eCommons

 

Novel Phases In Polyhedral Nanoparticles: Mixtures And Spatial Confinement

Other Titles

Abstract

Colloids present an interesting experimental system to study fundamental scientific problems as well as to tackle technological challenges, through novel material design. Several control parameters like size, shape, inter-particle interactions, assembly-geometry (including dimensionality) and external fields (among many others) can result in a great variety in morphologies and material properties. In particular, polyhedral nanoparticles are potentially powerful candidates with a rich phase behavior and availability of robust experimental methods for their synthesis. Our aim in this thesis is to understand, through computer simulations, various aspects of polyhedra phase behavior. In particular, we study a specific case of binary mixtures of polyhedra called binary tessellating mixtures in Chapter 2. The motivation here is to study if these superstructures are generated from the geometrical condition of spacefilling i.e. tessellation, without the use of any enthalpic interactions (which tend to be harder to control in experiments). As we see in Chapter 2, pure entropic self-assembly of these mixtures fails to reach tessellated phase due to kinetic barriers, which can be alleviated by small targeted enthalpic interactions. We further explore the wider problem of self-assembly of binary polyhedral mixtures in Chapter 3 to understand the generic predictive rules that can help guide experimental efforts. We find that the mixture miscibility (a critical criterion for novel superstructures) is strongly determined, among other factors, by the difference between order-disorder transition pressure ([INCREMENT]ODP) of the individual polyhedra in the mixture. We also propose a general qualitative roadmap for the mixture phase behavior. In chapter 4, using the guiding rules discovered while studying mixtures, in combination with novel plastic crystalline 'mesophases' exhibited by a subset of polyhedra, we develop a design scheme that allows for the formation of ordered mixtures without introducing any enthalpic interactions. These so-called Mixed Rotator mesophases (MRMs) form purely from an entropic self-assembly and are stable for a large range of volume fractions. Apart from shape bi-dispersity (mixtures), we also investigate the effect of geometrical confinement on polyhedral self-assembly in Chapter 5 and show that a parallel-plate confinement leads to many novel phases that are not seen in bulk, through the case of four representative polyhedra from the truncated cube family. We conclude with a summary of our findings and a discussion of currently prevalent research directions.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2015-08-17

Publisher

Keywords

Self-assembly, colloids,confinement; Monte Carlo simulations; polyhedral nanoparticles, mixtures

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Elser,Veit

Committee Co-Chair

Committee Member

Cohen,Itai
Escobedo,Fernando

Degree Discipline

Physics

Degree Name

Ph. D., Physics

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record