for wave propagation, wave breaking, and annular mode variability. These formalisms are applied to a baroclinic eddy lifecycle and annular mode variability in an idealized model. It is shown that the shift of a zonal jet during an eddy life cycle can be attributed to horizontal wave tendency, whereas its persistence is concurrent with small-scale dissipation associated with Rossby wave breaking. Furthermore, analysis of annular modes in the idealized model suggests that the wave activity associated with the annular mode variability is short-lived, and that the persistence of the annular mode may be attributed to the eddy source and diffusion of the eddy vorticity flux also associated with Rossby wave breaking.

Journal / Series

Volume & Issue



Date Issued




annular mode; lagrangian-mean; eddy-mean flow feedback


Effective Date

Expiration Date




Union Local


Number of Workers

Committee Chair

Chen, Gang

Committee Co-Chair

Committee Member

Diamessis, Peter J.
Colucci, Stephen John

Degree Discipline

Atmospheric Science

Degree Name

M.S., Atmospheric Science

Degree Level

Master of Science

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)


Link(s) to Reference(s)

Previously Published As

Government Document




Other Identifiers


Rights URI


dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record